Sample records for pressure flow meter

  1. Balanced Flow Meters without Moving Parts

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.; VanBuskirk, Paul

    2008-01-01

    Balanced flow meters are recent additions to an established class of simple, rugged flow meters that contain no moving parts in contact with flow and are based on measurement of pressure drops across objects placed in flow paths. These flow meters are highly accurate, minimally intrusive, easily manufacturable, and reliable. A balanced flow meter can be easily mounted in a flow path by bolting it between conventional pipe flanges. A balanced flow meter can be used to measure the flow of any of a variety of liquids or gases, provided that it has been properly calibrated. Relative to the standard orifice-plate flow meter, the balanced flow meter introduces less turbulence and two times less permanent pressure loss and is therefore capable of offering 10 times greater accuracy and repeatability with less dissipation of energy. A secondary benefit of the reduction of turbulence is the reduction of vibration and up to 15 times less acoustic noise generation. Both the balanced flow meter and the standard orifice-plate flow meter are basically disks that contain holes and are instrumented with pressure transducers on their upstream and downstream faces. The most obvious difference between them is that the standard orifice plate contains a single, central hole while the balanced flow meter contains multiple holes. The term 'balanced' signifies that in designing the meter, the sizes and locations of the holes are determined in an optimization procedure that involves balancing of numerous factors, including volumetric flow, mass flow, dynamic pressure, kinetic energy, all in an effort to minimize such undesired effects as turbulence, pressure loss, dissipation of kinetic energy, and non-repeatability and nonlinearity of response over the anticipated range of flow conditions. Due to proper balancing of these factors, recent testing demonstrated that the balanced flow-meter performance was similar to a Venturi tube in both accuracy and pressure recovery, but featured reduced cost and pipe-length requirements.

  2. Development and Testing of the Europa Mission's Venturi Flow Meter

    NASA Technical Reports Server (NTRS)

    Diaz, C. E.; McKim, S. A.

    2017-01-01

    NASA's Marshall Space Flight Center (MSFC), in collaboration with NASA's Goddard Space Flight Center (GSFC), Fox Valve Development Corp. and Oxford Lasers, is developing a set of venturi flow meters for use on the Europa Mission's propulsion subsystem. The requirement for the venturi flow meters' throat diameters is approximately 0.040". An early risk reduction activity conducted by MSFC revealed that a venturi flow meter produced by FOX with a throat diameter near 0.040" had much higher pressure loss than venturi flow meters with larger throat diameters and venturis of similar throat diameter size but with no pressure taps (i.e. venturis with a throat length to diameter ratio of zero). In response, a series of venturi flow meters was fabricated and flow tested to gain insight into pressure recovery as it is affected by pressure port diameter, throat length and diffuser angle in an effort to improve the performance of a venturi flow meter. This presentation provides a summary of the venturi flow meter development activity including: a description of the test's objectives, a detailed description of each venturi configuration, a description of the manufacturing processes of the venturis, and observations from the test data. A summary of the current development activities will also be given, as well as the current development path forward. Ultimately, the knowledge gained through the fabrication and testing of these venturis provides guidance to design a flight venturi flow meters with pressure recoveries that is acceptable for the Europa flight application.

  3. Primary flow meter for calibrating a sniffer test leak artefact by a pressure rise method

    NASA Astrophysics Data System (ADS)

    Arai, Kenta; Yoshida, Hajime

    2014-10-01

    Sniffer tests are used to locate leaks in equipment during operation. The sensitivity of a sniffer leak detector must be calibrated against a known gas flow to atmospheric pressure generated by a sniffer test leak artefact. We have developed a primary flow meter for calibrating gas flows to atmospheric pressure through the leak artefact. The flow meter is based on a pressure rise method and two chambers are used to measure the pressure rise with small uncertainty even at atmospheric pressure. The calibration range of the flow rate is 5 × 10-7 Pa m3 s-1 to 7 × 10-4 Pa m3 s-1 to atmospheric pressure at 23.0 °C with a minimum uncertainty of 1.4% (k = 2), as well as 4 × 10-8 Pa m3 s-1 to 5 × 10-4 Pa m3 s-1 to a vacuum at 23.0 °C. The long term stability of the flow meter was determined as 0.41% by repeated measurements of the conductance of the leak artefact. In case of the flow rate into a vacuum, the flow meter was successfully linked to the international reference value of CCM.P-K12 by a lab-internal comparison.

  4. Balanced Flow Metering and Conditioning: Technology for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.

    2006-01-01

    Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.

  5. Groundwater-Seepage Meter

    NASA Technical Reports Server (NTRS)

    Walthall, Harry G.; Reay, William G.

    1993-01-01

    Instrument measures seepage of groundwater into inland or coastal body of water. Positioned at depth as great as 40 meters, and measures flow at low rate and low pressure differential. Auxiliary pressure meter provides data for correlation of flow of groundwater with tides and sea states. Seepage meter operates independently for several weeks. Its sampling rate adjusted to suit hydrologic conditions; to measure more frequently when conditions changing rapidly. Used in water-quality management and for biological and geological research. Potential industrial uses include measurement of seepage of caustic and corrosive liquids.

  6. Gas flow meter and method for measuring gas flow rate

    DOEpatents

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  7. Support of gas flowmeter upgrade

    NASA Technical Reports Server (NTRS)

    Waugaman, Dennis

    1996-01-01

    A project history review, literature review, and vendor search were conducted to identify a flowmeter that would improve the accuracy of gaseous flow measurements in the White Sands Test Facility (WSTF) Calibration Laboratory and the Hydrogen High Flow Facility. Both facilities currently use sonic flow nozzles to measure flowrates. The flow nozzle pressure drops combined with corresponding pressure and temperature measurements have been estimated to produce uncertainties in flowrate measurements of 2 to 5 percent. This study investigated the state of flowmeter technology to make recommendations that would reduce those uncertainties. Most flowmeters measure velocity and volume, therefore mass flow measurement must be calculated based on additional pressures and temperature measurement which contribute to the error. The two exceptions are thermal dispersion meters and Coriolis mass flowmeters. The thermal dispersion meters are accurate to 1 to 5 percent. The Coriolis meters are significantly more accurate, at least for liquids. For gases, there is evidence they may be accurate to within 0.5 percent or better of the flowrate, but there may be limitations due to inappropriate velocity, pressure, Mach number and vibration disturbances. In this report, a comparison of flowmeters is presented. Candidate Coriolis meters and a methodology to qualify the meter with tests both at WSTF and Southwest Research Institute are recommended and outlined.

  8. Noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump.

    PubMed

    Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2013-01-01

    In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively.

  9. Sample preparation system for microfluidic applications

    DOEpatents

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA; Harnett, Cindy K [Livermore, CA

    2007-05-08

    An apparatus that couples automated injection with flow feedback to provide nanoliter accuracy in controlling microliter volumes. The apparatus comprises generally a source of hydraulic fluid pressure, a fluid isolator joined to the outlet of the hydraulic pressure source and a flow sensor to provide pressure-driven analyte metering. For operation generally and particularly in microfluidic systems the hydraulic pressure source is typically an electrokinetic (EK) pump that incorporates gasless electrodes. The apparatus is capable of metering sub-microliter volumes at flowrates of 1 100 .mu.L/min into microsystem load pressures of up to 1000 50 psi, respectively. Flowrates can be specified within 0.5 .mu.L/min and volumes as small as 80 nL can be metered.

  10. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    USGS Publications Warehouse

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  11. Calibrating/testing meters in hot water test bench VM7

    NASA Astrophysics Data System (ADS)

    Kling, E.; Stolt, K.; Lau, P.; Mattiasson, K.

    A Hot Water Test Bench, VM7, has been developed and constructed for the calibration and testing of volume and flowmeters, in a project at the National Volume Measurement Laboratory at the Swedish National Testing and Research Institute. The intended area of use includes use as a reference at audit measurements, e.g. for accredited laboratories, calibration of meters for the industry and for the testing of hot water meters. The objective of the project, which was initiated in 1989, was to design equipment with stable flow and with a minimal temperature drop even at very low flow rates. The principle of the design is a closed system with two pressure tanks at different pressures. The water is led from the high pressure tank through the test object and the volume standard, in the form of master meters or a piston prover alternatively, to the low pressure tank. Calibrations/tests are made comparing the indication of the test object to that of master meters covering the current flow rate. These are, in the same test cycle, calibrated to the piston prover. Alternatively, the test object can be calibrated directly to the piston prover.

  12. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  13. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  14. Elbow mass flow meter

    DOEpatents

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  15. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  16. Cryogenic flow rate measurement with a laser Doppler velocimetry standard

    NASA Astrophysics Data System (ADS)

    Maury, R.; Strzelecki, A.; Auclercq, C.; Lehot, Y.; Loubat, S.; Chevalier, J.; Ben Rayana, F.

    2018-03-01

    A very promising alternative to the state-of-the-art static volume measurements for liquefied natural gas (LNG) custody transfer processes is the dynamic principle of flow metering. As the Designated Institute (DI) of the LNE (‘Laboratoire National de métrologie et d’Essais’, being the French National Metrology Institute) for high-pressure gas flow metering, Cesame-Exadebit is involved in various research and development programs. Within the framework of the first (2010-2013) and second (2014-2017) EURAMET Joint Research Project (JRP), named ‘Metrological support for LNG custody transfer and transport fuel applications’, Cesame-Exadebit explored a novel cryogenic flow metering technology using laser Doppler velocimetry (LDV) as an alternative to ultrasonic and Coriolis flow metering. Cesame-Exadebit is trying to develop this technique as a primary standard for cryogenic flow meters. Currently, cryogenic flow meters are calibrated at ambient temperatures with water. Results are then extrapolated to be in the Reynolds number range of real applications. The LDV standard offers a unique capability to perform online calibration of cryogenic flow meters in real conditions (temperature, pressure, piping and real flow disturbances). The primary reference has been tested on an industrial process in a LNG terminal during truck refuelling. The reference can calibrate Coriolis flow meters being used daily with all the real environmental constraints, and its utilisation is transparent for LNG terminal operators. The standard is traceable to Standard International units and the combined extended uncertainties have been determined and estimated to be lower than 0.6% (an ongoing improvement to reducing the correlation function uncertainty, which has a major impact in the uncertainty estimation).

  17. Two Primary Standards for Low Flows of Gases

    PubMed Central

    Berg, Robert F.; Tison, Stuart A.

    2004-01-01

    We describe two primary standards for gas flow in the range from 0.1 to 1000 μmol/s. (1 μmol/s ≅ 1.3 cm3/min at 0 °C and 1 atmosphere.) The first standard is a volumetric technique in which measurements of pressure, volume, temperature, and time are recorded while gas flows in or out of a stainless steel bellows at constant pressure. The second standard is a gravimetric technique. A small aluminum pressure cylinder supplies gas to a laminar flow meter, and the integrated throughput of the laminar flow meter is compared to the weight decrease of the cylinder. The two standards, which have standard uncertainties of 0.019 %, agree to within combined uncertainties with each other and with a third primary standard at NIST based on pressure measurements at constant volume. PMID:27366623

  18. Investigation of Seepage Meter Measurements in Steady Flow and Wave Conditions.

    PubMed

    Russoniello, Christopher J; Michael, Holly A

    2015-01-01

    Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment-water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h-greater than the expected net-zero flux, but significantly less than theoretical wave-driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one-way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments. © 2014, National Ground Water Association.

  19. A High-Pressure Bi-Directional Cycloid Rotor Flowmeter

    PubMed Central

    Liu, Shuo; Ding, Fan; Ding, Chuan; Man, Zaipeng

    2014-01-01

    The measurement of the flow rate of various liquids and gases is critical in industrial automation. Rotary positive displacement meters (rotary PD meters) are highly accurate flowmeters that are widely employed in engineering applications, especially in custody transfer operations and hydraulic control systems. This paper presents a high pressure rotary PD meter containing a pair of internal cycloid rotors. It has the advantages of concise structure, low pressure loss, high accuracy and low noise. The curve of the internal rotor is designed as an equidistant curtate epicycloid curve with the external rotor curve as its conjugate. The calculation method used to determine the displacement of the cycloid rotor flowmeter is discussed. A prototype was fabricated, and experiments were performed to confirm measurements over a flow range of 1–100 L/min with relative errors of less than ±0.5%. The pressure loss through the flowmeter was about 3 bar at a flow rate of 100 L/min. PMID:25196162

  20. Method to produce American Thoracic Society flow-time waveforms using a mechanical pump.

    PubMed

    Hankinson, J L; Reynolds, J S; Das, M K; Viola, J O

    1997-03-01

    The American Thoracic Society (ATS) recently adopted a new set of 26 standard flow-time waveforms for use in testing both diagnostic and monitoring devices. Some of these waveforms have a higher frequency content than present in the ATS-24 standard volume-time waveforms, which, when produced by a mechanical pump, may result in a pump flow output that is less than the desired flow due to gas compression losses within the pump. To investigate the effects of gas compression, a mechanical pump was used to generate the necessary flows to test mini-Wright and Assess peak expiratory flow (PEF) meters. Flow output from the pump was measured by two different independent methods, a pneumotachometer and a method based on piston displacement and pressure measured within the pump. Measuring output flow based on piston displacement and pressure has been validated using a pneumotachometer and mini-Wright PEF meter, and found to accurately measure pump output. This method introduces less resistance (lower back-pressure) and dead space volume than using a pneumotachometer in series with the meter under test. Pump output flow was found to be lower than the desired flow both with the mini-Wright and Assess meters (for waveform No. 26, PEFs 7.1 and 10.9% lower, respectively). To compensate for losses due to gas compression, we have developed a method of deriving new input waveforms, which, when used to drive a commercially available mechanical pump, accurately and reliably produces the 26 ATS flow-time waveforms, even those with the fastest rise-times.

  1. On-site flow calibration of turbine meters for natural gas custody transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, V.C.; Schexnayder, L.L.; Conkling, D.B.

    1991-05-01

    This paper presents the design criteria, performance characteristics, and calibration procedures relating to a turbine-meter flow-calibration facility used in the high-volume custody transfer of natural gas. The facility, located in Venice, LA, is owned and operated by Chevron U.S.A. Inc. and is used to meter sales volumes of up to 500 MMscf/D (14.16 {times} 10 std m{sup 3}/d) at a nominal operating pressure of 1,000 psig (6.9 MPa). The system includes three 12-in. (30.48 cm) turbine meters used for sales-volume measurement, a bank of sonic nozzles, and a master turbine meter connected in series with the sales meters. The sonicmore » nozzles and master meter serve as flow-proving and -calibration devices. sonic nozzles are recommended by the turbine-meter standard for meter calibration. This paper examines the performance of on-site calibration of gas turbine meters. The Venice facility successfully demonstrated that on-site calibration of gas-metering devices can ensure accurate gas-flow measurement under field conditions.« less

  2. Non-invasive determination of instantaneous brachial blood flow using the oscillometric method.

    PubMed

    Liu, Shing-Hong; Wang, Jia-Jung; Cheng, Da-Chuan

    2009-08-01

    The oscillometric method has been widely used to measure arterial systolic and diastolic blood pressures, but its potential for arterial blood flow measurements still remains to be explored. The aim of this study was to non-invasively determine arterial blood flow using an oscillometric blood flow measurement system. The system consists of a pneumatic elastic cuff, an air-pumping motor, a releaser valve, a pressure transducer, and an airflow meter. To build a non-linear cuff model, we measured airflow pumped into the pneumatic cuff and cuff pressure using an airflow meter and pressure transducer during the inflation period, respectively. During the deflation period, only the pressure transducer was used to record cuff pressure. Based on the cuff model, the oscillometric blood flow waveform was obtained by integrating the oscillometric pressure waveform. We compared arterial blood flow derived from the maximum amplitude of the oscillometric blood flow waveform with Doppler-measured blood flow calculated with the diameters and blood velocities of the brachial arteries in 32 subjects who underwent diagnostic evaluations for peripheral arterial embolism. A linear correlation coefficient of r = 0.716 was found between the oscillometry- and Doppler-based blood flow measurements in the 32 subjects. These results suggest that blood flow passing through the brachial artery can be quantified non-invasively using the oscillometric approach after appropriate calibration.

  3. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  4. A proposal of optimal sampling design using a modularity strategy

    NASA Astrophysics Data System (ADS)

    Simone, A.; Giustolisi, O.; Laucelli, D. B.

    2016-08-01

    In real water distribution networks (WDNs) are present thousands nodes and optimal placement of pressure and flow observations is a relevant issue for different management tasks. The planning of pressure observations in terms of spatial distribution and number is named sampling design and it was faced considering model calibration. Nowadays, the design of system monitoring is a relevant issue for water utilities e.g., in order to manage background leakages, to detect anomalies and bursts, to guarantee service quality, etc. In recent years, the optimal location of flow observations related to design of optimal district metering areas (DMAs) and leakage management purposes has been faced considering optimal network segmentation and the modularity index using a multiobjective strategy. Optimal network segmentation is the basis to identify network modules by means of optimal conceptual cuts, which are the candidate locations of closed gates or flow meters creating the DMAs. Starting from the WDN-oriented modularity index, as a metric for WDN segmentation, this paper proposes a new way to perform the sampling design, i.e., the optimal location of pressure meters, using newly developed sampling-oriented modularity index. The strategy optimizes the pressure monitoring system mainly based on network topology and weights assigned to pipes according to the specific technical tasks. A multiobjective optimization minimizes the cost of pressure meters while maximizing the sampling-oriented modularity index. The methodology is presented and discussed using the Apulian and Exnet networks.

  5. Apparatus and method to inject a reductant into an exhaust gas feedstream

    DOEpatents

    Viola, Michael B [Macomb Township, MI

    2009-09-22

    An exhaust aftertreatment system for an internal combustion engine is provided including an apparatus and method to inject a reductant into the exhaust gas feedstream. Included is a fuel metering device adapted to inject reductant into the exhaust gas feedstream and a controllable pressure regulating device. A control module is operatively connected to the reductant metering device and the controllable pressure regulating device, and, adapted to effect flow of reductant into the exhaust gas feedstream over a controllable flow range.

  6. An Investigation of Slurry Fuel Combustion.

    DTIC Science & Technology

    1981-01-01

    tit Lil’ sitas wtae f).4 mm ap.art. w w =Q L-1~ rAn Li w > 0 0- - q The propane gas flow rate was metered withi a Matlieson Model 604 rotameter and...controlled by a Harris Model 2515 pressure regulator with an output capacity of 0-0.69 MPa. The flow rate of the iydrog’en gas was metered with a...propane 3nd hydrogen flows were calibrated with a Precision Scientific Companv wet-test meter (2.83 ml/rev). The fuel drops were mounted with a

  7. 40 CFR 98.323 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the meter automatically corrects for temperature and pressure, replace “520 °R/Ti × Pi/1 atm” with “1... at which flow is measured (°R). Pi = Daily pressure at which flow is measured (atm). 1,440...

  8. Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh

    NASA Astrophysics Data System (ADS)

    Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.

    2016-02-01

    Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.

  9. 40 CFR 63.425 - Test methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... location for each leak. (g) Nitrogen pressure decay field test. For those cargo tanks with manifolded... adding commercial grade nitrogen gas from a high pressure cylinder capable of maintaining a pressure of 2... and a flow control metering valve. The flow rate of the nitrogen shall be no less than 2 cfm. The...

  10. 40 CFR 63.425 - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... location for each leak. (g) Nitrogen pressure decay field test. For those cargo tanks with manifolded... adding commercial grade nitrogen gas from a high pressure cylinder capable of maintaining a pressure of 2... and a flow control metering valve. The flow rate of the nitrogen shall be no less than 2 cfm. The...

  11. 40 CFR 63.425 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... location for each leak. (g) Nitrogen pressure decay field test. For those cargo tanks with manifolded... adding commercial grade nitrogen gas from a high pressure cylinder capable of maintaining a pressure of 2... and a flow control metering valve. The flow rate of the nitrogen shall be no less than 2 cfm. The...

  12. 40 CFR 63.425 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... location for each leak. (g) Nitrogen pressure decay field test. For those cargo tanks with manifolded... adding commercial grade nitrogen gas from a high pressure cylinder capable of maintaining a pressure of 2... and a flow control metering valve. The flow rate of the nitrogen shall be no less than 2 cfm. The...

  13. 40 CFR 63.425 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... location for each leak. (g) Nitrogen pressure decay field test. For those cargo tanks with manifolded... adding commercial grade nitrogen gas from a high pressure cylinder capable of maintaining a pressure of 2... and a flow control metering valve. The flow rate of the nitrogen shall be no less than 2 cfm. The...

  14. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    PubMed

    Donaldsson, Snorri; Falk, Markus; Jonsson, Baldvin; Drevhammar, Thomas

    2015-01-01

    The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  15. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing

    PubMed Central

    2015-01-01

    Background The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Methods Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. Results The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. Conclusion The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates. PMID:26192188

  16. Performance of different PEEP valves and helmet outlets at increasing gas flow rates: a bench top study.

    PubMed

    Isgrò, S; Zanella, A; Giani, M; Abd El Aziz El Sayed Deab, S; Pesenti, A; Patroniti, N

    2012-10-01

    Aim of the paper was to assess the performance of different expiratory valves and the resistance of helmet outlet ports at increasing gas flow rates. A gas flow-meter was connected to 10 different expiratory peep valves: 1 water-seal valve, 4 precalibrated fixed PEEP valves and 5 adjustable PEEP valves. Three new valves of each brand, set at different pressure levels (5-7.5-10-12.5-15 cmH(2)O, if available), were tested at increasing gas flow rates (from 30 to 150 L/min). We measured the pressure generated just before the valves. Three different helmets sealed on a mock head were connected at the inlet port with a gas flow-meter while the outlet was left clear. We measured the pressure generated inside the helmet (due to the flow-resistance of the outlet port) at increasing gas flow rates. Adjustable valves showed a variable degree flow-dependency (increasing difference between the measured and the expected pressure at increasing flow rates), while pre-calibrated valves revealed a flow-independent behavior. Water seal valve showed low degree flow-dependency. The pressures generated by the outlet port of the tested helmets ranged from 0.02 to 2.29 cmH(2)O at the highest gas flow rate. Adjustable PEEP valves are not suggested for continuous-flow CPAP systems as their flow-dependency can lead to pressures higher than expected. Precalibrated and water seal valves exhibit the best performance. Different helmet outlet ports do not significantly affect the pressure generated during helmet CPAP. In order to avoid iatrogenic complications gas flow and pressure delivered during helmet CPAP must always be monitored.

  17. 49 CFR 192.381 - Service lines: Excess flow valve performance standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hour (0.57 cubic meters per hour); or (B) For an excess flow valve designed to prevent equalization of pressure across the valve, to no more than 0.4 cubic feet per hour (.01 cubic meters per hour); and (4) Not... the manufacturer according to an industry specification, or the manufacturer's written specification...

  18. 49 CFR 192.381 - Service lines: Excess flow valve performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hour (0.57 cubic meters per hour); or (B) For an excess flow valve designed to prevent equalization of pressure across the valve, to no more than 0.4 cubic feet per hour (.01 cubic meters per hour); and (4) Not... the manufacturer according to an industry specification, or the manufacturer's written specification...

  19. 49 CFR 192.381 - Service lines: Excess flow valve performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hour (0.57 cubic meters per hour); or (B) For an excess flow valve designed to prevent equalization of pressure across the valve, to no more than 0.4 cubic feet per hour (.01 cubic meters per hour); and (4) Not... the manufacturer according to an industry specification, or the manufacturer's written specification...

  20. 77 FR 63537 - Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... consumption. (See Section for ``all flow meters, weigh III.B.6). scales, pressure gauges and thermometers... apportioning consumption. (See Section III.B.8). factors by using direct measurements using gas flow meters or... consumption. Revising 40 CFR 98.94(c)(2)(i) to allow reporters to select a period of the reporting year and...

  1. 49 CFR 192.381 - Service lines: Excess flow valve performance standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hour (0.57 cubic meters per hour); or (B) For an excess flow valve designed to prevent equalization of pressure across the valve, to no more than 0.4 cubic feet per hour (.01 cubic meters per hour); and (4) Not... the manufacturer according to an industry specification, or the manufacturer's written specification...

  2. Insert metering plates for gas turbine nozzles

    DOEpatents

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  3. Pressure distribution on a 1- by 3-meter semispan wing at sweep angles from 0 deg to 40 deg in subsonic flow

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Shubert, G. L.

    1976-01-01

    A 1- by 3-meter semispan wing of taper ratio 1.0 with NACA 0012 airfoil section contours was tested in the Langley V/STOL tunnel to measure the pressure distribution at five sweep angles, 0 deg, 10 deg, 20 deg, 30 deg, and 40 deg, through an angle-of-attack range from -6 deg to 20 deg. The pressure data are presented as plots of pressure coefficients at each static-pressure tap location on the wing. Flow visualization wing-tuft photographs are also presented for a wing of 40 deg sweep. A comparison between theory and experiment using two inviscid theories and a viscous theory shows good agreement for pressure distributions, normal forces, and pitching moments for the wing at 0 deg sweep.

  4. Theoretical analysis of an oscillatory plane Poiseuille flow—A link to the design of vortex flow meter

    NASA Astrophysics Data System (ADS)

    Ma, Huai-Lung; Kuo, Cheng-Hsiung

    2017-05-01

    Theoretical analysis on an oscillatory plane Poiseuille flow is conducted in terms of a non-dimensional ratio (η) of the channel half-width to Stokes' layer thickness. The cyclic velocity profiles, the phase shifts and the magnitudes among the driving pressure gradient, the induced wall shear stress, and the volume flux are investigated. Also, the flow physics at a different ratio η is demonstrated. In this study, the mechanism of the driving pressure gradient and the oscillating volume flux is similar to and can be employed to demonstrate the slit flow in the application of the novel vortex flow meter using a slit cylinder as a shedder. When applied to the novel vortex flow meter, the non-dimensional ratio η can be expressed as the relation of the slit width ratio (S/D), the Strouhal number, and the Reynolds number. Finally, a range of η between 0.97 < η < 20 will be suggested for the vortex flow meter at the design stage. Large values of η are employed at a high Reynolds number, and small η is used for low Reynolds number applications. In the novel vortex flow meters, a cylinder with a normal axial slit of width (S) is employed as the shedder. Due to the primary lock-on, the process of vortex shedding synchronizes with the rhythm of slit flow leading to a stable shedding frequency. The value η is well correlated by the value of ηopt obtained by experiments and shows a one-to-one correspondence to the slit ratio at each Reynolds number. Once the design value of ηopt is determined, the optimal slit ratio can be estimated for a fixed applied Reynolds number at the design stage.

  5. Fuel supply device for supplying fuel to an engine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, M.H.; Kerr, W.B.

    1990-05-29

    This patent describes a variable flow rate fuel supply device for supplying fuel to an engine combustor. It comprises: fuel metering means having a fuel valve means for controlling the flow rate of fuel to the combustor; piston means for dividing a first cooling fluid chamber from a second cooling fluid chamber; coupling means for coupling the piston means to the fuel valve means; and cooling fluid supply means in communication with the first and second cooling fluid chamber for producing a first pressure differential across the piston means for actuating the fuel valve means in a first direction, andmore » for producing a second pressure differential across the piston means for actuating the valve means in a second direction opposite the first direction, to control the flow rate of the fuel through the fuel metering means and into the engine combustor; and means for positioning the fuel metering means within the second cooling air chamber enabling the cooling air supply means to both cool the fuel metering means and control the fuel supply rate of fuel supplied by the fuel metering means to the combustor.« less

  6. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, Marcos G.; Boucher, Timothy J.

    1997-01-01

    A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

  7. Aerodynamic and Acoustic Tests of a 1/15 Scale Model Dry Cooled Jet Aircraft Runup Noise Suppression System,

    DTIC Science & Technology

    1975-10-01

    sophisticated wet-cooled systems having scrubbers and their associated water treatment facilities . The United States Navy has recognized these Hush... venturi meter air inlet to measure the pumped air flow and the exhaust enclosure is provided with suitable ports for the flow to exit. The test program...constantan thermo- couple and venturi flow meters were used to measure the aerodynamic/thermo- dynamic information required from the tests (pressure

  8. Application of a Laser Interferometer Skin-Friction Meter in Complex Flows

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Driver, D. M.; Szodruch, J.

    1981-01-01

    A nonintrusive skin-friction meter has been found useful for a variety of complex wind-tunnel flows. This meter measures skin friction with a remotely located laser interferometer that monitors the thickness change of a thin oil film. Its accuracy has been proven in a low-speed flat-plate flow. The wind-tunnel flows described here include sub-sonic separated and reattached flow over a rearward-facing step, supersonic flow over a flat plate at high Reynolds numbers, and supersonic three - dimensional vortical flow over the lee of a delta wing at angle of attack. The data-reduction analysis was extended to apply to three-dimensional flows with unknown flow direction, large pressure and shear gradients, and large oil viscosity changes with time. The skin friction measurements were verified, where possible, with results from more conventional techniques and also from theoretical computations.

  9. Water balance in irrigation districts. Uncertainty in on-demand pressurized networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Calvo, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco Vicente

    2015-04-01

    In on-demand pressurized irrigation distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a PRV behavioral model, validated in laboratory, coupled with an on-demand irrigation district waterworks, composed by a distribution network and a multi-pump station. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been simulated. The effect of demand concentration peaks has been estimated.

  10. In Situ Measurement of Ground-Surface Flow Resistivity

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1984-01-01

    New instrument allows in situ measurement of flow resistivity on Earth's ground surface. Nonintrusive instrument includes specimen holder inserted into ground. Flow resistivity measured by monitoring compressed air passing through flow-meters; pressure gages record pressure at ground surface. Specimen holder with knife-edged inner and outer cylinders easily driven into ground. Air-stream used in measuring flow resistivity of ground enters through quick-connect fitting and exits through screen and venthole.

  11. Complete energetic description of hydrokinetic turbine impact on flow channel dynamics

    NASA Astrophysics Data System (ADS)

    Brasseale, E.; Kawase, M.

    2016-02-01

    Energy budget analysis on tidal channels quantifies and demarcates the impacts of marine renewables on environmental fluid dynamics. Energy budget analysis assumes the change in total kinetic energy within a volume of fluid can be described by the work done by each force acting on the flow. In a numerically simulated channel, the balance between energy change and work done has been validated up to 5% error.The forces doing work on the flow include pressure, turbulent dissipation, and stress from the estuary floor. If hydrokinetic turbines are installed in an estuarine channel to convert tidal energy into usable power, the dynamics of the channel change. Turbines provide additional pressure work against the flow of the channel which will slow the current and lessen turbulent dissipation and bottom stress. These losses may negatively impact estuarine circulation, seafloor scour, and stratification.The environmental effects of turbine deployment have been quantified using a three dimensional, Reynolds-averaged, Navier-Stokes model of an idealized flow channel situated between the ocean and a large estuarine basin. The channel is five kilometers wide, twenty kilometers long and fifty meters deep, and resolved to a grid size of 10 meters by 10 meters by 1 meter. Tidal currents are simulated by an initial difference in sea surface height across the channel of 160 centimeters from the channel entrance to the channel exit. This creates a pressure gradient which drives flow through the channel. Tidal power turbines are represented as disks that force the channel in proportion to the strength of the current. Three tidal turbines twenty meters in diameters have been included in the model to simulate the impacts of a pilot scale test deployment.This study is the first to appreciate the energetic impact of marine renewables in a three dimensional model through the energy equation's constituent terms. This study provides groundwork for understanding and predicting the environmental impacts of marine renewables.

  12. BAT3 Analyzer: Real-Time Data Display and Interpretation Software for the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3)

    USGS Publications Warehouse

    Winston, Richard B.; Shapiro, Allen M.

    2007-01-01

    The BAT3 Analyzer provides real-time display and interpretation of fluid pressure responses and flow rates measured during geochemical sampling, hydraulic testing, or tracer testing conducted with the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3) (Shapiro, 2007). Real-time display of the data collected with the Multifunction BAT3 allows the user to ensure that the downhole apparatus is operating properly, and that test procedures can be modified to correct for unanticipated hydraulic responses during testing. The BAT3 Analyzer can apply calibrations to the pressure transducer and flow meter data to display physically meaningful values. Plots of the time-varying data can be formatted for a specified time interval, and either saved to files, or printed. Libraries of calibrations for the pressure transducers and flow meters can be created, updated and reloaded to facilitate the rapid set up of the software to display data collected during testing with the Multifunction BAT3. The BAT3 Analyzer also has the functionality to estimate calibrations for pressure transducers and flow meters using data collected with the Multifunction BAT3 in conjunction with corroborating check measurements. During testing with the Multifunction BAT3, and also after testing has been completed, hydraulic properties of the test interval can be estimated by comparing fluid pressure responses with model results; a variety of hydrogeologic conceptual models of the formation are available for interpreting fluid-withdrawal, fluid-injection, and slug tests.

  13. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1997-06-24

    A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

  14. Development and testing of highway storm-sewer flow measurement and recording system

    USGS Publications Warehouse

    Kilpatrick, F.A.; Kaehrle, W.R.; Hardee, Jack; Cordes, E.H.; Landers, M.N.

    1985-01-01

    A comprehensive study and development of measuring instruments and techniques for measuring all components of flow in a storm-sewer drainage system was undertaken by the U.S. Geological Survey under the sponsorship of the Federal Highway Administration. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, electromagnetic velocity meters as well as the development and calibration of pneumatic-bubbler pressure transducer head measuring systems. Tracer-dilution and acoustic flow meter measurements were used in field verification tests. A single micrologger was used to record data from all the above instruments as well as from a tipping-bucket rain gage and also to activate on command the electromagnetic velocity meter and tracer-dilution systems. (Author 's abstract)

  15. Characterization of cavity flow fields using pressure data obtained in the Langley 0.3-Meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Tracy, M. B.; Plentovich, E. B.

    1993-01-01

    Static and fluctuating pressure distributions were obtained along the floor of a rectangular-box cavity in an experiment performed in the LaRC 0.3-Meter Transonic Cryogenic Tunnel. The cavity studied was 11.25 in. long and 2.50 in. wide with a variable height to obtain length-to-height ratios of 4.4, 6.7, 12.67, and 20.0. The data presented herein were obtained for yaw angles of 0 deg and 15 deg over a Mach number range from 0.2 to 0.9 at a Reynolds number of 30 x 10(exp 6) per ft with a boundary-layer thickness of approximately 0.5 in. The results indicated that open and transitional-open cavity flow supports tone generation at subsonic and transonic speeds at Mach numbers of 0.6 and above. Further, pressure fluctuations associated with acoustic tone generation can be sustained when static pressure distributions indicate that transitional-closed and closed flow fields exist in the cavity. Cavities that support tone generation at 0 deg yaw also supported tone generation at 15 deg yaw when the flow became transitional-closed. For the latter cases, a reduction in tone amplitude was observed. Both static and fluctuating pressure data must be considered when defining cavity flow fields, and the flow models need to be refined to accommodate steady and unsteady flows.

  16. A New Differential Pressure Flow Meter for Measurement of Human Breath Flow: Simulation and Experimental Investigation

    PubMed Central

    Bridgeman, Devon; Tsow, Francis; Xian, Xiaojun; Forzani, Erica

    2016-01-01

    The development and performance characterization of a new differential pressure-based flow meter for human breath measurements is presented in this article. The device, called a “Confined Pitot Tube,” is comprised of a pipe with an elliptically shaped expansion cavity located in the pipe center, and an elliptical disk inside the expansion cavity. The elliptical disk, named Pitot Tube, is exchangeable, and has different diameters, which are smaller than the diameter of the elliptical cavity. The gap between the disk and the cavity allows the flow of human breath to pass through. The disk causes an obstruction in the flow inside the pipe, but the elliptical cavity provides an expansion for the flow to circulate around the disk, decreasing the overall flow resistance. We characterize the new sensor flow experimentally and theoretically, using Comsol Multiphysics® software with laminar and turbulent models. We also validate the sensor, using inhalation and exhalation tests and a reference method. PMID:27818521

  17. Recognition and measurement gas-liquid two-phase flow in a vertical concentric annulus at high pressures

    NASA Astrophysics Data System (ADS)

    Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin

    2018-02-01

    The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.

  18. Uncertainty and Traceability for the CEESI Iowa Natural Gas Facility.

    PubMed

    Johnson, Aaron; Kegel, Tom

    2004-01-01

    This paper analyzes the uncertainty of a secondary flow measurement facility that calibrates a significant fraction of United States and foreign flow meters used for custody transfer of natural gas. The facility, owned by the Colorado Experimental Engineering Station Incorporated (CEESI), is located in Iowa. This facility measures flow with nine turbine meter standards, each of which is traceable to the NIST primary flow standard. The flow capacity of this facility ranges from 0.7 actual m(3)/s to 10.7 actual m(3)/s at nominal pressures of 7174 kPa and at ambient temperatures. Over this flow range the relative expanded flow uncertainty varies from 0.28 % to 0.30 % (depending on flow).

  19. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part II: Nonlinear Theory and Extended Aerodynamics

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2015-01-01

    Conical shell theory and a supersonic potential flow aerodynamic theory are used to study the nonlinear pressure buckling and aeroelastic limit cycle behavior of the thermal protection system for NASA's Hypersonic Inflatable Aerodynamic Decelerator. The structural model of the thermal protection system consists of an orthotropic conical shell of the Donnell type, resting on several circumferential elastic supports. Classical Piston Theory is used initially for the aerodynamic pressure, but was found to be insufficient at low supersonic Mach numbers. Transform methods are applied to the convected wave equation for potential flow, and a time-dependent aerodynamic pressure correction factor is obtained. The Lagrangian of the shell system is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the governing differential-algebraic equations of motion. Aeroelastic limit cycle oscillations and buckling deformations are calculated in the time domain using a Runge-Kutta method in MATLAB. Three conical shell geometries were considered in the present analysis: a 3-meter diameter 70 deg. cone, a 3.7-meter 70 deg. cone, and a 6-meter diameter 70 deg. cone. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD. Though agreement between theoretical and experimental strains was poor, the circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With Piston Theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. The effect of axial tension was studied for this configuration, and increasing tension was found to decrease the limit cycle amplitudes when the circumferential elastic supports were neglected, but resulted in more complex behavior when the supports were included. The nominal flutter dynamic pressure of the 3.7-meter configuration was significantly lower than that of the 3-meter, and it was found that two sets of natural modes coalesce to flutter modes near the same dynamic pressure. This resulted in a significant drop in the limit cycle frequencies at higher dynamic pressures, where the flutter mode with the lower frequency becomes more critical. Pre-buckling pressure loads and the aerodynamic pressure correction factor were studied for all geometries, and these effects resulted in significantly lower flutter boundaries compared with Piston Theory alone. The maximum dynamic pressure predicted by aerodynamic simulations of a proposed 3.7-meter HIAD vehicle was still lower than any of the calculated flutter dynamic pressures, suggesting that aeroelastic effects for this vehicle are of little concern.

  20. Gas compression in lungs decreases peak expiratory flow depending on resistance of peak flowmeter.

    PubMed

    Pedersen, O F; Pedersen, T F; Miller, M R

    1997-11-01

    It has recently been shown (O. F. Pedersen T. R. Rasmussen, O. Omland, T. Sigsgaard, P. H. Quanjer. and M. R. Miller. Eur. Respir. J. 9: 828-833, 1996) that the added resistance of a mini-Wright peak flowmeter decreases peak expiratory flow (PEF) by approximately 8% compared with PEF measured by a pneumotachograph. To explore the reason for this, 10 healthy men (mean age 43 yr, range 33-58 yr) were examined in a body plethysmograph with facilities to measure mouth flow vs. expired volume as well as the change in thoracic gas volume (Vb) and alveolar pressure (PA). The subjects performed forced vital capacity maneuvers through orifices of different sizes and also a mini-Wright peak flowmeter. PEF with the meter and other added resistances were achieved when flow reached the perimeter of the flow-Vb curves. The mini-Wright PEF meter decreased PEF from 11.4 +/- 1.5 to 10.3 +/- 1.4 (SD) l/s (P < 0.001), PA increased from 6.7 +/- 1.9 to 9.3 +/- 2.7 kPa (P < 0.001), an increase equal to the pressure drop across the meter, and caused Vb at PEF to decrease by 0.24 +/- 0.09 liter (P < 0.001). We conclude that PEF obtained with an added resistance like a mini-Wright PEF meter is a wave-speed-determined maximal flow, but the added resistance causes gas compression because of increased PA at PEF. Therefore, Vb at PEF and, accordingly, PEF decrease.

  1. Numerical simulation of the effect of upstream swirling flow on swirl meter performance

    NASA Astrophysics Data System (ADS)

    Chen, Desheng; Cui, Baoling; Zhu, Zuchao

    2018-04-01

    Flow measurement is important in the fluid process and transmission system. For the need of accuracy measurement of fluid, stable flow is acquired. However, the elbows and devices as valves and rotary machines may produce swirling flow in the natural gas pipeline networks system and many other industry fields. In order to reveal the influence of upstream swirling flow on internal flow fields and the metrological characteristics, numerical simulations are carried out on the swirl meter. Using RNG k-ɛ turbulent model and SIMPLE algorithm, the flow field is numerically simulated under swirling flows generated from co-swirl and counter-swirl flow. Simulation results show fluctuation is enhanced or weakened depending on the rotating direction of swirling flow. A counter- swirl flow increases the entropy production rate at the inlet and outlet of the swirler, the junction region between throat and divergent section, and then the pressure loss is increased. The vortex precession dominates the static pressure distributions on the solid walls and in the channel, especially at the end region of the throat.

  2. Inadequate peak expiratory flow meter characteristics detected by a computerised explosive decompression device.

    PubMed

    Miller, M R; Atkins, P R; Pedersen, O F

    2003-05-01

    Recent evidence suggests that the frequency response requirements for peak expiratory flow (PEF) meters are higher than was first thought and that the American Thoracic Society (ATS) waveforms to test PEF meters may not be adequate for the purpose. The dynamic response of mini-Wright (MW), Vitalograph (V), TruZone (TZ), MultiSpiro (MS) and pneumotachograph (PT) flow meters was tested by delivering two differently shaped flow-time profiles from a computer controlled explosive decompression device fitted with a fast response solenoid valve. These profiles matched population 5th and 95th centiles for rise time from 10% to 90% of PEF and dwell time of flow above 90% PEF. Profiles were delivered five times with identical chamber pressure and solenoid aperture at PEF. Any difference in recorded PEF for the two profiles indicates a poor dynamic response. The absolute (% of mean) flow differences in l/min for the V, MW, and PT PEF meters were 25 (4.7), 20 (3.9), and 2 (0.3), respectively, at PEF approximately 500 l/min, and 25 (10.5), 20 (8.7) and 6 (3.0) at approximately 200 l/min. For TZ and MS meters at approximately 500 l/min the differences were 228 (36.1) and 257 (39.2), respectively, and at approximately 200 l/min they were 51 (23.9) and 1 (0.5). All the meters met ATS accuracy requirements when tested with their waveforms. An improved method for testing the dynamic response of flow meters detects marked overshoot (underdamping) of TZ and MS responses not identified by the 26 ATS waveforms. This error could cause patient misclassification when using such meters with asthma guidelines.

  3. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, M.W.; Cole, J.H.

    1980-04-23

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  4. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, Michael W.; Cole, Jack H.

    1982-01-01

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  5. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arpaia, P.; Technology Department, European Organization for Nuclear Research; Blanco, E.

    2015-07-15

    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ http://www.samson.de (2015)] and Sereg-Schlumberger [ http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves—Part 2-1: Flow capacity—sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for differentmore » pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.« less

  6. Oil field management system

    DOEpatents

    Fincke, James R.

    2003-09-23

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  7. A method of calibrating wind velocity sensors with a modified gas flow calibrator

    NASA Technical Reports Server (NTRS)

    Stump, H. P.

    1978-01-01

    A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.

  8. Calibration of the BASS acoustic current meter with carrageenan agar

    USGS Publications Warehouse

    Morrison, A.T.; Williams, A.J.; Martini, M.

    1993-01-01

    The BASS current meter can measure currents down to the millimeter per second range. Due to the dependence of zero offset on pressure, determining a sensor referenced velocity requires accurate in situ zeroing of the meter. Previously, flow was restricted during calibration by placing plastic bags around the acoustic volume. In this paper, bacterial grade and carrageenan agars are used in the laboratory to create a zero flow condition during calibration and are shown to be acoustically transparent. Additionally, the results of open ocean and dockside carrageenan and plastic bag comparisons are presented. Carrageenan is shown to reliably provide a low noise, zero mean flow environment that is largely independent of ambient conditions. The improved zeros make millimeter per second accuracy possible under field conditions.

  9. The Cardiovascular Function Profile and Physical Fitness in Overweight Subjects

    NASA Astrophysics Data System (ADS)

    Megawati, E. R.; Lubis, L. D.; Harahap, F. Y.

    2017-03-01

    Obesity in children and young adult is associated with cardiovascular risk in short term and long term. The aim of this study was to describe the profile of the cardiovascular functions parameters and physical fitness in overweight. This is an analytical observational study with cross sectional approach. The samples of this study were 85 randomly selected subjects aged 18 to 24 years with normoweight and body mass index <40. The parameters measures were body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), cardiovascular function parameters (resting pulse, blood pressure, and peak flow meter) and physical fitness parameters (VO2max dengan McArdle step test). The mean BMI was 24,53±4,929. The WC and WHR mean were 86,7±14,10 cms and 0,89±0,073 cm respectively. The mean of resting pulses were higher in normoweight subject (p=0,0209). The mean systole were lower in normoweight subject (p=0,0026). No differences VO2 max between groups (p=0,3888). The peak flow meter was higher in normoweight (p=0,0274). The result of this study indicate that heart rate, systole and peak flow meter are signifantly different between groups. The heart rate and the peak flow meter in the overweight subjects were lower meanwhile the systole blood pressure was higher compared to normoweight subjects.

