Wang, Yejun; Kulatilaka, Waruna D
2017-04-10
In most coherent spectroscopic methods used in gas-phase laser diagnostics, multiple laser beams are focused and crossed at a specific location in space to form the probe region. The desired signal is then generated as a result of nonlinear interactions between the beams in this overlapped region. When such diagnostic schemes are implemented in practical devices having turbulent reacting flow fields with refractive index gradients, the resulting beam steering can give rise to large measurement uncertainties. The objective of this work is to simulate beam-steering effects arising from pressure and temperature gradients in gas-phase media using an optical ray tracing approach. The ZEMAX OpticStudio software package is used to simulate the beam crossing and uncrossing effects in the presence of pressure and temperature gradients, specifically the conditions present in high-pressure, high-temperature combustion devices such as gas turbine engines. Specific cases involving two-beam and three-beam crossing configurations are simulated. The model formulation, the effects of pressure and temperature gradients, and the resulting beam-steering effects are analyzed. The results show that thermal gradients in the range of 300-3000 K have minimal effects, while pressure gradients in the range of 1-50 atm result in pronounced beam steering and the resulting signal fluctuations in the geometries investigated. However, with increasing pressures, the temperature gradients can also have a pronounced effect on the resultant signal levels.
Flow-related Right Ventricular - Pulmonary Arterial Pressure Gradients during Exercise.
Wright, Stephen P; Opotowsky, Alexander R; Buchan, Tayler A; Esfandiari, Sam; Granton, John T; Goodman, Jack M; Mak, Susanna
2018-06-06
The assumption of equivalence between right ventricular and pulmonary arterial systolic pressure is fundamental to several assessments of right ventricular or pulmonary vascular hemodynamic function. Our aims were to 1) determine whether systolic pressure gradients develop across the right ventricular outflow tract in healthy adults during exercise, 2) examine the potential correlates of such gradients, and 3) consider the effect of such gradients on calculated indices of right ventricular function. Healthy untrained and endurance-trained adult volunteers were studied using right-heart catheterization at rest and during submaximal cycle ergometry. Right ventricular and pulmonary artery pressures were simultaneously transduced, and cardiac output was determined by thermodilution. Systolic pressures, peak and mean gradients, and indices of chamber, vascular, and valve function were analyzed offline. Summary data are reported as mean ± standard deviation or median [interquartile range]. No significant right ventricular outflow tract gradients were observed at rest (mean gradient = 4 [3-5] mmHg), and calculated effective orifice area was 3.6±1.0 cm2. Right ventricular systolic pressure increases during exercise were greater than that of pulmonary artery systolic pressure. Accordingly, mean gradients developed during light exercise (8 [7-9] mmHg) and increased during moderate exercise (12 [9-14] mmHg, p < 0.001). The magnitude of the mean gradient was linearly related to cardiac output (r2 = 0.70, p < 0.001). In healthy adults without pulmonic stenosis, systolic pressure gradients develop during exercise, and the magnitude is related to blood flow rate.
Acoustic waves in gases with strong pressure gradients
NASA Technical Reports Server (NTRS)
Zorumski, William E.
1989-01-01
The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.
Regional volume changes in canine lungs suspended in air
NASA Technical Reports Server (NTRS)
Abbrecht, Peter H.; Kyle, Richard R.; Bryant, Howard J.; Feuerstein, Irwin
1995-01-01
The purpose of this study was to determine the effect of the absence of a pleural pressure gradient (simulating the presumed condition found in microgravity) upon regional expansion of the lung. We attempted to produce a uniform pressure over the surface of the lung by suspending excised lungs in air. Such studies should help determine whether or not the absence of a pleural pressure gradient leads to uniform ventilation. A preparation in which there is no pleural pressure gradient should also be useful in studying non-gravitational effects on ventilation distribution.
Confinement effects in premelting dynamics
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John
2017-11-01
We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films studied in a wide variety of materials using a power law and we examine the consequent evolution of the elastic wall. We treat (i) a range of interactions that are known to underlie interfacial premelting and (ii) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at larger temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.
Confinement effects in premelting dynamics
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John S.
2017-11-01
We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films, studied in a wide variety of materials, using a power law and we examine the consequent evolution of the confining elastic wall. We treat (1) a range of interactions that are known to underlie interfacial premelting and (2) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at higher temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.
Optimal disturbances in boundary layers subject to streamwise pressure gradient
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Tumin, Anatoli
2003-01-01
An analysis of the optimal non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Scan profiles indicate that a favorable pressure gradient decreases the non-modal growth, while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point.
Noelting, Jessica; Ratuapli, Shiva K; Bharucha, Adil E; Harvey, Doris M; Ravi, Karthik; Zinsmeister, Alan R
2012-10-01
High-resolution manometry (HRM) is used to measure anal pressures in clinical practice but normal values have not been available. Although rectal evacuation is assessed by the rectoanal gradient during simulated evacuation, there is substantial overlap between healthy people and defecatory disorders, and the effects of age are unknown. We evaluated the effects of age on anorectal pressures and rectal balloon expulsion in healthy women. Anorectal pressures (HRM), rectal sensation, and balloon expulsion time (BET) were evaluated in 62 asymptomatic women ranging in age from 21 to 80 years (median age 44 years) without risk factors for anorectal trauma. In total, 30 women were aged <50 years. Age is associated with lower (r=-0.47, P<0.01) anal resting (63 (5) (≥50 years), 88 (3) (<50 years), mean (s.e.m.)) but not squeeze pressures; higher rectal pressure and rectoanal gradient during simulated evacuation (r=0.3, P<0.05); and a shorter (r=-0.4, P<0.01) rectal BET (17 (9) s (≥50 years) vs. 31 (10) s (<50 years)). Only 5 women had a prolonged (>60 s) rectal BET but 52 had higher anal than rectal pressures (i.e., negative gradient) during simulated evacuation. The gradient was more negative in younger (-41 (6) mm Hg) than older (-12 (6) mm Hg) women and negatively (r=-0.51, P<0.0001) correlated with rectal BET but only explained 16% of the variation in rectal BET. These observations provide normal values for anorectal pressures by HRM. Increasing age is associated with lower anal resting pressure, a more positive rectoanal gradient during simulated evacuation, and a shorter BET in asymptomatic women. Although the rectoanal gradient is negatively correlated with rectal BET, this gradient is negative even in a majority of asymptomatic women, undermining the utility of a negative gradient for diagnosing defecatory disorders by HRM.
Supersonic turbulent boundary layers with periodic mechanical non-equilibrium
NASA Astrophysics Data System (ADS)
Ekoto, Isaac Wesley
Previous studies have shown that favorable pressure gradients reduce the turbulence levels and length scales in supersonic flow. Wall roughness has been shown to reduce the large-scales in wall bounded flow. Based on these previous observations new questions have been raised. The fundamental questions this dissertation addressed are: (1) What are the effects of wall topology with sharp versus blunt leading edges? and (2) Is it possible that a further reduction of turbulent scales can occur if surface roughness and favorable pressure gradients are combined? To answer these questions and to enhance the current experimental database, an experimental analysis was performed to provide high fidelity documentation of the mean and turbulent flow properties along with surface and flow visualizations of a high-speed (M = 2.86), high Reynolds number (Retheta ≈ 60,000) supersonic turbulent boundary layer distorted by curvature-induced favorable pressure gradients and large-scale ( k+s ≈ 300) uniform surface roughness. Nine models were tested at three separate locations. Three pressure gradient models strengths (a nominally zero, a weak, and a strong favorable pressure gradient) and three roughness topologies (aerodynamically smooth, square, and diamond shaped roughness elements) were used. Highly resolved planar measurements of mean and fluctuating velocity components were accomplished using particle image velocimetry. Stagnation pressure profiles were acquired with a traversing Pitot probe. Surface pressure distributions were characterized using pressure sensitive paint. Finally flow visualization was accomplished using schlieren photographs. Roughness topology had a significant effect on the boundary layer mean and turbulent properties due to shock boundary layer interactions. Favorable pressure gradients had the expected stabilizing effect on turbulent properties, but the improvements were less significant for models with surface roughness near the wall due to increased tendency towards flow separation. It was documented that proper roughness selection coupled with a sufficiently strong favorable pressure gradient produced regions of "negative" production in the transport of turbulent stress. This led to localized areas of significant turbulence stress reduction. With proper roughness selection and sufficient favorable pressure gradient strength, it is believed that localized relaminarization of the boundary layer is possible.
Secondary subharmonic instability of boundary layers with pressure gradient and suction
NASA Technical Reports Server (NTRS)
El-Hady, Nabil M.
1988-01-01
Three-dimensional linear secondary instability is investigated for boundary layers with pressure gradient and suction in the presence of a finite amplitude TS wave. The focus is on principal parametric resonance responsible for a strong growth of subharmonics in a low disturbance environment. Calculations are presented for the effect of pressure gradients and suction on controlling the onset and amplification of the secondary instability.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.
1990-01-01
The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.
Large-eddy simulations of adverse pressure gradient turbulent boundary layers
NASA Astrophysics Data System (ADS)
Bobke, Alexandra; Vinuesa, Ricardo; Örlü, Ramis; Schlatter, Philipp
2016-04-01
Adverse pressure-gradient (APG) turbulent boundary layers (TBL) are studied by performing well-resolved large-eddy simulations. The pressure gradient is imposed by defining the free-stream velocity distribution with the description of a power law. Different inflow conditions, box sizes and upper boundary conditions are tested in order to determine the final set-up. The statistics of turbulent boundary layers with two different power-law coefficients and thus magnitudes of adverse pressure gradients are then compared to zero pressure-gradient (ZPG) data. The effect of the APG on TBLs is manifested in the mean flow through a much more prominent wake region and in the Reynolds stresses through the existence of an outer peak. The pre-multiplied energy budgets show that more energy is transported from the near-wall region to farther away from the wall.
Optimal Disturbances in Boundary Layers Subject to Streamwise Pressure Gradient
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Tumin, Anatoli
2003-01-01
An analysis of the non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner- Skan profiles indicate that a favorable pressure gradient decreases the non-modal growth while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary-layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point. The amplification is found to be small at the LPT s very low Reynolds numbers, but there is a possibility to enhance the transient energy growth by means of wall cooling.
Del Grande, Leonardo M; Herbella, Fernando A M; Bigatao, Amilcar M; Jardim, Jose R; Patti, Marco G
2016-10-01
Chronic obstructive pulmonary disease (COPD) patients have a high incidence of gastroesophageal reflux disease (GERD) whose pathophysiology seems to be linked to an increased trans-diaphragmatic pressure gradient and not to a defective esophagogastric barrier. Inhaled beta agonist bronchodilators are a common therapy used by patients with COPD. This drug knowingly not only leads to a decrease in the lower esophageal sphincter (LES) resting pressure, favoring GERD, but also may improve ventilatory parameters, therefore preventing GERD. This study aims to evaluate the effect of inhaled beta agonist bronchodilators on the trans-diaphragmatic pressure gradient and the esophagogastric barrier. We studied 21 patients (mean age 67 years, 57 % males) with COPD and GERD. All patients underwent high-resolution manometry and esophageal pH monitoring. Abdominal and thoracic pressure, trans-diaphragmatic pressure gradient (abdominal-thoracic pressure), and the LES retention pressure (LES basal pressure-transdiaphragmatic gradient) were measured before and 5 min after inhaling beta agonist bronchodilators. The administration of inhaled beta agonist bronchodilators leads to the following: (a) a simultaneous increase in abdominal and thoracic pressure not affecting the trans-diaphragmatic pressure gradient and (b) a decrease in the LES resting pressure with a reduction of the LES retention pressure. In conclusion, inhaled beta agonist bronchodilators not only increase the thoracic pressure but also lead to an increased abdominal pressure favoring GERD by affecting the esophagogastric barrier.
On the impact of adverse pressure gradient on the supersonic turbulent boundary layer
NASA Astrophysics Data System (ADS)
Wang, Qian-Cheng; Wang, Zhen-Guo; Zhao, Yu-Xin
2016-11-01
By employing the particle image velocimetry, the mean and turbulent characteristics of a Mach 2.95 turbulent boundary layer are experimentally investigated without the impact of curvature. The physical mechanism with which the streamwise adverse pressure gradient affects the supersonic boundary layer is revealed. The data are compared to that of the concave boundary layer with similar streamwise distributions of wall static pressure to clarify the separate impacts of the adverse pressure gradient and the concave curvature. The logarithmic law is observed to be well preserved for both of the cases. The dip below the logarithmic law is not observed in present investigation. Theoretical analysis indicates that it could be the result of compromise between the opposite impacts of the compression wave and the increased turbulent intensity. Compared to the zero pressure gradient boundary layer, the principal strain rate and the turbulent intensities are increased by the adverse pressure gradient. The shear layer formed due the hairpin packets could be sharpened by the compression wave, which leads to higher principal strain rate and the associated turbulent level. Due to the additional impact of the centrifugal instability brought by the concave wall, even higher turbulent intensities than that of the adverse pressure gradient case are introduced. The existence of velocity modes within the zero pressure gradient boundary layer suggests that the large scale motions are statistically well organized. The generation of new velocity modes due to the adverse pressure gradient indicates that the turbulent structure is changed by the adverse pressure gradient, through which more turbulence production that cannot be effectively predicted by the Reynolds-stress transport equations could be brought.
NASA Technical Reports Server (NTRS)
1973-01-01
Some experiments on turbulent free shear layers in pressure gradients are discussed. Topics covered in the discussion include: (1) two dimensional vortex structures, (2) the effect of channel walls, and (3) the case of a mixing layer in pressure gradient.
Evolution of a Planar Wake in Adverse Pressure Gradient
NASA Technical Reports Server (NTRS)
Driver, David M.; Mateer, George G.
2016-01-01
In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.
NASA Astrophysics Data System (ADS)
Hsu, Shao-Yiu; Glantz, Roland; Hilpert, Markus
2011-11-01
The mobilization of residual oil blobs in porous media is of major interest to the petroleum industry. We studied the Jamin effect, which hampers the blob mobilization, experimentally in a pore doublet model and explain the Jamin effect through contact angle hysteresis. A liquid blob was trapped in one of the tubes of the pore doublet model and then subjected to different pressure gradients. We measured the contact angles (in 2D and 3D) as well as the mean curvatures of the blob. Due to gravity effects and hysteresis, the contact angles of the blob were initially (zero pressure gradient) non-uniform and exhibited a pronounced altitude dependence. As the pressure gradient was increased, the contact angles became more uniform and the altitude dependence of the contact angle decreased. At the same time, the mean curvature of the drainage interface increased, and the mean curvature of the imbibition interface decreased. The pressure drops across the pore model, which we inferred with our theory from the measured contact angles and mean curvatures, were in line with the directly measured pressure data. We not only show that a trapped blob can sustain a finite pressure gradient but also develop methods to measure the contact angles and mean curvatures in 3D.
Controlled droplet transport to target on a high adhesion surface with multi-gradients
Deng, Siyan; Shang, Weifeng; Feng, Shile; Zhu, Shiping; Xing, Yan; Li, Dan; Hou, Yongping; Zheng, Yongmei
2017-01-01
We introduce multi-gradients including Laplace pressure gradient, wettable gradient and wettable different gradient on a high adhesion surface via special wedge-pattern and improved anodic oxidation method. As a result of the cooperative effect mentioned above, controlled directional motion of a droplet on a high adhesion surface is realized, even when the surface is turned upside down. The droplet motion can be predicted and the movement distances can be controlled by simply adjusting the wedge angle and droplet volume. More interestingly, when Laplace pressure gradient is introduced on a V-shaped wettable gradient surface, two droplets can move toward one another as designed. PMID:28368020
Feng, Biao; Levitas, Valery I
2017-04-21
The main principles of producing a region near the center of a sample, compressed in a diamond anvil cell (DAC), with a very high pressure gradient and, consequently, with high pressure are predicted theoretically. The revealed phenomenon of generating extremely high pressure gradient is called the pressure self-focusing effect. Initial analytical predictions utilized generalization of a simplified equilibrium equation. Then, the results are refined using our recent advanced model for elastoplastic material under high pressures in finite element method (FEM) simulations. The main points in producing the pressure self-focusing effect are to use beveled anvils and reach a very thin sample thickness at the center. We find that the superposition of torsion in a rotational DAC (RDAC) offers drastic enhancement of the pressure self-focusing effect and allows one to reach the same pressure under a much lower force and deformation of anvils.
Hosking, S W; Robinson, P; Johnson, A G
1987-01-01
To assess whether Valsalva's manoeuvre might cause variceal bleeding, 22 patients with oesophageal varices were studied. In 12 patients who received no previous treatment to their varices the median pressure gradient across the varix wall at rest was 19 (6-36) mmHg, and in 10 patients whose varices were thrombosed at their distal end the median pressure gradient in the proximal patent varix was 8 (1-6) mmHg. In untreated patients groups, the pressure gradient rose by 6-12 mmHg during Valsalva's manoeuvre in four patients, fell by 4-11 mmHg in five patients and was virtually unchanged in the remainder. These changes seem unlikely to cause variceal bleeding. Patients who repeated Valsalva's manoeuvre showed similar changes on each occasion. Six patients in the untreated group also received hyoscinbutylbromide 20 mg iv. No change was seen in the pressure gradient in five patients, suggesting that it is of little value in preventing variceal bleeding. PMID:3500098
Keshavarz-Motamed, Zahra; Nezami, Farhad Rikhtegar; Partida, Ramon A.; Nakamura, Kenta; Staziaki, Pedro Vinícius; Ben-Assa, Eyal; Ghoshhajra, Brian; Bhatt, Ami B.; Edelman, Elazer R.
2017-01-01
OBJECTIVES To investigate the impact of transcatheter intervention on left ventricular (LV) function and aortic hemodynamics in patients with mild coarctation of the aorta (COA). BACKGROUND The optimal method and timing of transcatheter intervention for COA remains unclear, especially when the severity of COA is mild (peak-to-peak trans-coarctation pressure gradient, PKdP < 20 mmHg). Debate rages regarding the risk/benefit ratio of intervention vs. long-term effects of persistent minimal gradient in this heterogeneous population with differing blood pressures, ventricular function and peripheral perfusion. METHODS We developed a unique computational fluid dynamics and lumped parameter modeling framework based on patient-specific hemodynamic input parameters and validated it against patient-specific clinical outcomes (pre- and post-intervention). We used clinically measured hemodynamic metrics and imaging of the aorta and the LV in thirty-four patients with mild COA to make these correlations. RESULTS Despite dramatic reduction in trans-coarctation pressure gradient (catheter and Doppler echocardiography pressure gradients reduced 75% and 47.3%,), there was only modest effect on aortic flow and no significant impact on aortic shear stress (maximum time-averaged wall shear stress in descending aorta was reduced 5.1%). In no patient did transcatheter intervention improve LV function (e.g., stroke work and normalized stroke work were reduced by only 4.48% and 3.9%). CONCLUSIONS Transcatheter intervention which successfully relieves mild COA pressure gradients does not translate to decrease myocardial strain. The effects of intervention were determined to the greatest degree by ventricular-vascular coupling hemodynamics, and provide a novel valuable mechanism to evaluate patients with COA which may influence clinical practice. PMID:27659574
Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar
NASA Astrophysics Data System (ADS)
Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian
2017-06-01
Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.
On the physics of the pressure and temperature gradients in the edge of tokamak plasmas
NASA Astrophysics Data System (ADS)
Stacey, Weston M.
2018-04-01
An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.
Computation of Turbulent Wake Flows in Variable Pressure Gradient
NASA Technical Reports Server (NTRS)
Duquesne, N.; Carlson, J. R.; Rumsey, C. L.; Gatski, T. B.
1999-01-01
Transport aircraft performance is strongly influenced by the effectiveness of high-lift systems. Developing wakes generated by the airfoil elements are subjected to strong pressure gradients and can thicken very rapidly, limiting maximum lift. This paper focuses on the effects of various pressure gradients on developing symmetric wakes and on the ability of a linear eddy viscosity model and a non-linear explicit algebraic stress model to accurately predict their downstream evolution. In order to reduce the uncertainties arising from numerical issues when assessing the performance of turbulence models, three different numerical codes with the same turbulence models are used. Results are compared to available experimental data to assess the accuracy of the computational results.
De Pauw, Ruben; Swier, Tim; Degreef, Bart; Desmet, Gert; Broeckhoven, Ken
2016-11-18
The limits in operating pressures are extended for narrow-bore columns in gradient elution up to 2000bar. As the required pumps for these pressures are incompatible with common chromatographic solvents and are not suitable to apply a mobile phase composition gradient, a mobile phase delivery and injection system is described and experimentally validated which allows to use any possible chromatographic solvent in isocratic and gradient elution. The mobile phase delivery and injection system also allows to perform multiple separations without the need to depressurize the column. This system consists out of 5 dual on/off valves and two large volume loops in which the gradient and equilibration volume of initial mobile phase are loaded by a commercial liquid chromatography pump. The loops are then flushed toward the column at extreme pressures. The mobile phase delivery and injection system is first evaluated in isocratic elution and shows a comparable performance to a state-of-the-art commercial flow-through-needle injector but with twice the pressure rating. Distortion of the loaded gradient by dispersion in the gradient storage loop is studied. The effect of the most important parameters (such as flow rate, pressure and gradient steepness) is experimentally investigated. Different gradient steepnesses and volumes can be applied at different flow rates and operating pressures with a good repeatability. Due to the isobaric operation of the pumps, the gradient is monitored in real-time by a mass flow meter installed at the detector outlet. The chromatograms are then converted from time to volume-base. A separation of a 19-compound sample is performed on a 300×2.1mm column at 1000bar and on a 600×2.1mm column at 2000bar. The peak capacity was found to increase from 141 to 199 and thus scales with L as is predicted by theory. This allows to conclude that the inlet pressure for narrow-bore columns in gradient elution can be increased up to 2000bar without fundamental pressure-induced limitations. Copyright © 2016 Elsevier B.V. All rights reserved.
A Study of Wake Development and Structure in Constant Pressure Gradients
NASA Technical Reports Server (NTRS)
Thomas, Flint O.; Nelson, R. C.; Liu, Xiaofeng
2000-01-01
Motivated by the application to high-lift aerodynamics for commercial transport aircraft, a systematic investigation into the response of symmetric/asymmetric planar turbulent wake development to constant adverse, zero, and favorable pressure gradients has been conducted. The experiments are performed at a Reynolds number of 2.4 million based on the chord of the wake generator. A unique feature of this wake study is that the pressure gradients imposed on the wake flow field are held constant. The experimental measurements involve both conventional LDV and hot wire flow field surveys of mean and turbulent quantities including the turbulent kinetic energy budget. In addition, similarity analysis and numerical simulation have also been conducted for this wake study. A focus of the research has been to isolate the effects of both pressure gradient and initial wake asymmetry on the wake development. Experimental results reveal that the pressure gradient has a tremendous influence on the wake development, despite the relatively modest pressure gradients imposed. For a given pressure gradient, the development of an initially asymmetric wake is different from the initially symmetric wake. An explicit similarity solution for the shape parameters of the symmetric wake is obtained and agrees with the experimental results. The turbulent kinetic energy budget measurements of the symmetric wake demonstrate that except for the convection term, the imposed pressure gradient does not change the fundamental flow physics of turbulent kinetic energy transport. Based on the turbulent kinetic energy budget measurements, an approach to correct the bias error associated with the notoriously difficult dissipation estimate is proposed and validated through the comparison of the experimental estimate with a direct numerical simulation result.
NASA Technical Reports Server (NTRS)
Tumin, Anatoli; Ashpis, David E.
2003-01-01
An analysis of the non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Skan profiles indicate that a favorable pressure gradient decreases the non-modal growth while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point. At very low Reynolds numbers, there is a possibility to enhance the transient energy growth by means of wall cooling.
Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens
Gao, Junyuan; Sun, Xiurong; White, Thomas W.; Delamere, Nicholas A.; Mathias, Richard T.
2015-01-01
In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. PMID:26536260
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer to space shuttle reusable surface insulation (RSI) tile array gaps under thick, turbulent boundary layer conditions. Heat transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel wall boundary layer at a nominal freestream Mach number of 10.3 and freestream unit Reynolds numbers of 1.6, 3.3, and and 6.1 million per meter. Transverse pressure gradients were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel wall boundary layer flow was obtained by measurement of boundary layer pitot pressure profiles, and flat plate wall pressure and heat transfer. Flat plate wall heat transfer data were correlated and a method was derived for prediction of smooth, curved array heat transfer in the highly three-dimensional tunnel wall boundary layer flow and simulation of full-scale space shuttle vehicle pressure gradient levels was assessed.
An analysis of induced pressure fields in electroosmotic flows through microchannels.
Zhang, Yonghao; Gu, Xiao-Jun; Barber, Robert W; Emerson, David R
2004-07-15
Induced pressure gradients are found to cause band-broadening effects which are important to the performance of microfluidic devices, such as capillary electrophoresis and capillary chromatography. An improved understanding of the underlying mechanisms causing an induced pressure gradient in electroosmotic flows is presented. The analysis shows that the induced pressure distribution is the key to understanding the experimentally observed phenomena of leakage flows. A novel way of determining the static pressures at the inlet and outlet of microchannels is also presented that takes account of the pressure losses due to flow contraction and expansion. These commonly neglected pressure losses at the channel entrance and outlet are shown to be important in accurately describing the flow. The important parameters that define the effect of induced pressure on the flows are discussed, which may facilitate the design of improved microfluidic devices. The present model clearly identifies the mechanism behind the experimentally observed leakage flows, which is further confirmed by numerical simulations. Not only can the leakage flow occur from the electric-field-free side channel to the main channel, but also the fluid in the main channel can be attracted into the side channel by the induced pressure gradient. Copyright 2004 Elsevier Inc.
Rosemurgy, A S; McAllister, E W; Godellas, C V; Goode, S E; Albrink, M H; Fabri, P J
1995-12-01
With the advent of transjugular intrahepatic porta-systemic stent shunt and the wider application of the surgically placed small diameter prosthetic H-graft portacaval shunt (HGPCS), partial portal decompression in the treatment of portal hypertension has received increased attention. The clinical results supporting the use of partial portal decompression are its low incidence of variceal rehemorrhage due to decreased portal pressures and its low rate of hepatic failure, possibly due to maintenance of blood flow to the liver. Surprisingly, nothing is known about changes in portal hemodynamics and effective hepatic blood flow following partial portal decompression. To prospectively evaluate changes in portal hemodynamics and effective hepatic blood flow brought about by partial portal decompression, the following were determined in seven patients undergoing HGPCS: intraoperative pre- and postshunt portal vein pressures and portal vein-inferior vena cava pressure gradients, intraoperative pre- and postshunt portal vein flow, and pre- and postoperative effective hepatic blood flow. With HGPCS, portal vein pressures and portal vein-inferior vena cava pressure gradients decreased significantly, although portal pressures remained above normal. In contrast to the significant decreases in portal pressures, portal vein blood flow and effective hepatic blood flow do not decrease significantly. Changes in portal vein pressures and portal vein-inferior vena cava pressure gradients are great when compared to changes in portal vein flow and effective hepatic blood flow. Reduction of portal hypertension with concomitant maintenance of hepatic blood flow may explain why hepatic dysfunction is avoided following partial portal decompression.
Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint
NASA Technical Reports Server (NTRS)
Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.
1996-01-01
Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.
Pressure Gradient Effects on Hypersonic Cavity Flow Heating
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramadas K.
2006-01-01
The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.
Pressure Gradient Effects on Hypersonic Cavity Flow Heating
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramdas K.
2007-01-01
The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.
McDougall, Cameron M; Ban, Vin Shen; Beecher, Jeffrey; Pride, Lee; Welch, Babu G
2018-03-02
OBJECTIVE The role of venous sinus stenting (VSS) for idiopathic intracranial hypertension (IIH) is not well understood. The aim of this systematic review is to attempt to identify subsets of patients with IIH who will benefit from VSS based on the pressure gradients of their venous sinus stenosis. METHODS MEDLINE/PubMed was searched for studies reporting venous pressure gradients across the stenotic segment of the venous sinus, pre- and post-stent pressure gradients, and clinical outcomes after VSS. Findings are reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. RESULTS From 32 eligible studies, a total of 186 patients were included in the analysis. Patients who had favorable outcomes had higher mean pressure gradients (22.8 ± 11.5 mm Hg vs 17.4 ± 8.0 mm Hg, p = 0.033) and higher changes in pressure gradients after stent placement (19.4 ± 10.0 mm Hg vs 12.0 ± 6.0 mm Hg, p = 0.006) compared with those with unfavorable outcomes. The post-stent pressure gradients between the 2 groups were not significantly different (2.8 ± 4.0 mm Hg vs 2.7 ± 2.0 mm Hg, p = 0.934). In a multivariate stepwise logistic regression controlling for age, sex, body mass index, CSF opening pressure, pre-stent pressure gradient, and post-stent pressure gradient, the change in pressure gradient with stent placement was found to be an independent predictor of favorable outcome (p = 0.028). Using a pressure gradient of 21 as a cutoff, 81/86 (94.2%) of patients with a gradient > 21 achieved favorable outcomes, compared with 82/100 (82.0%) of patients with a gradient ≤ 21 (p = 0.022). CONCLUSIONS There appears to be a relationship between the pressure gradient of venous sinus stenosis and the success of VSS in IIH. A randomized controlled trial would help elucidate this relationship and potentially guide patient selection.
NASA Astrophysics Data System (ADS)
Yang, Shali; Chang, Lijie; Zhang, Ya; Jiang, Wei
2018-03-01
By applying the asymmetric magnetic field to a discharge, the dc self-bias and asymmetric plasma response can be generated even in a geometrically and electrically symmetric system. This is called magnetical asymmetric effect (MAE), which can be a new method to control the ion energy and flux independently (Yang et al 2017 Plasma Process. Polym. 14 1700087). In the present work, the effects of magnetic field gradient, gas pressure and gap length on MAE are investigated by using a one-dimensional implicit particle-in-cell/Monte Carlo collision simulation. It found that by appropriately increasing the magnetic field gradient and the gap length, the range of the self-bias voltage will be enlarged, which can be used as the effective approach to control the ion bombarding energy at the electrodes since the ion energy is determined by the voltage drop across the sheath. It also found that the ion flux asymmetry will disappear at high pressure when the magnetic field gradient is relative low, due to the frequent electron-neutral collisions can disrupt electron gyromotion and thus the MAE is greatly reduced.
Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645
Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.
Frequency-domain prediction of broadband trailing edge noise from a blunt flat plate
NASA Astrophysics Data System (ADS)
Lee, Gwang-Se; Cheong, Cheolung
2013-10-01
The aim of this study is to develop an efficient methodology for frequency-domain prediction of broadband trailing edge noise from a blunt flat plate where non-zero pressure gradient may exist in its boundary layer. This is achieved in two ways: (i) by developing new models for point pressure spectra within the boundary layer over a flat plate, and (ii) by deriving a simple formula to approximate the effect of convective velocity on the radiated noise spectrum. Firstly, two types of point pressure spectra-required as input data to predict the trailing edge noise in the frequency domain-are used. One is determined using the semi-analytic (S-A) models based on the boundary-layer theory combined with existing empirical models. It is shown that the prediction using these models show good agreements with the measurements where zero-pressure gradient assumption is valid. However, the prediction show poor agreement with that obtained from large eddy simulation results where negative (favorable) pressure gradient is observed with the boundary layer. Based on boundary layer characteristics predicted using the large eddy simulations, new model for point wall pressure spectra is proposed to account for the effect of favorable pressure gradient over the blunt flat plate on the wall pressure spectra. Sound spectra that were predicted using these models are compared with measurements to validate the proposed prediction scheme. The advantage of the semi-analytic model is that it can be applied to problems at Reynolds numbers for which the empirical model is not available. In addition, it is expected that the current models can be applied to the cases where favorable pressure gradient exists in the boundary layer over a blunt flat plate. Secondly, in order to quantitatively analyze contributions of the pressure field within the turbulent boundary layer on the flat plate to trailing edge noise, total pressure over the surface of airfoil is decomposed into its two constituents: incident pressure generated in the boundary layer without a trailing edge and the pressure formed by the scattering of the incident pressure at the trailing edge. The predictions made using each of the incident and scattered pressures reveal that the convective velocity of turbulence in the boundary layer dominantly affects the radiated sound pressure spectrum, both in terms of the gross behavior of the overall acoustic pressure spectrum through the scattered pressure and in terms of the narrow band small fluctuations of the spectrum through the incident pressure. The interaction term between the incident and the scattered is defined and the incident is shown to contribute to the radiated acoustic pressure through the interaction term. Based on this finding, a simple model to effectively compute the effects of convection velocities of the turbulence on the radiated sound pressure spectrum is proposed. It is shown that the proposed method can effectively and accurately predict the broadband trailing edge noise from the plate with considering both the incident and the scattered contributions.
The influence of pressure relaxation on the structure of an axial vortex
NASA Astrophysics Data System (ADS)
Ash, Robert L.; Zardadkhan, Irfan; Zuckerwar, Allan J.
2011-07-01
Governing equations including the effects of pressure relaxation have been utilized to study an incompressible, steady-state viscous axial vortex with specified far-field circulation. When sound generation is attributed to a velocity gradient tensor-pressure gradient product, the modified conservation of momentum equations that result yield an exact solution for a steady, incompressible axial vortex. The vortex velocity profile has been shown to closely approximate experimental vortex measurements in air and water over a wide range of circulation-based Reynolds numbers. The influence of temperature and humidity on the pressure relaxation coefficient in air has been examined using theoretical and empirical approaches, and published axial vortex experiments have been employed to estimate the pressure relaxation coefficient in water. Non-equilibrium pressure gradient forces have been shown to balance the viscous stresses in the vortex core region, and the predicted pressure deficits that result from this non-equilibrium balance can be substantially larger than the pressure deficits predicted using a Bernoulli equation approach. Previously reported pressure deficit distributions for dust devils and tornados have been employed to validate the non-equilibrium pressure deficit predictions.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges
2014-01-17
Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Rued, Klaus
1987-01-01
The requirements for fundamental experimental studies of the influence of free stream turbulence, pressure gradients and wall cooling are discussed. Under turbine-like free stream conditions, comprehensive tests of transitional boundary layers with laminar, reversing and turbulent flow increments were performed to decouple the effects of the parameters and to determine the effects during mutual interaction.
Generalized Wall Function for Complex Turbulent Flows
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Chen, Kuo-Huey
2000-01-01
A generalized wall function was proposed by Shih et al., (1999). It accounts the effect of pressure gradients on the flow near the wall. Theory shows that the effect of pressure gradients on the flow in the inertial sublayer is very significant and the standard wall function should be replaced by a generalized wall function. Since the theory is also valid for boundary layer flows toward separation, the generalized wall function may be applied to complex turbulent flows with acceleration, deceleration, separation and recirculation. This paper is to verify the generalized wall function with numerical simulations for boundary layer flows with various adverse and favorable pressure gradients, including flows about to separate. Furthermore, a general procedure of implementation of the generalized wall function for National Combustion Code (NCC) is described, it can be applied to both structured and unstructured CFD codes.
Zhou, Lixiang; Yu, Jinlu; Sun, Lichao; Han, Yanwu; Wang, Guangming
2016-01-01
In patients with traumatic brain injury, an effective approach for managing refractory intracranial hypertension is wide decompressive craniectomy. Postoperative hydrocephalus is a frequent complication requiring cerebrospinal fluid (CSF) diversion. A 50-year-old male who underwent decompressive craniectomy after traumatic brain injury. He developed hydrocephalus postoperatively, and accordingly we placed a ventriculoperitoneal shunt. However, an imbalance between the intra- and extra-cranial atmospheric pressures led to overdrainage, and he suffered cognitive disorders and extremity weakness. He remained supine for 5days to avoid the effect of gravity on CSF diversion. After 20days, we performed a cranioplasty using a titanium plate. The postoperative course was uneventful, and the patient achieved satisfactory recovery. The gravitational effect and the atmospheric pressure gradient effect are two factors associated in the ventriculoperitoneal (VP) shunt treatment of hydrocephalus for the patient who had decompressive craniectomy. These effects can be eliminated by supine bed rest and cranioplasty. We herein emphasize the efficacy of VP shunt, supine bed rest and cranioplasty in treating hydrocephalus patients who have undergone craniectomy. A flexible application of these procedures to change the gravitational effect and the atmospheric pressure gradient effect should promote a favorable outcome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Alongshore Momentum Balance Over Shoreface-Connected Ridges, Fire Island, NY
NASA Astrophysics Data System (ADS)
Ofsthun, C.; Wu, X.; Voulgaris, G.; Warner, J. C.
2016-12-01
he momentum balance of alongshore flows over straight, uniform shelfs has been analyzed extensively over the last few decades. More recently, the effect of coastline curvature and how this might alter the relative significance of the momentum terms has received additional attention. In this contribution, the alongshore momentum over shelves with straight coastline, but non-uniform bathymetry is examined. Hydrodynamic and hydrographic data collected by the US Geological Survey (Fire Island Coastal Change project) on the inner shelf of Fire Island, NY over a region of shore-face connected ridges (SFCRs) are used to describe wind-induced circulation and the terms of the alongshore momentum balance equation. Analysis of the data revealed a predominantly alongshore circulation, under westward wind forcing, with localized offshore (onshore) current veering over the ridge crests (troughs). Momentum balance analysis hinted that local acceleration, advective acceleration, and bottom stress are balanced by wind stress and regional (>100 km) pressure gradient force. In addition, a numerical model using an idealized SFCR bathymetry, forced by our observed winds, was employed to compare the momentum balance relationships identified by the data and those under steady-state conditions published earlier (Warner et al., 2014). A synthesis of the numerical and experimental data revealed that the true pressure gradient force results from the sum of local pressure gradient force, which maintains a Bernoulli-like relationship with alongshore advective acceleration, and regional pressure gradient force, which maintains a strong, negative relationship with wind stress. The differences between steady-state and realistic conditions is mainly on the contributions of regional scale pressure gradients that develop under realistic conditions, and the reduced contribution of local scale pressure gradients which develop best under steady-state conditions. Our analysis indicates that current veering over ridge crests, a consistent occurrence, is a combination of a cross-shore gradient in the inconsistent relationship between local advective acceleration and pressure gradient and frictional-torque with the latter being the dominant mechanism under realistic forcing.
NASA Technical Reports Server (NTRS)
Coward, Adrian V.; Papageorgiou, Demetrios T.; Smyrlis, Yiorgos S.
1994-01-01
In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.
Compressibility Effects on Particle-Fluid Interaction Force for Eulerian-Eulerian Simulations
NASA Astrophysics Data System (ADS)
Akiki, Georges; Francois, Marianne; Zhang, Duan
2017-11-01
Particle-fluid interaction forces are essential in modeling multiphase flows. Several models can be found in the literature based on empirical, numerical, and experimental results from various simplified flow conditions. Some of these models also account for finite Mach number effects. Using these models is relatively straightforward with Eulerian-Lagrangian calculations if the model for the total force on particles is used. In Eulerian-Eulerian simulations, however, there is the pressure gradient terms in the momentum equation for particles. For low Mach number flows, the pressure gradient force is negligible if the particle density is much greater than that of the fluid. For supersonic flows where a standing shock is present, even for a steady and uniform flow, it is unclear whether the significant pressure-gradient force should to be separated out from the particle force model. To answer this conceptual question, we perform single-sphere fully-resolved DNS simulations for a wide range of Mach numbers. We then examine whether the total force obtained from the DNS can be categorized into well-established models, such as the quasi-steady, added-mass, pressure-gradient, and history forces. Work sponsored by Advanced Simulation and Computing (ASC) program of NNSA and LDRD-CNLS of LANL.
Pressure gradient effects on heat transfer to reusable surface insulation tile-array gaps
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer within space shuttle reusable surface insulation (RSI) tile-array gaps under thick, turbulent boundary-layer conditions. Heat-transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel-wall boundary layer at a nominal free-stream Mach number and free-stream Reynolds numbers. Transverse pressure gradients of varying degree were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel-wall boundary-layer flow was obtained by measurement of boundary-layer pitot pressure profiles, wall pressure, and heat transfer. Flat-plate heat-transfer data were correlated and a method was derived for prediction of heat transfer to a smooth curved surface in the highly three-dimensional tunnel-wall boundary-layer flow. Pressure on the floor of the RSI tile-array gap followed the trends of the external surface pressure. Heat transfer to the surface immediately downstream of a transverse gap is higher than that for a smooth surface at the same location. Heating to the wall of a transverse gap, and immediately downstream of it, at its intersection with a longitudinal gap is significantly greater than that for the simple transverse gap.
Lindstrøm, Erika Kristina; Vatnehol, Svein Are Sirirud; Mardal, Kent-André; Emblem, Kyrre Eeg; Eide, Per Kristian
2017-01-01
Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of “true” normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43). Pulse pressure gradients were also similar in patients and healthy controls (P = .26), and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97). Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate marker for intracranial pressure pulsations. PMID:29190788
Ringstad, Geir; Lindstrøm, Erika Kristina; Vatnehol, Svein Are Sirirud; Mardal, Kent-André; Emblem, Kyrre Eeg; Eide, Per Kristian
2017-01-01
Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of "true" normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43). Pulse pressure gradients were also similar in patients and healthy controls (P = .26), and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97). Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate marker for intracranial pressure pulsations.
Relationship between exercise pressure gradient and haemodynamic progression of aortic stenosis.
Ringle, Anne; Levy, Franck; Ennezat, Pierre-Vladimir; Le Goffic, Caroline; Castel, Anne-Laure; Delelis, François; Menet, Aymeric; Malaquin, Dorothée; Graux, Pierre; Vincentelli, André; Tribouilloy, Christophe; Maréchaux, Sylvestre
We hypothesized that large exercise-induced increases in aortic mean pressure gradient can predict haemodynamic progression during follow-up in asymptomatic patients with aortic stenosis. We retrospectively identified patients with asymptomatic moderate or severe aortic stenosis (aortic valve area<1.5cm 2 or<1cm 2 ) and normal ejection fraction, who underwent an exercise stress echocardiography at baseline with a normal exercise test and a resting echocardiography during follow-up. The relationship between exercise-induced increase in aortic mean pressure gradient and annualised changes in resting mean pressure gradient during follow-up was investigated. Fifty-five patients (mean age 66±15 years; 45% severe aortic stenosis) were included. Aortic mean pressure gradient significantly increased from rest to peak exercise (P<0.001). During a median follow-up of 1.6 [1.1-3.2] years, resting mean pressure gradient increased from 35±13mmHg to 48±16mmHg, P<0.0001. Median annualised change in resting mean pressure gradient during follow-up was 5 [2-11] mmHg. Exercise-induced increase in aortic mean pressure gradient did correlate with annualised changes in mean pressure gradient during follow-up (r=0.35, P=0.01). Hemodynamic progression of aortic stenosis was faster in patients with large exercise-induced increase in aortic mean pressure gradient (≥20mmHg) as compared to those with exercise-induced increase in aortic mean pressure gradient<20mmHg (median annualised increase in mean pressure gradient 19 [6-28] vs. 4 [2-10] mmHg/y respectively, P=0.002). Similar results were found in the subgroup of 30 patients with moderate aortic stenosis. Large exercise-induced increases in aortic mean pressure gradient correlate with haemodynamic progression of stenosis during follow-up in patients with asymptomatic aortic stenosis. Further studies are needed to fully establish the role of ESE in the decision-making process in comparison to other prognostic markers in asymptomatic patients with aortic stenosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Cardiovascular Pressures with Venous Gas Embolism and Decompression
NASA Technical Reports Server (NTRS)
Butler, B. D.; Robinson, R.; Sutton, T.; Kemper, G. B.
1995-01-01
Venous gas embolism (VGE) is reported with decompression to a decreased ambient pressure. With severe decompression, or in cases where an intracardiac septal defect (patent foramen ovale) exists, the venous bubbles can become arterialized and cause neurological decompression illness. Incidence rates of patent foramen ovale in the general population range from 25-34% and yet aviators, astronauts, and deepsea divers who have decompression-induced venous bubbles do not demonstrate neurological symptoms at these high rates. This apparent disparity may be attributable to the normal pressure gradient across the atria of the heart that must be reversed for there to be flow potency. We evaluated the effects of: venous gas embolism (0.025, 0.05 and 0.15 ml/ kg min for 180 min.) hyperbaric decompression; and hypobaric decompression on the pressure gradient across the left and right atria in anesthetized dogs with intact atrial septa. Left ventricular end-diastolic pressure was used as a measure of left atrial pressure. In a total of 92 experimental evaluations in 22 dogs, there were no reported reversals in the mean pressure gradient across the atria; a total of 3 transient reversals occurred during the peak pressure gradient changes. The reasons that decompression-induced venous bubbles do not consistently cause serious symptoms of decompression illness may be that the amount of venous gas does not always cause sufficient pressure reversal across a patent foramen ovale to cause arterialization of the venous bubbles.