  10. Peak flowmeter resistance decreases peak expiratory flow in subjects with COPD.

    PubMed

    Miller, M R; Pedersen, O F

    2000-07-01

    Previous studies have shown that the added resistance of a mini-Wright peak expiratory flow (PEF) meter reduced PEF by approximately 8% in normal subjects because of gas compression reducing thoracic gas volume at PEF and thus driving elastic recoil pressure. We undertook a body plethysmographic study in 15 patients with chronic obstructive pulmonary disease (COPD), age 65.9 +/- 6.3 yr (mean +/- SD, range 53-75 yr), to examine whether their recorded PEF was also limited by the added resistance of a PEF meter. The PEF meter increased alveolar pressure at PEF (Ppeak) from 3.7 +/- 1.4 to 4.7 +/- 1.5 kPa (P = 0.01), and PEF was reduced from 3.6 +/- 1.3 l/s to 3.2 +/- 0.9 l/s (P = 0.01). The influence of flow limitation on PEF and Ppeak was evaluated by a simple four-parameter model based on the wave-speed concept. We conclude that added external resistance in patients with COPD reduced PEF by the same mechanisms as in healthy subjects. Furthermore, the much lower Ppeak in COPD patients is a consequence of more severe flow limitation than in healthy subjects and not of deficient muscle strength.

  11. Performance of transonic fan stage with weight flow per unit annulus area of 198 kilograms per second per square meter (40.6(lb/sec)/sq ft)

    NASA Technical Reports Server (NTRS)

    Kovich, G.; Moore, R. D.; Urasek, D. C.

    1973-01-01

    The overall and blade-element performance are presented for an air compressor stage designed to study the effect of weight flow per unit annulus area on efficiency and flow range. At the design speed of 424.8 m/sec the peak efficiency of 0.81 occurred at the design weight flow and a total pressure ratio of 1.56. Design pressure ratio and weight flow were 1.57 and 29.5 kg/sec (65.0 lb/sec), respectively. Stall margin at design speed was 19 percent based on the weight flow and pressure ratio at peak efficiency and at stall.

  12. Venturi flow meter and Electrical Capacitance Probe in a horizontal two-phase flow

    NASA Astrophysics Data System (ADS)

    Monni, G.; Caramello, M.; De Salve, M.; Panella, B.

    2015-11-01

    The paper presents the results obtained with a spool piece (SP) made of a Venturi flow meter (VMF) and an Electrical Capacitance Probe (ECP) in stratified two-phase flow. The objective is to determine the relationship between the test measurements and the physical characteristics of the flow such as superficial velocities, density and void fraction. The outputs of the ECP are electrical signals proportional to the void fraction between the electrodes; the parameters measured by the VFM are the total and the irreversible pressure losses of the two- phase mixture. The fluids are air and demineralized water at ambient conditions. The flow rates are in the range of 0,065-0,099 kg/s for air and 0- 0,039 kg/s (0-140 l/h) for water. The flow patterns recognized during the experiments are stratified, dispersed and annular flow. The presence of the VFM plays an important role on the alteration of the flow pattern due to wall flow detachment phenomena. The signals of differential pressure of the VFM in horizontal configuration are strongly dependent on the superficial velocities and on the flow pattern because of a lower symmetry of the flow with respect to the vertical configuration.

  13. STORM-SEWER FLOW MEASUREMENT AND RECORDING SYSTEM.

    USGS Publications Warehouse

    Kilpatrick, Frederick A.; Kaehrle, William R.

    1986-01-01

    A comprehensive study and development of instruments and techniques for measuring all components of flow in a storm-sewer drainage system were undertaken by the U. S. Geological Survey under the sponsorship of FHWA. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, and electromagnetic velocity meters as well as the development and calibration of pneumatic bubbler and pressure transducer head-measuring systems. Tracer dilution and acoustic-flowmeter measurements were used in field verification tests. A single micrologger was used to record data from all the instruments and also to activate on command the electromagnetic velocity meter and tracer dilution systems.

  14. Elbow mass flow meter

    DOEpatents

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  15. Effect of ambient pressure variation on closed loop gas system for India based Neutrino Observatory (INO)

    NASA Astrophysics Data System (ADS)

    Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.

    2014-10-01

    Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.

  16. Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.

  17. Orifice Mass Flow Calculation in NASA's W-8 Single Stage Axial Compressor Facility

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.

    2018-01-01

    Updates to the orifice mass flow calculation for the W-8 Single Stage Axial Compressor Facility at NASA Glenn Research Center are provided to include the effect of humidity and incorporate ISO 5167. A methodology for including the effect of humidity into the inlet orifice mass flow calculation is provided. Orifice mass flow calculations provided by ASME PTC-19.5-2004, ASME MFC-3M-2004, ASME Fluid Meters, and ISO 5167 are compared for W-8's atmospheric inlet orifice plate. Differences in expansion factor and discharge coefficient given by these standards give a variation of about +/- 75% mass flow except for a few cases. A comparison of the calculations with an inlet static pressure mass flow correlation and a fan exit mass flow integration using test data from a 2017 turbofan rotor test in W-8 show good agreement between the inlet static pressure mass flow correlation, ISO 5167, and ASME Fluid Meters. While W-8's atmospheric inlet orifice plate violates the pipe diameter limit defined by each of the standards, the ISO 5167 is chosen to be the primary orifice mass flow calculation to use in the W-8 facility.

  18. 76 FR 76707 - El Paso Natural Gas Company: Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... long, 16-inch diameter lateral pipeline to connect the Douglas Meter Station to EPNG's existing Line No. 2164; The replacement of compressor modules and station yard piping at the existing Willcox Compressor Station; Expansion of the existing Douglas Meter Station by installing updated flow control and pressure...

  19. Sea Salt Aerosol, Atmospheric Radon and Meteorological Observations in the Western South Atlantic Ocean (February 1981).

    DTIC Science & Technology

    1983-09-28

    approximately isokinetic sampling conditions. The blower motor for the hi-vol was separated from the filter holder unit by a one- meter length of flexible...bridge bulkhead about 15 m above sea level and within 3 meters of the ARCAS inlet. The flow rate through the 20 cm x 25 cm glass fiber filters was...materials, atmospheric pressure, soil moisture and vegetative cover (Larson and Bressan, 1980). Radon concentrations measured a few meters above

  20. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, James R.

    1982-01-01

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  1. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1982-05-04

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  2. Pressure-Temperature Simulation at Brady Hot Springs

    DOE Data Explorer

    Feigl, Kurt (ORCID:0000000220596708)

    2017-07-11

    These files contain the output of a model calculation to simulate the pressure and temperature of fluid at Brady Hot Springs, Nevada, USA. The calculation couples the hydrologic flow (Darcy's Law) with simple thermodynamics. The epoch of validity is 24 March 2015. Coordinates are UTM Easting, Northing, and Elevation in meters. Temperature is specified in degrees Celsius. Pressure is specified in Pascal.

  3. Effects of exercise and excitement on mesenteric and renal dynamics in conscious, unrestrained baboons

    NASA Technical Reports Server (NTRS)

    Vatner, S. F.

    1978-01-01

    Radiotelemetry was used to measure arterial pressure and mesenteric and renal blood flows from nine unrestrained, conscious baboons during periods of rest, moderate exercise, and extreme excitement. A description of the experiments hardware is presented, including artificial depressants phenylcyclidine hydrochloride, 0.5-1.0 mg/kg, and pentobarbital sodium, 15 mg/kg, and an ultrasonic telemetry flow meter. Results showed rising heart rate and arterial pressure coupled with a reduction of mesenteric and renal flows as the level of exercise was increased. These findings are compared with mesenteric and renal flows somewhat above control level, but relatively stable heart rate and arterial pressure, postprandially. Attention is given to a quantitative analysis of the experimental results.

  4. Probe Measures Fouling As In Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Marner, Wilbur J.; Macdavid, Kenton S.

    1990-01-01

    Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.

  5. Tables and charts of equilibrium normal shock and shock tube solutions for pure CO2 with velocities to 16 km/second

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1974-01-01

    Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure CO2, representative of Mars and Venus atmospheres. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular weight ratio, isentropic exponent, velocity and species mole fractions. Incident (moving) shock velocities are varied from 1 to 16 km/sec for a range of initial pressure of 5 Newtons per square meter to 500 kilo Newtons per square meter. The present results are applicable to shock tube flows, and to free-flight conditions for a blunt body at high velocities. Working charts illustrating idealized shock-tube performance with CO2 test gas and heated helium and hydrogen driver gases are also presented.

  6. Method and system for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosio, J.; Wilcox, P.; Sembsmoen, O.

    A joint-venture, high-pressure, large-flow-rate facility to test, qualify, and research new natural-gas metering systems has been built by Den Norske Stats Oljeselskap A.S. (Statoil) and Total Marine Norsk A.S. Located near Haugesund in the Stavanger area, the lab, designated the Karsto Metering and Technology Laboratory, or K-Lab, is adjacent to Norway's first natural-gas-processing plant. It receives natural gas from across the Norwegian Trench from the Statfjord complex and after processing it sends it on to Emden, West Germany. The gas, which is produced in the North Sea, is transported to United Kingdom and the European continent through a high-pressure pipelinemore » network. The importance of gas-metering technology has been emphasized by oil and gas companies as well as by national regulatory authorities.« less

  8. A three-dimensional turbulent separated flow and related mesurements

    NASA Technical Reports Server (NTRS)

    Pierce, F. J.

    1985-01-01

    The applicability of and the limits on the applicability of 11 near wall similarity laws characterizing three-dimensional turbulent boundary layer flows were determined. A direct force sensing local wall shear stress meter was used in both pressure-driven and shear-driven three-dimensional turbulent boundary layers, together with extensive mean velocity field and wall pressure field data. This resulted in a relatively large number of graphical comparisons of the predictive ability of 10 of these 11 similarity models relative to measured data over a wide range of flow conditions. Documentation of a complex, separated three-dimensional turbulent flow as a standard test case for evaluating the predictive ability of numerical codes solving such flows is presented.

  9. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1980-05-02

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  10. Fluid pressure responses for a Devil's Slide-like system: problem formulation and simulation

    USGS Publications Warehouse

    Thomas, Matthew A.; Loague, Keith; Voss, Clifford I.

    2015-01-01

    This study employs a hydrogeologic simulation approach to investigate subsurface fluid pressures for a landslide-prone section of the central California, USA, coast known as Devil's Slide. Understanding the relative changes in subsurface fluid pressures is important for systems, such as Devil's Slide, where slope creep can be interrupted by episodic slip events. Surface mapping, exploratory core, tunnel excavation records, and dip meter data were leveraged to conceptualize the parameter space for three-dimensional (3D) Devil's Slide-like simulations. Field observations (i.e. seepage meter, water retention, and infiltration experiments; well records; and piezometric data) and groundwater flow simulation (i.e. one-dimensional vertical, transient, and variably saturated) were used to design the boundary conditions for 3D Devil's Slide-like problems. Twenty-four simulations of steady-state saturated subsurface flow were conducted in a concept-development mode. Recharge, heterogeneity, and anisotropy are shown to increase fluid pressures for failure-prone locations by up to 18.1, 4.5, and 1.8% respectively. Previous estimates of slope stability, driven by simple water balances, are significantly improved upon with the fluid pressures reported here. The results, for a Devil's Slide-like system, provide a foundation for future investigations

  11. Investigation of the required length for fully developed pipe flow with drag-reducing polymer solutions

    NASA Astrophysics Data System (ADS)

    Farsiani, Yasaman; Elbing, Brian

    2015-11-01

    Adding trace amounts of long chain polymers into a liquid flow is known to reduce skin friction drag by up to 80%. While polymer drag reduction (PDR) has been successfully implemented in internal flows, diffusion and degradation have limited its external flow applications. A weakness in many previous PDR studies is that there was no characterization of the polymer being injected into the turbulent boundary layer, which can be accomplished by testing a sample in a pressure-drop tube. An implicit assumption in polymer characterization is that the flow is fully developed at the differential pressure measurement. While available data in the literature shows that the entry length to achieve fully developed flow increases with polymeric solutions, it is unclear how long is required to achieve fully developed flow for non-Newtonian turbulent flows. In the present study, the pressure-drop is measured across a 1.05 meter length section of a 1.04 cm inner diameter pipe. Differential pressure is measured with a pressure transducer for different entry lengths, flow and polymer solution properties. This presentation will present preliminary data on the required entrance length as well as characterization of polymer solution an estimate of the mean molecular weight.

  12. Measurement of lung volume in mechanically ventilated monkeys with an ultrasonic flow meter and the nitrogen washout method.

    PubMed

    Schibler, Andreas; Hammer, Jürg; Isler, Ruedi; Buess, Christian; Newth, Christopher J L

    2004-01-01

    Measurement of functional residual capacity (FRC) during mechanical ventilation is important to standardise respiratory system compliance and adjust the ventilator settings to optimise lung recruitment. In the present study we compared three methods to measure FRC. The bias flow nitrogen washout technique (FRC(N2MC)), the multiple breath nitrogen washout (FRC(MBNW)) and the multiple breath sulphur-hexafluoride washout using the molar mass signal of an ultrasonic flow meter (FRC(MBSF6)) were compared in six adult monkeys after endotracheal intubation and during spontaneous breathing and mechanical ventilation at three different positive end-expiratory pressure (PEEP) levels of 0, 5 and 10 cmH2O. Animal research laboratory. We found good agreement between all three methods and they all accurately measured changes in FRC when PEEP was increased. The coefficients of variance of the three measurement techniques were in the same range (1.3-9.2%). The measurement of the tracer gas concentration with the molar mass signal of the ultrasonic flow meter provides a good and simple alternative to respiratory mass spectrometer for FRC measurements in ventilated subjects.

  13. Apparatus for passive removal of subsurface contaminants and mass flow measurement

    DOEpatents

    Jackson, Dennis G [Augusta, GA; Rossabi, Joseph [Aiken, SC; Riha, Brian D [Augusta, GA

    2003-07-15

    A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining mass flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the mass flow rate to be determined through the retrofitted Baroball valve.

  14. Apparatus for passive removal of subsurface contaminants and volume flow measurement

    DOEpatents

    Jackson, Dennis G.; Rossabi, Joseph; Riha, Brian D.

    2002-01-01

    A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining volume flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the volume flow rate to be determined through the retrofitted Baroball valve.

  15. Application of a laser interferometer skin-friction meter in complex flows

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Driver, D. M.; Szodruch, J.

    1981-01-01

    The application of a nonintrusive laser-interferometer skin-friction meter, which measures skin friction with a remotely located laser interferometer that monitors the thickness change of a thin oil film, is extended both experimentally and theoretically to several complex wind-tunnel flows. These include two-dimensional seperated and reattached subsonic flows with large pressure and shear gradients, and two and three-dimensional supersonic flows at high Reynolds number, which include variable wall temperatures and cross-flows. In addition, it is found that the instrument can provide an accurate location of the mean reattachment length for separated flows. Results show that levels up to 120 N/sq m, or 40 times higher than previous tests, can be obtained, despite encountering some limits to the method for very high skin-friction levels. It is concluded that these results establish the utility of this instrument for measuring skin friction in a wide variety of flows of interest in aerodynamic testing.

  16. Phasic changes in human right coronary blood flow before and after repair of aortic insufficiency.

    PubMed

    Folts, J D; Rowe, G G; Kahn, D R; Young, W P

    1979-02-01

    We have shown previously that acute aortic insufficiency in chronically instrumented dogs reverses the normally high ratio of diastolic to systolic coronary blood flow. Phasic blood flow in the dominant right coronary artery was measured directly with an electromagnetic flow meter during surgery in eight patients with severe aortic insufficiency before and after relacement of the aortic valve. Before the insufficiency was eliminated, right coronary flow average 116 +/- 37 ml./minute and the diastolic to systolic flow ratio was 0.88 +/- 17. Mean arterial blood pressure averaged 106 +/- 17 mm. Hg, heart rate 84 +/- 19 beats/minute, and mean diastolic pressure averaged 67 +/- 10 mm. Hg. After the aortic valve was replaced with an average heart rate of 90 +/- 15 and mean blood pressure of 103 +/- 13 mm. Hg, the average right coronary blood flow increased to 180 +/- 40 ml./minute with a D/S ratio of 2.18 +/- 0.8. In all cases the right coronary blood flow increased after the aortic insufficiency was eliminated surgically. Right coronary flow probably increased because of the improved diastolic perfusion pressure and the change from predominantly systolic to diastolic coronary flow.

  17. Measurement of liner slips, milking time, and milk yield.

    PubMed

    O'Callaghan, E J

    1996-03-01

    Liner slip or rapid air leakage past the mouthpiece of the milking machine liner is related to high rates of new cases of mastitis. A real time technique was developed to monitor the air flow into the milking machine cluster during liner slips as well as to monitor milking time and milk yield using a commercial type pipeline milking system. The air flow into the cluster was measured by recording the pressure differences across an orifice plate placed in the air bypass of an air-milk separator using a differential pressure transducer. Milk yield was recorded by counting the number of milk releases from an electronic milk meter. The release solenoids of the milk meter were linked to a computer. The start and end of milking were manually recorded by switching a two-pole switch connected to a digital input card on the computer, which was programmed to record air flow, milk yield, and milking time. Milk yield, milking time, and air flows during liner slips were recorded simultaneously at each milking unit in an 11-unit herringbone parlor. The system was tested with an experiment with a 4 x 4 Latin square design using four treatments (clusters) and four treatment groups (22 cows per group).

  18. 1998 Calibration of the Mach 4.7 and Mach 6 Arc-Heated Scramjet Test Facility Nozzles

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Irby, Richard G.; Auslender, Aaron H.; Rock, Kenneth E.

    2004-01-01

    A calibration of the Arc-Heated Scramjet Test Facility (AHSTF) Mach 4.7 and Mach 6 nozzles was performed in 1998. For each nozzle, three different typical facility operating test points were selected for calibration. Each survey consisted of measurements, at 340 separate locations across the 11 inch square nozzle exit plane, of pitot pressure, static pressure, and total temperature. Measurement density was higher (4/inch) in the boundary layer near the nozzle wall than in the core nozzle flow (1/inch). The results generated for each of these calibration surveys were contour plots at the nozzle exit plane of the measured and calculated flow properties which completely defined the thermodynamic state of the nozzle exit flow. An area integration of the mass flux at the nozzle exit for each survey was compared to the AHSTF mass flow meter results to provide an indication of the overall quality of the calibration performed. The percent difference between the integrated nozzle exit mass flow and the flow meter ranged from 0.0 to 1.3 percent for the six surveys. Finally, a comparison of this 1998 calibration was made with the 1986 calibration. Differences of less than 10 percent were found within the nozzle core flow while in the boundary layer differences on the order of 20 percent were quite common.

  19. How to use your peak flow meter

    MedlinePlus

    Peak flow meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak flow meter ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  20. Flow metering valve

    DOEpatents

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  1. Flow metering valve

    DOEpatents

    Blaedel, Kenneth L.

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  2. Peak expiratory flow profiles delivered by pump systems. Limitations due to wave action.

    PubMed

    Miller, M R; Jones, B; Xu, Y; Pedersen, O F; Quanjer, P H

    2000-06-01

    Pump systems are currently used to test the performance of both spirometers and peak expiratory flow (PEF) meters, but for certain flow profiles the input signal (i.e., requested profile) and the output profile can differ. We developed a mathematical model of wave action within a pump and compared the recorded flow profiles with both the input profiles and the output predicted by the model. Three American Thoracic Society (ATS) flow profiles and four artificial flow-versus-time profiles were delivered by a pump, first to a pneumotachograph (PT) on its own, then to the PT with a 32-cm upstream extension tube (which would favor wave action), and lastly with the PT in series with and immediately downstream to a mini-Wright peak flow meter. With the PT on its own, recorded flow for the seven profiles was 2.4 +/- 1.9% (mean +/- SD) higher than the pump's input flow, and similarly was 2.3 +/- 2.3% higher than the pump's output flow as predicted by the model. With the extension tube in place, the recorded flow was 6.6 +/- 6.4% higher than the input flow (range: 0.1 to 18.4%), but was only 1.2 +/- 2.5% higher than the output flow predicted by the model (range: -0.8 to 5.2%). With the mini-Wright meter in series, the flow recorded by the PT was on average 6.1 +/- 9.1% below the input flow (range: -23.8 to 2. 5%), but was only 0.6 +/- 3.3% above the pump's output flow predicted by the model (range: -5.5 to 3.9%). The mini-Wright meter's reading (corrected for its nonlinearity) was on average 1.3 +/- 3.6% below the model's predicted output flow (range: -9.0 to 1. 5%). The mini-Wright meter would be deemed outside ATS limits for accuracy for three of the seven profiles when compared with the pump's input PEF, but this would be true for only one profile when compared with the pump's output PEF as predicted by the model. Our study shows that the output flow from pump systems can differ from the input waveform depending on the operating configuration. This effect can be predicted with reasonable accuracy using a model based on nonsteady flow analysis that takes account of pressure wave reflections within pump systems.

  3. Continuous inline blending of antimisting kerosene

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Yavrouian, A.; Sarohia, V.

    1985-01-01

    A continuous inline blender was developed to blend polymer slurries with a stream of jet A fuel. The viscosity of the slurries ranged widely. The key element of the blender was a static mixer placed immediately downstream of the slurry injection point. A positive displacement gear pump for jet A was employed, and a progressive cavity rotary screw pump was used for slurry pumping. Turbine flow meters were employed for jet A metering while the slurry flow rate was calibrated against the pressure drop in the injection tube. While using one of the FM-9 variant slurries, a provision was made for a time delay between the addition of slurry and the addition of amine sequentially into the jet A stream.

  4. Performance of transonic fan stage with weight flow per unit annulus area of 178 kilograms per second per square meter (6.5(lb/sec)/(sq ft))

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Urasek, D. C.; Kovich, G.

    1973-01-01

    The overall and blade-element performances are presented over the stable flow operating range from 50 to 100 percent of design speed. Stage peak efficiency of 0.834 was obtained at a weight flow of 26.4 kg/sec (58.3 lb/sec) and a pressure ratio of 1.581. The stall margin for the stage was 7.5 percent based on weight flow and pressure ratio at stall and peak efficiency conditions. The rotor minimum losses were approximately equal to design except in the blade vibration damper region. Stator minimum losses were less than design except in the tip and damper regions.

  5. 40 CFR 98.3 - What are the general monitoring, reporting, recordkeeping and verification requirements of this...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (c)(12)(iii) of this section. If the latter reporting option is chosen, you must report: (i) Annual... flow meter's primary element (e.g., the orifice plate), or when there is only a differential pressure...

  6. Droplet Diameter and Size Distribution of JP-4 Fuel Injected into a Subsonic Airstream

    DTIC Science & Technology

    1975-04-01

    Pressure TF1 /2 Fuel Temperatures WFL1/2 Low-Range Flow Rate WFM1/2 Mid-Range Flow Rate WFH1/2 High-Range Flow Rate Metering Orifices Manual...Millivolt Tables Plenum Tempera- ture, TP1, •F — ±0.27"F 100 — + 1.8*F ±2.3"F -10 to 70* F Data Acquisition System f f Fuel Supply TF1 — TF2

  7. A simple bubble-flowmeter with quasicontinuous registration.

    PubMed

    Ludt, H; Herrmann, H D

    1976-07-22

    The construction of a simple bubble-flow-meter is described. The instrument has the following features: 1. automatic bubble injection, 2. precise measurement of the bubble passage time by a digital counter, 3. quasicontinuous registration of the flow rate, 4. alternative run with clear fluid (water) and coloured fluid (blood), 5. low volume, 6. closed measuring system for measurements in low and high pressure systems.

  8. Reservoir response to thermal and high-pressure well stimulation efforts at Raft River, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plummer, Mitchell; Bradford, Jacob; Moore, Joseph

    An injection stimulation test begun at the Raft River geothermal reservoir in June, 2013 has produced a wealth of data describing well and reservoir response via high-resolution temperature logging and distributed temperature sensing, seismic monitoring, periodic borehole televiewer logging, periodic stepped flow rate tests and tracer injections before and after stimulation efforts. One of the primary measures of response to the stimulation is the relationship between fluid pressure and flow rate, short-term during forced flow rate changes and the long-term change in injectivity. In this paper we examine that hydraulic response using standard pumping test analysis methods, largely because pressuremore » response to the stimulation was not detected, or measurable, in other wells. Analysis of stepped rate flow tests supports the inference from other data that a large fracture, with a radial extent of one to several meters, intersects the well in the target reservoir, suggests that the flow regime is radial to a distance of only several meters and demonstrates that the pressure build-up cone reaches an effective constant head at that distance. The well’s longer term hydraulic response demonstrated continually increasing injectivity but at a dramatically faster rate later from ~2 years out and continuing to the present. The net change in injectivity is significantly greater than observed in other longterm injectivity monitoring studies, with an approximately 150–fold increase occurring over ~2.5 years. While gradually increasing injectivity is a likely consequence of slow migration of a cooling front, and consequent dilation of fractures, the steady, ongoing, rate of increase is contrary to what would be expected in a radial or linear flow regime, where the cooling front would slow with time. As a result, occasional step-like changes in injectivity, immediately following high-flow rate tests suggest that hydro shearing during high-pressure testing altered the near-well permeability structure.« less

  9. The Peak Flow Working Group: test of portable peak flow meters by explosive decompression.

    PubMed

    Pedersen, O F; Miller, M R

    1997-02-01

    In 1991, 50 new Vitalograph peak flow meters and 27 previously used mini-Wright peak flow meters were tested at three peak flows by use of a calibrator applying explosive decompression. The mini-Wright peak flow meters were also compared with eight new meters. For both makes of meter there was an excellent within-meter and between-meter variation. The accuracy, however, was poor, with a maximal overestimation of true flows of 50 and 70 L.min-1 in the interval from 200 to 400 L.min-1 for the Vitalograph and mini-Wright meters, respectively. The deviation is explained by the physical characteristics of the variable orifice peak flow meters. They have been supplied with equidistant scales, which give non-linear readings.

  10. Mass flow rate measurements in gas-liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Jorge Luiz Goes; Passos, Julio Cesar; Verschaeren, Ruud

    Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi platemore » is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)« less

  11. Safety and diagnostic systems on the Liquid Lithium Test Stand (LLTS)

    NASA Astrophysics Data System (ADS)

    Schwartz, J. A.; Jaworski, M. A.; Ellis, R.; Kaita, R.; Mozulay, R.

    2013-10-01

    The Liquid Lithium Test Stand (LLTS) is a test bed for development of flowing liquid lithium systems for plasma-facing components at PPPL. LLTS is designed to test operation of liquid lithium under vacuum, including flowing, solidifying (such as would be the case at the end of plasma operations), and re-melting. Constructed of stainless steel, LLTS is a closed loop of pipe with two reservoirs and a pump, as well as diagnostics for temperature, flow rate, and pressure. Since liquid lithium is a highly reactive material, special care must be taken when designing such a system. These include a permanent-magnet MHD pump and MHD flow meter that have no mechanical components in direct contact with the liquid lithium. The LLTS also includes an expandable 24-channel leak-detector interlock system which cuts power to heaters and the pump if any lithium leaks from a pipe joint. Design for the interlock systems and flow meter are presented. This work is supported by US DOE Contract DE-AC02-09CH11466.

  12. A MEMS Electrochemical Bellows Actuator for Fluid Metering Applications

    PubMed Central

    Sheybani, Roya; Gensler, Heidi; Meng, Ellis

    2013-01-01

    We present a high efficiency wireless MEMS electrochemical bellows actuator capable of rapid and repeatable delivery of boluses for fluid metering and drug delivery applications. Nafion®-coated Pt electrodes were combined with Parylene bellows filled with DI water to form the electrolysis-based actuator. The performance of actuators with several bellows configurations was compared for a range of applied currents (1-10 mA). Up to 75 boluses were delivered with an average pumping flow rate of 114.40 ± 1.63 μL/min. Recombination of gases into water, an important factor in repeatable and reliable actuation, was studied for uncoated and Nafion®-coated actuators. Real-time pressure measurements were conducted and the effects of temperature, physiological back pressure, and drug viscosity on delivery performance were investigated. Lastly, we present wireless powering of the actuator using a class D inductive powering system that allowed for repeatable delivery with less than 2% variation in flow rate values. PMID:22833156

  13. Performance of a transonic fan stage designed for a low meridional velocity ratio

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Lewis, G. W., Jr.; Osborn, W. M.

    1978-01-01

    The aerodynamic performance and design parameters of a transonic fan stage are presented. The fan stage was designed for a meridional velocity ratio of 0.8 across the tip of the stage, a pressure ratio of 1.57, a flow of 29.5 kilograms per second, and a tip speed of 426 meters per second. Radial surveys were obtained over the stable operating range from 50 to 100 percent of design speed. The measured, peak efficiency (0.81) of the stage occurred at a pressure ratio of 1.58 and a flow of 28.7 kilograms per second.

  14. Kinetic extruder - a dry pulverized solid material pump

    DOEpatents

    Meyer, John W [Palo Alto, CA; Bonin, John H [Sunnyvale, CA; Daniel, Jr., Arnold D.

    1983-01-01

    Method and apparatus are shown for the continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up chamber to a plurality of two-stage sprues mounted in the rotor. Control nozzles downstream from the sprues meter the flow of coal through the sprues.

  15. Performance of transonic fan stage with weight flow per unit annulus area of 208 kilograms per second per square meter (42.6 (lb/sec)/sq ft)

    NASA Technical Reports Server (NTRS)

    Urasek, D. C.; Kovich, G.; Moore, R. D.

    1973-01-01

    Performance was obtained for a 50-cm-diameter compressor designed for a high weight flow per unit annulus area of 208 (kg/sec)/sq m. Peak efficiency values of 0.83 and 0.79 were obtained for the rotor and stage, respectively. The stall margin for the stage was 23 percent, based on equivalent weight flow and total-pressure ratio at peak efficiency and stall.

  16. An experimental investigation of heat transfer to reusable surface insulation tile array gaps in a turbulent boundary layer with pressure gradient. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.

    1975-01-01

    An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer to space shuttle reusable surface insulation (RSI) tile array gaps under thick, turbulent boundary layer conditions. Heat transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel wall boundary layer at a nominal freestream Mach number of 10.3 and freestream unit Reynolds numbers of 1.6, 3.3, and and 6.1 million per meter. Transverse pressure gradients were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel wall boundary layer flow was obtained by measurement of boundary layer pitot pressure profiles, and flat plate wall pressure and heat transfer. Flat plate wall heat transfer data were correlated and a method was derived for prediction of smooth, curved array heat transfer in the highly three-dimensional tunnel wall boundary layer flow and simulation of full-scale space shuttle vehicle pressure gradient levels was assessed.

  17. In Situ Steam Fracture Experiments.

    DTIC Science & Technology

    1984-12-31

    pressure and tempera- ture data for use in validation of multi-phase flow models describing - condensation/vaporization, heat-transfer, and fluid/vapor...provide an excellent base for development and/or verification of steam-fracture models for low- permeability materials where heat transfer is significant...representative of post-shot cavity conditions. Steam flow tests have been performed at S-CUBED in a 3-meter long by 20-centimeter diameter sand column. In

  18. Remote semi-continuous flow rate logging seepage meter

    NASA Technical Reports Server (NTRS)

    Reay, William G.; Walthall, Harry G.

    1991-01-01

    The movement of groundwater and its associated solutes from upland regions was implicated in the degradation of receiving surface water bodies. Current efforts to directly measure this influx of water incorporate manually operated seepage meters which are hindered by severe limitations. A prototype seepage meter was developed by NASA Langley Research Center and Virginia Polytechnic Institute and State University that will allow for the semi-continuous collection and data logging of seepage flux across the sediment water interface. The meter is designed to operate at depths to 40 meters, and alleviate or minimize all disadvantages associated with traditional methods while remaining cost effective. The unit was designed to operate independently for time periods on the order of weeks with adjustable sample sequences depending upon hydrologic conditions. When used in conjunction with commercially available pressure transducers, this seepage meter allows for correlations to be made between groundwater discharge and tidal/sea state conditions in coastal areas. Field data from the Chesapeake Bay and Florida Bay systems are presented.

  19. Revisiting the accuracy of peak flow meters: a double-blind study using formal methods of agreement.

    PubMed

    Nazir, Z; Razaq, S; Mir, S; Anwar, M; Al Mawlawi, G; Sajad, M; Shehab, A; Taylor, R S

    2005-05-01

    There is widespread use of peak flow meters in both hospitals and general practice. Previous studies to assess peak flow meter accuracy have shown significant differences in the values obtained from different meters. However, many of these studies did not use human subjects for peak flow measurements and did not compare meters of varying usage. In this study human subjects have been used with meters of varying usage. Participants were tested using two new (meters A and C) and one old peak flow meter (meter B) in random order. The study was double-blinded. Participants were recruited from the university campus. Four hundred and nine individuals participated. The difference between peak flow means of A and B was -9.93 l/min (95% CI: -12.37 to -7.48, P<0.0001). The difference between peak flow means of B and C was 20.08 l/min (95% CI: 17.85-22.29, P<0.0001). The difference between peak flow means of A and C was 10.15 l/min (95% CI: 7.68-12.61, P<0.0001). There was a significant difference between the values obtained from the new and old peak flow meters and also between the two new peak flow meters. We conclude that there is need for caution in interchangeably using flow meters in clinical practice.

  20. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical..., you may use an intake-air flow meter signal that does not give the actual value of raw exhaust, as... requirements. We recommend that you use an intake-air flow meter that meets the specifications in Table 1 of...

  1. Repeatability and oblique flow response characteristics of current meters

    USGS Publications Warehouse

    Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.; ,

    1993-01-01

    Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.

  2. Vortex shedding flow meter performance at high flow velocities

    NASA Technical Reports Server (NTRS)

    Siegwarth, J. D.

    1986-01-01

    In some of the ducts of the Space Shuttle Main Engine (SSME), the maximum liquid oxygen flow velocities approach 10 times those at which liquid flow measurements are normally made. The hydrogen gas flow velocities in other ducts exceed the maximum for gas flow measurement by more than a factor of 3. The results presented here show from water flow tests that vortex shedding flow meters of the appropriate design can measure water flow to velocities in excess of 55 m/s, which is a Reynolds number of about 2 million. Air flow tests have shown that the same meter can measure flow to a Reynolds number of at least 22 million. Vortex shedding meters were installed in two of the SSME ducts and tested with water flow. Narrow spectrum lines were obtained and the meter output frequencies were proportional to flow to + or - 0.5% or better over the test range with no flow conditioning, even though the ducts had multiple bends preceeding the meter location. Meters with the shedding elements only partially spanning the pipe and some meters with ring shaped shedding elements were also tested.

  3. An analysis of data related to the minimum temperatures for valid testing in cryogenic wind tunnels using nitrogen as the test gas

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1976-01-01

    The minimum operating temperature which avoids adverse low temperature effects, such as condensation, has been determined at a free stream Mach number of 0.85 for flow over a 0.137 meter airfoil mounted at zero incidence in the Langley 1/3 meter transonic cryogenic tunnel. The onset of low temperature effects is established by comparing the pressure coefficient measured at a given orifice for a particular temperature with those measured at temperatures sufficiently above where low temperature effects might be expected to occur. The pressure distributions over the airfoil are presented in tabular form. In addition, the comparisons of the pressure coefficient as a function of total temperature are presented graphically for chord locations of 0, 25, 50, and 75 percent. Over the 1.2 to 4.5 atmosphere total pressure range investigated, low temperature effects are not detected until total temperatures are 2 K, or more, below free stream saturation temperatures.

  4. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... shall be designed for the pressure and temperature of the cargo in accordance with the requirements of... the operating temperatures, of not less than one-half inch in thickness and adequately protected by a...

  5. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... shall be designed for the pressure and temperature of the cargo in accordance with the requirements of... the operating temperatures, of not less than one-half inch in thickness and adequately protected by a...

  6. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... shall be designed for the pressure and temperature of the cargo in accordance with the requirements of... the operating temperatures, of not less than one-half inch in thickness and adequately protected by a...

  7. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... shall be designed for the pressure and temperature of the cargo in accordance with the requirements of... the operating temperatures, of not less than one-half inch in thickness and adequately protected by a...

  8. Mean flow field and surface heating produced by unequal shock interactions at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Birch, S. F.; Rudy, D. H.

    1975-01-01

    Mean velocity profiles were measured in a free shear layer produced by the interaction of two unequal strength shock waves at hypersonic free-stream Mach numbers. Measurements were made over a unit Reynolds number range of 3,770,000 per meter to 17,400,000 per meter based on the flow on the high velocity side of the shear layer. The variation in measured spreading parameters with Mach number for the fully developed flows is consistent with the trend of the available zero velocity ratio data when the Mach numbers for the data given in this study are taken to be characteristic Mach numbers based on the velocity difference across the mixing layer. Surface measurements in the shear-layer attachment region of the blunt-body model indicate peak local heating and static pressure consistent with other published data. Transition Reynolds numbers were found to be significantly lower than those found in previous data.

  9. Kinetic extruder - a dry pulverized solid material pump

    DOEpatents

    Meyer, J. W.; Bonin, J. H.; Daniel, A. D. Jr.

    1983-03-15

    Method and apparatus are shown for the continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up chamber to a plurality of two-stage sprues mounted in the rotor. Control nozzles downstream from the sprues meter the flow of coal through the sprues. 19 figs.

  10. A Practically Validated Intelligent Calibration Circuit Using Optimized ANN for Flow Measurement by Venturi

    NASA Astrophysics Data System (ADS)

    Venkata, Santhosh Krishnan; Roy, Binoy Krishna

    2016-03-01

    Design of an intelligent flow measurement technique using venturi flow meter is reported in this paper. The objectives of the present work are: (1) to extend the linearity range of measurement to 100 % of full scale input range, (2) to make the measurement technique adaptive to variations in discharge coefficient, diameter ratio of venturi nozzle and pipe (β), liquid density, and liquid temperature, and (3) to achieve the objectives (1) and (2) using an optimized neural network. The output of venturi flow meter is differential pressure. It is converted to voltage by using a suitable data conversion unit. A suitable optimized artificial neural network (ANN) is added, in place of conventional calibration circuit. ANN is trained, tested with simulated data considering variations in discharge coefficient, diameter ratio between venturi nozzle and pipe, liquid density, and liquid temperature. The proposed technique is then subjected to practical data for validation. Results show that the proposed technique has fulfilled the objectives.

  11. Wind-tunnel tests on a 3-dimensional fixed-geometry scramjet inlet at M = 2.30 to 4.60

    NASA Technical Reports Server (NTRS)

    Mueller, J. N.; Trexler, C. A.; Souders, S. W.

    1977-01-01

    Wind-tunnel tests were conducted on a baseline scramjet inlet model having fixed geometry and swept leading edges at M = 2.30, 2.96, 3.95, and 4.60 in the Langley unitary plan wind tunnel. The unit Reynolds number of the tests was held constant at 6.56 million per meter (2 million per foot). The objectives of the tests were to establish inlet performance and starting characteristics in the lower Mach number range of operation (less than M = 5). Surface pressures obtained on the inlet components are presented, along with the results of the internal flow surveys made at the throat and capture stations of the inlet. Contour plots of the inlet-flow-field parameters such as Mach numbers, pressure recovery, flow capture, local static and total pressure ratios at the survey stations are shown for the test Mach numbers.

  12. Evaluation of a simplified gross thrust calculation technique using two prototype F100 turbofan engines in an altitude facility

    NASA Technical Reports Server (NTRS)

    Kurtenbach, F. J.

    1979-01-01

    The technique which relies on afterburner duct pressure measurements and empirical corrections to an ideal one dimensional flow analysis to determine thrust is presented. A comparison of the calculated and facility measured thrust values is reported. The simplified model with the engine manufacturer's gas generator model are compared. The evaluation was conducted over a range of Mach numbers from 0.80 to 2.00 and at altitudes from 4020 meters to 15,240 meters. The effects of variations in inlet total temperature from standard day conditions were explored. Engine conditions were varied from those normally scheduled for flight. The technique was found to be accurate to a twice standard deviation of 2.89 percent, with accuracy a strong function of afterburner duct pressure difference.

  13. Pharmacokinetic and pharmacodynamic comparison of hydrofluoroalkane and chlorofluorocarbon formulations of budesonide

    PubMed Central

    Clearie, Karine L; Williamson, Peter A; Meldrum, Karen; Gillen, Michael; Carlsson, Lars-Goran; Carlholm, Marie; Ekelund, Jan; Lipworth, Brian J

    2011-01-01

    AIMS A hydrofluoroalkane formulation of budesonide pressurized metered-dose inhaler has been developed to replace the existing chlorofluorocarbon one. The aim of this study was to evaluate the pharmacokinetic and pharmacodynamic characteristics of both formulations. METHODS Systemic bioavailability and bioactivity of both hydrofluoroalkane and chlorofluorocarbon pressurized metered-dose inhaler formulations at 800 µg twice daily was determined during a randomized crossover systemic pharmacokinetic/pharmacodynamic study at steady state in healthy volunteers. Measurements included the following: plasma cortisol AUC24h[area under the concentration-time curve (0–24 h)], budesonide AUC0–12h and Cmax. Clinical efficacy was determined during a randomized crossover pharmacodynamic study in asthmatic patients receiving 200 µg followed by 800 µg budesonide via chlorofluorocarbon or hydrofluoroalkane pressurized metered-dose inhaler each for 4 weeks. Methacholine PC20 (primary outcome), exhaled nitric oxide, spirometry, peak expiratory flow and symptoms were evaluated. RESULTS In the pharmacokinetic study, there were no differences in cortisol, AUC0–12h[area under the concentration-time curve (0–12 h)], Tmax (time to maximum concentration) or Cmax (peak serum concentration) between the hydrofluoroalkane and chlorofluorocarbon pressurized metered-dose inhaler. The ratio of budesonide hydrofluoroalkane vs. chlorofluorocarbon pressurized metered-dose inhaler for cortisol AUC24h was 1.02 (95% confidence interval 0.93–1.11) and budesonide AUC0–12h was 1.03 (90% confidence interval 0.9–1.18). In the asthma pharmacodynamic study, there was a significant dose response (P < 0.0001) for methacholine PC20 (provocative concentration of methacholine needed to produce a 20% fall in FEV1) with a relative potency ratio of 1.10 (95% confidence interval 0.49–2.66), and no difference at either dose. No significant differences between formulations were seen with the secondary outcome variables. CONCLUSIONS Hydrofluoroalkane and chlorofluorocarbon formulations of budesonide were therapeutically equivalent in terms of relative lung bioavailability, airway efficacy and systemic effects. PMID:21395643

  14. Skin friction measurement in complex flows using thin oil film techniques

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Grant NAG2-261 was initiated to support a program of research to study complex flows that occur in flight and laboratory experiments by building, testing and optimizing an on-board technique for direct measurement of surface shear stress using thin oil film techniques. The program of research has proceeded under the supervision of the NASA Ames Research Center and with further cooperation from the NASA Ames-Dryden and NASA Langley Research Centers. In accordance with the original statement of work, the following research milestones were accomplished: (1) design and testing of an internally mounted one-directional skin friction meter to demonstrate the feasibility of the concept; (2) design and construction of a compact instrument capable of measuring skin friction in two directions; (3) study of transitional and fully turbulent boundary layers over a flat plate with and without longitudinal pressure gradients utilizing the compact two-directional skin friction meter; (4) study of the interaction between a turbulent boundary layer and a shock wave generated by a compression corner using the two-directional meter; and (5) flight qualification of the compact meter and accompanying electronic and pneumatic systems, preliminary installation into flight test fixture.

  15. Performance of the active sidewall boundary-layer removal system for the Langley 0.3-meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen; Murthy, A. V.

    1989-01-01

    A performance evaluation of an active sidewall boundary-layer removal system for the Langley 0.3-m Transonic Cryogenic Tunnel (TCT) was evaluated in 1988. This system uses a compressor and two throttling digital valves to control the boundary-layer mass flow removal from the tunnel. The compressor operates near the maximum pressure ratio for all conditions. The system uses a surge prevention and flow recirculation scheme. A microprocessor based controller is used to provide the necessary mass flow and compressor pressure ratio control. Initial tests on the system indicated problems in realizing smooth mass flow control while running the compressor at high speed and high pressure ratios. An alternate method has been conceived to realize boundary-layer mass flow control which avoids the recirculation of the compressor mass flow and operation near the compressor surge point. This scheme is based on varying the speed of the compressor for a sufficient pressure ratio to provide needed mass flow removal. The system has a mass flow removal capability of about 10 percent of test section flow at M = 0.3 and 4 percent at M = 0.8. The system performance has been evaluated in the form of the compressor map, and compressor tunnel interface characteristics covering most of the 0.3-m TCT operational envelope.

  16. 40 CFR 1065.640 - Flow meter calibration calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Flow meter calibration calculations... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter calibration calculations. This section describes the calculations for calibrating various flow meters. After...

  17. Flow Meter

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Hedland Flow Meters manufactures a complete line of flow meters used in industrial operations to monitor the flow of oil, water or other liquids, air and other compressed gases, including caustics or corrosive liquids/gases. The company produces more than 1,000 types of flow meters featuring rugged construction, simplicity of installation and the ability to operate in any position.

  18. 40 CFR 1065.230 - Raw exhaust flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flow meter. (a) Application. You may use measured raw exhaust flow, as follows: (1) Use the actual... the following cases, you may use a raw exhaust flow meter signal that does not give the actual value... consumed. (b) Component requirements. We recommend that you use a raw-exhaust flow meter that meets the...

  19. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the presence of a pilot flame. (3) Where a boiler or process heater of less than 44 megawatts design... series are used, a scrubbing liquid flow rate meter, or a pressure monitoring device, equipped with a continuous recorder, is required for each absorber in the series. An owner or operator may submit a request...

  20. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the presence of a pilot flame. (3) Where a boiler or process heater of less than 44 megawatts design... series are used, a scrubbing liquid flow rate meter, or a pressure monitoring device, equipped with a continuous recorder, is required for each absorber in the series. An owner or operator may submit a request...

  1. Pneumatic shutoff and time-delay valve operates at controlled rate

    NASA Technical Reports Server (NTRS)

    Horning, J. L.; Tomlinson, L. E.

    1966-01-01

    Shutoff and time delay valve, which incorporates a metering spool that moves at constant velocity under pneumatic pressure and spring compression, increases fluid-flow area at a uniform rate. Diaphragm areas, control cavity volume, and bleed-orifice size may be varied to give any desired combination of time delay and spool travel time.

  2. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1989-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  3. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1990-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  4. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  5. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  6. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  7. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  8. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  9. 49 CFR 192.359 - Customer meter installations: Operating pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Customer meter installations: Operating pressure... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Customer Meters, Service Regulators, and Service Lines § 192.359 Customer meter installations: Operating pressure...

  10. Low Flow Vortex Shedding Flow Meter for Hypergolics/all Media

    NASA Technical Reports Server (NTRS)

    Thinh, Ngo Dinh

    1991-01-01

    A family of vortex shedding flow meters, for measurement of hypergol flows, was designed and fabricated. The test loops to evaluate the flow meters for water flow, as well as Freon -113 flow which simulates the hypergolic fluids, were modified and constructed to utilize a pump system which has an output capacity of 200 gpm. Test runs were conducted on the small 1/2 inch model with Freon 113 and on the larger models with water. Results showed that the linearity between the frequency of the vortices and the flow rate of the fluids was very close to that of the turbine flow meter. It is suggested that the vortex shedding flow meter is a possible replacement for the existing turbine type.

  11. Near-wall similarity in a pressure-driven three-dimensional turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Pierce, F. J.; Mcallister, J. E.

    1980-01-01

    Mean velocity, measured wall pressure and wall shear stress fields were made in a three dimensional pressure-driven turbulent boundary layer created by a cylinder with trailing edge placed normal to a flat plate floor. The direct force wall shear stress measurements were made with floating element direct force sensing shear meter that responded to both the magnitude and direction of the local wall shear stress. The ability of 10 near wall similarity models to describe the near wall velocity field for the measured flow under a wide range of skewing conditions and a variety of pressure gradient and wall shear vector orientations was used.

  12. Experimental investigation of a two-dimensional shock-turbulent boundary layer interaction with bleed

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Tanji, F. T.

    1983-01-01

    The two-dimensional interaction of an oblique shock wave with a turbulent boundary layer that included the effect of bleed was examined experimentally using a shock generator mounted across a supersonic wind tunnel The studies were performed at Mach numbers 2.5 and 2.0 and unit Reynolds number of approximately 2.0 x 10 to the 7th/meter. The study includes surface oil flow visualization, wall static pressure distributions and boundary layer pitot pressure profiles. In addition, the variation of the local bleed rates were measured. The results show the effect of the bleed on the boundary layer as well as the effect of the flow conditions on the local bleed rate.

  13. 40 CFR 98.423 - Calculating CO2 supply.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Calculate the annual mass of CO2 captured, extracted, imported, or exported through each flow meter in... flow meters are used, you shall calculate the annual mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate...

  14. 40 CFR 1065.245 - Sample flow meter for batch sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.245... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...

  15. 40 CFR 1065.245 - Sample flow meter for batch sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.245... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...

  16. 40 CFR 1065.245 - Sample flow meter for batch sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.245... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...

  17. 40 CFR 1065.245 - Sample flow meter for batch sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.245... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...

  18. Accuracy of mini peak flow meters in indicating changes in lung function in children with asthma.

    PubMed Central

    Sly, P. D.; Cahill, P.; Willet, K.; Burton, P.

    1994-01-01

    OBJECTIVE--To assess whether mini flow meters used to measure peak expiratory flow can track changes in lung function and indicate clinically important changes. DESIGN--Comparison of measurements with a spirometer and different brands of mini flow meter; the meters were allocated to subjects haphazardly. SUBJECTS--12 boys with asthma aged 11 to 17 attending boarding school. MAIN OUTCOME MEASURES--Peak expiratory flow measured twice daily for three months with a spirometer and at least one of four brands of mini flow meter. RESULTS--The relation between changes in lung function measured with the spirometer and those measured with the mini flow meters was generally poor. In all, 26 episodes (range 1-3 in an individual child) of clinically important deterioration in lung function were detected from the records obtained with the spirometer. One mini flow meter detected six of 19 episodes, one detected six of 15, one detected six of 18, and one detected three of 21. CONCLUSIONS--Not only are the absolute values of peak expiratory flow obtained with mini flow meters inaccurate but the clinical message may also be incorrect. These findings do not imply that home monitoring of peak expiratory flow has no place in the management of childhood asthma but that the values obtained should be interpreted cautiously. PMID:8148680

  19. Tide-related variability of TAG hydrothermal activity observed by deep-sea monitoring system and OBSH

    NASA Astrophysics Data System (ADS)

    Fujioka, Kantaro; Kobayashi, Kazuo; Kato, Kazuhiro; Aoki, Misumi; Mitsuzawa, Kyohiko; Kinoshita, Masataka; Nishizawa, Azusa

    1997-12-01

    Hydrothermal activities were monitored by an ocean bottom seismometer with hydrophone (OBSH) and a composite measuring system (Manatee) including CTD, current meter, transmission meter and cameras at a small depression on the TAG hydrothermal mound in the Mid-Atlantic Ridge. Low-frequency pressure pulses detected by the hydrophone with semi-diurnal periodicity seem to correspond to cycles of hydrothermal upflow from a small and short-lived smoker vent close to the observing site. The peaks of pressure pulses are synchronous with the maximum gradient of areal strain decrease due to tidal load release. Microearthquakes with very near epicenters occur sporadically and do not appear to be directly correlatable to hydrothermal venting. Temporal variations in bottom water temperature also have semi-diurnal periodicity but are more complicated than the pressure events. Temperatures may be affected both by upwelling of hot water and by lateral flow of the bottom current changing its directions with ocean tide.

  20. The comparative analysis of the current-meter method and the pressure-time method used for discharge measurements in the Kaplan turbine penstocks

    NASA Astrophysics Data System (ADS)

    Adamkowski, A.; Krzemianowski, Z.

    2012-11-01

    The paper presents experiences gathered during many years of utilizing the current-meter and pressure-time methods for flow rate measurements in many hydropower plants. The integration techniques used in these both methods are different from the recommendations contained in the relevant international standards, mainly from the graphical and arithmetical ones. The results of the comparative analysis of both methods applied at the same time during the hydraulic performance tests of two Kaplan turbines in one of the Polish hydropower plant are presented in the final part of the paper. In the case of the pressure-time method application, the concrete penstocks of the tested turbines required installing a special measuring instrumentation inside the penstock. The comparison has shown a satisfactory agreement between the results of discharge measurements executed using the both considered methods. Maximum differences between the discharge values have not exceeded 1.0 % and the average differences have not been greater than 0.5 %.

  1. Low flow vortex shedding flowmeter

    NASA Technical Reports Server (NTRS)

    Waugaman, Charles J.

    1989-01-01

    The purpose was to continue a development project on a no moving parts vortex shedding flowmeter used for flow measurement of hypergols. The project involved the design and construction of a test loop to evaluate the meter for flow of Freon which simulates the hypergol fluids. Results were obtained on the output frequency characteristics of the flow meter as a function of flow rate. A family of flow meters for larger size lines and ranges of flow was sized based on the results of the tested meter.

  2. 40 CFR 86.1319-90 - CVS calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with such a device.) The CVS calibration procedures are designed for use of a “metering venturi” type... series with the pump. (ii) The calculated flow rate, ft 3/min, (at pump inlet absolute pressure and... during test period N Revs ±1 Rev. Elapsed time for test period t sec. ±0.5 sec. (5) After the system has...

  3. 40 CFR 86.1319-90 - CVS calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with such a device.) The CVS calibration procedures are designed for use of a “metering venturi” type... series with the pump. (ii) The calculated flow rate, ft 3/min, (at pump inlet absolute pressure and... test period N Revs ±1 Rev. Elapsed time for test period t sec. ±0.5 sec. (5) After the system has been...

  4. 40 CFR 86.1319-90 - CVS calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with such a device.) The CVS calibration procedures are designed for use of a “metering venturi” type... series with the pump. (ii) The calculated flow rate, ft 3/min, (at pump inlet absolute pressure and... during test period N Revs ±1 Rev. Elapsed time for test period t sec. ±0.5 sec. (5) After the system has...

  5. 40 CFR 86.1319-90 - CVS calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with such a device.) The CVS calibration procedures are designed for use of a “metering venturi” type... series with the pump. (ii) The calculated flow rate, ft 3/min, (at pump inlet absolute pressure and... test period N Revs ±1 Rev. Elapsed time for test period t sec. ±0.5 sec. (5) After the system has been...

  6. 49 CFR 232.309 - Equipment and devices used to perform single car air brake tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... least once each calendar day of use. (b) Except for single car test devices, mechanical test devices such as pressure gauges, flow meters, orifices, etc. shall be calibrated once every 92 days. (c) Electronic test devices shall be calibrated at least once every 365 days. (d) Test equipment and single car...

  7. Blueschist preservation in a retrograded, high-pressure, low-temperature metamorphic terrane, Tinos, Greece: Implications for fluid flow paths in subduction zones

    NASA Astrophysics Data System (ADS)

    Breeding, Christopher M.; Ague, Jay J.; BröCker, Michael; Bolton, Edward W.

    2003-01-01

    The preservation of high-pressure, low-temperature (HP-LT) mineral assemblages adjacent to marble unit contacts on the Cycladic island of Tinos in Greece was investigated using a new type of digital outcrop mapping and numerical modeling of metamorphic fluid infiltration. Mineral assemblage distributions in a large blueschist outcrop, adjacent to the basal contact of a 150-meter thick marble horizon, were mapped at centimeter-scale resolution onto digital photographs using a belt-worn computer and graphics editing software. Digital mapping reveals that while most HP-LT rocks in the outcrop were pervasively retrograded to greenschist facies, the marble-blueschist contact zone underwent an even more intense retrogression. Preservation of HP-LT mineral assemblages was mainly restricted to a 10-15 meter zone (or enclave) adjacent to the intensely retrograded lithologic contact. The degree and distribution of the retrograde overprint suggests that pervasively infiltrating fluids were channelized into the marble-blueschist contact and associated veins and flowed around the preserved HP-LT enclave. Numerical modeling of Darcian flow, based on the field observations, suggests that near the marble horizon, deflections in fluid flow paths caused by flow channelization along the high-permeability marble-blueschist contact zone likely resulted in very large fluid fluxes along the lithologic contact and significantly smaller fluxes (as much as 8 times smaller than the input flux) within the narrow, low-flux regions where HP-LT minerals were preserved adjacent to the contact. Our results indicate that lithologic contacts are important conduits for metamorphic fluid flow in subduction zones. Channelization of retrograde fluids into these discrete flow conduits played a critical role in the preservation of HP-LT assemblages.

  8. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the amount of pressure produced in a patient's airway during maximal inspiration. (b) Classification. Class II...

  9. Calibrating the Helium Pressurization System for the Space Shuttle Liquid-Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a method of relating the helium mass flow to measured air flow data was obtained. This analysis showed that the highest uncertainty in flow occurred in the vicinity of the choking pressure ratio, as would be expected. In addition, analysis of typical flow pulses showed that most of the helium flow occurred either well below or well above this uncertain area. The final result is the ability to provide postlaunch estimates of helium mass flows that are within 1.5 percent of the actual value.

  10. 75 FR 42330 - Elemental Mercury Used in Flow Meters, Natural Gas Manometers, and Pyrometers; Significant New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ..., the sale of mercury-containing flow meters is banned in six states: California, Maine, Massachusetts... Elemental Mercury Used in Flow Meters, Natural Gas Manometers, and Pyrometers; Significant New Use Rule... mercury (CAS No. 7439-97-6) for use in flow meters, natural gas manometers, and pyrometers, except for use...

  11. Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Ruff, Gary A.

    2004-01-01

    The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.

  12. Analysis of inflated submarine and sub-lacustrine Pahoehoe lava flows using high-resolution bathymetric and lidar data (Invited)

    NASA Astrophysics Data System (ADS)

    Deschamps, A.; Van Vliet-Lanoe, B.; Soule, S. A.; Allemand, P.; Le Saout, M.; Delacourt, C.

    2013-12-01

    The summit of the East Pacific Rise (EPR), 16°N, is investigated based -among others- on high-resolution bathymetry acquired using the AUV Aster-X, and photos and videos collected using the submersible Nautile (Ifremer). HR bathymetry reveals submarine tumuli and inflated smooth lava flows at the summit of the ridge, emplaced on sub-horizontal terrains. They are primarily composed of jumbled and lobate flows with occurrences of sheet flows, and pillows close to the flow margins. They are 5 to 15 meters -high, and their surface ranges 0.2 to 1.5 km2. Their surface is either planar or depressed, likely due to lava topographic downdraining during eruption. At their margins, planar slabs of lava, few meters wide, slope down from the top of the flow, at angles ranging 40 to 80°. A series of cracks, 0,5 to 1.5 m deep, separate the horizontal surface of the flow from their inclined flanks. These cracks parallel the sinuous edges of the flows, suggesting the flow flanks tilted outward. Tumuli are also observed. Some of these smooth flows form 80 to 750 m -long sinuous ridges, suggesting the existence of lava tubes. Their morphology indicates that these flows experienced inflationary emplacement styles, but at a much larger scale than Pahoehoe lavas in Hawaii and La Réunion Islands. In these two islands, indeed, inflation structures are typically less than 2 meters high and only several tens of meters in length at maximum, suggesting that their mechanism of emplacement and inflation is significantly different. Conversely, we observe comparable inflation flows in Iceland and in Idaho and Oregon, also emplaced onto sub-horizontal terrains. We use high-resolution aerial photographs and lidar data to investigate their morphology. In the Eastern Snake River Plain (ESRP), quaternary basaltic plains volcanism produced monogenetic coalescent shields, and phreatomagmatic basaltic eruptions that are directly related to proximity of magmatism to the Snake River or Pleistocene lakes. For example, the Hells Half Acres Holocene lava flows, Idaho, display similar morphology as EPR flows, with sheet lavas, flow lobes 5-8 m high and approximately 100 m wide, and pressure ridges. Similar flows are observed in the ESRP: Craters of the Moon, Wapi, and Cerro Grande lava flows for example. In Oregon, Potholes, Devils Garden, Diamond Craters, Deschute River, Owyhee River, Jordan Crater flows are also strictly comparable. In Iceland, Lake Mytvan lava flows, for example, were emplaced in sublacustrine environments, and Budahraun flows in Snaefellness were emplaced at the coast below the sea level. The common point of these presently "aerial" lava flow is their emplacement in lakes, paleo-lakes and river beds, thus in "wet" environment, often controlled by rivers and their tributaries. A more efficient cooling of the lava lobes in wet environment probably triggers the development of strong and plastic margins due to cooling, which resists continued movement of the flow, whereas a thinner margin developing in aerial environment may favor lobe break out when internal pressure rises above the tensile strength of the crust. We propose a theoretical model for these lava flow emplacement on sub-horizontal basement.

  13. Numerical Investigation of the Influence of the Input Air Irregularity on the Performance of Turbofan Jet Engine

    NASA Astrophysics Data System (ADS)

    Novikova, Y.; Zubanov, V.

    2018-01-01

    The article describes the numerical investigation of the input air irregularity influence of turbofan engine on its characteristics. The investigated fan has a wide-blade, an inlet diameter about 2 meters, a pressure ratio about 1.6 and the bypass ratio about 4.8. The flow irregularity was simulated by the flap input in the fan inlet channel. Input of flap was carried out by an amount of 10 to 22,5% of the input channel diameter with increments of 2,5%. A nonlinear harmonic analysis (NLH-analysis) of NUMECA Fine/Turbo software was used to study the flow irregularity. The behavior of the calculated LPC characteristics repeats the experiment behavior, but there is a quantitative difference: the calculated efficiency and pressure ratio of booster consistent with the experimental data within 3% and 2% respectively, the calculated efficiency and pressure ratio of fan duct - within 4% and 2.5% respectively. An increasing the level of air irregularity in the input stage of the fan reduces the calculated mass flow, maximum pressure ratio and efficiency. With the value of flap input 12.5%, reducing the maximum air flow is 1.44%, lowering the maximum pressure ratio is 2.6%, efficiency decreasing is 3.1%.

  14. Thermal and Evolved Gas Analysis of Hydromagnesite and Nesquehonite: Implications for Remote Thermal Analysis on Mars

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.; Lin, I.-C.; Boynton, W. V.

    2000-01-01

    Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) may be important phases on the surface of Mars. In order to characterize these potential phases the Thermal Evolved-Gas Analyzer (TEGA), which was onboard the Mars Polar Lander, was to have performed differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. The sample chamber in TEGA operates at about 100 mbar (approximately 76 torr) with a N2, carrier gas flow of 0.4 seem. Essentially, no information exists on the effects of reduced pressure on the thermal properties of volatile-bearing minerals. In support of TEGA, we have constructed a laboratory analog for TEGA from commercial instrumentation. We connected together a commercial differential scanning calorimeter, a quadruple mass spectrometer, a vacuum pump, digital pressure gauge, electronic mass flow meter, gas "K" bottles, gas dryers, and high and low pressure regulators using a collection of shut off and needle valves. Our arrangement allows us to vary and control the pressure and carrier gas flow rate inside the calorimeter oven chamber.

  15. Intravenous fluid flow meter concept for zero gravity environment

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1972-01-01

    Measuring chamber, included in infusion-set tubing, and peristaltic flow meter concept can be incorporated into flow meter that measures fluid flow rates between 100 and 600 cu cm per hour and at the same time maintains sterilization.

  16. Fluid flow monitoring device

    DOEpatents

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  17. Effect of Doppler flow meter position on discharge measurement in surcharged manholes.

    PubMed

    Yang, Haoming; Zhu, David Z; Liu, Yanchen

    2018-02-01

    Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.

  18. Development of Room Temperature Stable Formulation of Formoterol Fumarate/Beclomethasone HFA pMDI

    PubMed Central

    Purohit, D.; Trehan, A.; Arora, V.

    2009-01-01

    The primary aim of present investigation was to develop and formulate room temperature stable formulation of formoterol fumarate and beclomethasone dipropionate with extra fine part size of hydrofluoroalkane pressurized metered dose inhalers. Particle size distribution of hydrofluoroalkane pressurized metered dose inhalers was evaluated using Twin Stage Glass Impinger and Anderson Cascade Impactor. A tetrafluoroethane and/or heptafluoropropane were evaluated for preparation of hydrofluoroalkane pressurized metered dose inhalers. The fine particle fractions delivered from hydrofluoroalkane propellant suspension pressurized metered dose inhalers can be predicted on the basis of formulation parameters and is dependent of metering chamber of valve and orifice size of actuators. The results presented in investigation showed the importance of formulation excipients with formulation of pressurized metered dose inhalers viz, canister, valve and actuators used in formulations.

  19. 40 CFR 1065.230 - Raw exhaust flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Raw exhaust flow meter. 1065.230... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.230 Raw exhaust flow meter. (a) Application. You may use measured raw exhaust flow, as follows: (1) Use the actual...

  20. 40 CFR 1065.220 - Fuel flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Fuel flow meter. 1065.220 Section 1065... ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.220 Fuel flow meter. (a) Application. You may use fuel flow in combination with a chemical balance of fuel, inlet air, and...

  1. 40 CFR 1065.220 - Fuel flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Fuel flow meter. 1065.220 Section 1065... ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.220 Fuel flow meter. (a) Application. You may use fuel flow in combination with a chemical balance of fuel, inlet air, and...

  2. 27 CFR 19.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., section, or portion of this part: Accurate mass flow meter. A mass flow meter for making volume determinations of bulk distilled spirits. A mass flow meter used for tax determination of bulk spirits must be certified by the manufacturer of the meter or other qualified person as accurate within a tolerance of plus...

  3. 27 CFR 19.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., section, or portion of this part: Accurate mass flow meter. A mass flow meter for making volume determinations of bulk distilled spirits. A mass flow meter used for tax determination of bulk spirits must be certified by the manufacturer of the meter or other qualified person as accurate within a tolerance of plus...

  4. 27 CFR 19.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., section, or portion of this part: Accurate mass flow meter. A mass flow meter for making volume determinations of bulk distilled spirits. A mass flow meter used for tax determination of bulk spirits must be certified by the manufacturer of the meter or other qualified person as accurate within a tolerance of plus...

  5. 27 CFR 19.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., section, or portion of this part: Accurate mass flow meter. A mass flow meter for making volume determinations of bulk distilled spirits. A mass flow meter used for tax determination of bulk spirits must be certified by the manufacturer of the meter or other qualified person as accurate within a tolerance of plus...

  6. Experimental investigation of a Mach 6 fixed-geometry inlet featuring a swept external-internal compression flow field

    NASA Technical Reports Server (NTRS)

    Torrence, M. G.

    1975-01-01

    An investigation of a fixed-geometry, swept external-internal compression inlet was conducted at a Mach number of 6.0 and a test-section Reynolds number of 1.55 x 10 to the 7th power per meter. The test conditions was constant for all runs with stagnation pressure and temperature at 20 atmospheres and 500 K, respectively. Tests were made at angles of attack of -5 deg, 0 deg, 3 deg, and 5 deg. Measurements consisted of pitot- and static-pressure surveys in inlet throat, wall static pressures, and surface temperatures. Boundary-layer bleed was provided on the centerbody and on the cowl internal surface. The inlet performance was consistently high over the range of the angle of attack tested, with an overall average total pressure recovery of 78 percent and corresponding adiabatic kinetic-energy efficiency of 99 percent. The inlet throat flow distribution was uniform and the Mach number and pressure level were of the correct magnitude for efficient combustor design. The utilization of a swept compression field to meet the starting requirements of a fixed-geometry inlet produced neither flow instability nor a tendency to unstart.

  7. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde... or flow instrumentation to determine flow through the particulate filters, methanol impingers and...

  8. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde... or flow instrumentation to determine flow through the particulate filters, methanol impingers and...

  9. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde... or flow instrumentation to determine flow through the particulate filters, methanol impingers and...

  10. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde... or flow instrumentation to determine flow through the particulate filters, methanol impingers and...

  11. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde... or flow instrumentation to determine flow through the particulate filters, methanol impingers and...

  12. 40 CFR 98.426 - Data reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flow meter in your process chain in relation to the points of CO2 stream capture, dehydration... measure CO2 concentration. (7) The location of the flow meter in your process chain in relation to the... through subsequent flow meter(s) in metric tons. (iii) The total annual CO2 mass supplied in metric tons...

  13. Parametric test results of a swirl-can combustor

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.; Jones, R. E.

    1973-01-01

    Pollutant levels of oxides of nitrogen, unburned hydrocarbons, and carbon monoxide were measured for three models of an experimental, annular swirl can combustor. The combustor was 1.067 meters in outer diameter, incorporated 120 modules, and was specifically designed for elevated exit temperature performance. Test conditions included combustor inlet temperatures of 589, 756 and 839 K, inlet pressures of 3 to 6.4 atmospheres, reference velocities of 21 to 38 meters per second and combustor equivalence ratios, based on total combustor flows of 0.206 to 1.028. Maximum oxides of nitrogen emission index values occurred at an equivalence ratio of 0.7 with lower values measured for both higher and lower equivalence ratios. Oxides of nitrogen concentrations, to the 0.7 level with 756 K inlet air, were correlated for the three models by a combined parameter consisting of measured flow and geometric parameters. Effects of the individual parameters comprising the correlation are also presented.

  14. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    Aerodynamic performance and jet noise characteristics of a one sixth scale model of the variable cycle engine testbed exhaust system were obtained in a series of static tests over a range of simulated engine operating conditions. Model acoustic data were acquired. Data were compared to predictions of coannular model nozzle performance. The model, tested with an without a hardwall ejector, had a total flow area equivalent to a 0.127 meter (5 inch) diameter conical nozzle with a 0.65 fan to primary nozzle area ratio and a 0.82 fan nozzle radius ratio. Fan stream temperatures and velocities were varied from 422 K to 1089 K (760 R to 1960 R) and 434 to 755 meters per second (1423 to 2477 feet per second). Primary stream properties were varied from 589 to 1089 K (1060 R to 1960 R) and 353 to 600 meters per second (1158 to 1968 feet per second). Exhaust plume velocity surveys were conducted at one operating condition with and without the ejector installed. Thirty aerodynamic performance data points were obtained with an unheated air supply. Fan nozzle pressure ratio was varied from 1.8 to 3.2 at a constant primary pressure ratio of 1.6; primary pressure ratio was varied from 1.4 to 2.4 while holding fan pressure ratio constant at 2.4. Operation with the ejector increased nozzle thrust coefficient 0.2 to 0.4 percent.

  15. An intercomparison of NEL and DHL water flow facilities using a twin orifice plate flowmeter assembly

    NASA Technical Reports Server (NTRS)

    Dejong, J.; Spencer, E. A.

    1983-01-01

    A 205 mm transfer standard orifice plate meter assembly, consisting of two orifice plates in series separated by a length of pipe containing a flow straightener, was calibrated in two water flow facilities. Results show that the agreement in the characteristics of such a differential pressure transfer standard package is within 0.17% over a 10:1 range from flow rates of approximately 8 to 80 l/sec. When the range over which the comparison was made was limited to that for which the calibration graphs gave straight lines, the agreement is 0.1% in 3 of the 4 calibrations (0.17% in the fourth).

  16. The Effect of Acoustic Disturbances on the Operation of the Space Shuttle Main Engine Fuel Flowmeter

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Szabo, Roland; Dorney, Dan; Zoladz, Tom

    2007-01-01

    The Space Shuttle Main Engine (SSME) uses a turbine fuel flowmeter (FFM) in its Low Pressure Fuel Duct (LPFD) to measure liquid hydrogen flowrates during engine operation. The flowmeter is required to provide accurate and robust measurements of flow rates ranging from 10000 to 18000 GPM in an environment contaminated by duct vibration and duct internal acoustic disturbances. Errors exceeding 0.5% can have a significant impact on engine operation and mission completion. The accuracy of each sensor is monitored during hot-fire engine tests on the ground. Flow meters which do not meet requirements are not flown. Among other parameters, the device is screened for a specific behavior in which a small shift in the flow rate reading is registered during a period in which the actual fuel flow as measured by a facility meter does not change. Such behavior has been observed over the years for specific builds of the FFM and must be avoided or limited in magnitude in flight. Various analyses of the recorded data have been made prior to this report in an effort to understand the cause of the phenomenon; however, no conclusive cause for the shift in the instrument behavior has been found. The present report proposes an explanation of the phenomenon based on interactions between acoustic pressure disturbances in the duct and the wakes produced by the FFM flow straightener. Physical insight into the effects of acoustic plane wave disturbances was obtained using a simple analytical model. Based on that model, a series of three-dimensional unsteady viscous flow computational fluid dynamics (CFD) simulations were performed using the MSFC PHANTOM turbomachinery code. The code was customized to allow the FFM rotor speed to change at every time step according to the instantaneous fluid forces on the rotor, that, in turn, are affected by acoustic plane pressure waves propagating through the device. The results of the simulations show the variation in the rotation rate of the flowmeter due to the interaction of the flow straightener wakes and the upstream propagating acoustic waves. A detailed analysis of the acoustic disturbance effects is presented along with an assessment of the impact on measurement accuracy.

  17. Pulse wave analysis in a 180-degree curved artery model: Implications under physiological and non-physiological inflows

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  18. Boundary layer transition detection on the X-15 vertical fin using surface-pressure-fluctuation measurements

    NASA Technical Reports Server (NTRS)

    Lewis, T. L.; Banner, R. D.

    1971-01-01

    A flush-mounted microphone on the vertical fin of an X-15 airplane was used to investigate boundary layer transition phenomenon during flights to peak altitudes of approximately 70,000 meters. The flight results were compared with those from wind tunnel studies, skin temperature measurements, and empirical prediction data. The Reynolds numbers determined for the end of transition were consistent with those obtained from wind tunnel studies. Maximum surface-pressure-fluctuation coefficients in the transition region were about an order of magnitude greater than those for fully developed turbulent flow. This was also consistent with wind tunnel data. It was also noted that the power-spectral-density estimates of the surface-pressure fluctuations were characterized by a shift in power from high frequencies to low frequencies as the boundary layer changed from turbulent to laminar flow. Large changes in power at the lowest frequencies appeared to mark the beginning of transition.

  19. Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture.

    PubMed

    Quaini, A; Canic, S; Glowinski, R; Igo, S; Hartley, C J; Zoghbi, W; Little, S

    2012-01-10

    This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Intelligent Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  1. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to.... We recommend that you use a diluted exhaust flow meter that meets the specifications in Table 1 of... verification in § 1065.307 and the calibration and verifications in § 1065.340 and § 1065.341. You may use the...

  2. 77 FR 8092 - Airworthiness Directives; Turbomeca S.A. Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ...-pressure/low-pressure (HP/LP) pump hydro-mechanical metering units (HMUs) that do not incorporate... uncoupling of the high-pressure/low-pressure (HP/LP) pump hydro-mechanical metering unit (HMU) low-pressure...

  3. 40 CFR 98.476 - Data reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section. (a) If you receive CO2 by pipeline, report the following for each receiving flow meter: (1) The total net mass of CO2 received (metric tons) annually. (2) If a volumetric flow meter is used to receive CO2: (i) The volumetric flow through a receiving flow meter at standard conditions (in standard cubic...

  4. Multi-Element Unstructured Analyses of Complex Valve Systems

    NASA Technical Reports Server (NTRS)

    Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy

    2004-01-01

    The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.

  5. A flow boiling microchannel thermosyphon for fuel cell thermal management

    NASA Astrophysics Data System (ADS)

    Garrity, Patrick Thomas

    To provide a high power density thermal management system for proton exchange membrane (PEM) fuel cell applications, a passively driven thermal management system was assembled to operate in a closed loop two-phase thermosyphon. The system has two major components; a microchannel evaporator plate and a condenser. The microchannel evaporator plate was fabricated with 56 square channels that have a 1 mm x 1 mm cross section and are 115 mm long. Experiments were conducted with a liquid cooled condenser with heat flux as the control variable. Measurements of mass flow rate, temperature field, and pressure drop have been made for the thermosyphon loop. A model is developed to predict the system characteristics such as the temperature and pressure fields, flow rate, flow regime, heat transfer coefficient, and maximum heat flux. When the system is subjected to a heat load that exceeds the maximum heat flux, an unstable flow regime is observed that causes flow reversal and eventual dryout near the evaporator plate wall. This undesirable phenomenon is modeled based on a quasi-steady state assumption, and the model is capable of predicting the heat flux at the onset of instability for quasi-steady two-phase flow. Another focus of this work is the performance of the condenser portion of the loop, which will be air cooled in practice. The aim is to reduce air side thermal resistance and increase the condenser performance, which is accomplished with extended surfaces. A testing facility is assembled to observe the air side heat transfer performance of three aluminum foam samples and three modified carbon foam samples, used as extended surfaces. The aluminum foam samples have a bulk density of 216 kilograms per cubic meter with pore sizes of 0.5, 1, and 2 mm. The modified carbon foam samples have bulk densities of 284, 317, and 400 kilograms per cubic meter and machined flow passages of 3.2 mm. in diameter. Each sample is observed under forced convection with air velocity as the control variable. Thermocouples and pressure taps are distributed axially along the test section and measurements of pressure and temperature are recorded for air velocities ranging from 1-6 meters per second. Using the Darcy-Forcheimer equation, the porosity is determined for each sample. The volumetric heat transfer coefficient is extracted by means of solving the coupled energy equations of both the solid and fluid respectively. Nusselt number is correlated with Reynolds number. The optimal foam configuration is explored based on a Coefficient of Performance, (COP), Compactness Factor (CF) and Power Density (PD). The COP is the ratio of total heat removed to electrical heat consumption of the blower, CF is the total heat removed per unit volume, and PD is the total heat removed per unit mass. These performance parameters are computed for a hypothetical heat exchanger using each foam sample at various fluid velocities. They are also compared against those for the hypothetical heat exchanger fitted with conventional louvered fins. Given a proper weighting function based on the importance of CF, COP, and PD in the condenser design, an optimal configuration for an air cooled condenser can be obtained for various operating conditions.

  6. A metering rotary nanopump for microfluidic systems

    PubMed Central

    Darby, Scott G.; Moore, Matthew R.; Friedlander, Troy A.; Schaffer, David K.; Reiserer, Ron S.; Wikswo, John P.

    2014-01-01

    We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central cam shaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanoliters of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL/min to above 1.0 µL/min. At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices. PMID:20959938

  7. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  8. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2010-12-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  9. Can the collapse of a fly ash heap develop into an air-fluidized flow? - Reanalysis of the Jupille accident (1961)

    NASA Astrophysics Data System (ADS)

    Stilmant, Frédéric; Pirotton, Michel; Archambeau, Pierre; Erpicum, Sébastien; Dewals, Benjamin

    2015-01-01

    A fly ash heap collapse occurred in Jupille (Liege, Belgium) in 1961. The subsequent flow of fly ash reached a surprisingly long runout and had catastrophic consequences. Its unprecedented degree of fluidization attracted scientific attention. As drillings and direct observations revealed no water-saturated zone at the base of the deposits, scientists assumed an air-fluidization mechanism, which appeared consistent with the properties of the material. In this paper, the air-fluidization assumption is tested based on two-dimensional numerical simulations. The numerical model has been developed so as to focus on the most prominent processes governing the flow, with parameters constrained by their physical interpretation. Results are compared to accurate field observations and are presented for different stages in the model enhancement, so as to provide a base for a discussion of the relative influence of pore pressure dissipation and pore pressure generation. These results show that the apparently high diffusion coefficient that characterizes the dissipation of air pore pressures is in fact sufficiently low for an important degree of fluidization to be maintained during a flow of hundreds of meters.

  10. Orifice-induced pressure error studies in Langley 7- by 10-foot high-speed tunnel

    NASA Technical Reports Server (NTRS)

    Plentovich, E. B.; Gloss, B. B.

    1986-01-01

    For some time it has been known that the presence of a static pressure measuring hole will disturb the local flow field in such a way that the sensed static pressure will be in error. The results of previous studies aimed at studying the error induced by the pressure orifice were for relatively low Reynolds number flows. Because of the advent of high Reynolds number transonic wind tunnels, a study was undertaken to assess the magnitude of this error at high Reynolds numbers than previously published and to study a possible method of eliminating this pressure error. This study was conducted in the Langley 7- by 10-Foot High-Speed Tunnel on a flat plate. The model was tested at Mach numbers from 0.40 to 0.72 and at Reynolds numbers from 7.7 x 1,000,000 to 11 x 1,000,000 per meter (2.3 x 1,000,000 to 3.4 x 1,000,000 per foot), respectively. The results indicated that as orifice size increased, the pressure error also increased but that a porous metal (sintered metal) plug inserted in an orifice could greatly reduce the pressure error induced by the orifice.

  11. Characterization of Flow Bench Engine Testing

    NASA Astrophysics Data System (ADS)

    Voris, Alex; Riley, Lauren; Puzinauskas, Paul

    2015-11-01

    This project was an attempt at characterizing particle image velocimetry (PIV) and swirl-meter test procedures. The flow direction and PIV seeding were evaluated for in-cylinder steady state flow of a spark ignition engine. For PIV seeding, both wet and dry options were tested. The dry particles tested were baby powder, glass particulate, and titanium dioxide. The wet particles tested were fogs created with olive oil, vegetable oil, DEHS, and silicon oil. The seeding was evaluated at 0.1 and 0.25 Lift/Diameter and at cylinder pressures of 10, 25 and 40 inches of H2O. PIV results were evaluated through visual and fluid momentum comparisons. Seeding particles were also evaluated based on particle size and cost. It was found that baby powder and glass particulate were the most effective seeding options for the current setup. The oil fogs and titanium dioxide were found to deposit very quickly on the mock cylinder and obscure the motion of the particles. Based on initial calculations and flow measurements, the flow direction should have a negligible impact on PIV and swirl-meter results. The characterizations found in this project will be used in future engine research examining the effects of intake port geometry on in-cylinder fluid motion and exhaust gas recirculation tolerances. Thanks to NSF site grant #1358991.

  12. The impact of circulation control on rotary aircraft controls systems

    NASA Technical Reports Server (NTRS)

    Kingloff, R. F.; Cooper, D. E.

    1987-01-01

    Application of circulation to rotary wing systems is a new development. Efforts to determine the near and far field flow patterns and to analytically predict those flow patterns have been underway for some years. Rotary wing applications present a new set of challenges in circulation control technology. Rotary wing sections must accommodate substantial Mach number, free stream dynamic pressure and section angle of attack variation at each flight condition within the design envelope. They must also be capable of short term circulation blowing modulation to produce control moments and vibration alleviation in addition to a lift augmentation function. Control system design must provide this primary control moment, vibration alleviation and lift augmentation function. To accomplish this, one must simultaneously control the compressed air source and its distribution. The control law algorithm must therefore address the compressor as the air source, the plenum as the air pressure storage and the pneumatic flow gates or valves that distribute and meter the stored pressure to the rotating blades. Also, mechanical collective blade pitch, rotor shaft angle of attack and engine power control must be maintained.

  13. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  14. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  15. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  16. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  17. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  18. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or...

  19. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  20. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  1. Thermal homogeneity of plastication processes in single-screw extruders

    NASA Astrophysics Data System (ADS)

    Bu, L. X.; Agbessi, Y.; Béreaux, Y.; Charmeau, J.-Y.

    2018-05-01

    Single-screw plastication, used in extrusion and in injection moulding, is a major way of processing commodity thermoplastics. During the plastication phase, the polymeric material is melted by the combined effects of shear-induced self-heating (viscous dissipation) and heat conduction coming from the barrel. In injection moulding, a high level of reliability is usually achieved that makes this process ideally suited to mass market production. Nonetheless, process fluctuations still appear that make moulded part quality control an everyday issue. In this work, we used a combined modelling of plastication, throughput calculation and laminar dispersion, to investigate if, and how, thermal fluctuations could propagate along the screw length and affect the melt homogeneity at the end of the metering section. To do this, we used plastication models to relate changes in processing parameters to changes in the plastication length. Moreover, a simple model of throughput calculation is used to relate the screw geometry, the polymer rheology and the processing parameters to get a good estimate of the mass flow rate. Hence, we found that the typical residence time in a single screw is around one tenth of the thermal diffusion time scale. This residence time is too short for the dispersion coefficient to reach a steady state, but too long to be able to neglect radial thermal diffusion and resort to a purely convective solution. Therefore, a full diffusion/convection problem has to be solved with a base flow described by the classic pressure and drag velocity field. Preliminary results already show the major importance of the processing parameters in the breakthrough curve of an arbitrary temperature fluctuation at the end of the metering section of injection moulding screw. When the flow back-pressure is high, the temperature fluctuation is spread more evenly with time, whereas a pressure drop in the flow will results in a breakthrough curve which presents a larger peak of fluctuation.

  2. Development of the Circulation Control Flow Scheme Used in the NTF Semi-Span FAST-MAC Model

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Allan, Brian G.; Goodliff, Scott L.; Melton, Latunia P.; Anders, Scott G.; Carter, Melissa B.; Capone, Francis J.

    2013-01-01

    The application of a circulation control system for high Reynolds numbers was experimentally validated with the Fundamental Aerodynamic Subsonic Transonic Modular Active Control semi-span model in the NASA Langley National Transonic Facility. This model utilized four independent flow paths to modify the lift and thrust performance of a representative advanced transport type of wing. The design of the internal flow paths highlights the challenges associated with high Reynolds number testing in a cryogenic pressurized wind tunnel. Weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions ranging from 0.1 to 10 lbm/sec. Results from the test verified system performance and identified solutions associated with the weight-flow metering system that are linked to internal perforated plates used to achieve flow uniformity at the jet exit.

  3. Experiment for transient effects of sudden catastrophic loss of vacuum on a scaled superconducting radio frequency cryomodule

    NASA Astrophysics Data System (ADS)

    Dalesandro, Andrew A.; Theilacker, Jay; Van Sciver, Steven

    2012-06-01

    Safe operation of superconducting radio frequency (SRF) cavities require design consideration of a sudden catastrophic loss of vacuum (SCLV) adjacent with liquid helium (LHe) vessels and subsequent dangers. An experiment is discussed to test the longitudinal effects of SCLV along the beam line of a string of scaled SRF cavities. Each scaled cavity includes one segment of beam tube within a LHe vessel containing 2 K saturated LHe, and a riser pipe connecting the LHe vessel to a common gas header. At the beam tube inlet is a fast acting solenoid valve to simulate SCLV and a high/low range orifice plate flow-meter to measure air influx to the cavity. The gas header exit also has an orifice plate flow-meter to measure helium venting the system at the relief pressure of 0.4 MPa. Each cavity is instrumented with Validyne pressure transducers and Cernox thermometers. The purpose of this experiment is to quantify the time required to spoil the beam vacuum and the effects of transient heat and mass transfer on the helium system. Heat transfer data is expected to reveal a longitudinal effect due to the geometry of the experiment. Details of the experimental design criteria and objectives are presented.

  4. Response of the Cardiovascular System to Vibration and Combined Stresses

    DTIC Science & Technology

    1980-11-01

    flow meter ( Zepeda Instruments) and our di- mension meter (Schussler and Associates) resulted in two suggestions: ’) an outline of possible steps to take...tionally, the flowmeter gate was not adjustable, further limiting our timing ability. Given the features of the Zepeda flowmeter in design (square-wave...dimension meter clock pulse (divided down) as the flow oscillator, rather than capturing the flow oscillator as was necessary with the Zepeda meter. This

  5. Modelling and optimization of a wellhead gas flowmeter using concentric pipes

    NASA Astrophysics Data System (ADS)

    Nec, Yana; Huculak, Greg

    2017-09-01

    A novel configuration of a landfill wellhead was analysed to measure the flow rate of gas extracted from sanitary landfills. The device provides access points for pressure measurement integral to flow rate computation similarly to orifice and Venturi meters, and has the advantage of eliminating the problem of water condensation often impairing the accuracy thereof. It is proved that the proposed configuration entails comparable computational complexity and negligible sensitivity to geometric parameters. Calibration for the new device was attained using a custom optimization procedure, operating on a quadri-dimensional parameter surface evincing discontinuity and non-smoothness.

  6. Measuring Your Peak Flow Rate

    MedlinePlus

    ... Living with Asthma > Managing Asthma Measuring Your Peak Flow Rate Download Instructions A peak flow meter is ... to use. Who Benefits from Using a Peak Flow Meter? Many healthcare providers believe that people who ...

  7. Active bypass flow control for a seal in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Todd A.; Kimmel, Keith D.

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wearsmore » In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.« less

  8. Basic study on hot-wire flow meter in forced flow of liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Oura, Y.; Shirai, Y.; Shiotsu, M.; Murakami, K.; Tatsumoto, H.; Naruo, Y.; Nonaka, S.; Kobayashi, H.; Inatani, Y.; Narita, N.

    2014-01-01

    Liquid hydrogen (LH2) is a key issue in a carbon-free energy infrastructure at the energy storage and transportation stage. The typical features of LH2 are low viscosity, large latent heat and small density, compared with other general liquids. It is necessary to measure a mass flow of liquid hydrogen with a simple and compact method, especially in a two phase separate flow condition. We have proposed applying a hot-wire type flow meter, which is usually used a for gas flow meter, to LH2 flow due to the quite low viscosity and density. A test model of a compact LH2 hot-wire flow meter to measure local flow velocities near and around an inside perimeter of a horizontal tube by resistance thermometry was designed and made. The model flow meter consists of two thin heater wires made of manganin fixed in a 10 mm-diameter and 40 mm-length tube flow path made of GFRP. Each rigid heater wire was set twisted by 90 degrees from the inlet to the outlet along the inner wall. In other words, the wires were aslant with regard to the LH2 stream line. The heated wire was cooled by flowing LH2, and the flow velocity was obtained by means of the difference of the cooling characteristic in response to the flow velocity. In this report, we show results on the basic experiments with the model LH2 hot-wire flow meter. First, the heat transfer characteristics of the two heater wires for several LH2 flow velocities were measured. Second, the heating current was controlled to keep the wire temperature constant for various flow velocities. The relations between the flow velocity and the heating current were measured. The feasibility of the proposed model was confirmed.

  9. Fibrous filter efficiency and pressure drop in the viscous-inertial transition flow regime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Andres L.; Brockmann, John E.; Dellinger, Jennifer Gwynne

    2011-10-01

    Fibrous filter pressure drop and aerosol collection efficiency were measured at low air pressures (0.2 to 0.8 atm) and high face velocities (5 to 20 meters per second) to give fiber Reynolds numbers in the viscous-inertial transition flow regime (1 to 16). In this regime, contemporary filtration theory based on Kuwabara's viscous flow through an ensemble of fibers under-predicts single fiber impaction by several orders of magnitude. Streamline curvature increases substantially as inertial forces become dominant. Dimensionless pressure drop measurements followed the viscous-inertial theory of Robinson and Franklin rather than Darcy's linear pressure-velocity relationship (1972). Sodium chloride and iron nano-agglomeratemore » test aerosols were used to evaluate the effects of particle density and shape factor. Total filter efficiency collapsed when plotted against the particle Stokes and fiber Reynolds numbers. Efficiencies were then fitted with an impactor type equation where the cutpoint Stokes number and a steepness parameter described data well in the sharply increasing portion of the curve (20% to 80% efficiency). The cutpoint Stokes number was a linearly decreasing function of fiber Reynolds number. Single fiber efficiencies were calculated from total filter efficiencies and compared to contemporary viscous flow impaction theory (Stechkina et al. 1969), and numerical simulations from the literature. Existing theories under-predicted measured single fiber efficiencies although the assumption of uniform flow conditions for each successive layer of fibers is questionable; the common exponential relationship between single fiber efficiency and total filter efficiency may not be appropriate in this regime.« less

  10. An application of data mining in district heating substations for improving energy performance

    NASA Astrophysics Data System (ADS)

    Xue, Puning; Zhou, Zhigang; Chen, Xin; Liu, Jing

    2017-11-01

    Automatic meter reading system is capable of collecting and storing a huge number of district heating (DH) data. However, the data obtained are rarely fully utilized. Data mining is a promising technology to discover potential interesting knowledge from vast data. This paper applies data mining methods to analyse the massive data for improving energy performance of DH substation. The technical approach contains three steps: data selection, cluster analysis and association rule mining (ARM). Two-heating-season data of a substation are used for case study. Cluster analysis identifies six distinct heating patterns based on the primary heat of the substation. ARM reveals that secondary pressure difference and secondary flow rate have a strong correlation. Using the discovered rules, a fault occurring in remote flow meter installed at secondary network is detected accurately. The application demonstrates that data mining techniques can effectively extrapolate potential useful knowledge to better understand substation operation strategies and improve substation energy performance.

  11. Overpressure, Flow Focusing, Compaction and Slope Stability on the continental slope: Insights from IODP Expedition 308

    NASA Astrophysics Data System (ADS)

    Flemings, P. B.