Turbulence: The chief outstanding difficulty of our subject
NASA Technical Reports Server (NTRS)
Bradshaw, Peter
1992-01-01
A review of interesting current topics in turbulence research is decorated with examples of popular fallacies about the behavior of turbulence. Topics include the status of the Law of the Wall, especially in compressible flow; analogies between the effects of Reynolds numbers, pressure gradient, unsteadiness and roughness change; the status of Kolmogorov's universal equilibrium theory and local isotropy of the small eddies; turbulence modelling, with reference to universality, pressure-strain modelling and the dissipation equation; and chaos. Fallacies include the mixing-length concept; the effect of pressure gradient on Reynolds shear stress; the separability of time and space derivatives; models of the dissipation equation; and chaos.
Miller, Andrew; Villegas, Arturo; Diez, F Javier
2015-03-01
The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Azimuthally Averaged Boundary Layer Structure of a Numerically Simulated Major Hurricane
2015-08-14
layer in which the effects of sur- face friction are associated with significant departures from gradient wind balance. The boundary layer in the... effects of surface friction are associated with significant departures from gradient wind balance. More specifically, we follow Key Points: The...comprises a balance between three horizontal forces: Coriolis , pressure gradient, and friction. The boundary layer flow is characterized by a large Reynolds
NASA Astrophysics Data System (ADS)
Moreto, Jose; Liu, Xiaofeng
2017-11-01
The accuracy of the Rotating Parallel Ray omnidirectional integration for pressure reconstruction from the measured pressure gradient (Liu et al., AIAA paper 2016-1049) is evaluated against both the Circular Virtual Boundary omnidirectional integration (Liu and Katz, 2006 and 2013) and the conventional Poisson equation approach. Dirichlet condition at one boundary point and Neumann condition at all other boundary points are applied to the Poisson solver. A direct numerical simulation database of isotropic turbulence flow (JHTDB), with a homogeneously distributed random noise added to the entire field of DNS pressure gradient, is used to assess the performance of the methods. The random noise, generated by the Matlab function Rand, has a magnitude varying randomly within the range of +/-40% of the maximum DNS pressure gradient. To account for the effect of the noise distribution pattern on the reconstructed pressure accuracy, a total of 1000 different noise distributions achieved by using different random number seeds are involved in the evaluation. Final results after averaging the 1000 realizations show that the error of the reconstructed pressure normalized by the DNS pressure variation range is 0.15 +/-0.07 for the Poisson equation approach, 0.028 +/-0.003 for the Circular Virtual Boundary method and 0.027 +/-0.003 for the Rotating Parallel Ray method, indicating the robustness of the Rotating Parallel Ray method in pressure reconstruction. Sponsor: The San Diego State University UGP program.
Therapeutic Ultrasound Enhancement of Drug Delivery to Soft Tissues
NASA Astrophysics Data System (ADS)
Lewis, George; Wang, Peng; Lewis, George; Olbricht, William
2009-04-01
Effects of exposure to 1.58 MHz focused ultrasound on transport of Evans Blue Dye (EBD) in soft tissues are investigated when an external pressure gradient is applied to induce convective flow through the tissue. The magnitude of the external pressure gradient is chosen to simulate conditions in brain parenchyma during convection-enhanced drug delivery (CED) to the brain. EBD uptake and transport are measured in equine brain, avian muscle and agarose brain-mimicking phantoms. Results show that ultrasound enhances EBD uptake and transport, and the greatest enhancement occurs when the external pressure gradient is applied. The results suggest that exposure of the brain parenchyma to ultrasound could enhance penetration of material infused into the brain during CED therapy.
Pressure evolution and deformation of confined granular media during pneumatic fracturing
NASA Astrophysics Data System (ADS)
Eriksen, Fredrik K.; Toussaint, Renaud; Turquet, Antoine Léo; Mâløy, Knut J.; Flekkøy, Eirik G.
2018-01-01
By means of digital image correlation, we experimentally characterize the deformation of a dry granular medium confined inside a Hele-Shaw cell due to air injection at a constant overpressure high enough to deform it (from 50 to 250 kPa). Air injection at these overpressures leads to the formation of so-called pneumatic fractures, i.e., channels empty of beads, and we discuss the typical deformations of the medium surrounding these structures. In addition we simulate the diffusion of the fluid overpressure into the medium, comparing it with the Laplacian solution over time and relating pressure gradients with corresponding granular displacements. In the compacting medium we show that the diffusing pressure field becomes similar to the Laplace solution on the order of a characteristic time given by the properties of the pore fluid, the granular medium, and the system size. However, before the diffusing pressure approaches the Laplace solution on the system scale, we find that it resembles the Laplacian field near the channels, with the highest pressure gradients on the most advanced channel tips and a screened pressure gradient behind them. We show that the granular displacements more or less always move in the direction against the local pressure gradients, and when comparing granular velocities with pressure gradients in the zone ahead of channels, we observe a Bingham type of rheology for the granular paste (the mix of air and beads), with an effective viscosity μB and displacement thresholds ∇ ⃗Pc evolving during mobilization and compaction of the medium. Such a rheology, with disorder in the displacement thresholds, could be responsible for placing the pattern growth at moderate injection pressures in a universality class like the dielectric breakdown model with η =2 , where fractal dimensions are found between 1.5 and 1.6 for the patterns.
Tanaka, M; Ikeda, S; Nakayama, F
1981-06-01
Duodenoscopic manometry of the pancreatic duct (PD) and common bile duct (CBD) using a microtransducer catheter was distinct advantages over infusion manometry, giving absolute values of in situ intraluminal pressure. Microtransducer manometry was performed without medication in 49 patients with gallbladder stones (10), common bile duct stones (24), hepatic duct stones (6) and common bile duct dilatation (9), and was successful in 42 (86%) for PD and 36 (73%) for CBD. Ductal pressures showed respiration-synchronized biphasic variations superimposed by the arterial pulsation effect. Considerable postural change of the pressure values suggested that the recording posture should be predetermined. The PD-to-duodenum pressure gradient was higher than the CBD-to-duodenum gradient in most cases. Both were lower than those obtained previously by infusion methods. No significant differences were found in pressure profiles of the four disease groups. Endoscopic sphincterotomy significantly reduced not only CBD pressure but also PD pressure.
Delaunois, A; Gustin, P; Dessy-Doize, C; Ansay, M
1994-01-01
1. The modulatory role of neuropeptide Y (NPY) on pulmonary oedema induced by acetylcholine and capsaicin was investigated. The effects of NPY on the haemodynamic response to acetylcholine, phenylephrine and substance P were also investigated. 2. Isolated, ventilated, exsanguinated lungs of the rabbit were perfused with a constant flow of recirculating blood-free perfusate. The double/arterial/venous occlusion method was used to partition the total pressure gradient (delta Pt) into four components: the arterial gradient (delta Pa), the pre- and post-capillary gradients (respectively delta Pa' and delta Pv') and the venous pressure gradient (delta Pv). Endothelial permeability was evaluated by measuring the capillary filtration coefficient (Kf,c). 3. Acetylcholine (10(-8) M to 10(-4) M) and substance P (SP, 10(-10) M to 10(-6) M) induced a concentration-dependent increase in the Kf,c. Capsaicin (10(-4) M) and 5-hydroxytryptamine (5-HT) (10(-4) M) also increased this parameter. NPY (10(-8) M) completely inhibited the effects of acetylcholine and capsaicin on the Kf,c, without preventing the effects of substance P and 5-HT. 4. Acetylcholine induced concentration-dependent vasoconstriction in the precapillary segment. The effect was inhibited by NPY and aspirin, an inhibitor of cyclo-oxygenase, while ketanserin, a 5-HT2 receptor antagonist, and SR140333, a new NK1 antagonist, had no protective effect. Phenylephrine increased delta Pa at high concentration, an effect also inhibited by NPY and aspirin. Substance P had no significant haemodynamic effect. When injected together with NPY, substance P (10(-6) M) induced a significant increase in the total pressure gradient.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 PMID:7532083
High pressure liquid chromatographic gradient mixer
Daughton, Christian G.; Sakaji, Richard H.
1985-01-01
A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".
High-pressure liquid chromatographic gradient mixer
Daughton, C.G.; Sakaji, R.H.
1982-09-08
A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.
Turbulent boundary layers subjected to multiple curvatures and pressure gradients
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Promode R.; Ahmed, Anwar
1993-01-01
The effects of abruptly applied cycles of curvatures and pressure gradients on turbulent boundary layers are examined experimentally. Two two-dimensional curved test surfaces are considered: one has a sequence of concave and convex longitudinal surface curvatures and the other has a sequence of convex and concave curvatures. The choice of the curvature sequences were motivated by a desire to study the asymmetric response of turbulent boundary layers to convex and concave curvatures. The relaxation of a boundary layer from the effects of these two opposite sequences has been compared. The effect of the accompaying sequences of pressure gradient has also been examined but the effect of curvature dominates. The growth of internal layers at the curvature junctions have been studied. Measurements of the Gortler and corner vortex systems have been made. The boundary layer recovering from the sequence of concave to convex curvature has a sustained lower skin friction level than in that recovering from the sequence of convex to concave curvature. The amplification and suppression of turbulence due to the curvature sequences have also been studied.
Venous sinus stenting for reduction of intracranial pressure in IIH: a prospective pilot study.
Liu, Kenneth C; Starke, Robert M; Durst, Christopher R; Wang, Tony R; Ding, Dale; Crowley, R Webster; Newman, Steven A
2017-11-01
OBJECTIVE Idiopathic intracranial hypertension (IIH) may cause blindness due to elevated intracranial pressure (ICP). Venous sinus stenosis has been identified in select patients, leading to stenting as a potential treatment, but its effects on global ICP have not been completely defined. The purpose of this pilot study was to assess the effects of venous sinus stenting on ICP in a small group of patients with IIH. METHODS Ten patients for whom medical therapy had failed were prospectively followed. Ophthalmological examinations were assessed, and patients with venous sinus stenosis on MR angiography proceeded to catheter angiography, venography with assessment of pressure gradient, and ICP monitoring. Patients with elevated ICP measurements and an elevated pressure gradient across the stenosis were treated with stent placement. RESULTS All patients had elevated venous pressure (mean 39.5 ± 14.9 mm Hg), an elevated gradient across the venous sinus stenosis (30.0 ± 13.2 mm Hg), and elevated ICP (42.2 ± 15.9 mm Hg). Following stent placement, all patients had resolution of the stenosis and gradient (1 ± 1 mm Hg). The ICP values showed an immediate decrease (to a mean of 17.0 ± 8.3 mm Hg), and further decreased overnight (to a mean of 8 ± 4.2 mm Hg). All patients had subjective and objective improvement, and all but one improved during follow-up (median 23.4 months; range 15.7-31.6 months). Two patients developed stent-adjacent stenosis; retreatment abolished the stenosis and gradient in both cases. Patients presenting with papilledema had resolution on follow-up funduscopic imaging and optical coherence tomography (OCT) and improvement on visual field testing. Patients presenting with optic atrophy had optic nerve thinning on follow-up OCT, but improved visual fields. CONCLUSIONS For selected patients with IIH and venous sinus stenosis with an elevated pressure gradient and elevated ICP, venous sinus stenting results in resolution of the venous pressure gradient, reduction in ICP, and functional, neurological, and ophthalmological improvement. As patients are at risk for stent-adjacent stenosis, further follow-up is necessary to determine long-term outcomes and gain an understanding of venous sinus stenosis as a primary or secondary pathological process behind elevated ICP.
Estimation of pressure gradients at renal artery stenoses
NASA Astrophysics Data System (ADS)
Yim, Peter J.; Cebral, Juan R.; Weaver, Ashley; Lutz, Robert J.; Vasbinder, G. Boudewijn C.
2003-05-01
Atherosclerotic disease of the renal artery can reduce the blood flow leading to renovascular hypertension and ischemic nephopathy. The kidney responds to a decrease in blood flow by activation of the renin-angiotensin system that increases blood pressure and can result in severe hypertension. Percutaneous translumenal angioplasty (PTA) may be indicated for treatment of renovascular hypertension (RVH). However, direct measurement of renal artery caliber and degree of stenosis has only moderate specificity for detection of RVH. A confounding factor in assessment of the proximal renal artery is that diffuse atherosclerotic disease of the distal branches of the renal artery can produce the same effect on blood-flow as atherosclerotic disease of the proximal renal artery. A methodology is proposed for estimation of pressure gradients at renal artery stenoses from magnetic resonance imaging that could improve the evaluation of renal artery disease. In the proposed methodology, pressure gradients are estimated using computational fluid dynamics (CFD) modeling. Realistic CFD models are constructed from images of vessel shape and measurements of blood-flow rates which are available from magnetic resonance angiography (MRA) and phase-contrast magnetic resonance (MR) imaging respectively. CFD measurement of renal artery pressure gradients has been validated in a physical flow-through model.
Smith, Sidney C.; Gorlin, Richard; Herman, Michael V.; Taylor, Warren J.; Collins, John J.
1972-01-01
The effects of coronary artery bypass graft (CAB) and coronary collaterals (CC) on myocardial blood flow (MBF) were studied in 24 patients undergoing 29 CAB's. MBF after CAB was compared to preexisting MBF by intraoperatively injecting 133xenon via distal CAB with proximal CAB first occluded then open. Pressure gradients across bypassed obstructions were measured. The results were correlated with preoperative coronary arteriograms to determine the effects of CC on MBF and postobstructive perfusion pressures. Mean MBF was increased by CAB from 32±6 (se) ml/min per 100 g (CAB occluded) to 118±13 ml/min per 100 g (CAB open). The 133Xe clearance curves with CAB open were resolved into slow (19±2 ml/min per 100 g) and rapid (133±12 ml/min per 100 g) phases, suggesting that MBF remained heterogeneous after CAB. Vessels with less than 80% stenosis by angiography had pressure gradients less than 20 mm Hg across obstructions, high postobstructive perfusion pressures (75±7 mm Hg), and normal MBF (87±6 ml/min per 100 g) even with CAB occluded. Vessels with greater than 80% stenosis or total occlusion by angiography had significant pressure gradients with marked reduction of postobstructive MBF. No significant difference in postobstructive MBF was found when vessels with CC (21±4 ml/min per 100 g) were compared to those without CC (17±4 ml/min per 100 g) (P > 0.4). These studies demonstrate that (a) mean MBF increased 268% after CAB, (b) heterogeneous MBF persisted after CAB, (c) CC were not associated with significant increases in MBF, and (d) vessels with less than 80% stenosis had less than 20 mm Hg gradient with minimal effect on resting MBF. Images PMID:5056655
NASA Astrophysics Data System (ADS)
Akbarnejad, Shahin; Saffari Pour, Mohsen; Jonsson, Lage Tord Ingemar; Jönsson, Pӓr Göran
2017-02-01
Ceramic foam filters (CFFs) are used to remove solid particles and inclusions from molten metal. In general, molten metal which is poured on the top of a CFF needs to reach a certain height to build the required pressure (metal head) to prime the filter. To estimate the required metal head, it is necessary to obtain permeability coefficients using permeametry experiments. It has been mentioned in the literature that to avoid fluid bypassing, during permeametry, samples need to be sealed. However, the effect of fluid bypassing on the experimentally obtained pressure gradients seems not to be explored. Therefore, in this research, the focus was on studying the effect of fluid bypassing on the experimentally obtained pressure gradients as well as the empirically obtained Darcy and non-Darcy permeability coefficients. Specifically, the aim of the research was to investigate the effect of fluid bypassing on the liquid permeability of 30, 50, and 80 pores per inch (PPI) commercial alumina CFFs. In addition, the experimental data were compared to the numerically modeled findings. Both studies showed that no sealing results in extremely poor estimates of the pressure gradients and Darcy and non-Darcy permeability coefficients for all studied filters. The average deviations between the pressure gradients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 57.2, 56.8, and 61.3 pct. The deviations between the Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples found to be 9, 20, and 31 pct. The deviations between the non-Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 59, 58, and 63 pct.
Echocardiographic features of the normofunctional Labcor-Santiago pericardial bioprosthesis.
Gonzalez-Juanatey, J R; Garcia-Bengoechea, J B; Vega, M; Rubio, J; Sierra, J; Duran, D; Amaro, A; Gil, M
1994-09-01
Echocardiography was performed in 94 patients with a total of 99 normally functioning Labcor-Santiago bioprostheses, 62 in the aortic and 37 in the mitral position. The following variables were measured: peak and mean transvalvular velocities, peak and mean instantaneous pressure gradients as calculated from the modified Bernoulli equation, pressure half-time, cardiac index, stroke volume and effective orifice area (using continuity and Hatle equations). Regurgitation patterns were sought by transthoracic echocardiography (all valves) and, for selected mitral bioprostheses, by transesophageal echocardiography. Calculated mean aortic pressure gradient ranged from six to 10 mmHg and calculated effective aortic orifice area increased with ring diameter, with means of 1.27 cm2 for the 19 mm valve and 2.58 cm2 for the 27 mm valve. For mitral bioprostheses, mean pressure gradient ranged from 3.0 to 4.5 mmHg and calculated effective orifice area from 2.27 to 2.73 cm2. Only central regurgitation was observed. The Labcor-Santiago pericardial bioprostheses created little resistance to forward flow. In the small aortic root their hemodynamic performance was as good or better than that of other currently available devices. It is hoped that this new design will contribute increased in vivo mechanical durability.
Generation of region 1 current by magnetospheric pressure gradients
NASA Technical Reports Server (NTRS)
Yang, Y. S.; Spiro, R. W.; Wolf, R. A.
1994-01-01
The Rice Convection Model (RCM) is used to illustrate theoretical possibilities for generating region 1 Birkeland currents by pressure gradients on closed field lines in the Earth's magnetosphere. Inertial effects and viscous forces are neglected. The RCM is applied to idealized cases, to emphasize the basic physical ideas rather than realistic representation of the actual magnetosphere. Ionospheric conductance is taken to be uniform, and the simplest possible representations of the magnetospheric plasma are used. Three basic cases are considered: (1) the case of pure northward Interplanetary Magnetic Field (IMF), with cusp merging assumed to create new closed field lines near the nose of the magnetosphere, following the suggestion by Song and Russell (1992); (2) the case where Dungey-type reconnection occurs at the nose, but magnetosheath plasma somehow enters closed field lines on the dawnside and duskside of the merging region, causing a pressure-driven low-latitude boundary layer; and (3) the case where Dungey-type reconnection occurs at the nose, but region 1 currents flow on sunward drifting plasma sheet field lines. In case 1, currents of region 1 sense are generated by pressure gradients, but those currents do not supply the power for ionospheric convection. Results for case 2 suggest that pressure gradients at the inner edge of the low-latitude boundary layer might generate a large fraction of the region 1 Birkeland currents that drive magnetospheric convection. Results for case 3 indicate that pressure gradients in the plasma sheet could provide part of the region 1 current.
The controlling effect of viscous dissipation on magma flow in silicic conduits
Mastin, L.G.
2005-01-01
Nearly all volcanic conduit models assume that flow is Newtonian and isothermal. Such models predict that, during high-flux silicic eruptions, gradients in pressure with depth increase upward as magma accelerates and becomes more viscous, leading to extremely low pressure and fragmentation at a depth of kilometers below the surface. In this paper I show that shear heating, also known as viscous dissipation, dramatically reduces the pressure gradient required for flow and concentrates shear in narrow zones along the conduit margin. The reduction in friction may eliminate the zone of low pressure predicted by isothermal models and move the fragmentation level up to the surface.
NASA Technical Reports Server (NTRS)
Driver, David M.; Johnston, James P.
1990-01-01
The effects of a strong adverse pressure gradient on a three-dimensional turbulent boundary layer are studied in an axisymmetric spinning cylinder geometry. Velocity measurements made with a three-component laser Doppler velocimeter include all three mean flow components, all six Reynolds stress components, and all ten triple-product correlations. Reynolds stress diminishes as the flow becomes three-dimensional. Lower levels of shear stress were seen to persist under adverse pressure gradient conditions. This low level of stress was seen to roughly correlate with the magnitude of cross-flow (relative to free stream flow) for this experiment as well as most of the other experiments in the literature. Variations in pressure gradient do not appear to alter this correlation. For this reason, it is hypothesized that a three-dimensional boundary layer is more prone to separate than a two-dimensional boundary layer, although it could not be directly shown here. None of the computations performed with either a Prandtl mixing length, k-epsilon, or a Launder-Reece-Rodi full Reynolds-stress model were able to predict the reduction in Reynolds stress.
Effects of Hydrostatic Pressure on Carcinogenic Properties of Epithelia.
Tokuda, Shinsaku; Kim, Young Hak; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Mishima, Michiaki; Furuse, Mikio
2015-01-01
The relationship between chronic inflammation and cancer is well known. The inflammation increases the permeability of blood vessels and consequently elevates pressure in the interstitial tissues. However, there have been only a few reports on the effects of hydrostatic pressure on cultured cells, and the relationship between elevated hydrostatic pressure and cell properties related to malignant tumors is less well understood. Therefore, we investigated the effects of hydrostatic pressure on the cultured epithelial cells seeded on permeable filters. Surprisingly, hydrostatic pressure from basal to apical side induced epithelial stratification in Madin-Darby canine kidney (MDCK) I and Caco-2 cells, and cavities with microvilli and tight junctions around their surfaces were formed within the multi-layered epithelia. The hydrostatic pressure gradient also promoted cell proliferation, suppressed cell apoptosis, and increased transepithelial ion permeability. The inhibition of protein kinase A (PKA) promoted epithelial stratification by the hydrostatic pressure whereas the activation of PKA led to suppressed epithelial stratification. These results indicate the role of the hydrostatic pressure gradient in the regulation of various epithelial cell functions. The findings in this study may provide clues for the development of a novel strategy for the treatment of the carcinoma.
Effects of Hydrostatic Pressure on Carcinogenic Properties of Epithelia
Tokuda, Shinsaku; Kim, Young Hak; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Mishima, Michiaki; Furuse, Mikio
2015-01-01
The relationship between chronic inflammation and cancer is well known. The inflammation increases the permeability of blood vessels and consequently elevates pressure in the interstitial tissues. However, there have been only a few reports on the effects of hydrostatic pressure on cultured cells, and the relationship between elevated hydrostatic pressure and cell properties related to malignant tumors is less well understood. Therefore, we investigated the effects of hydrostatic pressure on the cultured epithelial cells seeded on permeable filters. Surprisingly, hydrostatic pressure from basal to apical side induced epithelial stratification in Madin-Darby canine kidney (MDCK) I and Caco-2 cells, and cavities with microvilli and tight junctions around their surfaces were formed within the multi-layered epithelia. The hydrostatic pressure gradient also promoted cell proliferation, suppressed cell apoptosis, and increased transepithelial ion permeability. The inhibition of protein kinase A (PKA) promoted epithelial stratification by the hydrostatic pressure whereas the activation of PKA led to suppressed epithelial stratification. These results indicate the role of the hydrostatic pressure gradient in the regulation of various epithelial cell functions. The findings in this study may provide clues for the development of a novel strategy for the treatment of the carcinoma. PMID:26716691
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbone, L.; Ciani, G.; Dolesi, R.
The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensormore » that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.« less
Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient
NASA Technical Reports Server (NTRS)
Jenkins, Luther N.; Gorton, Susan Althoff; Anders, Scott G.
2002-01-01
The effectiveness of several active and passive devices to control flow in an adverse pressure gradient with secondary flows present was evaluated in the 15 Inch Low Speed Tunnel at NASA Langley Research Center. In this study, passive micro vortex generators, micro bumps, and piezoelectric synthetic jets were evaluated for their flow control characteristics using surface static pressures, flow visualization, and 3D Stereo Digital Particle Image Velocimetry. Data also were acquired for synthetic jet actuators in a zero flow environment. It was found that the micro vortex generator is very effective in controlling the flow environment for an adverse pressure gradient, even in the presence of secondary vortical flow. The mechanism by which the control is effected is a re-energization of the boundary layer through flow mixing. The piezoelectric synthetic jet actuators must have sufficient velocity output to produce strong longitudinal vortices if they are to be effective for flow control. The output of these devices in a laboratory or zero flow environment will be different than the output in a flow environment. In this investigation, the output was higher in the flow environment, but the stroke cycle in the flow did not indicate a positive inflow into the synthetic jet.
Inertial Currents in Isotropic Plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1993-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
The role of boundary layer momentum advection in the mean location of the ITCZ
NASA Astrophysics Data System (ADS)
Dixit, Vishal; Srinivasan, J.
2017-08-01
The inter-tropical convergence zones (ITCZ) form closer to the equator during equinoxes while they form well away from the equator during the boreal summer. A simple three-way balance between the pressure gradients, Coriolis force and effective Rayleigh friction has been classically used to diagnose the location of maximum boundary layer convergence in the near equatorial ITCZ. If such a balance can capture the dynamics of off-equatorial convergence was not known. We used idealized aqua planet simulations with fixed, zonally symmetric sea surface temperature boundary conditions to simulate the near equatorial and off-equatorial ITCZ. As opposed to the convergence of inter-hemispheric flows in the near equatorial convergence, the off-equatorial convergence forms due to the deceleration of cross-equatorial meridional flow. The detailed momentum budget of the off-equatorial convergence zone reveals that the simple balance is not sufficient to capture the relevant dynamics. The deceleration of the meridional flow is strongly modulated by the inertial effects due to the meridional advection of zonal momentum in addition to the terms in the simple balance. The simple balance predicts a spurious near equatorial convergence and a consistent off-equatorial convergence of the meridional flow. The spurious convergence disappears when inertial effects are included in the balance. As cross equatorial meridional flow decelerates to form convergence, the inertial effects cancel the pressure gradient effects near the equator while they add away from the equator. The contribution to the off-equatorial convergence induced by the pressure gradients is significantly larger than the contribution due to the inertial effects and hence pressure gradients appear to be the primary factor in anchoring the strength and location of the off-equatorial convergence.
Young-Laplace equation for liquid crystal interfaces
NASA Astrophysics Data System (ADS)
Rey, Alejandro D.
2000-12-01
This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.
Plasma Streamwise Vortex Generators in an Adverse Pressure Gradient
NASA Astrophysics Data System (ADS)
Kelley, Christopher; Corke, Thomas; Thomas, Flint
2013-11-01
A wind tunnel experiment was conducted to compare plasma streamwise vortex generators (PSVGs) and passive vortex generators (VGs). These devices were installed on a wing section by which the angle of attack could be used to vary the streamwise pressure gradient. The experiment was performed for freestream Mach numbers 0.1-0.2. Three-dimensional velocity components were measured using a 5-hole Pitot probe in the boundary layer. These measurements were used to quantify the production of streamwise vorticity and the magnitude of the reorientation term from the vorticity transport equation. The effect of Mach number, pressure gradient, operating voltage, and electrode length was then investigated for the PSVGs. The results indicate that the PSVGs could easily outperform the passive VGs and provide a suitable alternative for flow control.
Instability of a shear layer between multicomponent fluids at supercritical pressure
NASA Astrophysics Data System (ADS)
Fu, Qing-fei; Zhang, Yun-xiao; Mo, Chao-jie; Yang, Li-jun
2018-04-01
The temporal instability of a thin shear layer lying between streams of two components of fluids has been studied. The effects of density profile of the layer on the instability behavior were mainly considered. The detailed density profile was obtained through Linear Gradient Theory. The eigenvalue problem was calculated, and the temporal instability curves were obtained for the thermodynamic parameters, e.g. pressure and temperature. The results show that, increase of pressure leads to the increase of the maximum growth rate. However, increasing pressure has opposite effects on the disturbances with small and large wave length. The increase of temperature causes the decrease of disturbance growth rate. The instability behavior of the shear layers was determined mainly by the interval between the inflections of the velocity and density profiles, and the maximum density gradient. The total effects, determined by coupling density stratification, and interval between the inflections of the velocity and density profiles, were quite distinct for different ranges of temperature and pressure.
Statistics of pressure and pressure gradient in homogeneous isotropic turbulence
NASA Technical Reports Server (NTRS)
Gotoh, T.; Rogallo, R. S.
1994-01-01
The statistics of pressure and pressure gradient in stationary isotropic turbulence are measured within direct numerical simulations at low to moderate Reynolds numbers. It is found that the one-point pdf of the pressure is highly skewed and that the pdf of the pressure gradient is of stretched exponential form. The power spectrum of the pressure P(k) is found to be larger than the corresponding spectrum P(sub G)(k) computed from a Gaussian velocity field having the same energy spectrum as that of the DNS field. The ratio P(k)/P(sub G)(k), a measure of the pressure-field intermittence, grows with wavenumber and Reynolds number as -R(sub lambda)(exp 1/2)log(k/k(sub d)) for k less than k(sub d)/2 where k(sub d) is the Kolmogorov wavenumber. The Lagrangian correlations of pressure gradient and velocity are compared and the Lagrangian time scale of the pressure gradient is observed to be much shorter than that of the velocity.
NASA Astrophysics Data System (ADS)
Miller, Raymond S.
1994-12-01
The effect of a favorable pressure gradient on the turbulent flow structure in a Mach 2.9 boundary layer (Re/m approximately equal to 1.5 x 10(exp 7)) is investigated experimentally. Conventional flow and hot film measurements of turbulent fluctuation properties have been made upstream of and along an expansion ramp. Upstream measurements were taken in a zero pressure gradient boundary layer 44 cm from the nozzle throat in a 6.35 cm square test section. Measurements are obtained in the boundary layer, above the expansion ramp, 71.5 cm from the nozzle throat. Mean flow and turbulent flow characteristics are measured in all three dimensions. Comparisons are made between data obtained using single and multiple-overheat cross-wire anemometry as well as conventional mean flow probes. Conventional flow measurements were taken using a Pitot probe and a 10 degree cone static probe. Flow visualization was conducted via imaging techniques (Schlieren and shadowgraph photographs). Results suggest that compressibility effects, as seen through the density fluctuations in the Reynolds shear stress, are roughly 10% relative to the mean velocity and are large relative to the velocity fluctuations. This is also observed in the total Reynolds shear stress; compressibility accounts for 50-75% of the total shear. This is particularly true in the favorable pressure gradient region, where though the peak fluctuation intensities are diminished, the streamwise component of the mean flow is larger, hence the contribution of the compressibility term is significant in the Reynolds shear.
Tidally influenced alongshore circulation at an inlet-adjacent shoreline
Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.
2013-01-01
The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.
Abd Razak, Nasrul A; Abu Osman, Noor A; Ali, Sadeeq A; Gholizadeh, Hossein
2016-01-15
While considering how important the interface between the amputees with the prostheses socket, we have carried out research to compare the gradient pressure occur at the interface socket that may lead to the discomforting effects to the user using common ICRC polypropylene socket and air splint socket. Not Applicable SETTING: Not Applicable POPULATION: The subject was a 23 year old who suffered a traumatic defect on the right arm caused by higher electrical volt. F-Socket sensors have been used to measure dynamic socket interface pressure for the transradial amputee wearer during static and dynamic movements. The printed circuit with a thickness of 0.18 mm is equipped between the socket and the surface of the residual limb. Two F-Socket sensor is required to cover the entire socket surface attached to the residual limb. The average of 10 trials made on prosthetic user using both type of sockets for static and dynamic movements was recorded. The pressure gradient shows that the circumference of the socket interface for the ICRC polypropylene socket gives the most pressure distributions to the amputees compared to the pressure gradient for the air splint socket. The pressure gradient for ICRC socket increased consistently when the user makes movements while for the air splint socket remain constantly. The specific interface pressure occur at the socket interface help in determine the comfort and pain of the socket design and improve the correlation between the user and the prosthesis.
Effects of tidal current phase at the junction of two straits
Warner, J.; Schoellhamer, D.; Burau, J.; Schladow, G.
2002-01-01
Estuaries typically have a monotonic increase in salinity from freshwater at the head of the estuary to ocean water at the mouth, creating a consistent direction for the longitudinal baroclinic pressure gradient. However, Mare Island Strait in San Francisco Bay has a local salinity minimum created by the phasing of the currents at the junction of Mare Island and Carquinez Straits. The salinity minimum creates converging baroclinic pressure gradients in Mare Island Strait. Equipment was deployed at four stations in the straits for 6 months from September 1997 to March 1998 to measure tidal variability of velocity, conductivity, temperature, depth, and suspended sediment concentration. Analysis of the measured time series shows that on a tidal time scale in Mare Island Strait, the landward and seaward baroclinic pressure gradients in the local salinity minimum interact with the barotropic gradient, creating regions of enhanced shear in the water column during the flood and reduced shear during the ebb. On a tidally averaged time scale, baroclinic pressure gradients converge on the tidally averaged salinity minimum and drive a converging near-bed and diverging surface current circulation pattern, forming a "baroclinic convergence zone" in Mare Island Strait. Historically large sedimentation rates in this area are attributed to the convergence zone.
Gao, Chan; Zhang, Xueyong; Zhang, Chuanchao; Sui, Zhilei; Hou, Meng; Dai, Rucheng; Wang, Zhongping; Zheng, Xianxu; Zhang, Zengming
2018-05-17
Herein, pressure-induced phase transitions of RDX up to 50 GPa were systematically studied under different compression conditions. Precise phase transition points were obtained based on high-quality Raman spectra with small pressure intervals. This favors the correctness of the theoretical formula for detonation and the design of a precision weapon. The experimental results indicated that α-RDX immediately transformed to γ-RDX at 3.5 GPa due to hydrostatic conditions and possible interaction between the penetrating helium and RDX, with helium gas as the pressure-transmitting medium (PTM). Mapping of pressure distribution in samples demonstrates that the pressure gradient is generated in the chamber and independent of other PTMs. The gradient induced the first phase transition starts at 2.3 GPa and completed at 4.1 GPa. The larger pressure gradient promoted phase transition in advance under higher pressures. Experimental results supported that there existed two conformers of AAI and AAE for γ-RDX, as proposed by another group. δ-RDX was considered to only occur in a hydrostatic environment around 18 GPa using helium as the PTM. This study confirms that δ-RDX is independent of PTM and exists under non-hydrostatic conditions. Evidence for a new phase (ζ) was found at about 28 GPa. These 4 phases have also been verified via XRD under high pressures. In addition to this, another new phase (η) may exist above 38 GPa, and it needs to be further confirmed in the future. Moreover, all the phase transitions were reversible after the pressure was released, and original α-RDX was always obtained at ambient pressure.
Some Simple Solutions to the Problem of Predicting Boundary-Layer Self-Induced Pressures
NASA Technical Reports Server (NTRS)
Bertram, Mitchel H.; Blackstock, Thomas A.
1961-01-01
Simplified theoretical approaches are shown, based on hypersonic similarity boundary-layer theory, which allow reasonably accurate estimates to be made of the surface pressures on plates on which viscous effects are important. The consideration of viscous effects includes the cases where curved surfaces, stream pressure gradients, and leadingedge bluntness are important factors.
Arterial Pressure Gradients during Upright Posture and 30 deg Head Down Tilt
NASA Technical Reports Server (NTRS)
Sanchez, E. R; William, J. M.; Ueno, T.; Ballard, R. E.; Hargens, A. R.; Holton, Emily M. (Technical Monitor)
1997-01-01
Gravity alters local blood pressure within the body so that arterial pressures in the head and foot are lower and higher, respectively, than that at heart level. Furthermore, vascular responses to local alterations of arterial pressure are probably important to maintain orthostatic tolerance upon return to the Earth after space flight. However, it has been difficult to evaluate the body's arterial pressure gradient due to the lack of noninvasive technology. This study was therefore designed to investigate whether finger arterial pressure (FAP), measured noninvasively, follows a normal hydrostatic pressure gradient above and below heart level during upright posture and 30 deg head down tilt (HDT). Seven healthy subjects gave informed consent and were 19 to 52 years old with a height range of 158 to 181 cm. A Finapres device measured arterial pressure at different levels of the body by moving the hand from 36 cm below heart level (BH) to 72 cm above heart level (AH) in upright posture and from 36 cm BH to 48 cm AH during HDT in increments of 12 cm. Mean FAP creased by 85 mmHg transitioning from BH to AH in upright posture, and the pressure gradient calculated from hydrostatic pressure difference (rho(gh)) was 84 mmHg. In HDT, mean FAP decreased by 65 mmHg from BH to AH, and the calculated pressure gradient was also 65 mmHg. There was no significant difference between the measured FAP gradient and the calculated pressure gradient, although a significant (p = 0.023) offset was seen for absolute arterial pressure in upright posture. These results indicate that arterial pressure at various levels can be obtained from the blood pressure at heart level by calculating rho(gh) + an offset. The offset equals the difference between heart level and the site of measurement. In summary, we conclude that local blood pressure gradients can be measured by noninvasive studies of FAP.
Uncertainty based pressure reconstruction from velocity measurement with generalized least squares
NASA Astrophysics Data System (ADS)
Zhang, Jiacheng; Scalo, Carlo; Vlachos, Pavlos
2017-11-01
A method using generalized least squares reconstruction of instantaneous pressure field from velocity measurement and velocity uncertainty is introduced and applied to both planar and volumetric flow data. Pressure gradients are computed on a staggered grid from flow acceleration. The variance-covariance matrix of the pressure gradients is evaluated from the velocity uncertainty by approximating the pressure gradient error to a linear combination of velocity errors. An overdetermined system of linear equations which relates the pressure and the computed pressure gradients is formulated and then solved using generalized least squares with the variance-covariance matrix of the pressure gradients. By comparing the reconstructed pressure field against other methods such as solving the pressure Poisson equation, the omni-directional integration, and the ordinary least squares reconstruction, generalized least squares method is found to be more robust to the noise in velocity measurement. The improvement on pressure result becomes more remarkable when the velocity measurement becomes less accurate and more heteroscedastic. The uncertainty of the reconstructed pressure field is also quantified and compared across the different methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi
The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed tomore » sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.« less
Croft, Quentin P. P.; Formenti, Federico; Talbot, Nick P.; Lunn, Daniel; Robbins, Peter A.; Dorrington, Keith L.
2013-01-01
The human pulmonary vasculature constricts in response to hypercapnia and hypoxia, with important consequences for homeostasis and adaptation. One function of these responses is to direct blood flow away from poorly-ventilated regions of the lung. In humans it is not known whether the stimuli of hypercapnia and hypoxia constrict the pulmonary blood vessels independently of each other or whether they act synergistically, such that the combination of hypercapnia and hypoxia is more effective than the sum of the responses to each stimulus on its own. We independently controlled the alveolar partial pressures of carbon dioxide (Paco 2) and oxygen (Pao 2) to examine their possible interaction on human pulmonary vasoconstriction. Nine volunteers each experienced sixteen possible combinations of four levels of Paco 2 (+6, +1, −4 and −9 mmHg, relative to baseline) with four levels of Pao 2 (175, 100, 75 and 50 mmHg). During each of these sixteen protocols Doppler echocardiography was used to evaluate cardiac output and systolic tricuspid pressure gradient, an index of pulmonary vasoconstriction. The degree of constriction varied linearly with both Paco 2 and the calculated haemoglobin oxygen desaturation (1-So 2). Mixed effects modelling delivered coefficients defining the interdependence of cardiac output, systolic tricuspid pressure gradient, ventilation, Paco 2 and So 2. No interaction was observed in the effects on pulmonary vasoconstriction of carbon dioxide and oxygen (p>0.64). Direct effects of the alveolar gases on systolic tricuspid pressure gradient greatly exceeded indirect effects arising from concurrent changes in cardiac output. PMID:23935847
Croft, Quentin P P; Formenti, Federico; Talbot, Nick P; Lunn, Daniel; Robbins, Peter A; Dorrington, Keith L
2013-01-01
The human pulmonary vasculature constricts in response to hypercapnia and hypoxia, with important consequences for homeostasis and adaptation. One function of these responses is to direct blood flow away from poorly-ventilated regions of the lung. In humans it is not known whether the stimuli of hypercapnia and hypoxia constrict the pulmonary blood vessels independently of each other or whether they act synergistically, such that the combination of hypercapnia and hypoxia is more effective than the sum of the responses to each stimulus on its own. We independently controlled the alveolar partial pressures of carbon dioxide (Paco 2) and oxygen (Pao 2) to examine their possible interaction on human pulmonary vasoconstriction. Nine volunteers each experienced sixteen possible combinations of four levels of Paco 2 (+6, +1, -4 and -9 mmHg, relative to baseline) with four levels of Pao 2 (175, 100, 75 and 50 mmHg). During each of these sixteen protocols Doppler echocardiography was used to evaluate cardiac output and systolic tricuspid pressure gradient, an index of pulmonary vasoconstriction. The degree of constriction varied linearly with both Paco 2 and the calculated haemoglobin oxygen desaturation (1-So2). Mixed effects modelling delivered coefficients defining the interdependence of cardiac output, systolic tricuspid pressure gradient, ventilation, Paco 2 and So2. No interaction was observed in the effects on pulmonary vasoconstriction of carbon dioxide and oxygen (p>0.64). Direct effects of the alveolar gases on systolic tricuspid pressure gradient greatly exceeded indirect effects arising from concurrent changes in cardiac output.
Hayslett, John P.
1973-01-01
The effect of increased hydrostatic pressure in the peritubular vessels on net sodium reabsorption from the proximal tubule was examined in the Necturus. An increase in the pressure gradient of 2.0 cm H2O across the wall of the proximal tubule, produced by ligation of the postcaval vein was associated with a marked reduction in net reabsorption and an increased back flux of water and electrolytes. This change was accompanied by a slight, but significant drop in the transepithelial electrical potential but not by an alteration in the steady-state chemical gradient. These studies highlight the importance of changes in the permeability characteristics of the proximal tubule on net sodium transport. Images PMID:4703221
Quantifying Dynamic Changes in Plantar Pressure Gradient in Diabetics with Peripheral Neuropathy.
Lung, Chi-Wen; Hsiao-Wecksler, Elizabeth T; Burns, Stephanie; Lin, Fang; Jan, Yih-Kuen
2016-01-01
Diabetic foot ulcers remain one of the most serious complications of diabetes. Peak plantar pressure (PPP) and peak pressure gradient (PPG) during walking have been shown to be associated with the development of diabetic foot ulcers. To gain further insight into the mechanical etiology of diabetic foot ulcers, examination of the pressure gradient angle (PGA) has been recently proposed. The PGA quantifies directional variation or orientation of the pressure gradient during walking and provides a measure of whether pressure gradient patterns are concentrated or dispersed along the plantar surface. We hypothesized that diabetics at risk of foot ulceration would have smaller PGA in key plantar regions, suggesting less movement of the pressure gradient over time. A total of 27 participants were studied, including 19 diabetics with peripheral neuropathy and 8 non-diabetic control subjects. A foot pressure measurement system was used to measure plantar pressures during walking. PPP, PPG, and PGA were calculated for four foot regions - first toe (T1), first metatarsal head (M1), second metatarsal head (M2), and heel (HL). Consistent with prior studies, PPP and PPG were significantly larger in the diabetic group compared with non-diabetic controls in the T1 and M1 regions, but not M2 or HL. For example, PPP was 165% (P = 0.02) and PPG was 214% (P < 0.001) larger in T1. PGA was found to be significantly smaller in the diabetic group in T1 (46%, P = 0.04), suggesting a more concentrated pressure gradient pattern under the toe. The proposed PGA may improve our understanding of the role of pressure gradient on the risk of diabetic foot ulcers.
Magnetic field effects on peristaltic flow of blood in a non-uniform channel
NASA Astrophysics Data System (ADS)
Latha, R.; Rushi Kumar, B.
2017-11-01
The objective of this paper is to carry out the effect of the MHD on the peristaltic transport of blood in a non-uniform channel have been explored under long wavelength approximation with low (zero) Reynolds number. Blood is made of an incompressible, viscous and electrically conducting. Explicit expressions for the axial velocity, axial pressure gradient are derived using long wavelength assumptions with slip and regularity conditions. It is determined that the pressure gradient diminishes as the couple stress parameter increments and it decreases as the magnetic parameter increments. We additionally concentrate the embedded parameters through graphs.
Grinias, James P; Wong, Jenny-Marie T; Kennedy, Robert T
2016-08-26
The impact of viscous friction on eluent temperature and column efficiency in liquid chromatography is of renewed interest as the need for pressures exceeding 1000bar to use with columns packed with sub-2μm particles has grown. One way the development of axial and radial temperature gradients that arise due to viscous friction can be affected is by the thermal environment the column is placed in. In this study, a new column oven integrated into an ultrahigh pressure liquid chromatograph that enables both still-air and forced-air operating modes is investigated to find the magnitude of the effect of the axial thermal gradient that forms in 2.1×100mm columns packed with sub-2μm particles in these modes. Temperature increases of nearly 30K were observed when the generated power of the column exceeded 25W/m. The impact of the heating due to viscous friction on the repeatability of peak capacity, elution time, and peak area ratio to an internal standard for a gradient UHPLC-MS/MS method to analyze neurotransmitters was found to be limited. This result indicates that high speed UHPLC-MS/MS gradient methods under conditions of high viscous friction may be possible without the negative effects typically observed with isocratic separations under similar conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
The Researches on Reasonable Well Spacing of Gas Wells in Deep and low Permeability Gas Reservoirs
NASA Astrophysics Data System (ADS)
Bei, Yu Bei; Hui, Li; Lin, Li Dong
2018-06-01
This Gs64 gas reservoir is a condensate gas reservoir which is relatively integrated with low porosity and low permeability found in Dagang Oilfield in recent years. The condensate content is as high as 610g/m3. At present, there are few reports about the well spacing of similar gas reservoirs at home and abroad. Therefore, determining the reasonable well spacing of the gas reservoir is important for ensuring the optimal development effect and economic benefit of the gas field development. This paper discusses the reasonable well spacing of the deep and low permeability gas reservoir from the aspects of percolation mechanics, gas reservoir engineering and numerical simulation. considering there exist the start-up pressure gradient in percolation process of low permeability gas reservoir, this paper combined with productivity equation under starting pressure gradient, established the formula of gas well spacing with the formation pressure and start-up pressure gradient. The calculation formula of starting pressure gradient and well spacing of gas wells. Adopting various methods to calculate values of gas reservoir spacing are close to well testing' radius, so the calculation method is reliable, which is very important for the determination of reasonable well spacing in low permeability gas reservoirs.