    2010-12-01

    Integrated Ocean Drilling Program Expepedition 308 used direct measurements of pore pressure, analysis of hydromechanical properties, and geological analysis to illuminate how sedimentation, flow focusing, overpressure, and slope stability couple beneath the seafloor on the deepwater continental slope in the Gulf of Mexico. We used pore pressure penetrometers to measure severe overpressures (60% of the difference between lithostatic stress and hydrostatic pressure) that extend from the seafloor for 100’s of meters. We ran uniaxial consolidation experiments on whole core and found that although permeability is relatively high near the seafloor, the sediments are highly compressible. As a result, the coefficient of consolidation (the hydraulic diffusivity) is remarkably constant over a large range of effective stresses. This behavior accounts for the high overpressure that begins near the seafloor and extends to depth. Forward modeling suggests that flow is driven laterally along a permeable unit called the Blue Unit. Calculations suggest that soon after deposition, lateral flow lowered the effective stress and triggered the submarine landslides that we observe. Later in the evolution of this system, overpressure may have pre-conditioned the slope to failure by earthquakes. Results from IODP Expedition 308 illustrate how pore pressure and sedimentation control the large-scale form of continental margins, how submarine landslides form, and provide strategies for designing stable drilling programs.

  12. Portable Dew Point Mass Spectrometry System for Real-Time Gas and Moisture Analysis

    NASA Technical Reports Server (NTRS)

    Arkin, C.; Gillespie, Stacey; Ratzel, Christopher

    2010-01-01

    A portable instrument incorporates both mass spectrometry and dew point measurement to provide real-time, quantitative gas measurements of helium, nitrogen, oxygen, argon, and carbon dioxide, along with real-time, quantitative moisture analysis. The Portable Dew Point Mass Spectrometry (PDP-MS) system comprises a single quadrupole mass spectrometer and a high vacuum system consisting of a turbopump and a diaphragm-backing pump. A capacitive membrane dew point sensor was placed upstream of the MS, but still within the pressure-flow control pneumatic region. Pressure-flow control was achieved with an upstream precision metering valve, a capacitance diaphragm gauge, and a downstream mass flow controller. User configurable LabVIEW software was developed to provide real-time concentration data for the MS, dew point monitor, and sample delivery system pressure control, pressure and flow monitoring, and recording. The system has been designed to include in situ, NIST-traceable calibration. Certain sample tubing retains sufficient water that even if the sample is dry, the sample tube will desorb water to an amount resulting in moisture concentration errors up to 500 ppm for as long as 10 minutes. It was determined that Bev-A-Line IV was the best sample line to use. As a result of this issue, it is prudent to add a high-level humidity sensor to PDP-MS so such events can be prevented in the future.

  13. Application of active control landing gear technology to the A-10 aircraft

    NASA Technical Reports Server (NTRS)

    Ross, I.; Edson, R.

    1983-01-01

    Two concepts which reduce the A-10 aircraft's wing/gear interface forces as a result of applying active control technology to the main landing gear are described. In the first concept, referred to as the alternate concept a servovalve in a closed pressure control loop configuration effectively varies the size of the third stage spool valve orifice which is embedded in the strut. This action allows the internal energy in the strut to shunt hydraulic flow around the metering orifice. The command signal to the loop is reference strut pressure which is compared to the measured strut pressure, the difference being the loop error. Thus, the loop effectively varies the spool valve orifice size to maintain the strut pressure, and therefore minimizes the wing/gear interface force referenced.

  14. A mercury flow meter for ion thruster testing. [response time, thermal sensitivity

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    The theory of operation of the thermal flow meter is presented, and a theoretical model is used to determine design parameters for a device capable of measuring mercury flows in the range of 0 to 5 gm/hr. Flow meter construction is described. Tests performed using a positive displacement mercury pump as well as those performed with the device in the feed line of an operating thruster are discussed. A flow meter response time of about a minute and a sensitivity of about 10 mv/gm/hr are demonstrated. Additional work to relieve a sensitivity of the device to variations in ambient temperature is indicated to improve its quantitative performance.

  15. Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays.

    PubMed

    Weng, Kuo-Yao; Chou, Nien-Jen; Cheng, Jya-Wei

    2008-07-01

    An innovative vacuum capillary pneumatic actuation concept that can be used for point-of-care testing has been investigated. The vacuum glass capillaries are encapsulated within a laminated pouch and incorporated into the fluidic card. Vacuum glass capillaries broken by external force such as finger pressure, generate the pneumatic forces to induce liquid flow in the fluidic system. The sizes of vacuum capillary play a vital role in the pumping and metering functions of the system. The luteinizing hormone (LH) chromatographic immunoassay performances in the fluidic cards show consistency comparable to that obtained by manual micropipetting. The vacuum capillary pneumatic actuation will be applied in other complex handling step bioassays and lab-on-a-chip devices.

  16. 43 CFR 3275.16 - What standards apply to installing and maintaining meters?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...; (2) You must calibrate meters measuring steam or hot water flow with a turbine, vortex, ultrasonics... frequent; and (3) You must calibrate meters measuring steam or hot water flow with an orifice plate...

  17. 43 CFR 3275.16 - What standards apply to installing and maintaining meters?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; (2) You must calibrate meters measuring steam or hot water flow with a turbine, vortex, ultrasonics... frequent; and (3) You must calibrate meters measuring steam or hot water flow with an orifice plate...

  18. 43 CFR 3275.16 - What standards apply to installing and maintaining meters?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; (2) You must calibrate meters measuring steam or hot water flow with a turbine, vortex, ultrasonics... frequent; and (3) You must calibrate meters measuring steam or hot water flow with an orifice plate...

  19. 43 CFR 3275.16 - What standards apply to installing and maintaining meters?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; (2) You must calibrate meters measuring steam or hot water flow with a turbine, vortex, ultrasonics... frequent; and (3) You must calibrate meters measuring steam or hot water flow with an orifice plate...

  20. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCP(sub avg)) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  1. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  2. 76 FR 4097 - Verdant Power, LLC (Verdant); Notice of Application Tendered for Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... facilities would include: (1) Three 35-kilowatt (kW), 5-meter-diameter axial flow Kinetic System turbine...; (2) nine additional 5-meter-diameter axial flow Kinetic System turbine generator units mounted on...-meter-diameter axial flow Kinetic System turbine generator units mounted on six triframe mounts, with a...

  3. 40 CFR 98.476 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) of this section. (c) If you use more than one receiving flow meter, report the net total mass of CO2... section. (a) If you receive CO2 by pipeline, report the following for each receiving flow meter: (1) The total net mass of CO2 received (metric tons) annually. (2) If a volumetric flow meter is used to receive...

  4. 40 CFR 98.476 - Data reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) of this section. (c) If you use more than one receiving flow meter, report the net total mass of CO2... section. (a) If you receive CO2 by pipeline, report the following for each receiving flow meter: (1) The total net mass of CO2 received (metric tons) annually. (2) If a volumetric flow meter is used to receive...

  5. 40 CFR 1065.640 - Flow meter calibration calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... 1065.640 Section 1065.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter...: Table 2 of § 1065.640—C fCFV versus β and γ for CFV Flow Meters C fCFV β γ exh =1.385 γ dexh = γ air = 1...

  6. 40 CFR 1065.640 - Flow meter calibration calculations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... 1065.640 Section 1065.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter... Flow Meters C fCFV b g exh =1.385 g dexh = g air = 1.399 0.000 0.6822 0.6846 0.400 0.6857 0.6881 0.500...

  7. 40 CFR 1065.640 - Flow meter calibration calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... 1065.640 Section 1065.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter...: Table 2 of § 1065.640—C fCFV versus β and γ for CFV Flow Meters C fCFV β γ exh =1.385 γ dexh = γ air = 1...

  8. 40 CFR 1065.640 - Flow meter calibration calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 1065.640 Section 1065.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter... Flow Meters C fCFV β γ exh =1.385 γ dexh = γ air = 1.399 0.000 0.6822 0.6846 0.400 0.6857 0.6881 0.500...

  9. Sugar export limits size of conifer needles

    NASA Astrophysics Data System (ADS)

    Rademaker, Hanna; Zwieniecki, Maciej A.; Bohr, Tomas; Jensen, Kaare H.

    2017-04-01

    Plant leaf size varies by more than three orders of magnitude, from a few millimeters to over one meter. Conifer leaves, however, are relatively short and the majority of needles are no longer than 6 cm. The reason for the strong confinement of the trait-space is unknown. We show that sugars produced near the tip of long needles cannot be exported efficiently, because the pressure required to drive vascular flow would exceed the greatest available pressure (the osmotic pressure). This basic constraint leads to the formation of an inactive region of stagnant fluid near the needle tip, which does not contribute to sugar flow. Remarkably, we find that the size of the active part does not scale with needle length. We predict a single maximum needle size of 5 cm, in accord with data from 519 conifer species. This could help rationalize the recent observation that conifers have significantly smaller leaves than angiosperms, and provide a biophysical explanation for this intriguing difference between the two largest groups of plants.

  10. Performance Enhancement of a High Speed Jet Impingement System for Nonvolatile Residue Removal

    NASA Technical Reports Server (NTRS)

    Klausner, James F.; Mei, Renwei; Near, Steve; Stith, Rex

    1996-01-01

    A high speed jet impingement cleaning facility has been developed to study the effectiveness of the nonvolatile residue removal. The facility includes a high pressure air compressor which charges the k-bottles to supply high pressure air, an air heating section to vary the temperature of the high pressure air, an air-water mixing chamber to meter the water flow and generate small size droplets, and a converging- diverging nozzle to deliver the supersonic air-droplet mixture flow to the cleaning surface. To reliably quantify the cleanliness of the surface, a simple procedure for measurement and calibration is developed to relate the amount of the residue on the surface to the relative change in the reflectivity between a clean surface and the greased surface. This calibration procedure is economical, simple, reliable, and robust. a theoretical framework is developed to provide qualitative guidance for the design of the test and interpretation of the experimental results. The result documented in this report support the theoretical considerations.

  11. An Experimental Study of Turbulent Skin Friction Reduction in Supersonic Flow Using a Microblowing Technique

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.

    1999-01-01

    A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).

  12. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  13. 40 CFR 98.426 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flow meter in your process chain in relation to the points of CO2 stream capture, dehydration... concentration. (7) The location of the flow meter in your process chain in relation to the points of CO2 stream... meter(s) in metric tons. (iii) The total annual CO2 mass supplied in metric tons. (iv) The location of...

  14. 40 CFR 98.426 - Data reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flow meter in your process chain in relation to the points of CO2 stream capture, dehydration... concentration. (7) The location of the flow meter in your process chain in relation to the points of CO2 stream... meter(s) in metric tons. (iii) The total annual CO2 mass supplied in metric tons. (iv) The location of...

  15. 40 CFR 98.426 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flow meter in your process chain in relation to the points of CO2 stream capture, dehydration... concentration. (7) The location of the flow meter in your process chain in relation to the points of CO2 stream... meter(s) in metric tons. (iii) The total annual CO2 mass supplied in metric tons. (iv) The location of...

  16. Fan noise reduction achieved by removing tip flow irregularities behind the rotor - forward arc test configurations

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Woodward, R. P.; Mackinnon, M. J.

    1984-01-01

    The noise source caused by the interaction of the rotor tip flow irregularities (vortices and velocity defects) with the downstream stator vanes was studied. Fan flow was removed behind a 0.508 meter (20 in.) diameter model turbofan through an outer wall slot between the rotor and stator. Noise measurements were made with far-field microphones positioned in an arc about the fan inlet and with a pressure transducer in the duct behind the stator. Little tone noise reduction was observed in the forward arc during flow removal; possibly because the rotor-stator interaction noise did not propagate upstream through the rotor. Noise reductions were maded in the duct behind the stator and the largest decrease occurred with the first increment of flow removal. This result indicates that the rotor tip flow irregularity-stator interaction is as important a noise producing mechanism as the normally considered rotor wake-stator interaction.

  17. Call-Center Based Disease Management of Pediatric Asthmatics

    DTIC Science & Technology

    2005-04-01

    study locations. Purchase peak flow meters. Prepare and reproduce patient education materials, and informed consent work sheets. Contract Oracle data...identified. Electronic peak flow meters have been purchased. Patient education materials and informed consent documents have been reproduced. A web-based...Research Center * Study population identified via military and Foundation Health databases * Electronic peak flow meters purchased * Patient education materials

  18. Comparison of current meters used for stream gaging

    USGS Publications Warehouse

    Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.

    1994-01-01

    The U.S. Geological Survey (USGS) is field and laboratory testing the performance of several current meters used throughout the world for stream gaging. Meters tested include horizontal-axis current meters from Germany, the United Kingdom, and the People's Republic of China, and vertical-axis and electromagnetic current meters from the United States. Summarized are laboratory test results for meter repeatability, linearity, and response to oblique flow angles and preliminary field testing results. All current meters tested were found to under- and over-register velocities; errors usually increased as the velocity and angle of the flow increased. Repeatability and linearity of all meters tested were good. In the field tests, horizontal-axis meters, except for the two meters from the People's Republic of China, registered higher velocity than did the vertical-axis meters.

  19. Design and Study of a LOX/GH2 Throttleable Swirl Injector for Rocket Applications

    NASA Technical Reports Server (NTRS)

    Greene, Christopher; Woodward, Roger; Pal, Sibtosh; Santoro, Robert; Garcia, Roberto (Technical Monitor)

    2002-01-01

    A LOX/GH2 swirl injector was designed for a 10:1 propellant throttling range. To accomplish this, a dual LOX (liquid oxygen) manifold was used feeding a single common vortex chamber of the swirl element. Hot-fire experiments were conducting for rocket chamber pressures from 80 to 800 psia at a mixture ratio of nominally 6.0 using steady flow, single-point-per-firing cases as well as dynamic throttling conditions. Low frequency (mean) and high frequency (fluctuating) pressure transducer data, flow meter measurements, and Raman spectroscopy images for mixing information were obtained. The injector design, experimental setup, low frequency pressure data, and injector performance analysis will be presented. C efficiency was very high (approximately 100%) at the middle of the throttle-able range with somewhat lower performance at the high and low ends. From the analysis of discreet steady state operating conditions, injector pressure drop was slightly higher than predicted with an inviscid analysis, but otherwise agreed well across the design throttling range. Analysis of the dynamic throttling data indicates that the injector may experience transient conditions that effect pressure drop and performance when compared to steady state results.

  20. Coal-fluid properties with an emphasis on dense phase. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klinzing, G.E.

    1985-04-01

    Many fossil fuel energy processes depend on the movement of solids by pneumatic transport. Despite the considerable amount of work reported in the literature on pneumatic transport, the design of new industrial systems for new products continues to rely to a great extent on empiricism. A pilot-scale test facility has been constructed at Pittsburgh Energy Technology Center (PETC), equipped with modern sophisticated measuring techniques (such as Pressure Transducers, Auburn Monitors and Micro Motion Mass Flow Meters) and an automatic computer-controlled data acquisition system to study the effects of particle pneumatic transport. Pittsburgh Seam and Montana Rosebud coals of varying sizemore » consist and moisture content were tested in the atmospheric and pressurized coal flow test loops (AP/CFTL and HP/CFTL) at PETC. The system parameters included conveying gas velocity, injector tank pressure, screw conveyor speed, pipe radius and pipe bends. In this report, results from the coal flow tests were presented and analyzed. Existing theories and correlations on two phase flows were reviewed. Experimental data were compared with values calculated from empirically or theoretically derived equations available in the literature and new correlations were proposed, when applicable, to give a better interpretation of the data and a better understanding of the various flow regimes involved in pneumatic transport. 55 refs., 56 figs., 6 tabs.« less

  1. Fine PM measurements: personal and indoor air monitoring.

    PubMed

    Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H

    2002-12-01

    This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.

  2. Measuring peak expiratory flow in general practice: comparison of mini Wright peak flow meter and turbine spirometer.

    PubMed Central

    Jones, K P; Mullee, M A

    1990-01-01

    OBJECTIVE--To compare measurements of the peak expiratory flow rate taken by the mini Wright peak flow meter and the turbine spirometer. DESIGN--Pragmatic study with randomised order of use of recording instruments. Phase 1 compared a peak expiratory flow type expiration recorded by the mini Wright peak flow meter with an expiration to forced vital capacity recorded by the turbine spirometer. Phase 2 compared peak expiratory flow type expirations recorded by both meters. Reproducibility was assessed separately. SETTING--Routine surgeries at Aldermoor Health Centre, Southampton. SUBJECTS--212 Patients aged 4 to 78 presenting with asthma or obstructive airways disease. Each patient contributed only once to each phase (105 in phase 1, 107 in phase 2), but some entered both phases on separate occasions. Reproducibility was tested on a further 31 patients. MAIN OUTCOME MEASURE--95% Limits of agreement between measurements on the two meters. RESULTS--208 (98%) Of the readings taken by the mini Wright meter were higher than the corresponding readings taken by the turbine spirometer, but the 95% limits of agreement (mean difference (2 SD] were wide (1 to 173 l/min). Differences due to errors in reproducibility were not sufficient to predict this level of disagreement. Analysis by age, sex, order of use, and the type of expiration did not detect any significant differences. CONCLUSIONS--The two methods of measuring peak expiratory flow rate were not comparable. The mini Wright meter is likely to remain the preferred instrument in general practice. PMID:2142611

  3. Aircraft Power-Plant Instruments

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Brombacher, W G

    1934-01-01

    This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

  4. CFD Based Prediction of Discharge Coefficient of Sonic Nozzle with Surface Roughness

    NASA Astrophysics Data System (ADS)

    Bagaskara, Agastya; Agoes Moelyadi, Mochammad

    2018-04-01

    Due to its simplicity and accuracy, sonic nozzle is widely used in gas flow measurement, gas flow meter calibration standard, and flow control. The nozzle obtains mass flow rate by measuring temperature and pressure in the inlet during choked flow condition and calculate the flow rate using the one-dimensional isentropic flow equation multiplied by a discharge coefficient, which takes into account multiple non-isentropic effects, which causes the reduction in mass flow. Proper determination of discharge coefficient is crucial to ensure the accuracy of mass flow measurement by the nozzle. Available analytical solution for the prediction of discharge coefficient assumes that the nozzle wall is hydraulically smooth which causes disagreement with experimental results. In this paper, the discharge coefficient of sonic nozzle is determined using computational fluid dynamics method by taking into account the roughness of the wall. It is found that the result shows better agreement with the experiment data compared to the analytical result.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oktamuliani, Sri, E-mail: srioktamuliani@ymail.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id

    A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation atmore » inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.« less

  6. Robust, non-invasive methods for metering groundwater well extraction in remote environments

    NASA Astrophysics Data System (ADS)

    Bulovic, Nevenka; Keir, Greg; McIntyre, Neil

    2017-04-01

    Quantifying the rate of extraction from groundwater wells can be essential for regional scale groundwater management and impact assessment. This is especially the case in regions heavily dependent on groundwater such as the semi-arid Surat and Bowen Basins in Queensland, Australia. Of the 30 000+ groundwater wells in this area, the majority of which are used for stock watering and domestic purposes, almost none have flow metering devices installed. As part of a research project to estimate regional groundwater extraction, we have undertaken a small scale flow metering program on a selected set of wells. Conventional in-line flow meters were unsuitable for our project, as both non-invasiveness and adaptability / suitability to a variety of discharge pipe characteristics was critical. We describe the use of two metering technologies not widely used in groundwater applications, non-invasive, clamp-on ultrasonic transit time flow meters and tipping bucket flow meters, as semi-permanent installations on discharge pipes of various artesian and sub-artesian groundwater wells. We present examples of detailed extraction rate time-series, which are of particular value in developing predictive models of water well extraction in data limited areas where water use dynamics and drivers are poorly understood. We conclude by discussing future project trajectories, which include expansion of the monitoring network through development of novel metering techniques and telemetry across large areas of poor connectivity.

  7. Analyzing Axial Stress and Deformation of Tubular for Steam Injection Process in Deviated Wells Based on the Varied (T, P) Fields

    PubMed Central

    Liu, Yunqiang; Xu, Jiuping; Wang, Shize; Qi, Bin

    2013-01-01

    The axial stress and deformation of high temperature high pressure deviated gas wells are studied. A new model is multiple nonlinear equation systems by comprehensive consideration of axial load of tubular string, internal and external fluid pressure, normal pressure between the tubular and well wall, and friction and viscous friction of fluid flowing. The varied temperature and pressure fields were researched by the coupled differential equations concerning mass, momentum, and energy equations instead of traditional methods. The axial load, the normal pressure, the friction, and four deformation lengths of tubular string are got ten by means of the dimensionless iterative interpolation algorithm. The basic data of the X Well, 1300 meters deep, are used for case history calculations. The results and some useful conclusions can provide technical reliability in the process of designing well testing in oil or gas wells. PMID:24163623

  8. Experimental and Computational Evaluation of Flush-Mounted, S-Duct Inlets

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Allan, Brian G.

    2004-01-01

    A new high Reynolds number test capability for boundary layer ingesting inlets has been developed for the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. Using this new capability. an experimental investigation of four S-duct inlet configurations was conducted. A computational study of one of the inlets was also conducted using a Navier-Stokes solver. The objectives of this investigation were to: 1) develop a new high Reynolds number inlet test capability for flush-mounted inlets; 2) provide a database for CFD tool validation; 3) evaluate the performance of S-duct inlets with large amounts of boundary layer ingestion; and 4) provide a baseline inlet for future inlet flow-control studies. Tests were conducted at Mach numbers from 0.25 to 0.83. Reynolds numbers (based on duct exit diameter) from 5.1 million to a full-scale value of 13.9 million, and inlet mass-flow ratios from 0.39 to 1.58 depending on Mach number. Results of the experimental study indicate that inlet pressure recovery generally decreased and inlet distortion generally increased with increasing Mach number. Except at low Mach numbers, increasing inlet mass-flow increased pressure recovery and increased distortion. Increasing the amount of boundary layer ingestion or ingesting a boundary layer with a distorted profile decreased pressure recovery and increased distortion. Finally, increasing Reynolds number had almost no effect on inlet distortion but increased inlet recovery by about one-half percent at a Mach number near cruise. The computational results captured the inlet pressure recovery and distortion trends with Mach number and inlet mass-flow well: the reversal of the pressure recovery trend with increasing inlet mass-flow at low and high Mach numbers was predicted by CFD. However, CFD results were generally more pessimistic (larger losses) than measured experimentally.

  9. Effect of gastrointestinal hormones on the biliary sphincter of the opossum.

    PubMed

    Becker, J M; Moody, F G; Zinsmeister, A R

    1982-06-01

    The smooth muscle sphincter enveloping the terminal portion of the common bile duct in the opossum exhibits spontaneous electrical activity and simultaneous rhythmic contractions. The aim of our study was to define the influence of four gastrointestinal hormones on biliary sphincter electrical and mechanical activity. An array of five monopolar extracellular electrodes was placed along the opossum choledochal sphincteric smooth muscle and contiguous duodenum. A catheter in continuity with a pressure transducer, drop counter, and saline reservoir was placed in the common duct for simultaneous measurement of ductal pressure and flow. The cystic and distal common hepatic ducts were then ligated to isolate the common bile duct from the gallbladder and liver. In each opossum, biliary sphincteric and duodenal myoelectric activity, common bile duct and gallbladder pressure, and common duct flow were recorded simultaneously before and after the intravenous administration of five different doses of an enteric hormone. Ten animals were given 0.1-10.0 international dog units per kilogram body wt of cholecystokinin, 10 received 0.01-1.00 microgram/kg body wt of cholecystokinin-octapeptide, 10 were given 0.1-10.0 micrograms/kg body wt of secretin, and 5 were given 0.1-10.0 micrograms/kg body wt of pentagastrin. Cholecystokinin, cholecystokinin-octapeptide, and pentagastrin all effected a significant increase in sphincter electrical spike activity and common duct pressure with a decrease in common duct flow. This contractile response was consistent at a wide range of hormonal levels. Secretin had little effect on biliary pressure, flow, and myoelectric activity. The data lend support to the concept that cholecystokinin and gastrin contract the biliary sphincter, metering bile flow at the time of gallbladder emptying in the opossum.

  10. Application of FLEET Velocimetry in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Burns, Ross A.; Danehy, Paul M.; Halls, Benjamin R.; Jiang, Naibo

    2015-01-01

    Femtosecond laser electronic excitation and tagging (FLEET) velocimetry is demonstrated in a large-scale transonic cryogenic wind tunnel. Test conditions include total pressures, total temperatures, and Mach numbers ranging from 15 to 58 psia, 200 to 295 K, and 0.2 to 0.75, respectively. Freestream velocity measurements exhibit accuracies within 1 percent and precisions better than 1 m/s. The measured velocities adhere closely to isentropic flow theory over the domain of temperatures and pressures that were tested. Additional velocity measurements are made within the tunnel boundary layer; virtual trajectories traced out by the FLEET signal are indicative of the characteristic turbulent behavior in this region of the flow, where the unsteadiness increases demonstrably as the wall is approached. Mean velocities taken within the boundary layer are in agreement with theoretical velocity profiles, though the fluctuating velocities exhibit a greater deviation from theoretical predictions.

  11. Investigation of the sound generation mechanisms for in-duct orifice plates.

    PubMed

    Tao, Fuyang; Joseph, Phillip; Zhang, Xin; Stalnov, Oksana; Siercke, Matthias; Scheel, Henning

    2017-08-01

    Sound generation due to an orifice plate in a hard-walled flow duct which is commonly used in air distribution systems (ADS) and flow meters is investigated. The aim is to provide an understanding of this noise generation mechanism based on measurements of the source pressure distribution over the orifice plate. A simple model based on Curle's acoustic analogy is described that relates the broadband in-duct sound field to the surface pressure cross spectrum on both sides of the orifice plate. This work describes careful measurements of the surface pressure cross spectrum over the orifice plate from which the surface pressure distribution and correlation length is deduced. This information is then used to predict the radiated in-duct sound field. Agreement within 3 dB between the predicted and directly measured sound fields is obtained, providing direct confirmation that the surface pressure fluctuations acting over the orifice plates are the main noise sources. Based on the developed model, the contributions to the sound field from different radial locations of the orifice plate are calculated. The surface pressure is shown to follow a U 3.9 velocity scaling law and the area over which the surface sources are correlated follows a U 1.8 velocity scaling law.

  12. Investigation of flow fields within large scale hypersonic inlet models

    NASA Technical Reports Server (NTRS)

    Gnos, A. V.; Watson, E. C.; Seebaugh, W. R.; Sanator, R. J.; Decarlo, J. P.

    1973-01-01

    Analytical and experimental investigations were conducted to determine the internal flow characteristics in model passages representative of hypersonic inlets for use at Mach numbers to about 12. The passages were large enough to permit measurements to be made in both the core flow and boundary layers. The analytical techniques for designing the internal contours and predicting the internal flow-field development accounted for coupling between the boundary layers and inviscid flow fields by means of a displacement-thickness correction. Three large-scale inlet models, each having a different internal compression ratio, were designed to provide high internal performance with an approximately uniform static-pressure distribution at the throat station. The models were tested in the Ames 3.5-Foot Hypersonic Wind Tunnel at a nominal free-stream Mach number of 7.4 and a unit free-stream Reynolds number of 8.86 X one million per meter.

  13. 77 FR 61303 - Airworthiness Directives; Turbomeca S.A. Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ...-mechanical metering unit (HMU). This proposed AD would require replacing the HMU at a reduced life. We are... pressure/low pressure (HP/LP) pump assembly within the hydro- mechanical metering unit (HMU), removed...-mechanical metering unit (HMU). We are issuing this AD to prevent an uncommanded in-flight shutdown of the...

  14. 3D Flow in the Venom Channel of a Spitting Cobra: Do the Ridges in the Fangs Act as Fluid Guide Vanes?

    PubMed Central

    Triep, Michael; Hess, David; Chaves, Humberto; Brücker, Christoph; Balmert, Alexander; Westhoff, Guido; Bleckmann, Horst

    2013-01-01

    The spitting cobra Naja pallida can eject its venom towards an offender from a distance of up to two meters. The aim of this study was to understand the mechanisms responsible for the relatively large distance covered by the venom jet although the venom channel is only of micro-scale. Therefore, we analysed factors that influence secondary flow and pressure drop in the venom channel, which include the physical-chemical properties of venom liquid and the morphology of the venom channel. The cobra venom showed shear-reducing properties and the venom channel had paired ridges that span from the last third of the channel to its distal end, terminating laterally and in close proximity to the discharge orifice. To analyze the functional significance of these ridges we generated a numerical and an experimental model of the venom channel. Computational fluid dynamics (CFD) and Particle-Image Velocimetry (PIV) revealed that the paired interior ridges shape the flow structure upstream of the sharp 90° bend at the distal end. The occurrence of secondary flow structures resembling Dean-type vortical structures in the venom channel can be observed, which induce additional pressure loss. Comparing a venom channel featuring ridges with an identical channel featuring no ridges, one can observe a reduction of pressure loss of about 30%. Therefore it is concluded that the function of the ridges is similar to guide vanes used by engineers to reduce pressure loss in curved flow channels. PMID:23671569

  15. Some observations of the effects of radial distortions on performance of a transonic rotating blade row

    NASA Technical Reports Server (NTRS)

    Sandercock, D. M.; Sanger, N. L.

    1974-01-01

    A single rotating blade row was tested with two magnitudes of tip radial distortion and two magnitudes of hub radial distortion imposed on the inlet flow. The rotor was about 50 centimeters (20 in.) in diameter and had a design operating tip speed of approximately 420 meters per second (1380 ft/sec). Overall performance at 60, 80, and 100 percent of equivalent design speed generally showed a decrease (compared to undistorted flow) in rotor stall margin with tip radial distortion but no change, or a slight increase, in rotor stall margin with hub radial distortion. At design speed there was a decrease in rotor overall total pressure ratio and choke flow with all inlet flow distortions. Radial distributions of blade element parameters are presented for selected operating conditions at design speed.

  16. Energy Autonomous Wireless Water Meter with Integrated Turbine Driven Energy Harvester

    NASA Astrophysics Data System (ADS)

    Becker, P.; Folkmer, B.; Goepfert, R.; Hoffmann, D.; Willmann, A.; Manoli, Y.

    2013-12-01

    Accurate meter reading is the fundamental task of the home water system for the handling of payments. Meters need to be read correctly, to avoid an effect of adding events that increase unnecessary cost and create customer dissatisfaction. This paper presents a fully integrated wireless, energy autonomous water metering system based on the European Standard EN 13757 "Communication systems for meters and remote reading of meters". The system can be used in multiple water metering scenarios. No maintenance will be required and the system will provide precise and secure data transmission as well as timely and accurate recording of the consumption of water. The identification of any leakages will be improved through the analysis of the actual quantity supplied and recorded by the meters. The system is powered by an energy harvester, based on a water driven turbine wheel that is directly coupled to an electromagnetic energy transducer. The power delivered by the generator is dependent of the amount of flowing water and the pressure in the water pipes. Therefor the power is commonly non-continuous, fluctuant and unstable in the voltage amplitude. To be able to report the meter readings at all times, the system needs to be powered not only in times when the energy harvester delivers energy. Therefor an energy buffer, that stores the harvested energy, is installed to compensate the energy requirement between the actual generator output and the energy consumption of the application. Besides a complete system overview, the presentation will focus on the power management and energy aware battery charging circuitry. The design, fabrication, measuring results and the preparations for field tests in rural and urban environment will be presented and discussed.

  17. Static and Wind Tunnel Aero-Performance Tests of NASA AST Separate Flow Nozzle Noise Reduction Configurations

    NASA Technical Reports Server (NTRS)

    Mikkelsen, Kevin L.; McDonald, Timothy J.; Saiyed, Naseem (Technical Monitor)

    2001-01-01

    This report presents the results of cold flow model tests to determine the static and wind tunnel performance of several NASA AST separate flow nozzle noise reduction configurations. The tests were conducted by Aero Systems Engineering, Inc., for NASA Glenn Research Center. The tests were performed in the Channels 14 and 6 static thrust stands and the Channel 10 transonic wind tunnel at the FluiDyne Aerodynamics Laboratory in Plymouth, Minnesota. Facility checkout tests were made using standard ASME long-radius metering nozzles. These tests demonstrated facility data accuracy at flow conditions similar to the model tests. Channel 14 static tests reported here consisted of 21 ASME nozzle facility checkout tests and 57 static model performance tests (including 22 at no charge). Fan nozzle pressure ratio varied from 1.4 to 2.0, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Channel 10 wind tunnel tests consisted of 15 tests at Mach number 0.28 and 31 tests at Mach 0.8. The sting was checked out statically in Channel 6 before the wind tunnel tests. In the Channel 6 facility, 12 ASME nozzle data points were taken and 7 model data points were taken. In the wind tunnel, fan nozzle pressure ratio varied from 1.73 to 2.8, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Test results include thrust coefficients, thrust vector angle, core and fan nozzle discharge coefficients, total pressure and temperature charging station profiles, and boat-tail static pressure distributions in the wind tunnel.

  18. Flow-Signature Analysis of Water Consumption in Nonresidential Building Water Networks Using High-Resolution and Medium-Resolution Smart Meter Data: Two Case Studies

    NASA Astrophysics Data System (ADS)

    Clifford, Eoghan; Mulligan, Sean; Comer, Joanne; Hannon, Louise

    2018-01-01

    Real-time monitoring of water consumption activities can be an effective mechanism to achieve efficient water network management. This approach, largely enabled by the advent of smart metering technologies, is gradually being practiced in domestic and industrial contexts. In particular, identifying water consumption habits from flow-signatures, i.e., the specific end-usage patterns, is being investigated as a means for conservation in both the residential and nonresidential context. However, the quality of meter data is bivariate (dependent on number of meters and data temporal resolution) and as a result, planning a smart metering scheme is relatively difficult with no generic design approach available. In this study, a comprehensive medium-resolution to high-resolution smart metering program was implemented at two nonresidential trial sites to evaluate the effect of spatial and temporal data aggregation. It was found that medium-resolution water meter data were capable of exposing regular, continuous, peak use, and diurnal patterns which reflect group wide end-usage characteristics. The high-resolution meter data permitted flow-signature at a personal end-use level. Through this unique opportunity to observe water usage characteristics via flow-signature patterns, newly defined hydraulic-based design coefficients determined from Poisson rectangular pulse were developed to intuitively aid in the process of pattern discovery with implications for automated activity recognition applications. A smart meter classification and siting index was introduced which categorizes meter resolution in terms of their suitable application.

  19. 40 CFR 63.11646 - What are my compliance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with Method 29 must collect a minimum sample volume of 0.85 dry standard cubic meters (30 dry standard... weight measurement device, mass flow meter, or densitometer and volumetric flow meter to measure ore...) Measure the weight of concentrate (produced by electrowinning, Merrill Crowe process, gravity feed, or...

  20. 40 CFR 63.11646 - What are my compliance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with Method 29 must collect a minimum sample volume of 0.85 dry standard cubic meters (30 dry standard... weight measurement device, mass flow meter, or densitometer and volumetric flow meter to measure ore...) Measure the weight of concentrate (produced by electrowinning, Merrill Crowe process, gravity feed, or...

  1. 40 CFR 63.11646 - What are my compliance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with Method 29 must collect a minimum sample volume of 0.85 dry standard cubic meters (30 dry standard... weight measurement device, mass flow meter, or densitometer and volumetric flow meter to measure ore...) Measure the weight of concentrate (produced by electrowinning, Merrill Crowe process, gravity feed, or...

  2. 40 CFR 63.11646 - What are my compliance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with Method 29 must collect a minimum sample volume of 0.85 dry standard cubic meters (30 dry standard... weight measurement device, mass flow meter, or densitometer and volumetric flow meter to measure ore...) Measure the weight of concentrate (produced by electrowinning, Merrill Crowe process, gravity feed, or...

  3. Dew-point measurements at high water vapour pressure

    NASA Astrophysics Data System (ADS)

    Lomperski, S.; Dreier, J.

    1996-05-01

    A dew-point meter capable of measuring humidity at high vapour pressure and high temperature has been constructed and tested. Humidity measurements in pure steam were made over the temperature range 100 - 1500957-0233/7/5/003/img1C and a vapour pressure range of 1 - 4 bar. The dew-point meter performance was assessed by comparing measurements with a pressure transmitter and agreement between the two was within 0957-0233/7/5/003/img2% relative humidity. Humidity measurements in steam - air mixtures were also made and the dew-point meter readings were compared to those of a zirconia oxygen sensor. For these tests the dew-point meter readings were generally within 0957-0233/7/5/003/img2% relative humidity of the oxygen sensor measurements.

  4. State-of-charge coulometer

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J. (Inventor)

    1985-01-01

    A coulometer for accurately measuring the state-of-charge of an open-cell battery utilizing an aqueous electrolyte, includes a current meter for measuring the battery/discharge current and a flow meter for measuring the rate at which the battery produces gas during charge and discharge. Coupled to the flow meter is gas analyzer which measures the oxygen fraction of the battery gas. The outputs of the current meter, flow meter, and gas analyzer are coupled to a programmed microcomputer which includes a CPU and program and data memories. The microcomputer calculates that fraction of charge and discharge current consumed in the generation of gas so that the actual state-of-charge can be determined. The state-of-charge is then shown on a visual display.

  5. L02 RELIEF AND SHUTOFF VALVE, PRESSURE SENSITIVE CONTROLLER, AND DIFFERENTIAL PRESSURE SWITCH CHECKOUT AND ’END TO END’ CALIBRATION OF THE LOP MISSILE FUEL AND L02 PRESSURE METERS, COMPLEX 576-A,

    DTIC Science & Technology

    Differential Pressure Switch after the Missile is erected in the tower and connected to Launch Control Circuitry. In addition, a procedure for the ’end to end’ of the L02 and Fuel Tank Pressure Meters is provided. (Author)

  6. Two-Phase flow instrumentation for nuclear accidents simulation

    NASA Astrophysics Data System (ADS)

    Monni, G.; De Salve, M.; Panella, B.

    2014-11-01

    The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.

  7. Noninvasive measurement of central venous pressure

    NASA Technical Reports Server (NTRS)

    Webster, J. G.; Mastenbrook, S. M., Jr.

    1972-01-01

    A technique for the noninvasive measurement of CVP in man was developed. The method involves monitoring venous velocity at a point in the periphery with a transcutaneous Doppler ultrasonic velocity meter while the patient performs a forced expiratory maneuver. The idea is the CVP is related to the value of pressure measured at the mouth which just stops the flow in the vein. Two improvements were made over the original procedure. First, the site of venous velocity measurement was shifted from a vein at the antecubital fossa (elbow) to the right external jugular vein in the neck. This allows for sensing more readily events occurring in the central veins. Secondly, and perhaps most significantly, a procedure for obtaining a curve of relative mean venous velocity vs mouth pressure was developed.

  8. Blade number impact on pressure and performance of archimedes screw turbine using CFD

    NASA Astrophysics Data System (ADS)

    Maulana, Muhammad Ilham; Syuhada, Ahmad; Nawawi, Muhammad

    2018-02-01

    Many rivers in Indonesia can be used as source of mini/micro hydro power plant using low head turbine. The most suitable type of turbine used in fluid flow with low head is the Archimedes screw turbine. The Archimedes screw hydro turbine is a relative newcomer to the small-scale hydropower that can work efficiently on heads as low as 10 meter. In this study, the performance of Archimedes water turbines that has different blade numbers that are thoroughly evaluated to obtain proper blade configuration. For this purpose, numerical simulations are used to predict the pressure changes that occur along the turbine. The simulation results show that turbines with an amount of two blades have more sloping pressure distribution so that it has better stability.

  9. MOSES Support Platform

    DTIC Science & Technology

    2008-02-01

    drain with collector • Final pressure switch with gauge and automatic shut- off • (2) Hour meter • Oil filled finel pressure gauge 0~400bar/5800psi...Automatic condensate drain system Final pressure switch with gauge and automatic shut-off (2) Hour meter, (2) On/Off Switch Filling Connection Four

  10. Quantifying exchange between groundwater and surface water in rarely measured organic sediments

    NASA Astrophysics Data System (ADS)

    Rosenberry, D. O.; Cavas, M.; Keith, D.; Gefell, M. J.; Jones, P. M.

    2016-12-01

    Transfer of water and chemicals between poorly competent organic sediments and surface water in low-energy riverine and lentic settings depends on several factors, including rate and direction of flow, redox state, number and type of benthic invertebrates, and chemical gradients at and near the sediment-water interface. In spite of their commonly large areal extent, direct measurements of flow in soft, organic sediments are rarely made and little is known about flux direction, rate, or heterogeneity. Commonly used monitoring wells are difficult to install and suffer from slow response to changing hydraulic head due to the low permeability of these sediments. Seepage meters can directly quantify seepage flux if several challenges can be overcome. Meters are difficult to install and operate where water is deep, visibility is poor, and the position of the sediment-water interface is not readily apparent. Soft, easily eroded sediment can be displaced during meter installation, creating bypass flow beneath the bottom of the seepage cylinder. Poorly competent sediments often cannot support the weight of the meters; they slowly sink into the bed and displace water inside the seepage cylinder, which leads to the interpretation of large upward flow. Decaying organic material within the sediment generates gas that can displace water and corrupt seepage-meter measurements. Several inexpensive modifications to a standard seepage meter, as well as precautions during installation and operation, can minimize these sources of error. Underwater video cameras can be mounted to the meter to remotely observe sediment disturbance during sensor installation and monitor the stability of the meter insertion depth during the period of deployment. Anchor rods can be driven a meter or more into the sediment until refusal, firmly anchoring the seepage meter at a constant sediment insertion depth. Data collected from modified seepage meters installed in Minnesota and New York demonstrate the importance of quantifying flows in these challenging settings where biogeochemistry is complex and seepage rates commonly have been assumed to be insignificantly small.

  11. Discharge Measurements in Shallow Urban Streams Using a Hydroacoustic Current Meter

    USGS Publications Warehouse

    Fisher, G.T.; Morlock, S.E.; ,

    2002-01-01

    Hydroacoustic current-meter measurements were evaluated in small urban streams under a range of stages, velocities, and channel-bottom materials. Because flow in urban streams is often shallow, conventional mechanical current-meter measurements are difficult or impossible to make. The rotating-cup Price pygmy meter that is widely used by the U.S. Geological Survey and other agencies should not be used in depths below 0.20 ft and velocities less than 0.30 ft/s. The hydroacoustic device provides measurements at depths as shallow as 0.10 ft and velocities as low as 0.10 ft/s or less. Measurements using the hydroacoustic current meter were compared to conventional discharge measurements. Comparisons with Price-meter measurements were favorable within the range of flows for which the meters are rated. Based on laboratory and field tests, velocity measurements with the hydroacoustic cannot be validated below about 0.07 ft/s. However, the hydroacoustic meter provides valuable information on direction and magnitude of flow even at lower velocities, which otherwise could not be measured with conventional measurements.

  12. Ground-water flow near two radioactive-waste-disposal areas at the Western New York Nuclear Service Center, Cattaraugus County, New York; results of flow simulation

    USGS Publications Warehouse

    Bergeron, M.P.; Bugliosi, E.F.

    1988-01-01

    Two adjacent burial areas were excavated in a clay-rich till at a radioactive waste disposal site near West Valley in Cattaraugus County, N.Y.: (1) which contains mainly low-level radioactive wastes generated onsite by a nuclear fuel reprocessing plant, has been in operation since 1966; and (2) which contains commercial low-level radioactive wastes, was operated during 1963-75. Groundwater below the upper 3 meters of till generally moves downward through a 20- to 30-meter thick sequence of tills underlain by lacustrine and kame-delta deposits of fine sand and silt. Groundwater in the weathered, upper 3 meters of till can move laterally for several meters before either moving downward into the kame-delta deposits or discharging to the land surface. A two-dimensional finite-element model that simulates two vertical sections was used to evaluate hydrologic factors that control groundwater flow in the till. Conditions observed during March 1983 were reproduced accurately in steady-state simulations that used four isotropic units of differing hydraulic conductivity to represent two fractured and weathered till units near land surfaces, an intermediate group of isolated till zones that contain significant amounts of fine sand and silt, and a sequence of till units at depths that have been consolidated by overburden pressure. Recharge rates used in the best-fit simulation ranged from 1.4 cm/yr along smooth, sloping or compacted surfaces to 3.8 cm/yr near swampy areas. Values of hydraulic conductivity and infiltration used in the calibrated best-fit model were nearly identical to values used in a previous model analysis of the nearby commercial-waste burial area. Results of the model simulations of a burial pit assumed to be filled with water indicate that water near the bottom of the burial pit would migrate laterally in the shallow, weathered till for 5 to 6 meters before moving downward into the unweathered till, and water near the top of the pit would move laterally less than 20 meters before moving downward into the unweathered till. These results indicate that subsurface migration of radionuclides in groundwater to points of discharge to land surface is unlikely as long as the water level does not rise into the reworked cover material. (Author 's abstract)

  13. An Assessment of the Use of Antimisting Fuel in Turbofan Engines.

    DTIC Science & Technology

    1981-06-01

    Angle PLA Shutoff Lever Angle SOLA Control Speed Nc Compressor Discharge Pressure Ps4 or Pb Compr’ssor Inlet Temperature Tt2 Metered Fuel Flow Wf Control...this comparison the Royal Aircraft Establishment deqrader had a lower filter ratio reduction, consumed more power, and had a higher tempera- ture rise...negligible. This would imply that little of the total enerqy consume 1 by the pump goes towa~rds d(,qrading the antimisting kerosene. Further dita analysis

  14. Low speed wind tunnel test of a propulsive wing/canard concept in the STOL configuration. Volume 2: Test data

    NASA Technical Reports Server (NTRS)

    Stewart, V. R.

    1987-01-01

    A propulsive wind/canard model was tested at STOL operating conditions in the NASA Langley Research Center 4 x 7 meter wind tunnel. Longitudinal and lateral/directional aerodynamic characteristics were measured for various flap deflections, angles of attack and sideslip, and blowing coefficients. Testing was conducted for several model heights to determine ground proximity effects on the aerodynamic characteristics. Flow field surveys of local flow angles and velocities were performed behind both the canard and the wing. This is volume 2 of a 2 volume report. All of the test data in three appendices are presented. Appendix A presented tabulated six component force and moment data, Appendix B presents tabulated wing pressure coefficients, and Appendix C presents the flow field data.

  15. Evaluation and enhancement of Texas ramp metering strategies, compliance, and alternative enforcement techniques: Go with the flow Houston. Public outreach plan (revised); Interim research report, September 1995--October 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, S.; Fette, B.; Busler, L.

    This report describes the public outreach plan on the implementation of ramp meters along the Katy Freeway in Houston, Generally, ramp metering is neither beloved nor understood by the public. To gain public awareness, acceptance, compliance and continued support, ramp metering operations should be reinforced by a strong, ongoing public information and outreach campaign that communicates the need for and benefits of the program. Because the term `ramp metering` exhibits restrictions on the public, the phrase `Flow Signals` was developed to better describe the benefits of ramp metering; enhanced flow of traffic, fewer bottlenecks, and fewer trip delays. The logo,more » `Go with the Flow Houston,` and a graphic identity were developed to help communicate the theme throughout the various media where both the primary and secondary messages are intended to reach 15 different audiences. These media will include: a PSA, both static and changeable message signs, a brochure, Internet web site information, letters to specific audience and media relations efforts.« less

  16. Methods of measuring pumpage through closed-conduit irrigation systems

    USGS Publications Warehouse

    Kjelstrom, L.C.

    1991-01-01

    Methods of measuring volumes of water withdrawn from the Snake River and its tributaries and pumped through closed-conduit irrigation systems were needed for equitable management of and resolution of conflicts over water use. On the basis of evaluations and field tests by researchers from the University of Idaho, Water Resources Research Institute, Moscow, Idaho, an impeller meter was selected to monitor pumpage through closed-conduit systems. In 1988, impeller meters were installed at 20 pumping stations along the Snake River between the Upper Salmon Falls and C.J. Strike Dams. Impeller-derived pumpage data were adjusted if they differed substantially from ultrasonic flow-meter- or current-meter-derived values. Comparisons of pumpage data obtained by ultrasonic flow-meter and current-meter measurements indicated that the ultrasonic flow meter was a reliable means to check operation of impeller meters. The equipment generally performed satisfactorily, and reliable pumpage data could be obtained using impeller meters in closed-conduit irrigation systems. Many pumping stations that divert water from the Snake River for irrigation remain unmeasured; however, regression analyses indicate that total pumpage can be reasonably estimated on the basis of electrical power consumption data, an approximation of total head at a pumping station, and a derived coefficient.

  17. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations.

  18. Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals

    NASA Astrophysics Data System (ADS)

    Krauter, N.; Stefani, F.

    2017-10-01

    Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation.

  19. 40 CFR 98.443 - Calculating CO2 geologic sequestration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... each gas-liquid separator for which flow is measured using a mass flow meter, you must calculate...) For each gas-liquid separator for which flow is measured using a volumetric flow meter, you must...) To aggregate production data, you must sum the mass of all of the CO2 separated at each gas-liquid...

  20. Saturation meter

    DOEpatents

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  1. A study of juncture flow in the NASA Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Chokani, Ndaona

    1992-01-01

    A numerical investigation of the interaction between a wind tunnel sidewall boundary layer and a thin low-aspect-ratio wing has been performed for transonic speeds and flight Reynolds numbers. A three-dimensional Navier-Stokes code was applied to calculate the flow field. The first portion of the investigation examined the capability of the code to calculate the flow around the wing, with no sidewall boundary layer present. The second part of the research examined the effect of modeling the sidewall boundary layer. The results indicated that the sidewall boundary layer had a strong influence on the flow field around the wing. The viscous sidewall computations accurately predicted the leading edge suction peaks, and the strong adverse pressure gradients immediately downstream of the leading edge. This was in contrast to the consistent underpredictions of the free-air computations. The low momentum of the sidewall boundary layer resulted in higher pressures in the juncture region, which decreased the favorable spanwise pressure gradient. This significantly decreased the spanwise migration of the wing boundary layer. The computations indicated that the sidewall boundary layer remained attached for all cases examined. Weak vortices were predicted in both the upper and lower surface juncture regions. These vortices are believed to have been generated by lateral skewing of the streamlines in the approaching boundary layer.

  2. Background nuclei measurements and implications for cavitation inception in hydrodynamic test facilities

    NASA Astrophysics Data System (ADS)

    Venning, J. A.; Khoo, M. T.; Pearce, B. W.; Brandner, P. A.

    2018-04-01

    Water susceptibility and background nuclei content in a water tunnel are investigated using a cavitation susceptibility meter. The measured cumulative histogram of nuclei concentration against critical pressure shows a power law dependence over a large range of concentrations and pressures. These results show that the water strength is not characterised by a single tension but is susceptible to `all' tensions depending on the relevant timescale. This background nuclei population is invariant to tunnel conditions showing that it is stabilised against dissolution. Consideration of a practical cavitating flow about a sphere shows that although background nuclei may be activated, their numbers are so few compared with other sources that they are insignificant for this case.

  3. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  4. Numerical Study of Pressure Field in Laterally Closed Industrial Buildings with Curved Metallic Roofs due to the Wind Effect by FEM and European Rule Comparison

    NASA Astrophysics Data System (ADS)

    Nieto, P. J. García; del Coz Díaz, J. J.; Vilán, J. A. Vilán; Placer, C. Casqueiro

    2009-08-01

    In this paper, an evaluation of distribution of the air pressure is determined throughout the laterally closed industrial buildings with curved metallic roofs due to the wind effect by the finite element method (FEM). The non-linearity is due to Reynolds-averaged Navier-Stokes (RANS) equations that govern the turbulent flow. The Navier-Stokes equations are non-linear partial differential equations and this non-linearity makes most problems difficult to solve and is part of the cause of turbulence. The RANS equations are time-averaged equations of motion for fluid flow. They are primarily used while dealing with turbulent flows. Turbulence is a highly complex physical phenomenon that is pervasive in flow problems of scientific and engineering concern like this one. In order to solve the RANS equations a two-equation model is used: the standard k-ɛ model. The calculation has been carried out keeping in mind the following assumptions: turbulent flow, an exponential-like wind speed profile with a maximum velocity of 40 m/s at 10 m reference height, and different heights of the building ranging from 6 to 10 meters. Finally, the forces and moments are determined on the cover, as well as the distribution of pressures on the same one, comparing the numerical results obtained with the Spanish CTE DB SE-AE, Spanish NBE AE-88 and European standard rules, giving place to the conclusions that are exposed in the study.

  5. Hyperfiltration wash water recovery subsystem - Design and test results. [for extended mission spacecraft such as space stations

    NASA Technical Reports Server (NTRS)

    Reysa, R. P.; Price, D. F.; Olcott, T.; Gaddis, J. L.

    1983-01-01

    The Hyperfiltration Wash Water Recovery (HWWR) subsystem, designed to offer low-power high-volume wash water purification for extended mission spacecraft, is discussed in terms of preprototype design and configuration. Heated wash water collected from the shower, hand wash, and laundry flows into a temperature-controlled (374 K) waste storage tank. Two parallel 25 micron absolute filters at the tank outlet remove large particles from the feed stream. A positive displacement feed pump delivers wash water to the hyperfiltration module at a constant flow rate of 0.20 lpm with discharge pressure variations from 4181-7239 Kpa. The hyperfiltration membrane module is a single-pass design including 36 porous stainless steel tubes, and is designed to provide an approximate water recovery rate of 90 percent. Permeate and brine water flows are monitored by flow meters, and removal of urea and ammonia is achieved by adding 15 percent NaOCl solution to the permeate fluid stream. An alternate module design using two diameters of tubing (allowing a smaller pressure drop and a larger membrane area) gave a superior predicted performance over the first module with larger tubing throughout.

  6. No drive line, no seal, no bearing and no wear: magnetics for impeller suspension and flow assessment in a new VAD.

    PubMed

    Huber, Christoph H; Tozzi, Piergiorgio; Hurni, Michel; von Segesser, Ludwig K

    2004-06-01

    The new magnetically suspended axial pump is free of seals, bearings, mechanical friction and wear. In the absence of a drive shaft or flow meter, pump flow assessment is made with an algorithm based on currents required for impeller rotation and stabilization. The aim of this study is to validate pump performance, algorithm-based flow and effective flow. A series of bovine experiments was realized after equipment with pressure transducers, continuous-cardiac-output-catheter, intracardiac ultrasound (AcuNav) over 6 h. Pump implantation was through a median sternotomy (LV-->VAD-->calibrated transonic-flow-probe-->aorta). A transonic-HT311-flow-probe was fixed onto the outflow cannula for flow comparison. Animals were electively sacrificed and at necropsy systematic pump inspection and renal embolus score was realized. Observation period was 340+/-62.4 min. The axial pump generated a mean arterial pressure of 58.8+/-14.3 mmHg (max 117 mmHg) running at a speed of 6591.3+/-1395.4 rev./min (min 5000/max 8500 rev./min) and generating 2.5+/-1.0 l/min (min 1.4/max 6.0 l/min) of flow. Correlation between the results of the pump flow algorithm and measured pump flow was linear (y=1.0339x, R2=0.9357). VAD explants were free of macroscopic thrombi. Renal embolus score was 0+/-0. The magnetically suspended axial flow pump provides excellent left ventricular support. The pump flow algorithm used is accurate and reliable. Therefore, there is no need for direct flow measurement.

  7. Energy measurement using flow computers and chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beeson, J.

    1995-12-01

    Arkla Pipeline Group (APG), along with most transmission companies, went to electronic flow measurement (EFM) to: (1) Increase resolution and accuracy; (2) Real time correction of flow variables; (3) Increase speed in data retrieval; (4) Reduce capital expenditures; and (5) Reduce operation and maintenance expenditures Prior to EFM, mechanical seven day charts were used which yielded 800 pressure and differential pressure readings. EFM yields 1.2-million readings, a 1500 time improvement in resolution and additional flow representation. The total system accuracy of the EFM system is 0.25 % compared with 2 % for the chart system which gives APG improved accuracy.more » A typical APG electronic measurement system includes a microprocessor-based flow computer, a telemetry communications package, and a gas chromatograph. Live relative density (specific gravity), BTU, CO{sub 2}, and N{sub 2} are updated from the chromatograph to the flow computer every six minutes which provides accurate MMBTU computations. Because the gas contract length has changed from years to monthly and from a majority of direct sales to transports both Arkla and its customers wanted access to actual volumes on a much more timely basis than is allowed with charts. The new electronic system allows volumes and other system data to be retrieved continuously, if EFM is on Supervisory Control and Data Acquisition (SCADA) or daily if on dial up telephone. Previously because of chart integration, information was not available for four to six weeks. EFM costs much less than the combined costs of telemetry transmitters, pressure and differential pressure chart recorders, and temperature chart recorder which it replaces. APG will install this equipment on smaller volume stations at a customers expense. APG requires backup measurement on metering facilities this size. It could be another APG flow computer or chart recorder, or the other companies flow computer or chart recorder.« less

  8. Effect of altitude on spirometric parameters and the performance of peak flow meters.

    PubMed Central

    Pollard, A. J.; Mason, N. P.; Barry, P. W.; Pollard, R. C.; Collier, D. J.; Fraser, R. S.; Miller, M. R.; Milledge, J. S.

    1996-01-01

    BACKGROUND: Portable peak flow meters are used in clinical practice for measurement of peak expiratory flow (PEF) at many different altitudes throughout the world. Some PEF meters are affected by gas density. This study was undertaken to establish which type of meter is best for use above sea level and to determine changes in spirometric measurements at altitude. METHODS: The variable orifice mini-Wright peak flow meter was compared with the fixed orifice Micro Medical Microplus turbine microspirometer at sea level and at Everest Base Camp (5300 m). Fifty one members of the 1994 British Mount Everest Medical Expedition were studied (age range, 19-55). RESULTS: Mean forced vital capacity (FVC) fell by 5% and PEF rose by 25.5%. However, PEF recorded with the mini-Wright peak flow meter underestimated PEF by 31%, giving readings 6.6% below sea level values. FVC was lowest in the mornings and did not improve significantly with acclimatisation. Lower PEF values were observed on morning readings and were associated with higher acute mountain sickness scores, although the latter may reflect decreased effort in those with acute mountain sickness. There was no change in forced expiratory volume in one second (FEV1) at altitude when measured with the turbine microspirometer. CONCLUSIONS: The cause of the fall in FVC at 5300 m is unknown but may be attributed to changes in lung blood volume, interstitial lung oedema, or early airways closure. Variable orifice peak flow meters grossly underestimate PEF at altitude and fixed orifice devices are therefore preferable where accurate PEF measurements are required above sea level. PMID:8711651

  9. The NASA Langley Research Center 0.3-meter transonic cryogenic tunnel T-P/Re-M controller manual

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen

    1989-01-01

    A new microcomputer based controller for the 0.3-m Transonic Cryogenic Tunnel (TCT) has been commissioned in 1988 and has reliably operated for more than a year. The tunnel stagnation pressure, gas stagnation temperature, tunnel wall structural temperature and flow Mach number are precisely controlled by the new controller in a stable manner. The tunnel control hardware, software, and the flow chart to assist in calibration of the sensors, actuators, and the controller real time functions are described. The software installation details are also presented. The report serves as the maintenance and trouble shooting manual for the 0.3-m TCT controller.

  10. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  11. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  12. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  13. Guide to Flow Measurement for Electric Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  14. Characterization of Hydrologic and Thermal Properties at Brady Geothermal Field, NV

    NASA Astrophysics Data System (ADS)

    Patterson, J.; Cardiff, M. A.; Lim, D.; Coleman, T.; Wang, H. F.; Feigl, K. L.

    2017-12-01

    Understanding and predicting the temperature evolution of geothermal reservoirs is a primary focus for geothermal power plant operators ensuring continued financial sustainability of the resource. Characterization of reservoir properties - such as thermal diffusivity and hydraulic conductivity - facilitates modeling efforts to develop a better understanding of temperature evolution. As part of the integrated "PoroTomo" experiment, borehole pressure measurements were collected in three monitoring wells of various depths under varying operational conditions at the Brady Geothermal Field near Reno, NV. During normal operational conditions, a vertical profile of borehole temperature to 330 m depth was collected using distributed temperature sensing (DTS) for a period of 5 days. Borehole pressure data indicates 2D flow and shows rapid responses to changes in pumping /injection rates, likely indicating fault-dominated flow. The temperature data show that borehole temperature recovery following cold water slug injection is variable with depth. Late time vertical temperature profiles show the borehole following a shallow geotherm to a depth of approximately 275 meters, below which the temperature declines until a depth of approximately 320 meters, with a stable zone of cold water forming below this, possibly indicating production-related thermal drawdown. A validated heat transfer model is used in conjunction with the temperature data to determine depth-dependent reservoir thermal properties. Hydraulic reservoir properties are determined through inversion of the collected pressure data using MODFLOW. These estimated thermal and hydraulic properties are synthesized with existing structural and stratigraphic datasets at Brady. The work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0006760.

  15. [Current status of the development of wireless sensors for medical applications].

    PubMed

    Moor, C; Braecklein, M; Jörns, N

    2005-01-01

    Wireless near-field transmission has been a challenge for scientists developing medical sensors for a long time. Here, instruments which measure a patient's ECG, oxygen saturation, blood pressure, peak flow, weight, blood glucose etc. are to be equipped with suitable transmission technology. Application scenarios for these sensors can be found in all medical areas where cable connections are irritating for the doctor, patient and other care personnel. This problem is especially common in sport medicine, sleep medicine, emergency medicine and intensive care. Based on its beneficial properties with regard to power consumption, range, data security and network capability, the worldwide standard radio technology Bluetooth was selected to transmit measurements. Since digital data is sent to a receiving station via Bluetooth, the measurement pre-processing now takes place in the patient sensor itself, instead of being processed by the monitor. In this article, a Bluetooth ECG, Bluetooth pulse oximeter, Bluetooth peak flow meter and Bluetooth event recorder will be introduced. On the one hand, systems can be realized with these devices, which allow patients to be monitored online (ECG, pulse oximeter). These devices can also be integrated in disease management programs (peak flow meter) and can be used to monitor high-risk patients in their home environment (event recorder).

  16. Effect of Pressurized Metered Dose Inhaler Spray Characteristics and Particle Size Distribution on Drug Delivery Efficiency.

    PubMed

    Yousefi, Morteza; Inthavong, Kiao; Tu, Jiyuan

    2017-10-01

    A key issue in pulmonary drug delivery is improvement of the delivery device for effective and targeted treatment. Pressurized metered dose inhalers (pMDIs) are the most popular aerosol therapy device for treating lung diseases. This article studies the effect of spray characteristics: injection velocity, spray cone angle, particle size distribution (PSD), and its mass median aerodynamic diameter (MMAD) on drug delivery. An idealized oral airway geometry, extending from mouth to the main bronchus, was connected to a pMDI device. Inhalation flow rates of 15, 30, and 60 L/min were used and drug particle tracking was a one-way coupled Lagrangian model. The results showed that most particles deposited in the pharynx, where the airway has a reduced cross-sectional area. Particle deposition generally decreased with initial spray velocity and with increased spray cone angle for 30 and 60 L/min flow rates. However, for 15 L/min flow rate, the deposition increased slightly with an increase in the spray velocity and cone angle. The effect of spray cone angle was more significant than the initial spray velocity on particle deposition. When the MMAD of a PSD was reduced, the deposition efficiency also reduces, suggesting greater rates of particle entry into the lung. The deposition rate showed negligible change when the MMAD was more than 8 μm. Spray injection angle and velocity change the drug delivery efficacy; however, the efficiency shows more sensitivity to the injection angle. The 30 L/min airflow rate delivers spray particles to the lung more efficiently than 15 and 60 L/min airflow rate, and reducing MMAD can help increase drug delivery to the lung.

  17. The accuracy of portable peak flow meters.

    PubMed

    Miller, M R; Dickinson, S A; Hitchings, D J

    1992-11-01

    The variability of peak expiratory flow (PEF) is now commonly used in the diagnosis and management of asthma. It is essential for PEF meters to have a linear response in order to obtain an unbiased measurement of PEF variability. As the accuracy and linearity of portable PEF meters have not been rigorously tested in recent years this aspect of their performance has been investigated. The response of several portable PEF meters was tested with absolute standards of flow generated by a computer driven, servo controlled pump and their response was compared with that of a pneumotachograph. For each device tested the readings were highly repeatable to within the limits of accuracy with which the pointer position can be assessed by eye. The between instrument variation in reading for six identical devices expressed as a 95% confidence limit was, on average across the range of flows, +/- 8.5 l/min for the Mini-Wright, +/- 7.9 l/min for the Vitalograph, and +/- 6.4 l/min for the Ferraris. PEF meters based on the Wright meter all had similar error profiles with overreading of up to 80 l/min in the mid flow range from 300 to 500 l/min. This overreading was greatest for the Mini-Wright and Ferraris devices, and less so for the original Wright and Vitalograph meters. A Micro-Medical Turbine meter was accurate up to 400 l/min and then began to underread by up to 60 l/min at 720 l/min. For the low range devices the Vitalograph device was accurate to within 10 l/min up to 200 l/min, with the Mini-Wright overreading by up to 30 l/min above 150 l/min. Although the Mini-Wright, Ferraris, and Vitalograph meters gave remarkably repeatable results their error profiles for the full range meters will lead to important errors in recording PEF variability. This may lead to incorrect diagnosis and bias in implementing strategies of asthma treatment based on PEF measurement.

  18. The accuracy of portable peak flow meters.

    PubMed Central

    Miller, M R; Dickinson, S A; Hitchings, D J

    1992-01-01

    BACKGROUND: The variability of peak expiratory flow (PEF) is now commonly used in the diagnosis and management of asthma. It is essential for PEF meters to have a linear response in order to obtain an unbiased measurement of PEF variability. As the accuracy and linearity of portable PEF meters have not been rigorously tested in recent years this aspect of their performance has been investigated. METHODS: The response of several portable PEF meters was tested with absolute standards of flow generated by a computer driven, servo controlled pump and their response was compared with that of a pneumotachograph. RESULTS: For each device tested the readings were highly repeatable to within the limits of accuracy with which the pointer position can be assessed by eye. The between instrument variation in reading for six identical devices expressed as a 95% confidence limit was, on average across the range of flows, +/- 8.5 l/min for the Mini-Wright, +/- 7.9 l/min for the Vitalograph, and +/- 6.4 l/min for the Ferraris. PEF meters based on the Wright meter all had similar error profiles with overreading of up to 80 l/min in the mid flow range from 300 to 500 l/min. This overreading was greatest for the Mini-Wright and Ferraris devices, and less so for the original Wright and Vitalograph meters. A Micro-Medical Turbine meter was accurate up to 400 l/min and then began to underread by up to 60 l/min at 720 l/min. For the low range devices the Vitalograph device was accurate to within 10 l/min up to 200 l/min, with the Mini-Wright overreading by up to 30 l/min above 150 l/min. CONCLUSION: Although the Mini-Wright, Ferraris, and Vitalograph meters gave remarkably repeatable results their error profiles for the full range meters will lead to important errors in recording PEF variability. This may lead to incorrect diagnosis and bias in implementing strategies of asthma treatment based on PEF measurement. PMID:1465746

  19. International Space Station (ISS)

    NASA Image and Video Library

    2003-01-16

    In this International Space Station (ISS) onboard photo, Expedition Six Science Officer Donald R. Pettit works to set up the Pulmonary Function in Flight (PuFF) experiment hardware in the Destiny Laboratory. Expedition Six is the fourth and final crew to perform the PuFF experiment. The PuFF experiment was developed to better understand what effects long term exposure to microgravity may have on the lungs. The focus is on measuring changes in the everness of gas exchange in the lungs, and on detecting changes in respiratory muscle strength. It allows astronauts to measure blood flow through the lungs, the ability of the lung to take up oxygen, and lung volumes. Each PuFF session includes five lung function tests, which involve breathing only cabin air. For each planned extravehicular (EVA) activity, a crew member performs a PuFF test within one week prior to the EVA. Following the EVA, those crew members perform another test to document the effect of exposure of the lungs to the low-pressure environment of the space suits. This experiment utilizes the Gas Analyzer System for Metabolic Analysis Physiology, or GASMAP, located in the Human Research Facility (HRF), along with a variety of other Puff equipment including a manual breathing valve, flow meter, pressure-flow module, pressure and volume calibration syringes, and disposable mouth pieces.

  20. ARM Airborne Continuous carbon dioxide measurements

    DOE Data Explorer

    Biraud, Sebastien

    2013-03-26

    The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

  1. Pulmonary Function in Flight (PuFF) Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In this International Space Station (ISS) onboard photo, Expedition Six Science Officer Donald R. Pettit works to set up the Pulmonary Function in Flight (PuFF) experiment hardware in the Destiny Laboratory. Expedition Six is the fourth and final crew to perform the PuFF experiment. The PuFF experiment was developed to better understand what effects long term exposure to microgravity may have on the lungs. The focus is on measuring changes in the everness of gas exchange in the lungs, and on detecting changes in respiratory muscle strength. It allows astronauts to measure blood flow through the lungs, the ability of the lung to take up oxygen, and lung volumes. Each PuFF session includes five lung function tests, which involve breathing only cabin air. For each planned extravehicular (EVA) activity, a crew member performs a PuFF test within one week prior to the EVA. Following the EVA, those crew members perform another test to document the effect of exposure of the lungs to the low-pressure environment of the space suits. This experiment utilizes the Gas Analyzer System for Metabolic Analysis Physiology, or GASMAP, located in the Human Research Facility (HRF), along with a variety of other Puff equipment including a manual breathing valve, flow meter, pressure-flow module, pressure and volume calibration syringes, and disposable mouth pieces.

  2. Multiphase flowmeter successfully measures three-phase flow at extremely high gas-volume fractions -- Gulf of Suez, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, R.B.; Borling, D.C.; Powers, B.S.

    1998-02-01

    A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less

  3. DEVELOPMENT AND DEMONSTRATION OF A BIDIRECTIONAL ADVECTIVE FLUX METER FOR SEDIMENT-WATER INTERFACE

    EPA Science Inventory

    A bidirectional advective flux meter for measuring water transport across the sediment-water interface has been successfully developed and field tested. The flow sensor employs a heat-pulse technique combined with a flow collection funnel for the flow measurement. Because the dir...

  4. Data system for multiplexed water-current meters

    NASA Technical Reports Server (NTRS)

    Ramsey, C. R.

    1977-01-01

    Flow rates at 32 flood plain locations are measured simultaneously by single digital logic unit with high noise immunity. Water flowing through pygmy current meters rotates element that closes electrical contact once every resolution, so flow rate is measured by counting number of closures in time interval.

  5. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  6. An Aeroelastic Evaluation of the Flexible Thermal Protection System for an Inatable Aerodynamic Decelerator

    NASA Astrophysics Data System (ADS)

    Goldman, Benjamin D.

    The purpose of this dissertation is to study the aeroelastic stability of a proposed flexible thermal protection system (FTPS) for the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A flat, square FTPS coupon exhibits violent oscillations during experimental aerothermal testing in NASA's 8 Foot High Temperature Tunnel, leading to catastrophic failure. The behavior of the structural response suggested that aeroelastic flutter may be the primary instability mechanism, prompting further experimental investigation and theoretical model development. Using Von Karman's plate theory for the panel-like structure and piston theory aerodynamics, a set of aeroelastic models were developed and limit cycle oscillations (LCOs) were calculated at the tunnel flow conditions. Similarities in frequency content of the theoretical and experimental responses indicated that the observed FTPS oscillations were likely aeroelastic in nature, specifically LCO/flutter. While the coupon models can be used for comparison with tunnel tests, they cannot predict accurately the aeroelastic behavior of the FTPS in atmospheric flight. This is because the geometry of the flight vehicle is no longer a flat plate, but rather (approximately) a conical shell. In the second phase of this work, linearized Donnell conical shell theory and piston theory aerodynamics are used to calculate natural modes of vibration and flutter dynamic pressures for various structural models composed of one or more conical shells resting on several circumferential elastic supports. When the flight vehicle is approximated as a single conical shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case, as "hump-mode" flutter is possible. Aeroelastic models that consider the individual FTPS layers as separate shells exhibit asymmetric flutter at high dynamic pressures relative to the single shell models. Parameter studies also examine the effects of tension, shear modulus reduction, and elastic support stiffness. Limitations of a linear structural model and piston theory aerodynamics prompted a more elaborate evaluation of the flight configuration. Using nonlinear Donnell conical shell theory for the FTPS structure, the pressure buckling and aeroelastic limit cycle oscillations were studied for a single elastically-supported conical shell. While piston theory was used initially, a time-dependent correction factor was derived using transform methods and potential flow theory to calculate more accurately the low Mach number supersonic flow. Three conical shell geometries were considered: a 3-meter diameter 70° shell, a 3.7-meter 70° shell, and a 6-meter diameter 70° shell. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD vehicle. Though agreement between theoretical and experimental strains was poor, circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With piston theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. Pre-buckling pressure loads and the aerodynamic pressure correction factor were studied for all geometries, and these effects resulted in significantly lower flutter boundaries compared with piston theory alone. In the final phase of this work, the existing linear and nonlinear FTPS shell models were coupled with NASA's FUN3D Reynolds Averaged Navier Stokes CFD code, allowing for the most physically realistic flight predictions. For the linear shell structural model, the elastically-supported shell natural modes were mapped to a CFD grid of a 6-meter HIAD vehicle, and a linear structural dynamics solver internal to the CFD code was used to compute the aeroelastic response. Aerodynamic parameters for a proposed HIAD re-entry trajectory were obtained, and aeroelastic solutions were calculated at three points in the trajectory: Mach 1, Mach 2, and Mach 11 (peak dynamic pressure). No flutter was found at any of these conditions using the linear method, though oscillations (of uncertain origin) on the order of the shell thickness may be possible in the transonic regime. For the nonlinear shell structural model, a set of assumed sinusoidal modes were mapped to the CFD grid, and the linear structural dynamics equations were replaced by a nonlinear ODE solver for the conical shell equations. Successful calculation and restart of the nonlinear dynamic aeroelastic solutions was demonstrated. Preliminary results indicated that dynamic instabilities may be possible at Mach 1 and 2, with a completely stable solution at Mach 11, though further study is needed. A major benefit of this implementation is that the coefficients and mode shapes for the nonlinear conical shell may be replaced with those of other types of structures, greatly expanding the aeroelastic capabilities of FUN3D.

  7. A preliminary investigation into the effect of pressure on flotation performance

    NASA Astrophysics Data System (ADS)

    Young, Courtney A.

    2007-10-01

    In a previous study, various pyrite depressants were examined to improve the flotation performance of a copper-sulfide ore containing tetrahedrite (Cu12Sb4S13). Optimal results from this study were used to examine the effect of elevation on recovery and grade. Tests were conducted at elevations of 3,350 meters, 1,735 meters, 610 meters, and-760 meters, consisting of five repetitive experiments for statistical analysis. The experiments were performed both with and without airflow control. Tests were also performed in a glove box at Montana Tech of The University of Montana to mimic the pressure conditions. Results indicate that both recovery and grade are dependent on pressure via bubble size and airflow, suggesting that pressurized fl otation cells should be considered for operations, particularly those at high elevation. Economics are extremely favorable for implementation because ensuing capital expenses are inconsequential with minimal time for return-on-investment.

  8. Accuracy of Oxygen Flow Delivered by Compressed-Gas Cylinders in Hospital and Prehospital Emergency Care.

    PubMed

    Duprez, Frédéric; Michotte, Jean Bernard; Cuvelier, Gregory; Legrand, Alexandre; Mashayekhi, Sharam; Reychler, Gregory

    2018-03-01

    Oxygen cylinders are widely used both in hospital and prehospital care. Excessive or inappropriate F IO 2 may be critical for patients with hypercapnia or hypoxia. Moreover, over-oxygenation could be deleterious in ischemic disorders. Supplemental oxygen from oxygen cylinder should therefore be delivered accurately. The aim of this study was to assess the accuracy of oxygen flows for oxygen cylinder in hospital and prehospital care. A prospective trial was conducted to evaluate accuracy of delivered oxygen flows (2, 4, 6, 9 and 12 L/min) for different oxygen cylinder ready for use in different hospital departments. Delivered flows were analyzed randomly using a calibrated thermal mass flow meter. Two types of oxygen cylinder were evaluated: 78 oxygen cylinder with a single-stage regulator and 70 oxygen cylinder with a dual-stage regulator. Delivered flows were compared to the required oxygen flow. The residual pressure value for each oxygen cylinder was considered. A coefficient of variation was calculated to compare the variability of the delivered flow between the two types of oxygen cylinder. The median values of delivered flows were all ≥ 100% of the required flow for single stage (range 100-109%) and < 100% of required flow for dual stage (range 95-97%). The median values of the delivered flow differed between single and dual stage. It was found that single stage is significantly higher than dual stage ( P = .01). At low flow, the dispersion of the measures for single stage was higher than with a high oxygen flow. Delivered flow differences were also found between low and high residual pressures, but only with single stage ( P = .02). The residual pressure for both oxygen cylinders (no. = 148) ranged from 73 to 2,900 pounds per square inch, and no significant difference was observed between the 2 types ( P = .86). The calculated coefficient of variation ranged from 7% (±1%) for dual stage to 8% (±2%) for single stage. This study shows good accuracy of oxygen flow delivered via oxygen cylinders. This accuracy was higher with dual stage. Single stage was also accurate, however, at low flow this accuracy is slightly less. Moreover, with single stage, when residual pressure decreases, the median value of delivered flow decreased. Copyright © 2018 by Daedalus Enterprises.

  9. Design of a 0-50 mbar pressure measurement channel compatible with the LHC tunnel radiation environment

    NASA Astrophysics Data System (ADS)

    Casas, Juan; Jelen, Dorota; Trikoupis, Nikolaos

    2017-02-01

    The monitoring of cryogenic facilities often require the measurement of pressure in the sub 5’000 Pa range that are used for flow metering applications, for saturated superfluid helium, etc. The pressure measurement is based on the minute displacement of a sensing diaphragm often through contactless techniques by using capacitive or inductive methods. The LHC radiation environment forbid the use of standard commercial sensors because of the embedded electronics that are affected both by radiation induced drift and transient Single Event Effects (SEE). Passive pressure sensors from two manufacturers were investigated and a CERN designed radiation-tolerant electronics has been developed for measuring variable-reluctance sensors. During the last maintenance stop of the LHC accelerator, four absolute pressure sensors were installed in some of the low pressure bayonet heat exchangers and four differential pressure sensors on the venturi flowmeters that monitor the cooling flow of the 20.5 kA current leads of the ATLAS end-cap superconducting toroids. The pressure sensors operating range is about 1000 to 5000 Pa and the targeted uncertainty is +/- 50 Pa which would permit to measure the equivalent saturation temperature at 1.8 K within better than 0.01 K. This paper describes the radiation hard measuring head that is based on an inductive bridge, its associated radiation-tolerant electronics that is installed under the LHC superconducting magnets or the ATLAS detector cavern; and the first operational experience.

  10. High-pressure combustor exhaust emissions with improved air-atomizing and conventional pressure-atomizing fuel nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.

  11. Continuous flow measurements using ultrasonic velocity meters - an update

    USGS Publications Warehouse

    Oltmann, Rick

    1995-01-01

    An article in the summer 1993 Newsletter described USGS work to continously monitor tidal flows in the delta using ultrasonic velocity meters.  This article updates progress since 1993, including new installations, results of data analysis, damage during this year's high flows, and the status of each site.

  12. THERMALWATER FLOW METER. Hot Springs National Park, Bathhouse Row, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    THERMAL-WATER FLOW METER. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  13. The influence of age and diabetes on the skin blood flow response to local pressure.

    PubMed

    Petrofsky, Jerrold S; Bains, Gurinder S; Prowse, Michelle; Mc Lellan, Katie; Ethiraju, Gomathi; Lee, Scott; Gunda, Shashi; Lohman, Everett; Schwab, Ernie

    2009-07-01

    Previous data has shown that when pressure is applied to the skin of the ankle and on the foot, there is a reactive increase in circulation. In the present investigation, these studies were expanded to look at the response of the hand, back, and foot to applied pressure. Ten young subjects whose average age was 26.5+/-3.3 yrs, 10 older subjects whose average age was 73.3+/-19.7 yrs and 10 people with diabetes whose average age was 60.1+/-5.7 yrs participated in the study. There was no statistical difference in the height or weight of the subjects. Hemoglobin A1c of the group with Diabetes averaged 6.98+/-1.15% with the mean duration of diabetes 13.6+/-9.5 yrs. An infrared laser Doppler flow meter was used to measure circulation on the hand, lower back, and on the bottom of the foot during applications of pressure at 15, 30, 45, and 60 kPa. For all three areas of the body, circulation was significantly less in the group with diabetes than the other two groups (p<0.05). When pressure was applied at 15 kPa, the blood flow to the skin initially decreased, but then increased in the younger subjects and in the older subjects but did not increase in subjects with diabetes for any area of the body. Further, after pressure was released, for any of the four pressures examined here, while the younger subjects showed a pronounced reactive hyperemia, subjects with diabetes showed a diminished hyperemia not proportional to the pressure that was applied. It appears that the normal protective mechanism of a pressure induced hyperemia is absent or diminished in patients with diabetes with more effect on the periphery than on the core area of the body. More importantly, after pressure was applied and released, subjects with diabetes lacked a proportional hyperemia to recovery form the transient ischemia of the pressure.

  14. Weather Impact on Airport Arrival Meter Fix Throughput

    NASA Technical Reports Server (NTRS)

    Wang, Yao

    2017-01-01

    Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.

  15. Linking fault pattern with groundwater flow in crystalline rocks at the Grimsel Test Site (Switzerland)

    NASA Astrophysics Data System (ADS)

    Schneeberger, Raphael; Berger, Alfons; Mäder, Urs K.; Niklaus Waber, H.; Kober, Florian; Herwegh, Marco

    2017-04-01

    Water flow across crystalline bedrock is of major interest for deep-seated geothermal energy projects as well as for underground disposal of radioactive waste. In crystalline rocks enhanced fluid flow is related to zones of increased permeability, i.e. to fractures that are associated to fault zones. The flow regime around the Grimsel Test Site (GTS, Central Aar massif) was assessed by establishing a 3D fault zone pattern on a local scale in the GTS underground facility (deca-meter scale) and on a regional scale at the surface (km-scale). The study reveals the existence of a dense fault zone network consisting of several km long and few tens of cm to meter wide, sub-vertically oriented major faults that are connected by tens to hundreds of meters long minor bridging faults. This geometrical information was used as input for the generation of a 3D fault zone network model. The faults originate from ductile shear zones that were reactivated as brittle faults under retrograde conditions during exhumation. Embrittlement and associated dilatancy along the faults provide the pathways for today's groundwater flow. Detection of the actual 3D flow paths is, however, challenging since flow seem to be not planar but rather tube-like. Two strategies are applied to constrain the 3D geometry of the flow tubes: (i) Characterization of the groundwater infiltrating into the GTS (location, yield, hydraulic head, and chemical composition) and (ii) stress modelling on the base of the 3D structural model to unravel potential domains of enhanced fluid flow such as fault plane intersections and domains of dilatancy. At the Grimsel Test Site, hydraulic and structural data demonstrate that the groundwater flow is head-driven from the surface towards the GTS located some 450 m below the surface. The residence time of the groundwater in this surface-near section is >60 years as evidenced by absence of detectable tritium. However, hydraulic heads obtained from interval pressure measurements within boreholes are variable and do not correspond to the overburden above the interval. Underground mapping revealed close spatial relation between water inflow points and faults, major water inflows occur in strongly deformed areas of the GTS. Furthermore, persistent differences in the groundwater chemical composition between infiltration points indicate that connectivity between different water flow paths is poor. Different findings indicate complex flow path geometries. However, domains of enhanced dilatancy and domains with increased number of fault intersections correlate with areas in the underground with 'high' water inflow.

  16. DETAIL OF THERMALWATER FLOW METER. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THERMAL-WATER FLOW METER. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  17. 5. FLOW METER AND PIPING SHOWING CONNECTIONS. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. FLOW METER AND PIPING SHOWING CONNECTIONS. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  18. Aerodynamic performances of three fan stator designs operating with rotor having tip speed of 337 meters per second and pressure ratio of 1.54. Relation of analytical code calculations to experimental performance

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.; Schmidt, J. F.; Esgar, G. M.

    1980-01-01

    A hub-to-shroud and a blade-to-blade internal-flow analysis code, both inviscid and basically subsonic, were used to calculate the flow parameters within four stator-blade rows. The produced ratios of maximum suction-surface velocity to trailing-edge velocity correlated well in the midspan region, with the measured total-parameters over the minimum-loss to near stall operating range for all stators and speeds studied. The potential benefits of a blade designed with the aid of these flow analysis codes are illustrated by a proposed redesign of one of the four stators studied. An overall efficiency improvement of 1.6 points above the peak measured for that stator is predicted for the redesign.

  19. Development of a custom on-line ultrasonic vapour analyzer and flow meter for the ATLAS inner detector, with application to Cherenkov and gaseous charged particle detectors

    NASA Astrophysics Data System (ADS)

    Alhroob, M.; Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Bozza, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; DiGirolamo, B.; Doubek, M.; Favre, G.; Godlewski, J.; Hallewell, G.; Hasib, A.; Katunin, S.; Langevin, N.; Lombard, D.; Mathieu, M.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Strauss, M.; Vacek, V.; Zwalinski, L.

    2015-03-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom microcontroller-based electronics, currently used in the ATLAS Detector Control System, with numerous potential applications. Three instruments monitor C3F8 and CO2 coolant leak rates into the nitrogen envelopes of the ATLAS silicon microstrip and Pixel detectors. Two further instruments will aid operation of the new thermosiphon coolant recirculator: one of these will monitor air leaks into the low pressure condenser while the other will measure return vapour flow along with C3F8/C2F6 blend composition, should blend operation be necessary to protect the ATLAS silicon tracker under increasing LHC luminosity. We describe these instruments and their electronics.

  20. Seafloor Uplift in Middle Valley, Juan de Fuca Ridge: New High-Resolution Pressure Data

    NASA Astrophysics Data System (ADS)

    Inderbitzen, K. E.; Becker, K.; Davis, E. E.

    2011-12-01

    Currently, in-situ seafloor and basement pressures are continuously monitored and recorded by an ODP subseafloor hydrogeological observatory (CORK) located in Middle Valley, Juan de Fuca Ridge. Hole 857D was drilled in 1991 in thickly sedimented crust to a depth of 936 mbsf and instrumented with an original CORK that was replaced in 1996. A large hydrothermal field (Dead Dog) lies roughly 1.7 km north of the hole, and two isolated chimneys and several diffuse flow sites are located ~800 meters northeast. The borehole and the vent fields have been visited periodically by submersible/ROV since 1999. Recent results from the CORK at 857D have shown apparent seafloor uplift, supported by depth records from the submersible Alvin. A constant rate of pressure change of ~6 kPa/yr, from its initiation in 2005 to the visit in 2010, has reduced mean seafloor pressure by ~28 kPa, equivalent to nearly 3 meters of head. This uplift rate is several times the typical pre-eruption inflation rates observed at Axial Seamount further south along the Juan de Fuca Ridge. Initially, the apparent uplift at 857D did not seem to have any effect on local high-temperature hydrothermal venting, however recent operations in Middle Valley revealed distinct changes at not only the hydrothermal field to the northeast, but also a shutdown of high-temperature venting to the north of 857D. We will present new data from Middle Valley, including the first year of data collected by a high-resolution pressure data logger deployed at 857D in June, 2010.

  1. A system for the real time, direct measurement of natural gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, T.

    1995-12-31

    PMI/Badger Meter, Inc. with partial sponsorship from the Gas Research Institute, has designed and developed direct measurement total energy flow metering instrumentation. As industry demands for improved accuracy and speed of measurement have increased so has the complexity of the overall hardware and software systems. Considering traditional system approaches, few companies have the in house capability of maintaining a complete system. This paper addresses efforts to implement a direct, total gas energy flow metering system which is simple to use and cost effective.

  2. An alternative arrangement of metered dosing fluid using centrifugal pump

    NASA Astrophysics Data System (ADS)

    Islam, Md. Arafat; Ehsan, Md.

    2017-06-01

    Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.

  3. The contribution of air-fluidization to the mobility of rapid flowslides involving fine particles

    NASA Astrophysics Data System (ADS)

    Stilmant, Frédéric; Dewals, Benjamin; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel

    2016-04-01

    Air-fluidization can be the origin of the long runout of gravitational flows involving fine particles such as ash. An excessive air pore pressure dramatically reduces the friction angle of the material as long as this pressure has not been dissipated, which occurs during the flow. This phenomenon can be modelled thanks to the 2D depth-averaged equations of mass and momentum conservation and an additional transport equation for basal pore pressure evolution (Iverson and Denlinger, 2001). In this contribution, we discuss the application of this model in relation to recent experimental results on air-fluidized flows by Roche et al. (2008) and Roche (2012). The experimental results were used to set a priori the value of the diffusion coefficient in the model, taking into account the difference of scale between the experiments and real-world applications. We also compare the model predictions against detailed observations of a well-documented historical event, the collapse of a fly-ash heap in Belgium (Stilmant et al., 2015). In particular, we analyse the influence of the different components of the model on the results (pore pressure dissipation vs. pore pressure generation). The diffusion coefficient which characterizes the dissipation of air pore pressure is found sufficiently low for maintaining a fluidized flow over hundreds of meters. The study concludes that an air-fluidization theory is consistent with the field observations. These findings are particularly interesting as they seem not in line with the mainstream acceptation in landslide modelling that air generally plays a secondary role (e.g., Legros, 2002). References Iverson, R.M., Denlinger, R.P., 2001. Flow of variably fluidized granular masses across three-dimensional terrain - 1. Coulomb mixture theory. J. Geophys. Res. 106, 537 552. Legros, F., 2002. The mobility of long-runout landslides. Eng. Geol. 63, 301-331. Roche, O., 2012. Depositional processes and gas pore pressure in pyroclastic flows: an experimental perspective. Bull. Volcanol. 74, 1807-1820. Roche, O., Montserrat, S., Niño, Y., Tamburrino, A., 2008. Experimental observations of water-like behavior of initially fluidized, dam break granular flows and their relevance for the propagation of ash-rich pyroclastic flows. J. Geophys. Res. 113, B12203. Stilmant, F., Pirotton, M., Archambeau, P., Erpicum, S., & Dewals, B. (2015). Can the collapse of a fly ash heap develop into an air-fluidized flow? - Reanalysis of the Jupille accident (1961). Geomorphology, 228, 746-755.

  4. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  5. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  6. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  7. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  8. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  9. Effects of hyper +Gz acceleration on cardiovascular function, visual evoked potentials and cerebral blood flow in anesthetized rats.

    PubMed

    Matsunami, K; Satake, H; Konishi, T

    1998-07-01

    Sustained hyper-gravity acceleration, particularly along the long axis of the body of animals or man (Gz), produces significant mal-effects on subjects, and hence it has been well studied, The most common syndromes of Gz application were cardio-vascular de-conditioning, and black-out, red-out, and loss of consciousness, which finally lead subjects into death. However, in most previous studies, the duration of applied Gz was rather short. In the present experiments, we can use longer duration of 1000 seconds. In addition, recent technological innovation make it possible to record directly local cerebral blood flow at a target cortical area with a Laser Doppler flow meter. We used this innovated method to measure local cerebral blood flow of rats in relation to visual evoked potentials (VEPs) under hyper-Gz acceleration. Also we recorded cardio-vascular parameters like heart rate from ECG, systolic and diastolic blood pressure and correlated them with cerebral blood flow and VEPs.

  10. Velocity profile survey in a 16-in. custody-transfer orifice meter for natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, J.J.S.

    1991-02-01

    This paper describes a research project conducted at Chevron U.S.A. Inc.'s Venice, LA, facility to ascertain that the flow condition inside a nominal 16-in. (406-mm) custody-transfer orifice meter was in compliance with American Gas Assn. (AGA) requirements. The survey was conducted at four flow rates ranging from 160 to 200 MMscf/D (4.53 {times} 10{sup 6} to 5.66 {times} 10{sup 6} std m{sup 3}/d) of processed natural gas at 880 psia (6.1 MPa). Experimental data were collected by a portable data-acquisition system driven by a lap-top microcomputer. The measured profiles indicated that the flow was nearly fully developed at the orificemore » plate location, and no significant swirling motion was detected. This test successfully demonstrated the techniques and equipment developed for determining actual flow distributions inside orifice meters in the field under normal operating conditions. This technology can be used to detect detrimental flow profiles and to verify compliance with AGA requirements on flow conditions in custody-transfer orifice meters.« less

  11. Novel Air Flow Meter for an Automobile Engine Using a Si Sensor with Porous Si Thermal Isolation

    PubMed Central

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G.