Direct measurements of local bed shear stress in the presence of pressure gradients
NASA Astrophysics Data System (ADS)
Pujara, Nimish; Liu, Philip L.-F.
2014-07-01
This paper describes the development of a shear plate sensor capable of directly measuring the local mean bed shear stress in small-scale and large-scale laboratory flumes. The sensor is capable of measuring bed shear stress in the range 200 Pa with an accuracy up to 1 %. Its size, 43 mm in the flow direction, is designed to be small enough to give spatially local measurements, and its bandwidth, 75 Hz, is high enough to resolve time-varying forcing. Typically, shear plate sensors are restricted to use in zero pressure gradient flows because secondary forces on the edge of the shear plate caused by pressure gradients can introduce large errors. However, by analysis of the pressure distribution at the edges of the shear plate in mild pressure gradients, we introduce a new methodology for correcting for the pressure gradient force. The developed sensor includes pressure tappings to measure the pressure gradient in the flow, and the methodology for correction is applied to obtain accurate measurements of bed shear stress under solitary waves in a small-scale wave flume. The sensor is also validated by measurements in a turbulent flat plate boundary layer in open channel flow.
NASA Astrophysics Data System (ADS)
Chamorro, Adolfo; Echevin, Vincent; Colas, François; Oerder, Vera; Tam, Jorge; Quispe-Ccalluari, Carlos
2018-01-01
The physical processes driving the wind intensification in a coastal band of 100 km off Peru during the intense 1997-1998 El Niño (EN) event were studied using a regional atmospheric model. A simulation performed for the period 1994-2000 reproduced the coastal wind response to local sea surface temperature (SST) forcing and large scale atmospheric conditions. The model, evaluated with satellite data, represented well the intensity, seasonal and interannual variability of alongshore (i.e. NW-SE) winds. An alongshore momentum budget showed that the pressure gradient was the dominant force driving the surface wind acceleration. The pressure gradient tended to accelerate the coastal wind, while turbulent vertical mixing decelerated it. A quasi-linear relation between surface wind and pressure gradient anomalies was found. Alongshore pressure gradient anomalies were caused by a greater increase in near-surface air temperature off the northern coast than off the southern coast, associated with the inhomogeneous SST warming. Vertical profiles of wind, mixing coefficient, and momentum trends showed that the surface wind intensification was not caused by the increase of turbulence in the planetary boundary layer. Moreover, the temperature inversion in the vertical mitigated the development of pressure gradient due to air convection during part of the event. Sensitivity experiments allowed to isolate the respective impacts of the local SST forcing and large scale condition on the coastal wind intensification. It was primarily driven by the local SST forcing whereas large scale variability associated with the South Pacific Anticyclone modulated its effects. Examination of other EN events using reanalysis data confirmed that intensifications of alongshore wind off Peru were associated with SST alongshore gradient anomalies, as during the 1997-1998 event.
NASA Technical Reports Server (NTRS)
Schobeiri, M. T.; John, J.
1996-01-01
The turbomachinery wake flow development is largely influenced by streamline curvature and streamwise pressure gradient. The objective of this investigation is to study the development of the wake under the influence of streamline curvature and streamwise pressure gradient. The experimental investigation is carried out in two phases. The first phase involves the study of the wake behind a stationary circular cylinder (steady wake) in curved channels at positive, zero, and negative streamwise pressure gradients. The mean velocity and Reynolds stress components are measured using a X-hot-film probe. The measured quantities obtained in probe coordinates are transformed to a curvilinear coordinate system along the wake centerline and are presented in similarity coordinates. The results of the steady wakes suggest strong asymmetry in velocity and Reynolds stress components. However, the velocity defect profiles in similarity coordinates are almost symmetrical and follow the same distribution as the zero pressure gradient straight wake. The results of Reynolds stress distributions show higher values on the inner side of the wake than the outer side. Other quantities, including the decay of maximum velocity defect, growth of wake width, and wake integral parameters, are also presented for the three different pressure gradient cases of steady wake. The decay rate of velocity defect is fastest for the negative streamwise pressure gradient case and slowest for the positive pressure gradient case. Conversely, the growth of the wake width is fastest for the positive streamwise pressure gradient case and slowest for the negative streamwise pressure gradient. The second phase studies the development of periodic unsteady wakes generated by the circular cylinders of the rotating wake generator in a curved channel at zero streamwise pressure gradient. Instantaneous velocity components of the periodic unsteady wakes, measured with a stationary X-hot-film probe, are analyzed by the phase averaging techniques. The temporal distribution of velocity and Reynolds stress components obtained in a stationary frame of reference are transformed to a spatial distribution in a relative frame of reference. Profiles of phase-averaged velocity and Reynolds stress distributions in the relative frame of reference and similarity coordinates are presented. The velocity defect and Reynolds stress distributions agree with the results of the wake development behind a stationary cylinder in the curved channel at zero streamwise pressure gradient. The phase-averaged third-order correlations, presented in the relative frame of reference and similarity coordinates, show pronounced asymmetric features.
NASA Technical Reports Server (NTRS)
Nagamatsu, H. T.; Duffy, R. E.
1984-01-01
Low and high pressure shock tubes were designed and constructed for the purpose of obtaining heat transfer data over a temperature range of 390 to 2500 K, pressures of 0.3 to 42 atm, and Mach numbers of 0.15 to 1.5 with and without pressure gradient. A square test section with adjustable top and bottom walls was constructed to produce the favorable and adverse pressure gradient over the flat plate with heat gages. A water cooled gas turbine nozzle cascade which is attached to the high pressure shock tube was obtained to measuse the heat flux over pressure and suction surfaces. Thin-film platinum heat gages with a response time of a few microseconds were developed and used to measure the heat flux for laminar, transition, and turbulent boundary layers. The laminar boundary heat flux on the shock tube wall agreed with Mirel's flat plate theory. Stagnation point heat transfer for circular cylinders at low temperature compared with the theoretical prediction, but for a gas temperature of 922 K the heat fluxes were higher than the predicted values. Preliminary flat plate heat transfer data were measured for laminar, transition, and turbulent boundary layers with and without pressure gradients for free-stream temperatures of 350 to 2575 K and flow Mach numbers of 0.11 to 1.9. The experimental heat flux data were correlated with the laminar and turbulent theories and the agreement was good at low temperatures which was not the case for higher temperatures.
Characterisation of minimal-span plane Couette turbulence with pressure gradients
NASA Astrophysics Data System (ADS)
Sekimoto, Atsushi; Atkinson, Callum; Soria, Julio
2018-04-01
The turbulence statistics and dynamics in the spanwise-minimal plane Couette flow with pressure gradients, so-called, Couette-Poiseuille (C-P) flow, are investigated using direct numerical simulation. The large-scale motion is limited in the spanwise box dimension as in the minimal-span channel turbulence of Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704). The effect of the top wall, where normal pressure-driven Poiseuille flow is realised, is distinguished from the events on the bottom wall, where the pressure gradient results in mild or almost-zero wall-shear stress. A proper scaling of turbulence statistics in minimal-span C-P flows is presented. Also the ‘shear-less’ wall-bounded turbulence, where the Corrsin shear parameter is very weak compared to normal wall-bounded turbulence, represents local separation, which is also observed as spanwise streaks of reversed flow in full-size plane C-P turbulence. The local separation is a multi-scale event, which grows up to the order of the channel height even in the minimal-span geometry.
Surgical treatment of severe pulmonic stenosis under cardiopulmonary bypass in small dogs.
Fujiwara, M; Harada, K; Mizuno, T; Nishida, M; Mizukoshi, T; Mizuno, M; Uechi, M
2012-02-01
The aim of this study was to report the long-term outcome of the surgical palliation of pulmonic stenosis in dogs. The subjects comprised three female and six male dogs, mean (±sd) age: 23 (±25) months, mean (±sd) weight: 3·4 (±2·1) kg, diagnosed with severe pulmonic stenosis and right ventricular hypertrophy, with an average preoperative pressure gradient of 153 (±43) mmHg on echocardiography. The pressure overload with severe pulmonic stenosis was reduced by valvotomy, i.e., open pulmonary valve commissurotomy, with/without biomembrane patch grafting, under cardiopulmonary bypass. The postoperative pressure gradient at 1 to 7 days was significantly decreased to 65 (±39) mmHg (P<0·05). The reduced pressure gradient was maintained at 58 (±38) mmHg at final follow-up. Open valvotomy, pulmonary valve commissurotomy and biomembrane patch grafting were effective in reducing obstruction in severe pulmonic stenosis in dogs. © 2012 British Small Animal Veterinary Association.
Interactive Mechanisms of Sliding-Surface Bearings.
1983-08-01
lower, upper) bearing surface V Three-dimensional gradient operator ix Two-dimensional surface gradient operator ( ),. Pertaining to the bearing surface...thermal gradients . The tilt-pad feature required the pad inclination to be determined by the condition of moment equilibrium about the pivot point. This...into the computation of pressure and shear in a fluid film. Incipience Point of Film Rupture On page 93 of Appendix A, pressure gradient and pressure of
Radiation-driven rotational motion of nanoparticles
Liang, Mengning; Harder, Ross; Robinson, Ian
2018-04-25
Focused synchrotron beams can influence a studied sample via heating, or radiation pressure effects due to intensity gradients. The high angular sensitivity of rotational X-ray tracking (RXT) of crystalline particles via their Bragg reflections can detect extremely small forces such as those caused by field gradients. By tracking the rotational motion of single crystal nanoparticles embedded in a viscous or viscoelastic medium, we observed the effects of heating in a uniform gradient beam and radiation pressure in a Gaussian profile beam. Heating of a few degrees Celsius was measured for 42μm crystals in glycerol and angular velocities of 10 -6rad/smore » due to torques of 10 - 24N∙m were measured for 340nm crystals in a colloidal gel matrix. These results show the ability to quantify small forces using rotation motion of tracer particles.« less
Radiation-driven rotational motion of nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Mengning; Harder, Ross; Robinson, Ian
Focused synchrotron beams can influence a studied sample via heating, or radiation pressure effects due to intensity gradients. The high angular sensitivity of rotational X-ray tracking (RXT) of crystalline particles via their Bragg reflections can detect extremely small forces such as those caused by field gradients. By tracking the rotational motion of single crystal nanoparticles embedded in a viscous or viscoelastic medium, we observed the effects of heating in a uniform gradient beam and radiation pressure in a Gaussian profile beam. Heating of a few degrees Celsius was measured for 42μm crystals in glycerol and angular velocities of 10 -6rad/smore » due to torques of 10 - 24N∙m were measured for 340nm crystals in a colloidal gel matrix. These results show the ability to quantify small forces using rotation motion of tracer particles.« less
Vertical heterogeneity in predation pressure in a temperate forest canopy
Aikens, Kathleen R.; Buddle, Christopher M.
2013-01-01
The forest canopy offers a vertical gradient across which variation in predation pressure implies variation in refuge quality for arthropods. Direct and indirect experimental approaches were combined to assess whether canopy strata differ in ability to offer refuge to various arthropod groups. Vertical heterogeneity in impact of avian predators was quantified using exclosure cages in the understory, lower, mid, and upper canopy of a north-temperate deciduous forest near Montreal, Quebec. Bait trials were completed in the same strata to investigate the effects of invertebrate predators. Exclusion of birds yielded higher arthropod densities across all strata, although treatment effects were small for some taxa. Observed gradients in predation pressure were similar for both birds and invertebrate predators; the highest predation pressure was observed in the understory and decreased with height. Our findings support a view of the forest canopy that is heterogeneous with respect to arthropod refuge from natural enemies. PMID:24010017
Prediction of Relaminarization Effects on Turbine Blade Heat Transfer
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Giel, P. W.
2001-01-01
An approach to predicting turbine blade heat transfer when turbulent flow relaminarizes due to strong favorable pressure gradients is described. Relaminarization is more likely to occur on the pressure side of a rotor blade. While stators also have strong favorable pressure gradients, the pressure surface is less likely to become turbulent at low to moderate Reynolds numbers. Accounting for the effects of relaminarization for blade heat transfer can substantially reduce the predicted rotor surface heat transfer. This in turn can lead to reduced rotor cooling requirements. Two-dimensional midspan Navier-Stokes analyses were done for each of eighteen test cases using eleven different turbulence models. Results showed that including relaminarization effects generally improved the agreement with experimental data. The results of this work indicate that relatively small changes in rotor shape can be utilized to extend the likelihood of relaminarization to high Reynolds numbers. Predictions showing how rotor blade heat transfer at a high Reynolds number can be reduced through relaminarization are given.
Intracranial and Intraocular Pressure at the Lamina Cribrosa: Gradient Effects.
Jóhannesson, Gauti; Eklund, Anders; Lindén, Christina
2018-04-12
A pressure difference between the intraocular and intracranial compartments at the site of the lamina cribrosa has been hypothesized to have a pathophysiological role in several optic nerve head diseases. This paper reviews the current literature on the translamina cribrosa pressure difference (TLCPD), the associated pressure gradient, and its potential pathophysiological role, as well as the methodology to assess TLCPD. For normal-tension glaucoma (NTG), initial studies indicated low intracranial pressure (ICP) while recent findings indicate that a reduced ICP is not mandatory. Data from studies on the elevated TLCPD as a pathophysiological factor of NTG are equivocal. From the identification of potential postural effects on the cerebrospinal fluid (CSF) communication between the intracranial and retrolaminar space, we hypothesize that the missing link could be a dysfunction of an occlusion mechanism of the optic nerve sheath around the optic nerve. In upright posture, this could cause an elevated TLCPD even with normal ICP and we suggest that this should be investigated as a pathophysiological component in NTG patients.
Mechanism of reduction of mitral regurgitation with vasodilator therapy.
Yoran, C; Yellin, E L; Becker, R M; Gabbay, S; Frater, R W; Sonnenblick, E H
1979-04-01
Acute mitral regurgitation was produced in six open chest dogs by excising a portion of the anterior valve leaflet. Electromagnetic flow probes were placed in the left atrium around the mitral anulus and in the ascending aorta to determine phasic left ventricular filling volume, regurgitant volume and stroke volume. The systolic pressure gradient was calculated from simultaneously measured high fidelity left atrial and left ventricular pressures. The effective mitral regurgitant orifice area was calculated from Gorlin's hydraulic equation. Infusion of nitroprusside resulted in a significant reduction in mitral regurgitation. No significant change occurred in the systolic pressure gradient between the left ventricle and the left atrium because both peak left ventricular pressure and left atrial pressure were reduced. The reduction of mitral regurgitation was largely due to reduction in the size of the mitral regurgitant orifice. Reduction of ventricular volume rather than the traditional concept of reduction of impedance of left ventricular ejection may explain the effects of vasodilators in reducing mitral regurgitation.
Study on Fluid-solid Coupling Mathematical Models and Numerical Simulation of Coal Containing Gas
NASA Astrophysics Data System (ADS)
Xu, Gang; Hao, Meng; Jin, Hongwei
2018-02-01
Based on coal seam gas migration theory under multi-physics field coupling effect, fluid-solid coupling model of coal seam gas was build using elastic mechanics, fluid mechanics in porous medium and effective stress principle. Gas seepage behavior under different original gas pressure was simulated. Results indicated that residual gas pressure, gas pressure gradient and gas low were bigger when original gas pressure was higher. Coal permeability distribution decreased exponentially when original gas pressure was lower than critical pressure. Coal permeability decreased rapidly first and then increased slowly when original pressure was higher than critical pressure.
Flow separation of currents in shallow water
Signell, Richard P.
1989-01-01
Flow separation of currents in shallow coastal areas is investigated using a boundary layer model for two-dimensional (depth-averaged) tidal flow past an elliptic headland. If the shoaling region near the coast is narrow compared to the scale of the headland, bottom friction causes the flow to separate just downstream of the point where the pressure gradient switches from favoring to adverse. As long as the shoaling region at the coast is well resolved, the inclusion of eddy viscosity and a no-slip boundary condition have no effect on this result. An approximate analytic solution for the pressure gradient along the boundary is obtained by assuming the flow away from the immediate vicinity of the boundary is irrotational. On the basis of the pressure gradient obtained from the irrotational flow solution, flow separation is a strong function of the headland aspect ratio, an equivalent Reynolds number, and a Keulegan-Carpenter number.
Park, H M; Lee, W M
2008-07-01
Many lab-on-a-chip based microsystems process biofluids such as blood and DNA solutions. These fluids are viscoelastic and show extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. In the present paper, we investigate viscoelastic electroosmotic flows through a rectangular straight microchannel with and without pressure gradient. It is shown that the volumetric flow rates of viscoelastic fluids are significantly different from those of Newtonian fluids under the same external electric field and pressure gradient. Moreover, when pressure gradient is imposed on the microchannel there appear appreciable secondary flows in the viscoelastic fluids, which is never possible for Newtonian laminar flows through straight microchannels. The retarded or enhanced volumetric flow rates and secondary flows affect dispersion of solutes in the microchannel nontrivially.
Neutral winds and electric fields from model studies using reduced ionograms
NASA Technical Reports Server (NTRS)
Baran, D. E.
1974-01-01
A relationship between the vertical component of the ion velocity and electron density profiles derived from reduced ionograms is developed. Methods for determining the horizontal components of the neutral winds and electric fields by using this relationship and making use of the variations of the inclinations and declinations of the earth's magnetic field are presented. The effects that electric fields have on the neutral wind calculations are estimated to be small but not second order. Seasonal and latitudinal variations of the calculated neutral winds are presented. From the calculated neutral winds a new set of neutral pressure gradients is determined. The new pressure gradients are compared with those generated from several static neutral atmospheric models. Sensitivity factors relating the pressure gradients and neutral winds are calculated and these indicate that mode coupling and harmonic generation are important to studies which assume linearized theories.
Experimental analysis of the boundary layer transition with zero and positive pressure gradient
NASA Technical Reports Server (NTRS)
Arnal, D.; Jullen, J. C.; Michel, R.
1980-01-01
The influence of a positive pressure gradient on the boundary layer transition is studied. The mean velocity and turbulence profiles of four cases are examined. As the intensity of the pressure gradient is increased, the Reynolds number of the transition onset and the length of the transition region are reduced. The Tollmein-Schlichting waves disturb the laminar regime; the amplification of these waves is in good agreement with the stability theory. The three dimensional deformation of the waves leads finally to the appearance of turbulence. In the case of zero pressure gradient, the properties of the turbulent spots are studied by conditional sampling of the hot-wire signal; in the case of positive pressure gradient, the turbulence appears in a progressive manner and the turbulent spots are much more difficult to characterize.
NASA Astrophysics Data System (ADS)
Ouyed, Amir; Ouyed, Rachid; Jaikumar, Prashanth
2018-02-01
We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped neutrino regime applicable to conditions prevailing in a hot proto-neutron star. The reaction-diffusion-advection equations for (u,d) to (u,d,s) combustion are coupled with neutrino transport, which is modeled through a flux-limited diffusion scheme. The flame speed is proportional to initial lepton fraction because of the release of electron chemical potential as heat, and reaches a steady-state burning speed of (0.001-0.008)c. We find that the burning speed is ultimately driven by the neutrino pressure gradient, given that the pressure gradient induced by quarks is opposed by the pressure gradients induced by electrons. This suggests, somewhat counter-intuitively, that the pressure gradients that drive the interface are controlled primarily by leptonic weak decays rather than by the quark Equation of State (EOS). In other words, the effects of the leptonic weak interaction, including the corresponding weak decay rates and the EOS of electrons and neutrinos, are at least as important as the uncertainties related to the EOS of high density matter. We find that for baryon number densities nB ≤ 0.35 fm-3, strong pressure gradients induced by leptonic weak decays drastically slow down the burning speed, which is thereafter controlled by the much slower burning process driven by backflowing downstream matter. We discuss the implications of our findings to proto-neutron stars.
Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.
Kahrobaei, S; Vincent-Bonnieu, S; Farajzadeh, R
2017-08-21
Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at a critical injection velocity or pressure gradient. This study aims to investigate the effects of injection velocity and surfactant concentration on foam generation and hysteresis behavior as a function of foam quality. We find that the transition from coarse-foam to strong-foam (i.e., the minimum pressure gradient for foam generation) is almost independent of flowrate, surfactant concentration, and foam quality. Moreover, the hysteresis behavior in foam generation occurs only at high-quality regimes and when the pressure gradient is below a certain value regardless of the total flow rate and surfactant concentration. We also observe that the rheological behavior of foam is strongly dependent on liquid velocity.
NASA Astrophysics Data System (ADS)
Semenov, Semen; Schimpf, Martin
2004-01-01
The movement of molecules and homopolymer chains dissolved in a nonelectrolyte solvent in response to a temperature gradient is considered a consequence of temperature-induced pressure gradients in the solvent layer surrounding the solute molecules. Local pressure gradients are produced by nonuniform London van der Waals interactions, established by gradients in the concentration (density) of solvent molecules. The density gradient is produced by variations in solvent thermal expansion within the nonuniform temperature field. The resulting expression for the velocity of the solute contains the Hamaker constants for solute-solvent and solute-solute interactions, the radius of the solute molecule, and the viscosity and cubic coefficient of thermal expansion of the solvent. In this paper we consider an additional force that arises from directional asymmetry in the interaction between solvent molecules. In a closed cell, the resulting macroscopic pressure gradient gives rise to a volume force that affects the motion of dissolved solutes. An expression for this macroscopic pressure gradient is derived and the resulting force is incorporated into the expression for the solute velocity. The expression is used to calculate thermodiffusion coefficients for polystyrene in several organic solvents. When these values are compared to those measured in the laboratory, the consistency is better than that found in previous reports, which did not consider the macroscopic pressure gradient that arises in a closed thermodiffusion cell. The model also allows for the movement of solute in either direction, depending on the relative values of the solvent and solute Hamaker constants.
van Riel, Annelieke C. M. J.; Systrom, David M.; Oliveira, Rudolf K. F.; Landzberg, Michael J.; Mulder, Barbara J. M.; Bouma, Berto J.; Maron, Bradley A.; Shah, Amil M.; Waxman, Aaron B.
2017-01-01
Background We recently reported a novel observation that many patients with equal resting supine right ventricular(RV) and pulmonary artery(PA) systolic pressures develop an RV outflow tract(RVOT) pressure gradient during upright exercise. The current work details the characteristics of patients who develop such an RVOT gradient. Methods We studied 294 patients (59.7±15.5 years-old, 49% male) referred for clinical invasive cardiopulmonary exercise testing, who did not have a resting RVOT pressure gradient defined by the simultaneously measured peak-to-peak difference between RV and PA systolic pressures. Results The magnitude of RVOT gradient did not correspond to clinical or hemodynamic findings suggestive of right heart failure; rather, higher gradients were associated with favorable exercise findings. The presence of a high peak RVOT gradient (90th percentile, ≥33mmHg) was associated with male sex (70 vs. 46%, p = 0.01), younger age (43.6±17.7 vs. 61.8±13.9 years, p<0.001), lower peak right atrial pressure (5 [3–7] vs. 8 [4–12]mmHg, p<0.001), higher peak heart rate (159±19 vs. 124±26 beats per minute, p<0.001), and higher peak cardiac index (8.3±2.3 vs. 5.7±1.9 L/min/m2, p<0.001). These associations persisted when treating peak RVOT as a continuous variable and after age and sex adjustment. At peak exercise, patients with a high exercise RVOT gradient had both higher RV systolic pressure (78±11 vs. 66±17 mmHg, p<0.001) and lower PA systolic pressure (34±8 vs. 50±19 mmHg, p<0.001). Conclusions Development of a systolic RV-PA pressure gradient during upright exercise is not associated with an adverse hemodynamic exercise response and may represent a normal physiologic finding in aerobically fit young people. PMID:28636647
Protein osmotic pressure gradients and microvascular reflection coefficients.
Drake, R E; Dhother, S; Teague, R A; Gabel, J C
1997-08-01
Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration.
Intrathoracic and venous pressure relationships during responses to changes in body position
NASA Technical Reports Server (NTRS)
Avasthey, P.; Wood, E. H.
1974-01-01
Simultaneous end-expiratory pressures, referred to midthoracic level, in the superior and abdominal venae cavae, pericardial space, and right and left heart, were recorded without thoracotomy in three anesthetized dogs during sudden changes from supine to vertical head-up or head-down body positions. Intrathoracic and dependent great vein pressures referred to midchest level (sixth thoracic vertebra) decreased and showed simple hydrostatic gradients in either vertical position. However, a discontinuity in the large vein hydrostatic gradient occurred just distal to the superior margin of the thorax in either body position and was resumed again above this level. It is concluded that, just as the cerebrospinal fluid and intraperitoneal pressures minimize the effects of gravitational and inertial forces on the cerebral and visceral circulations, the pericardial and pleural pressures have a similar role for the heart proper.
Qiu, Wusi; Jiang, Qizhou; Xiao, Guoming; Wang, Weiming; Shen, Hong
2014-01-01
Intracranial-pressure (ICP) monitoring is useful for patients with increased ICP following hemorrhagic stroke. In this study, the changes in pressure gradients between the two cerebral hemispheres were investigated after hemorrhagic stroke of one side, and after a craniotomy. Twenty-four patients with acute cerebral hemorrhages and intracerebral hematomas who exhibited mass effect and midline shift to the contralateral side on computed tomography were selected for this study. After admission, both sides of the cranium were drilled, and optical fiber sensors were implanted to monitor the brain parenchyma pressure (BPP) in both cerebral hemispheres. All patients underwent surgical hematoma evacuations. The preoperative and postoperative BPP data from both cerebral hemispheres were collected at various time points and compared pairwise. There were statistically significant differences (P < 0.01) in the preoperative BPP values between the two hemispheres at three different time points. Differences in the BPP values between the two hemispheres at the time of surgery, and 24 and 48 h after surgery, were not statistically significant (P > 0.05). The posteroperative BPPs of both hemispheres were statistically significantly lower than preoperative recordings. BPP sensors should be applied to the injured cerebral hemisphere, because this becomes the source of increased ICP. Hematoma evacuation surgery effectively decreases ICP and eliminates pressure gradients between the two cerebral hemispheres, consequently enabling brain shift correction.
Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong
2016-08-19
In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated. Copyright © 2016. Published by Elsevier B.V.
Physiology of vitreous surgery.
Stefánsson, Einar
2009-02-01
Vitreous surgery has various physiological and clinical consequences, both beneficial and harmful. Vitrectomy reduces the risk of retinal neovascularization, while increasing the risk of iris neovascularization, reduces macular edema and stimulates cataract formation. These clinical consequences may be understood with the help of classical laws of physics and physiology. The laws of Fick, Stokes-Einstein and Hagen-Poiseuille state that molecular transport by diffusion or convection is inversely related to the viscosity of the medium. When the vitreous gel is replaced with less viscous saline, the transport of all molecules, including oxygen and cytokines, is facilitated. Oxygen transport to ischemic retinal areas is improved, as is clearance of VEGF and other cytokines from these areas, thus reducing edema and neovascularization. At the same time, oxygen is transported faster down a concentration gradient from the anterior to the posterior segment, while VEGF moves in the opposite direction, making the anterior segment less oxygenated and with more VEGF, stimulating iris neovascularization. Silicone oil is the exception that proves the rule: it is more viscous than vitreous humour, re-establishes the transport barrier to oxygen and VEGF, and reduces the risk for iris neovascularization in the vitrectomized-lentectomized eye. Modern vitreous surgery involves a variety of treatment options in addition to vitrectomy itself, such as photocoagulation, anti-VEGF drugs, intravitreal steroids and release of vitreoretinal traction. A full understanding of these treatment modalities allows sensible combination of treatment options. Retinal photocoagulation has repeatedly been shown to improve retinal oxygenation, as does vitrectomy. Oxygen naturally reduces VEGF production and improves retinal hemodynamics. The VEGF-lowering effect of photocoagulation and vitrectomy can be augmented with anti-VEGF drugs and the permeability effect of VEGF reduced with corticosteroids. Starling's law explains vasogenic edema, which is controlled by osmotic and hydrostatic gradients between vessel and tissue. It explains the effect of VEGF-induced vascular permeability changes on plasma protein leakage and the osmotic gradient between vessel and tissue. At the same time, it takes into account hemodynamic changes that affect the hydrostatic gradient. This includes the influence of arterial blood pressure, and the effect oxygen (laser treatment) has in constricting retinal arterioles, increasing their resistance, and thus reducing the hydrostatic pressure in the microcirculation. Reduced capillary hydrostatic pressure and increased osmotic gradient reduce water fluxes from vessel to tissue and reduce edema. Finally, Newton's third law explains that vitreoretinal traction decreases hydrostatic tissue pressure in the retina, increases the pressure gradient between vessel and tissue, and stimulates water fluxes from vessel into tissue, leading to edema.
Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh
NASA Astrophysics Data System (ADS)
Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.
2016-02-01
Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.
NASA Technical Reports Server (NTRS)
Johnson, D. R.; Uccellini, L. W.
1983-01-01
In connection with the employment of the sigma coordinates introduced by Phillips (1957), problems can arise regarding an accurate finite-difference computation of the pressure gradient force. Over steeply sloped terrain, the calculation of the sigma-coordinate pressure gradient force involves computing the difference between two large terms of opposite sign which results in large truncation error. To reduce the truncation error, several finite-difference methods have been designed and implemented. The present investigation has the objective to provide another method of computing the sigma-coordinate pressure gradient force. Phillips' method is applied for the elimination of a hydrostatic component to a flux formulation. The new technique is compared with four other methods for computing the pressure gradient force. The work is motivated by the desire to use an isentropic and sigma-coordinate hybrid model for experiments designed to study flow near mountainous terrain.
NASA Astrophysics Data System (ADS)
Devakar, M.; Raje, Ankush
2018-05-01
The unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel is considered. In addition to the classical no-slip and hyper-stick conditions at the boundary, it is assumed that the fluid velocities and shear stresses are continuous across the fluid-fluid interface. Three cases for the applied pressure gradient are considered to study the problem: one with constant pressure gradient and the other two cases with time-dependent pressure gradients, viz. periodic and decaying pressure gradient. The Crank-Nicolson approach has been used to obtain numerical solutions for fluid velocity and microrotation for diverse sets of fluid parameters. The nature of fluid velocities and microrotation with various values of pressure gradient, Reynolds number, ratio of viscosities, micropolarity parameter and time is illustrated through graphs. It has been observed that micropolarity parameter and ratio of viscosities reduce the fluid velocities.
Cetin, Secil; Pirat, Arash; Kundakci, Aycan; Camkiran, Aynur; Zeyneloglu, Pinar; Ozkan, Murat; Arslan, Gulnaz
2014-02-01
To see if radial mean arterial pressure reliably reflects femoral mean arterial pressure in uncomplicated pediatric cardiac surgery. An ethics committee-approved prospective interventional study. Operating room of a tertiary care hospital. Forty-five children aged 3 months to 4 years who underwent pediatric cardiac surgery with hypothermic cardiopulmonary bypass. Simultaneous femoral and radial arterial pressures were recorded at 10-minute intervals intraoperatively. A pressure gradient>5mmHg was considered to be clinically significant. The patients' mean age was 14±11 months and and mean weight was 8.0±3.0kg. A total of 1,816 simultaneous measurements of arterial pressure from the radial and femoral arteries were recorded during the pre-cardiopulmonary bypass, cardiopulmonary bypass, and post-cardiopulmonary bypass periods, including 520 (29%) systolic arterial pressures, 520 (29%) diastolic arterial pressures, and 776 (43%) mean arterial pressures. The paired mean arterial pressure measurements across the 3 periods were significantly and strongly correlated, and this was true for systolic arterial pressures and diastolic arterial pressures as well (r>0.93 and p<0.001 for all). Bland-Altman plots demonstrated good agreement between femoral and radial mean arterial pressures during the pre-cardiopulmonary bypass, cardiopulmonary bypass, and post-cardiopulmonary bypass periods. A significant radial-to-femoral pressure gradient was observed in 150 (8%) of the total 1,816 measurements. These gradients occurred most frequently between pairs of systolic arterial pressure measurements (n = 113, 22% of all systolic arterial pressures), followed by mean arterial pressure measurements (n = 28, 4% of all mean arterial pressures) and diastolic arterial pressures measurements (n = 9, 2% of all diastolic arterial pressures). These significant gradients were not sustained (ie, were not recorded at 2 or more successive time points). The results suggested that radial mean arterial pressure provided an accurate estimate of central mean arterial pressure in uncomplicated pediatric cardiac surgery. There was a significant gradient between radial and femoral mean arterial pressure measurements in only 4% of the mean arterial pressure measurements, and these significant gradients were not sustained. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of magnetic islands on bootstrap current in toroidal plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, G.; Lin, Z.
The effects of magnetic islands on electron bootstrap current in toroidal plasmas are studied using gyrokinetic simulations. The magnetic islands cause little changes of the bootstrap current level in the banana regime because of trapped electron effects. In the plateau regime, the bootstrap current is completely suppressed at the island centers due to the destruction of trapped electron orbits by collisions and the flattening of pressure profiles by the islands. In the collisional regime, small but finite bootstrap current can exist inside the islands because of the pressure gradients created by large collisional transport across the islands. Lastly, simulation resultsmore » show that the bootstrap current level increases near the island separatrix due to steeper local density gradients.« less
Effects of magnetic islands on bootstrap current in toroidal plasmas
Dong, G.; Lin, Z.
2016-12-19
The effects of magnetic islands on electron bootstrap current in toroidal plasmas are studied using gyrokinetic simulations. The magnetic islands cause little changes of the bootstrap current level in the banana regime because of trapped electron effects. In the plateau regime, the bootstrap current is completely suppressed at the island centers due to the destruction of trapped electron orbits by collisions and the flattening of pressure profiles by the islands. In the collisional regime, small but finite bootstrap current can exist inside the islands because of the pressure gradients created by large collisional transport across the islands. Lastly, simulation resultsmore » show that the bootstrap current level increases near the island separatrix due to steeper local density gradients.« less
Wake shed by an accelerating carangiform fish
NASA Astrophysics Data System (ADS)
Ting, Shang-Chieh; Yang, Jing-Tang
2008-11-01
We reveal an important fact that momentum change observed in the wake of an accelerating carangiform fish does not necessarily elucidate orientations of propulsive forces produced. An accelerating Crucian Carp (Carassius auratus) was found to shed a wake with net forward fluid momentum, which seemed drag-producing. Based on Newton's law, however, an accelerating fish is expected to shed a thrust wake with net rearward fluid momentum, rather than a drag wake. The unusual wake pattern observed is considered to be resulted primarily from the effect of pressure gradient created by accelerating movements of the fish. Ambient fluids tend to be sucked into low pressure zones behind an accelerating fish, resulting in forward orientations of jets recognizable in the wake. Accordingly, as to an accelerating fish, identifying force orientations from the wake requires considering also the effect of pressure gradient.
Moodley, Anand A; Dlwati, Mahlubonke S; Durand, Miranda
2017-04-01
The role of the optic canal in the pathogenesis of papilloedema has been under scrutiny recently. Whether a larger canal precedes more severe papilloedema or is the result of bone remodelling from chronically raised pressure across a pressure gradient is not clear. The authors present the magnetic resonance imaging findings of a 29-year-old female with fulminant and untreated idiopathic intracranial hypertension. Imaging showed focal expansion and intrinsic signal changes of the intracanalicular optic nerve. The authors discuss the possibility of either fluid accumulation within the optic nerves from a water hammer effect across blocked optic canals resulting from the steep pressure gradient or opticomalacia (optic nerve softening) from chronic ischaemia.
An experimental study of a supercritical trailing-edge flow
NASA Technical Reports Server (NTRS)
Brown, J. L.; Viswanath, P. R.
1984-01-01
An experimental study has been conducted of a transonic, turbulent, high-Reynolds-number blunt trailing-edge flow. The model shape and the surface pressure distribution are characteristics of a modern supercritical airfoil under shock-free conditions. Reynolds number and pressure gradient scaling of the boundary layer are relevant to airfoil applications. The data set is exceptionally accurate and consistent, with the momentum balance accounting for the flux of momentum to within 1 percent, except in the immediate vicinity of the blunt trailing edge. The experimental flow exhibits strong viscous-inviscid interaction and higher-order boundary-layer effects including strong adverse streamwise pressure gradient, significant normal pressure gradients associated with surface and streamline curvature, and significant wake curvature. Navier-Stokes calculations with a two-equation K-epsilon turbulence model predict the correct pressure distribution which demonstrates the utility of these engineering tools. The experiment approaches separation at the strailing edge. However, in comparison to the experiment, the calculations predict too high skin friction and insufficient displacement thickness growth. An analysis of the turbulent and mean flow fields reveals the turbulence model defects are likely in modeling the dissipation source and sink terms, and in the eddy viscosity relation.
Overpressure and hydrocarbon accumulations in Tertiary strata, Gulf Coast of Louisiana
Nelson, Philip H.
2012-01-01
Many oil and gas reservoirs in Tertiary strata of southern Louisiana are located close to the interface between a sand-rich, normally pressured sequence and an underlying sand-poor, overpressured sequence. This association, recognized for many years by Gulf Coast explorationists, is revisited here because of its relevance to an assessment of undiscovered oil and gas potential in the Gulf Coast of Louisiana. The transition from normally pressured to highly overpressured sediments is documented by converting mud weights to pressure, plotting all pressure data from an individual field as a function of depth, and selecting a top and base of the pressure transition zone. Vertical extents of pressure transition zones in 34 fields across southern onshore Louisiana range from 300 to 9000 ft and are greatest in younger strata and in the larger fields. Display of pressure transition zones on geologic cross sections illustrates the relative independence of the depth of the pressure transition zone and geologic age. Comparison of the depth distribution of pressure transition zones with production intervals confirms previous findings that production intervals generally overlap the pressure transition zone in depth and that the median production depth lies above the base of the pressure transition zone in most fields. However, in 11 of 55 fields with deep drilling, substantial amounts of oil and gas have been produced from depths deeper than 2000 ft below the base of the pressure transition zone. Mud-weight data in 7 fields show that "local" pressure gradients range from 0.91 to 1.26 psi/ft below the base of the pressure transition zone. Pressure gradients are higher and computed effective stress gradients are negative in younger strata in coastal areas, indicating that a greater potential for fluid and sediment movement exists there than in older Tertiary strata.
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, Fereidoun
2007-01-01
The scattering of rotor noise is an area that has received little attention over the years, yet the limited work that has been done has shown that both the directivity and intensity of the acoustic field may be significantly modified by the presence of scattering bodies. One of the inputs needed to compute the scattered acoustic field is the acoustic pressure gradient on a scattering surface. Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. These formulations are presented in this paper. The first formulation is derived by taking the gradient of Farassat's retarded-time Formulation 1A. Although this formulation is relatively simple, it requires numerical time differentiation of the acoustic integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. The acoustic pressure gradient predicted by these new formulations is validated through comparison with the acoustic pressure gradient determined by a purely numerical approach for two model rotors. The agreement between analytic formulations and numerical method is excellent for both stationary and moving observers case.
a Fractal Permeability Model Coupling Boundary-Layer Effect for Tight Oil Reservoirs
NASA Astrophysics Data System (ADS)
Wang, Fuyong; Liu, Zhichao; Jiao, Liang; Wang, Congle; Guo, Hu
A fractal permeability model coupling non-flowing boundary-layer effect for tight oil reservoirs was proposed. Firstly, pore structures of tight formations were characterized with fractal theory. Then, with the empirical equation of boundary-layer thickness, Hagen-Poiseuille equation and fractal theory, a fractal torturous capillary tube model coupled with boundary-layer effect was developed, and verified with experimental data. Finally, the parameters influencing effective liquid permeability were quantitatively investigated. The research results show that effective liquid permeability of tight formations is not only decided by pore structures, but also affected by boundary-layer distributions, and effective liquid permeability is the function of fluid type, fluid viscosity, pressure gradient, fractal dimension, tortuosity fractal dimension, minimum pore radius and maximum pore radius. For the tight formations dominated with nanoscale pores, boundary-layer effect can significantly reduce effective liquid permeability, especially under low pressure gradient.
Wouters, Bert; Broeckhoven, Ken; Wouters, Sam; Bruggink, Cees; Agroskin, Yury; Pohl, Christopher A; Eeltink, Sebastiaan
2014-11-28
The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion. Copyright © 2014 Elsevier B.V. All rights reserved.
An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements.
Dabiri, John O; Bose, Sanjeeb; Gemmell, Brad J; Colin, Sean P; Costello, John H
2014-02-01
We describe and characterize a method for estimating the pressure field corresponding to velocity field measurements such as those obtained by using particle image velocimetry. The pressure gradient is estimated from a time series of velocity fields for unsteady calculations or from a single velocity field for quasi-steady calculations. The corresponding pressure field is determined based on median polling of several integration paths through the pressure gradient field in order to reduce the effect of measurement errors that accumulate along individual integration paths. Integration paths are restricted to the nodes of the measured velocity field, thereby eliminating the need for measurement interpolation during this step and significantly reducing the computational cost of the algorithm relative to previous approaches. The method is validated by using numerically simulated flow past a stationary, two-dimensional bluff body and a computational model of a three-dimensional, self-propelled anguilliform swimmer to study the effects of spatial and temporal resolution, domain size, signal-to-noise ratio and out-of-plane effects. Particle image velocimetry measurements of a freely swimming jellyfish medusa and a freely swimming lamprey are analyzed using the method to demonstrate the efficacy of the approach when applied to empirical data.
Influence of Flow Gradients on Mach Stem Initiation of PBX-9502
NASA Astrophysics Data System (ADS)
Hull, Lawrence; Miller, Phillip; Mas, Eric; Focused Experiments Team
2017-06-01
Recent experiments and theory explore the effect of flow gradients on reaction acceleration and stability in the pressure-enhanced region between colliding sub-detonative shock waves in PBX-9502. The experiments are designed to produce divergent curved incident shock waves that interact in a convergent irregular reflection, or ``Mach stem'', configuration. Although this flow is fundamentally unsteady, such a configuration does feature particle paths having a single shock wave that increases the pressure from zero to the wave-reflected enhanced pressure. Thus, the possibility of pre-shock desensitization is precluded in this interaction region. Diagnostics record arrival wave velocity, shape, and material velocity along the angled free surface face of a large wedge. The wedge is large enough to allow observation of the wave structure for distances much larger than the run-to-detonation derived from classical ``Pop plot'' data. The explosive driver system produces the incident shocks and allows some control of the flow gradients in the collision region. Further, the incident shocks are very weak and do not transition to detonation. The experiments discussed feature incident shock waves that would be expected to cause initiation in the Mach stem, based on the Pop plot. Results show that the introduction of pressure/velocity gradients in the reaction zone strongly influences the ability of the flow to build to a steady ``CJ'' detonation. As expected, the ability of the Mach stem to stabilize or accelerate is strongly influenced by the incident shock pressure.
Kabilan, Senthil; Jung, Hun Bok; Kuprat, Andrew P; Beck, Anthon N; Varga, Tamas; Fernandez, Carlos A; Um, Wooyong
2016-06-21
X-ray microtomography (XMT) imaging combined with three-dimensional (3D) computational fluid dynamics (CFD) modeling technique was used to study the effect of geochemical and geomechanical processes on fracture permeability in composite Portland cement-basalt caprock core samples. The effect of fluid density and viscosity and two different pressure gradient conditions on fracture permeability was numerically studied by using fluids with varying density and viscosity and simulating two different pressure gradient conditions. After the application of geomechanical stress but before CO2-reaction, CFD revealed fluid flow increase, which resulted in increased fracture permeability. After CO2-reaction, XMT images displayed preferential precipitation of calcium carbonate within the fractures in the cement matrix and less precipitation in fractures located at the cement-basalt interface. CFD estimated changes in flow profile and differences in absolute values of flow velocity due to different pressure gradients. CFD was able to highlight the profound effect of fluid viscosity on velocity profile and fracture permeability. This study demonstrates the applicability of XMT imaging and CFD as powerful tools for characterizing the hydraulic properties of fractures in a number of applications like geologic carbon sequestration and storage, hydraulic fracturing for shale gas production, and enhanced geothermal systems.
A Model based Examination of Conditions for Ignition of Turbidity Currents on Slopes
NASA Astrophysics Data System (ADS)
Mehta, A. J.; Krishna, G.
2009-12-01
Turbidity currents form a major mechanism for the movement of sediment in the natural environment. Self-accelerating turbidity currents over continental slopes are of considerable scientific and engineering interest due to their role as agents for submarine sediment transportation from the shelf to the seabed. Such currents are called ignitive provided they eventually reach a catastrophic state as acceleration results in high sediment loads due to erosion of the sloping bed. A numerical model, which treats the fluid and the particles as two separate phases, is applied to investigate the effects of particle size, initial flow friction velocity and mild bed slope on the ignitive condition. Laboratory experimental data have been included as part of the analysis for qualitative comparison purposes. Ignition for the smallest of the three selected sizes (0.21mm) of medium sand typical of Florida beaches was found to depend on the initial conditions at the head of the slope as determined by the pressure gradient. Bed slope seemed to be of secondary importance. For the two sands with larger grain sizes (0.28mm and 0.35mm) the slope was found to play a more important role when compared to the initial pressure gradient. For a given pressure gradient, increasing the slope increased the likelihood of self-acceleration. It is concluded that in general ignition cannot be defined merely in terms of positive values of the velocity gradient and the sediment flux gradient along the slope. Depending on particle size the initial pressure gradient can also play a role. For the selected initial conditions (grain size, pressure gradient and bed slope), out of the 54 combinations tested, all except three satisfied the Knapp-Bagnold criterion for auto-suspension irrespective of whether the turbid current was ignitive or non-ignitive. In all 54 cases the current was found to erode the bed. Further use of the model will require accommodation of wider ranges of sediment size and bed density, and a thorough verification against experimental data.
How Artificial Should the Treatment of a Plasma's Viscosity Be?
NASA Astrophysics Data System (ADS)
Whitney, K. G.; Velikovich, A. L.; Thornhill, J. W.; Davis, J.
1999-11-01
Electron viscosity dominates over ion viscosity and is important in describing the generation of shock fronts in highly ionizable plasmas. The sizes of shock front jumps in electron and ion temperature are determined from the magnitudes of the heat flow vector and pressure tensor, which, in turn, acquire non-negligible nonlinear contributions from the temperature and density gradients when these gradients are large. Thus, a consistent treatment of steep gradient formation in plasmas must come from investigations that include the effects of these nonlinear contributions to heat and momentum transport. Coefficients for each of five nonlinear contributions to the pressure tensor for an (r,z) Z-pinch geometry are presented and discussed in this talk. Hydrodynamic code calculations generally are not designed to provide a testbed for directly evaluating the kinetic energy dissipation that occurs at shock fronts; therefore, the strength of these nonlinear pressure tensor terms will be estimated by post-processing a Z-pinch hydrodynamics calculation and a steady-state planar shock wave calculation.
Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat
2008-01-15
Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, themore » bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)« less
Determining the mean hydraulic gradient of ground water affected by tidal fluctuations
Serfes, Michael E.
1991-01-01
Tidal fluctuations in surface-water bodies produce progressive pressure waves in adjacent aquifers. As these pressure waves propagate inland, ground-water levels and hydraulic gradients continuously fluctuate, creating a situation where a single set of water-level measurements cannot be used to accurately characterize ground-water flow. For example, a time series of water levels measured in a confined aquifer in Atlantic City, New Jersey, showed that the hydraulic gradient ranged from .01 to .001 with a 22-degree change in direction during a tidal day of approximately 25 hours. At any point where ground water tidally fluctuates, the magnitude and direction of the hydraulic gradient fluctuates about the mean or regional hydraulic gradient. The net effect of these fluctuations on ground-water flow can be determined using the mean hydraulic gradient, which can be calculated by comparing mean ground- and surface-water elevations. Filtering methods traditionally used to determine daily mean sea level can be similarly applied to ground water to determine mean levels. Method (1) uses 71 consecutive hourly water-level observations to accurately determine the mean level. Method (2) approximates the mean level using only 25 consecutive hourly observations; however, there is a small error associated with this method.
Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong
2014-09-24
We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.
Wilson, Shaun K; Babcock, Russ C; Fisher, Rebecca; Holmes, Thomas H; Moore, James A Y; Thomson, Damian P
2012-10-01
Habitat degradation and fishing are major drivers of temporal and spatial changes in fish communities. The independent effects of these drivers are well documented, but the relative importance and interaction between fishing and habitat shifts is poorly understood, particularly in complex systems such as coral reefs. To assess the combined and relative effects of fishing and habitat we examined the composition of fish communities on patch reefs across a gradient of high to low structural complexity in fished and unfished areas of the Ningaloo Marine Park, Western Australia. Biomass and species richness of fish were positively correlated with structural complexity of reefs and negatively related to macroalgal cover. Total abundance of fish was also positively related to structural complexity, however this relationship was stronger on fished reefs than those where fishing is prohibited. The interaction between habitat condition and fishing pressure is primarily due to the high abundance of small bodied planktivorous fish on fished reefs. However, the influence of management zones on the abundance and biomass of predators and target species is small, implying spatial differences in fishing pressure are low and unlikely to be driving this interaction. Our results emphasise the importance of habitat in structuring reef fish communities on coral reefs especially when gradients in fishing pressure are low. The influence of fishing effort on this relationship may however become more important as fishing pressure increases. Copyright © 2012 Elsevier Ltd. All rights reserved.
The US Navy Coupled Ocean-Wave Prediction System
2014-09-01
Stokes drift to be the dominant wave effect and that it increased surface drift speeds by 35% and veered the current in the direction of the wind...ocean model has been modified to incorporate the effect of the Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum...for fourth-order differences for horizontal baroclinic pressure gradients and for interpolation of Coriolis terms. There is an option to use the
Doyle, William J; Singla, Alok; Banks, Juliane; El-Wagaa, Jenna; Swarts, J Douglas
2014-07-01
Fractional gradient equilibrated (FGE) for ears with applied positive but not negative middle ear (ME)-ambient pressure gradients is highly sensitive to a cold-like illness (CLI). The sequential development of eustachian tube (ET) dysfunction, ME under-pressure, and otitis media (OM) characterizes many children during a CLI. If linked, OM burden would be lessened by interventions that promote/preserve good ET function during a CLI. Evaluating this requires a quantitative ET function test for MEs with an intact tympanic membrane responsive to a CLI. Pressure chamber testing of ET function was performed at +200 and -200 daPa in 3 groups of adults: group I, 21 subjects with an extant CLI and groups II and III, 14 and 57 adults, respectively, without a CLI. ME-chamber pressure gradient was recorded by tympanometry before and after the subject swallowed twice. ET functional efficiency was quantified as the FGE, which was then compared among groups using a Mann-Whitney U test. At chamber pressures of 200 daPa, the ME-chamber pressure gradient was negative, and FGE was low and not different among groups. At chamber pressures of -200 daPa that gradient was positive, and FGE was significantly higher in groups II and III when compared with group I.
Jandera, Pavel; Hájek, Tomás; Cesla, Petr
2010-06-01
Gradient elution provides significant improvement in peak capacity with respect to isocratic conditions. In the second dimension, gradients are limited to a short-time period available for separation. Various types of second-dimension gradients in comprehensive LC x LC are compared: (i) "full in fraction", (ii) "segment in fraction" and (iii) "continuously shifting" gradients, applied in orthogonal LC x LC separations of phenolic acids and flavones on a polyethylene glycol column in the first dimension and two types of porous shell fused-core C18 columns in the second dimension (Ascentis Express and Kinetex). The porous shell columns provide narrow bandwidths and fast second-dimension separations at moderate operating pressure that allows important savings of the overall separation time in comprehensive LC x LC separations. The effects of the gradient type on the bandwidths, theoretical peak capacity, separation time and column pressure in the second dimension were investigated. The type of gradient program controls the range of lipophilicity of sample compounds that can be separated in the second-dimension reversed-phase time period. This range can be calibrated using alkylbenzene standards, to design the separation conditions for complete sample separation, avoiding harmful wrap around of non-eluted compounds to the subsequent second-dimension fractions.
Ozu, Marcelo; Dorr, Ricardo A; Teresa Politi, M; Parisi, Mario; Toriano, Roxana
2011-06-01
This work studies water permeability properties of human aquaporin 1 (hAQP1) expressed in Xenopus laevis oocyte membranes, applying a technique where cellular content is replaced with a known medium, with the possibility of measuring intracellular pressure. Consequences on water transport-produced by well-known anisotonic gradients and by the intracellular effect of probable aquaporin inhibitors-were tested. In this way, the specific intracellular inhibition of hAQP1 by the diuretic drug furosemide was demonstrated. In addition, experiments imposing anisotonic mannitol gradients with a constant ionic strength showed that the relationship between water flux and the applied mannitol gradient deflects from a perfect osmometer response when the gradient is higher than 150 mosmol kg (W) (-1) . These results would indicate that the passage of water molecules through hAQP1 may have a maximum rate. As a whole, this work demonstrates the technical advantage of controlling both intracellular pressure and medium composition in order to study biophysical properties of hAQP1, and contributes information on water channel behavior under osmotic challenges and the discovery of new inhibitors.
Effect of high latitude filtering on NWP skill
NASA Technical Reports Server (NTRS)
Kalnay, E.; Takacs, L. L.; Hoffman, R. N.
1984-01-01
The high latitude filtering techniques commonly employed in global grid point models to eliminate the high frequency waves associated with the convergence of meridians, can introduce serious distortions which ultimately affect the solution at all latitudes. Experiments completed so far with the 4 deg x 5 deg, 9-level GLAS Fourth Order Model indicate that the high latitude filter currently in operation affects only minimally its forecasting skill. In one case, however, the use of pressure gradient filter significantly improved the forecast. Three day forecasts with the pressure gradient and operational filters are compared as are 5-day forecasts with no filter.
Moodley, Anand A.; Dlwati, Mahlubonke S.; Durand, Miranda
2017-01-01
ABSTRACT The role of the optic canal in the pathogenesis of papilloedema has been under scrutiny recently. Whether a larger canal precedes more severe papilloedema or is the result of bone remodelling from chronically raised pressure across a pressure gradient is not clear. The authors present the magnetic resonance imaging findings of a 29-year-old female with fulminant and untreated idiopathic intracranial hypertension. Imaging showed focal expansion and intrinsic signal changes of the intracanalicular optic nerve. The authors discuss the possibility of either fluid accumulation within the optic nerves from a water hammer effect across blocked optic canals resulting from the steep pressure gradient or opticomalacia (optic nerve softening) from chronic ischaemia. PMID:28348630
Outcome in 55 dogs with pulmonic stenosis that did not undergo balloon valvuloplasty or surgery.
Francis, A J; Johnson, M J S; Culshaw, G C; Corcoran, B M; Martin, M W S; French, A T
2011-06-01
To determine the outcome, independent predictors of cardiac death, and the Doppler-derived pressure gradient cut-off for predicting cardiac death in dogs with pulmonic stenosis, with or without tricuspid regurgitation, that do not undergo balloon valvuloplasty or valve surgery. Review of medical records of two UK referral centres between July 1997 and October 2008 for all cases of pulmonic stenosis that had no balloon valvuloplasty or valve surgery. Inclusion criteria included a diagnosis of pulmonic stenosis; spectral Doppler pulmonic velocity greater than 1·6 m/s; characteristic valve leaflet morphological abnormalities. Exclusion criteria included concurrent significant cardiac defects, including tricuspid dysplasia. Dogs with tricuspid regurgitation were included. Dogs were classified according to Doppler-derived pressure gradients into mild, moderate or severe pulmonic stenosis categories. Presence of tricuspid regurgitation and severe stenosis were independent predictors of cardiac death. A pulmonic pressure gradient of more than 60 mmHg was associated with 86% sensitivity, and 71% specificity of predicting cardiac death. There is an increased probability of cardiac death in those cases which have a pulmonary pressure gradient greater than 60 mmHg and tricuspid regurgitation, though the effect of severity of tricuspid regurgitation on outcome was not measurable because of small sample sizes. These animals might benefit from intervention. © 2011 British Small Animal Veterinary Association.
An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures
Amadei, B.; Savage, W.Z.
2001-01-01
We present below an analytical solution to model the one-dimensional transient flow of a Bingham viscoplastic material in a fracture with parallel walls (smooth or rough) that is subjected to an applied pressure gradient. The solution models the acceleration and the deceleration of the material as the pressure gradient changes with time. Two cases are considered: A pressure gradient applied over a finite time interval and an applied pressure gradient that is constant over time. The solution is expressed in dimensionless form and can therefore be used for a wide range of Bingham viscoplastic materials. The solution is also capable of capturing the transition that takes place in a fracture between viscoplastic flow and rigid plug flow. Also, it shows the development of a rigid central layer in fractures, the extent of which depends on the fluid properties (viscosity and yield stress), the magnitude of the pressure gradient, and the fracture aperture and surface roughness. Finally, it is shown that when a pressure gradient is applied and kept constant, the solution for the fracture flow rate converges over time to a steady-state solution that can be defined as a modified cubic law. In this case, the fracture transmissivity is found to be a non-linear function of the head gradient. This solution provides a tool for a better understanding of the flow of Bingham materials in rock fractures, interfaces, and cracks. ?? 2001 Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Boltz, Frederick W.; Kenyon, George C.; Allen, Clyde Q.
1960-01-01
An investigation was conducted in the Ames 12-Foot Low-Turbulence Pressure Tunnel to determine the effects of sweep on the boundary-layer stability characteristics of an untapered variable-sweep wing having an NACA 64(2)A015 section normal to the leading edge. Pressure distribution and transition were measured on the wing at low speeds at sweep angles of 0, 10, 20, 30, 40, and 50 deg. and at angles of attack from -3 to 3 deg. The investigation also included flow-visualization studies on the surface at sweep angles from 0 to 50 deg. and total pressure surveys in the boundary layer at a sweep angle of 30 deg. for angles of attack from -12 to 0 deg. It was found that sweep caused premature transition on the wing under certain conditions. This effect resulted from the formation of vortices in the boundary layer when a critical combination of sweep angle, pressure gradient, and stream Reynolds number was attained. A useful parameter in indicating the combined effect of these flow variables on vortex formation and on beginning transition is the crossflow Reynolds number. The critical values of crossflow Reynolds number for vortex formation found in this investigation range from about 135 to 190 and are in good agreement with those reported in previous investigations. The values of crossflow Reynolds number for beginning transitions were found to be between 190 and 260. For each condition (i.e., development of vortices and initiation of transition at a given location) the lower values in the specified ranges were obtained with a light coating of flow-visualization material on the surface. A method is presented for the rapid computation of crossflow Reynolds number on any swept surface for which the pressure distribution is known. From calculations based on this method, it was found that the maximum values of crossflow Reynolds number are attained under conditions of a strong pressure gradient and at a sweep angle of about 50 deg. Due to the primary dependence on pressure gradient, effects of sweep in causing premature transition are generally first encountered on the lower surfaces of wings operating at positive angles of attack.
Rajakannu, Muthukumarassamy; Cherqui, Daniel; Ciacio, Oriana; Golse, Nicolas; Pittau, Gabriella; Allard, Marc Antoine; Antonini, Teresa Maria; Coilly, Audrey; Sa Cunha, Antonio; Castaing, Denis; Samuel, Didier; Guettier, Catherine; Adam, René; Vibert, Eric
2017-10-01
Postoperative hepatic decompensation is a serious complication of liver resection in patients undergoing hepatectomy for hepatocellular carcinoma. Liver fibrosis and clinical significant portal hypertension are well-known risk factors for hepatic decompensation. Liver stiffness measurement is a noninvasive method of evaluating hepatic venous pressure gradient and functional hepatic reserve by estimating hepatic fibrosis. Effectiveness of liver stiffness measurement in predicting persistent postoperative hepatic decompensation has not been investigated. Consecutive patients with resectable hepatocellular carcinoma were recruited prospectively and liver stiffness measurement of nontumoral liver was measured using FibroScan. Hepatic venous pressure gradient was measured intraoperatively by direct puncture of portal vein and inferior vena cava. Hepatic venous pressure gradient ≥10 mm Hg was defined as clinically significant portal hypertension. Primary outcome was persistent hepatic decompensation defined as the presence of at least one of the following: unresolved ascites, jaundice, and/or encephalopathy >3 months after hepatectomy. One hundred and six hepatectomies, including 22 right hepatectomy (20.8%), 3 central hepatectomy (2.8%), 12 left hepatectomy (11.3%), 11 bisegmentectomy (10.4%), 30 unisegmentectomy (28.3%), and 28 partial hepatectomy (26.4%) were performed in patients for hepatocellular carcinoma (84 men and 22 women with median age of 67.5 years; median model for end-stage liver disease score of 8). Ninety-day mortality was 4.7%. Nine patients (8.5%) developed postoperative hepatic decompensation. Multivariate logistic regression bootstrapped at 1,000 identified liver stiffness measurement (P = .001) as the only preoperative predictor of postoperative hepatic decompensation. Area under receiver operating characteristic curve for liver stiffness measurement and hepatic venous pressure gradient was 0.81 (95% confidence interval, 0.506-0.907) and 0.71 (95% confidence interval, 0.646-0.917), respectively. Liver stiffness measurement ≥22 kPa had 42.9% sensitivity and 92.6% specificity and hepatic venous pressure gradient ≥10 mm Hg had 28.6% sensitivity and 96.3% specificity. In selected patients undergoing liver resection for hepatocellular carcinoma, transient elastography is an easy and effective test to predict persistent hepatic decompensation preoperatively. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hoffmann, Jon A.
1988-01-01
The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.
NASA Technical Reports Server (NTRS)
Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.
1989-01-01
The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.
What are the driving forces for water lifting in the xylem conduit?
Zimmermann, Ulrich; Schneider, Heike; Wegner, Lars H; Wagner, Hans-Jürgen; Szimtenings, Michael; Haase, Axel; Bentrup, Friedrich-Wilhelm
2002-03-01
After Renner had shown convincingly in 1925 that the transpirational water loss generates tensions larger than 0.1 MPa (i.e. negative pressures) in the xylem of cut leafy twigs the Cohesion Theory proposed by Böhm, Askenasy, Dixon and Joly at the end of the 19th century was immediately accepted by plant physiologists. Introduction of the pressure chamber technique by Scholander et al. in 1965 enforced the general belief that tension is the only driving force for water lifting although substantial criticism regarding the technique and/or the Cohesion Theory was published by several authors. As typical for scientific disciplines, the advent of minimal- and non-invasive techniques in the last decade as well as the development of a new, reliable method for xylem sap sampling have challenged this view. Today, xylem pressure gradients, potentials, ion concentrations and volume flows as well as cell turgor pressure gradients can be monitored online in intact transpiring higher plants, and within a given physiological context by using the pressure probe technique and high-resolution NMR imaging techniques, respectively. Application of the pressure probe technique to transpiring plants has shown that negative absolute pressures (down to - 0.6 MPa) and pressure gradients can exist temporarily in the xylem conduit, but that the magnitude and (occasionally) direction of gradients contrasts frequently the belief that tension is the only driving force. This seems to be particularly the case for plants faced with problems of height, drought, freezing and salinity as well as with cavitation of the tensile water. Reviewing the current data base shows that other forces come into operation when exclusively tension fails to lift water against gravity due to environmental conditions. Possible candidates are longitudinal cellular and xylem osmotic pressure gradients, axial potential gradients in the vessels as well as gel- and gas bubble-supported interfacial gradients. The multiforce theory overcomes the problem of the Cohesion Theory that life on earth depends on water being in a highly metastable state.
Emanuel, Kaj S; van der Veen, Albert J; Rustenburg, Christine M E; Smit, Theodoor H; Kingma, Idsart
2018-03-21
The mechanical behaviour of the intervertebral disc highly depends on the content and transport of interstitial fluid. It is unknown, however, to what extent the time-dependent behaviour can be attributed to osmosis. Here we investigate the effect of both mechanical and osmotic loading on water content, nucleus pressure and disc height. Eight goat intervertebral discs, immersed in physiological saline, were subjected to a compressive force with a pressure needle inserted in the nucleus. The loading protocol was: 10 N (6 h); 150 N (42 h); 10 N (24 h). Half-way the 150 N-phase (24 h), we eliminated the osmotic gradient by adding 26% poly-ethylene glycol to the surrounding fluid. For 62 additional discs, we determined the water content of both nucleus and annulus after 6, 24, 48, or 72 h. The compressive load was initially counterbalanced by the hydrostatic pressure in the nucleus. The load forced 4.3% of the water out of the nucleus, which reduced nucleus pressure by 44(±6)%. Reduction of the osmotic gradient disturbed the equilibrium disc height, and a significant loss of annulus water content was found. Remarkably, pressure and water content of the nucleus pulposus remained unchanged. This shows that annulus water content is important in the response to axial loading. After unloading, in the absence of an osmotic gradient, there was substantial viscoelastic recovery of 53(±11)% of the disc height, without a change in water content. However, for restoration of the nucleus pressure and for full restoration of disc height, restoration of the osmotic gradient was needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Turbulent flow separation in three-dimensional asymmetric diffusers
NASA Astrophysics Data System (ADS)
Jeyapaul, Elbert
2011-12-01
Turbulent three-dimensional flow separation is more complicated than 2-D. The physics of the flow is not well understood. Turbulent flow separation is nearly independent of the Reynolds number, and separation in 3-D occurs at singular points and along convergence lines emanating from these points. Most of the engineering turbulence research is driven by the need to gain knowledge of the flow field that can be used to improve modeling predictions. This work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers, to understand the separation phenomena using eddy-resolving simulation methods, assess the predictability of existing RANS turbulence models and propose modeling improvements. The Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models k--o SST,k--epsilon and v2- f fail in predicting such flows, predicting separation on the wrong side. The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles are different and this gives rise to different pressure gradient in each transverse direction. Eddyresolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation (LES) method have been used to predict separation in benchmark diffuser and validated. A series of diffusers with the same configuration have been generated, each having the same streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS models were put to test and the flow physics explored using SAS-generated flow field. The RANS model indicate a transition in separation surface from top sloped wall to the side sloped wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear Reynolds stress formulation. The complexity of the flow separation is due to effects of lateral straining, streamline curvature, secondary flow of second kind, transverse pressure gradient on turbulence. Resolving these effects is possible with anisotropy turbulence models as the Explicit Algebraic Reynolds stress model (EARSM). This model has provided accurate prediction of streamwise and transverse velocity, however the wall pressure is under predicted. An improved EARSM model is developed by correcting the coefficients, which predicts a more accurate wall pressure. There exists scope for improvement of this model, by including convective effects and dynamics of velocity gradient invariants.
Kherada, Nisharahmed; Brenes, Juan Carlos; Kini, Annapoorna S; Dangas, George D
2017-03-15
Accurate evaluation of trans-aortic valvular pressure gradients is challenging in cases where dual mechanical aortic and mitral valve prostheses are present. Non-invasive Doppler echocardiographic imaging has its limitations due to multiple geometric assumptions. Invasive measurement of trans-valvular gradients with cardiac catheterization can provide further information in patients with two mechanical valves, where simultaneous pressure measurements in the left ventricle and ascending aorta must be obtained. Obtaining access to the left ventricle via the mitral valve after a trans-septal puncture is not feasible in the case of a concomitant mechanical mitral valve, whereas left ventricular apical puncture technique is associated with high procedural risks. Retrograde crossing of a bileaflet mechanical aortic prosthesis with standard catheters is associated with the risk of catheter entrapment and acute valvular regurgitation. In these cases, the assessment of trans-valvular gradients using a 0.014˝ diameter coronary pressure wire technique has been described in a few case reports. We present the case of a 76-year-old female with rheumatic valvular heart disease who underwent mechanical aortic and mitral valve replacement in the past. She presented with decompensated heart failure and echocardiographic findings suggestive of elevated pressure gradient across the mechanical aortic valve prosthesis. The use of a high-fidelity 0.014˝ diameter coronary pressure guidewire resulted in the detection of a normal trans-valvular pressure gradient across the mechanical aortic valve. This avoided a high-risk third redo valve surgery in our patient. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Smit, C A J; Haverkamp, G L G; de Groot, S; Stolwijk-Swuste, J M; Janssen, T W J
2012-08-01
Ten participants underwent two electrical stimulation (ES) protocols applied using a custom-made electrode garment with built-in electrodes. Interface pressure was measured using a force-sensitive area. In one protocol, both the gluteal and hamstring (g+h) muscles were activated, in the other gluteal (g) muscles only. To study and compare the effects of electrically induced activation of g+h muscles versus g muscles only on sitting pressure distribution in individuals with a spinal cord injury (SCI). Ischial tuberosities interface pressure (ITs pressure) and pressure gradient. In all participants, both protocols of g and g+h ES-induced activation caused a significant decrease in IT pressure. IT pressure after g+h muscles activation was reduced significantly by 34.5% compared with rest pressure, whereas a significant reduction of 10.2% after activation of g muscles only was found. Pressure gradient reduced significantly only after stimulation of g+h muscles (49.3%). g+h muscles activation showed a decrease in pressure relief (Δ IT) over time compared with g muscles only. Both protocols of surface ES-induced of g and g+h activation gave pressure relief from the ITs. Activation of both g+h muscles in SCI resulted in better IT pressure reduction in sitting individuals with a SCI than activation of g muscles only. ES might be a promising method in preventing pressure ulcers (PUs) on the ITs in people with SCI. Further research needs to show which pressure reduction is sufficient in preventing PUs.
MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders
NASA Astrophysics Data System (ADS)
Haq, Rizwan Ul; Shahzad, Faisal; Al-Mdallal, Qasem M.
In this article, thermal performance of engine oil in the presence of both single and multiple wall carbon nanotubes (SWCNTs and MWCNTs) between two concentric cylinders is presented. Flow is driven with oscillatory pressure gradient and magneto-hydrodynamics (MHDs) effects are also introduced to control the random motion of the nanoparticles. Arrived broad, it is perceived that the inclusion of nanoparticles increases the thermal conductivity of working fluid significantly for both turbulent and laminar regimes. Fundamental momentum and energy equations are based upon partial differential equations (PDEs) that contain thermos-physical properties of both SWCNTs and MWCNTs. The solution has been evaluated for each mixture, namely: SWCNT-engine oil and MWCNT-engine oil. Results are determined for each velocity, temperature, pressure and stress gradient. Graphical results for the numerical values of the emerging parameters, namely: Hartmann number (M), the solid volume fraction of the nanoparticles (ϕ), Reynolds number (Reω), and the pulsation parameter based on the periodic pressure gradient are analyzed for pressure difference, frictional forces, velocity profile, temperature profile, crux, streamlines and vorticity phenomena. In addition, the assets of various parameters on the flow quantities of observation are investigated.
Implementation and Validation of an Impedance Eduction Technique
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.; Gerhold, Carl H.
2011-01-01
Implementation of a pressure gradient method of impedance eduction in two NASA Langley flow ducts is described. The Grazing Flow Impedance Tube only supports plane-wave sources, while the Curved Duct Test Rig supports sources that contain higher-order modes. Multiple exercises are used to validate this new impedance eduction method. First, synthesized data for a hard wall insert and a conventional liner mounted in the Grazing Flow Impedance Tube are used as input to the two impedance eduction methods, the pressure gradient method and a previously validated wall pressure method. Comparisons between the two results are excellent. Next, data measured in the Grazing Flow Impedance Tube are used as input to both methods. Results from the two methods compare quite favorably for sufficiently low Mach numbers but this comparison degrades at Mach 0.5, especially when the hard wall insert is used. Finally, data measured with a hard wall insert mounted in the Curved Duct Test Rig are used as input to the pressure gradient method. Significant deviation from the known solution is observed, which is believed to be largely due to 3-D effects in this flow duct. Potential solutions to this issue are currently being explored.
Boundary-Layer Transition on a Group of Blunt Nose Shapes at a Mach Number of 2.20
NASA Technical Reports Server (NTRS)
Jackson, Mary W.; Czarnecki, K. R.
1961-01-01
An investigation has been made to study boundary-layer transition on six axisymmetrical blunt bodies of revolution. Model shapes were selected with respect to the degree of favorable pressure gradient over the model surface. Tests were conducted at a Mach number of 2.20 and over a range of free-stream Reynolds number per foot of about 1.4 x 10(exp 6) to 6.5 x 10(exp 6). The tests were made at an angle of attack of 0 deg. with zero heat transfer. For the hemisphere, the flow remained essentially laminar over the model surface length for the entire pressure range of the tests. For a strong favorable pressure gradient followed by any weak favorable, neutral, or adverse gradient, the tendency was for transition to occur at or immediately behind the shoulder. A single strip of three-dimensional roughness in the region of strong favorable pressure gradient did not fix transition on the models at the roughness location except at the maximum test pressures, whereas a second roughness strip added in a region of neutral or adverse pressure gradient did fix transition. Experimental pressure coefficients agreed closely with modified Newtonian theory except in the shoulder region.
NASA Technical Reports Server (NTRS)
Conley, Julianne M.
1994-01-01
Computational fluid dynamics is being used increasingly to predict flows for aerospace propulsion applications, yet there is still a need for an easy to use, computationally inexpensive turbulence model capable of accurately predicting a wide range of turbulent flows. The Baldwin-Lomax model is the most widely used algebraic model, even though it has known difficulties calculating flows with strong adverse pressure gradients and large regions of separation. The modified mixing length model (MML) was developed specifically to handle the separation which occurs on airfoils and has given significantly better results than the Baldwin-Lomax model. The success of these calculations warrants further evaluation and development of MML. The objective of this work was to evaluate the performance of MML for zero and adverse pressure gradient flows, and modify it as needed. The Proteus Navier-Stokes code was used for this study and all results were compared with experimental data and with calculations made using the Baldwin-Lomax algebraic model, which is currently available in Proteus. The MML model was first evaluated for zero pressure gradient flow over a flat plate, then modified to produce the proper boundary layer growth. Additional modifications, based on experimental data for three adverse pressure gradient flows, were also implemented. The adapted model, called MMLPG (modified mixing length model for pressure gradient flows), was then evaluated for a typical propulsion flow problem, flow through a transonic diffuser. Three cases were examined: flow with no shock, a weak shock and a strong shock. The results of these calculations indicate that the objectives of this study have been met. Overall, MMLPG is capable of accurately predicting the adverse pressure gradient flows examined in this study, giving generally better agreement with experimental data than the Baldwin-Lomax model.
A model for jet-noise analysis using pressure-gradient correlations on an imaginary cone
NASA Technical Reports Server (NTRS)
Norum, T. D.
1974-01-01
The technique for determining the near and far acoustic field of a jet through measurements of pressure-gradient correlations on an imaginary conical surface surrounding the jet is discussed. The necessary analytical developments are presented, and their feasibility is checked by using a point source as the sound generator. The distribution of the apparent sources on the cone, equivalent to the point source, is determined in terms of the pressure-gradient correlations.
Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Micro-Flows
NASA Astrophysics Data System (ADS)
Horiuchi, Keisuke; Dutta, Prashanta
We analyze heat transfer characteristics of steady electroosmotic flows with an arbitrary pressure gradient in two-dimensional straight microchannels considering the effects of Joule heating in electroosmotic pumping. Both the temperature distribution and local Nusselt number are mathematically derived in this study. The thermal analysis takes into consideration of the interaction among advective, diffusive, and Joule heating terms to obtain the thermally developing behavior. Unlike macro-scale pipes, axial conduction in micro-scale cannot be negligible, and the governing energy equation is not separable. Thus, a method that considers an extended Graetz problem is introduced. Analytical results show that the Nusselt number of pure electrooosmotic flow is higher than that of plane Poiseulle flow. Moreover, when the electroosmotic flow and pressure driven flow coexist, it is found that adverse pressure gradient to the electroosmotic flow makes the thermal entrance length smaller and the heat transfer ability stronger than pure electroosmotic flow case.
The Blunt Plate In Hypersonic Flow
NASA Technical Reports Server (NTRS)
Baradell, Donald L.; Bertram, Mitchel H.
1960-01-01
The sonic-wedge characteristics method has been used to obtain the shock shapes and surface pressure distributions on several blunt two-dimensional shapes in a hypersonic stream for several values of the ratio of specific heats. These shapes include the blunt slab at angle of attack and power profiles of the form yb = a)P, where 0 les than m less than 1, Yb and x are coordinates of the body surface, and a is a constant. These numerical results have been compared with the results of blast-wave theory, and methods of predicting the pressure distributions and shock shapes are proposed in each case. The effects of a free-stream conical-flow gradient on the pressure distribution on a blunt slab in hypersonic flow were investigated by the sonic-wedge characteristics method and were found to be sizable in many cases. Procedures which are satisfactory for reducing pressure data obtained in conical flows with small gradients are presented.
Gaviria, Julian; Engelbrecht, Bettina M. J.
2015-01-01
Tree species distributions associated with rainfall are among the most prominent patterns in tropical forests. Understanding the mechanisms shaping these patterns is important to project impacts of global climate change on tree distributions and diversity in the tropics. Beside direct effects of water availability, additional factors co-varying with rainfall have been hypothesized to play an important role, including pest pressure and light availability. While low water availability is expected to exclude drought-intolerant wet forest species from drier forests (physiological tolerance hypothesis), high pest pressure or low light availability are hypothesized to exclude dry forest species from wetter forests (pest pressure gradient and light availability hypothesis, respectively). To test these hypotheses at the seed-to-seedling transition, the potentially most critical stage for species discrimination, we conducted a reciprocal transplant experiment combined with a pest exclosure treatment at a wet and a dry forest site in Panama with seeds of 26 species with contrasting origin. Establishment success after one year did not reflect species distribution patterns. However, in the wet forest, wet origin species had a home advantage over dry forest species through higher growth rates. At the same time, drought limited survival of wet origin species in the dry forest, supporting the physiological tolerance hypothesis. Together these processes sort species over longer time frames, and exclude species outside their respective home range. Although we found pronounced effects of pests and some effects of light availability on the seedlings, they did not corroborate the pest pressure nor light availability hypotheses at the seed-to-seedling transition. Our results underline that changes in water availability due to climate change will have direct consequences on tree regeneration and distributions along tropical rainfall gradients, while indirect effects of light and pests are less important. PMID:26619138
A wet/wet differential pressure sensor for measuring vertical hydraulic gradient.
Fritz, Brad G; Mackley, Rob D
2010-01-01
Vertical hydraulic gradient is commonly measured in rivers, lakes, and streams for studies of groundwater-surface water interaction. While a number of methods with subtle differences have been applied, these methods can generally be separated into two categories; measuring surface water elevation and pressure in the subsurface separately or making direct measurements of the head difference with a manometer. Making separate head measurements allows for the use of electronic pressure sensors, providing large datasets that are particularly useful when the vertical hydraulic gradient fluctuates over time. On the other hand, using a manometer-based method provides an easier and more rapid measurement with a simpler computation to calculate the vertical hydraulic gradient. In this study, we evaluated a wet/wet differential pressure sensor for use in measuring vertical hydraulic gradient. This approach combines the advantage of high-temporal frequency measurements obtained with instrumented piezometers with the simplicity and reduced potential for human-induced error obtained with a manometer board method. Our results showed that the wet/wet differential pressure sensor provided results comparable to more traditional methods, making it an acceptable method for future use.
Magnetic anisotropy at material interfaces
NASA Astrophysics Data System (ADS)
Greene, Peter Kevin
In this dissertation, a comprehensive set of depth dependent magnetic measurements, as well as structural characterizations, were carried out on the Co/Pd multilayer system. The first-order reversal curve (FORC) technique is applied extensively to identify reversal mechanisms and different reversal phases within the material. In particular, the extension of the FORC technique to x-ray magnetic circular dichroism (XMCD) as a surface sensitive technique that identifies reversible magnetization change was performed for the first time. Polarized neutron reflectivity (PNR) was also used to directly measure the magnetization as a function of depth. The effects of deposition pressure grading within the Co/Pd multilayers were investigated. Structures were graded with three distinct pressure regions. FORC analysis shows that not only does increasing the deposition pressure increase the coercivity and effective anisotropy within that region, but also the order in which the pressure is changed also affects the entire structure. Layers grown at high sputtering pressures tend to reverse via domain wall pinning and rotation while those grown at lower pressures reverse via rapid domain wall propagation laterally across the film. Having high pressure layers underneath low pressure layers causes disorder to vertically propagate and lessen the induced anisotropy gradient. This analysis is confirmed by depth dependent magnetization profiles obtain from PNR. Continuously pressure-graded Co/Pd multilayers were then sputtered at two incident angles onto porous aluminum oxide templates with different pore aspect ratios. The effects of pressure grading versus uniform low pressure deposition is studied, as well as the effect of the angle of the incident deposition flux. The coercivity of the pressure graded perpendicular flux sample is compared to the low pressure sample. Additionally the effect of deposition angle and pore sidewall deposition is investigated. It is shown that sidewall deposition strongly affects the reversal behavior. As another way to induce a vertical anisotropy gradient, Co/Pd multilayers were bombarded with Ar+ ions at different energies and fluences. The effects of the depth dependent structural damage as a function of irradiation conditions were investigated. It is shown that the structural damage weakens the perpendicular anisotropy of the surface layers, causing a tilting of the surface magnetic moment into the plane of the film. The surface behavior is explicitly measured and shown to have a significant tilting angle in the top 5 nm depending on irradiation energy and fluence. Continuing the study of vertical anisotropy gradients in Co/Pd multilayers, multilayers with varied Co thickness were studied. Four films with varying Co thickness profiles were created and then patterned into nanodot arrays with diameters between 700 nm and 70 nm. The different films were graded continuously, or in stacks with varying Co thicknesses. An anisotropy gradient is shown to be established in the graded samples, and the switching field is lowered as a result. Furthermore, in the continuously graded samples the magnetization reversal behavior is fundamentally different from all other samples. The thermal energy barriers are measured in the uniform and continuously graded samples, yielding similar results. Finally, the establishment of exchange anisotropy at the ferromagnet / antiferromagnet (FM/AFM) interface in the epitaxial Fe/CoO system is investigated as a function of AFM thickness. The establishment of frozen AFM moments is analyzed using the FORC technique. The FORC technique combined with vector coil measurements also shows the transition from rotatable AFM to pinned AFM moments and suggests a mechanism of winding domain walls within the bulk AFM. (Abstract shortened by UMI.).
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
Pressure gradients fail to predict diffusio-osmosis
NASA Astrophysics Data System (ADS)
Liu, Yawei; Ganti, Raman; Frenkel, Daan
2018-05-01
We present numerical simulations of diffusio-osmotic flow, i.e. the fluid flow generated by a concentration gradient along a solid-fluid interface. In our study, we compare a number of distinct approaches that have been proposed for computing such flows and compare them with a reference calculation based on direct, non-equilibrium molecular dynamics simulations. As alternatives, we consider schemes that compute diffusio-osmotic flow from the gradient of the chemical potentials of the constituent species and from the gradient of the component of the pressure tensor parallel to the interface. We find that the approach based on treating chemical potential gradients as external forces acting on various species agrees with the direct simulations, thereby supporting the approach of Marbach et al (2017 J. Chem. Phys. 146 194701). In contrast, an approach based on computing the gradients of the microscopic pressure tensor does not reproduce the direct non-equilibrium results.
On the role and value of β in incompressible MHD simulations
NASA Astrophysics Data System (ADS)
Chahine, Robert; Bos, Wouter J. T.
2018-04-01
The parameter β, defined as the ratio of the pressure to the square of the magnetic field, is widely used to characterize astrophysical and fusion plasmas. However, in the dynamics of a plasma flow, it is the pressure gradient which is important rather than the value of the pressure itself. It is shown that if one is interested in the influence of the pressure gradient on the dynamics of a plasma, it is not the quantity β which should be considered, but a similar quantity depending on the pressure gradient. The scaling of this newly defined quantity is investigated using incompressible magnetohydrodynamic simulations in a periodic cylinder in the Reversed Field Pinch flow regime.
Numerical Study of Underwater Explosions and Following Bubble Pulses
NASA Astrophysics Data System (ADS)
Abe, Atsushi; Katayama, Masahide; Murata, Kenji; Kato, Yukio; Tanaka, Katsumi
2007-06-01
Underwater explosions and following bubble pulses were simulated by using the hydrocode AUTODYN. The pressure gradient depended on the water depth was applied to the water, and the effects of the atmospheric pressure and the gravity on the bubble properties were investigated numerically. In the deep and shallow water depth cases the bubble properties or pressure histories obtained numerically were compared with the empirical formula or the experimental data. Not only the pressure gradient in the water and the atmospheric pressure but also the application of the JWL EOS to slow energy release of the non-ideal explosive (Miller model) were found to be of great importance to simulate the generation of the bubble pulse precisely. Although the gravitational term during the dynamic analysis can be neglected in numerical analyses for very short time phenomena, it is indispensable to simulate the buoyancy of the bubble because the time range of the bubble behavior is some hundred times longer than that of the explosion phenomena.
Determination of wall shear stress from mean velocity and Reynolds shear stress profiles
NASA Astrophysics Data System (ADS)
Volino, Ralph J.; Schultz, Michael P.
2018-03-01
An analytical method is presented for determining the Reynolds shear stress profile in steady, two-dimensional wall-bounded flows using the mean streamwise velocity. The method is then utilized with experimental data to determine the local wall shear stress. The procedure is applicable to flows on smooth and rough surfaces with arbitrary pressure gradients. It is based on the streamwise component of the boundary layer momentum equation, which is transformed into inner coordinates. The method requires velocity profiles from at least two streamwise locations, but the formulation of the momentum equation reduces the dependence on streamwise gradients. The method is verified through application to laminar flow solutions and turbulent DNS results from both zero and nonzero pressure gradient boundary layers. With strong favorable pressure gradients, the method is shown to be accurate for finding the wall shear stress in cases where the Clauser fit technique loses accuracy. The method is then applied to experimental data from the literature from zero pressure gradient studies on smooth and rough walls, and favorable and adverse pressure gradient cases on smooth walls. Data from very near the wall are not required for determination of the wall shear stress. Wall friction velocities obtained using the present method agree with those determined in the original studies, typically to within 2%.
Mohkam, Kayvan; Rode, Agnès; Darnis, Benjamin; Manichon, Anne-Frédérique; Boussel, Loïc; Ducerf, Christian; Merle, Philippe; Lesurtel, Mickaël; Mabrut, Jean-Yves
2018-05-09
The impact of portal hemodynamic variations after portal vein embolization on liver regeneration remains unknown. We studied the correlation between the parameters of hepatic venous pressure measured before and after portal vein embolization and future hypertrophy of the liver remnant after portal vein embolization. Between 2014 and 2017, we reviewed patients who were eligible for major hepatectomy and who had portal vein embolization. Patients had undergone simultaneous measurement of portal venous pressure and hepatic venous pressure gradient before and after portal vein embolization by direct puncture of portal vein and inferior vena cava. We assessed these parameters to predict future liver remnant hypertrophy. Twenty-six patients were included. After portal vein embolization, median portal venous pressure (range) increased from 15 (9-24) to 19 (10-27) mm Hg and hepatic venous pressure gradient increased from 5 (0-12) to 8 (0-14) mm Hg. Median future liver remnant volume (range) was 513 (299-933) mL before portal vein embolization versus 724 (499-1279) mL 3 weeks after portal vein embolization, representing a 35% (7.4-83.6) median hypertrophy. Post-portal vein embolization hepatic venous pressure gradient was the most accurate parameter to predict failure of future liver remnant to reach a 30% hypertrophy (c-statistic: 0.882 [95% CI: 0.727-1.000], P < 0.001). A cut-off value of post-portal vein embolization hepatic venous pressure gradient of 8 mm Hg showed a sensitivity of 91% (95% CI: 57%-99%), specificity of 80% (95% CI: 52%-96%), positive predictive value of 77% (95% CI: 46%-95%) and negative predictive value of 92.3% (95% CI: 64.0%-99.8%). On multivariate analysis, post-portal vein embolization hepatic venous pressure gradient and previous chemotherapy were identified as predictors of impaired future liver remnant hypertrophy. Post-portal vein embolization hepatic venous pressure gradient is a simple and reproducible tool which accurately predicts future liver remnant hypertrophy after portal vein embolization and allows early detection of patients who may benefit from more aggressive procedures inducing future liver remnant hypertrophy. (Surgery 2018;143:1-2.). Copyright © 2018 Elsevier Inc. All rights reserved.