    2012-01-01

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine. PMID:23202189

  12. Novel air flow meter for an automobile engine using a Si sensor with porous Si thermal isolation.

    PubMed

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G

    2012-11-02

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine.

  13. Water potential gradient in a tall sequoiadendron.

    PubMed

    Tobiessen, P

    1971-09-01

    With an elevator installed in a 90-meter tall Sequoiadendron to collect the samples, xylem pressure potential measurements were made approximately every 15 meters along 60 meters of the tree's height. The measured gradient was about -0.8 bar per 10 meters of height, i.e., less than the hydrostatic gradient. Correction of the xylem pressure potential data by calibration against a thermocouple psychrometer confirmed this result. Similar gradients are described in the literature in tall conifers at times of low transpiration, although a different sampling technique was used. If the data in the present study and those supporting it are typical, they imply a re-evaluation of either the use of the pressure chamber to estimate water potential or the present theories describing water transport in tall trees.

  14. Water Potential Gradient in a Tall Sequoiadendron

    PubMed Central

    Tobiessen, Peter; Rundel, Philip W.; Stecker, R. E.

    1971-01-01

    With an elevator installed in a 90-meter tall Sequoiadendron to collect the samples, xylem pressure potential measurements were made approximately every 15 meters along 60 meters of the tree's height. The measured gradient was about −0.8 bar per 10 meters of height, i.e., less than the hydrostatic gradient. Correction of the xylem pressure potential data by calibration against a thermocouple psychrometer confirmed this result. Similar gradients are described in the literature in tall conifers at times of low transpiration, although a different sampling technique was used. If the data in the present study and those supporting it are typical, they imply a re-evaluation of either the use of the pressure chamber to estimate water potential or the present theories describing water transport in tall trees. PMID:16657786

  15. 40 CFR 60.73a - Emissions testing and monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system (e.g., weigh scale, volume flow meter, mass flow meter, tank volume) to measure and record the... via titration or by determining the temperature and specific gravity of the nitric acid. You may also...

  16. 40 CFR 60.73a - Emissions testing and monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system (e.g., weigh scale, volume flow meter, mass flow meter, tank volume) to measure and record the... via titration or by determining the temperature and specific gravity of the nitric acid. You may also...

  17. Continuous flow measurements using fixed ultrasonic meters

    USGS Publications Warehouse

    Oltmann, Rick

    1993-01-01

    USGS has or soon will be installing four continuous flow-monitoring stations in the delta that will use ultrasonic velocity meters (DVM). Funding for the stations has been provided by USGS, DWR, USBR, and Contra Costa Water District.

  18. Aspects of Mathematical Modelling of Pressure Retarded Osmosis

    PubMed Central

    Anissimov, Yuri G.

    2016-01-01

    In power generating terms, a pressure retarded osmosis (PRO) energy generating plant, on a river entering a sea or ocean, is equivalent to a hydroelectric dam with a height of about 60 meters. Therefore, PRO can add significantly to existing renewable power generation capacity if economical constrains of the method are resolved. PRO energy generation relies on a semipermeable membrane that is permeable to water and impermeable to salt. Mathematical modelling plays an important part in understanding flows of water and salt near and across semipermeable membranes and helps to optimize PRO energy generation. Therefore, the modelling can help realizing PRO energy generation potential. In this work, a few aspects of mathematical modelling of the PRO process are reviewed and discussed. PMID:26848696

  19. Full-scale altitude engine test of a turbofan exhaust-gas-forced mixer to reduce thrust specific fuel consumption

    NASA Technical Reports Server (NTRS)

    Cullom, R. R.; Johnson, R. L.

    1977-01-01

    The specific fuel consumption of a low-bypass-ratio, confluent-flow, turbofan engine was measured with and without a mixer installed. Tests were conducted for flight Mach numbers from 0.3 to 1.4 and altitudes from 10,670 to 14,630 meters (35,000 to 48,000 ft) for core-stream-to-fan-stream temperature ratios of 2.0 and 2.5 and mixing-length-to-diameter ratios of 0.95 and 1.74. For these test conditions, the reduction in specific fuel consumption varied from 2.5 percent to 4.0 percent. Pressure loss measurements as well as temperature and pressure surveys at the mixer inlet, the mixer exit, and the nozzle inlet were made.

  20. Channel Incision Driven by Suburbanization: Impacts to Riparian Groundwater Flow and Overbank Flow Frequency

    NASA Astrophysics Data System (ADS)

    Bowles, C. J.; Lawrence, R. L.; Noll, C.; Hancock, G. S.

    2005-12-01

    Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that stream incision has lowered floodplain water tables and decreased the overbank flow frequency. The monitored stream is a tributary to the James River draining 1.3 km2 of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one meter high knickpoint at a rate of ~1.5 m/yr, primarily during high flow events. We installed 63 wells in six stream-perpendicular transects as well as a cluster of wells around the knickpoint to assess water table elevations beneath the floodplain adjacent to the incising stream. Two transects are located 30 and 50 m upstream of the knickpoint in the unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream in the incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table changes. Erosion pins were installed and channel cross-sections surveyed to determine streambed stability. Significant differences are observed in bank morphology and groundwater flow above vs. below the knickpoint. Above the knickpoint, the banks are stable, ~3 m wide, and ~0.3 m deep, and widen and deepen slightly toward the knickpoint. The water table is relatively flat and is 0.2-0.4 m below the floodplain surface, and groundwater contours suggest flow is parallel to the stream direction. The water table responds immediately to precipitation events, and rises to the floodplain surface in significant rainfall events. Immediately downstream of the knickpoint, channel width increases by about a meter, and stream depth increases to ~1.5 meters. The water table immediately below the knickpoint possesses a steep gradient, and is up to one meter below the floodplain surface. Groundwater flow is redirected toward the stream. Moving downstream banks continue to widen, and the channel is up to 8 m wide and ~1.3 m deep ~100 m below the current knickpoint position. In the most downstream transects, the water table slopes gently toward the stream and remains ~1 m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs frequently, while below the knickpoint the majority of storm flow is contained within the incised channel and occupation of the floodplain is rare. The impact of incision to the riparian water table is dramatic, with a lowered water table and redirection of groundwater flow toward the stream. The incision is driven by suburbanization upstream of this riparian corridor, and has likely reduced the ability of this protected riparian system to improve the water quality of the suburban runoff that passes through it.

  1. Hypoxic pulmonary vasoconstriction does not affect hydrostatic pulmonary edema formation.

    PubMed

    Cheney, F W; Bishop, M J; Eisenstein, B L; Artman, L D

    1987-02-01

    We studied the effects of regional hypoxic pulmonary vasoconstriction (HPV) on lobar flow diversion in the presence of hydrostatic pulmonary edema. Ten anesthetized dogs with the left lower lobe (LLL) suspended in a net for continuous weighing were ventilated with a bronchial divider so the LLL could be ventilated with either 100% O2 or a hypoxic gas mixture (90% N2-5% CO2-5% O2). A balloon was inflated in the left atrium until hydrostatic pulmonary edema occurred, as evidenced by a continuous increase in LLL weight. Left lower lobe flow (QLLL) was measured by electromagnetic flow meter and cardiac output (QT) by thermal dilution. At a left atrial pressure of 30 +/- 5 mmHg, ventilation of the LLL with the hypoxic gas mixture caused QLLL/QT to decrease from 17 +/- 4 to 11 +/- 3% (P less than 0.05), pulmonary arterial pressure to increase from 35 +/- 5 to 37 +/- 6 mmHg (P less than 0.05), and no significant change in rate of LLL weight gain. Gravimetric confirmation of our results was provided by experiments in four animals where the LLL was ventilated with an hypoxic gas mixture for 2 h while the right lung was ventilated with 100% O2. In these animals there was no difference in bloodless lung water between the LLL and right lower lobe. We conclude that in the presence of left atrial pressures high enough to cause hydrostatic pulmonary edema, HPV causes significant flow diversion from an hypoxic lobe but the decrease in flow does not affect edema formation.

  2. High intensity tone generation by axisymmetric ring cavities on training projectiles

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.

    1984-01-01

    An experimental investigation has been carried out on the production of high intensity tones by axisymmetric ring cavities. Maximum sound production occurs during a double resonance at Strouhal numbers which depend only on the local flow velocity independent of cavity location. Values of sound pressure of about 115 dB at 1 meter distance can be generated by axisymmetric ring cavities on projectiles moving at a relatively low flight speed equal to 65 m/s. Frequencies in the audible range up to several Kilo Hertz can be generated aeroacoustically.

  3. Inlet noise on 0.5-meter-diameter NASA QF-1 fan as measured in an unmodified compressor aerodynamic test facility and in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.; Soltis, R. F.

    1975-01-01

    Narrowband analysis revealed grossly similar sound pressure level spectra in each facility. Blade passing frequency (BPF) noise and multiple pure tone (MPT) noise were superimposed on a broadband (BB) base noise. From one-third octave bandwidth sound power analyses the BPF noise (harmonics combined), and the MPT noise (harmonics combined, excepting BPF's) agreed between facilities within 1.5 db or less over the range of speeds and flows tested. Detailed noise and aerodynamic performance is also presented.

  4. On the feasibility to conduct gradient liquid chromatography separations in narrow-bore columns at pressures up to 2000bar.

    PubMed

    De Pauw, Ruben; Swier, Tim; Degreef, Bart; Desmet, Gert; Broeckhoven, Ken

    2016-11-18

    The limits in operating pressures are extended for narrow-bore columns in gradient elution up to 2000bar. As the required pumps for these pressures are incompatible with common chromatographic solvents and are not suitable to apply a mobile phase composition gradient, a mobile phase delivery and injection system is described and experimentally validated which allows to use any possible chromatographic solvent in isocratic and gradient elution. The mobile phase delivery and injection system also allows to perform multiple separations without the need to depressurize the column. This system consists out of 5 dual on/off valves and two large volume loops in which the gradient and equilibration volume of initial mobile phase are loaded by a commercial liquid chromatography pump. The loops are then flushed toward the column at extreme pressures. The mobile phase delivery and injection system is first evaluated in isocratic elution and shows a comparable performance to a state-of-the-art commercial flow-through-needle injector but with twice the pressure rating. Distortion of the loaded gradient by dispersion in the gradient storage loop is studied. The effect of the most important parameters (such as flow rate, pressure and gradient steepness) is experimentally investigated. Different gradient steepnesses and volumes can be applied at different flow rates and operating pressures with a good repeatability. Due to the isobaric operation of the pumps, the gradient is monitored in real-time by a mass flow meter installed at the detector outlet. The chromatograms are then converted from time to volume-base. A separation of a 19-compound sample is performed on a 300×2.1mm column at 1000bar and on a 600×2.1mm column at 2000bar. The peak capacity was found to increase from 141 to 199 and thus scales with L as is predicted by theory. This allows to conclude that the inlet pressure for narrow-bore columns in gradient elution can be increased up to 2000bar without fundamental pressure-induced limitations. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Ramp metering : procedure manual.

    DOT National Transportation Integrated Search

    2002-11-01

    Ramp metering is a traffic management tool used to increase the efficiency and safety of the : traffic operations on freeways. It is one of the most cost effective ways of managing traffic flow. : It improves traffic flow on congested freeways and of...

  6. On the role of the Antarctic continent in forcing large-scale circulations in the high southern latitudes

    NASA Technical Reports Server (NTRS)

    Parish, Thomas R.; Bromwich, David H.; Tzeng, Ren-Yow

    1994-01-01

    The Antarctic topography and attendant katabatic wind regime appear to play a key role in the climate of the high southern latitudes. During the nonsummer months, persistent and often times intense katabatic winds occur in the lowest few hundred meters of the Antarctic atmosphere. These slope flows transport significant amounts of cold air northward and thereby modify the horizontal pressure field over the high southern latitudes. Three-year seasonal cycle numerical simulations using the NCAR Community Climate Model Version 1 (CCM1) with and without representation of the Antarctic orography were performed to explore the role of the elevated terrain and drainage flows on the distribution and evolution of the horizontal pressure field. The katabatic wind regime is an important part of a clearly defined mean meridional circulation in the high southern latitudes. The position and intensity of the attendant sea level low pressure belt appears to be tied to the Antarctic orography. The seasonal movement of mass in the high southern latitudes is therefore constrained by the presence of the Antarctic ice sheet. The semiannual oscillation of pressure over Antarctica and the high southern latitutdes is well depicted in the CCM1 only when the Antarctic orography is included.

  7. Design and Study of a LOX/GH2 Throttleable Swirl Injector for Rocket Applications

    NASA Technical Reports Server (NTRS)

    Greene, Christopher; Woodward, Roger; Pal, Sibtosh; Santoro, Robert

    2002-01-01

    A LOX/GH2 swirl injector was designed for a 10:1 propellant throttling range. To accomplish this, a dual LOX manifold was used feeding a single common vortex chamber of the swirl element. Hot-fire experiments were conducted for rocket chamber pressures from 80 to 800 psia at a mixture ratio of nominally 6.0 using steady flow, single-point-per-firing cases as well as dynamic throttling conditions. Low frequency (mean) and high frequency (fluctuating) pressure transducer data, flow meter measurements, and Raman spectroscopy images for mixing information were obtained. The injector design, experimental setup, low frequency pressure data, and injector performance analysis are presented. C* efficiency was very high (approx. 100%) at the middle of the throttleable range with somewhat lower performance at the high and low ends. From the analysis of discreet steady state operating conditions, injector pressure drop was slightly higher than predicted with an inviscid analysis, but otherwise agreed well across the design throttling range. Dynamic throttling of this injector was attempted with marginal success due to the immaturity of the throttling control system. Although the targeted mixture ratio of 6.0 was not maintained throughout the dynamic throttling profile, the injector behaved well over the wide range of conditions.

  8. Liquid Oxygen/Liquid Methane Test Summary of the RS-18 Lunar Ascent Engine at Simulated Altitude Conditions at NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Melcher, John C., IV; Allred, Jennifer K.

    2009-01-01

    Tests were conducted with the RS18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propellant systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to approx.120,000 ft (approx.37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. Propellant flow rate was measured using a coriolis-style mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup. LO2 flow ranged from 5.9-9.5 lbm/sec (2.7-4.3 kg/sec), and LCH4 flow varied from 3.0-4.4 lbm/sec (1.4-2.0 kg/sec) during the RS-18 hot-fire test series. Thrust was measured using three load cells in parallel. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Data was obtained at multiple chamber pressures, and calculations were performed for specific impulse, C* combustion efficiency, and thrust vector alignment. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes.

  9. Investigation of coaxial jet noise and inlet choking using an F-111A airplane

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.

    1973-01-01

    Measurements of engine noise generated by an F-111A airplane positioned on a thrustmeasuring platform were made at angles of 0 deg to 160 deg from the aircraft heading. Sound power levels, power spectra, and directivity patterns are presented for jet exit velocities between 260 feet per second and 2400 feet per second. The test results indicate that the total acoustic power was proportional to the eighth power of the core jet velocity for core exhaust velocities greater than 300 meters per second (985 feet per second) and that little or no mixing of the core and fan streams occurred. The maximum sideline noise was most accurately predicted by using the average jet velocity for velocities above 300 meters per second (985 feet per second). The acoustic power spectrum was essentially the same for the single jet flow of afterburner operation and the coaxial flow of the nonafterburning condition. By varying the inlet geometry and cowl position, reductions in the sound pressure level of the blade passing frequency on the order of 15 decibels to 25 decibels were observed for inlet Mach numbers of 0.8 to 0.9.

  10. A Self-Circulating Heat Exchanger for Use in Stirling and Thermoacoustic-Stirling Engines

    NASA Astrophysics Data System (ADS)

    Backhaus, Scott; Reid, Robert S.

    2005-02-01

    A major technical hurdle to the implementation of large Stirling engines or thermoacoustic engines is the reliability, performance, and manufacturability of the hot heat exchanger that brings high-temperature heat into the engine. Unlike power conversion devices that utilize steady flow, the oscillatory nature of the flow in Stirling and thermoacoustic engines restricts the length of a traditional hot heat exchanger to a peak-to-peak gas displacement, which is usually around 0.2 meters or less. To overcome this restriction, a new hot heat exchanger has been devised that uses a fluid diode in a looped pipe, which is resonantly driven by the oscillating gas pressure in the engine itself, to circulate the engine's working fluid around the loop. Instead of thousands of short, intricately interwoven passages that must be individually sealed, this new design consists of a few pipes that are typically 10 meters long. This revolutionary approach eliminates thousands of hermetic joints, pumps the engine's working fluid to and from a remote heat source without using moving parts, and does so without compromising on heat transfer surface area. Test data on a prototype loop integrated with a 1-kW thermoacoustic engine will be presented.

  11. Design, fabrication and acoustic tests of a 36 inch (0.914 meter) statorless turbotip fan

    NASA Technical Reports Server (NTRS)

    Smith, E. G.; Stempert, D. L.; Uhl, W. R.

    1975-01-01

    The LF336/E is a 36 inch (0.914 meter) diameter fan designed to operate in a rotor-alone configuration. Design features required for modification of the existing LF336/A rotor-stator fan into the LF336/E statorless fan configuration are discussed. Tests of the statorless fan identified an aerodynamic performance deficiency due to inaccurate accounting of the fan exit swirl during the aerodynamic design. This performance deficiency, related to fan exit static pressure levels, produced about a 20 percent thrust loss. A study was then conducted for further evaluation of the fan exit flow fields typical of statorless fan systems. This study showed that through proper selection of fan design variables such as pressure ratio, radius ratio, and swirl distributions, performance of a statorless fan configuration could be improved with levels of thrust approaching the conventional rotor-stator fan system. Acoustic measurements were taken for the statorless fan system at both GE and NASA, and when compared to other lift fan systems, showed noise levels comparable to the quietest lift fan configuration which included rotor-stator spacing and acoustic treatment. The statorless fan system was also used to determine effects of rotor leading edge serrations on noise generations. A cascade test program identified the serration geometry based on minimum pressure losses, wake turbulence levels and noise generations.

  12. Microcomputer based controller for the Langley 0.3-meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen

    1989-01-01

    Flow control of the Langley 0.3-meter Transonic Cryogenic Tunnel (TCT) is a multivariable nonlinear control problem. Globally stable control laws were generated to hold tunnel conditions in the presence of geometrical disturbances in the test section and precisely control the tunnel states for small and large set point changes. The control laws are mechanized as four inner control loops for tunnel pressure, temperature, fan speed, and liquid nitrogen supply pressure, and two outer loops for Mach number and Reynolds number. These integrated control laws have been mechanized on a 16-bit microcomputer working on DOS. This document details the model of the 0.3-m TCT, control laws, microcomputer realization, and its performance. The tunnel closed loop responses to small and large set point changes were presented. The controller incorporates safe thermal management of the tunnel cooldown based on thermal restrictions. The controller was shown to provide control of temperature to + or - 0.2K, pressure to + or - 0.07 psia, and Mach number to + or - 0.002 of a given set point during aerodynamic data acquisition in the presence of intrusive geometrical changes like flexwall movement, angle-of-attack changes, and drag rake traverse. The controller also provides a new feature of Reynolds number control. The controller provides a safe, reliable, and economical control of the 0.3-m TCT.

  13. Subsonic balance and pressure investigation of a 60 deg delta wing with leading edge devices

    NASA Technical Reports Server (NTRS)

    Tingas, S. A.; Rao, D. M.

    1982-01-01

    Low supersonic wave drag makes the thin highly swept delta wing the logical choice for use on aircraft designed for supersonic cruise. However, the high-lift maneuver capability of the aircraft is limited by severe induced-drag penalties attributed to loss of potential flow leading-edge suction. This drag increase may be alleviated through leading-edge flow control to recover lost aerodynamic thrust through either retention of attached leading-edge flow to higher angles of attack or exploitation of the increased suction potential of separation-induced vortex flow. A low-speed wind-tunnel investigation was undertaken to examine the high-lift devices such as fences, chordwise slots, pylon vortex generators, leading-edge vortex flaps, and sharp leading-edge extensions. The devices were tested individually and in combinations in an attempt to improve high-alpha drag performance with a minimum of low-alpha drag penalty. This report presents an analysis of the force, moment, and static pressure data obtained in angles of attack up to 23 deg, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter, respectively. The results indicate that all the devices produced drag and longitudinal/lateral stability improvements at high lift with, in most cases, minor drag penalties at low angles of attack.

  14. In vitro validation of a Pitot-based flow meter for the measurement of respiratory volume and flow in large animal anaesthesia.

    PubMed

    Moens, Yves P S; Gootjes, Peter; Ionita, Jean-Claude; Heinonen, Erkki; Schatzmann, Urs

    2009-05-01

    To remodel and validate commercially available monitors and their Pitot tube-based flow sensors for use in large animals, using in vitro techniques. Prospective, in vitro experiment. Both the original and the remodelled sensor were studied with a reference flow generator. Measurements were taken of the static flow-pressure relationship and linearity of the flow signal. Sensor airway resistance was calculated. Following recalibration of the host monitor, volumes ranging from 1 to 7 L were generated by a calibration syringe, and bias and precision of spirometric volume was determined. Where manual recalibration was not available, a conversion factor for volume measurement was determined. The influence of gas composition mixture and peak flow on the conversion factor was studied. Both the original and the remodelled sensor showed similar static flow-pressure relationships and linearity of the flow signal. Mean bias (%) of displayed values compared with the reference volume of 3, 5 and 7 L varied between -0.4% and +2.4%, and this was significantly smaller than that for 1 L (4.8% to +5.0%). Conversion factors for 3, 5 and 7 L were very similar (mean 6.00 +/- 0.2, range 5.91-6.06) and were not significantly influenced by the gas mixture used. Increasing peak flow caused a small decrease in the conversion factor. Volume measurement error and conversion factors for inspiration and expiration were close to identity. The combination of the host monitor with the remodelled flow sensor allowed accurate in vitro measurement of flows and volumes in a range expected during large animal anaesthesia. This combination has potential as a reliable spirometric monitor for use during large animal anaesthesia.

  15. Field calibration of orifice meters for natural gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, V.C.; Shen, J.J.S.

    1989-03-01

    This paper presents the orifice calibration results for nominal 15.24, 10.16, and 5.08-cm (6,4,2-in.) orifice meters conducted at the Chevron's Sand Hills natural gas flow measurement facility in Crane, Texas. Over 200 test runs were collected in a field environment to study the accuracy of the orifice meters. Data were obtained at beta ratios ranging from 0.12 to 0.74 at the nominal conditions of 4576 kPa and 27{sup 0}C (650 psig and 80{sup 0}F) with a 0.57 specific gravity processed, pipeline quality natural gas. A bank of critical flow nozzles was used as the flow rate proving device to calibratemore » the orifice meters. Orifice discharge coefficients were computed with ANSI/API 2530-1985 (AGA3) and ISO 5167/ASME MFC-3M-1984 equations for every set of data points. With the orifice bore Reynolds numbers ranging from 1 to 9 million, the Sand Hills calibration data bridge the gap between the Ohio State water data at low Reynolds numbers and Chevron's high Reynolds number test data taken at a large test facility in Venice, Louisiana. The test results also successfully demonstrate that orifice meters can be accurately proved with critical flow nozzles under realistic field conditions.« less

  16. 40 CFR Table W - 7 of Subpart W of Part 98-Default Methane Emission Factors for Natural Gas Distribution

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Connector 1.69 Block Valve 0.557 Control Valve 9.34 Pressure Relief Valve 0.27 Orifice Meter 0.212 Regulator 0.772 Open-ended Line 26.131 Population Emission Factors—Below Grade Metering-Regulating station 1..., Inlet Pressure 100 to 300 psig 0.20 Below Grade M&R Station, Inlet Pressure Population...

  17. 40 CFR Table W - 7 of Subpart W of Part 98-Default Methane Emission Factors for Natural Gas Distribution

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Connector 1.69 Block Valve 0.557 Control Valve 9.34 Pressure Relief Valve 0.27 Orifice Meter 0.212 Regulator 0.772 Open-ended Line 26.131 Population Emission Factors—Below Grade Metering-Regulating station 1..., Inlet Pressure 100 to 300 psig 0.20 Below Grade M&R Station, Inlet Pressure Population...

  18. Initial results from the NASA Lewis wave rotor experiment

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Fronek, Dennis

    1993-01-01

    Wave rotors may play a role as topping cycles for jet engines, since by their use, the combustion temperature can be raised without increasing the turbine inlet temperature. In order to design a wave rotor for this, or any other application, knowledge of the loss mechanisms is required, and also how the design parameters affect those losses. At NASA LeRC, a 3-port wave rotor experiment operating on the flow-divider cycle, has been started with the objective of determining the losses. The experimental scheme is a three factor Box-Behnken design, with passage opening time, friction factor, and leakage gap as the factors. Variation of these factors is provided by using two rotors, of different length, two different passage widths for each rotor, and adjustable leakage gap. In the experiment, pressure transducers are mounted on the rotor, and give pressure traces as a function of rotational angle at the entrance and exit of a rotor passage. In addition, pitot rakes monitor the stagnation pressures for each port, and orifice meters measure the mass flows. The results show that leakage losses are very significant in the present experiment, but can be reduced considerably by decreasing the rotor to wall clearance spacing.

  19. Initial results from the NASA-Lewis wave rotor experiment

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Fronek, Dennis

    1993-01-01

    Wave rotors may play a role as topping cycles for jet engines, since by their use, the combustion temperature can be raised without increasing the turbine inlet temperature. In order to design a wave rotor for this, or any other application, knowledge of the loss mechanisms is required, and also how the design parameters affect those losses. At NASA LeRC, a 3-port wave rotor experiment operating on the flow-divider cycle, has been started with the objective of determining the losses. The experimental scheme is a three factor Box-Behnken design, with passage opening time, friction factor, and leakage gap as the factors. Variation of these factors is provided by using two rotors, of different length, two different passage widths for each rotor, and adjustable leakage gap. In the experiment, pressure transducers are mounted on the rotor, and give pressure traces as a function of rotational angle at the entrance and exit of a rotor passage. In addition, pitot rakes monitor the stagnation pressures for each port, and orifice meters measure the mass flows. The results show that leakage losses are very significant in the present experiment, but can be reduced considerably by decreasing the rotor to wall clearance spacing.

  20. Bellco Formula Domus Home Care System.

    PubMed

    Trewin, Elizabeth

    2004-01-01

    There are certain characteristics in a dialysis machine that would be desirable for use in home and limited care environments. These features relate to safety, ease of use, consideration of physical space, and reliability. The Bellco Formula Domus Home Care System was designed to meet all these requirements. Bellco's philosophy of patient treatment centers on global biocompatibility. This is evident in the design of the Formula Domus Home Care System. It has the smallest hydraulic fluid pathway of any dialysis machine on the market. Formula is capable of preparing ultrapure dialysate. The ultrafiltration measurement mechanism, the patented Coriolis flow meter, measures the mass of the dialysate, not the volume. For this reason it is the only dialysis machine that detects actual backfiltration, not just the theoretical possibility of it based on transmembrane pressure. The Coriolis flow meter also ensures that dialysate flow is a true single pass. The operator interface is a single window operating control. It is possible to select up to 14 different languages. There is an online help key to assist patients with troubleshooting. Programmable start-up and shutdown times save time for the patient. Formula is the only dialysis machine to offer a backup battery feature. Formula is capable of communicating with any software available. The focus on global biocompatibility ensures the best quality dialysis treatments for a population of patients who will likely remain on dialysis for a longer period of time than conventional dialysis patients.

  1. Boundary-Layer Instability Measurements in a Mach-6 Quiet Tunnel

    NASA Technical Reports Server (NTRS)

    Berridge, Dennis C.; Ward, Christopher, A. C.; Luersen, Ryan P. K.; Chou, Amanda; Abney, Andrew D.; Schneider, Steven P.

    2012-01-01

    Several experiments have been performed in the Boeing/AFOSR Mach-6 Quiet Tunnel at Purdue University. A 7 degree half angle cone at 6 degree angle of attack with temperature-sensitive paint (TSP) and PCB pressure transducers was tested under quiet flow. The stationary crossflow vortices appear to break down to turbulence near the lee ray for sufficiently high Reynolds numbers. Attempts to use roughness elements to control the spacing of hot streaks on a flared cone in quiet flow did not succeed. Roughness was observed to damp the second-mode waves in areas influenced by the roughness, and wide roughness spacing allowed hot streaks to form between the roughness elements. A forward-facing cavity was used for proof-of-concept studies for a laser perturber. The lowest density at which the freestream laser perturbations could be detected was 1.07 x 10(exp -2) kilograms per cubic meter. Experiments were conducted to determine the transition characteristics of a streamwise corner flow at hypersonic velocities. Quiet flow resulted in a delayed onset of hot streak spreading. Under low Reynolds number flow hot streak spreading did not occur along the model. A new shock tube has been built at Purdue. The shock tube is designed to create weak shocks suitable for calibrating sensors, particularly PCB-132 sensors. PCB-132 measurements in another shock tube show the shock response and a linear calibration over a moderate pressure range.

  2. Time-of-flight dependency on transducer separation distance in a reflective-path guided-wave ultrasonic flow meter at zero flow conditions.

    PubMed

    Aanes, Magne; Kippersund, Remi Andre; Lohne, Kjetil Daae; Frøysa, Kjell-Eivind; Lunde, Per

    2017-08-01

    Transit-time flow meters based on guided ultrasonic wave propagation in the pipe spool have several advantages compared to traditional inline ultrasonic flow metering. The extended interrogation field, obtained by continuous leakage from guided waves traveling in the pipe wall, increases robustness toward entrained particles or gas in the flow. In reflective-path guided-wave ultrasonic flow meters (GW-UFMs), the flow equations are derived from signals propagating solely in the pipe wall and from signals passing twice through the fluid. In addition to the time-of-flight (TOF) through the fluid, the fluid path experiences an additional time delay upon reflection at the opposite pipe wall due to specular and non-specular reflections. The present work investigates the influence of these reflections on the TOF in a reflective-path GW-UFM as a function of transducer separation distance at zero flow conditions. Two models are used to describe the signal propagation through the system: (i) a transient full-wave finite element model, and (ii) a combined plane-wave and ray-tracing model. The study shows that a range-dependent time delay is associated with the reflection of the fluid path, introducing transmitter-receiver distance dependence. Based on these results, the applicability of the flow equations derived using model (ii) is discussed.

  3. Direct Methanol Fuel Cell (DMFC) Battery Replacement Program

    DTIC Science & Technology

    2013-01-29

    selection of the Reynold’s number enables use of water for simulation of gas or liquid flow. Introduction of dye to the flow stream, with video...calibrated using a soap -film flow meter (Bubble-o-meter, Dublin, OH). Eleven Array system temperature regions were set as follows prior to start of...expected. The ar- ray flow proceeds down the columns: column effects would be more likely than row effects from a design of experiments perspective

  4. Observed flow compensation associated with the MOC at 26.5 degrees N in the Atlantic.

    PubMed

    Kanzow, Torsten; Cunningham, Stuart A; Rayner, Darren; Hirschi, Joël J-M; Johns, William E; Baringer, Molly O; Bryden, Harry L; Beal, Lisa M; Meinen, Christopher S; Marotzke, Jochem

    2007-08-17

    The Atlantic meridional overturning circulation (MOC), which provides one-quarter of the global meridional heat transport, is composed of a number of separate flow components. How changes in the strength of each of those components may affect that of the others has been unclear because of a lack of adequate data. We continuously observed the MOC at 26.5 degrees N for 1 year using end-point measurements of density, bottom pressure, and ocean currents; cable measurements across the Straits of Florida; and wind stress. The different transport components largely compensate for each other, thus confirming the validity of our monitoring approach. The MOC varied over the period of observation by +/-5.7 x 10(6) cubic meters per second, with density-inferred and wind-driven transports contributing equally to it. We find evidence for depth-independent compensation for the wind-driven surface flow.

  5. Current variability and momentum balance in the along-shore flow for the Catalan inner-shelf.

    NASA Astrophysics Data System (ADS)

    Grifoll, M.; Aretxabaleta, A.; Espino, M.; Warner, J. C.

    2012-04-01

    This contribution examines the circulation of the inner-shelf of the Catalan Sea from an observational perspective. Measurements were obtained from a set of ADCPs deployed during March and April 2011 at 25 and 50 meters depth. Analysis reveals a strongly polarized low-frequency flow following the isobaths predominantly in the south-westward direction. The current variance is mostly explained by the two principal modes of an empirical orthogonal decomposition. The first mode represents almost 80% of the variability. Correlation values of 0.4 to 0.7 have been found between the depth-averaged along-shelf flow and the local wind and the Adjusted Sea-level Slope. The momentum balance in the along-shore direction reveals strong frictional effects and an influence of the barotropic pressure gradients. This research provides a physical framework for ongoing numerical modelling activities and climatological studies in the Catalan inner-shelf.

  6. Noble gas loss may indicate groundwater flow across flow barriers in southern Nevada

    USGS Publications Warehouse

    Thomas, J.M.; Bryant, Hudson G.; Stute, M.; Clark, J.F.

    2003-01-01

    Average calculated noble gas temperatures increase from 10 to 22oC in groundwater from recharge to discharge areas in carbonate-rock aquifers of southern Nevada. Loss of noble gases from groundwater in these regional flow systems at flow barriers is the likely process that produces an increase in recharge noble gas temperatures. Emplacement of low permeability rock into high permeability aquifer rock and the presence of low permeability shear zones reduce aquifer thickness from thousands to tens of meters. At these flow barriers, which are more than 1,000 m lower than the average recharge altitude, noble gases exsolve from the groundwater by inclusion in gas bubbles formed near the barriers because of greatly reduced hydrostatic pressure. However, re-equilibration of noble gases in the groundwater with atmospheric air at the low altitude spring discharge area, at the terminus of the regional flow system, cannot be ruled out. Molecular diffusion is not an important process for removing noble gases from groundwater in the carbonate-rock aquifers because concentration gradients are small.

  7. Energy transfer model and its applications of ultrasonic gas flow-meter under static and dynamic flow rates

    NASA Astrophysics Data System (ADS)

    Fang, Min; Xu, Ke-Jun; Zhu, Wen-Jiao; Shen, Zi-Wen

    2016-01-01

    Most of the ultrasonic gas flow-meters measure the gas flow rate by calculating the ultrasonic transmission time difference between the downstream and upstream. Ultrasonic energy attenuation occurs in the processes of the ultrasonic generation, conversion, transmission, and reception. Additionally, at the same time, the gas flow will also affect the ultrasonic propagation during the measurement, which results in the ultrasonic energy attenuation and the offset of ultrasonic propagation path. Thus, the ultrasonic energy received by the transducer is weaker. When the gas flow rate increases, this effect becomes more apparent. It leads to the measurement accuracy reduced, and the measurement range narrowed. An energy transfer model, where the ultrasonic gas flow-meter under without/with the gas flow, is established by adopting the statistical analysis and curve fitting based on a large amount of experimental data. The static sub model without the gas flow expresses the energy conversion efficiency of ultrasonic gas transducers, and the dynamic sub model with the gas flow reflects the energy attenuation pattern following the flow rate variations. The mathematical model can be used to determine the minimum energy of the excitation signal for meeting the requirement of specific measurement range, and predict the maximum measurable flow rate in the case of fixed energy of excitation signal. Based on the above studies, a method to enhance the excitation signal energy is proposed under the output power of the transmitting circuit being a finite value so as to extend the measurement rage of ultrasonic gas flow-meter.

  8. Calibration and application of an automated seepage meter for monitoring water flow across the sediment-water interface.

    PubMed

    Zhu, Tengyi; Fu, Dafang; Jenkinson, Byron; Jafvert, Chad T

    2015-04-01

    The advective flow of sediment pore water is an important parameter for understanding natural geochemical processes within lake, river, wetland, and marine sediments and also for properly designing permeable remedial sediment caps placed over contaminated sediments. Automated heat pulse seepage meters can be used to measure the vertical component of sediment pore water flow (i.e., vertical Darcy velocity); however, little information on meter calibration as a function of ambient water temperature exists in the literature. As a result, a method with associated equations for calibrating a heat pulse seepage meter as a function of ambient water temperature is fully described in this paper. Results of meter calibration over the temperature range 7.5 to 21.2 °C indicate that errors in accuracy are significant if proper temperature-dependence calibration is not performed. The proposed calibration method allows for temperature corrections to be made automatically in the field at any ambient water temperature. The significance of these corrections is discussed.

  9. Numerical Modeling of Flow Control in a Boundary-Layer-Ingesting Offset Inlet Diffuser at Transonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Allan Brian G.; Owens, Lewis, R.

    2006-01-01

    This paper will investigate the validation of a NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as the baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a freestream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the length of the fan-face diameter. The numerical simulations with and without wind tunnel walls are performed, quantifying effects of the tunnel walls on the BLI inlet flow measurements. The wind tunnel test evaluated several different combinations of jet locations and mass flow rates as well as a vortex generator (VG) vane case. The numerical simulations will be performed on a single jet configuration for varying actuator mass flow rates at a fix inlet mass flow condition. Validation of the numerical simulations for the VG vane case will also be performed for varying inlet mass flow rates. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCPavg, very well for comparisons made within the designed operating range of the BLI inlet. However the CFD simulations did predict a total pressure recovery that was 0.01 lower than the experiment. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of the flow and that a miss alignment of the vanes in the experiment could have resulted in this difference. The numerical simulations of the BLI inlet with jets showed good agreement with the circumferential inlet distortion levels for a range of jet actuator mass flow ratios at a fixed inlet mass flow rate. The CFD simulations for the jet case also predicted an average total pressure recovery that was 0.01 lower than the experiment as was seen in the baseline. Comparison of the flow features the jet case revealed that the CFD predicted a much larger vortex at the engine fan-face when compare to the experiment.

  10. Non-invasive energy meter for fixed and variable flow systems

    DOEpatents

    Menicucci, David F.; Black, Billy D.

    2005-11-01

    An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising: attaching a first temperature sensor for connection to an outside of the first conduit segment; attaching a second temperature sensor for connection to an outside of the second conduit segment; via a programmable control unit, receiving data from the sensors and calculating energy data therefrom; and communicating energy data from the meter; whereby the method and apparatus operate without need to temporarily disconnect or alter the first or second conduit segments. The invention operates with both variable and fixed flow systems, and is especially useful for both active and passive solar energy systems.

  11. Nonlinear model for offline correction of pulmonary waveform generators.

    PubMed

    Reynolds, Jeffrey S; Stemple, Kimberly J; Petsko, Raymond A; Ebeling, Thomas R; Frazer, David G

    2002-12-01

    Pulmonary waveform generators consisting of motor-driven piston pumps are frequently used to test respiratory-function equipment such as spirometers and peak expiratory flow (PEF) meters. Gas compression within these generators can produce significant distortion of the output flow-time profile. A nonlinear model of the generator was developed along with a method to compensate for gas compression when testing pulmonary function equipment. The model and correction procedure were tested on an Assess Full Range PEF meter and a Micro DiaryCard PEF meter. The tests were performed using the 26 American Thoracic Society standard flow-time waveforms as the target flow profiles. Without correction, the pump loaded with the higher resistance Assess meter resulted in ten waveforms having a mean square error (MSE) higher than 0.001 L2/s2. Correction of the pump for these ten waveforms resulted in a mean decrease in MSE of 87.0%. When loaded with the Micro DiaryCard meter, the uncorrected pump outputs included six waveforms with MSE higher than 0.001 L2/s2. Pump corrections for these six waveforms resulted in a mean decrease in MSE of 58.4%.

  12. A Sound Pressure-level Meter Without Amplification

    NASA Technical Reports Server (NTRS)

    Stowell, E Z

    1937-01-01

    The N.A.C.A. has developed a simple pressure-level meter for the measurement of sound-pressure levels above 70 db. The instrument employs a carbon microphone but has no amplification. The source of power is five flashlight batteries. Measurements may be made up to the threshold of feeling with an accuracy of plus or minus 2 db; band analysis of complex spectra may be made if desired.

  13. 46 CFR 178.330 - Simplified stability proof test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-meters (foot-pounds); P = wind pressure of: (1) 36.6 kilograms/square meter (7.5 pounds/square foot) for operation on protected waters; (2) 48.8 kilogram/square meter (10.0 pounds/square foot) for operation on partially protected waters; or (3) 73.3 kilograms/square meter (15.0 pounds/square foot) for operation on...

  14. Fabrication and evaluation of a graphene oxide-based cantilever-type flow-meter for subsonic gas flow rate measurement

    NASA Astrophysics Data System (ADS)

    Hamdollahi, Hassan; Rahbar-Shahrouzi, Javad

    2018-05-01

    In this paper, a cantilever-type flow meter was fabricated to measure the rate of air flow in turbulent subsonic regimes such as purged gases. In the fabrication process, a piezoresistive material was coated on an interdigitated electric board as a substrate. The piezoresistive layer was a blend of latex as the polymeric matrix and graphene oxide as the sensing nanomaterial agent, which was reduced by solvothermal reduction method. The piezoresistive blend was dip-coated on a substrate with dotted pattern and was then reduced at 240 °C for 1 h in every coating step. When an air flow passed over the surface of the cantilever beam, the beam was bent in the downward direction, resulting in small variations in the resistance of the piezoresistive layer and a change in the bending angle of the cantilever which were measured simultaneously. The air flow rate was acquired via calibrating electrical resistance changes by Arduino and Wheatstone bridge circuit. The blending angle of the substrate caused by the interaction between the airflow and the cantilever and recorded by the camera and image processing was ultimately compared with the simulation results. The flow meter accuracy as a percentage of full scale (% FS) was calculated to be  ±5.8%, and mean deviation was equal to 2.1 (% FS) with the appropriate response time of 0.70 s at the air flow range of 100‑240 m s‑1. Highlights • A cantilever-type flow meter was fabricated to measure the high-speed air flow rate. • The sensitive piezoresistive material was composed of GO and latex. • The dip-coating method was used to deposit the piezoresistive layer on the fiberglass substrate. • The impact of effective parameters on the performance of the flow meter was investigated. • A simulation study was performed and the results were compared with the experimental data.

  15. Fluid Flow Technology that Measures Up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.

  16. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  17. Experimental study of a free turbulent shear flow at Mach 19 with electron-beam and conventional probes. [flow measurement

    NASA Technical Reports Server (NTRS)

    Harvey, W. P.; Hunter, W. D., Jr.

    1975-01-01

    An experimental study of the initial development region of a hypersonic turbulent free mixing layer was made. Data were obtained at three stations downstream of a M = 19 nozzle over a Reynolds range of 1.3 million to 3.3 million per meter and at a total temperature of about 1670 K. In general, good agreement was obtained between electron-beam and conventional probe measurements of local mean flow parameters. Measurements of fluctuating density indicated that peak root-mean-square (rms) levels are higher in the turbulent free mixing layer than in boundary layers for Mach numbers less than 9. The intensity of rms density fluctuations in the free stream is similar in magnitude to pressure fluctuations in high Mach number flows. Spectrum analyses of the measured fluctuating density through the shear layer indicate significant fluctuation energy at the lower frequencies (0.2 to 5 kHZ) which correspond to large-scale disturbances in the high-velocity region of the shear layer.

  18. Numerical Modeling of Flow Control in a Boundary-Layer-Ingesting Offset Inlet Diffuser at Transonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.

    2006-01-01

    This paper will investigate the validation of the NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as a baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet experiment conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a free-stream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the fanface diameter. The numerical simulations with and without tunnel walls are performed, quantifying tunnel wall effects on the BLI inlet flow. A comparison is made between the numerical simulations and the BLI inlet experiment for the baseline and VG vane cases at various inlet mass flow rates. A comparison is also made to a BLI inlet jet configuration for varying actuator mass flow rates at a fixed inlet mass flow rate. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCP avg, very well within the designed operating range of the BLI inlet. A comparison of the average total pressure recovery showed that the simulations were able to predict the trends but had a negative 0.01 offset when compared to the experimental levels. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion levels for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of the flow and that a misalignment of the vanes in the experiment could have resulted in this difference. The numerical simulations of the BLI inlet with jets showed good agreement with the circumferential inlet distortion levels for a range of jet actuator mass flow ratios at a fixed inlet mass flow rate. The CFD simulations for the jet case also predicted an average total pressure recovery offset that was 0.01 lower than the experiment as was seen in the baseline. Comparisons of the flow features for the jet cases revealed that the CFD predicted a much larger vortex at the engine fan-face when compare to the experiment.

  19. Monitoring of multiphase flows for superconducting accelerators and others applications

    NASA Astrophysics Data System (ADS)

    Filippov, Yu. P.; Kakorin, I. D.; Kovrizhnykh, A. M.; Miklayev, V. M.

    2017-07-01

    This paper is a review on implementation of measuring systems for two-phase helium, hydrogen, liquefied natural gas (LNG), and oil-formation/salty water flows. Two types of such systems are presented. The first type is based on two-phase flow-meters combining void fraction radio-frequency (RF) sensors and narrowing devices. They can be applied for superconducting accelerators cooled with two-phase helium, refueling hydrogen system for space ships and some applications in oil production industry. The second one is based on combination of a gamma-densitometer and a narrowing device. These systems can be used to monitor large two-phase LNG and oil-formation water flows. An electronics system based on a modular industrial computer is described as well. The metrological characteristics for different flow-meters are presented and the obtained results are discussed. It is also shown that the experience gained allows separationless flow-meter for three-phase oil-gas-formation water flows to be produced.

  20. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.

    PubMed

    Kim, Juyoung; Kim, Heonki; Annable, Michael D

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Test Your Asthma Knowledge

    MedlinePlus

    ... be eliminated simply by washing sheets in warm water. True or False? A peak flow meter records how many asthma attacks you have had. ... degrees or less, and by washing items in water temperatures of 130 degrees or ... them. False: Peak flow meters measure how well air moves out of your ...

  2. Distribution of E/N and N sub e in a cross-flow electric discharge laser

    NASA Technical Reports Server (NTRS)

    Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.