Am Ende, Mary Tanya; Miller, Lee A
2007-02-01
An asymmetric membrane (AM) tablet was developed for a soluble model compound to study the in vitro drug release mechanisms in challenge conditions, including osmotic gradients, concentration gradients, and under potential coating failure modes. Porous, semipermable membrane integrity may be compromised by a high fat meal or by the presence of a defect in the coating that could cause a safety concern about dose-dumping. The osmotic and diffusional release mechanisms of the AM tablet were independently shut down such that their individual contribution to the overall drug release was measured. Shut off of osmotic and diffusional release was accomplished by performing dissolution studies into receptor solutions with osmotic pressure above the internal core osmotic pressure and into receptor solutions saturated with drug, respectively. The effect of coating failure modes on in vitro drug release from the AM tablet was assessed through a simulated high-fat meal and by intentionally compromising the coating integrity. The predominant drug release mechanism for the AM tablet was osmotic and accounted for approximately 90-95% of the total release. Osmotic release was shutoff when the receptor media osmotic pressure exceeded 76 atm. Diffusional release of the soluble drug amounted to 5-10% of the total release mechanism. The observed negative in vitro food effect was attributed to the increased osmotic pressure from the high fat meal when compared to the predicted release rates in sucrose media with the same osmotic pressure. This suppression in drug release rate due to a high fat meal is not anticipated to affect in vivo performance of the dosage form, as the rise in pressure is short-lived. Drug release from the AM system studied was determined to be robust to varying and extreme challenge conditions. The conditions investigated included varying pH, agitation rate, media osmotic pressure, media saturated with drug to eliminate the concentration gradient, simulated high fat meal, and intentionally placed film coating defects. Osmotic and diffusional shut off experiments suggest that the mechanism governing drug release is a combination of osmotic and diffusional at approximately 90-95% and 5-10%, respectively. In addition, the coating failure mode studies revealed this formulation and design is not significantly affected by a high fat meal or by an intentionally placed defect in the film coating, and more specifically, did not result in a burst of drug release.
NASA Technical Reports Server (NTRS)
Mortazavi, M.; Kollmann, W.; Squires, K.
1987-01-01
Vorticity plays a fundamental role in turbulent flows. The dynamics of vorticity in turbulent flows and the effect on single-point closure models were investigated. The approach was to use direct numerical simulations of turbulent flows to investigate the pdf of velocity and vorticity. The preliminary study of homogeneous shear flow has shown that the expectation of the fluctuating pressure gradient, conditioned with a velocity component, is linear in the velocity component, and that the coefficient is independent of velocity and vorticity. In addition, the work shows that the expectation of the pressure gradient, conditioned with a vorticity component, is essentially zero.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mert, Murat; Saltik, Levent; Gunay, Ilhan
2004-08-15
An 8-month old girl was presented with superior caval vein syndrome early after cardiac surgery. Angiography showed severe stenosis of the superior caval vein with 50 mmHg pressure gradient. Following balloon angioplasty, the pressure gradient was reduced to 7 mmHg with some residual stenosis of the superior caval vein. When the patient was reevaluated 5 months after the procedure, angiography revealed a normal diameter of the superior caval vein without a pressure gradient.
Pulmonary hypertension in dogs with mitral regurgitation attributable to myxomatous valve disease.
Chiavegato, David; Borgarelli, Michele; D'Agnolo, Gino; Santilli, Roberto A
2009-01-01
Pulmonary hypertension has been associated with mitral insufficiency caused by chronic degenerative valve disease in dogs. Our aim was to search for associations between left atrial to aortic root ratio, end-systolic and end-diastolic volume indices, and changes in the right ventricular to right atrial pressure gradient as estimated by the peak velocity of tricuspid regurgitation in dogs with chronic degenerative valve disease and different classes of heart failure. Dogs, for which follow-up was available were evaluated for changes in the right ventricular to right atrial systolic pressure gradient over time. Three hundred and forty-four dogs were studied; 51 in the International Small Animal Cardiac Health Council class la, 75 in class 1b, 113 in class 2, 97 in class 3a, and 8 in class 3b. The mean values for right ventricular to right atrial systolic pressure gradient, end-systolic volume index, end-diastolic volume index, and left atrial to aortic ratio were 49.2 +/- 17.1 mmHg, 149.12 +/- 60.8 and 37.7 +/- 21.6 ml/m2, and 1.9 +/- 0.5, respectively. A weak positive correlation was found between the right ventricular to right atrial systolic pressure gradient and the left atrial to aorta ratio (r = 0.242, P < 0.0001), end-diastolic volume index (r = 0.242, P < 0.0001), and end-systolic volume index (r = 0.129, P < 0.001). Follow up was available for 49 dogs. Of these, 18 had an increased, 12 a decreased, and 19 a stable right ventricular to right atrial systolic pressure gradient despite therapy. The equivalence point between the sensitivity and specificity curves of about 80% in the coincident point corresponded to a right ventricular to right atrial systolic pressure gradient of 48 mmHg. Our results suggest an association between the progressive nature of chronic degenerative mitral valve disease and pulmonary hypertension. It is of clinical interest that, with a right ventricular to right atrial systolic pressure gradient pressure gradient at or above 48 mmHg, pulmonary hypertension does not appear to improve despite therapy targeted at lowering the left atrial load.
NASA Technical Reports Server (NTRS)
Schobeiri, M. T.; Radke, R. E.
1996-01-01
Boundary layer transition and development on a turbomachinery blade is subjected to highly periodic unsteady turbulent flow, pressure gradient in longitudinal as well as lateral direction, and surface curvature. To study the effects of periodic unsteady wakes on the concave surface of a turbine blade, a curved plate was utilized. On the concave surface of this plate, detailed experimental investigations were carried out under zero and negative pressure gradient. The measurements were performed in an unsteady flow research facility using a rotating cascade of rods positioned upstream of the curved plate. Boundary layer measurements using a hot-wire probe were analyzed by the ensemble-averaging technique. The results presented in the temporal-spatial domain display the transition and further development of the boundary layer, specifically the ensemble-averaged velocity and turbulence intensity. As the results show, the turbulent patches generated by the wakes have different leading and trailing edge velocities and merge with the boundary layer resulting in a strong deformation and generation of a high turbulence intensity core. After the turbulent patch has totally penetrated into the boundary layer, pronounced becalmed regions were formed behind the turbulent patch and were extended far beyond the point they would occur in the corresponding undisturbed steady boundary layer.
Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube
Niu, Jun; Fu, Ceji; Tan, Wenchang
2012-01-01
The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared. PMID:22615961
Subsurface fluid pressures from drill-stem tests, Uinta Basin, Utah
Nelson, P.H.
2002-01-01
High fluid pressures are known to be associated with oil and gas fields in the Uinta Basin, Utah. Shut-in pressure measurements from drill-stem tests show how pressure varies with depth and by area within the basin. The data base used in this report incorporates over 2,000 pressure measurements from drill-stem tests in wells completed prior to 1985. However, the number of useful pressure measurements is considerably less, because many drill-stem tests fail to stabilize at the actual formation pressure if the permeability is low. By extracting the maximum pressure measurements recorded in a collection of wells within an area, the trend of formation pressure within that area can be approximated. Areal compilations of pressures from drill-stem tests show that overpressured rock formations occur throughout much of the northern and eastern areas of the Uinta Basin. In particular, significant overpressuring (0.5 < pressure gradient < 0.8 psi/ft) is found throughout much of the Altamont-Bluebell field at depths ranging from 10,000 to 13,000 ft, equivalent to 5,000 to 8,000 ft below sea level. Limited data indicate that the pressure gradient declines at depths greater than 13,000 ft. An underpressured zone appears to exist in the Altamont-Bluebell field at depths shallower than 5,000 ft. Throughout the eastern Uinta Basin, moderately overpressured zones (0.46 < pressure gradient < 0.5 psi/ft) are common, with local evidence of significantly overpressured zones, but pressure gradients greater than 0.6 psi/ft are rare.
NASA Astrophysics Data System (ADS)
Liu, J.; Wu, S. P.
2017-04-01
Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.
Flame spread along thermally thick horizontal rods
NASA Astrophysics Data System (ADS)
Higuera, F. J.
2002-06-01
An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.
Šesták, Jozef; Kahle, Vladislav
2014-07-11
Performing gradient liquid chromatography at constant pressure instead of constant flow rate has serious potential for shortening the analysis time and increasing the productivity of HPLC instruments that use gradient methods. However, in the constant pressure mode the decreasing column permeability during a long period of time negatively affects the repeatability of retention time. Thus a volume-based approach, in which the detector signal is plotted as a function of retention volume, must be taken into consideration. Traditional HPLC equipment, however, requires quite complex hardware and software modifications in order to work at constant pressure and in the volume-based mode. In this short communication, a low cost and easily feasible pressure-controlled extension of the previously described simple gradient liquid chromatography platform is proposed. A test mixture of four nitro esters was separated by 10-60% (v/v) acetone/water gradient and a high repeatability of retention volumes at 20MPa (RSD less than 0.45%) was realized. Separations were also performed at different values of pressure (20, 25, and 31MPa), and only small variations of the retention volumes (up to 0.8%) were observed. In this particular case, the gain in the analysis speed of 7% compared to the constant flow mode was realized at a constant pressure. Copyright © 2014 Elsevier B.V. All rights reserved.
Kinetic simulation of edge instability in fusion plasmas
NASA Astrophysics Data System (ADS)
Fulton, Daniel Patrick
In this work, gyrokinetic simulations in edge plasmas of both tokamaks and field reversed. configurations (FRC) have been carried out using the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC) has been formulated for cross-separatrix FRC simulation. In the tokamak edge, turbulent transport in the pedestal of an H-mode DIII-D plasma is. studied via simulations of electrostatic driftwaves. Annulus geometry is used and simulations focus on two radial locations corresponding to the pedestal top with mild pressure gradient and steep pressure gradient. A reactive trapped electron instability with typical ballooning mode structure is excited in the pedestal top. At the steep gradient, the electrostatic instability exhibits unusual mode structure, peaking at poloidal angles theta=+- pi/2. Simulations find this unusual mode structure is due to steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Realistic DIII-D geometry has a stabilizing effect compared to a simple circular tokamak geometry. Driftwave instability in FRC is studied for the first time using gyrokinetic simulation. GTC. is upgraded to treat realistic equilibrium calculated by an MHD equilibrium code. Electrostatic local simulations in outer closed flux surfaces find ion-scale modes are stable due to the large ion gyroradius and that electron drift-interchange modes are excited by electron temperature gradient and bad magnetic curvature. In the scrape-off layer (SOL) ion-scale modes are excited by density gradient and bad curvature. Collisions have weak effects on instabilities both in the core and SOL. Simulation results are consistent with density fluctuation measurements in the C-2 experiment using Doppler backscattering (DBS). The critical density gradients measured by the DBS qualitatively agree with the linear instability threshold calculated by GTC simulations. One outstanding critical issue in the FRC is the interplay between turbulence in the FRC. core and SOL regions. While the magnetic flux coordinates used by GTC provide a number of computational advantages, they present unique challenges at the magnetic field separatrix. To address this limitation, a new code, capable of coupled core-SOL simulations, is formulated, implemented, and successfully verified.
On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.
Nath, Saurabh; Boreyko, Jonathan B
2016-08-23
Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.
Assessment of fluctuating pressure gradient using acceleration spectra in near wall flows
NASA Astrophysics Data System (ADS)
Cadel, Daniel; Lowe, K. Todd
2015-11-01
Separation of contributions to the fluctuating acceleration from pressure gradient fluctuations and viscous shear fluctuations in the frequency domain is examined in a turbulent boundary layer. Past work leveraging turbulent accelerations for pressure gradient measurements has neglected the viscous shear term from the momentum equation--an invalid assumption in the case of near wall flows. The present study seeks to account for the influence of the viscous shear term and spectrally reject its contribution, which is thought to be concentrated at higher frequencies. Spectra of velocity and acceleration fluctuations in a flat plate, zero pressure gradient turbulent boundary layer at a momentum thickness Reynolds number of 7500 are measured using a spatially resolving three-component laser Doppler velocimeter. This canonical case data is applied for validation of the spectral approach for future application in more complex aerodynamic flows.
Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N
2014-10-01
Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.
A compressibility correction of the pressure strain correlation model in turbulent flow
NASA Astrophysics Data System (ADS)
Klifi, Hechmi; Lili, Taieb
2013-07-01
This paper is devoted to the second-order closure for compressible turbulent flows with special attention paid to modeling the pressure-strain correlation appearing in the Reynolds stress equation. This term appears as the main one responsible for the changes of the turbulence structures that arise from structural compressibility effects. From the analysis and DNS results of Simone et al. and Sarkar, the compressibility effects on the homogeneous turbulence shear flow are parameterized by the gradient Mach number. Several experiment and DNS results suggest that the convective Mach number is appropriate to study the compressibility effects on the mixing layers. The extension of the LRR model recently proposed by Marzougui, Khlifi and Lili for the pressure-strain correlation gives results that are in disagreement with the DNS results of Sarkar for high-speed shear flows. This extension is revised to derive a turbulence model for the pressure-strain correlation in which the compressibility is included in the turbulent Mach number, the gradient Mach number and then the convective Mach number. The behavior of the proposed model is compared to the compressible model of Adumitroiae et al. for the pressure-strain correlation in two turbulent compressible flows: homogeneous shear flow and mixing layers. In compressible homogeneous shear flows, the predicted results are compared with the DNS data of Simone et al. and those of Sarkar. For low compressibility, the two compressible models are similar, but they become substantially different at high compressibilities. The proposed model shows good agreement with all cases of DNS results. Those of Adumitroiae et al. do not reflect any effect of a change in the initial value of the gradient Mach number on the Reynolds stress anisotropy. The models are used to simulate compressible mixing layers. Comparison of our predictions with those of Adumitroiae et al. and with the experimental results of Goebel et al. shows good qualitative agreement.
Toward Verification of USM3D Extensions for Mixed Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Frink, Neal T.; Ding, Ejiang; Parlette, Edward B.
2013-01-01
The unstructured tetrahedral grid cell-centered finite volume flow solver USM3D has been recently extended to handle mixed element grids composed of hexahedral, prismatic, pyramidal, and tetrahedral cells. Presently, two turbulence models, namely, baseline Spalart-Allmaras (SA) and Menter Shear Stress Transport (SST), support mixed element grids. This paper provides an overview of the various numerical discretization options available in the newly enhanced USM3D. Using the SA model, the flow solver extensions are verified on three two-dimensional test cases available on the Turbulence Modeling Resource website at the NASA Langley Research Center. The test cases are zero pressure gradient flat plate, planar shear, and bump-inchannel. The effect of cell topologies on the flow solution is also investigated using the planar shear case. Finally, the assessment of various cell and face gradient options is performed on the zero pressure gradient flat plate case.
On the violation of gradient wind balance at the top of tropical cyclones
NASA Astrophysics Data System (ADS)
Cohen, Yair; Harnik, Nili; Heifetz, Eyal; Nolan, David S.; Tao, Dandan; Zhang, Fuqing
2017-08-01
The existence of physical solutions for the gradient wind balance is examined at the top of 12 simulated tropical cyclones. The pressure field at the top of these storms, which depends on the vertically integrated effect of the warm core and the near surface low, is found to violate the gradient wind balance—termed here as a state of nonbalance. Using a toy model, it is shown that slight changes in the relative location and relative widths of the warm core drastically increase the isobaric curvature at the upper level pressure maps leading to nonbalance. While idealized storms return to balance within several days, simulations of real-world tropical cyclones retain a considerable degree of nonbalance throughout the model integration. Comparing mean and maximum values of different storms shows that peak nonbalance correlates with either peak intensity or intensification, implying the possible importance of nonbalance at upper levels for the near surface winds.
Analytical Solution for the Critical Velocity of Pushing/Engulfment Transition
NASA Technical Reports Server (NTRS)
Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu
2004-01-01
The distribution of ceramic particles in a metal matrix composite material depends primarily on the interaction of the particles with the solid/liquid interface during the solidification process. A numerical model that describes the evolution of the shape of the solid/liquid interface in the proximity of a foreign particle will presented in this paper. The model accounts for the influence of the temperature gradient and the Gibbs-Thomson and disjoining pressure effects. It shows that for the systems characterized by k(sub p) < k(sub L) the disjoining pressure causes the interface curvature to change its sign in the close-contact particle/interface region. It also shows that the increase of the temperature gradient diminishes the effect of the disjoining pressure. The analysis of the numerical results obtained for a large range of processing conditions and materials parameters has led to the development of an analytical solution for the critical velocity of pushing/engulfinent transition. The theoretical results will be discussed and compared with the experimental measurements performed under microgravity conditions.
Study of high viscous multiphase phase flow in a horizontal pipe
NASA Astrophysics Data System (ADS)
Baba, Yahaya D.; Aliyu, Aliyu M.; Archibong, Archibong-Eso; Almabrok, Almabrok A.; Igbafe, A. I.
2018-03-01
Heavy oil accounts for a major portion of the world's total oil reserves. Its production and transportation through pipelines is beset with great challenges due to its highly viscous nature. This paper studies the effects of high viscosity on heavy oil two-phase flow characteristics such as pressure gradient, liquid holdup, slug liquid holdup, slug frequency and slug liquid holdup using an advanced instrumentation (i.e. Electrical Capacitance Tomography). Experiments were conducted in a horizontal flow loop with a pipe internal diameter (ID) of 0.0762 m; larger than most reported in the open literature for heavy oil flow. Mineral oil of 1.0-5.0 Pa.s viscosity range and compressed air were used as the liquid and gas phases respectively. Pressure gradient (measured by means differential pressure transducers) and mean liquid holdup was observed to increase as viscosity of oil is increased. Obtained results also revealed that increase in liquid viscosity has significant effects on flow pattern and slug flow features.
Meteorological effects on long-range outdoor sound propagation
NASA Technical Reports Server (NTRS)
Klug, Helmut
1990-01-01
Measurements of sound propagation over distances up to 1000 m were carried out with an impulse sound source offering reproducible, short time signals. Temperature and wind speed at several heights were monitored simultaneously; the meteorological data are used to determine the sound speed gradients according to the Monin-Obukhov similarity theory. The sound speed profile is compared to a corresponding prediction, gained through the measured travel time difference between direct and ground reflected pulse (which depends on the sound speed gradient). Positive sound speed gradients cause bending of the sound rays towards the ground yielding enhanced sound pressure levels. The measured meteorological effects on sound propagation are discussed and illustrated by ray tracing methods.
High-pressure balloon dilation in a dog with supravalvular aortic stenosis.
Pinkos, A; Stauthammer, C; Rittenberg, R; Barncord, K
2017-02-01
A 6-month-old female intact Goldendoodle was presented for diagnostic work up of a grade IV/VI left basilar systolic heart murmur. An echocardiogram was performed and revealed a ridge of tissue distal to the aortic valve leaflets at the sinotubular junction causing an instantaneous pressure gradient of 62 mmHg across the supravalvular aortic stenosis and moderate concentric hypertrophy of the left ventricle. Intervention with a high-pressure balloon dilation catheter was pursued and significantly decreased the pressure gradient to 34 mmHg. No complications were encountered. The patient returned in 5 months for re-evaluation and static long-term reduction in the pressure gradient was noted. Copyright © 2016 Elsevier B.V. All rights reserved.
[Diagnostic importance of the alveolar-arterial oxygen gradient].
Weinans, Marije A E; Drost-de Klerck, Amanda M; ter Maaten, Jan C
2012-01-01
The alveolar-arterial (A-a) oxygen gradient is the difference between the partial pressure of oxygen in the alveoli and the partial pressure of arterial oxygen and can be elevated in the case of pulmonary disease. We describe a 41-year-old patient with pneumonia who presented with abdominal pain, in whom calculation of the A-a gradient could have led to earlier diagnosis. The A-a oxygen gradient is mainly of diagnostic importance and the presented nomogram allows easy and quick interpretation. This might lead to a more frequent use of the A-a oxygen gradient in the future.
Statistics of pressure fluctuations in decaying isotropic turbulence.
Kalelkar, Chirag
2006-04-01
We present results from a systematic direct-numerical simulation study of pressure fluctuations in an unforced, incompressible, homogeneous, and isotropic three-dimensional turbulent fluid. At cascade completion, isosurfaces of low pressure are found to be organized as slender filaments, whereas the predominant isostructures appear sheetlike. We exhibit several results, including plots of probability distributions of the spatial pressure difference, the pressure-gradient norm, and the eigenvalues of the pressure-Hessian tensor. Plots of the temporal evolution of the mean pressure-gradient norm, and the mean eigenvalues of the pressure-Hessian tensor are also exhibited. We find the statistically preferred orientations between the eigenvectors of the pressure-Hessian tensor, the pressure gradient, the eigenvectors of the strain-rate tensor, the vorticity, and the velocity. Statistical properties of the nonlocal part of the pressure-Hessian tensor are also exhibited. We present numerical tests (in the viscous case) of some conjectures of Ohkitani [Phys. Fluids A 5, 2570 (1993)] and Ohkitani and Kishiba [Phys. Fluids 7, 411 (1995)] concerning the pressure-Hessian and the strain-rate tensors, for the unforced, incompressible, three-dimensional Euler equations.
Fortier, Catherine; Desjardins, Marie-Pier; Agharazii, Mohsen
2018-03-01
Aortic stiffness, measured by carotid-femoral pulse wave velocity (cf-PWV), is used for the prediction of cardiovascular risk. This mini-review describes the nonlinear relationship between cf-PWV and operational blood pressure, presents the proposed methods to adjust for this relationship, and discusses a potential place for aortic-brachial PWV ratio (a measure of arterial stiffness gradient) as a blood pressure-independent measure of vascular aging. PWV is inherently dependent on the operational blood pressure. In cross-sectional studies, PWV adjustment for mean arterial pressure (MAP) is preferred, but still remains a nonoptimal approach, as the relationship between PWV and blood pressure is nonlinear and varies considerably among individuals due to heterogeneity in genetic background, vascular tone, and vascular remodeling. Extrapolations from the blood pressure-independent stiffness parameter β (β 0 ) have led to the creation of stiffness index β, which can be used for local stiffness. A similar approach has been used for cardio-ankle PWV to generate a blood pressure-independent cardio-ankle vascular index (CAVI). It was recently demonstrated that stiffness index β and CAVI remain slightly blood pressure-dependent, and a more appropriate formula has been proposed to make the proper adjustments. On the other hand, the negative impact of aortic stiffness on clinical outcomes is thought to be mediated through attenuation or reversal of the arterial stiffness gradient, which can also be influenced by a reduction in peripheral medium-sized muscular arteries in conditions that predispose to accelerate vascular aging. Arterial stiffness gradient, assessed by aortic-brachial PWV ratio, is emerging to be at least as good as cf-PWV for risk prediction, but has the advantage of not being affected by operating MAP. The negative impacts of aortic stiffness on clinical outcomes are proposed to be mediated through attenuation or reversal of arterial stiffness gradient. Aortic-brachial PWV ratio, a measure of arterial stiffness gradient, is independent of MAP.
On Thermodiffusion and Gauge Transformations for Thermodynamic Fluxes and Driving Forces
NASA Astrophysics Data System (ADS)
Goldobin, D. S.
2017-12-01
We discuss the molecular diffusion transport in infinitely dilute liquid solutions under nonisothermal conditions. This discussion is motivated by an occurring misinterpretation of thermodynamic transport equations written in terms of chemical potential in the presence of temperature gradient. The transport equations contain the contributions owned by a gauge transformation related to the fact that chemical potential is determined up to the summand of form ( AT + B) with arbitrary constants A and B, where constant A is owned by the entropy invariance with respect to shifts by a constant value and B is owned by the potential energy invariance with respect to shifts by a constant value. The coefficients of the cross-effect terms in thermodynamic fluxes are contributed by this gauge transformation and, generally, are not the actual cross-effect physical transport coefficients. Our treatment is based on consideration of the entropy balance and suggests a promising hint for attempts of evaluation of the thermal diffusion constant from the first principles. We also discuss the impossibility of the "barodiffusion" for dilute solutions, understood in a sense of diffusion flux driven by the pressure gradient itself. When one speaks of "barodiffusion" terms in literature, these terms typically represent the drift in external potential force field (e.g., electric or gravitational fields), where in the final equations the specific force on molecules is substituted with an expression with the hydrostatic pressure gradient this external force field produces. Obviously, the interpretation of the latter as barodiffusion is fragile and may hinder the accounting for the diffusion fluxes produced by the pressure gradient itself.
Annotated Bibliography on the Physiological Effects of Acceleration in Aircraft.
1945-09-01
pulse wave deflection was reduced and the dicrotic notch was deepened. d. The size of the cardiac silhouette was reduced in all subjects during the...gradient and single pressure suits; arterial occlusion suit; p-essure transmission factors in suits; pneumatic lever suit... factors in anti-"g" suits. (Yale) CAM No. 129. 10 Dec. 42. a, Directly underneath pressurizing air bladders, the pressure is the same as in the
Ge, Zhengwei; Wang, Wei; Yang, Chun
2015-02-09
This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model. Copyright © 2014 Elsevier B.V. All rights reserved.
Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny
2015-07-03
The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.
Gorcsan, J; Snow, F R; Paulsen, W; Nixon, J V
1991-03-01
A completely noninvasive method for estimating left atrial pressure in patients with congestive heart failure and mitral regurgitation has been devised with the use of continuous-wave Doppler echocardiography and brachial sphygmomanometry. Of 46 patients studied with mitral regurgitation, 35 (76%) had jets with distinct Doppler spectral envelopes recorded. The peak ventriculoatrial gradient was obtained by measuring peak mitral regurgitant velocity in systole and using the modified Bernoulli equation. This gradient was then subtracted from peak brachial systolic blood pressure, an estimate of left ventricular systolic pressure, to yield left atrial pressure (left atrial pressure = systolic blood pressure - mitral regurgitant pressure gradient). Noninvasive estimates of left atrial pressure from 35 patients were plotted against simultaneous recordings of mean pulmonary capillary wedge pressure resulting in the correlation y = 0.88x + 3.3, r = 0.88, standard error of estimate = +/- 4 mm Hg (p less than 0.001). Therefore, continuous-wave Doppler echocardiography and sphygmomanometry may be used in selected patients with congestive heart failure and mitral regurgitation for noninvasive estimation of left atrial pressure.
The composite TTG series: evidence for a non-unique tectonic setting for Archaean crustal growth.
NASA Astrophysics Data System (ADS)
Moyen, Jean-François
2010-05-01
The geodynamic context of formation of the Archaean TTG (tonalite-trondhjemite-granodiorite) series, the dominant component of the Archaean continental crust, is a matter of debate. The two end-member models for TTG formation are melting of the basaltic slab in a "hot subduction"; and intra-plate melting of basaltic rocks at the base of thick crust (oceanic plateau?). Both models do however predict strikingly different geothermal gradients, as in the modern Earth a typical subduction gradient is less than 10 °C/km compared to > 25-30 °C/km in the case of plateau melting. Using a large database of published TTG compositions, and filtering it to remove rocks that do not match the definition of TTG, it is possible to show that the TTG series is actually composite and made of a range of geochemically identifiable components that can be referred to as low-, medium- and high-pressure groups. The geochemistry of the low-pressure group (low Al, Na, Sr, relatively high Y and Nb) is consistent with derivation from a plagioclase and garnet- amphibolite; the medium-pressure group was formed in equilibrium with a garnet-rich, plagioclase-poor amphibolite, whereas the high pressure group derived from a rutile bearing eclogite. As the temperature of melting of metamafic rocks is largely independent from pressure, this corresponds to melting along a range of contrasting geothermal gradients. The low pressure group requires gradients of 10-12 °C/km, whereas the gradient required for the low pressure group can be as high as 25—30 °C/km. Regardless of the preferred tectonic model for the Archaean, such a range of gradients requires an equally large range of tectonic sites for the formation of the Archaean continental crust.
NASA Technical Reports Server (NTRS)
Blackwell, B. F.; Kays, W. M.; Moffat, R. J.
1972-01-01
An experimental investigation of the heat transfer behavior of the near equilibrium transpired turbulent boundary layer with adverse pressure gradient has been carried out. Stanton numbers were measured by an energy balance on electrically heated plates that form the bottom wall of the wind tunnel. Two adverse pressure gradients were studied. Two types of transpiration boundary conditions were investigated. The concept of an equilibrium thermal boundary layer was introduced. It was found that Stanton number as a function of enthalpy thickness Reynolds number is essentially unaffected by adverse pressure gradient with no transpiration. Shear stress, heat flux, and turbulent Prandtl number profiles were computed from mean temperature and velocity profiles. It was concluded that the turbulent Prandtl number is greater than unity in near the wall and decreases continuously to approximately 0.5 at the free stream.
Unsteady separation and vortex shedding from a laminar separation bubble over a bluff body
NASA Astrophysics Data System (ADS)
Das, S. P.; Srinivasan, U.; Arakeri, J. H.
2013-07-01
Boundary layers are subject to favorable and adverse pressure gradients because of both the temporal and spatial components of the pressure gradient. The adverse pressure gradient may cause the flow to separate. In a closed loop unsteady tunnel we have studied the initiation of separation in unsteady flow past a constriction (bluff body) in a channel. We have proposed two important scalings for the time when boundary layer separates. One is based on the local pressure gradient and the other is a convective time scale based on boundary layer parameters. The flow visualization using a dye injection technique shows the flow structure past the body. Nondimensional shedding frequency (Strouhal number) is calculated based on boundary layer and momentum thicknesses. Strouhal number based on the momentum thickness shows a close agreement with that for flat plate and circular cylinder.
Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal
2016-01-01
In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.
Partial differential equations of 3D boundary layer and their numerical solutions in turbomachinery
NASA Astrophysics Data System (ADS)
Zhang, Guoqing; Hua, Yaonan; Wu, Chung-Hua
1991-08-01
This paper studies the 3D boundary layer equations (3DBLE) and their numerical solutions in turbomachinery: (1) the general form of 3DBLE in turbomachines with rotational and curvature effects are derived under the semiorthogonal coordinate system, in which the normal pressure gradient is not equal to zero; (2) the method of solution of the 3DBLE is discussed; (3) the 3D boundary layers on the rotating blade surface, IGV endwall, rotor endwall (with a relatively moving boundary) are numerically solved, and the predicted data correlates well with the measured data; and (4) the comparison is made between the numerical results of 3DBLE with and without normal pressure gradient.
NASA Astrophysics Data System (ADS)
Paustian, Joel Scott
Microfluidic technology is playing an ever-expanding role in advanced chemical and biological devices, with diverse applications including medical diagnostics, high throughput research tools, chemical or biological detection, separations, and controlled particle fabrication. Even so, local (microscale) modification of solution properties within microchannels, such as pressure, solute concentration, and voltage remains a challenge, and improved spatiotemporal control would greatly enhance the capabilities of microfluidics. This thesis demonstrates and characterizes two microfluidic tools to enhance local solution control. I first describe a microfluidic pump that uses an electrokinetic effect, Induced-Charge Electroosmosis (ICEO), to generate pressure on-chip. In ICEO, steady flows are driven by AC fields along metal-electrolyte interfaces. I design and microfabricate a pump that exploits this effect to generate on-chip pressures. The ICEO pump is used to drive flow along a microchannel, and the pressure is measured as a function of voltage, frequency, and electrolyte composition. This is the first demonstration of chip-scale flows driven by ICEO, which opens the possibility for ICEO pumping in self-contained microfluidic devices. Next, I demonstrate a method to create thin local membranes between microchannels, which enables local diffusive delivery of solute. These ``Hydrogel Membrane Microwindows'' are made by photopolymerizing a hydrogel which serves as a local ``window'' for solute diffusion and electromigration between channels, but remains a barrier to flow. I demonstrate three novel experimental capabilities enabled by the hydrogel membranes: local concentration gradients, local electric currents, and rapid diffusive composition changes. I conclude by applying the hydrogel membranes to study solvophoresis, the migration of particles in solvent gradients. Solvent gradients are present in many chemical processes, but migration of particles within these gradients is not well understood. An improved understanding would allow solvophoresis to be engineered (e.g. for coatings and thin film deposition) or reduced (e.g. in fouling processes during reactions and separations). Toward this end, I perform velocity measurements of colloidal particles at various ethanol-water concentrations and gradient strengths. The velocity was found to depend on the mole fraction via the equation u = DSP▿ln X, where u is the velocity, DSP is the mobility, and X is the ethanol mole fraction.
The effect of the pressure on the deceleration parameter in inhomogeneous cosmological models
NASA Astrophysics Data System (ADS)
Vrba, David
2012-07-01
The cosmological parameters have been recently widely studied within inhomogeneous cosmological models. The investigation is usually done in the Lemaitre-Tolman-Bondi (LTB) metric, the spherically symmetric dust solution of Einstein equations. However only little attention has been paid to models with nonzero pressure. Recently it has been pointed out, that pressure gradients can have significant impact on the angular diameter distance redshift relation and it seems to be important to investigate how it effects other cosmological parameters. Here we investigate the influence of the pressure on the backreaction and consequently on the deceleration parameter using the inhomogeneous Lemaitre metric.
Stankovicha, Joseph J; Gritti, Fabrice; Beaver, Lois Ann; Stevensona, Paul G; Guiochon, Georges
2013-11-29
Five methods were used to implement fast gradient separations: constant flow rate, constant column-wall temperature, constant inlet pressure at moderate and high pressures (controlled by a pressure controller),and programmed flow constant pressure. For programmed flow constant pressure, the flow rates and gradient compositions are controlled using input into the method instead of the pressure controller. Minor fluctuations in the inlet pressure do not affect the mobile phase flow rate in programmed flow. There producibilities of the retention times, the response factors, and the eluted band width of six successive separations of the same sample (9 components) were measured with different equilibration times between 0 and 15 min. The influence of the length of the equilibration time on these reproducibilities is discussed. The results show that the average column temperature may increase from one separation to the next and that this contributes to fluctuation of the results.
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.
2008-01-01
Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.
Isolating Curvature Effects in Computing Wall-Bounded Turbulent Flows
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.
2001-01-01
The flow over the zero-pressure-gradient So-Mellor convex curved wall is simulated using the Navier-Stokes equations. An inviscid effective outer wall shape, undocumented in the experiment, is obtained by using an adjoint optimization method with the desired pressure distribution on the inner wall as the cost function. Using this wall shape with a Navier-Stokes method, the abilities of various turbulence models to simulate the effects of curvature without the complicating factor of streamwise pressure gradient can be evaluated. The one-equation Spalart-Allmaras turbulence model overpredicts eddy viscosity, and its boundary layer profiles are too full. A curvature-corrected version of this model improves results, which are sensitive to the choice of a particular constant. An explicit algebraic stress model does a reasonable job predicting this flow field. However, results can be slightly improved by modifying the assumption on anisotropy equilibrium in the model's derivation. The resulting curvature-corrected explicit algebraic stress model possesses no heuristic functions or additional constants. It lowers slightly the computed skin friction coefficient and the turbulent stress levels for this case (in better agreement with experiment), but the effect on computed velocity profiles is very small.
Kim, Y J; Jones, M; Shiota, T; Tsujino, H; Qin, J X; Bauer, F; Sitges, M; Kwan, J; Cardon, L A; Zetts, A D; Thomas, J D
2002-10-01
To evaluate the load dependence of effective regurgitant orifice area (ROA) in an animal model of chronic aortic regurgitation. Eight sheep were studied 10-20 weeks after the surgical creation of aortic regurgitation. After baseline studies, 500 ml of blood, angiotensin II, and nitroprusside were infused sequentially. Electromagnetic flow meters were used as reference standards to determine aortic regurgitation volume. The time-velocity integral was acquired using the continuous wave Doppler method. Baseline aortic regurgitant volume varied from 8 ml (regurgitant fraction 28%) to 29 ml (59%), with a mean (SD) value of 17 (8) ml; mean ROA was 0.15 (0.05) cm2. During angiotensin II infusion, aortic regurgitation volume (20 (8) ml) and mean diastolic aortoventricular pressure gradient (62 (18) mm Hg) increased by 26 (16)% and 48 (64)%, respectively (p < 0.01 for both). ROA did not change (0.16 (0.06) cm(2), p = 0.15). During nitroprusside infusion, aortic regurgitant volume (13 (7) ml, p = 0.05) and diastolic pressure gradient (25 (13) mm Hg, p < 0.05) decreased. ROA did not change (0.15 (0.05) cm2). When analysing 32 stages together, aortic regurgitant volume (r = 0.78, p < 0.01) and regurgitant fraction (r = 0.55, p < 0.01) correlated well with ROA. However, diastolic pressure gradient (r = 0.28) was not significantly correlated with ROA. In an animal model of chronic aortic regurgitation, ROA did not change with load alterations.
NASA Astrophysics Data System (ADS)
Oberparleiter, M.; Jenko, F.; Told, D.; Doerk, H.; Görler, T.
2016-04-01
Neoclassical and turbulent transport in tokamaks has been studied extensively over the past decades, but their possible interaction remains largely an open question. The two are only truly independent if the length scales governing each of them are sufficiently separate, i.e., if the ratio ρ* between ion gyroradius and the pressure gradient scale length is small. This is not the case in particularly interesting regions such as transport barriers. Global simulations of a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear global gyrokinetic code Gene are presented. In particular, comparisons are made between systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent transport is observed for ρ*≳1 /300 . Furthermore, the dependency of the flux on the collisionality changes. In simulations with fixed power input, we find that the presence of neoclassical effects decreases the frequency and amplitude of intermittent turbulent transport bursts (avalanches) and thus plays an important role for the self-organisation behaviour.
Axisymmetric magnetorotational instability in ideal and viscous laboratory plasmas
NASA Astrophysics Data System (ADS)
Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Erokhin, N. N.; Pustovitov, V. D.; Konovalov, S. V.
2008-10-01
The original analysis of the axisymmetric magnetorotational instability (MRI) by Velikhov (Sov. Phys. JETP 9, 995 (1959)) and Chandrasekhar (Proc. Nat. Acad. Sci. 46, 253 (1960)), applied to the ideally conducting magnetized medium in the laboratory conditions and restricted to the incompressible approximation, is extended by allowing for the compressibility. Thereby, two additional driving mechanisms of MRI are revealed in addition to the standard drive due to the negative medium rotation frequency gradient (the Velikhov effect). One is due to the squared medium pressure gradient and another is a combined effect of the pressure and density gradients. For laboratory applications, the expression for the MRI boundary with all the above driving mechanisms and the stabilizing magnetoacoustic effect is derived. The effects of parallel and perpendicular viscosities on the MRI in the laboratory plasma are investigated. It is shown that, for strong viscosity, there is a family of MRI driven for the same condition as the ideal one. It is also revealed that the presence of strong viscosity leads to additional family of instabilities called the viscosity-driven MRI. Then the parallel-viscositydriven MRI looks as an overstability (oscillatory instability) possessing both the growth rate and the real part of oscillation frequency, while the perpendicular-viscosity MRI is the aperiodical instability.
Sripathi, Vangipuram Canchi; Kumar, Ramarathnam Krishna; Balakrishnan, Komarakshi R
2004-03-01
This study aims to find the fundamental differences in the mechanism of opening and closing of a normal aortic valve and a valve with a stiff root, using a dynamic finite element model. A dynamic, finite element model with time varying pressure was used in this study. Shell elements with linear elastic properties for the leaflet and root were used. Two different cases were analyzed: (1) normal leaflets inside a compliant root, and (2) normal leaflets inside a stiff root. A compliant aortic root contributes substantially to the smooth and symmetrical leaflet opening with minimal gradients. In contrast, the leaflet opening inside a stiff root is delayed, asymmetric, and wrinkled. However, this wrinkling is not associated with increased leaflet stresses. In compliant roots, the effective valve orifice area can substantially increase because of increased root pressure and transvalvular gradients. In stiff roots this effect is strikingly absent. A compliant aortic root contributes substantially to smooth and symmetrical leaflet opening with minimal gradients. The compliance also contributes much to the ability of the normal aortic valve to increase its effective valve orifice in response to physiologic demands of exercise. This effect is strikingly absent in stiff roots.
Effects of heart rate on experimentally produced mitral regurgitation in dogs.
Yoran, C; Yellin, E L; Hori, M; Tsujioka, K; Laniado, S; Sonnenblick, E H; Frater, R W
1983-12-01
The effects of increasing heart rate (HR) on the hemodynamics of acute mitral regurgitation (MR) were studied in 8 open-chest dogs. Filling volume, regurgitant volume and stroke volume were calculated from electromagnetic probe measurements of mitral and aortic flows. The left atrial-left ventricular systolic pressure gradient was measured with micromanometers. The calculated effective mitral regurgitant orifice area varied from 10 to 128 mm2, with a consequent regurgitant fraction (regurgitant volume/filling volume) of 24 to 62%. After crushing the sinus node, HR was increased stepwise from 90 to 180 beats/min by atrial pacing while maintaining aortic pressure constant. With increasing HR, filling volume, stroke volume, regurgitant volume and regurgitant time decreased; total cardiac output, forward cardiac output, regurgitant output, systolic pressure gradient, regurgitant fraction and the regurgitant orifice did not change; left ventricular end-diastolic pressure decreased; and left atrial v-wave amplitude increased. These results indicate that in acute experimental MR with a wide spectrum of incompetence, the relative distribution of forward and regurgitant flows did not change with large increases in HR. At rates greater than 150 beats/min the atrial contraction occurs early and increases the amplitude of the left atrial v wave. This may contribute to the severity of pulmonary congestion in patients with MR.
1982-11-01
direction of the gradients) of the wires should be minimized. (2) To reduce end effects ( nonuniform temperature along the active length) and to...r 0l C. 1 ~0 m I I. I l l LLJ F|0. L9L "" - "lid lair &= 0 - -fu mEU 4 0 DO -- 1- a j 0 D 0 - ’n) N, > 0 *0 .0- -0- t I t .-I I co u X c , O6-, x0
The Effect of Hemodynamics on Cerebral Aneurysm Morphology
NASA Astrophysics Data System (ADS)
Metcalfe, Ralph; Mantha, Aishwarya; Karmonik, Christof; Strother, Charles
2004-11-01
One of the difficulties in applying principles of hemodynamics to the study of blood flow in aneurysms are the drastic variations in possible shape of both the aneurysms and the parent arteries in the region of interest. We have taken data from three para-opthalmic internal carotid artery aneurysms using 3D-digital subtraction angiography (3D-DSA) and performed CFD simulations of steady and unsteady flows through the three different cases using the same pressure gradients and pulsatile flow waveforms (based on the Ku model for flow through the Carotid bifurcation). We have found that the total pressure differential within the aneurysms is consistent with the direction of flow, and that the dynamic pressure gradient within the aneurysm is very small compared with the static pressure variations. Wall shear stresses were highest near regions of sharp arterial curvature, but always remained low inside the aneurysm. These results suggest a more complex role for hemodynamics in aneurysm generation, growth and rupture.
Kim, Yong Joon; Jo, Sungkil; Moon, Daruchi; Joo, Youngcheol; Choi, Kyung Seek
2014-05-01
To comprehend the mechanism of focal chorioretinal damage by analysis of the pressure distribution and dynamic pressure induced by infused air during fluid-air exchange. A precise simulation featuring a model eye and a fluid circuit was designed to analyze fluid-air exchange. The pressure distribution, flow velocity, and dynamic pressure induced by infusion of air into an air-filled eye were analyzed using an approach based on fluid dynamics. The size of the port and the infusion pressure were varied during simulated iterations. We simulated infusion of an air-filled eye with balanced salt solution (BSS) to better understand the mechanism of chorioretinal damage induced by infused air. Infused air was projected straight toward a point on the retina contralateral to the infusion port (the "vulnerable point"). The highest pressure was evident at the vulnerable point, and the lowest pressure was recorded on most retinal areas. Simulations using greater infusion pressure and a port of larger size were associated with elevations in dynamic pressure and the pressure gradient. The pressure gradients were 2.8 and 5.1 mm Hg, respectively, when infusion pressures of 30 and 50 mm Hg were delivered through a 20-gauge port. The pressure gradient associated with BSS infusion was greater than that created by air, but lasted for only a moment. Our simulation explains the mechanism of focal chorioretinal damage in numerical terms. Infused air induces a prolonged increase in focal pressure on the vulnerable point, and this may be responsible for visual field defects arising after fluid-air exchange. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Effects of supercritical environment on hydrocarbon-fuel injection
NASA Astrophysics Data System (ADS)
Shin, Bongchul; Kim, Dohun; Son, Min; Koo, Jaye
2017-04-01
In this study, the effects of environment conditions on decane were investigated. Decane was injected in subcritical and supercritical ambient conditions. The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions. For supercritical ambient conditions, the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K. The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method. A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions. Conversely, for supercritical injection in supercritical ambient conditions, a small density gradient was observed at the jet interface. In a manner similar to that observed in other cases, supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid. Additionally, there were changes in the interface, and the supercritical injection core width was thicker than that in the subcritical injection. Furthermore, in cases with the same injection conditions, the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface. Therefore, the interface was affected by the changing ambient condition. Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine, the effects of the ambient conditions were investigated experimentally.
NASA Technical Reports Server (NTRS)
Furrow, Keith W.; Ritchie, Steve J.; Morris, Amy
2000-01-01
To meet ballistic requirements, medium and small caliber propellants use deterrent coatings to obtain burn rate progressivity. The required amount and distribution of deterrent varies between gun systems, propellant types, and often between lots. Micro Fourier Transform Infrared (FTIR) spectroscopy was used to measure deterrent gradients in RP36 propellants coated with methyl centralite (MC) at different deterrent levels and different processing conditions. The aromatic C-C bonds at 1496 cm(exp -1) wavenumber were used to monitor the deterrent profiles through the grain. Deterrent gradients measured with FTIR spectroscopy were then used to estimate burn rate gradients in the deterred grains. Burn rates were calculated from literature models and from closed bomb data of RP36 containing uniform deterrent concentration. Finally, the burn rate gradients were input into an IBHFG2 model of a 200 cc-closed bomb. The early flame spreading portion of the closed bomb ballistic cycle (0 to 0.2 P/Pmax) was roughly modeled by dividing the charge up into five propellant decks and igniting them at different times in the ballistic cycle. Pressure traces and vivacity curves from closed bomb shots were compared to predictions. In addition to the burn rate gradient, the closed bomb pressure trace was heavily dependent on ignition and flame spread. These two phenomena were not readily distinguishable from one another in deterred grains. The same RP-36 propellant was shot in a 25 mm M793TP round which was again modeled with IBHVG2. Peak pressure and muzzle velocity were accurately modeled when erosive burning effects were empirically factored into the model.
Markham, Larry W; Knecht, Sandra K; Daniels, Stephen R; Mays, Wayne A; Khoury, Philip R; Knilans, Timothy K
2004-11-01
Often, the lack of systemic arterial hypertension and the lack of a resting arm-leg blood pressure gradient are used to assess the adequacy of the anatomic result after intervention for coarctation of the aorta (CoA). Some patients with no arm-leg gradient at rest may develop a gradient with exercise, leading caregivers to question the success of the repair. It is not clear what the prevalence is of patients who have undergone a successful intervention for CoA and have no arm-leg gradient at rest but develop a significant gradient with exercise and which factors may predict the development of an arm-leg gradient with exercise. This study evaluates the prevalence and predictors of an exercise-induced arm-leg gradient in subjects who have undergone an apparently successful intervention for CoA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilar, Kartik; Rua, Armando; Suarez, Sophia N.
A comprehensive variable temperature, pressure and frequency multinuclear ( 1H, 2H, and 19F) magnetic resonance study was undertaken on selectively deuterated 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIM TFSA) ionic liquid isotopologues. This study builds on our earlier investigation of the effects of increasing alkyl chain length on diffusion and dynamics in imidazolium-based TFSA ionic liquids. Fast field cycling 1H T 1 data revealed multiple modes of motion. Through calculation of diffusion coefficient (D) values and activation energies, the low- and high-field regimes were assigned to the translational and reorientation dynamics respectively. Variable-pressure 2H T 1 measurements reveal site-dependent interactions in the cation withmore » strengths in the order MD 3 > CD 3 > CD 2, indicating dissimilarities in the electric field gradients along the alkyl chain, with the CD 2 sites having the largest gradient. Additionally, the α saturation effect in T 1 vs. P was observed for all three sites, suggesting significant reduction of the short-range rapid reorientational dynamics. This reduction was also deduced from the variable pressure 1H T 1 data, which showed an approach to saturation for both the methyl and butyl group terminal methyl sites. Pressure-dependent D measurements show independent motions for both cations and anions, with the cations having greater D values over the entire pressure range.« less
Pilar, Kartik; Rua, Armando; Suarez, Sophia N.; ...
2017-05-11
A comprehensive variable temperature, pressure and frequency multinuclear ( 1H, 2H, and 19F) magnetic resonance study was undertaken on selectively deuterated 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIM TFSA) ionic liquid isotopologues. This study builds on our earlier investigation of the effects of increasing alkyl chain length on diffusion and dynamics in imidazolium-based TFSA ionic liquids. Fast field cycling 1H T 1 data revealed multiple modes of motion. Through calculation of diffusion coefficient (D) values and activation energies, the low- and high-field regimes were assigned to the translational and reorientation dynamics respectively. Variable-pressure 2H T 1 measurements reveal site-dependent interactions in the cation withmore » strengths in the order MD 3 > CD 3 > CD 2, indicating dissimilarities in the electric field gradients along the alkyl chain, with the CD 2 sites having the largest gradient. Additionally, the α saturation effect in T 1 vs. P was observed for all three sites, suggesting significant reduction of the short-range rapid reorientational dynamics. This reduction was also deduced from the variable pressure 1H T 1 data, which showed an approach to saturation for both the methyl and butyl group terminal methyl sites. Pressure-dependent D measurements show independent motions for both cations and anions, with the cations having greater D values over the entire pressure range.« less
NASA Technical Reports Server (NTRS)
Whipple, F. L.
1973-01-01
Growing planetesimals and a range of drag laws depending on the Reynolds number and on the ratio of particle size to mean free path are considered. Particles spiral in the direction of positive gradient, thus being concentrated toward toroidal concentrations of gas. The effect increases with decreasing rates of particle growth, i.e., with increasing time scales of planet formation by accretion. In the outer regions, where evidence suggests that comets were formed and Uranus and Neptune were so accumulated, the effect of the pressure gradient is to clear the forming comets from those regions. The large mass of Neptune may have developed because of this effect, perhaps Neptune's solar distance was reduced from Bode's law, and perhaps no comet belt exists beyond Neptune. In the asteroid belt, on a slow time scale, the effect may have spiraled planetesimals toward Mars and Jupiter, thus contributing to the lack of planet formation in this region.
Atar, D; Ramanujam, P S; Saunamäki, K; Haunsø, S
1994-01-01
The aim of the study described here was to correlate coronary artery (CA) stenosis pressure gradients calculated by quantitative coronary arteriography (QCA) to invasively measured transstenotic pressure drops in patients with anginal symptoms and with known or suspected coronary artery disease. Furthermore, the known mathematical models are improved by introducing (1) pressure catheter-corrected minimal stenosis area, (2) modification of flow assumptions, and (3) stenosis exit angle. Included in the study were 45 patients with 61 stenoses. The visually estimated CA lesion severity in these non-complex stenoses was in the equivocal range of 40-70%. All measurements were performed after intracoronary administration of nifedipine and nitroglycerin. Stenosis dimensions were assessed from magnified cinefilms, using hand-held calipers. Highly significant overall correlation was found between measured and calculated pressure gradients with correction for the impact of the intracoronary catheter (P < 0.00001, r = 0.84). In particular, a substantial number of stenoses with haemodynamically-insignificant pressure gradients were identified by hydrodynamic calculations. In conclusion, the great majority of the coronary artery stenoses could be classified reliably by QCA as being haemodynamically insignificant or significant, respectively.
Geothermal Gradient impact on Induced Seismicity in Raton Basin, Colorado and New Mexico
NASA Astrophysics Data System (ADS)
Pfeiffer, K.; Ge, S.
2017-12-01
Since 1999, Raton Basin, located in southeastern Colorado and northern New Mexico, is the site of wastewater injection for disposing a byproduct of coal bed methane production. During 1999-2016, 29 wastewater injection wells were active in Raton Basin. Induced seismicity began in 2001 and the largest recorded earthquake, an M5.3, occurred in August 2011. Although most injection occurs in the Dakota Formation, the majority of the seismicity has been located in the crystalline basement. Previous studies involving Raton Basin focused on high injection rates and high volume wells to determine their effect on increased pore pressure. However, the geothermal gradient has yet to be studied as a potential catalyst of seismicity. Enhanced Geothermal Systems throughout the world have experienced similar seismicity problems due to water injection. Raton's geothermal gradient, which averages 49± 12°C/km, is much higher then other areas experiencing seismicity. Thermal differences between the hot subsurface and cooler wastewater injection have the potential to affect the strength of the rock and allow for failure. Therefore, we hypothesis that wells in high geothermal gradient areas will produce more frequent earthquakes due to thermal contrast from relatively cold wastewater injection. We model the geothermal gradient in the surrounding areas of the injection sites in Raton Basin to assess potential spatial relationship between high geothermal gradient and earthquakes. Preliminary results show that the fluid pressure increase from injecting cool water is above the threshold of 0.1MPa, which has been shown to induce earthquakes. In addition, temperatures in the subsurface could decrease up to 2°C at approximately 80 m from the injection well, with a temperature effect reaching up to 100 m away from the injection well.
Water potential gradient in a tall sequoiadendron.
Tobiessen, P
1971-09-01
With an elevator installed in a 90-meter tall Sequoiadendron to collect the samples, xylem pressure potential measurements were made approximately every 15 meters along 60 meters of the tree's height. The measured gradient was about -0.8 bar per 10 meters of height, i.e., less than the hydrostatic gradient. Correction of the xylem pressure potential data by calibration against a thermocouple psychrometer confirmed this result. Similar gradients are described in the literature in tall conifers at times of low transpiration, although a different sampling technique was used. If the data in the present study and those supporting it are typical, they imply a re-evaluation of either the use of the pressure chamber to estimate water potential or the present theories describing water transport in tall trees.
Water Potential Gradient in a Tall Sequoiadendron
Tobiessen, Peter; Rundel, Philip W.; Stecker, R. E.
1971-01-01
With an elevator installed in a 90-meter tall Sequoiadendron to collect the samples, xylem pressure potential measurements were made approximately every 15 meters along 60 meters of the tree's height. The measured gradient was about −0.8 bar per 10 meters of height, i.e., less than the hydrostatic gradient. Correction of the xylem pressure potential data by calibration against a thermocouple psychrometer confirmed this result. Similar gradients are described in the literature in tall conifers at times of low transpiration, although a different sampling technique was used. If the data in the present study and those supporting it are typical, they imply a re-evaluation of either the use of the pressure chamber to estimate water potential or the present theories describing water transport in tall trees. PMID:16657786
NASA Astrophysics Data System (ADS)
Malamataris, Nikolaos; Liakos, Anastasios
2015-11-01
The exact value of the Reynolds number regarding the inception of separation in the flow around a circular cylinder is still a matter of research. This work connects the inception of separation with the calculation of a positive pressure gradient around the circumference of the cylinder. The hypothesis is that inception of separation occurs when the pressure gradient becomes positive around the circumference. From the most cited laboratory experiments that have dealt with that subject of inception of separation only Thom has measured the pressure gradient there at very low Reynolds numbers (up to Re=3.5). For this reason, the experimental conditions of his tunnel are simulated in a new numerical experiment. The full Navier Stokes equations in both two and three dimensions are solved with a home made code that utilizes Galerkin finite elements. In the two dimensional numerical experiment, inception of separation is observed at Re=4.3, which is the lowest Reynolds number where inception has been reported computationally. Currently, the three dimensional experiment is under way, in order to compare if there are effects of three dimensional theory of separation in the conditions of Thom's experiments.
Han, Yun-Fei; Liu, Wen-Hua; Chen, Xiang-Liang; Xiong, Yun-Yun; Yin, Qin-; Xu, Ge-Lin; Zhu, Wu-Sheng; Zhang, Ren-Liang; Ma, Min-Min; Li, Min-; Dai, Qi-Liang; Sun, Wen-; Liu, De-Zhi; Duan, Li-Hui; Liu, Xin-Feng
2016-08-01
Fractional flow reserve (FFR)-guided revascularization strategy is popular in coronary intervention. However, the feasibility of assessing stenotic severity in intracranial large arteries using pressure gradient measurements still remains unclear. Between March 2013 and May 2014, 12 consecutive patients with intracranial large artery stenosis (including intracranial internal carotid artery, middle cerebral M1 segment, intracranial vertebral artery, and basilar artery) were enrolled in this study. The trans-stenotic pressure gradient was measured before and/or after percutaneous transluminal angioplasty and stenting (PTAS), and was then compared with percent diameter stenosis. A Pd /Pa cut-off of ≤0.70 was used to guide stenting of hemodynamically significant stenoses. The device-related and procedure-related serious adverse events and recurrent cerebral ischemic events were recorded. The target vessel could be reached in all cases. No technical complications occurred due to the specific study protocol. Excellent pressure signals were obtained in all patients. For seven patients who performed PTAS, the mean pre-procedural pressure gradient decreased from 59.0 ± 17.2 to 13.3 ± 13.6 mm Hg after the procedure (P < 0.01). Only one patient who refused stenting experienced a TIA event in the ipsilateral MCA territory. No recurrent ischemic event was observed in other patients. Mean trans-stenotic pressure gradients can be safely and easily measured with a 0.014-inch fluid-filled guide wire in intracranial large arteries. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The Phase Rule in a System Subject to a Pressure Gradient
NASA Astrophysics Data System (ADS)
Podladchikov, Yuri; Connolly, James; Powell, Roger; Aardvark, Alberto
2015-04-01
It can be shown by diligent application of Lagrange's method of undetermined multipliers that the phase rule in a system subject to a pressure gradient is: � + 赑 ≥ ρ. We explore the consequence of this important relationship for natural systems.
NASA Technical Reports Server (NTRS)
Morduchow, Morris
1955-01-01
A survey of integral methods in laminar-boundary-layer analysis is first given. A simple and sufficiently accurate method for practical purposes of calculating the properties (including stability) of the laminar compressible boundary layer in an axial pressure gradient with heat transfer at the wall is presented. For flow over a flat plate, the method is applicable for an arbitrarily prescribed distribution of temperature along the surface and for any given constant Prandtl number close to unity. For flow in a pressure gradient, the method is based on a Prandtl number of unity and a uniform wall temperature. A simple and accurate method of determining the separation point in a compressible flow with an adverse pressure gradient over a surface at a given uniform wall temperature is developed. The analysis is based on an extension of the Karman-Pohlhausen method to the momentum and the thermal energy equations in conjunction with fourth- and especially higher degree velocity and stagnation-enthalpy profiles.
An analytical model of SAGD process considering the effect of threshold pressure gradient
NASA Astrophysics Data System (ADS)
Morozov, P.; Abdullin, A.; Khairullin, M.
2018-05-01
An analytical model is proposed for the development of super-viscous oil deposits by the method of steam-assisted gravity drainage, taking into account the nonlinear filtration law with the limiting gradient. The influence of non-Newtonian properties of oil on the productivity of a horizontal well and the cumulative steam-oil ratio are studied. Verification of the proposed model based on the results of physical modeling of the SAGD process was carried out.
Myra, James R.; D'Ippolito, Daniel A.; Russell, David A.; ...
2016-04-11
Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin- Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared ExB flows, ion diamagnetism (including gyro-viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summarymore » that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at and just outside the separatrix as a result of the distribution of magnetic shear. Lastly implications for reduced edge turbulence modeling codes are discussed.« less
Normal stress effects on Knudsen flow
NASA Astrophysics Data System (ADS)
Eu, Byung Chan
2018-01-01
Normal stress effects are investigated on tube flow of a single-component non-Newtonian fluid under a constant pressure gradient in a constant temperature field. The generalized hydrodynamic equations are employed, which are consistent with the laws of thermodynamics. In the cylindrical tube flow configuration, the solutions of generalized hydrodynamic equations are exactly solvable and the flow velocity is obtained in a simple one-dimensional integral quadrature. Unlike the case of flow in the absence of normal stresses, the flow develops an anomaly in that the flow in the boundary layer becomes stagnant and the thickness of such a stagnant velocity boundary layer depends on the pressure gradient, the aspect ratio of the radius to the length of the tube, and the pressure (or density and temperature) at the entrance of the tube. The volume flow rate formula through the tube is derived for the flow. It generalizes the Knudsen flow rate formula to the case of a non-Newtonian stress tensor in the presence of normal stress differences. It also reduces to the Navier-Stokes theory formula in the low shear rate limit near equilibrium.
Kinetic electromagnetic instabilities in an ITB plasma with weak magnetic shear
NASA Astrophysics Data System (ADS)
Chen, W.; Yu, D. L.; Ma, R. R.; Shi, P. W.; Li, Y. Y.; Shi, Z. B.; Du, H. R.; Ji, X. Q.; Jiang, M.; Yu, L. M.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Ding, X. T.; Dong, J. Q.; Wang, Z. X.; Wei, H. L.; Cao, J. Y.; Song, S. D.; Song, X. M.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.
2018-05-01
Kinetic Alfvén and pressure gradient driven instabilities are very common in magnetized plasmas, both in space and the laboratory. These instabilities will be easily excited by energetic particles (EPs) and/or pressure gradients in present-day fusion and future burning plasmas. This will not only cause the loss and redistribution of the EPs, but also affect plasma confinement and transport. Alfvénic ion temperature gradient (AITG) instabilities with the frequency ω_BAE<ω<ω_TAE and the toroidal mode numbers n=2{-}8 are found to be unstable in NBI internal transport barrier plasmas with weak shear and low pressure gradients, where ω_BAE and ω_TAE are the frequencies of the beta- and toroidicity-induced Alfvén eigenmodes, respectively. The measured results are consistent with the general fishbone-like dispersion relation and kinetic ballooning mode equation, and the modes become more unstable the smaller the magnetic shear is in low pressure gradient regions. The interaction between AITG activity and EPs also needs to be investigated with greater attention in fusion plasmas, such as ITER (Tomabechi and The ITER Team 1991 Nucl. Fusion 31 1135), since these fluctuations can be enhanced by weak magnetic shear and EPs.
Fully kinetic Biermann battery and associated generation of pressure anisotropy
NASA Astrophysics Data System (ADS)
Schoeffler, K. M.; Loureiro, N. F.; Silva, L. O.
2018-03-01
The dynamical evolution of a fully kinetic, collisionless system with imposed background density and temperature gradients is investigated analytically. The temperature gradient leads to the generation of temperature anisotropy, with the temperature along the gradient becoming larger than that in the direction perpendicular to it. This causes the system to become unstable to pressure anisotropy driven instabilities, dominantly to the electron Weibel instability. When both density and temperature gradients are present and nonparallel to each other, we obtain a Biermann-like linear-in-time magnetic field growth. Accompanying particle-in-cell numerical simulations are shown to confirm our analytical results.
Progress in turbulence modeling for complex flow fields including effects of compressibility
NASA Technical Reports Server (NTRS)
Wilcox, D. C.; Rubesin, M. W.
1980-01-01
Two second-order-closure turbulence models were devised that are suitable for predicting properties of complex turbulent flow fields in both incompressible and compressible fluids. One model is of the "two-equation" variety in which closure is accomplished by introducing an eddy viscosity which depends on both a turbulent mixing energy and a dissipation rate per unit energy, that is, a specific dissipation rate. The other model is a "Reynolds stress equation" (RSE) formulation in which all components of the Reynolds stress tensor and turbulent heat-flux vector are computed directly and are scaled by the specific dissipation rate. Computations based on these models are compared with measurements for the following flow fields: (a) low speed, high Reynolds number channel flows with plane strain or uniform shear; (b) equilibrium turbulent boundary layers with and without pressure gradients or effects of compressibility; and (c) flow over a convex surface with and without a pressure gradient.
Aspect ratio effects on limited scrape-off layer plasma turbulence
NASA Astrophysics Data System (ADS)
Jolliet, Sébastien; Halpern, Federico D.; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo
2014-02-01
The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is written for a general magnetic configuration with a limiter. The equilibrium is then specified for a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven nonlinear simulations give a pressure characteristic length whose trends are correctly captured by the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes the profile flattening from the linear modes as the saturation mechanism. More specifically, the linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a realistic aspect ratio.
Molecular reorientation of a nematic liquid crystal by thermal expansion
Kim, Young-Ki; Senyuk, Bohdan; Lavrentovich, Oleg D.
2012-01-01
A unique feature of nematic liquid crystals is orientational order of molecules that can be controlled by electromagnetic fields, surface modifications and pressure gradients. Here we demonstrate a new effect in which the orientation of nematic liquid crystal molecules is altered by thermal expansion. Thermal expansion (or contraction) causes the nematic liquid crystal to flow; the flow imposes a realigning torque on the nematic liquid crystal molecules and the optic axis. The optical and mechanical responses activated by a simple temperature change can be used in sensing, photonics, microfluidic, optofluidic and lab-on-a-chip applications as they do not require externally imposed gradients of temperature, pressure, surface realignment, nor electromagnetic fields. The effect has important ramifications for the current search of the biaxial nematic phase as the optical features of thermally induced structural changes in the uniaxial nematic liquid crystal mimic the features expected of the biaxial nematic liquid crystal. PMID:23072803
Coupled low-energy - ring current plasma diffusion in the Jovian magnetosphere
NASA Technical Reports Server (NTRS)
Summers, D.; Siscoe, G. L.
1985-01-01
The outwardly diffusing Iogenic plasma and the simultaneously inwardly diffusing ring current plasma in the Jovian magnetosphere are described using a coupled diffusion model which incorporates the effects of the pressure gradient of the ring current into the cross-L diffusion coefficient. The coupled diffusion coefficient is derived by calculating the total energy available to drive the diffusion process. The condition is imposed that the diffusion coefficient takes on a local minimum value at some point in the region L = 7-8, at which point the gradient of the Io plasma density is specified as ramp value given by Siscoe et al. (1981). The hypothesis that the pressure gradient of the ring current causes the diminution of radial plasma transport is tested, and solution profiles for the Iogenic and ring current plasma densities are obtained which imply that the Io plasma ramp is caused by a high-density, low-energy component of the ring current hitherto unobserved directly.
Lee, Simon; Lytrivi, Irene D; Roytman, Zhanna; Ko, Hyun-Sook Helen; Vinograd, Cheryl; Srivastava, Shubhika
2016-10-01
Introduction Agreement between echocardiography and right heart catheterisation-derived right ventricular systolic pressure is modest in the adult heart failure population, but is unknown in the paediatric cardiomyopathy population. All patients at a single centre from 2001 to 2012 with a diagnosis of cardiomyopathy who underwent echocardiography and catheterisation within 30 days were included in this study. The correlation between tricuspid regurgitation gradient and catheterisation-derived right ventricular systolic pressure and mean pulmonary artery pressure was determined. Agreement between echocardiography and catheterisation-derived right ventricular systolic pressure was assessed using Bland-Altman plots. Analysis was repeated for patients who underwent both procedures within 7 days. Haemodynamic data from those with poor agreement and good agreement between echocardiography and catheterisation were compared. A total of 37 patients who underwent 48 catheterisation procedures were included in our study. The median age was 11.8 (0.1-20.6 years) with 22 males (58% total). There was a modest correlation (r=0.65) between echocardiography and catheterisation-derived right ventricular systolic pressure, but agreement was poor. Agreement between tricuspid regurgitation gradient and right ventricular systolic pressure showed wide 95% limits of agreement. There was a modest correlation between the tricuspid regurgitation gradient and mean pulmonary artery pressure (r=0.6). Shorter time interval between the two studies did not improve agreement. Those with poor agreement between echocardiography and catheterisation had higher right heart pressures, but this difference became insignificant after accounting for right atrial pressure. Transthoracic echocardiography estimation of right ventricular systolic pressure shows modest correlation with right heart pressures, but has limited agreement and may underestimate the degree of pulmonary hypertension in paediatric cardiomyopathy patients.
NASA Technical Reports Server (NTRS)
Dussauge, J. P.; Debieve, J. F.
1980-01-01
The amplification or reduction of unsteady velocity perturbations under the influence of strong flow acceleration or deceleration was studied. Supersonic flows with large velocity, pressure gradients, and the conditions in which the velocity fluctuations depend on the action of the average gradients of pressure and velocity rather than turbulence, are described. Results are analyzed statistically and interpreted as a return to laminar process. It is shown that this return to laminar implies negative values in the turbulence production terms for kinetic energy. A simple geometrical representation of the Reynolds stress production is given.
Generalized Couette Poiseuille flow with boundary mass transfer
NASA Astrophysics Data System (ADS)
Marques, F.; Sanchez, J.; Weidman, P. D.
1998-11-01
A generalized similarity formulation extending the work of Terrill (1967) for Couette Poiseuille flow in the annulus between concentric cylinders of infinite extent is given. Boundary conditions compatible with the formulation allow a study of the effects of inner and outer cylinder transpiration, rotation, translation, stretching and twisting, in addition to that of an externally imposed constant axial pressure gradient. The problem is governed by [eta], the ratio of inner to outer radii, a Poiseuille number, and nine Reynolds numbers. Single-cylinder and planar problems can be recovered in the limits [eta][rightward arrow]0 and [eta][rightward arrow]1, respectively. Two coupled primary nonlinear equations govern the meridional motion generated by uniform mass flux through the porous walls and the azimuthal motion generated by torsional movement of the cylinders; subsidiary equations linearly slaved to the primary flow govern the effects of cylinder translation, cylinder rotation, and an external pressure gradient. Steady solutions of the primary equations for uniform source/sink flow of strength F through the inner cylinder are reported for 0[less-than-or-eq, slant][eta][less-than-or-eq, slant]1. Asymptotic results corroborating the numerical solutions are found in different limiting cases. For F<0 fluid emitted through the inner cylinder fills the gap and flows uniaxially down the annulus; an asymptotic analysis leads to a scaling that removes the effect of [eta] in the pressure parameter [beta], namely [beta]=[pi]2R*2, where R*=F(1[minus sign][eta])/(1+[eta]). The case of sink flow for F>0 is more complex in that unique solutions are found at low Reynolds numbers, a region of triple solutions exists at moderate Reynolds numbers, and a two-cell solution prevails at large Reynolds numbers. The subsidiary linear equations are solved at [eta]=0.5 to exhibit the effects of cylinder translation, rotation, and an axial pressure gradient on the source/sink flows.
Incompressible spectral-element method: Derivation of equations
NASA Technical Reports Server (NTRS)
Deanna, Russell G.
1993-01-01
A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.
Bonow, R O; Ostrow, H G; Rosing, D R; Cannon, R O; Lipson, L C; Maron, B J; Kent, K M; Bacharach, S L; Green, M V
1983-11-01
To investigate the effects of verapamil on left ventricular systolic and diastolic function in patients with hypertrophic cardiomyopathy, we studied 14 patients at catheterization with a nonimaging scintillation probe before and after serial intravenous infusions of low-, medium-, and high-dose verapamil (total dose 0.17 to 0.72 mg/kg). Percent change in radionuclide stroke counts after verapamil correlated well with percent change in thermodilution stroke volume (r = .87), and changes in diastolic and systolic counts were used to assess relative changes in left ventricular volumes after verapamil. Verapamil produced dose-related increases in end-diastolic counts (19 +/- 9% increase; p less than .001), end-systolic counts (91 +/- 54% increase; p less than .001), and stroke counts (7 +/- 10% increase; p less than .02). This was associated with a decrease in ejection fraction (83 +/- 8% control, 73 +/- 10% verapamil; p less than .001) and, in the 10 patients with left ventricular outflow tract gradients, a reduction in gradient (62 +/- 27 mm Hg control, 32 +/- 35 mm Hg verapamil; p less than .01). The end-systolic pressure-volume relation was shifted downward and rightward in all patients, suggesting a negative inotropic effect. In 10 patients, left ventricular pressure-volume loops were constructed with simultaneous micromanometer pressure recordings and the radionuclide time-activity curve. In five patients, verapamil shifted the diastolic pressure-volume curve downward and rightward, demonstrating improved pressure-volume relations despite the negative inotropic effect, and also increased the peak rate of rapid diastolic filling. In the other five patients, the diastolic pressure-volume relation was unaltered by verapamil, and increased end-diastolic volumes occurred at higher end-diastolic pressures; in these patients, the peak rate of left ventricular diastolic filling was not changed by verapamil. The negative inotropic effects of intravenous verapamil are potentially beneficial in patients with hypertrophic cardiomyopathy by decreasing left ventricular contractile function and increasing left ventricular volume. Verapamil also enhances left ventricular diastolic filling and improves diastolic pressure-volume relations in some patients despite its negative inotropic effect.
Barrier island breach evolution: Alongshore transport and bay-ocean pressure gradient interactions
Safak, Ilgar; Warner, John C.; List, Jeffrey
2016-01-01
Physical processes controlling repeated openings and closures of a barrier island breach between a bay and the open ocean are studied using aerial photographs and atmospheric and hydrodynamic observations. The breach site is located on Pea Island along the Outer Banks, separating Pamlico Sound from the Atlantic Ocean. Wind direction was a major control on the pressure gradients between the bay and the ocean to drive flows that initiate or maintain the breach opening. Alongshore sediment flux was found to be a major contributor to breach closure. During the analysis period from 2011 to 2016, three hurricanes had major impacts on the breach. First, Hurricane Irene opened the breach with wind-driven flow from bay to ocean in August 2011. Hurricane Sandy in October 2012 quadrupled the channel width from pressure gradient flows due to water levels that were first higher on the ocean side and then higher on the bay side. The breach closed sometime in Spring 2013, most likely due to an event associated with strong alongshore sediment flux but minimal ocean-bay pressure gradients. Then, in July 2014, Hurricane Arthur briefly opened the breach again from the bay side, in a similar fashion to Irene. In summary, opening and closure of breaches are shown to follow a dynamic and episodic balance between along-channel pressure gradient driven flows and alongshore sediment fluxes.
NASA Astrophysics Data System (ADS)
Risius, Steffen; Costantini, Marco; Koch, Stefan; Hein, Stefan; Klein, Christian
2018-05-01
The influence of unit Reynolds number (Re_1=17.5× 106-80× 106 {m}^{-1}), Mach number (M= 0.35-0.77) and incompressible shape factor (H_{12} = 2.50-2.66) on laminar-turbulent boundary layer transition was systematically investigated in the Cryogenic Ludwieg-Tube Göttingen (DNW-KRG). For this investigation the existing two-dimensional wind tunnel model, PaLASTra, which offers a quasi-uniform streamwise pressure gradient, was modified to reduce the size of the flow separation region at its trailing edge. The streamwise temperature distribution and the location of laminar-turbulent transition were measured by means of temperature-sensitive paint (TSP) with a higher accuracy than attained in earlier measurements. It was found that for the modified PaLASTra model the transition Reynolds number (Re_{ {tr}}) exhibits a linear dependence on the pressure gradient, characterized by H_{12}. Due to this linear relation it was possible to quantify the so-called `unit Reynolds number effect', which is an increase of Re_{ {tr}} with Re_1. By a systematic variation of M, Re_1 and H_{12} in combination with a spectral analysis of freestream disturbances, a stabilizing effect of compressibility on boundary layer transition, as predicted by linear stability theory, was detected (`Mach number effect'). Furthermore, two expressions were derived which can be used to calculate the transition Reynolds number as a function of the amplitude of total pressure fluctuations, Re_1 and H_{12}. To determine critical N-factors, the measured transition locations were correlated with amplification rates, calculated by incompressible and compressible linear stability theory. By taking into account the spectral level of total pressure fluctuations at the frequency of the most amplified Tollmien-Schlichting wave at transition location, the scatter in the determined critical N-factors was reduced. Furthermore, the receptivity coefficients dependence on incidence angle of acoustic waves was used to correct the determined critical N-factors. Thereby, a found dependency of the determined critical N-factors on H_{12} decreased, leading to an average critical N-factor of about 9.5 with a standard deviation of σ ≈ 0.8.
Capillary-Physics Mechanism of Elastic-Wave Mobilization of Residual Oil
NASA Astrophysics Data System (ADS)
Beresnev, I. A.; Pennington, W. D.; Turpening, R. M.
2003-12-01
Much attention has been given to the possibility of vibratory mobilization of residual oil as a method of enhanced recovery. The common features of the relevant applications have nonetheless been inconsistency in the results of field tests and the lack of understanding of a physical mechanism that would explain variable experiences. Such a mechanism can be found in the physics of capillary trapping of oil ganglia, driven through the pore channels by an external pressure gradient. Entrapping of ganglia occurs due to the capillary pressure building on the downstream meniscus entering a narrow pore throat. The resulting internal-pressure imbalance acts against the external gradient, which needs to exceed a certain threshold to carry the ganglion through. The ganglion flow thus exhibits the properties of the Bingham (yield-stress) flow, not the Darcy flow. The application of vibrations is equivalent to the addition of an oscillatory forcing to the constant gradient. When this extra forcing acts along the gradient, an instant "unplugging" occurs, while, when the vibration reverses direction, the flow is plugged. This asymmetry results in an average non-zero flow over one period of vibration, which explains the mobilization effect. The minimum-amplitude and maximum-frequency thresholds apply for the mobilization to occur. When the vibration amplitude exceeds a certain "saturation" level, the flow returns to the Darcy regime. The criterion of the mobilization of a particular ganglion involves the parameters of both the medium (pore geometry, interfacial and wetting properties, fluid viscosity) and the oscillatory field (amplitude and frequency). The medium parameters vary widely under natural conditions. It follows that an elastic wave with a given amplitude and frequency will always produce a certain mobilization effect, mobilizing some ganglia and leaving others intact. The exact macroscopic effect is hard to predict, as it will represent a response of the populations of ganglia with unknown parameter distributions. The variability of responses to vibratory stimulation should thus be expected.
The effect of a metal wall on confinement in JET and ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Beurskens, M. N. A.; Schweinzer, J.; Angioni, C.; Burckhart, A.; Challis, C. D.; Chapman, I.; Fischer, R.; Flanagan, J.; Frassinetti, L.; Giroud, C.; Hobirk, J.; Joffrin, E.; Kallenbach, A.; Kempenaars, M.; Leyland, M.; Lomas, P.; Maddison, G.; Maslov, M.; McDermott, R.; Neu, R.; Nunes, I.; Osborne, T.; Ryter, F.; Saarelma, S.; Schneider, P. A.; Snyder, P.; Tardini, G.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team; Contributors, JET-EFDA
2013-12-01
In both JET and ASDEX Upgrade (AUG) the plasma energy confinement has been affected by the presence of a metal wall by the requirement of increased gas fuelling to avoid tungsten pollution of the plasma. In JET with a beryllium/tungsten wall the high triangularity baseline H-mode scenario (i.e. similar to the ITER reference scenario) has been the strongest affected and the benefit of high shaping to give good normalized confinement of H98 ˜ 1 at high Greenwald density fraction of fGW ˜ 0.8 has not been recovered to date. In AUG with a full tungsten wall, a good normalized confinement H98 ˜ 1 could be achieved in the high triangularity baseline plasmas, albeit at elevated normalized pressure βN > 2. The confinement lost with respect to the carbon devices can be largely recovered by the seeding of nitrogen in both JET and AUG. This suggests that the absence of carbon in JET and AUG with a metal wall may have affected the achievable confinement. Three mechanisms have been tested that could explain the effect of carbon or nitrogen (and the absence thereof) on the plasma confinement. First it has been seen in experiments and by means of nonlinear gyrokinetic simulations (with the GENE code), that nitrogen seeding does not significantly change the core temperature profile peaking and does not affect the critical ion temperature gradient. Secondly, the dilution of the edge ion density by the injection of nitrogen is not sufficient to explain the plasma temperature and pressure rise. For this latter mechanism to explain the confinement improvement with nitrogen seeding, strongly hollow Zeff profiles would be required which is not supported by experimental observations. The confinement improvement with nitrogen seeding cannot be explained with these two mechanisms. Thirdly, detailed pedestal structure analysis in JET high triangularity baseline plasmas have shown that the fuelling of either deuterium or nitrogen widens the pressure pedestal. However, in JET-ILW this only leads to a confinement benefit in the case of nitrogen seeding where, as the pedestal widens, the obtained pedestal pressure gradient is conserved. In the case of deuterium fuelling in JET-ILW the pressure gradient is strongly degraded in the fuelling scan leading to no net confinement gain due to the pedestal widening. The pedestal code EPED correctly predicts the pedestal pressure of the unseeded plasmas in JET-ILW within ±5%, however it does not capture the complex variation of pedestal width and gradient with fuelling and impurity seeding. Also it does not predict the observed increase of pedestal pressure by nitrogen seeding in JET-ILW. Ideal peeling ballooning MHD stability analysis shows that the widening of the pedestal leads to a down shift of the marginal stability boundary by only 10-20%. However, the variations in the pressure gradient observed in the JET-ILW fuelling experiment is much larger and spans a factor of more than two. As a result the experimental points move from deeply unstable to deeply stable on the stability diagram in a deuterium fuelling scan. In AUG-W nitrogen seeded plasmas, a widening of the pedestal has also been observed, consistent with the JET observations. The absence of carbon can thus affect the pedestal structure, and mainly the achieved pedestal gradient, which can be recovered by seeding nitrogen. The underlying physics mechanism is still under investigation and requires further understanding of the role of impurities on the pedestal stability and pedestal structure formation.
NASA Astrophysics Data System (ADS)
Meng, D.; Weng, Z.; Xiang, Y.
1985-09-01
This paper presents a method for predicting the blade root loss in an annular nozzle cascade in which consideration is given to the influence of the radial pressure gradient (RPG) on it. The variation of blade root losses under different RPG is obtained experimentally, and finite element method is used to calculate the pressure distribution in the blade passage.
The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet
NASA Astrophysics Data System (ADS)
Coroniti, F. V.; Pritchett, P. L.
2014-03-01
The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.
NASA Technical Reports Server (NTRS)
Firstenberg, M. S.; Greenberg, N. L.; Smedira, N. G.; Prior, D. L.; Scalia, G. M.; Thomas, J. D.; Garcia, M. J.
2000-01-01
The simplified Bernoulli equation relates fluid convective energy derived from flow velocities to a pressure gradient and is commonly used in clinical echocardiography to determine pressure differences across stenotic orifices. Its application to pulmonary venous flow has not been described in humans. Twelve patients undergoing cardiac surgery had simultaneous high-fidelity pulmonary venous and left atrial pressure measurements and pulmonary venous pulsed Doppler echocardiography performed. Convective gradients for the systolic (S), diastolic (D), and atrial reversal (AR) phases of pulmonary venous flow were determined using the simplified Bernoulli equation and correlated with measured actual pressure differences. A linear relationship was observed between the convective (y) and actual (x) pressure differences for the S (y = 0.23x + 0.0074, r = 0.82) and D (y = 0.22x + 0.092, r = 0.81) waves, but not for the AR wave (y = 0. 030x + 0.13, r = 0.10). Numerical modeling resulted in similar slopes for the S (y = 0.200x - 0.127, r = 0.97), D (y = 0.247x - 0. 354, r = 0.99), and AR (y = 0.087x - 0.083, r = 0.96) waves. Consistent with numerical modeling, the convective term strongly correlates with but significantly underestimates actual gradient because of large inertial forces.
Firstenberg, M S; Greenberg, N L; Smedira, N G; Prior, D L; Scalia, G M; Thomas, J D; Garcia, M J
2000-08-01
The simplified Bernoulli equation relates fluid convective energy derived from flow velocities to a pressure gradient and is commonly used in clinical echocardiography to determine pressure differences across stenotic orifices. Its application to pulmonary venous flow has not been described in humans. Twelve patients undergoing cardiac surgery had simultaneous high-fidelity pulmonary venous and left atrial pressure measurements and pulmonary venous pulsed Doppler echocardiography performed. Convective gradients for the systolic (S), diastolic (D), and atrial reversal (AR) phases of pulmonary venous flow were determined using the simplified Bernoulli equation and correlated with measured actual pressure differences. A linear relationship was observed between the convective (y) and actual (x) pressure differences for the S (y = 0.23x + 0.0074, r = 0.82) and D (y = 0.22x + 0.092, r = 0.81) waves, but not for the AR wave (y = 0. 030x + 0.13, r = 0.10). Numerical modeling resulted in similar slopes for the S (y = 0.200x - 0.127, r = 0.97), D (y = 0.247x - 0. 354, r = 0.99), and AR (y = 0.087x - 0.083, r = 0.96) waves. Consistent with numerical modeling, the convective term strongly correlates with but significantly underestimates actual gradient because of large inertial forces.
Dynamic variation in sapwood specific conductivity in six woody species
Jean-Christophe Domec; Frederick C. Meinzer; Barbara Lachenbruch; Johann Housset
2008-01-01
Our goals were to quantify how non-embolism inducing pressure gradients influence trunk sapwood specific conductivity (ks) and to compare the impacts of constant and varying pressure gradients on ks with KCl and H20 as the perfusion solutions. We studied six woody species (three conifers and three...
NASA Technical Reports Server (NTRS)
Song, Y. T.
1998-01-01
A Jacobian formulation of the pressure gradient force for use in models with topography following coordinates is proposed. It can be used in conjunction with any vertical coordinate system and is easily implemented.
NASA Astrophysics Data System (ADS)
Gilooly, S.; Foster, D. L.
2017-12-01
In nearshore environments, the motion of munitions results from a mixture of sediment transport conditions including sheet flow, scour, bedform migration, and momentary liquefaction. Incipient motion can be caused by disruptive shear stresses and pressure gradients. Foster et al. (2006) incorporated both processes into a single parameter, indicating incipient motion as a function of the bed state. This research looks to evaluate the role of the pressure gradient in positional state changes such as burial, exposure, and mobility. In the case of munitions, this may include pressure gradients induced by vortex shedding or the passing wave. Pressure-mapped model munitions are being developed to measure the orientation, rotation, and surface pressure of the munitions during threshold events leading to a new positional state. These munitions will be deployed in inner surf zone and estuary environments along with acoustic Doppler velocimeters (ADVs), pore water pressure sensors, a laser grid, and a pencil beam sonar with an azimuth drive. The additional instruments allow for near bed and far field water column and sediment bed sampling. Currently preliminary assessments of various pressure sensors and munition designs are underway. Two pressure sensors were selected; the thin FlexiForce A201 sensors will be used to indicate munition rolling during threshold events and diaphragm sensors will be used to understand changes in surrounding pore water pressure as the munition begins to bury/unbury. Both sensors are expected to give quantitative measurements of dynamic pressure gradients in the flow field surrounding the munition. Resolving the role of this process will give insight to an improved incipient motion parameter and allow for better munition motion predictions.
Li, Hui; Huang, Linjian; Xie, Qianyang; Cai, Xieyi; Yang, Chi; Wang, Shaoyi; Zhang, Min
2017-01-01
To investigate the effects of gradient mechanical pressure on chondrocyte proliferation, apoptosis, and the expression of markers of chondrogenesis and chondrocyte hypertrophy. Mandibular condylar chondrocytes from 5 rabbits were cultured in vitro, and pressed with static pressures of 50kPa, 100kPa, 150kPa and 200kPa for 3h, respectively. The chondrocytes cultured without pressure (0kPa) were used as control. Cell proliferation, apoptosis, and the expression of aggrecan (AGG), collagen II (COL2), collagen X (COL10), alkaline phosphatase (ALP) were investigated. Ultrastructures of the pressurized chondrocytes under transmission electron microscopy (TEM) were observed. Chondrocyte proliferation increased at 100kPa and decreased at 200kPa. Chondrocyte apoptosis increased with peak pressure at 200kPa in a dose-dependent manner. Chondrocyte necrosis increased at 200kPa. The expression of AGG increased at 200kPa. The expression of COL2 decreased at 50kPa and increased at 150kPa. The expression of COL10 and ALP increased at 150kPa. Ultrastructure of the pressurized chondrocytes under TEM showed: at 100kPa, cells were enlarged with less cellular microvillus and a bigger nucleus; at 200kPa, cells shrank with the sign of apoptosis, and apoptosis cells were found. The mechanical loading of 150kPa is the moderate pressure for chondrocyte: cell proliferation and apoptosis is balanced, necrosis is reduced, and chondrogenesis and chondrocyte hypertrophy are promoted. When the pressure is lower, chondrogenesis and chondrocyte hypertrophy are inhibited. At 200kPa, degeneration of cartilage is implied. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Engwirda, Darren; Kelley, Maxwell; Marshall, John
2017-08-01
Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gradient operator designed to address these issues. In each case, the horizontal acceleration is computed as an integration of the contact pressure force that acts along the perimeter of an associated momentum control-volume. A pair of new schemes are developed by exploring different control-volume geometries. Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance in a non-linear manner. Numerical experiments show that the new methods achieve high levels of consistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results suggest that the new pressure gradient formulations may be appropriate for general circulation models that employ hybrid vertical coordinates and/or terrain-following representations.
Alperin, Noam; Lee, Sang H; Bagci, Ahmet M
2015-10-01
To add the hydrostatic component of the cerebrospinal fluid (CSF) pressure to magnetic resonance imaging (MRI)-derived intracranial pressure (ICP) measurements in the upright posture for derivation of pressure value in a central cranial location often used in invasive ICP measurements. Additional analyses were performed using data previously collected from 10 healthy subjects scanned in supine and sitting positions with a 0.5T vertical gap MRI scanner (GE Medical). Pulsatile blood and CSF flows to and from the brain were quantified using cine phase-contrast. Intracranial compliance and pressure were calculated using a previously described method. The vertical distance between the location of the CSF flow measurement and a central cranial location was measured manually in the mid-sagittal T1 -weighted image obtained in the upright posture. The hydrostatic pressure gradient of a CSF column with similar height was then added to the MR-ICP value. After adjustment for the hydrostatic component, the mean ICP value was reduced by 7.6 mmHg. Mean ICP referenced to the central cranial level was -3.4 ± 1.7 mmHg compared to the unadjusted value of +4.3 ± 1.8 mmHg. In the upright posture, the hydrostatic pressure component needs to be added to the MRI-derived ICP values for compatibility with invasive ICP at a central cranial location. © 2015 Wiley Periodicals, Inc.
Pashin, J.C.; McIntyre, M.R.
2003-01-01
Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs equilibrate toward a normal hydrostatic pressure gradient after abandonment. Coal can hold large quantities of carbon dioxide under supercritical conditions, and supercritical isotherms indicate non-Langmiur conditions under which some carbon dioxide may remain mobile in coal or may react with formation fluids or minerals. Hence, carbon sequestration and enhanced coalbed methane recovery show great promise in subcritical reservoirs, and additional research is required to assess the behavior of carbon dioxide in coal under supercritical conditions where additional sequestration capacity may exist. ?? 2003 Elsevier Science B.V. All rights reserved.