    1976-01-01

    The spatial distribution of the ratio of electric field to neutral gas density on a flowing gas, multiple pin-to-plane discharge was measured in a high-power, closed loop laser. The laser was operated at a pressure of 140 torr (1:7:20, CO2, N2, He) with typically a 100 meter/second velocity in the 5 x 8 x 135 centimeter discharge volume. E/N ratios ranged from 2.7 x 10 to the minus 16th power to 1.4 x 10 to the minus 16th power volts/cu cm along the discharge while the electron density ranged from 2.8 x 10 to the 10th power to 1.2 x 10 to the 10th power cm/3.

  3. Cryogenic instrumentation for ITER magnets

    NASA Astrophysics Data System (ADS)

    Poncet, J.-M.; Manzagol, J.; Attard, A.; André, J.; Bizel-Bizellot, L.; Bonnay, P.; Ercolani, E.; Luchier, N.; Girard, A.; Clayton, N.; Devred, A.; Huygen, S.; Journeaux, J.-Y.

    2017-02-01

    Accurate measurements of the helium flowrate and of the temperature of the ITER magnets is of fundamental importance to make sure that the magnets operate under well controlled and reliable conditions, and to allow suitable helium flow distribution in the magnets through the helium piping. Therefore, the temperature and flow rate measurements shall be reliable and accurate. In this paper, we present the thermometric chains as well as the venturi flow meters installed in the ITER magnets and their helium piping. The presented thermometric block design is based on the design developed by CERN for the LHC, which has been further optimized via thermal simulations carried out by CEA. The electronic part of the thermometric chain was entirely developed by the CEA and will be presented in detail: it is based on a lock-in measurement and small signal amplification, and also provides a web interface and software to an industrial PLC. This measuring device provides a reliable, accurate, electromagnetically immune, and fast (up to 100 Hz bandwidth) system for resistive temperature sensors between a few ohms to 100 kΩ. The flowmeters (venturi type) which make up part of the helium mass flow measurement chain have been completely designed, and manufacturing is on-going. The behaviour of the helium gas has been studied in detailed thanks to ANSYS CFX software in order to obtain the same differential pressure for all types of flowmeters. Measurement uncertainties have been estimated and the influence of input parameters has been studied. Mechanical calculations have been performed to guarantee the mechanical strength of the venturis required for pressure equipment operating in nuclear environment. In order to complete the helium mass flow measurement chain, different technologies of absolute and differential pressure sensors have been tested in an applied magnetic field to identify equipment compatible with the ITER environment.

  4. Tilt Current Meter Field Validation in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Anarde, K.; Myres, H.; Figlus, J.

    2016-12-01

    Tilt current meters (TCMs) are a low-cost way of measuring current velocities in coastal waters. They consist of a slightly buoyant floater, tilt sensor assembly, and internal logger tethered to a fixed base. TCMs measure the tilt of the sensor induced by the forces of the flowing water to infer local current velocity. They have been successfully deployed to measure unidirectional flows in rivers and slowly oscillating flows in tidally influenced bodies of water where the inertia of the instrument does not create a problem. Here we attempt to validate an array of TCMs for use in the surf zone where waves, wave bores, and alongshore currents dominate the hydrodynamics in relatively shallow water (0.3 - 2.0 m) with relatively high oscillatory frequencies. A series of test deployments using seven measuring pods outfitted with TCMs and pressure transducers were conducted in the surf zone off Galveston Island, Texas. Field experiments were supported by laboratory tests of the instrument assemblies in a moveable-bed wave flume. Instrument pod design was optimized over the series of tests to minimize issues caused by scouring, sedimentation, and overturning. The end design consists of a low-profile concrete base plate secured to the bed by sand stakes. Field measurements of tilt and bearing were calibrated against co-located acoustic Doppler velocimeter (ADV) and wave-current profiler (ADCP) measurements as well as laboratory-supplied calibration curves. While optimization of the setup is ongoing, the initial field studies show good correlation between instrument pairs. If successfully validated, the TCMs will be used as part of an instrument array designed to measure overland flow dynamics during extreme storms. Other potential uses include detailed analysis of spatial and temporal gradients in nearshore hydrodynamics such as the complex flow scenarios through tidal inlets and around barrier islands.

  5. 46 CFR 178.340 - Stability standards for pontoon vessels on protected waters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... = 2.0 feet (0.61 meters); Mw = Wind heeling moment in foot-pounds (kilogram-meters) P = Wind pressure of 7.5 pounds/square foot (36.6 kilograms/square meter); A = Area, in square feet (square meters), of the projected lateral surface of the vessel above the waterline (including each projected area of the...

  6. 46 CFR 178.340 - Stability standards for pontoon vessels on protected waters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... = 2.0 feet (0.61 meters); Mw = Wind heeling moment in foot-pounds (kilogram-meters) P = Wind pressure of 7.5 pounds/square foot (36.6 kilograms/square meter); A = Area, in square feet (square meters), of the projected lateral surface of the vessel above the waterline (including each projected area of the...

  7. 46 CFR 178.340 - Stability standards for pontoon vessels on protected waters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... = 2.0 feet (0.61 meters); Mw = Wind heeling moment in foot-pounds (kilogram-meters) P = Wind pressure of 7.5 pounds/square foot (36.6 kilograms/square meter); A = Area, in square feet (square meters), of the projected lateral surface of the vessel above the waterline (including each projected area of the...

  8. 46 CFR 178.340 - Stability standards for pontoon vessels on protected waters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... = 2.0 feet (0.61 meters); Mw = Wind heeling moment in foot-pounds (kilogram-meters) P = Wind pressure of 7.5 pounds/square foot (36.6 kilograms/square meter); A = Area, in square feet (square meters), of the projected lateral surface of the vessel above the waterline (including each projected area of the...

  9. Electromagnetic Flow Meter Having a Driver Circuit Including a Current Transducer

    NASA Technical Reports Server (NTRS)

    Patel, Sandeep K. (Inventor); Karon, David M. (Inventor); Cushing, Vincent (Inventor)

    2014-01-01

    An electromagnetic flow meter (EMFM) accurately measures both the complete flow rate and the dynamically fluctuating flow rate of a fluid by applying a unipolar DC voltage to excitation coils for a predetermined period of time, measuring the electric potential at a pair of electrodes, determining a complete flow rate and independently measuring the dynamic flow rate during the "on" cycle of the DC excitation, and correcting the measurements for errors resulting from galvanic drift and other effects on the electric potential. The EMFM can also correct for effects from the excitation circuit induced during operation of the EMFM.

  10. Ultrasonic Blood Flow Measurement in Haemodialysis

    PubMed Central

    Sampson, D.; Papadimitriou, M.; Kulatilake, A. E.

    1970-01-01

    A 5-megacycle Doppler flow meter, calibrated in-vitro, was found to give a linear response to blood flow in the ranges commonly encountered in haemodialysis. With this, blood flow through artificial kidneys could be measured simply and with a clinically acceptable error. The method is safe, as blood lines do not have to be punctured or disconnected and hence there is no risk of introducing infection. Besides its value as a research tool the flow meter is useful in evaluating new artificial kidneys. Suitably modified it could form the basis of an arterial flow alarm system. PMID:5416812

  11. Hydraulic characterization of overpressured tuffs in central Yucca Flat, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Halford, Keith J.; Laczniak, Randell J.; Galloway, Devin L.

    2005-01-01

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  12. Comparison of five portable peak flow meters.

    PubMed

    Takara, Glaucia Nency; Ruas, Gualberto; Pessoa, Bruna Varanda; Jamami, Luciana Kawakami; Di Lorenzo, Valéria Amorim Pires; Jamami, Mauricio

    2010-05-01

    To compare the measurements of spirometric peak expiratory flow (PEF) from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone, Assess, Galemed, Personal Best and Vitalograph peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman's test with Dunn's post-hoc (p<0.05), Spearman's correlation test and Bland-Altman's agreement test. The median and interquartile ranges for the spirometric values and the Air Zone, Assess, Galemed, Personal Best and Vitalograph meters were 428 (263-688 L/min), 450 (350-800 L/min), 420 (310-720 L/min), 380 (300-735 L/min), 400 (310-685 L/min) and 415 (335-610 L/min), respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone(R) (p<0.001) and Galemed (p<0.01) meters. There was no agreement between the spirometric values and the five PEF meters. The results suggest that the values recorded from Galemed meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices' results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters.

  13. The wire-mesh sensor as a two-phase flow meter

    NASA Astrophysics Data System (ADS)

    Shaban, H.; Tavoularis, S.

    2015-01-01

    A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.

  14. An Assessment of Helium Evolution from Helium-Saturated Propellant Depressurization in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.; Best, Frederick; Wong, Tony; Kurwitz, Cable; McConnaughey, H. (Technical Monitor)

    2001-01-01

    Helium evolution from the transfer of helium-saturated propellant in space is quantified to assess its impacts from creating two-phase gas/liquid flow from the supply tank, gas injection into the receiving tank, and liquid discharge from the receiving tank. Propellant transfer takes place between two similar tanks whose maximum storage capacity is approximately 2.55 cubic meters each. The maximum on-orbit propellants transfer capability is 9000 lbm (fuel and oxidizer). The transfer line is approximately 1.27 cm in diameter and 6096 cm in length and comprised of the fluid interconnect system (FICS), the orbiter propellant transfer system (OPTS), and the International Space Station (ISS) propulsion module (ISSPM). The propellant transfer rate begins at approximately 11 liter per minute (lpm) and subsequently drops to approximately 0.5 lpm. The tank nominal operating pressure is approximately 1827 kPa (absolute). The line pressure drops for Monomethy1hydrazine (MMH) and Nitrogen tetroxide (NTO) at 11.3 lpm are approximately 202 kPa and 302 kPa, respectively. The pressure-drop results are based on a single-phase flow. The receiving tank is required to vent from approximately 1827 kPa to a lower pressure to affect propellant transfer. These pressure-drop scenarios cause the helium-saturated propellants to release excess helium. For tank ullage venting, the maximum volumes of helium evolved at tank pressure are approximately 0.5 ft3 for MMH and 2 ft3 for NTO. In microgravity environment, due to lack of body force, the helium evolution from a liquid body acts to propel it, which influences its fluid dynamics. For propellant transfer, the volume fractions of helium evolved at line pressure are 0.1% by volume for MMH and 0.6 % by volume for NTO at 11.3 lpm. The void fraction of helium evolved varies as an approximate second order power function of flow rate.

  15. New technological developments provide deep-sea sediment density flow insights: the Monterey Coordinated Canyon Experiment

    NASA Astrophysics Data System (ADS)

    O'Reilly, T. C.; Kieft, B.; Chaffey, M. R.; Wolfson-Schwehr, M.; Herlien, R.; Bird, L.; Klimov, D.; Paull, C. K.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Caress, D. W.; Sumner, E. J.; Simmons, S.; Parsons, D. R.; Talling, P.; Rosenberger, K. J.; Xu, J.; Maier, K. L.; Gales, J. A.

    2017-12-01

    The Monterey Coordinated Canyon Experiment (CCE) deployed an array of instruments along the Monterey Canyon floor to characterize the structure, velocity and frequency of sediment flows. CCE utilized novel technologies developed at MBARI to capture sediment flow data in unprecedented detail. 1. The Seafloor Instrument Node (SIN) at 1850 meters depth housed 3 ADCPs at 3 different frequencies, CTD, current meter, oxygen optode, fluorometer/backscatter sensor, and logged data at 10 second intervals or faster. The SIN included an acoustic modem for communication with shore through a Wave Glider relay, and provided high-resolution measurements of three flow events during three successive deployments over 1.5 years. 2. Beachball-sized Benthic Event Detectors (BEDs) were deployed on or under the seafloor to measure the characteristics of sediment density flows. Each BED recorded data from a pressure sensor and a 3-axis accelerometer and gyro to characterize motions during transport events (e.g. tumble vs rotation). An acoustic modem capable of operating through more than a meter of sediment enabled communications with a ship or autonomous surface vehicle. Multiple BEDs were deployed at various depths in the canyon during CCE, detecting and measuring many transport events; one BED moved 9 km down canyon in 50 minutes during one event. 3. Wave Glider Hot Spot (HS), equipped with acoustic and RF modems, acted as data relay between SIN, BEDs and shore, and acoustically located BEDs after sediment density flows.. In some cases HS relayed BED motion data to shore within a few hours of the event. HS provided an acoustic console to the SIN, allowing shore-based users to check SIN health and status, perform maintenance, etc. 4. Mapping operations were conducted 4 times at the SIN site to quantify depositional and erosional patterns, utilizing a prototype ultra-high-resolution mapping system on the ROV Doc Ricketts. The system consists of a 400-kHz Reson 7125 multibeam sonar, a 3DatDepth SL1 subsea LiIDAR, two stereo color cameras, and a Kearfott SeaDevil INS. At a survey altitude of 3 m above the bed, the mapping system provides 5-cm resolution multibeam bathymetry, 1-cm resolution lidar bathymetry, and 2-mm resolution photomosaics. We will describe the design and full capabilities of these novel systems.

  16. Twin Cities ramp meter evaluation : executive summary

    DOT National Transportation Integrated Search

    2001-02-01

    This report details the results of a study on the traffic flow and safety impacts of ramp metering. The study served two important public purposes. 1. It thoroughly documented the benefits resulting from ramp metering to traffic operations and relate...

  17. Hydrogen Field Test Standard: Laboratory and Field Performance

    PubMed Central

    Pope, Jodie G.; Wright, John D.

    2015-01-01

    The National Institute of Standards and Technology (NIST) developed a prototype field test standard (FTS) that incorporates three test methods that could be used by state weights and measures inspectors to periodically verify the accuracy of retail hydrogen dispensers, much as gasoline dispensers are tested today. The three field test methods are: 1) gravimetric, 2) Pressure, Volume, Temperature (PVT), and 3) master meter. The FTS was tested in NIST's Transient Flow Facility with helium gas and in the field at a hydrogen dispenser location. All three methods agree within 0.57 % and 1.53 % for all test drafts of helium gas in the laboratory setting and of hydrogen gas in the field, respectively. The time required to perform six test drafts is similar for all three methods, ranging from 6 h for the gravimetric and master meter methods to 8 h for the PVT method. The laboratory tests show that 1) it is critical to wait for thermal equilibrium to achieve density measurements in the FTS that meet the desired uncertainty requirements for the PVT and master meter methods; in general, we found a wait time of 20 minutes introduces errors < 0.1 % and < 0.04 % in the PVT and master meter methods, respectively and 2) buoyancy corrections are important for the lowest uncertainty gravimetric measurements. The field tests show that sensor drift can become a largest component of uncertainty that is not present in the laboratory setting. The scale was calibrated after it was set up at the field location. Checks of the calibration throughout testing showed drift of 0.031 %. Calibration of the master meter and the pressure sensors prior to travel to the field location and upon return showed significant drifts in their calibrations; 0.14 % and up to 1.7 %, respectively. This highlights the need for better sensor selection and/or more robust sensor testing prior to putting into field service. All three test methods are capable of being successfully performed in the field and give equivalent answers if proper sensors without drift are used. PMID:26722192

  18. Non-contact ultrasonic gas flow metering using air-coupled leaky Lamb waves.

    PubMed

    Fan, Zichuan; Jiang, Wentao; Wright, William M D

    2018-04-23

    This paper describes a completely non-contact ultrasonic method of gas flow metering using air-coupled leaky Lamb waves. To show proof of principle, a simplified representation of gas flow in a duct, comprising two separated thin isotropic plates with a gas flowing between them, has been modelled and investigated experimentally. An airborne compression wave emitted from an air-coupled capacitive ultrasonic transducer excited a leaky Lamb wave in the first plate in a non-contact manner. The leakage of this Lamb wave crossed the gas flow at an angle between the two plates as a compression wave, and excited a leaky Lamb wave in the second plate. An air-coupled capacitive ultrasonic transducer on the opposite side of this second plate then detected the airborne compression wave leakage from the second Lamb wave. As the gas flow shifted the wave field between the two plates, the point of Lamb wave excitation in the second plate was displaced in proportion to the gas flow rate. Two such measurements, in opposite directions, formed a completely non-contact contra-propagating Lamb wave flow meter, allowing measurement of the flow velocity between the plates. A COMSOL Multiphysics® model was used to visualize the wave fields, and accurately predicted the time differences that were then measured experimentally. Experiments using different Lamb wave frequencies and plate materials were also similarly verified. This entirely non-contact airborne approach to Lamb wave flow metering could be applied in place of clamp-on techniques in thin-walled ducts or pipes. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Estimating pumping time and ground-water withdrawals using energy- consumption data

    USGS Publications Warehouse

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)

  20. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.

    2013-12-01

    In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.

  1. 40 CFR Table W - 7 of Subpart W-Default Methane Emission Factors for Natural Gas Distribution

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Valve 0.557 Control Valve 9.34 Pressure Relief Valve 0.27 Orifice Meter 0.212 Regulator 0.772 Open-ended Line 26.131 Population Emission Factors—Below Grade Metering-Regulating station 1 Components, Gas... 100 to 300 psig 0.20 Below Grade M&R Station, Inlet Pressure Population Emission...

  2. USM3D Simulations for Second Sonic Boom Workshop

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Carter, Melissa B.; Nayani, Sudheer N.; Cliff, Susan; Pearl, Jason M.

    2017-01-01

    The NASA Tetrahedral Unstructured Software System with the USM3D flow solver was used to compute test cases for the Second AIAA Sonic Boom Prediction Workshop. The intent of this report is to document the USM3D results for SBPW2 test cases. The test cases included an axisymmetric equivalent area body, a JAXA wing body, a NASA low boom supersonic configuration modeled with flow through nacelles and engine boundary conditions. All simulations were conducted for a free stream Mach number of 1.6, zero degrees angle of attack, and a Reynolds number of 5.7 million per meter. Simulations were conducted on tetrahedral grids provided by the workshop committee, as well as a family of grids generated by an in-house approach for sonic boom analyses known as BoomGrid using current best practices. The near-field pressure signatures were extracted and propagated to the ground with the atmospheric propagation code, sBOOM. The USM3D near-field pressure signatures, corresponding sBOOM ground signatures, and loudness levels on the ground are compared with mean values from other workshop participants.

  3. High Reynolds Number Investigation of a Flush-Mounted, S-Duct Inlet With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Carter, Melissa B.; Allan, Brian G.

    2005-01-01

    An experimental investigation of a flush-mounted, S-duct inlet with large amounts of boundary layer ingestion has been conducted at Reynolds numbers up to full scale. The study was conducted in the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. In addition, a supplemental computational study on one of the inlet configurations was conducted using the Navier-Stokes flow solver, OVERFLOW. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on aerodynamic interface plane diameter) from 5.1 million to 13.9 million (full-scale value), and inlet mass-flow ratios from 0.29 to 1.22, depending on Mach number. Results of the study indicated that increasing Mach number, increasing boundary layer thickness (relative to inlet height) or ingesting a boundary layer with a distorted profile decreased inlet performance. At Mach numbers above 0.4, increasing inlet airflow increased inlet pressure recovery but also increased distortion. Finally, inlet distortion was found to be relatively insensitive to Reynolds number, but pressure recovery increased slightly with increasing Reynolds number.

  4. A tentative protocol for measurement of radon availability from the ground

    USGS Publications Warehouse

    Tanner, A.B.

    1988-01-01

    A procedure is being tested in order to determine its suitability for assessing the intrinsic ability of the ground as a particular site to supply 222Rn to a basement structure to be built on the site. Soil gas is sucked from a borehold probe through an alpha scintillation chamber and flow meter by a pump. The permeability of the soil is calculated from the flow rate and the pressure difference between the atmosphere and the borehold at the intake point. The diffusion coefficient is estimated from the water fraction in the soil pores. The upward migration distance for radon in such soil during one mean life is computed for an arbitrary steady pressure difference. This mean migration distance, multiplied by the measured radon concentration, gives the 'radon availability number'. Measurements at sites of known indoor radon concentration suggest that numbers below 2 kBq ?? m-2 indicate little chance of elevated indoor radon and above 20 kBq ?? m-2 indicate that elevated indoor radon is likely. The range of uncertainty and the point-to-point and seasonal variations to be expected are under investigation.

  5. Measurement and modelling of forced convective heat transfer coefficient and pressure drop of Al2O3- and SiO2-water nanofluids

    NASA Astrophysics Data System (ADS)

    Julia, J. E.; Hernández, L.; Martínez-Cuenca, R.; Hibiki, T.; Mondragón, R.; Segarra, C.; Jarque, J. C.

    2012-11-01

    Forced convective heat transfer coefficient and pressure drop of SiO2- and Al2O3-water nanofluids were characterized. The experimental facility was composed of thermal-hydraulic loop with a tank with an immersed heater, a centrifugal pump, a bypass with a globe valve, an electromagnetic flow-meter, a 18 kW in-line pre-heater, a test section with band heaters, a differential pressure transducer and a heat exchanger. The test section consists of a 1000 mm long aluminium pipe with an inner diameter of 31.2 mm. Eighteen band heaters were placed all along the test section in order to provide a uniform heat flux. Heat transfer coefficient was calculated measuring fluid temperature using immersed thermocouples (Pt100) placed at both ends of the test section and surface thermocouples in 10 axial locations along the test section (Pt1000). The measurements have been performed for different nanoparticles (Al2O3 and SiO2 with primary size of 11 nm and 12 nm, respectively), volume concentrations (1% v., 5% v.), and flow rates (3 103Re<105). Maximum heat transfer coefficient enhancement (300%) and pressure drop penalty (1000%) is obtained with 5% v. SiO2 nanofluid. Existing correlations can predict, at least in a first approximation, the heat transfer coefficient and pressure drop of nanofluids if thermal conductivity, viscosity and specific heat were properly modelled.

  6. Ignition and Performance Tests of Rocket-Based Combined Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Anderson, William E.

    2005-01-01

    The ground testing of a Rocket Based Combined Cycle engine implementing the Simultaneous Mixing and Combustion scheme was performed at the direct-connect facility of Purdue University's High Pressure Laboratory. The fuel-rich exhaust of a JP-8/H2O2 thruster was mixed with compressed, metered air in a constant area, axisymmetric duct. The thruster was similar in design and function to that which will be used in the flight test series of Dryden's Ducted-Rocket Experiment. The determination of duct ignition limits was made based on the variation of secondary air flow rates and primary thruster equivalence ratios. Thrust augmentation and improvements in specific impulse were studied along with the pressure and temperature profiles of the duct to study mixing lengths and thermal choking. The occurrence of ignition was favored by lower rocket equivalence ratios. However, among ignition cases, better thrust and specific impulse performance were seen with higher equivalence ratios owing to the increased fuel available for combustion. Thrust and specific impulse improvements by factors of 1.2 to 1.7 were seen. The static pressure and temperature profiles allowed regions of mixing and heat addition to be identified. The mixing lengths were found to be shorter at lower rocket equivalence ratios. Total pressure measurements allowed plume-based calculation of thrust, which agreed with load-cell measured values to within 6.5-8.0%. The corresponding Mach Number profile indicated the flow was not thermally choked for the highest duct static pressure case.

  7. Controls on Thermal Discharge in Yellowstone NAtional Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Mohrmann, Jacob Steven

    2007-10-01

    Significant fluctuations in discharge occur in hot springs in Yellowstone National Park on a seasonal to decadal scale (Ingebritsen et al., 2001) and an hourly scale (Vitale, 2002). The purpose of this study was to determine the interval of the fluctuations in discharge and to explain what causes those discharge patterns in three thermally influenced streams in Yellowstone National Park. By monitoring flow in these streams, whose primary source of input is thermal discharge, we were able to find several significant patterns of discharge fluctuations. Patterns were found by using two techniques of spectral analysis. The spectral analyses completed involved using the program "R" as well as Microsoft Excel, both of which use Fourier transforms. The Fourier transform is a linear operator that identifies frequencies in the original function. Stream flow data were collected using a FloDar open channel flow monitor. The flow meter collected data at15-minute intervals at White Creek and Rabbit Creek for a period of approximately two weeks each during the Fall. Flow data were also used from 15-minute data interval from a USGS gaging station at Tantalus Creek. Patterns of discharge fluctuation were found in each stream. By comparing spectral analysis results of flow data with spectral analysis of published tide data and barometric pressure data, connections were drawn between fluctuations in tidal and barometric-pressure patterns and flow patterns. Also, visual comparisons used to identify potential correspondence with earthquakes and precipitation events. At Tantalus Creek, patterns were affected only by barometric pressure changes. At White Creek, one pattern was attributed to barometric pressure fluctuations, and another pattern was found that could be associated with earth-tide forces. At Rabbit Creek, these patterns were absent. A pattern at 8.55 hours, which could not be attributed to barometric pressure or earth tide forces, was found at Rabbit and White Creeks. The 8.55 hour pattern in discharge found at both Rabbit and White Creeks may suggest a physical link between the sites, which are close (2.5 km). The time pattern could be a result of a shared hydrothermal aquifer, convectively heating and discharging at both streams. However, the common time pattern could also be the result of independent factors, which coincidentally caused a similar time pattern.

  8. FFM water mockup studies of the near-wake region of permeable flow blockages. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, J. D.

    1976-10-01

    An experimental study of transport in the near-wake region of permeable, planar flow blockages was conducted in a vertical-flow channel with a hexagonal cross section. Experiments included measurements of axial pressure distributions along channel walls exposed to the free stream and wake region and pressure differences between the free stream and wake regions at fixed axial positions. Further, time constants for scalar decay in the near-wake region were determined by salt conductivity tests. A single blockage geometry was used in all tests; the blockage, which was attached to the channel wall, obstructed 58 percent of the cross section when themore » blockage was solid. For one series of tests, discrete jets were machined into the blockage and water was metered into the recirculation zone at velocities of the order of the mean channel velocity. Increased jet velocity reduced the resistence time of salt in the recirculation zone, and when the jet velocity was as high as the accelerated free stream flow at the vena contracta, counterrotating cells were introduced in the recirculating zone. In a second series of tests, uniformly spaced holes were drilled in the blockages to give blockage porosities of 11 and 24 percent. The residence time of salt in the near wake decreased significantly as the blockage porosity was increased to 24 percent.« less

  9. Use of a Stanton Tube for Skin-Friction Measurements

    NASA Technical Reports Server (NTRS)

    Abarbanel, S. S.; Hakkinen, R. J.; Trilling, L.

    1959-01-01

    A small total-pressure tube resting against a flat-plate surface was used as a Stanton tube and calibrated as a skin-friction meter at various subsonic and supersonic speeds. Laminar flow was maintained for the supersonic runs at a Mach number M(sub infinity) of 2. At speeds between M(sub infinity) = 1.33 and M(sub infinity) = 1.87, the calibrations were carried-out in a turbulent boundary layer. The subsonic flows were found to be in transition. The skin-friction readings of a floating-element type of balance served as the reference values against which the Stanton tube was calibrated. A theoretical model was developed which, for moderate values of the shear parameter tau, accurately predicts the performance of the Stanton tube in subsonic and supersonic flows. A "shear correction factor" was found to explain the deviations from the basic model when T became too large. Compressibility effects were important only in the case of turbulent supersonic flows, and they did not alter the form of the calibration curve. The test Reynolds numbers, based on the distance from the leading edge and free-stream conditions, ranged from 70,000 to 875,000. The turbulent-boundary-layer Reynolds numbers, based on momentum thickness, varied between 650 and 2,300. Both laminar and turbulent velocity profiles were taken and the effect of pressure gradient on the calibration was investigated.

  10. Public Sector Benefits From Aerospace Research and Development

    ERIC Educational Resources Information Center

    Hamilton, Jeffrey T.

    1973-01-01

    Many benefits from aerospace research have occurred: research on quiet aircraft engines, worldwide news coverage, contributions to the national economy, development of reliable fluid amplifiers and logic systems, attempts to control airport congestion, a low speed air sensor for use on a pulmonary flow meter and even as a flow meter in a large…

  11. Cooling of High Pressure Rocket Thrust Chambers with Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Price, H. G.

    1980-01-01

    An experimental program using hydrogen and oxygen as the propellants and supercritical liquid oxygen (LOX) as the coolant was conducted at 4.14 and 8.274 MN/square meters (600 and 1200 psia) chamber pressure. Data on the following are presented: the effect of LOX leaking into the combustion region through small cracks in the chamber wall; and verification of the supercritical oxygen heat transfer correlation developed from heated tube experiments; A total of four thrust chambers with throat diameters of 0.066 m were tested. Of these, three were cyclically tested to 4.14 MN/square meters (600 psia) chamber pressure until a crack developed. One had 23 additional hot cycles accumulated with no apparent metal burning or distress. The fourth chamber was operated at 8.274 MN/square meters (1200 psia) pressure to obtain steady state heat transfer data. Wall temperature measurements confirmed the heat transfer correlation.

  12. Accuracy of Phase-Contrast Velocity Mapping Proximal and Distal to Stent Artifact During Cardiac Magnetic Resonance Imaging.

    PubMed

    Avitabile, Catherine M; Harris, Matthew A; Doddasomayajula, Ravi S; Chopski, Steven G; Gillespie, Matthew J; Dori, Yoav; Glatz, Andrew C; Fogel, Mark A; Whitehead, Kevin K

    2018-06-15

    Little data are available on the accuracy of phase-contrast magnetic resonance imaging (PC-MRI) velocity mapping in the vicinity of intravascular metal stents other than nitinol stents. Therefore, we sought to determine this accuracy using in vitro experiments. An in vitro flow phantom was used with 3 stent types: (1) 316L stainless steel, (2) nitinol self-expanding, and (3) platinum-iridium. Steady and pulsatile flow was delivered with a magnetic resonance imaging-compatible pump (CardioFlow 5000, Shelley Medical, London, Ontario, Canada). Flows were measured using a transit time flow meter (ME13PXN, Transonic, Inc, Ithaca, New York). Mean flows ranged from 0.5 to 7 L/min. For each condition, 5 PC-MRI acquisitions were made: within the stent, immediately adjacent to both edges of the stent artifact, and 1 cm upstream and downstream of the artifact. Mean PC-MRI flows were calculated by segmenting the tube lumen using clinical software (ARGUS, Siemens, Inc, Erlangen, Germany). PC-MRI and flow meter flows were compared by location and stent type using linear regression, Bland-Altman, and intraclass correlation (ICC). PC-MRI flows within the stent artifact were inaccurate for all stents studied, generally underestimating flow meter-measured flow. Agreement between PC-MRI and flow meter-measured flows was excellent for all stent types, both immediately adjacent to and 1 cm away from the edge of the stent artifact. Agreement was highest for the platinum-iridium stent (R = 0.999, ICC = 0.999) and lowest for the nitinol stent (R = 0.993, ICC = 0.987). In conclusion, PC-MRI flows are highly accurate just upstream and downstream of a variety of clinically used stents, supporting its use to directly measure flows in stented vessels. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Evaluation of Flush-Mounted, S-Duct Inlets with Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Morehouse, Melissa B.

    2003-01-01

    A new high Reynolds number test capability for boundary layer ingesting inlets has been developed for the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. Using this new capability, an experimental investigation of four S-duct inlet configurations with large amounts of boundary layer ingestion (nominal boundary layer thickness of about 40% of inlet height) was conducted at realistic operating conditions (high subsonic Mach numbers and full-scale Reynolds numbers). The objectives of this investigation were to 1) provide a database for CFD tool validation on boundary layer ingesting inlets operating at realistic conditions and 2) provide a baseline inlet for future inlet flow-control studies. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on duct exit diameter) from 5.1 million to a full-scale value of 13.9 million, and inlet mass-flow ratios from 0.39 to 1.58 depending on Mach number. Results of this investigation indicate that inlet pressure recovery generally decreased and inlet distortion generally increased with increasing Mach number. Except at low Mach numbers, increasing inlet mass-flow increased pressure recovery and increased distortion. Increasing the amount of boundary layer ingestion (by decreasing inlet throat height) or ingesting a boundary layer with a distorted (adverse) profile decreased pressure recovery and increased distortion. Finally, increasing Reynolds number had almost no effect on inlet distortion but increased inlet recovery by about one-half percent at a Mach number near cruise.

  14. Comparison of five portable peak flow meters

    PubMed Central

    Takara, Glaucia Nency; Ruas, Gualberto; Pessoa, Bruna Varanda; Jamami, Luciana Kawakami; Di Lorenzo, Valéria Amorim Pires; Jamami, Mauricio

    2010-01-01

    OBJECTIVE To compare the measurements of spirometric peak expiratory flow (PEF) from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. METHODS Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman’s test with Dunn’s post-hoc (p<0.05), Spearman’s correlation test and Bland-Altman’s agreement test. RESULTS The median and interquartile ranges for the spirometric values and the Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® meters were 428 (263–688 L/min), 450 (350–800 L/min), 420 (310–720 L/min), 380 (300–735 L/min), 400 (310–685 L/min) and 415 (335–610 L/min), respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone® (p<0.001) and Galemed ® (p<0.01) meters. There was no agreement between the spirometric values and the five PEF meters. CONCLUSIONS The results suggest that the values recorded from Galemed® meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone® meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices’ results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters. PMID:20535364

  15. High Reynolds Number Investigation of a Flush Mounted, S-Duct Inlet With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Carter, Melissa B.; Allan, Brian G.

    2005-01-01

    An experimental investigation of a flush-mounted, S-duct inlet with large amounts of boundary layer ingestion has been conducted at Reynolds numbers up to full scale. The study was conducted in the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. In addition, a supplemental computational study on one of the inlet configurations was conducted using the Navier-Stokes flow solver, OVERFLOW. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on aerodynamic interface plane diameter) from 5.1 million to 13.9 million (full-scale value), and inlet mass-flow ratios from 0.29 to 1.22, depending on Mach number. Results of the study indicated that increasing Mach number, increasing boundary layer thickness (relative to inlet height) or ingesting a boundary layer with a distorted profile decreased inlet performance. At Mach numbers above 0.4, increasing inlet airflow increased inlet pressure recovery but also increased distortion. Finally, inlet distortion was found to be relatively insensitive to Reynolds number, but pressure recovery increased slightly with increasing Reynolds number.This CD-ROM supplement contains inlet data including: Boundary layer data, Duct static pressure data, performance-AIP (fan face) data, Photos, Tunnel wall P-PTO data and definitions.

  16. Multiple flow processes accompanying a dam-break flood in a small upland watershed, Centralia, Washington

    USGS Publications Warehouse

    Costa, John E.

    1994-01-01

    On October 5, 1991, following 35 consecutive days of dry weather, a 105-meter long, 37-meter wide, 5.2-meter deep concrete-lined watersupply reservoir on a hillside in the eastern edge of Centralia, Washington, suddenly failed, sending 13,250 cubic meters of water rushing down a small, steep tributary channel into the city. Two houses were destroyed, several others damaged, mud and debris were deposited in streets, on lawns, and in basements over four city blocks, and 400 people were evacuated. The cause of failure is believed to have been a sliding failure along a weak seam or joint in the siltstone bedrock beneath the reservoir, possibly triggered by increased seepage into the rock foundation through continued deterioration of concrete panel seams, and a slight rise (0.6 meters) in the pool elevation. A second adjacent reservoir containing 18,900 cubic meters of water also drained, but far more slowly, when a 41-cm diameter connecting pipe was broken by the landslide. The maximum discharge resulting from the dam-failure was about 71 cubic meters per second. A reconstructed hydrograph based on the known reservoir volume and calculated peak discharge indicates the flood duration was about 6.2 minutes. Sedimentologic evidence, high-water mark distribution, and landforms preserved in the valley floor indicate that the dam failure flood consisted of two flow phases: an initial debris flow that deposited coarse bouldery sediment along the slope-area reach as it lost volume, followed soon after by a water-flood that achieved a stage about one-half meter higher than the debris flow. The Centralia dam failure is one of three constructed dams destroyed by rapid foundation failure that defines the upper limits of an envelope curve of peak flood discharge as a function of potential energy for failed constructed dams worldwide.

  17. Two-dimensional computational modeling of high-speed transient flow in gun tunnel

    NASA Astrophysics Data System (ADS)

    Mohsen, A. M.; Yusoff, M. Z.; Hasini, H.; Al-Falahi, A.

    2018-03-01

    In this work, an axisymmetric numerical model was developed to investigate the transient flow inside a 7-meter-long free piston gun tunnel. The numerical solution of the gun tunnel was carried out using the commercial solver Fluent. The governing equations of mass, momentum, and energy were discretized using the finite volume method. The dynamic zone of the piston was modeled as a rigid body, and its motion was coupled with the hydrodynamic forces from the flow solution based on the six-degree-of-freedom solver. A comparison of the numerical data with the theoretical calculations and experimental measurements of a ground-based gun tunnel facility showed good agreement. The effects of parameters such as working gases and initial pressure ratio on the test conditions in the facility were examined. The pressure ratio ranged from 10 to 50, and gas combinations of air-air, helium-air, air-nitrogen, and air-CO2 were used. The results showed that steady nozzle reservoir conditions can be maintained for a longer duration when the initial conditions across the diaphragm are adjusted. It was also found that the gas combination of helium-air yielded the highest shock wave strength and speed, but a longer test time was achieved in the test section when using the CO2 test gas.

  18. Experimental study of cooling performance of pneumatic synthetic jet with singular slot rectangular orifice

    NASA Astrophysics Data System (ADS)

    Yu, Roger Ho Zhen; Ismail, Mohd Azmi bin; Ramdan, Muhammad Iftishah; Mustaffa, Nur Musfirah binti

    2017-03-01

    Synthetic Jet generates turbulence flow in cooling the microelectronic devices. In this paper, the experiment investigation of the cooling performance of pneumatic synthetic jet with single slot rectangular orifices at low frequency motion is presented. The velocity profile at the end of the orifice was measured and used as characteristic performance of synthetic jet in the present study. Frequencies of synthetic jet and the compressed air pressure supplied to the pneumatic cylinder (1bar to 5bar) were the parameters of the flow measurement. The air velocity of the synthetic jet was measured by using anemometer air flow meter. The maximum air velocity was 0.5 m/s and it occurred at frequency motion of 8 Hz. The optimum compressed air supplied pressure of the synthetic jet study was 4 bar. The cooling performance of synthetic jet at several driven frequencies from 0 Hz to 8 Hz and heat dissipation between 2.5W and 9W were also investigate in the present study. The results showed that the Nusselt number increased and thermal resistance decreased with both frequency and Reynolds number. The lowest thermal resistance was 5.25°C/W and the highest Nusselt number was 13.39 at heat dissipation of 9W and driven frequency of 8Hz.

  19. Device Stores and Discharges Metered Fluid

    NASA Technical Reports Server (NTRS)

    Hooper, S. L.; Setzer, D.

    1983-01-01

    Hand-held container accepts measured amount of liquid from pressurized supply. Supply pressure drives spring-loaded piston that stores enough mechanical energy to discharge measured liquid into another container. Original application of container was to rehydrate sterilized pre-packaged food in zerogravity environment of space vehicles. Possible terrestrial applicatios include dispensing of toxic fluids or metering of fluids for household, commercial or laboratory uses.

  20. Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995

    USGS Publications Warehouse

    Haggard, Brian; Green, W. Reed

    2002-01-01

    The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.

  1. 40 CFR 98.423 - Calculating CO2 supply.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... as allowed in paragraph (b) of this section, calculate the annual mass of CO2 captured, extracted... mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate quarterly the mass of CO2 in a CO2 stream in...

  2. 40 CFR 98.423 - Calculating CO2 supply.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as allowed in paragraph (b) of this section, calculate the annual mass of CO2 captured, extracted... mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate quarterly the mass of CO2 in a CO2 stream in...

  3. 40 CFR 98.423 - Calculating CO2 supply.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... as allowed in paragraph (b) of this section, calculate the annual mass of CO2 captured, extracted... mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate quarterly the mass of CO2 in a CO2 stream in...

  4. Installation effects of long-duct pylon-mounted nacelles on a twin-jet transport model with swept supercritical wing

    NASA Technical Reports Server (NTRS)

    Lee, E. E., Jr.; Pendergraft, O. C., Jr.

    1985-01-01

    The installation interference effects of an underwing-mounted, long duct, turbofan nacelle were evaluated in the Langley 16-Foot Transonic Tunnel with two different pylon shapes installed on a twin engine transport model having a supercritical wing swept 30 deg. Wing, pylon, and nacelle pressures and overall model force data were obtained at Mach numbers from 0.70 to 0.83 and nominal angles of attack from -2 deg to 4 deg at an average unit Reynolds number of 11.9 x 1,000,000 per meter. The results show that adding the long duct nacelles to the supercritical wing, in the near sonic flow field, changed the magnitude and direction of flow velocities over the entire span, significantly reduced cruise lift, and caused large interference drag on the nacelle afterbody.

  5. A Comparison of Interactional Aerodynamics Methods for a Helicopter in Low Speed Flight

    NASA Technical Reports Server (NTRS)

    Berry, John D.; Letnikov, Victor; Bavykina, Irena; Chaffin, Mark S.

    1998-01-01

    Recent advances in computing subsonic flow have been applied to helicopter configurations with various degrees of success. This paper is a comparison of two specific methods applied to a particularly challenging regime of helicopter flight, very low speeds, where the interaction of the rotor wake and the fuselage are most significant. Comparisons are made between different methods of predicting the interactional aerodynamics associated with a simple generic helicopter configuration. These comparisons are made using fuselage pressure data from a Mach-scaled powered model helicopter with a rotor diameter of approximately 3 meters. The data shown are for an advance ratio of 0.05 with a thrust coefficient of 0.0066. The results of this comparison show that in this type of complex flow both analytical techniques have regions where they are more accurate in matching the experimental data.

  6. Realizing life-scalable experimental pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Cronin, S. J.; Lube, G.; Breard, E.; Jones, J.; Valentine, G.; Freundt, A.; Hort, M. K.; Bursik, M. I.

    2013-12-01

    Pyroclastic Density Currents (PDCs) - the most deadly threat from volcanoes - are extremely hot, ground-hugging currents of rock fragments and gas that descend slopes at hundreds of kilometers per hour. These hostile flows are impossible to internally measure, thus volcanologists are persistently blocked in efforts to realistically forecast their internal mechanics and hazards. Attempts to fill this gap via laboratory-scale experiments continue to prove difficult, because they usually mismatch the dynamic and kinematic scaling of real-world flows by several orders of magnitude. In a multi-institutional effort, the first large-scale pyroclastic flow generator that can synthesize repeatable hot high-energy gas-particle mixture flows in safety has been commissioned in New Zealand. The final apparatus stands 15 m high, consisting of a tower/elevator system; an instrumented hopper that can hold >6000 kg (or 3.2 m3) of natural volcanic materials, which can be discharged at a range of controlled rates onto an instrumented, variably inclinable (6-25°) glass-sided chute for examining the vertical profiles of PDCs in motion. The use of rhyolitic pyroclastic material from the 1800 AD Taupo Eruption (with its natural grain-size, sorting and shape characteristics) and gas ensures natural coupling between the solids and fluid phases. PDC analogues with runout of >15 meters and flow depths of 1.5-6 meters are created by generating variably heated falling columns of natural volcanic particles (50-1300 kg/s), dispersed and aerated to controlled particle densities between 3 and 60 vol.% at the base of the elevated hopper. The descending columns rapidly generate high-velocity flows (up to 14 m/s) once impacting on the inclined channel, reproducing many features of natural flows, including segregation into dense and dilute regimes, progressive aggradational and en masse deposition of particles and the development of high internal gas-pore-pressures during flow. The PDC starting conditions (velocity, mass flux, particle solids concentration and temperature) can be precisely varied to obtain a wide range of PDC gas-particle transport and sedimentation conditions that match dynamic and kinematic scaling of natural flows. For instance, bulk flow scaling shows full turbulence (Re>106); while at the same time, the variation in Stokes and Stability numbers (describing Lagrangian acceleration of particles due to gravity and viscous drag) cover a wide range of natural conditions. The resulting PDC flow regimes include convection dominated dilute suspension that produce lateral ash-cloud surges, inertial dry granular to partially fluidised flows with high dynamic pressures, and, intermittent flow regimes of intermediate particle solids concentration. Depending on the PDC starting conditions, stratified, dune-bedded or inversely graded bedforms are created, whose formation can be tracked using high-speed cinematography and particle-image-velocimetry. We present here the first overview results from these experiments and invite further multi-organisational collaboration in ongoing simulations.

  7. Pressure distribution data from tests of 2.29-meter (7.5-ft.) span EET high-lift research model in Langley 4- by 7-meter tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.

    1982-01-01

    A 2.29 m (7.5 ft.) span high-lift research model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Langley 4- by 7-Meter Tunnel to determine the low speed performance characteristics of a representative high aspect ratio suprcritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.

  8. Analysis of heterogeneous hydrological properties of a mountainous hillslope using intensive water flow measurements

    NASA Astrophysics Data System (ADS)

    Masaoka, Naoya; Kosugi, Ken'ichirou; Yamakawa, Yosuke; Mizuyama, Takahisa; Tsutsumi, Daizo

    2013-04-01

    Heterogeneous hydrological properties in a foot slope area of mountainous hillslopes should be assessed to understand hydrological phenomena and their effects on discharge and sediment transport. In this study, we analyzed the high-resolution and three-dimensional water movement data to clarify the hydrological process, including heterogeneous phenomena, in detail. We continuously monitored the soil matric pressure head, psi, using 111 tensiometers installed at grid intervals of approximately 1 meter within the soil mantle at the study hillslope. Under a no-rainfall condition, the existence of perennial groundwater seepage flow was detected by exfiltration flux and temporal psi waveforms, which showed delayed responses, only to heavy storm events, and gradual recession limbs. The seepage water spread in the downslope direction and supplied water constantly to the lower section of the slope. At some points in the center of the slope, a perched saturated area was detected in the middle of soil layer, while psi exhibited negative values above the bedrock surface. These phenomena could be inferred partly from the bedrock topography and the distribution of soil hydraulic conductivity assumed from the result of penetration test. At the peak of a rainfall event, on the other hand, continuous high pressure zones (i.e., psi > 50 cmH2O) were generated in the right and left sections of the slope. Both of these high pressure zones converged at the lower region, showing a sharp psi spike up to 100 cmH2O. Along the high pressure zones, flux vectors showed large values and water exfiltration, indicating the occurrence of preferential flow. Moreover, the preferential flow occurred within the area beneath the perched water, indicating the existence of a weathered bedrock layer. This layer had low permeability, which prevented the vertical infiltration of water in the upper part of the layer, but had high permeability as a result of the fractures distributed heterogeneously inside the layer. These fractures acted as a preferential flow channel and flushed the water derived from lateral flow accumulated from the upslope area during the rainfall event. These phenomena occurring at the peak of rainfall event could not be inferred from the parameters derived from the penetration test.

  9. Measurement of hemodynamics during postural changes using a new wearable cephalic laser blood flowmeter.

    PubMed

    Fujikawa, Tetsuya; Tochikubo, Osamu; Kura, Naoki; Kiyokura, Takanori; Shimada, Junichi; Umemura, Satoshi

    2009-10-01

    Patients with orthostatic hypotension have pathologic hemodynamics related to changes in body posture. A new cephalic laser blood flowmeter that can be worn on the tragus to investigate the hemodynamics upon rising from a sitting or squatting posture was developed. The relationship between cephalic hemodynamics and cerebral ischemic symptoms in 63 subjects in a sitting, squatting, and standing positions using the new device was evaluated. Transient decrease in blood pressure within 15 s after rising to an erect position possibly causes dizziness, syncope, and fall. Subjects exhibiting dizziness upon standing showed a significant decrease in the cephalic blood flow (CBF) and indirect beat-to-beat systolic blood pressure, as monitored by the Finometer, and a significant correlation was observed between the drop ratio (drop value on rising/mean value in the squatting position) of CBF and that of systolic blood pressure. This new wearable CBF-meter is potentially useful for estimating cephalic hemodynamics and objectively diagnosing cerebral ischemic symptoms of subjects in a standing posture.

  10. First results from experiments performed with the ESA Anthrorack during the D-2 Spacelab mission.

    PubMed

    Kuipers, A

    1996-06-01

    In 1993 four astronauts performed physiological experiments on the payload "Anthrorack" during the second German Spacelab mission D-2. The Anthrorack set-up is a Spacelab double rack developed under the management of the European Space Agency. It consists of an ECHO machine, a respiratory monitoring system (gas analyzer with flow meter), a blood centrifuge, an ergometer, a finger blood pressure device, ECG, body impedance measurement device and a respiratory inductance plethysmograph. Experiment-specific equipment was used as well. Nineteen investigators performed experiments in the cardiovascular, pulmonary, fluid-renal and nutritional physiology area. Results on central venous pressure, ocular pressure, vascular resistance, cardiac output, tissue thickness and orthostatic intolerance are presented in the cardiovascular area. In the pulmonary area first results are mentioned on O2 transport perfusion and ventilation distribution and breathing pattern. From the fluid-renal experiments, data from diuresis, sodium excretion and hormonal determinations are given. Finally results from glucose metabolism and nitrogen turnover experiments are presented.

  11. First results from experiments performed with the ESA Anthrorack during the D-2 spacelab mission

    NASA Astrophysics Data System (ADS)

    Kuipers, A.

    1996-06-01

    In 1993 four astronauts performed physiological experiments on the payload "Anthrorack" during the second German Spacelab mission D-2. The Anthrorack set-up is a Spacelab double rack developed under the management of the European Space Agency. It consists of an ECHO machine, a respiratory monitoring system (gas analyzer with flow meter), a blood centrifuge, an ergometer, a finger blood pressure device, ECG, body impedance measurement device and a respiratory inductance plethysmograph. Experiment-specific equipment was used as well. Nineteen investigators performed experiments in the cardiovascular, pulmonary, fluid-renal and nutritional physiology area. Results on central venous pressure, ocular pressure, vascular resistance, cardiac output, tissue thickness and orthostatic intolerance are presented in the cardiovascular area. In the pulmonary area first results are mentioned on O 2 transport perfusion and ventilation distribution and breathing pattern. From the fluid-renal experiments, data from diuresis, sodium excretion and hormonal determinations are given. Finally results from glucose metabolism and nitrogen turnover experiments are presented.

  12. NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) Tests of a 10 deg Cone at Mach 1.6

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.

    1997-01-01

    This work is part of the ongoing qualification of the NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) as a low-disturbance (quiet) facility suitable for transition research. A 10 deg cone was tested over a range of unit Reynolds numbers (Re = 2.8 to 3.8 million per foot (9.2 to 12.5 million per meter)) and angles of incidence (O deg to 10 deg) at Mach 1.6. The location of boundary layer transition along the cone was measured primarily from surface temperature distributions, with oil flow interferometry and Schlieren flow visualization providing confirmation measurements. With the LFSWT in its normal quiet operating mode, no transition was detected on the cone in the test core, over the Reynolds number range tested at zero incidence and yaw. Increasing the pressure disturbance levels in the LFSWT test section by a factor of five caused transition onset on the cone within the test core, at zero incidence and yaw. When operating the LFSWT in its normal quiet mode, transition could only be detected in the test core when high angles of incidence (greater than 5 deg) for cones were set. Transition due to elevated pressure disturbances (Tollmien-Schlichting) and surface trips produced a skin temperature rise of order 4 F (2.2 C). Transition due to cross flows on the leeward side of the cone at incidence produced a smaller initial temperature rise of only order 2.5 F (1.4 C), which indicates a slower transition process. We can conclude that these cone tests add further proof that the LFSWT test core is normally low-disturbance (pressure fluctuations greater than 0.1%), as found by associated direct flow quality measurements discussed in this report. Furthermore, in a quiet test environment, the skin temperature rise is sensitive to the type of dominant instability causing transition. The testing of a cone in the LFSWT provides an excellent experiment for the development of advanced transition detection techniques.

  13. In Situ Soil Venting - Full Scale Test, Hill AFB, Guidance Document. Volume 2

    DTIC Science & Technology

    1991-08-01

    oxidizer. Another system was connected to the existing air scrubber of a building (Reference 23). The self-contained unit reported by Rippberger...devices on the market for flow rate measurement. Some of the more common devices are orifice meters, venturi meters, rotameters, pitot tubes, hot-wire...Notes on how to size and construct orifice meters can be found in Reference 41. * Venturi Meter - A venturi meter works basically on the same

  14. Flow Meter Based on Freely Suspended Smectic Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Green, Adam; Qi, Zhiyuan; Park, Cheol; Glaser, Matthew; Maclennan, Joseph; Clark, Noel

    We present the realization of a idealized 2D hydrodynamic system coupled to air-flow, and show that freely suspended films (FSF) of smectic liquid crystals can be used as a novel flow-meter. Freely-suspended films of liquid crystals are one of the closest physical realizations of an idealized 2D fluid. The velocity of air-flow above a film suspended above a channel can be inferred by studying the velocity profile of the smectic film. This velocity profile can be measured using digital video microscopy to track the inclusions present in the moving film. The velocity profile is then fitted to the coupled 2D solutions of an embedded fluid in air, and the velocity of the air can then be extracted. This flow meter serves as a demonstration of a robust test-bed for further exploration of 2D hydrodynamics. This work was supported by NASA Grant No. NNX-13AQ81G, NSF MRSEC Grant No. DMR-0820579, and DMR-1420736.

  15. Outflow monitoring of a pneumatic ventricular assist device using external pressure sensors.

    PubMed

    Kang, Seong Min; Her, Keun; Choi, Seong Wook

    2016-08-25

    In this study, a new algorithm was developed for estimating the pump outflow of a pneumatic ventricular assist device (p-VAD). The pump outflow estimation algorithm was derived from the ideal gas equation and determined the change in blood-sac volume of a p-VAD using two external pressure sensors. Based on in vitro experiments, the algorithm was revised to consider the effects of structural compliance caused by volume changes in an implanted unit, an air driveline, and the pressure difference between the sensors and the implanted unit. In animal experiments, p-VADs were connected to the left ventricles and the descending aorta of three calves (70-100 kg). Their outflows were estimated using the new algorithm and compared to the results obtained using an ultrasonic blood flow meter (UBF) (TS-410, Transonic Systems Inc., Ithaca, NY, USA). The estimated and measured values had a Pearson's correlation coefficient of 0.864. The pressure sensors were installed at the external controller and connected to the air driveline on the same side as the external actuator, which made the sensors easy to manage.

  16. Development and evaluation of an ultrasonic ground water seepage meter.

    PubMed

    Paulsen, R J; Smith, C F; O'Rourke, D; Wong, T F

    2001-01-01

    Submarine ground water discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a ground water seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flowmeter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve ground water discharges on the order of 0.1 microm/sec, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York, elucidate the temporal and spatial heterogeneity of submarine ground water discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology.

  17. Witness of fluid-flow organization during high-pressure antigorite dehydration

    NASA Astrophysics Data System (ADS)

    López Sánchez-Vizcaíno, Vicente; Padrón-Navarta, José Alberto; Garrido, Carlos J.; Gómez-Pugnaire, María. Teresa

    2010-05-01

    The link between devolatilization reactions and fluid flow is crucial to unravel important geodynamic processes in subduction zones as deformation and element transfer is extremely controlled by the presence of water. At high confining pressure, significant fluid pressure gradients are expected in a reacting rock being dehydrated, because of its rather limited permeability [1]. Compactation-driven fluid flow seems to be an intrinsic mechanism occurring at devolatilization of viscolastic rocks. Nevertheless, and despite the important implications of this coupled deformation/fluid-migration mechanism for fluid transport, a conclusive confirmation of these processes by petrological and textural evidences in metamorphic terrains has been hampered by the scarcity of devolatilization fronts in the geological record. Evidences of high-pressure antigorite dehydration found at Cerro del Almirez (Betic Cordillera, Spain) [2] represent a noteworthy exception. Here, the transition between the hydrous protolith (antigorite serpentinite) and the prograde product assemblage (olivine + orthopyroxene + chlorite, chlorite harzburgite) is extremely well preserved and can be surveyed in detail. The maximum stability of the antigorite has been experimentally determined at ~680°C at 1.6-1.9 GPa [3]. Antigorite dehydration is accompanied by release of high amounts of high-pressure water-rich fluids (~ 9 wt.% fluid). Distinctive layers (up to 1 m thick) of transitional lithologies occur in between atg-serpentinite and chl-harburgite all along the devolatilization front, consisting of (1) chlorite-antigorite olivine-serpentinite, which gradually changes to (2) chlorite-antigorite-olivine-orthopyroxene serpentinite. These transitional lithologies are more massive and darker in color than atg-serpentinite and largely consist of coarse sized grains of antigorite and chlorite (250-500 μm). Antigorite in these assemblages is characterized by microstructural disorder features, which are lacking in antigorite far from the devolatilization front [4]. The sharp appearance of chlorite (Chl-in), crosscutting the serpentinite foliation, and coarsening of olivine define the upper limit of the transitional lithologies, whereas the lower limit (Atg-out) is gradational to chl-harzburgite. The modal increase of orthopyroxene is concomitant with the gradual disappearance of antigorite. The gradual disappearance of antigorite over short distances leads to the final prograde assemblage in the Chl-harzburgite with two contrasting textures: (1) coarse granular texture and (2) an intriguing spinifex-like texture (arborescent growth of centimeter-sized olivine and orthopyroxene). Both textures alternate at the meter to tens of meters scale over the entire massif. We interpret these textures as the result of contrasting pore fluid overpressure, reaction rates and fluid-flow organization shortly after the antigorite breakdown. These observations will be discussed on the frame of the reaction kinetic and the propagation of deformation associated to fluid pressure gradients. [1] Connolly, Journal of Geophysical Research 112 (B8), 18 (1997). [2] Trommsdorff, López Sánchez-Vizcaíno, Gómez-Pugnaire et al., Contrib Mineral Petr 132 (2), 139 (1998). [3] Padrón-Navarta, Hermann, Garrido et al., Contrib Mineral Petr 159 (1), 25 (2010). [4] Padrón-Navarta, López Sánchez-Vizcaíno, Garrido et al., Contrib Mineral Petr 156 (5), 679 (2008).

  18. NaK Plugging Meter Design for the Feasibility Test Loops

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Godfroy, Thomas J.; Reid, Robert S.; Polzin, Kurt A.

    2008-01-01

    The design and predicted performance of a plugging meter for use in the measurement of NaK impurity levels are presented. The plugging meter is incorporated into a Feasibility Test Loop (FTL), which is a small pumped-NaK loop designed to enable the rapid, small-scale evaluation of techniques such as in situ purification methods and to permit the measurement of bulk material transport effects (not mechanisms) under flow conditions that are representative of a fission surface power reactor. The FTL operates at temperatures similar to those found in a reactor, with a maximum hot side temperature of 900 K and a corresponding cold side temperature of 860 K. In the plugging meter a low flow rate bypass loop is cooled until various impurities (primarily oxides) precipitate out of solution. The temperatures at which these impurities precipitate are indicative of the level of impurities in the NaK. The precipitates incrementally plug a small orifice in the bypass loop, which is detected by monitoring changes in the liquid metal flow rate.

  19. Application of acoustic doppler velocimeters for streamflow measurements

    USGS Publications Warehouse

    Rehmel, M.

    2007-01-01

    The U.S. Geological Survey (USGS) principally has used Price AA and Price pygmy mechanical current meters for measurement of discharge. New technologies have resulted in the introduction of alternatives to the Price meters. One alternative, the FlowTracker acoustic Doppler velocimeter, was designed by SonTek/YSI to make streamflow measurements in wadeable conditions. The device measures a point velocity and can be used with standard midsection method algorithms to compute streamflow. The USGS collected 55 quality-assurance measurements with the FlowTracker at 43 different USGS streamflow-gaging stations across the United States, with mean depths from 0.05to0.67m, mean velocities from 13 to 60 cm/s, and discharges from 0.02 to 12.4m3/s. These measurements were compared with Price mechanical current meter measurements. Analysis of the comparisons shows that the FlowTracker discharges were not statistically different from the Price meter discharges at a 95% confidence level. ?? 2007 ASCE.

  20. Ice Thickness, Melting Rates and Styles of Activity in Ice-Volcano Interaction

    NASA Astrophysics Data System (ADS)

    Gudmundsson, M. T.

    2005-12-01

    In most cases when eruptions occur within glaciers they lead to rapid ice melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include ice thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick ice on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin ice, and (3) volcanism where effects are limitied to confinement of lava flows or melting of ice by pyroclastic flows or surges. This last category (ice-contact volcanism) need not cause much ice melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of ice cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the ice surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large ice sheet than in a smaller glacier or ice cap, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with ice thickness and glacier size.

  1. Excitation condition analysis of guided wave on PFA tubes for ultrasonic flow meter.

    PubMed

    Li, Xuan; Xiao, Xufeng; Cao, Li

    2016-12-01

    Impurity accumulation, which decreases the accuracy of flow measurement, is a critical problem when applying Z-shaped or U-shaped ultrasonic flow meters on straight PFA tubes. It can be expected that the guided wave can be used to implement flow measurement on straight PFA tubes. In this paper, the propagation of guided wave is explained by finite element simulations for the flow meter design. Conditions of guided wave generation, including the excitation frequency and the wedge structure, are studied in the simulations. The wedge is designed as a cone which is friendly to be manufactured and installed. The cone angle, the piezoelectric wafer's resonant frequency and the vibration directions are studied in the simulations. The simulations shows that the propagation of guided wave in thin PFA tubes is influenced by the piezoelectric wafers' resonant frequency and the vibration direction when the mode is on the 'water line'. Based on the results of the simulations, an experiment is conducted to verify the principles of excitation conditions, which performs flow measurement on a straight PFA tube well. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A portable meter for measuring low frequency currents in the human body.

    PubMed

    Niple, J C; Daigle, J P; Zaffanella, L E; Sullivan, T; Kavet, R

    2004-07-01

    A portable meter has been developed for measuring low frequency currents that flow in the human body. Although the present version of the meter was specifically designed to measure 50/60 Hz "contact currents," the principles involved can be used with other low frequency body currents. Contact currents flow when the human body provides a conductive path between objects in the environment with different electrical potentials. The range of currents the meter detects is approximately 0.4-800 microA. This provides measurements of currents from the threshold of human perception (approximately 500 microA(RMS)) down to single microampere levels. The meter has a unique design, which utilizes the human subject's body impedance as the sensing element. Some of the advantages of this approach are high sensitivity, the ability to measure current flow in the majority of the body, and relative insensitivity to the current path connection points. Current measurement accuracy varies with the accuracy of the body impedance (resistance) measurement and different techniques can be used to obtain a desired level of accuracy. Techniques are available to achieve an estimated +/-20% accuracy. Copyright 2004 Wiley-Liss, Inc.

  3. The bridge permeameter; An alternative method for single-phase, steady-state permeability measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, D.C.; Warpinski, N.R.

    Laboratory measurements of single-phase, steady-state permeability of porous rock are important for a number of different applications. The oil and gas industry uses permeability data as a key indicator of the producability of a hydrocarbon reservoir; effective containment of large volumes of oil in underground salt caverns is directly dependent upon the permeability of the adjacent cavern walls; and safe, long term underground isolation of radioactive and hazardous waste is contingent upon the flow and transport characteristics of the surrounding geologic formations. An alternative method for measuring single-phase, steady-state permeability of porous rock is presented. The use of troublesome andmore » expensive mass flow meters is eliminated and replaced with a bridge configuration of flow resistors. Permeability values can be determined directly from differential pressures across the bridge network, resulting in potentially significant cost savings and simplification for conducting these types of measurements. Results from the bridge permeameter are compared with results obtained using conventional methods.« less

  4. Ground-water hydrology and subsurface migration of radioisotopes at a low-level solid radioactive-waste disposal site, West Valley, New York

    USGS Publications Warehouse

    Prudic, David E.; Randall, Allan D.

    1977-01-01

    Burial trenches for disposal of solid radioactive waste at West Valley, N.Y., are excavated in till that has very low hydraulic conductivity (about 5 x 10 to the minus 8th power centimeters per second). Fractures and root tubes with chemically oxidized and (or) reduced soil in their walls extend to 3 to 4.5 meters below natural land surface. Preliminary simulations of pressure heads with a digital model suggest that hydraulic conductivity is an order of magnitude greater in the fractured till near land surface than at greater depth. Hydraulic gradients are predominantly downward, even beneath small valleys. The upper part of a body of underlying lacustrine silt is unsaturated; in the lower, saturated part, slow lateral flow may occur. In the older trenches, water began to build up in 1971, overflowed briefly in 1975, and was pumped out in 1975-76. Water levels rose abruptly during major rainstorms in mid-1975, indicating rapid infiltration through cracks in the cover material. The new trenches have maintained low, stable water levels, perhaps because of thicker, more compact cover and less waste settlement; pressure heads near these trenches are low, locally approaching zero, perhaps because of slight infiltration and limited near-surface storage. Peak tritium concentrations in test-hole cores (generally 0.00001 to 0.001 microcuries per milliliter) were found within 3 meters of land surface and are attributed to surface contamination. Concentrations declined rapidly with depth within the fractured till; secondary peaks found at about 9 meters in three holes are attributed to lateral migration from trenches. Other radioisotopes were detected only near land surface. Samples from the walls of shallow fractures revealed no accumulation of radioisotopes. (Woodard-USGS)

  5. Development of the Dual Aerodynamic Nozzle Model for the NTF Semi-Span Model Support System

    NASA Technical Reports Server (NTRS)

    Jones, Greg S.; Milholen, William E., II; Goodliff, Scott L.

    2011-01-01

    The recent addition of a dual flow air delivery system to the NASA Langley National Transonic Facility was experimentally validated with a Dual Aerodynamic Nozzle semi-span model. This model utilized two Stratford calibration nozzles to characterize the weight flow system of the air delivery system. The weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions to be 0.1 to 23 lbm/sec for the high flow leg and 0.1 to 9 lbm/sec for the low flow leg. Results from this test verified system performance and identified problems with the weight-flow metering system that required the vortex flow meters to be replaced at the end of the test.

  6. 77 FR 64503 - Questar Pipeline Company; Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ...'s existing Payson Gate Meter Station for the downstream Lake Side 2 Power Plant. No incremental... County: A second compressor package at its existing Thistle Creek Compressor Station; Replacement of... pressure; and Metering and ancillary facility upgrades at Questar's existing Payson Gate Meter Station. In...

  7. 46 CFR 154.451 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: h=the height of the tank or the dimension in the vessel's vertical direction, in meters; b=the width of the tank or the dimension in the vessel's transverse direction; in meters; and l=the length of the tank or the dimension in the vessel's longitudinal direction, in meters; and ρ=the specific gravity of...

  8. 46 CFR 154.451 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: h=the height of the tank or the dimension in the vessel's vertical direction, in meters; b=the width of the tank or the dimension in the vessel's transverse direction; in meters; and l=the length of the tank or the dimension in the vessel's longitudinal direction, in meters; and ρ=the specific gravity of...

  9. 46 CFR 154.451 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....45 l; where: h=the height of the tank or the dimension in the vessel's vertical direction, in meters; b=the width of the tank or the dimension in the vessel's transverse direction; in meters; and l=the length of the tank or the dimension in the vessel's longitudinal direction, in meters; and ρ=the specific...

  10. 46 CFR 154.451 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: h=the height of the tank or the dimension in the vessel's vertical direction, in meters; b=the width of the tank or the dimension in the vessel's transverse direction; in meters; and l=the length of the tank or the dimension in the vessel's longitudinal direction, in meters; and ρ=the specific gravity of...

  11. 46 CFR 154.451 - Design vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: h=the height of the tank or the dimension in the vessel's vertical direction, in meters; b=the width of the tank or the dimension in the vessel's transverse direction; in meters; and l=the length of the tank or the dimension in the vessel's longitudinal direction, in meters; and ρ=the specific gravity of...

  12. Analysis of Geomorphic and Hydrologic Characteristics of Mount Jefferson Debris Flow, Oregon, November 6, 2006

    USGS Publications Warehouse

    Sobieszczyk, Steven; Uhrich, Mark A.; Piatt, David R.; Bragg, Heather M.

    2008-01-01

    On November 6, 2006, a rocky debris flow surged off the western slopes of Mount Jefferson into the drainage basins of Milk and Pamelia Creeks in Oregon. This debris flow was not a singular event, but rather a series of surges of both debris and flooding throughout the day. The event began during a severe storm that brought warm temperatures and heavy rainfall to the Pacific Northwest. Precipitation measurements near Mount Jefferson at Marion Forks and Santiam Junction showed that more than 16.1 centimeters of precipitation fell the week leading up to the event, including an additional 20.1 centimeters falling during the 2 days afterward. The flooding associated with the debris flow sent an estimated 15,500 to 21,000 metric tons, or 9,800 to 13,000 cubic meters, of suspended sediment downstream, increasing turbidity in the North Santiam River above Detroit Lake to an estimated 35,000 to 55,000 Formazin Nephelometric Units. The debris flow started small as rock and ice calved off an upper valley snowfield, but added volume as it eroded weakly consolidated deposits from previous debris flows, pyroclastic flows, and glacial moraines. Mud run-up markings on trees indicated that the flood stage of this event reached depths of at least 2.4 meters. Velocity calculations indicate that different surges of debris flow and flooding reached 3.9 meters per second. The debris flow reworked and deposited material ranging in size from sand to coarse boulders over a 0.1 square kilometer area, while flooding and scouring as much as 0.45 square kilometer. Based on cross-sectional transect measurements recreating pre-event topography and other field measurements, the total volume of the deposit ranged from 100,000 to 240,000 cubic meters.

  13. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ERPENBECK EG; LESHIKAR GA

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentiallymore » agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.« less

  14. 40 CFR 1033.525 - Smoke testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...

  15. 40 CFR 1033.525 - Smoke testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...

  16. 40 CFR 1033.525 - Smoke testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...

  17. 40 CFR 1033.525 - Smoke testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...

  18. Performance of a transpiration-regenerative cooled rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Valler, H. W.

    1979-01-01

    The analysis, design, fabrication, and testing of a liquid rocket engine thrust chamber which is gas transpiration cooled in the high heat flux convergent portion of the chamber and water jacket cooled (simulated regenerative) in the barrel and divergent sections of the chamber are described. The engine burns LOX-hydrogen propellants at a chamber pressure of 600 psia. Various transpiration coolant flow rates were tested with resultant local hot gas wall temperatures in the 800 F to 1400 F range. The feasibility of transpiration cooling with hydrogen and helium, and the use of photo-etched copper platelets for heat transfer and coolant metering was successfully demonstrated.

  19. An experimental study of the self-healing behavior of ionomeric systems under ballistic impact tests

    NASA Astrophysics Data System (ADS)

    Grande, A. M.; Coppi, S.; Di Landro, L.; Sala, G.; Giacomuzzo, C.; Francesconi, A.; Rahman, M. A.

    2012-04-01

    This research deals with the investigation of the self-healing behavior after ballistic damage of ethylene-methacrylic acid ionomers and theirs blends with epoxidized natural rubber (ENR). The self-healing capability was studied by ballistic puncture tests under different experimental conditions as sample thickness, bullet speed, diameter and shape. Bullet speed ranging from few hundreds meters per second to few km/s were employed. The healing efficiency was evaluated by applying a pressure gradient trough the plates and by checking for possible flow at the damage zone. A morphology analysis of the impact area was made observing all samples by scanning electron microscope.

  20. Momentum Flux Measurements from Under Expanded Orifices: Applications for Micropropulsion Systems

    DTIC Science & Technology

    2001-01-11

    S., Helvajian , H ., "Batch-Fabricated dA Microthrusters: Initial Results," AIAA paper 96-dpb c2988, July 1996. ,’ \\ 5. Kohler, J., Jonsson, M.,.Simu, U...experimental configuration, the accomplished at very !,v stagnation pmass flow meter operated in the continuuma c c o m p li s h e d ~ ~ ~ I t v e y k w...s a n i o n p r e s s u r er e i e t o u h t p s u e r a g , s d e . operation where the molecule mean free path is regime through the pressure r.ge

  1. Recessed impingement insert metering plate for gas turbine nozzles

    DOEpatents

    Itzel, Gary Michael; Burdgick, Steven Sebastian

    2002-01-01

    An impingement insert sleeve is provided that is adapted to be disposed in a coolant cavity defined through a stator vane. The insert has a generally open inlet end and first and second diametrically opposed, perforated side walls. A metering plate having at least one opening defined therethrough for coolant flow is mounted to the side walls to generally transverse a longitudinal axis of the insert, and is disposed downstream from said inlet end. The metering plate improves flow distribution while reducing ballooning stresses within the insert and allowing for a more flexible insert attachment.

  2. Evaluation of a hemispherical head flow direction sensor for inlet duct measurements

    NASA Technical Reports Server (NTRS)

    Bennett, D. L.

    1975-01-01

    A hemispherical head flow direction sensor was tested in a wind tunnel to evaluate its effectiveness for measuring dynamic duct flow direction angles of plus and minus 27 degrees. The tests were conducted at Reynolds numbers of 3.8 million per meter (1.0 million per foot) and 4.92 million per meter (1.5 million per foot) and at Mach numbers from 0.30 to 0.70. The design criteria for the probe are discussed and the wind tunnel results are presented. Three techniques for deriving the flow angles are described.

  3. Development of N_2O-MTV for low-speed flow and in-situ deployment to an integral effect test facility

    NASA Astrophysics Data System (ADS)

    André, Matthieu A.; Burns, Ross A.; Danehy, Paul M.; Cadell, Seth R.; Woods, Brian G.; Bardet, Philippe M.

    2018-01-01

    A molecular tagging velocity (MTV) technique is developed to non-intrusively measure velocity in an integral effect test (IET) facility simulating a high-temperature helium-cooled nuclear reactor in accident scenarios. In these scenarios, the velocities are expected to be low, on the order of 1 m/s or less, which forces special requirements on the MTV tracer selection. Nitrous oxide (N_2O) is identified as a suitable seed gas to generate NO tracers capable of probing the flow over a large range of pressure, temperature, and flow velocity. The performance of N_2O-MTV is assessed in the laboratory at temperature and pressure ranging from 295 to 781 K and 1 to 3 atm. MTV signal improves with a temperature increase, but decreases with a pressure increase. Velocity precision down to 0.004 m/s is achieved with a probe time of 40 ms at ambient pressure and temperature. Measurement precision is limited by tracer diffusion, and absorption of the tag laser beam by the seed gas. Processing by cross-correlation of single-shot images with high signal-to-noise ratio reference images improves the precision by about 10% compared to traditional single-shot image correlations. The instrument is then deployed to the IET facility. Challenges associated with heat, vibrations, safety, beam delivery, and imaging are addressed in order to successfully operate this sensitive instrument in-situ. Data are presented for an isothermal depressurized conduction cooldown. Velocity profiles from MTV reveal a complex flow transient driven by buoyancy, diffusion, and instability taking place over short (<1 s) and long (>30 min) time scales at sub-meter per second speed. The precision of the in-situ results is estimated at 0.027, 0.0095, and 0.006 m/s for a probe time of 5, 15, and 35 ms, respectively.

  4. Saturn Northern Hemisphere

    NASA Image and Video Library

    1998-12-05

    This false color picture of Saturn’s northern hemisphere was assembled from ultraviolet, violet and green images obtained Aug. 19 by Voyager 2 from a range of 7.1 million kilometers (4.4 million miles). The several weather patterns evident include three spots flowing westward at about 15 meters-per-second (33 mph). Although the cloud system associated with the western-most spot is part of this flow, the spot itself moves eastward at about 30 meters-per-second (65 mph). Their joint flow shows the anti-cyclonic rotation of the spot, which is about 3,000 km. (1,900 mi.) in diameter. The ribbon- like feature to the north marks a high-speed jet where wind speeds approach 150 meters-per-second (330 mph). http://photojournal.jpl.nasa.gov/catalog/PIA01365

  5. 40 CFR 1066.140 - Diluted exhaust flow calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... whenever corrective action does not resolve a failure to meet the diluted exhaust flow verification (i.e... subsonic venturi flow meter, a long-radius ASME/NIST flow nozzle, a smooth approach orifice, a laminar flow...

  6. Expanding the Use of Time-Based Metering: Multi-Center Traffic Management Advisor

    NASA Technical Reports Server (NTRS)

    Landry, Steven J.; Farley, Todd; Hoang, Ty

    2005-01-01

    Time-based metering is an efficient air traffic management alternative to the more common practice of distance-based metering (or "miles-in-trail spacing"). Despite having demonstrated significant operational benefit to airspace users and service providers, time-based metering is used in the United States for arrivals to just nine airports and is not used at all for non-arrival traffic flows. The Multi-Center Traffic Management Advisor promises to bring time-based metering into the mainstream of air traffic management techniques. Not constrained to operate solely on arrival traffic, Multi-Center Traffic Management Advisor is flexible enough to work in highly congested or heavily partitioned airspace for any and all traffic flows in a region. This broader and more general application of time-based metering is expected to bring the operational benefits of time-based metering to a much wider pool of beneficiaries than is possible with existing technology. It also promises to facilitate more collaborative traffic management on a regional basis. This paper focuses on the operational concept of the Multi-Center Traffic Management Advisor, touching also on its system architecture, field test results, and prospects for near-term deployment to the United States National Airspace System.

  7. Controlled Tests of Eductors and Submersible Pumps

    DTIC Science & Technology

    1994-09-01

    5 1. " 20 25 3 0 510 15 20 25 30 Time (min) Plate B63 Slurry Specific Gravity H & H Submersible Pump Clean Sand Test 1 2 I S-SG Densit MeterI SG...22 Using Differential Pressure to Measure Specific Gravity ...... .32 4-Conclusions and Recommendations ..................... 34 References...33 Figure 21. Comparison of specific gravity of the slurry as measured by the nuclear density meter and differential pressure

  8. Experimental investigation of 20 K two-stage layered active magnetic regenerative refrigerator

    NASA Astrophysics Data System (ADS)

    Park, Inmyong; Jeong, Sangkwon

    2015-12-01

    The performance of a two-stage layered AMRR is experimentally investigated. The test apparatus includes two-stage layered AMRs, low temperature superconducting (LTS) magnet which generates maximum magnetic field of 4 T, and the helium gas flow system. The helium compressor with the tandem rotary valve is employed to generate the oscillating flow of the helium gas minimizing the pressure swing effect. The mass flow rate of working fluid is controlled separately at the first and second stages of the AMR by solenoid valves. The mass flow rate of the AMRs is measured by the mass flow meter and the cryogenic hot-film sensor which is calibrated at cryogenic temperature range from 20 K to 77 K. In order to reduce the heat leak by shuttle heat transfer of the working fluid, void volumes have been implemented and connected to the cold ends of the AMR1 and AMR2. The temperature span of the AMR is recorded as 52 K and the performance of the AMR with the variation of the mass flow rate is analysed. The results show that the mass flow rate and the heat leak due to the shuttle heat transfer by oscillating working fluid are crucial factors in the AMR performance.

  9. Liquid Oxygen/Liquid Methane Test Results of the RS-18 Lunar Ascent Engine at Simulated Altitude Conditions at NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Melcher, John C., IV; Allred, Jennifer K.

    2009-01-01

    Tests were conducted with the RS-18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA's Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to 122,000 ft (37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. LO2 flow ranged from 5.9 - 9.5 lbm/sec (2.7 - 4.3 kg/sec), and LCH4 flow varied from 3.0 - 4.4 lbm/sec (1.4 - 2.0 kg/sec) during the RS-18 hot-fire test series. Propellant flow rate was measured using a coriolis mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup due to two-phase flow effects. Subsequent cold-flow testing demonstrated that the propellant manifolds must be adequately flushed in order for the coriolis flow meters to give accurate data. The coriolis flow meters were later shown to provide accurate steady-state data, but the turbine flow meter data should be used in transient phases of operation. Thrust was measured using three load cells in parallel, which also provides the capability to calculate thrust vector alignment. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes. All of these objectives were met with the RS-18 data and additional testing data from subsequent LO2/methane test programs in 2009 which included the first simulated-altitude pyrotechnic ignition demonstration of LO2/methane.

  10. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  11. Final report on CIPM key comparison CCM.FF-K6.2011: Comparison of the primary (national) standards of low-pressure gas flow

    NASA Astrophysics Data System (ADS)

    Benková, Miroslava; Makovnik, Stefan; Mickan, Bodo; Arias, Roberto; Chahine, Khaled; Funaki, Tatsuya; Li, Chunhui; Choi, Hae Man; Seredyuk, Denys; Su, Chun-Min; Windenberg, Christophe; Wright, John

    2014-01-01

    The comparison CCM.FF-K6.2011 was organized for the purpose of determination of the degree of equivalence of the national standards for low-pressure gas flow measurement over the range (2 to 100) m3/h. A rotary gas meter was used as a transfer standard. The measurements were provided at prescribed reference conditions. Eleven laboratories from four RMOs participated in this key comparison—EURAMET: PTB, Germany; SMU, Slovakia; LNE-LADG, France; SIM: NIST, USA; CENAM, Mexico; APMP: NMIJ AIST Japan; KRISS, Korea; NMI, Australia; NIM, China; CMS, Chinese Taipei; COOMET: GP GP Ivano-Frankivs'kstandart-metrologia, Ukraine and all participants reported independent traceability chains to the SI. All results were used in the determination of the key comparison reference value (KCRV) and the uncertainty of the KCRV. The reference value was determined at each flow separately following procedure A presented by M G Cox. The degree of equivalence with the KCRV was also calculated for each flow and laboratory. All reported results were consistent with the KCRV. This KCRV can now be used in the further regional comparisons. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. Measurements and calculations of water velocity, momentum flux, and related flow parameters obtaned from single-phase water integral acceptance tests of the PKL instrumented spool pieces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, W.

    The operation of the emergency core cooling system and its related steam-binding problems in pressurized water reactors is the subject of a cooperative study by the United States, Germany, and Japan. Lawrence Livermore Laboratory and EG and G, Inc., San Ramon Operations, are responsible for the design, hardware, and software of the 80.8-mm and 113-mm spool piece measurement systems for the German Primarkreislauf (PKL) Test Facility at Kraftwerk Union in Erlangen, West Germany. This work was done for the US Nuclear Regulatory Commission, Division of Reactor Safety Research, under its 3-D Technical Support and Instrumentation Program. Four instrumented spools capablemore » of measuring individual phase parameters in two-phase flows were constructed. Each spool contains a flow turbine, drag screen, three-beam densitometer, and pressure and temperature probes. A computerized data acquisition system is also provided to store and analyze data from the four spools. The four spools were shipped to the PKL Test Facility in West Germany for acceptance testing in a water-flow loop. Spool measurements of velocity and momentum flux were compared to the values obtained from an orifice meter installed in the loop piping system. The turbine flowmeter velocity data for all tests were within allowable tolerances. Drag screen momentum flux measurements were also within tolerance with the exception of a few points.« less

  13. Transport of Carbon Tetrachloride in a Fractured Vadose Zone due to Atmospheric Pressure Fluctuations, Diffusion, and Vapor Density

    NASA Astrophysics Data System (ADS)

    McCray, J. E.; Downs, W.; Falta, R. W.; Housley, T.

    2005-12-01

    DNAPL sources of carbon tetrachloride (CT) vapors are of interest at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The site is underlain by thick fractured basalt that includes sedimentary interbeds, each are a few meters thick. Daily atmospheric pressure fluctuations serve as driving forces for CT vapor transport in the subsurface. Other important transport processes for vapor movement include gas-phase diffusion and density-driven transport. The objective of this research is to investigate the influence and relative importance of these processes on gaseous transport of CT. Gas pressure and vapor concentration measurements were conducted at various depths in two wells. A numerical multiphase flow model (TOUGH2), calibrated to field pressure data, is used to conduct sensitivity analyses to elucidate the importance of the different transport mechanisms. Results show that the basalt is highly permeable to vertical air flow. The pressure dampening occurs mainly in the sedimentary interbeds. Model-calibrated permeability values for the interbeds are similar to those obtained in a study by the U.S. Geological Survey for shallow sediments, and an order of magnitude higher than column-scale values obtained by previous studies conducted by INEEL scientists. The transport simulations indicate that considering the effect of barometric pressure changes is critical to simulating transport of pollutants in the vadose zone above the DNAPL source. Predicted concentrations can be orders of magnitude smaller than actual concentrations if the effect is not considered. Below the DNAPL vapor source, accounting for density and diffusion alone would yield acceptable results provided that a 20% error in concentrations are acceptable, and that simulating concentrations trends (and not actual concentrations) is the primary goal.

  14. Methods of measurement signal acquisition from the rotational flow meter for frequency analysis

    NASA Astrophysics Data System (ADS)

    Świsulski, Dariusz; Hanus, Robert; Zych, Marcin; Petryka, Leszek

    One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw) rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.

  15. Instantaneous stroke volume in man during lower body negative pressure /LBNP/

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Richards, K. L.; Greene, E. R.; Eldridge, M. W.; Hoekenga, D. E.; Venters, M. D.; Luft, U. C.

    1982-01-01

    Results of an examination of the instantaneous time course of the stroke volume (SV) and cardiac output (Q) in response to the onset and release of -50 torr lower body negative pressure (LBNP) are reported. Six male subjects were sealed into a LBNP box up to the iliac crest while being monitored by echocardiograph for centerlamina blood velocity, fluid displacement, stroke volume, heart rate, and leg volume. Particular use was made of pulsed ultrasonic Doppler velocity meters for measuring the blood velocities and flow dynamics. Measurements were made of the subjects continuously beginning from 20 sec prior to and one min after LBNP onset and release. A linear fall in the SV was observed with LBNP at 49% of the baseline value after 33 sec. A 62% drop, the lowest, was detected after 8 min of LBNP. The leg volume was inversely related to Q for the duration of the experiment.

  16. 40 CFR 1065.340 - Diluted exhaust flow (CVS) calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... action does not resolve a failure to meet the diluted exhaust flow verification (i.e., propane check) in... subsonic venturi flow meter, a long-radius ASME/NIST flow nozzle, a smooth approach orifice, a laminar flow...

  17. "Physically-based" numerical experiment to determine the dominant hillslope processes during floods?

    NASA Astrophysics Data System (ADS)

    Gaume, Eric; Esclaffer, Thomas; Dangla, Patrick; Payrastre, Olivier

    2016-04-01

    To study the dynamics of hillslope responses during flood event, a fully coupled "physically-based" model for the combined numerical simulation of surface runoff and underground flows has been developed. A particular attention has been given to the selection of appropriate numerical schemes for the modelling of both processes and of their coupling. Surprisingly, the most difficult question to solve, from a numerical point of view, was not related to the coupling of two processes with contrasted kinetics such as surface and underground flows, but to the high gradient infiltration fronts appearing in soils, source of numerical diffusion, instabilities and sometimes divergence. The model being elaborated, it has been successfully tested against results of high quality experiments conducted on a laboratory sandy slope in the early eighties, which is still considered as a reference hillslope experimental setting (Abdul & Guilham). The model appeared able to accurately simulate the pore pressure distributions observed in this 1.5 meter deep and wide laboratory hillslope, as well as its outflow hydrograph shapes and the measured respective contributions of direct runoff and groundwater to these outflow hydrographs. Based on this great success, the same model has been used to simulate the response of a theoretical 100-meter wide and 10% sloped hillslope, with a 2 meter deep pervious soil and impervious bedrock. Three rain events have been tested: a 100 millimeter rainfall event over 10 days, over 1 day or over one hour. The simulated responses are hydrologically not realistic and especially the fast component of the response, that is generally observed in the real-world and explains flood events, is almost absent of the simulated response. Thinking a little about the whole problem, the simulation results appears totally logical according to the proposed model. The simulated response, in fact a recession hydrograph, corresponds to a piston flow of a relatively uniformly saturated hillslope leading to a constant discharge over several days. Some ingredients are clearly missing in the proposed model to reproduce hydrologically sensible responses. Heterogeneities are necessary to generate a variety of residence times and especially preferential flows must clearly be present to generate the fast component of hillslope responses. The importance of preferential flows in hillslope hydrology has been confirmed since this reported failure by several hillslope field experiments. We let also the readers draw their own conclusions about the numerous numerical models, that look very much alike the model proposed here, even if generally much more simplified, but representing the watersheds as much too homogeneous neglecting heterogeneities and preferential flows and pretending to be "physically based"…

  18. Two-phase flow characterization based on advanced instrumentation, neural networks, and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Mi, Ye

    1998-12-01

    The major objective of this thesis is focused on theoretical and experimental investigations of identifying and characterizing vertical and horizontal flow regimes in two-phase flows. A methodology of flow regime identification with impedance-based neural network systems and a comprehensive model of vertical slug flow have been developed. Vertical slug flow has been extensively investigated and characterized with geometric, kinematic and hydrodynamic parameters. A multi-sensor impedance void-meter and a multi-sensor magnetic flowmeter were developed. The impedance void-meter was cross-calibrated with other reliable techniques for void fraction measurements. The performance of the impedance void-meter to measure the void propagation velocity was evaluated by the drift flux model. It was proved that the magnetic flowmeter was applicable to vertical slug flow measurements. Separable signals from these instruments allow us to unearth most characteristics of vertical slug flow. A methodology of vertical flow regime identification was developed. Supervised neural network and self-organizing neural network systems were employed. First, they were trained with results from an idealized simulation of impedance in a two-phase mixture. The simulation was mainly based on Mishima and Ishii's flow regime map, the drift flux model, and the newly developed model of slug flow. Then, these trained systems were tested with impedance signals. The results showed that the neural network systems were appropriate classifiers of vertical flow regimes. The theoretical models and experimental databases used in the simulation were reliable. Furthermore, this approach was applied successfully to horizontal flow identification. A comprehensive model was developed to predict important characteristics of vertical slug flow. It was realized that the void fraction of the liquid slug is determined by the relative liquid motion between the Taylor bubble tail and the Taylor bubble wake. Relying on this understanding and experimental results, a special relationship was built for the void fraction of the liquid slug. The prediction of the void fraction of the liquid slug was considerably improved. Experimental characterization of vertical slug flows was performed extensively with the impedance void-meter and the magnetic flowmeter. The theoretical predictions were compared with the experimental results. The agreements between them are very satisfactory.

  19. Measurements on Compressor-Blade Lattices

    NASA Technical Reports Server (NTRS)

    Weinig, F.

    1948-01-01

    At the end & 1940 an investigation of a guide-vane lattice for the compressor of a TL unit [NACA comment: Turbojet] was requested. The greatest possible Mach number had to be attained. The investigation was conducted with an annular lattice subjected to axial flow. A direct-current shunt motor with a useful output of 235 horsepower at en engine speed of 1800 qm was available for driving the necessary blower. In designing the blower the speed was set at 10,000 rpm. A gear box fran an armored car was used as gearing in which supplementary fresh oil lubrication was installed. The gear box was used to step up from low to high speeds. The blower that was designed is two stage. The hub-tip ratios are 0.79 to 0.82; the design pressure coefficient for each stage is 0.6 and the design flow coefficient is 0.4. The rotor dosimeter D sub a is 0.39 meters and the resulting peripheral speed is u sub a = 204 meters per second [NACA comment: Value corrected from the German]. The blower was entirely satisfactory. The construction of the test stand is shown in figure 1. The air flows in through an annular Inlet, which is used in the measurement of the quantity of air, and is deflected into an inward-pointing radial slot. A spiral motion is imparted to the air by a guide-vane installation manually adjustable as desired, which enables injection of the air, after it has been deflected from the radial direction to the axial direction, into the lattice being investigated at any desired angle.

  20. Evaluation of Flush-Mounted, S-Duct Inlets With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Morehouse, Melissa B.

    2003-01-01

    A new high Reynolds number test capability for boundary layer ingesting inlets has been developed for the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. Using this new capability, an experimental investigation of four S-duct inlet configurations with large amounts of boundary layer ingestion (nominal boundary layer thickness of about 40% of inlet height) was conducted at realistic operating conditions (high subsonic Mach numbers and full-scale Reynolds numbers). The objectives of this investigation were to 1) develop a new high Reynolds number, boundary-layer ingesting inlet test capability, 2) evaluate the performance of several boundary layer ingesting S-duct inlets, 3) provide a database for CFD tool validation, and 4) provide a baseline inlet for future inlet flow-control studies. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on duct exit diameter) from 5.1 million to a fullscale value of 13.9 million, and inlet mass-flow ratios from 0.39 to 1.58 depending on Mach number. Results of this investigation indicate that inlet pressure recovery generally decreased and inlet distortion generally increased with increasing Mach number. Except at low Mach numbers, increasing inlet mass-flow increased pressure recovery and increased distortion. Increasing the amount of boundary layer ingestion (by decreasing inlet throat height and increasing inlet throat width) or ingesting a boundary layer with a distorted profile decreased pressure recovery and increased distortion. Finally, increasing Reynolds number had almost no effect on inlet distortion but increased inlet recovery by about one-half percent at a Mach number near cruise.

Top