The linear tearing instability in three dimensional, toroidal gyro-kinetic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornsby, W. A., E-mail: william.hornsby@ipp.mpg.de; Migliano, P.; Buchholz, R.
2015-02-15
Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro-kinetic turbulence code, GKW. The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate, and frequency of the mode were investigated by varying the current profile, collisionality, and the pressure gradients. Both collisionless and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absence of a pressure gradient is observed, which is attributed to toroidal finite Larmor-radius effects. When a pressure gradientmore » is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However, the island rotation reverses direction at high collisionality. The growth rate is found to follow a η{sup 1∕7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability analysis as performed by Hastie et al. using the same current and safety factor profiles but for cylindrical geometry, however, here a modification due to toroidal coupling and pressure effects is seen.« less
NASA Technical Reports Server (NTRS)
Schneider, J.; Boccio, J.
1972-01-01
A computer program is described capable of determining the properties of a compressible turbulent boundary layer with pressure gradient and heat transfer. The program treats the two-dimensional problem assuming perfect gas and Crocco integral energy solution. A compressibility transformation is applied to the equation for the conservation of mass and momentum, which relates this flow to a low speed constant property flow with simultaneous mass transfer and pressure gradient. The resulting system of describing equations consists of eight ordinary differential equations which are solved numerically. For Part 1, see N72-12226; for Part 2, see N72-15264.
NASA Technical Reports Server (NTRS)
Cohen, Clarence B; Reshotko, Eli
1956-01-01
Stewartson's transformation is applied to the laminar compressible boundary-layer equations and the requirement of similarity is introduced, resulting in a set of ordinary nonlinear differential equations previously quoted by Stewartson, but unsolved. The requirements of the system are Prandtl number of 1.0, linear viscosity-temperature relation across the boundary layer, an isothermal surface, and the particular distributions of free-stream velocity consistent with similar solutions. This system admits axial pressure gradients of arbitrary magnitude, heat flux normal to the surface, and arbitrary Mach numbers. The system of differential equations is transformed to integral system, with the velocity ratio as the independent variable. For this system, solutions are found by digital computation for pressure gradients varying from that causing separation to the infinitely favorable gradient and for wall temperatures from absolute zero to twice the free-stream stagnation temperature. Some solutions for separated flows are also presented.
On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders
NASA Astrophysics Data System (ADS)
Wu, Bin; Su, Yipin; Liu, Dongying; Chen, Weiqiu; Zhang, Chuanzeng
2018-05-01
Soft materials can be designed with a functionally graded (FG) property for specific applications. Such material inhomogeneity can also be found in many soft biological tissues whose functionality is only partly understood to date. In this paper, we analyze the axisymmetric guided wave propagation in a pressurized FG elastomeric hollow cylinder. The cylinder is subjected to a combined action of axial pre-stretch and pressure difference applied to the inner and outer cylindrical surfaces. We consider both torsional waves and longitudinal waves propagating in the FG cylinder made of incompressible isotropic elastomer, which is characterized by the Mooney-Rivlin strain energy function but with the material parameters varying with the radial coordinate in an affine way. The pressure difference generates an inhomogeneous deformation field in the FG cylinder, which dramatically complicates the superimposed wave problem described by the small-on-large theory. A particularly efficient approach is hence employed which combines the state-space formalism for the incremental wave motion with the approximate laminate or multi-layer technique. Dispersion relations for the two types of axisymmetric guided waves are then derived analytically. The accuracy and convergence of the proposed approach is validated numerically. The effects of the pressure difference, material gradient, and axial pre-stretch on both the torsional and the longitudinal wave propagation characteristics are discussed in detail through numerical examples. It is found that the frequency of axisymmetric waves depends nonlinearly on the pressure difference and the material gradient, and an increase in the material gradient enhances the capability of the pressure difference to adjust the wave behavior in the FG cylinder. This work provides a theoretical guidance for characterizing FG soft materials by in-situ ultrasonic nondestructive evaluation and for designing tunable waveguides via material tailoring along with an adjustment of the pre-stretch and pressure difference.
ARC DISCHARGE AND METHOD OF PRODUCING THE SAME
Neidigh, R.V.
1960-03-15
A device for producing an energetic gas arc discharge between spaced electrodes in an evacuated chamber and within a magnetic field is described. Gas is fed into the arc in a direction normal to a refluxing stream of electrons and at a pressure higher than the pressure within the chamber to establish a pressure gradient along the arc discharge formed between the electrodes. This pressure gradient establishes rotating, time varying, radial electrical fields in the volume surroundimg the discharge, causing the discharge to rotate about the arc center line.
Lei, M H; Chen, J J; Ko, Y L; Cheng, J J; Kuan, P; Lien, W P
1995-01-01
This study assessed the usefulness of continuous wave Doppler echocardiography and color flow mapping in evaluating pulmonary regurgitation (PR) and estimating pulmonary artery (PA) pressure. Forty-three patients were examined, and high quality Doppler spectral recordings of PR were obtained in 32. All patients underwent cardiac catheterization, and simultaneous PA and right ventricular (RV) pressures were recorded in 17. Four Doppler regurgitant flow velocity patterns were observed: pandiastolic plateau, biphasic, peak and plateau, and early diastolic triangular types. The peak diastolic and end-diastolic PA-to-RV pressure gradients derived from the Doppler flow profiles correlated well with the catheter measurements (r = 0.95 and r = 0.95, respectively). As PA pressure increased, the PR flow velocity became higher; a linear relationship between either systolic or mean PA pressure and Doppler-derived peak diastolic pressure gradient was noted (r = 0.90 and 0.94, respectively). Based on peak diastolic gradients of < 15, 15-30 or > 30 mm Hg, patients could be separated as those with mild, moderate or severe pulmonary hypertension, respectively (p < 0.05). A correlation was also observed between PA diastolic pressure and Doppler-derived end-diastolic pressure gradient (r = 0.91). Moreover, the Doppler velocity decay slope of PR closely correlated with that derived from the catheter method (r = 0.98). The decay slope tended to be steeper with the increment in regurgitant jet area and length obtained from color flow mapping. In conclusion, continuous wave Doppler evaluation of PR is a useful means for noninvasive estimation of PA pressure, and the Doppler velocity decay slope seems to reflect the severity of PR.
Stiffener-skin interactions in pressure-loaded composite panels
NASA Technical Reports Server (NTRS)
Loup, D. C.; Hyer, M. W.; Starnes, J. H., Jr.
1986-01-01
The effects of flange thickness, web height, and skin stiffness on the strain distributions in the skin-stiffener interface region of pressure-loaded graphite-epoxy panels, stiffened by the type-T stiffener, were examined at pressure levels up to one atmosphere. The results indicate that at these pressures geometric nonlinearities are important, and that the overall stiffener stiffness has a significant effect on panel response, particularly on the out-of-plane deformation or pillowing of the skin. The strain gradients indicated that the interface between the skin and the stiffener experiences two components of shear stress, in addition to a normal (peel) stress. Thus, the skin-stiffener interface problem is a three-dimensional problem rather than a two-dimensional one, as is often assumed.
Pathophysiological effect of fat embolism in a canine model of pulmonary contusion.
Elmaraghy, A W; Aksenov, S; Byrick, R J; Richards, R R; Schemitsch, E H
1999-08-01
The objective of this study was to determine the individual and combined effects of pulmonary contusion and fat embolism on the hemodynamics and pulmonary pathophysiology in a canine model of acute traumatic pulmonary injury. After a thoracotomy, twenty-one skeletally mature dogs were randomly assigned to one of three groups. Unilateral pulmonary contusion alone was produced in Group 1 (seven dogs); pulmonary contusion and fat embolism, in Group 2 (seven dogs); and fat embolism alone, in Group 3 (seven dogs). Pulmonary contusion was produced by standardized compression of the left lung with a piezoelectric force transducer. Fat embolism was produced by femoral and tibial reaming followed by pressurization of the intramedullary canals. Cardiac output, systolic blood pressure, peak airway pressure, pulmonary arterial pressure, pulmonary capillary wedge pressure, partial pressure of arterial oxygen, and partial pressure of carbon dioxide were monitored for all groups. From these data, several outcome parameters were calculated: total thoracic compliance, alveolar-arterial oxygen gradient, and ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration. All of the dogs were killed after eight hours, and tissue samples were obtained from the brain, kidneys, and lungs for histological analysis. Lung samples were assigned scores for pulmonary edema (the presence of fluid in the alveoli) and inflammation (the presence of neutrophils or hyaline membranes, or both). The percentage of the total area occupied by fat was determined. Pulmonary contusion alone caused a significant increase in the alveolar-arterial oxygen gradient but only after seven hours (p = 0.034). Fat embolism alone caused a significant transient decrease in systolic blood pressure (p = 0.001) and a significant transient increase in pulmonary arterial pressure (p = 0.01) and pulmonary capillary wedge pressure (p = 0.015). Fat embolism alone also caused a significant sustained decrease in the ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration (p = 0.0001) and a significant increase in the alveolar-arterial oxygen gradient (p = 0.0001). The combination of pulmonary contusion and fat embolism caused a significant transient increase in pulmonary capillary wedge pressure (p = 0.0013) as well as a significant sustained decrease in partial pressure of arterial oxygen (p = 0.0001) and a significant decrease in systolic blood pressure (p = 0.001) that lasted for an hour. Pulmonary contusion followed by fat embolism caused a significant increase in peak airway pressure (p = 0.015), alveolar-arterial oxygen gradient (p = 0.0001), and pulmonary arterial pressure (p = 0.01), and these effects persisted for five hours. Total thoracic compliance was decreased 6.4 percent by pulmonary contusion alone, 4.6 percent by fat embolism alone, and 23.5 percent by pulmonary contusion followed by fat embolism. The ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration was decreased 23.7 percent by pulmonary contusion alone, 52.3 percent by fat embolism alone, and 65.8 percent by pulmonary contusion followed by fat embolism. The mean pulmonary edema score was significantly higher with the combined injury than with either injury alone (p = 0.0001). None of the samples from the lungs demonstrated inflammation. Fat embolism combined with pulmonary contusion resulted in a significantly greater mean percentage of the area occupied by fat in the noncontused right lung than in the contused left lung (p = 0.001); however, no significant difference between the right and left lungs could be detected with fat embolism alone. The mean percentage of the glomerular and cerebral areas occupied by fat was greater with fat embolism combined with pulmonary contusion than with fat embolism alone (p = 0.0001 and p = 0.01, respectively). (ABSTRACT TRUNCATED)
Paramecium swimming in capillary tube
NASA Astrophysics Data System (ADS)
Jana, Saikat; Um, Soong Ho; Jung, Sunghwan
2012-04-01
Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.
Modeling and Optimization for Management of Intermittent Water Supply
NASA Astrophysics Data System (ADS)
Lieb, A. M.; Wilkening, J.; Rycroft, C.
2014-12-01
In many urban areas, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at controlling valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Gradient-based optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability at system endpoints.
Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Parikh, Ankur H.; Nagpal, Vinod K.; Halbig, Michael C.
2013-01-01
Issues associated with replacing conventional metallic vanes with Ceramic Matrix Composite (CMC) vanes in the first stage of the High Pressure Turbine (HPT) are explored. CMC materials have higher temperature capability than conventional HPT vanes, and less vane cooling is required. The benefits of less vane coolant are less NOx production and improved vane efficiency. Comparisons between CMC and metal vanes are made at current rotor inlet temperatures and at an vane inlet pressure of 50 atm.. CMC materials have directionally dependent strength characteristics, and vane designs must accommodate these characteristics. The benefits of reduced NOx and improved cycle efficiency obtainable from using CMC vanes. are quantified Results are given for vane shapes made of a two dimensional CMC weave. Stress components due to thermal and pressure loads are shown for all configurations. The effects on stresses of: (1) a rib connecting vane pressure and suction surfaces; (2) variation in wall thickness; and (3) trailing edge region cooling options are discussed. The approach used to obtain vane temperature distributions is discussed. Film cooling and trailing edge ejection were required to avoid excessive vane material temperature gradients. Stresses due to temperature gradients are sometimes compressive in regions where pressure loads result in high tensile stresses.
Intramyocardial pressure gradients in working and nonworking isolated cat hearts.
Mihailescu, L S; Abel, F L
1994-03-01
This study presents an improved method for the measurement of intramyocardial pressure (IMP) using the servo-nulling mechanism. Glass micropipettes (20-24 microns OD) were used as transducers, coated to increase their mechanical resistance to breakage, and placed inside the left ventricular wall with a micropipette holder and manipulator. IMP was measured at the base of the left ventricle in working and nonworking isolated cat hearts that were perfused with Krebs-Henseleit buffer. In working hearts a transmural gradient of systolic IMP oriented from endocardium toward the epicardium was found; the endocardial values for systolic IMP were slightly higher than systolic left ventricular pressure (LVP), by 11-18%. Increases in afterload induced increases in IMP, without changing the systolic IMP-to-LVP ratio. In nonworking hearts with drained left ventricles, the systolic transmural gradient for IMP described for working hearts persisted, but at lower values, and was directly dependent on coronary perfusion pressure. Systolic IMP-to-LVP ratios were always > 1. The diastolic IMP of both working and nonworking hearts exhibited irregular transmural gradients. Our results support the view that generated systolic IMP is largely independent of LVP development.
NASA Technical Reports Server (NTRS)
Orlando, A. F.; Moffat, R. J.; Kays, W. M.
1974-01-01
The relationship between the turbulent transport of heat and momentum in an adverse pressure gradient boundary layer was studied. An experimental study was conducted of turbulent boundary layers subject to strong adverse pressure gradients with suction. Near-equilibrium flows were attained, evidenced by outer-region similarity in terms of defect temperature and defect velocity profiles. The relationship between Stanton number and enthalpy thickness was shown to be the same as for a flat plate flow both for constant wall temperature boundary conditions and for steps in wall temperature. The superposition principle used with the step-wall-temperature experimental result was shown to accurately predict the Stanton number variation for two cases of arbitrarily varying wall temperature. The Reynolds stress tensor components were measured for strong adverse pressure gradient conditions and different suction rates. Two peaks of turbulence intensity were found: one in the inner and one in the outer regions. The outer peak is shown to be displaced outward by an adverse pressure gradient and suppressed by suction.
Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis
NASA Astrophysics Data System (ADS)
Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O.
2017-04-01
A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes' couple stress fluid model is employed to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential distribution is implemented owing to the presence of an electrical double layer (EDL) in the micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, the linearized transformed dimensionless boundary value problem is solved analytically. The influence of electro-osmotic parameter (inversely proportional to Debye length), maximum electro-osmotic velocity (a function of external applied electrical field) and couple stress parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid case is retrieved as a special case with vanishing couple stress effects. With increasing the couple stress parameter there is a significant increase in the axial pressure gradient whereas the core axial velocity is reduced. An increase in the electro-osmotic parameter both induces flow acceleration in the core region (around the channel centreline) and it also enhances the axial pressure gradient substantially. The study is relevant in the simulation of novel smart bio-inspired space pumps, chromatography and medical micro-scale devices.
Closed transventricular dilation of discrete subvalvular aortic stenosis in dogs.
Linn, K; Orton, E C
1992-01-01
Discrete subvalvular aortic stenosis with peak systolic pressure gradients of more than 60 mm Hg was treated by closed transventricular dilation in six young dogs. Peak systolic pressure gradients were measured by direct catheterization before surgery, immediately after dilation, and 3 months after surgery. Maximum instantaneous pressure gradients were measured by continuous wave Doppler echocardiography before surgery and 6 weeks to 9 months after surgery. All dogs survived the procedure, and two dogs were clinically normal after 9 and 14 months. Two dogs died at week 6 and month 7. One dog was receiving medication for pulmonary edema 15 months after surgery. One dog underwent open resection of the subvalvular ring at month 3, and was clinically normal 6 months after the second procedure. Complications included intraoperative ventricular fibrillation in one dog, and mild postoperative aortic insufficiency in one dog. Closed transventricular dilation resulted in an immediate 83% decrease in the peak systolic pressure gradient from a preoperative mean of 97 +/- 22 mm Hg to a mean of 14 +/- 15 mm Hg. However, systolic pressure gradients measured by direct catheterization at month 3 (77 +/- 26 mm Hg), and by Doppler echocardiography at week 6 to month 9 (85 +/- 32 mm Hg) were not significantly different from preoperative values, which suggested recurrence of the aortic stenosis. Closed transventricular dilation should not be considered a definitive treatment for discrete subvalvular aortic stenosis in dogs, but may be useful in young dogs with critical aortic stenosis as a bridge to more definitive surgery.
Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles
NASA Astrophysics Data System (ADS)
Kraus, B. F.; Hudson, S. R.
2017-09-01
In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. Applying these results to a given rotational-transform profile in cylindrical geometry, we find magnetic field and current density profiles compatible with the fractal pressure.
The causal relation between turbulent particle flux and density gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligen, B. Ph. van; Martín de Aguilera, A.; Hidalgo, C.
A technique for detecting the causal relationship between fluctuating signals is used to investigate the relation between flux and gradient in fusion plasmas. Both a resistive pressure gradient driven turbulence model and experimental Langmuir probe data from the TJ-II stellarator are studied. It is found that the maximum influence occurs at a finite time lag (non-instantaneous response) and that quasi-periodicities exist. Furthermore, the model results show very long range radial influences, extending over most of the investigated regions, possibly related to coupling effects associated with plasma self-organization. These results clearly show that transport in fusion plasmas is not local andmore » instantaneous, as is sometimes assumed.« less
Magma supply dynamics at Westdahl volcano, Alaska, modeled from satellite radar interferometry
Lu, Z.; Masterlark, Timothy; Dzurisin, D.; Rykhus, Russ; Wicks, C.
2003-01-01
A group of satellite radar interferograms that span the time period from 1991 to 2000 shows that Westdahl volcano, Alaska, deflated during its 1991-1992 eruption and is reinflating at a rate that could produce another eruption within the next several years. The rates of inflation and deflation are approximated by exponential decay functions having time constants of about 6 years and a few days, respectively. This behavior is consistent with a deep, constant-pressure magma source connected to a shallow reservoir by a magma-filled conduit. An elastic deformation model indicates that the reservoir is located about 6 km below sea level and beneath Westdahl Peak. We propose that the magma flow rate through the conduit is governed by the pressure gradient between the deep source and the reservoir. The pressure gradient, and hence the flow rate, are greatest immediately after eruptions. Pressurization of the reservoir decreases both the pressure gradient and the flow rate, but eventually the reservoir ruptures and an eruption or intrusion ensues. The eruption rate is controlled partly by the pressure gradient between the reservoir and surface, and therefore it, too, decreases with time. When the supply of eruptible magma is exhausted, the eruption stops, the reservoir begins to repressurize at a high rate, and the cycle repeats. This model might also be appropriate for other frequently active volcanoes with stable magma sources and relatively simple magma storage systems.
The effect of varying Mach number on crossing, glancing shocks/turbulent boundary-layer interactions
NASA Technical Reports Server (NTRS)
Hingst, W. R.; Williams, K. E.
1991-01-01
Two crossing side-wall shocks interacting with a supersonic tunnel wall boundary layer have been investigated over a Mach number range of 2.5 to 4.0. The investigation included a range of equal shock strengths produced by shock generators at angles from 4.0 to 12.0 degrees. Results of flow visualization show that the interaction is unseparated at the low shock generator angles. With increasing shock strength, the flow begins to form a separated region that grows in size and moves forward and eventually the model unstarts. The wall static pressures show a symmetrical compression that merges on the centerline upstream of the inviscid shock locations and becomes more 1D downstream. The region of the 1D pressure gradient moves upstream with increasing shock strengths until it coincides with the leading edge of the shock generators at the limit before model unstart. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.
Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Wie, Bong; Roithmayr, Carlos M.
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
Pre-Darcy flow in tight and shale formations
NASA Astrophysics Data System (ADS)
Dejam, Morteza; Hassanzadeh, Hassan; Chen, Zhangxin
2017-11-01
There are evidences that the fluid flow in tight and shale formations does not follow Darcy law, which is identified as pre-Darcy flow. Here, the unsteady linear flow of a slightly compressible fluid under the action of pre-Darcy flow is modeled and a generalized Boltzmann transformation technique is used to solve the corresponding highly nonlinear diffusivity equation analytically. The effect of pre-Darcy flow on the pressure diffusion in a homogenous formation is studied in terms of the nonlinear exponent, m, and the threshold pressure gradient, G1. In addition, the pressure gradient, flux, and cumulative production per unit area for different m and G1 are compared with the classical solution of the diffusivity equation based on Darcy flow. Department of Petroleum Engineering in College of Engineering and Applied Science at University of Wyoming and NSERC/AI-EES(AERI)/Foundation CMG and AITF (iCORE) Chairs in Department of Chemical and Petroleum Engineering at University of Calgary.
Low-level wind response to mesoscale pressure systems
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Physick, W. L.
1983-09-01
Observations are presented which show a strong correlation between low-level wind behaviour (e.g., rotation near the surface) and the passage of mesoscale pressure systems. The latter are associated with frontal transition zones, are dominated by a pressure-jump line and a mesoscale high pressure area, and produce locally large horizontal pressure gradients. The wind observations are simulated by specifying a time sequence of perturbation pressure gradient and subsequently solving the vertically-integrated momentum equations with appropriate initial conditions. Very good agreement is found between observed and calculated winds; in particular, (i) a 360 ° rotation in wind on passage of the mesoscale high; (ii) wind-shift lines produced dynamically by the pressure-jump line; (iii) rapid linear increase in wind speed on passage of the pressure jump.
NASA Astrophysics Data System (ADS)
Hannis, Sarah; Bricker, Stephanie; Williams, John
2013-04-01
The Bunter Sandstone Formation in the Southern North Sea is a potential reservoir being considered for carbon dioxide storage as a climate change mitigation option. A geological model of a putative storage site within this saline aquifer was built from 3D seismic and well data to investigate potential reservoir pressure changes and their effects on fault movement, brine and CO2 migration as a result of CO2 injection. The model is located directly beneath the Dogger Bank Special Area of Conservation, close to the UK-Netherlands median line. Analysis of the seismic data reveals two large fault zones, one in each of the UK and Netherlands sectors, many tens of kilometres in length, extending from reservoir level to the sea bed. Although it has been shown that similar faults compartmentalise gas fields elsewhere in the Netherlands sector, significant uncertainty remains surrounding the properties of the faults in our model area; in particular their cross- and along-fault permeability and geomechanical behaviour. Despite lying outside the anticipated CO2 plume, these faults could provide potential barriers to pore fluid migration and pressure dissipation, until, under elevated pressures, they provide vertical migration pathways for brine. In this case, the faults will act to enhance injectivity, but potential environmental impacts, should the displaced brine be expelled at the sea bed, will require consideration. Pressure gradients deduced from regional leak-off test data have been input into a simple geomechanical model to estimate the threshold pressure gradient at which faults cutting the Mesozoic succession will fail, assuming reactivation of fault segments will cause an increase in vertical permeability. Various 4D scenarios were run using a single-phase groundwater modelling code, calibrated to results from a multi-phase commercial simulator. Possible end-member ranges of fault parameters were input to investigate the pressure change with time and quantify brine flux to the seabed in potentially reactivated sections of each fault zone. Combining the modelled pressure field with the calculated fault failure criterion suggests that only the fault in the Netherlands sector reactivates, allowing brine displacement at a maximum rate of 800 - 900 m3/d. Model results indicate that the extent of brine displacement is most sensitive to the fault reactivation pressure gradient and fault zone thickness. In conclusion, CO2 injection into a saline aquifer results in a significant increase in pore-fluid pressure gradients. In this case, brine displacement along faults acting as pressure relief valves could increase injectivity in a similar manner to pressure management wells, thereby facilitating the storage operation. However, if the faults act as brine migration pathways, an understanding of seabed flux rates and environmental impacts will need to be demonstrated to regulators prior to injection. This study, close to an international border, also highlights the need to inform neighbouring countries authorities of proposed operations and, potentially, to obtain licences to increase reservoir pressure and/or displace brine across international borders.
Thermal Motion and Forced Migration of Colloidal Particles Generate Hydrostatic Pressure in Solvent
Hammel, H. T.; Scholander, P. F.
1973-01-01
A colloidal solution of ferrite particles in an osmometer has been used to demonstrate that the property that propels water across the semipermeable membrane is the decrease in hydrostatic pressure in the water of the solution. A magnetic field gradient directed so as to force the ferrite particles away from the semipermeable membrane of the osmometer and toward the free surface of the solution enhanced the colloidal osmotic pressure. The enhancement of this pressure was always exactly equal to the augmentation of the pressure as measured by the outward force of the particles, against the area of the free surface. Contrariwise, directing the magnetic field gradient so as to force the ferrite particles away from the free surface and toward the semipermeable membrane diminished the colloidal osmotic pressure of the solution. For a sufficiently forceful field gradient, the initial colloidal osmotic pressure could be negative, followed by an equilibrium pressure approaching zero regardless of the force of the particles against the membrane. Thus, the osmotic pressure of a solution is to be attributed to the pressure in the solvent generated in opposition to the pressure of the solute particles caused by their interaction with the free surface (Brownian motion and/or an external field force), or by their viscous shear when they migrate through the solvent, or both. PMID:16592046
Resistance to forced airflow through layers of composting organic material.
Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro
2015-02-01
The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lilley, D. G.; Scharrer, G. L.
1984-01-01
The results of a time-mean flow characterization of nonswirling and swirling inert flows in a combustor are reported. The five-hole pitot probe technique was used in axisymmetric test sections with expansion ratios of 1 and 1.5. A prominent corner recirculation zone identified in nonswirling expanding flows decreased in size with swirling flows. The presence of a downstream nozzle led to an adverse pressure gradient at the wall and a favorable gradient near the centerline. Reducing the expansion ratio reduced the central recirculation length. No significant effect was introduced in the flowfield by a gradual expansion.
Transition Within Leeward Plane of Axisymmetric Bodies at Incidence in Supersonic Flow
NASA Technical Reports Server (NTRS)
Tokugawa, Naoko; Choudhari, Meelan; Ishikawa, Hiroaki; Ueda, Yoshine; Fujii, Keisuke; Atobe, Takashi; Li, Fei; Chang, Chau-Lyan; White, Jeffery
2012-01-01
Boundary layer transition along the leeward symmetry plane of axisymmetric bodies at nonzero angle of attack in supersonic flow was investigated experimentally and numerically as part of joint research between the Japan Aerospace Exploration Agency (JAXA) and National Aeronautics and Space Administration (NASA). Transition over four axisymmetric bodies (namely, Sears-Haack body, semi-Sears-Haack body, straight cone and flared cone) with different axial pressure gradients was measured in two different facilities with different unit Reynolds numbers. The semi-Sears-Haack body and flared cone were designed at JAXA to broaden the range of axial pressure distributions. For a body shape with an adverse pressure gradient (i.e., flared cone), the experimentally measured transition patterns show an earlier transition location along the leeward symmetry plane in comparison with the neighboring azimuthal locations. For nearly zero pressure gradient (i.e.,straight cone), this feature is only observed at the larger unit Reynolds number. Later transition along the leeward plane was observed for the remaining two body shapes with a favorable pressure gradient. The observed transition patterns are only partially consistent with the numerical predictions based on linear stability analysis. Additional measurements are used in conjunction with the stability computations to explore the phenomenon of leeward line transition and the underlying transition mechanism in further detail.
Simulation of river plume behaviors in a tropical region: Case study of the Upper Gulf of Thailand
NASA Astrophysics Data System (ADS)
Yu, Xiaojie; Guo, Xinyu; Morimoto, Akihiko; Buranapratheprat, Anukul
2018-02-01
River plumes are a general phenomenon in coastal regions. Most previous studies focus on river plumes in middle and high latitudes with few studies examining those in low latitude regions. Here, we apply a numerical model to the Upper Gulf of Thailand (UGoT) to examine a river plume in low latitudes. Consistent with observational data, the modeled plume has seasonal variation dependent on monsoon conditions. During southwesterly monsoons, the plume extends northeastward to the head of the gulf; during northeasterly monsoons, it extends southwestward to the mouth of the gulf. To examine the effects of latitude, wind and river discharge on the river plume, we designed several numerical experiments. Using a middle latitude for the UGoT, the bulge close to the river mouth becomes smaller, the downstream current flows closer to the coast, and the salinity in the northern UGoT becomes lower. The reduction in the size of the bulge is consistent with the relationship between the offshore distance of a bulge and the Coriolis parameter. Momentum balance of the coastal current is maintained by advection, the Coriolis force, pressure gradient and internal stresses in both low and middle latitudes, with the Coriolis force and pressure gradient enlarged in the middle latitude. The larger pressure gradient in the middle latitude is induced by more offshore freshwater flowing with the coastal current, which induces lower salinity. The influence of wind on the river plume not only has the advection effects of changing the surface current direction and increasing the surface current speed, but also decreases the current speed due to enhanced vertical mixing. Changes in river discharge influence stratification in the UGoT but have little effect on the behavior of the river plume.
Models of SOL transport and their relation to scaling of the divertor heat flux width in DIII-D
Makowski, M. A.; Lasnier, C. J.; Leonard, A. W.; ...
2014-10-06
Strong support for the critical pressure gradient model for the heat flux width has been obtained, in that the measured separatrix pressure gradient lies below and scales similarly to the pressure gradient limit obtained from the ideal, infinite-n stability codes, BALOO and 2DX, in all cases that have been examined. Predictions of a heuristic drift model for the heat flux width are also in qualitative agreement with the measurements. We obtained these results by using an improved high rep-rate and higher edge spatial resolution Thomson scattering system on DIII-D to measure the upstream electron temperature and density profiles. In ordermore » to compare theory and experiment, profiles of density, temperature, and pressure for both electrons and ions are needed as well values of these quantitities at the separatrix. We also developed a simple method to identify a proxy for the separatrix.« less
Rotem, Guy; Gavish, Yoni; Shacham, Boaz; Giladi, Itamar; Bouskila, Amos; Ziv, Yaron
2016-01-01
Grazing plays an important role in shaping ecological communities in human-related ecosystems. Although myriad studies have explored the joint effect of grazing and climate on plant communities, this interactive effect has rarely been studied in animals. We hypothesized that the effect of grazing on the reptile community varies along a climatic gradient in relation to the effect of grazing on habitat characteristics, and that grazing differentially affects reptiles of different biogeographic regions. We tested our hypotheses by collecting data on environmental characteristics and by trapping reptiles in four heterogeneous landscapes experiencing differing grazing intensities and distributed along a sharp climatic gradient. We found that while reptile diversity increased with grazing intensity at the mesic end of the gradient, it decreased with grazing intensity at the arid end. Moreover, the proportion of reptile species of differing biogeographic origins varied with the interactive effect of climate and grazing. The representation of species originating in arid biogeographic zones was highest at the arid end of the climatic gradient, and representation increased with grazing intensity within this area. Regardless of the climatic context, increased grazing pressure results in a reduction in vegetation cover and thus in changes in habitat characteristics. By reducing vegetation cover, grazing increased habitat heterogeneity in the dense mesic sites and decreased habitat heterogeneity in the arid sites. Thus, our results suggest that the same direction of habitat alteration caused by grazing may have opposite effects on biodiversity and community composition in different climatic contexts.
Yip, Ngai Yin; Elimelech, Menachem
2014-09-16
Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural → anthropogenic → engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, NY; Elimelech, M
Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) andmore » higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural -> anthropogenic -> engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.« less
Flow shear stabilization of rotating plasmas due to the Coriolis effect.
Haverkort, J W; de Blank, H J
2012-07-01
A radially decreasing toroidal rotation frequency can have a stabilizing effect on nonaxisymmetric magnetohydrodynamic (MHD) instabilities. We show that this is a consequence of the Coriolis effect that induces a restoring pressure gradient force when plasma is perturbed radially. In a rotating cylindrical plasma, this Coriolis-pressure effect is canceled by the centrifugal effect responsible for the magnetorotational instability. In a magnetically confined toroidal plasma, a large aspect ratio expansion shows that only half of the effect is canceled. This analytical result is confirmed by numerical computations. When the plasma rotates faster toroidally in the core than near the edge, the effect can contribute to the formation of transport barriers by stabilizing MHD instabilities.
Plant-herbivore interactions along elevational gradient: Comparison of field and common garden data
NASA Astrophysics Data System (ADS)
Rokaya, Maan Bahadur; Dostálek, Tomáš; Münzbergová, Zuzana
2016-11-01
In response to climate change, various organisms tend to migrate to higher elevations and latitudes. Unequal migration rates of plants and animals are expected to result in changes in the type and intensity of their interactions such as plant-herbivore interactions. In the present study, we studied the extent of herbivore damage in Salvia nubicola along an elevational gradient in Manang, central Nepal. A common garden experiment was also carried out by sowing seeds collected from different populations along the elevational gradient. As expected, the extent of herbivore damage in the field was significantly lower at higher elevations, and it increased with the population size and at sites without shrubs. In the common garden experiment, herbivore damage was higher in plants originating from lower elevations and from more open habitats. While higher herbivore pressure in the field at lower elevations may suggest that plants will be better protected against herbivores at lower elevations, the common garden study demonstrated the opposite. A possible explanation could be that plants from higher elevations have to adapt to extreme conditions, and lower palatability is a side effect of these adaptations. Thus, S. nubicola in the Himalayan region is likely to survive the expected higher herbivore pressure caused by an upward shift of herbivores under future climate change. Future studies should attempt to elucidate generality of such a conclusion by studying multiple species along similar gradients. Our results from comparison of the field and common garden study suggest that future experiments need to include comparisons in common environments to understand the expected response of plants to changes in herbivore pressure.
Klarica, Marijan; Radoš, Milan; Erceg, Gorislav; Petošić, Antonio; Jurjević, Ivana; Orešković, Darko
2014-01-01
Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension.
NASA Technical Reports Server (NTRS)
Annis, J. F.; Webb, P.
1973-01-01
Using a new Nomex-Lycra elastic fabric and individualized garment engineering techniques, reverse gradient garments (RGG's) were designed, constructed, and tested for effectiveness as a countermeasure against cardiovascular deconditioning. By combining torso-compensated positive pressure breathing with a distally diminishing gradient of counterpressure supplied by the elastic fabric on the limbs, the RGG acts to pool blood in the extremities of recumbent persons much as though they were standing erect in 1 g. It was theorized that through the use of a dynamic pressurization scheme, the RGG would stress the vasculature in a fashion similar to that experienced by the noramlly active man, hence preventing or limiting the development of post-weightlessness orthostatic intolerance and related conditions. Four male, college-age subjects received daily treatments with the RGG during a 15-day bedrest study. Four additional subjects also underwent the bedrest, but received no treatments; they served as controls. The design and construction of the garments are described, and results of the treatment related measurements are given.
The dynamics of subtidal poleward flows over a narrow continental shelf, Palos Verdes, CA
Noble, M.A.; Ryan, H.F.; Wiberg, P.L.
2002-01-01
The Palos Verdes peninsula is a short, very narrow (< 3 km) shelf in southern California that is bracketed by two large embayments. In May 1992, arrays of up to 4 moorings and 2 benthic tripods were deployed in a yearlong study of the circulation processes over this shelf and the adjacent slope. Wind stress, coastal sea level, atmospheric pressure and wave records were obtained from offshore sites and from coastal stations surrounding Palos Verdes. Bottom stress calculated for the mid-shelf sites using a boundary-layer model and data from the above instruments indicated the bottom drag coefficient over this shelf is about 0.003 Currents flow toward the northwest along the shelf and upper slope. Speeds are generally around 20-30 cm/s. There was no obvious seasonal structure in the flow. The first EOF for subtidal alongshelf current accounted for nearly 70% of the variance at sites on the shelf and upper slope. The dominant fluctuations had periods between 5 and 20 days, periods longer than seen in the regional wind stress field. Coastal sea level and the alongshore gradient in sea level had a similar concentration of energy in the 5-20 day frequency band. About 30% of the alongshelf flow was coherent with the alongshelf pressure gradient; currents flowed down the pressure gradient with minimal phase lag. Winds accounted for only 15-20% of the variance in subtidal currents, but the measured effect of wind stress was large. A 1 dyne/cm2 wind stress was associated with a 20-30 cm/s alongshore current. Both the regional wind stress and the alongshelf pressure gradients had spatial scales much larger than found on this small shelf. Subtidal flows forced by these regional fields were set up in the adjacent, much broader basins. The currents amplified as they moved onto the narrow shelf between the basins. Hence, local wind-driven currents had anomalously large amplitudes. The momentum equations for alongshelf wind or pressure gradients did not balance because some of the measured terms were associated with regional fields, others with local process. Our observations suggest that it is more difficult to determine which measured fields reflect the local processes in regions with rapidly changing topography. ?? 2002 Elsevier Science Ltd. All rights reserved.
Automatic Calculation of Hydrostatic Pressure Gradient in Patients with Head Injury: A Pilot Study.
Moss, Laura; Shaw, Martin; Piper, Ian; Arvind, D K; Hawthorne, Christopher
2016-01-01
The non-surgical management of patients with traumatic brain injury is the treatment and prevention of secondary insults, such as low cerebral perfusion pressure (CPP). Most clinical pressure monitoring systems measure pressure relative to atmospheric pressure. If a patient is managed with their head tilted up, relative to their arterial pressure transducer, then a hydrostatic pressure gradient (HPG) can act against arterial pressure and cause significant errors in calculated CPP.To correct for HPG, the arterial pressure transducer should be placed level with the intracranial pressure transducer. However, this is not always achieved. In this chapter, we describe a pilot study investigating the application of speckled computing (or "specks") for the automatic monitoring of the patient's head tilt and subsequent automatic calculation of HPG. In future applications this will allow us to automatically correct CPP to take into account any HPG.
Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
Marcos; Yang, C; Ooi, K T; Wong, T N; Masliyah, J H
2004-07-15
This article presents an analysis of the frequency- and time-dependent electroosmotic flow in a closed-end rectangular microchannel. An exact solution to the modified Navier-Stokes equation governing the ac electroosmotic flow field is obtained by using the Green's function formulation in combination with a complex variable approach. An analytical expression for the induced backpressure gradient is derived. With the Debye-Hückel approximation, the electrical double-layer potential distribution in the channel is obtained by analytically solving the linearized two-dimensional Poisson-Boltzmann equation. Since the counterparts of the flow rate and the electrical current are shown to be linearly proportional to the applied electric field and the pressure gradient, Onsager's principle of reciprocity is demonstrated for transient and ac electroosmotic flows. The time evolution of the electroosmotic flow and the effect of a frequency-dependent ac electric field on the oscillating electroosmotic flow in a closed-end rectangular microchannel are examined. Specifically, the induced pressure gradient is analyzed under effects of the channel dimension and the frequency of electric field. In addition, based on the Stokes second problem, the solution of the slip velocity approximation is presented for comparison with the results obtained from the analytical scheme developed in this study. Copyright 2004 Elsevier Inc.
DuBois, P Mason; Shea, Tanner K; Claunch, Natalie M; Taylor, Emily N
2017-08-01
Thermal tolerance is an important variable in predictive models about the effects of global climate change on species distributions, yet the physiological mechanisms responsible for reduced performance at high temperatures in air-breathing vertebrates are not clear. We conducted an experiment to examine how oxygen affects three variables exhibited by ectotherms as they heat-gaping threshold, panting threshold, and loss of righting response (the latter indicating the critical thermal maximum)-in two lizard species along an elevational (and therefore environmental oxygen partial pressure) gradient. Oxygen partial pressure did not impact these variables in either species. We also exposed lizards at each elevation to severely hypoxic gas to evaluate their responses to hypoxia. Severely low oxygen partial pressure treatments significantly reduced the gaping threshold, panting threshold, and critical thermal maximum. Further, under these extreme hypoxic conditions, these variables were strongly and positively related to partial pressure of oxygen. In an elevation where both species overlapped, the thermal tolerance of the high elevation species was less affected by hypoxia than that of the low elevation species, suggesting the high elevation species may be adapted to lower oxygen partial pressures. In the high elevation species, female lizards had higher thermal tolerance than males. Our data suggest that oxygen impacts the thermal tolerance of lizards, but only under severely hypoxic conditions, possibly as a result of hypoxia-induced anapyrexia. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Ren, Junjie; Guo, Ping
2017-11-01
The real fluid flow in porous media is consistent with the mass conservation which can be described by the nonlinear governing equation including the quadratic gradient term (QGT). However, most of the flow models have been established by ignoring the QGT and little work has been conducted to incorporate the QGT into the flow model of the multiple fractured horizontal (MFH) well with stimulated reservoir volume (SRV). This paper first establishes a semi-analytical model of an MFH well with SRV including the QGT. Introducing the transformed pressure and flow-rate function, the nonlinear model of a point source in a composite system including the QGT is linearized. Then the Laplace transform, principle of superposition, numerical discrete method, Gaussian elimination method and Stehfest numerical inversion are employed to establish and solve the seepage model of the MFH well with SRV. Type curves are plotted and the effects of relevant parameters are analyzed. It is found that the nonlinear effect caused by the QGT can increase the flow capacity of fluid flow and influence the transient pressure positively. The relevant parameters not only have an effect on the type curve but also affect the error in the pressure calculated by the conventional linear model. The proposed model, which is consistent with the mass conservation, reflects the nonlinear process of the real fluid flow, and thus it can be used to obtain more accurate transient pressure of an MFH well with SRV.
Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles
Kraus, B. F.; Hudson, S. R.
2017-09-29
In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. As a result, applying these results to a given rotational-transform profile in cylindricalmore » geometry, we find magnetic field and current density profiles compatible with the fractal pressure.« less
Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, B. F.; Hudson, S. R.
In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. As a result, applying these results to a given rotational-transform profile in cylindricalmore » geometry, we find magnetic field and current density profiles compatible with the fractal pressure.« less
NASA Technical Reports Server (NTRS)
Maslen, Stephen H.
1959-01-01
An examination of the effects of compressibility, variable properties, and body forces on fully developed laminar flow has indicated several limitations on such streams. In the absence of a pressure gradient, but presence of a body force (e.g., gravity), an exact fully developed gas flow results. For a liquid this follows also for the case of a constant streamwise pressure gradient. These motions are exact in the sense of a Couette flow. In the liquid case two solutions (not a new result) can occur for the same boundary conditions. An approximate analytic solution was found which agrees closely with machine calculations.In the case of approximately exact flows, it turns out that for large temperature variations across the channel the effects of convection (due to, say, a wall temperature gradient) and frictional heating must be negligible. In such a case the energy and momentum equations are separated, and the solutions are readily obtained. If the temperature variations are small, then both convection effects and frictional heating can consistently be considered. This case becomes the constant-property incompressible case (or quasi-incompressible case for free-convection flows) considered by many authors. Finally there is a brief discussion of cases wherein streamwise variations of all quantities are allowed but only a such form that independent variables are separable. For the case where the streamwise velocity varies inversely as the square root distance along the channel a solution is given.
Ringle, Anne; Castel, Anne-Laure; Le Goffic, Caroline; Delelis, François; Binda, Camille; Bohbot, Yohan; Ennezat, Pierre Vladimir; Guerbaai, Raphaëlle A; Levy, Franck; Vincentelli, André; Graux, Pierre; Tribouilloy, Christophe; Maréchaux, Sylvestre
2018-02-10
The frequency of paradoxical low-gradient severe aortic stenosis (AS) varies widely across studies. The impact of misalignment of aortic flow and pressure recovery phenomenon on the frequency of low-gradient severe AS with preserved left ventricular ejection fraction (LVEF) has not been evaluated in prospective studies. To investigate prospectively the impact of aortic flow misalignment by Doppler and lack of pressure recovery phenomenon correction on the frequency of low-gradient (LG) severe aortic stenosis (AS) with preserved LVEF. Aortic jet velocities and mean pressure gradient (MPG) were obtained by interrogating all windows in 68 consecutive patients with normal LVEF and severe AS (aortic valve area [AVA] ≤1cm 2 ) on the basis of the apical imaging window alone (two-dimensional [2D] apical approach). Patients were classified as having LG or high-gradient (HG) AS according to MPG <40mmHg or ≥40mmHg, and normal flow (NF) or low flow (LF) according to stroke volume index >35mL/m 2 or ≤35mL/m 2 , on the basis of the 2D apical approach, the multiview approach (multiple windows evaluation) and AVA corrected for pressure recovery. The proportion of LG severe AS was 57% using the 2D apical approach alone. After the multiview approach and correction for pressure recovery, the proportion of LG severe AS decreased from 57% to 13% (LF-LG severe AS decreased from 23% to 3%; NF-LG severe AS decreased from 34% to 10%). As a result, 25% of patients were reclassified as having HG severe AS (AVA ≤1cm 2 and MPG ≥40mmHg) and 19% as having moderate AS. Hence, 77% of patients initially diagnosed with LG severe AS did not have "true" LG severe AS when the multiview approach and the pressure recovery phenomenon correction were used. Aortic flow misevaluation, resulting from lack of use of multiple windows evaluation and pressure recovery phenomenon correction, accounts for a large proportion of incorrectly graded AS and considerable overestimation of the frequency of LG severe AS with preserved LVEF. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Stability of spatially developing boundary layers
NASA Astrophysics Data System (ADS)
Govindarajan, Rama
1993-07-01
A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms of O(1) and O(R(exp -1)) in the boundary-layer Reynolds number R. Although containing the Orr-Sommerfeld operator, the present approach does not yield the Orr-Sommerfeld equation in any rational limit. In Blasius flow, the present stability equation is consistent with that of Bertolotti et al. (1992) to terms of O(R(exp -1)). For the Falkner-Skan similarity solutions neutral boundaries are computed without the necessity of having to march in space. Results show that the effects of spatial growth are striking in flows subjected to adverse pressure gradients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Rolland
Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients canmore » be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A 1.3 GHz RF test cell capable of operating both at high pressure and in vacuum with replaceable electrodes was designed, built, and power tested in preparation for testing the frequency and geometry effects of RF breakdown at Argonne National Lab. At the time of this report this cavity is still waiting for the 1.3 GHz klystron to be available at the Wakefield Test Facility. (3) Under a contract with Los Alamos National Lab, an 805 MHz RF test cavity, known as the All-Seasons Cavity (ASC), was designed and built by Muons, Inc. to operate either at high pressure or under vacuum. The LANL project to use the (ASC) was cancelled and the testing of the cavity has been continued under the grant reported on here using the Fermilab Mucool Test Area (MTA). The ASC is a true pillbox cavity that has performed under vacuum in high external magnetic field better than any other and has demonstrated that the high required accelerating gradients for many muon cooling beam line designs are possible. (4) Under ongoing support from the Muon Acceleration Program, microscopic surface analysis and computer simulations have been used to develop models of RF breakdown that apply to both pressurized and vacuum cavities. The understanding of RF breakdown will lead to better designs of RF cavities for many applications. An increase in the operating accelerating gradient, improved reliability and shorter conditioning times can generate very significant cost savings in many accelerator projects.« less
Åsberg, Dennis; Chutkowski, Marcin; Leśko, Marek; Samuelsson, Jörgen; Kaczmarski, Krzysztof; Fornstedt, Torgny
2017-01-06
Large pressure gradients are generated in ultra-high-pressure liquid chromatography (UHPLC) using sub-2μm particles causing significant temperature gradients over the column due to viscous heating. These pressure and temperature gradients affect retention and ultimately result in important selectivity shifts. In this study, we developed an approach for predicting the retention time shifts due to these gradients. The approach is presented as a step-by-step procedure and it is based on empirical linear relationships describing how retention varies as a function of temperature and pressure and how the average column temperature increases with the flow rate. It requires only four experiments on standard equipment, is based on straightforward calculations, and is therefore easy to use in method development. The approach was rigorously validated against experimental data obtained with a quality control method for the active pharmaceutical ingredient omeprazole. The accuracy of retention time predictions was very good with relative errors always less than 1% and in many cases around 0.5% (n=32). Selectivity shifts observed between omeprazole and the related impurities when changing the flow rate could also be accurately predicted resulting in good estimates of the resolution between critical peak pairs. The approximations which the presented approach are based on were all justified. The retention factor as a function of pressure and temperature was studied in an experimental design while the temperature distribution in the column was obtained by solving the fundamental heat and mass balance equations for the different experimental conditions. We strongly believe that this approach is sufficiently accurate and experimentally feasible for this separation to be a valuable tool when developing a UHPLC method. After further validation with other separation systems, it could become a useful approach in UHPLC method development, especially in the pharmaceutical industry where demands are high for robustness and regulatory oversight. Copyright © 2016 Elsevier B.V. All rights reserved.
The effects of rotational flow, viscosity, thickness, and shape on transonic flutter dip phenomena
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, Rakesh; Kaza, Krishna Rao V.
1988-01-01
The transonic flutter dip phenomena on thin airfoils, which are employed for propfan blades, is investigated using an integrated Euler/Navier-Stokes code and a two degrees of freedom typical section structural model. As a part of the code validation, the flutter characteristics of the NACA 64A010 airfoil are also investigated. In addition, the effects of artificial dissipation models, rotational flow, initial conditions, mean angle of attack, viscosity, airfoil thickness and shape on flutter are investigated. The results obtained with a Euler code for the NACA 64A010 airfoil are in reasonable agreement with published results obtained by using transonic small disturbance and Euler codes. The two artificial dissipation models, one based on the local pressure gradient scaled by a common factor and the other based on the local pressure gradient scaled by a spectral radius, predicted the same flutter speeds except in the recovery region for the case studied. The effects of rotational flow, initial conditions, mean angle of attack, and viscosity for the Reynold's number studied seem to be negligible or small on the minima of the flutter dip.
Burke, Lauri
2012-01-01
Additionally, this research establishes a methodology to calculate the injectivity of a target formation. Because injectivity describes the pressure increase due to the introduction of fluids into a formation, the relevant application of injectivity is to determine the pressure increase, due to an injection volume and flow rate, that will induce fractures in the reservoir rocks. This quantity is defined mathematically as the maximum pressure differential between the hydrostatic gradient and the fracture gradient of the target formation. Injectivity is mathematically related to the maximum pressure differential of the formation, and can be used to determine the upper limit for the pressure increase that an injection target can withstand before fracturing.
NASA Technical Reports Server (NTRS)
Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.
2001-01-01
We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.
NASA Technical Reports Server (NTRS)
Rose, W. C.
1973-01-01
The results of an experimental investigation of the mean- and fluctuating-flow properties of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient are presented. The turbulent boundary layer developed on the wall of an axially symmetric nozzle and test section whose nominal free-stream Mach number and boundary-layer thickness Reynolds number were 4 and 100,000, respectively. The adverse pressure gradient was induced by an externally generated conical shock wave. Mean and time-averaged fluctuating-flow data, including the complete experimental Reynolds stress tensor and experimental turbulent mass- and heat-transfer rates are presented for the boundary layer and external flow, upstream, within and downstream of the pressure gradient. The mean-flow data include distributions of total temperature throughout the region of interest. The turbulent mixing properties of the flow were determined experimentally with a hot-wire anemometer. The calibration of the wires and the interpretation of the data are discussed. From the results of the investigation, it is concluded that the shock-wave - boundary-layer interaction significantly alters the turbulent mixing characteristics of the boundary layer.
Study of the Pressure and Velocity Across the Aortic Valve
NASA Astrophysics Data System (ADS)
Kyung, Seo Young; Chung, Erica Soyun; Lee, Joo Hee; Kyung, Hayoung; Choi, Si Young
Biomechanics of the heart, requiring an extensive understanding of the complexity of the heart, have become the interests of many biomedical engineers in cardiology today. In order to study aortic valve disease, engineers have focused on the data obtained through bio-fluid flow analysis. To further this study, physical and computational analysis on the biomechanical determinants of blood flow in the stenosed aortic valve have been examined. These observations, along with the principles of cardiovascular physiology, confirm that when blood flows through the valve opening, pressure gradient across the valve is produced as a result of stenosis of the aortic valve. The aortic valve gradient is used to interpret the increase and decrease on each side of the defective valve. To compute different pressure gradients across the aortic valve, this paper analyzes Aortic Valve Areas (AVA) using simulations based on the continuity equation and Gorlin equation. The data obtained from such analysis consist of patients in the AS category that display mild Aortic Valve Velocity (AVV) and pressure gradient. Such correlation results in the construction of a dependent relationship between severe AS causing LV systolic dysfunction and the transaortic velocity.
A Galilean and tensorial invariant k-epsilon model for near wall turbulence
NASA Technical Reports Server (NTRS)
Yang, Z.; Shih, T. H.
1993-01-01
A k-epsilon model is proposed for wall bounded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation rate equation is reformulated using this time scale and no singularity exists at the wall. A new parameter R = k/S(nu) is introduced to characterize the damping function in the eddy viscosity. This parameter is determined by local properties of both the mean and the turbulent flow fields and is free from any geometry parameter. The proposed model is then Galilean and tensorial invariant. The model constants used are the same as in the high Reynolds number Standard k-epsilon Model. Thus, the proposed model will also be suitable for flows far from the wall. Turbulent channel flows and turbulent boundary layer flows with and without pressure gradients are calculated. Comparisons with the data from direct numerical simulations and experiments show that the model predictions are excellent for turbulent channel flows and turbulent boundary layers with favorable pressure gradients, good for turbulent boundary layers with zero pressure gradients, and fair for turbulent boundary layer with adverse pressure gradients.
Separation of Hydrogen from Carbon Dioxide through Porous Ceramics
Shimonosono, Taro; Imada, Hikari; Maeda, Hikaru; Hirata, Yoshihiro
2016-01-01
The gas permeability of α-alumina, yttria-stabilized zirconia (YSZ), and silicon carbide porous ceramics toward H2, CO2, and H2–CO2 mixtures were investigated at room temperature. The permeation of H2 and CO2 single gases occurred above a critical pressure gradient, which was smaller for H2 gas than for CO2 gas. When the Knudsen number (λ/r ratio, λ: molecular mean free path, r: pore radius) of a single gas was larger than unity, Knudsen flow became the dominant gas transportation process. The H2 fraction for the mixed gas of (20%–80%) H2–(80%–20%) CO2 through porous Al2O3, YSZ, and SiC approached unity with decreasing pressure gradient. The high fraction of H2 gas was closely related to the difference in the critical pressure gradient values of H2 and CO2 single gas, the inlet mixed gas composition, and the gas flow mechanism of the mixed gas. Moisture in the atmosphere adsorbed easily on the porous ceramics and affected the critical pressure gradient, leading to the increased selectivity of H2 gas. PMID:28774051
Regional maps of subsurface geopressure gradients of the onshore and offshore Gulf of Mexico basin
Burke, Lauri A.; Kinney, Scott A.; Dubiel, Russell F.; Pitman, Janet K.
2013-01-01
The U.S. Geological Survey created a comprehensive geopressure-gradient model of the regional pressure system spanning the onshore and offshore Gulf of Mexico basin, USA. This model was used to generate ten maps that included (1) five contour maps characterizing the depth to the surface defined by the first occurrence of isopressure gradients ranging from 0.60 psi/ft to 1.00 psi/ft, in 0.10-psi/ft increments; and (2) five supporting maps illustrating the spatial density of the data used to construct the contour maps. These contour maps of isopressure-gradients at various increments enable the identification and quantification of the occurrence, magnitude, location, and depth of the subsurface pressure system, which allows for the broad characterization of regions exhibiting overpressured, underpressured, and normally pressured strata. Identification of overpressured regions is critical for exploration and evaluation of potential undiscovered hydrocarbon accumulations based on petroleum-generation pressure signatures and pressure-retention properties of reservoir seals. Characterization of normally pressured regions is essential for field development decisions such as determining the dominant production drive mechanisms, evaluating well placement and drainage patterns, and deciding on well stimulation methods such as hydraulic fracturing. Identification of underpressured regions is essential for evaluating the feasibility of geological sequestration and long-term containment of fluids such as supercritical carbon dioxide for alternative disposal methods of greenhouse gases. This study is the first, quantitative investigation of the regional pressure systems of one of the most important petroleum provinces in the United States. Although this methodology was developed for pressure studies in the Gulf of Mexico basin, it is applicable to any basin worldwide.
How a High-Gradient Magnetic Field Could Affect Cell Life
NASA Astrophysics Data System (ADS)
Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr
2016-11-01
The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate.
How a High-Gradient Magnetic Field Could Affect Cell Life
Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr
2016-01-01
The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate. PMID:27857227
A priori evaluation of the Pantano and Sarkar model in compressible homogeneous shear flows
NASA Astrophysics Data System (ADS)
Khlifi, Hechmi; Abdallah, J.; Aïcha, H.; Taïeb, L.
2011-01-01
In this study, a Reynolds stress closure, including the Pantano and Sarkar model of the mean part of the pressure-strain correlation is used for the computation of compressible homogeneous at high-speed shear flow. Several studies concerning the compressible homogeneous shear flow show that the changes of the turbulence structures are principally due to the structural compressibility effects which significantly affect the pressure field and then the pressure-strain correlation. Eventually, this term appears as the main term responsible for the changes in the magnitude of the Reynolds stress anisotropies. The structure of the gradient Mach number is similar to that of turbulence, therefore this parameter may be appropriate to study the changes in turbulence structures that arise from structural compressibility effects. Thus, the incompressible model of the pressure strain correlation and its corrected form by using the turbulent Mach turbulent only, fail to correctly evaluate the compressibility effects at high shear flow. An extension of the widely used incompressible Launder, Reece and Rodi model on compressible homogeneous shear flow is the major aim of the present work. From this extension, the standard coefficients C become a function of the extra compressibility parameters (the turbulent Mach number M and the gradient Mach number M) through the Pantano and Sarkar model. Application of the model on compressible homogeneous shear flow by considering various initial conditions shows reasonable agreement with the DNS results of Simone et al. and Sarkar. The observed trend of the dramatic increase in the normal Reynolds stress anisotropies, the significant decrease in the Reynolds shear stress anisotropy and the increase of the turbulent kinetic energy amplification rate with increasing the gradient Mach number are well predicted by the model. The ability of the model to predict the equilibrium states for the flow in cases A to A from DNS results of Sarkar is examined, the results appear to be very encouraging. Thus, both parameters M and M should be used to model significant structural compressibility effects at high-speed shear flow.
NASA Astrophysics Data System (ADS)
Atkinson, Callum; Amili, Omid; Stanislas, Michel; Cuvier, Christophe; Foucaut, Jean-Marc; Srinath, Sricharan; Laval, Jean-Philippe; Kaehler, Christian; Hain, Rainer; Scharnowski, Sven; Schroeder, Andreas; Geisler, Reinhard; Agocs, Janos; Roese, Anni; Willert, Christian; Klinner, Joachim; Soria, Julio
2016-11-01
The study of adverse pressure gradient turbulent boundary layers is complicated by the need to characterise both the local pressure gradient and it's upstream flow history. It is therefore necessary to measure a significant streamwise domain at a resolution sufficient to resolve the small scales features. To achieve this collaborative particle image velocimetry (PIV) measurements were performed in the large boundary layer wind-tunnel at the Laboratoire de Mecanique de Lille, including: planar measurements spanning a streamwise domain of 3.5m using 16 cameras covering 15 δ spanwise wall-normal stereo-PIV measurements, high-speed micro-PIV of the near wall region and wall shear stress; and streamwise wall-normal PIV in the viscous sub layer. Details of the measurements and preliminary results will be presented.
Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)
Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín
2013-01-01
This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.
Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)
NASA Astrophysics Data System (ADS)
Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín.
2013-10-01
This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.
Song, Hongjun; Wang, Yi; Pant, Kapil
2013-01-01
This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.
Song, Hongjun; Wang, Yi; Pant, Kapil
2012-01-01
This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584
NASA Astrophysics Data System (ADS)
Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team
2014-10-01
In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.
Air data system optimization using a genetic algorithm
NASA Technical Reports Server (NTRS)
Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III
1992-01-01
An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.
The lagRST Model: A Turbulence Model for Non-Equilibrium Flows
NASA Technical Reports Server (NTRS)
Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.
2011-01-01
This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.
NASA Astrophysics Data System (ADS)
Karam, H. N.; Mulligan, A. E.; Abarca, E.; Gardner, A.; Hemond, H.; Harvey, C. F.
2013-12-01
We present time series of vertical pressure gradients in the sea floor at Waquoit Bay, MA, collected along a transect of locations perpendicular to shore, with a 10-minute resolution over two years. The custom-made instruments used for data collection measure pressure differences with an accuracy of 0.5 mm freshwater head, and record pore water and surface water salinities, allowing a robust calculation of the direction and magnitude of flux across the sediment-water interface given an estimate of sediment permeability. Distinct processes of seawater circulation in the subsurface driven by different forcings, including storms, tides, variations in fresh groundwater head, and salinity gradients in coastal groundwater, are manifest as different frequency components in the time series. We characterize the relative contributions of these different forcings to seafloor fluxes at our site, as a function of the time of year and the distance from shore. We find that: 1) Sea level variations drive variations in seafloor flux at time scales of hours to weeks, around a mean flux that is produced by processes with longer time scales, including the seasonal cycle in fresh groundwater head and the density-driven circulation of seawater through the coastal aquifer. 2) Seafloor flux responds non-linearly to shifts in seawater level. Furthermore, this response is asymmetric, with very low tides producing an amplified response in submarine groundwater discharge relative to the recharge produced by equivalently high tides. 3) The amplitude of seafloor pressure gradients shows a three-fold increase during winters relative to summers. We present a model to explain this effect based on the increase in shallow pore water viscosity at colder temperatures. We generalize our findings to help guide the design of sampling studies of seafloor fluxes at other sites. Finally, we present the distribution of subsurface residence times for seawater in Waquoit Bay, derived from our pressure gradient data sets, and discuss the implications for surface water and sediment chemistry.
Free convection in the Matian atmosphere
NASA Technical Reports Server (NTRS)
Clow, G. D.; Haberle, R. M.
1990-01-01
The 'free convective' regime for the Martian atmospheric boundary layer (ABL) was investigated. This state occurs when the mean windspeed at the top of the ABL drops below some critical value U(sub c) and positive buoyant forces are present. Such forces can arise either from vertical temperature or water vapor gradients across the atmospheric surface layer. During free convection, buoyant forces drive narrow plumes that ascend to the inversion height with a return circulation consisting of broad slower-moving downdraughts. Horizontal pressure, temperature, windspeed, and water vapor fluctuations resulting form this circulation pattern can be quite large adjacent to the ground (within the surface layer). The local turbulent fluctuations cause non-zero mean surface stresses, sensible heat fluxes, and latent heat fluxes, even when the mean regional windspeed is zero. Although motions above the surface layer are insensitive to the nature of the surface, the sensible and latent heat fluxes are primarily controlled by processes within the interfacial sublayer immediately adjacent to the ground during free convection. Thus the distinction between aerodynamically smooth and rough airflow within the interfacial sublayer is more important than for the more typical situation where the mean regional windspeed is greater than U(sub c). Buoyant forces associated with water vapor gradients are particularly large on Mars at low pressures and high temperatures when the surface relative humidity is 100 percent, enhancing the likelihood of free convection under these conditions. On this basis, Ingersol postulated the evaporative heat losses from an icy surface on Mars at 237 K and current pressures would exceed the available net radiative flux at the surface, thus prohibiting ice from melting at low atmospheric pressures. Schumann has developed equations describing the horizontal fluctuations and mean vertical gradients occurring during free convection. Schumann's model was generalized to include convection driven by water vapor gradients and to include the effects of circulation above both aerodynamically smooth and rough surfaces.
Methods and apparatus for moving and separating materials exhibiting different physical properties
Peterson, Stephen C.; Brimhall, Owen D.; McLaughlin, Thomas J.; Baker, Charles D.; Sparks, Sam L.
1991-01-01
Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is propagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the materials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggregated at a particular location, or physically separated from each other.
Methods and apparatus for moving and separating materials exhibiting different physical properties
Peterson, Stephen C.; Brimhall, Owen D.; McLaughlin, Thomas J.; Baker, Charles D.; Sparks, Sam L.
1988-01-01
Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is progpagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the marterials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggreated at a particular location, or physically separated from each other.
Endoscopic manometry of the sphincter of Oddi in sphincterotomized patients.
Ugljesić, M; Bulajić, M; Milosavljević, T; Stimec, B
1995-01-01
Endoscopic sphincterotomy (ES) of the sphincter of Oddi (SO) has been accepted as an effective method in extraction of common bile duct stones in postcholecystectomy patients. The purpose of this study was to examine the completeness of the performed ES and observe the post sphincterotomy pancreatic duct sphincter (PDS) activity using endoscopic manometry. Activity of the sphincter of Oddi was examined in 15 sphincterotomized patients using endoscopic manometry one to 2.5 years after endoscopic sphincterotomy for choledocholithiasis. In eight patients absence of choledochoduodenal gradient, baseline pressure and the sphincter of Oddi phasic activity up to 2.5 years after endoscopic sphincterotomy indicated a complete sphincterotomy. In seven patients with incomplete endoscopic sphincterotomy, manometry exhibited either a lower choledochoduodenal gradient and baseline pressure without phasic activity of the sphincter of Oddi (three patients), a sphincter of Oddi activity without choledochoduodenal gradient (one patient), or a complete restitution of the sphincter of Oddi activity 1 to 2 years after endoscopic sphincterotomy (three patients). In five patients, with complete endoscopic sphincterotomy, measurements of pancreatic sphincter activity showed lower values of the pancreatic ductal pressure and baseline pressure, while the pancreatic sphincter phasic activity was equal to that found in the control group. Endoscopic manometry is method which enables us to test the completeness of endoscopic sphincterotomy and to follow the restitution of the phasic contractile function of the sphincter. Manometric findings reveal pancreatic sphincter in most patients as a separate sphincteric entity, the function of which is reduced but not eliminated by a complete endoscopic sphincterotomy.
Bourdillon, Nicolas; Fan, Jui-Lin; Uva, Barbara; Müller, Hajo; Meyer, Philippe; Kayser, Bengt
2015-01-01
Background: Hypoxia-induced pulmonary vasoconstriction increases pulmonary arterial pressure (PAP) and may impede right heart function and exercise performance. This study examined the effects of oral nitrate supplementation on right heart function and performance during exercise in normoxia and hypoxia. We tested the hypothesis that nitrate supplementation would attenuate the increase in PAP at rest and during exercise in hypoxia, thereby improving exercise performance. Methods: Twelve trained male cyclists [age: 31 ± 7 year (mean ± SD)] performed 15 km time-trial cycling (TT) and steady-state submaximal cycling (50, 100, and 150 W) in normoxia and hypoxia (11% inspired O2) following 3-day oral supplementation with either placebo or sodium nitrate (0.1 mmol/kg/day). We measured TT time-to-completion, muscle tissue oxygenation during TT and systolic right ventricle to right atrium pressure gradient (RV-RA gradient: index of PAP) during steady state cycling. Results: During steady state exercise, hypoxia elevated RV-RA gradient (p > 0.05), while oral nitrate supplementation did not alter RV-RA gradient (p > 0.05). During 15 km TT, hypoxia lowered muscle tissue oxygenation (p < 0.05). Nitrate supplementation further decreased muscle tissue oxygenation during 15 km TT in hypoxia (p < 0.05). Hypoxia impaired time-to-completion during TT (p < 0.05), while no improvements were observed with nitrate supplementation in normoxia or hypoxia (p > 0.05). Conclusion: Our findings indicate that oral nitrate supplementation does not attenuate acute hypoxic pulmonary vasoconstriction nor improve performance during time trial cycling in normoxia and hypoxia. PMID:26528189
Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone
NASA Astrophysics Data System (ADS)
Engelhardt, I.; Piepenbrink, M.; Trauth, N.; Stadler, S.; Kludt, C.; Schulz, M.; Schüth, C.; Ternes, T. A.
2011-03-01
SummaryHydrodynamic exchange between surface-water and groundwater was studied at a river located within the Rhine Valley in Germany. Piezometric pressure heads and environmental tracers such as temperature, stable isotopes, chloride, X-ray contrast media, and artificial sweetener were investigated within the hyporheic zone and river water plume. Vertical profiles of environmental tracers were collected using multi-level wells within the neutral up-gradient zone, beneath the river bed, and within the horizontal proximal and distal down-gradient zone. Infiltration velocities were calculated from pressure heads, temperature fluctuations and gradients. The amount of river water within groundwater was estimated from vertical profiles of chloride, stable isotopes, and persistent pharmaceuticals. Profiles of stable isotopes and chloride reveal the existence of down-welling within the shallow hyporheic zone that is generated by river bed irregularities. Due to down-welling an above-average migration of river water into the hyporheic zone establishes even under upward hydraulic pressure gradients. The investigated environmental tracers could not distinctively display short-time-infiltration velocities representative for flood waves, while average infiltration velocities calculated over several months are uniform displayed. Based on vertical temperature profiles the down-gradient migration of the river water plume could be observed even after long periods of effluent conditions and over a distance of 200 m from the river bank. X-ray contrast media and artificial sweeteners were observed in high concentrations within the proximal zone, but were not detected at a distance of 200 m from the river bank. Using temperature as environmental tracer within the hyporheic zone may result in overestimating the migration of pollutants within the river water plume as the process of natural attenuation will be neglected. Furthermore, temperature was not able to display the effect of down-welling. Stable isotopes and chloride were found to be suitable environmental tracers to forecast the release and fate of organic contaminants within the hyporheic zone.
Pressure profiles of sport compression stockings.
Reich-Schupke, Stefanie; Surhoff, Stefan; Stücker, Markus
2016-05-01
While sport compression stockings (SCS) have become increasingly popular, there is no regulatory norm as exists for medical compression stockings (MCS). The objective of this pilot study was to compare five SCS with respect to their pressure profiles ex vivo and in vivo, and in relation to German standards for MCS (RAL norm). In vivo (10 competitive athletes; standardized procedure using the Kikuhime pressure monitor) and ex vivo (tested at the Hohenstein Institute) pressure profiles were tested for the following products: CEP Running Progressive Socks, Falke Running Energizing, Sigvaris Performance, X-Socks Speed Metal Energizer, and 2XU Compression Race Socks. Ex vivo ankle pressures of CEP (25.6 mmHg) and 2XU (23.2 mmHg) corresponded to class 2 MCS; that of Sigvaris (20.8 mmHg), to class 1 MCS. The remaining SCS achieved lower pressure values. The pressure gradients showed marked differences, and did not meet MCS standards. Average in vivo pressures were higher for 2XU, CEP, and Sigvaris than for Falke and X-Socks. However, in vivo values for all SCS were below those of class 1 MCS. None of the SCS showed the decreasing pressure gradient (from distal to proximal) required for MCS. In vivo and ex vivo pressure profiles of all SCS examined showed marked heterogeneity, and did not meet MCS standards. Consequently, the clinical and practical effects of SCS cannot be compared, either. It would therefore be desirable to establish a classification that allows for the categorization and comparison of various SCS as well as their selection based on individual preferences and needs (high vs. low pressure, progressive vs. degressive profile). © 2016 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.
Numerical study of Reynolds stress in compressible flows
NASA Technical Reports Server (NTRS)
Vandromme, D.; Hamin, H.
1985-01-01
A second order closure has been implemented in an implicit Navier-Stokes solver to study the behavior of the Reynolds stresses under the influence of severe pressure gradients. In the boundary layer zone, the strongly sheared character of the mean flow dominates the turbulence generation mechanisms. However, the pressure gradients also play a very important role for these processes, but at different locations within the boundary layer.
NASA Astrophysics Data System (ADS)
Lineweaver, C. H.
2005-12-01
The principle of Maximum Entropy Production (MEP) is being usefully applied to a wide range of non-equilibrium processes including flows in planetary atmospheres and the bioenergetics of photosynthesis. Our goal of applying the principle of maximum entropy production to an even wider range of Far From Equilibrium Dissipative Systems (FFEDS) depends on the reproducibility of the evolution of the system from macro-state A to macro-state B. In an attempt to apply the principle of MEP to astronomical and cosmological structures, we investigate the problematic relationship between gravity and entropy. In the context of open and non-equilibrium systems, we use a generalization of the Gibbs free energy to include the sources of free energy extracted by non-living FFEDS such as hurricanes and convection cells. Redox potential gradients and thermal and pressure gradients provide the free energy for a broad range of FFEDS, both living and non-living. However, these gradients have to be within certain ranges. If the gradients are too weak, FFEDS do not appear. If the gradients are too strong FFEDS disappear. Living and non-living FFEDS often have different source gradients (redox potential gradients vs thermal and pressure gradients) and when they share the same gradient, they exploit different ranges of the gradient. In a preliminary attempt to distinguish living from non-living FFEDS, we investigate the parameter space of: type of gradient and steepness of gradient.
Radoš, Milan; Erceg, Gorislav; Petošić, Antonio; Jurjević, Ivana
2014-01-01
Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension. PMID:24748150
NASA Astrophysics Data System (ADS)
Lapsa, Andrew P.; Dahm, Werner J. A.
2011-01-01
Measurements using stereo particle image velocimetry are presented for a developing turbulent boundary layer in a wind tunnel with a Mach 2.75 free stream. As the boundary layer exits from the tunnel nozzle and moves through the wave-free test section, small initial departures from equilibrium turbulence relax, and the boundary layer develops toward the equilibrium zero-pressure-gradient form. This relaxation process is quantified by comparison of first and second order mean, fluctuation, and gradient statistics to classical inner and outer layer scalings. Simultaneous measurement of all three instantaneous velocity components enables direct assessment of the complete turbulence anisotropy tensor. Profiles of the turbulence Mach number show that, despite the M = 2.75 free stream, the incompressibility relation among spatial gradients in the velocity fluctuations applies. This result is used in constructing various estimates of the measured-dissipation rate, comparisons among which show only remarkably small differences over most of the boundary layer. The resulting measured-dissipation profiles, together with measured profiles of the turbulence kinetic energy and mean-flow gradients, enable an assessment of how the turbulence anisotropy relaxes toward its equilibrium zero-pressure-gradient state. The results suggest that the relaxation of the initially disturbed turbulence anisotropy profile toward its equilibrium zero-pressure-gradient form begins near the upper edge of the boundary layer and propagates downward through the defect layer.
Electromagnetic Meissner-Effect Launcher
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
1990-01-01
Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.
The effect of lymphatic valve morphology on fluid transport
NASA Astrophysics Data System (ADS)
Alexeev, Alexander; Ballard, Matthew; Nepiyushchikh, Zhanna; Dixon, Brandon
2016-11-01
The lymphatic vasculature is present in nearly all invertebrate tissue, and is essential in the transport of fluid and particles such as immune cells, antigens, proteins and lipids from the tissue to lymph nodes and to the venous circulation. Lymphatic vessels are made of up a series of contractile units that work together in harmony as "micro hearts" to pump fluid against a pressure gradient. Lymphatic valves are critical to this functionality, as they open and close with the oscillating pressure gradients from contractions, thus allowing flow in only one direction and leading to a net pumping effect. We use a hybrid lattice-Boltzmann lattice spring model which captures fluid-solid interactions through two-way coupling between a viscous fluid and lymphatic valves in a section of a lymphatic vessel to study the dynamics of lymphatic valves and their effect on fluid transport. Further, we investigate the effect of variations in valve geometry and material properties on fluid pumping. This work helps to increase our understanding of the mechanisms of lymphatic fluid transport, which has implications in a variety of pathologies, including cancer metastasis, autoimmunity, atherosclerosis and obesity. Support from NSF CMMI 1635133 is gratefully acknowledged.
Particle force model effects in a shock-driven multiphase instability
NASA Astrophysics Data System (ADS)
Black, W. J.; Denissen, N.; McFarland, J. A.
2018-05-01
This work presents simulations on a shock-driven multiphase instability (SDMI) at an initial particle volume fraction of 1% with the addition of a suite of particle force models applicable in dense flows. These models include pressure-gradient, added-mass, and interparticle force terms in an effort to capture the effects neighboring particles have in non-dilute flow regimes. Two studies are presented here: the first seeks to investigate the individual contributions of the force models, while the second study focuses on examining the effect of these force models on the hydrodynamic evolution of a SDMI with various particle relaxation times (particle sizes). In the force study, it was found that the pressure gradient and interparticle forces have little effect on the instability under the conditions examined, while the added-mass force decreases the vorticity deposition and alters the morphology of the instability. The relaxation-time study likewise showed a decrease in metrics associated with the evolution of the SDMI for all sizes when the particle force models were included. The inclusion of these models showed significant morphological differences in both the particle and carrier species fields, which increased as particle relaxation times increased.
EFFECTS OF TIDAL CURRENT PHASE AT THE JUNCTION OF TWO STRAITS. (R826940)
Estuaries typically have a monotonic increase in salinity from freshwater at the head of the estuary to ocean water at the mouth, creating a consistent direction for the longitudinal baroclinic pressure gradient. However, Mare Island Strait in San Francisco Ba...
Thermodynamic evaluation of transonic compressor rotors using the finite volume approach
NASA Technical Reports Server (NTRS)
Moore, J.; Nicholson, S.; Moore, J. G.
1985-01-01
Research at NASA Lewis Research Center gave the opportunity to incorporate new control volumes in the Denton 3-D finite-volume time marching code. For duct flows, the new control volumes require no transverse smoothing and this allows calculations with large transverse gradients in properties without significant numerical total pressure losses. Possibilities for improving the Denton code to obtain better distributions of properties through shocks were demonstrated. Much better total pressure distributions through shocks are obtained when the interpolated effective pressure, needed to stabilize the solution procedure, is used to calculate the total pressure. This simple change largely eliminates the undershoot in total pressure down-stream of a shock. Overshoots and undershoots in total pressure can then be further reduced by a factor of 10 by adopting the effective density method, rather than the effective pressure method. Use of a Mach number dependent interpolation scheme for pressure then removes the overshoot in static pressure downstream of a shock. The stability of interpolation schemes used for the calculation of effective density is analyzed and a Mach number dependent scheme is developed, combining the advantages of the correct perfect gas equation for subsonic flow with the stability of 2-point and 3-point interpolation schemes for supersonic flow.
Zonnevijlle, Erik D H; Perez-Abadia, Gustavo; Stremel, Richard W; Maldonado, Claudio J; Kon, Moshe; Barker, John H
2003-11-01
Muscle tissue transplantation applied to regain or dynamically assist contractile functions is known as 'dynamic myoplasty'. Success rates of clinical applications are unpredictable, because of lack of endurance, ischemic lesions, abundant scar formation and inadequate performance of tasks due to lack of refined control. Electrical stimulation is used to control dynamic myoplasties and should be improved to reduce some of these drawbacks. Sequential segmental neuromuscular stimulation improves the endurance and closed-loop control offers refinement in rate of contraction of the muscle, while function-controlling stimulator algorithms present the possibility of performing more complex tasks. An acute feasibility study was performed in anaesthetised dogs combining these techniques. Electrically stimulated gracilis-based neo-sphincters were compared to native sphincters with regard to their ability to maintain continence. Measurements were made during fast bladder pressure changes, static high bladder pressure and slow filling of the bladder, mimicking among others posture changes, lifting heavy objects and diuresis. In general, neo-sphincter and native sphincter performance showed no significant difference during these measurements. However, during high bladder pressures reaching 40 cm H(2)O the neo-sphincters maintained positive pressure gradients, whereas most native sphincters relaxed. During slow filling of the bladder the neo-sphincters maintained a controlled positive pressure gradient for a prolonged time without any form of training. Furthermore, the accuracy of these maintained pressure gradients proved to be within the limits set up by the native sphincters. Refinements using more complicated self-learning function-controlling algorithms proved to be effective also and are briefly discussed. In conclusion, a combination of sequential stimulation, closed-loop control and function-controlling algorithms proved feasible in this dynamic graciloplasty-model. Neo-sphincters were created, which would probably provide an acceptable performance, when the stimulation system could be implanted and further tested. Sizing this technique down to implantable proportions seems to be justified and will enable exploration of the possible benefits.
Surface pressure maps from scatterometer data
NASA Technical Reports Server (NTRS)
Brown, R. A.; Levy, Gad
1991-01-01
The ability to determine surface pressure fields from satellite scatterometer data was shown by Brown and Levy (1986). The surface winds are used to calculate the gradient winds above the planetary boundary layer, and these are directly related to the pressure gradients. There are corrections for variable stratification, variable surface roughness, horizontal inhomogeneity, humidity and baroclinity. The Seasat-A Satellite Scatterometer (SASS) data have been used in a systematic study of 50 synoptic weather events (regions of approximately 1000 X 1000 km). The preliminary statistics of agreement with national weather service surface pressure maps are calculated. The resulting surface pressure maps can be used together with SASS winds and Scanning Multichannel Microwave Radiometer (SMMR) water vapor and liquid water analyses to provide good front and storm system analyses.
Modeling of wave-coherent pressures in the turbulent boundary layer above water waves
NASA Technical Reports Server (NTRS)
Papadimitrakis, Yiannis ALEX.
1988-01-01
The behavior of air pressure fluctuations induced by progressive water waves generated mechanically in a laboratory tank was simulated by solving a modified Orr-Sommerfeld equation in a transformed Eulerian wave-following frame of reference. Solution is obtained by modeling the mean and wave-coherent turbulent Reynolds stresses, the behavior of which in the turbulent boundary layer above the waves was simulated using a turbulent kinetic energy-dissipation model, properly modified to account for free-surface proximity and favorable pressure gradient effects. The distribution of both the wave-coherent turbulent Reynolds stress and pressure amplitudes and their corresponding phase lags was found to agree reasonably well with available laboratory data.
Starke, Robert M.; Durst, Christopher R.; Crowley, R. Webster; Chalouhi, Nohra; Hasan, David M.; Dumont, Aaron S.; Jabbour, Pascal; Liu, Kenneth C.
2015-01-01
Introduction. Idiopathic intracranial hypertension (IIH) may result in a chronic debilitating disease. Dural venous sinus stenosis with a physiologic venous pressure gradient has been identified as a potential etiology in a number of IIH patients. Intracranial venous stenting has emerged as a potential treatment alternative. Methods. A systematic review was carried out to identify studies employing venous stenting for IIH. Results. From 2002 to 2014, 17 studies comprising 185 patients who underwent 221 stenting procedures were reported. Mean prestent pressure gradient was 20.1 mmHg (95% CI 19.4–20.7 mmHg) with a mean poststent gradient of 4.4 mmHg (95% CI 3.5–5.2 mmHg). Complications occurred in 10 patients (5.4%; 95% CI 4.7–5.4%) but were major in only 3 (1.6%). At a mean clinical follow-up of 22 months, clinical improvement was noted in 130 of 166 patients with headaches (78.3%; 95% CI 75.8–80.8%), 84 of 89 patients with papilledema (94.4%; 95% CI 92.1–96.6%), and 64 of 74 patients with visual symptoms (86.5%; 95% CI 83.0–89.9%). In-stent stenosis was noted in six patients (3.4%; 95% CI 2.5–4.3%) and stent-adjacent stenosis occurred in 19 patients (11.4%; 95% CI 10.4–12.4), resulting in restenting in 10 patients. Conclusion. In IIH patients with venous sinus stenosis and a physiologic pressure gradient, venous stenting appears to be a safe and effective therapeutic option. Further studies are necessary to determine the long-term outcomes and the optimal management of medically refractory IIH. PMID:26146651
Pressure gradient induced generation of microbubbles
NASA Astrophysics Data System (ADS)
Evangelio, Alvaro; Campo-Cortes, Francisco; Gordillo, Jose Manuel
2015-11-01
It is well known that the controlled production of monodisperse bubbles possesses uncountable applications in medicine, pharmacy and industry. Here we provide with a detailed physical description of the bubble formation processes taking place in a type of flow where the liquid pressure gradient can be straightforwardly controlled. In our experiments, a gas flow rate discharges through a cylindrical needle into a pressurized chamber. The pressure gradient created from the exit of the injection needle towards the entrance of a extraction duct promotes the stretching of the gas ligament downstream. In our analysis, which is supported by an exhaustive experimental study in which the liquid viscosity is varied by three orders of magnitude, different regimes can be distinguished depending mainly on the Reynolds number. Through our physical modeling, we provide closed expressions for both the bubbling frequencies and for the bubble diameters as well as the conditions under which a monodisperse generation is obtained in all regimes found. The excellent agreement between our expressions and the experimental data fully validates our physical modeling.
NASA Technical Reports Server (NTRS)
Achtemeier, G. L.
1986-01-01
Since late 1982 NASA has supported research to develop a numerical variational model for the diagnostic assimilation of conventional and space-based meteorological data. In order to analyze the model components, four variational models are defined dividing the problem naturally according to increasing complexity. The first of these variational models (MODEL I), the subject of this report, contains the two nonlinear horizontal momentum equations, the integrated continuity equation, and the hydrostatic equation. This report summarizes the results of research (1) to improve the way the large nonmeteorological parts of the pressure gradient force are partitioned between the two terms of the pressure gradient force terms of the horizontal momentum equations, (2) to generalize the integrated continuity equation to account for variable pressure thickness over elevated terrain, and (3) to introduce horizontal variation in the precision modulus weights for the observations.
Effect of Riblets on Pressure Recovery in a Straight-Walled Diffuser
1990-12-01
in the boundary layer velocity pro - file. As the flow continues to oppose the adverse pressure gradient, the fluid near the wall begins to flow in the...and was 37 inches long. The floor and ceiling of the test section were con - 3 structed of wood and the side panels were made of plexiglass. Both side...the diffuser remained fairly con - stant at 52 percent. The riblet results seem to follow the same trend, providing an approximate 35 percent increase in
Chan, Y L; Malnic, G; Giebisch, G
1983-11-01
The effect of oncotic pressure changes on fluid (Jv) and net bicarbonate transport (JHCO-3) and the transepithelial bicarbonate permeability (PHCO-3) were measured by an improved luminal and capillary microperfusion method that allows paired experiments on the same tubule. Rat proximal tubules were pump-perfused and Jv and [HCO-3] measured with [14C]inulin and a pH glass electrode. Raising peritubular protein (0-8-15 g/100 ml bovine serum albumin) stimulated Jv and HCO-3 reabsorption. The response to oncotic pressure changes was asymmetrical since changes of the luminal protein concentration had no significant effects. Whereas transepithelial solvent drag effects on HCO-3 must be minimal, peritubular protein most likely stimulates translocation of fluid and bicarbonate from intercellular spaces into peritubular capillaries. PHCO-3 was measured from HCO-3 net flux along a lumen-to-capillary-directed electrochemical potential gradient. In these experiments active H+ transport and Jv were minimized by 10(-4) M acetazolamide and luminal raffinose. PHCO-3 was 1.77 X 10(-5) cm X s-1 and was unaffected by increasing luminal flow rate from 10 to 45 nl X min-1. Since bicarbonate backflux is only a small fraction of physiological rates of JHCO-3, net transport alterations at varying [HCO-3] in the lumen must be due to changes in active HCO-3 (H+) transport. Thus, active H+ ion secretion across the luminal membrane of the proximal tubule is gradient dependent.
Analysis of Transition-Sensitized Turbulent Transport Equations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Thacker, William D.; Gatski, Thomas B.; Grosch, Chester E,
2005-01-01
The dynamics of an ensemble of linear disturbances in boundary-layer flows at various Reynolds numbers is studied through an analysis of the transport equations for the mean disturbance kinetic energy and energy dissipation rate. Effects of adverse and favorable pressure-gradients on the disturbance dynamics are also included in the analysis Unlike the fully turbulent regime where nonlinear phase scrambling of the fluctuations affects the flow field even in proximity to the wall, the early stage transition regime fluctuations studied here are influenced cross the boundary layer by the solid boundary. The dominating dynamics in the disturbance kinetic energy and dissipation rate equations are described. These results are then used to formulate transition-sensitized turbulent transport equations, which are solved in a two-step process and applied to zero-pressure-gradient flow over a flat plate. Computed results are in good agreement with experimental data.
Carruth, Eric D; McCulloch, Andrew D; Omens, Jeffrey H
2016-12-01
Although a truly complete understanding of whole heart activation, contraction, and deformation is well beyond our current reach, a significant amount of effort has been devoted to discovering and understanding the mechanisms by which myocardial structure determines cardiac function to better treat patients with cardiac disease. Several experimental studies have shown that transmural fiber strain is relatively uniform in both diastole and systole, in contrast to predictions from traditional mechanical theory. Similarly, mathematical models have largely predicted uniform fiber stress across the wall. The development of this uniform pattern of fiber stress and strain during filling and ejection is due to heterogeneous transmural distributions of several myocardial structures. This review summarizes these transmural gradients, their contributions to fiber mechanics, and the potential functional effects of their remodeling during pressure overload hypertrophy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Elliptic flow computation by low Reynolds number two-equation turbulence models
NASA Technical Reports Server (NTRS)
Michelassi, V.; Shih, T.-H.
1991-01-01
A detailed comparison of ten low-Reynolds-number k-epsilon models is carried out. The flow solver, based on an implicit approximate factorization method, is designed for incompressible, steady two-dimensional flows. The conservation of mass is enforced by the artificial compressibility approach and the computational domain is discretized using centered finite differences. The turbulence model predictions of the flow past a hill are compared with experiments at Re = 10 exp 6. The effects of the grid spacing together with the numerical efficiency of the various formulations are investigated. The results show that the models provide a satisfactory prediction of the flow field in the presence of a favorable pressure gradient, while the accuracy rapidly deteriorates when a strong adverse pressure gradient is encountered. A newly proposed model form that does not explicitly depend on the wall distance seems promising for application to complex geometries.
Tailoring magnetic nanoparticle for transformers application.
Morais, P C; Silva, A S; Leite, E S; Garg, V K; Oliveira, A C; Viali, W R; Sartoratto, P P C
2010-02-01
In this study photoacoustic spectroscopy was used to investigate the effect of dilution of an oil-based magnetic fluid sample on the magnetic nanoparticle surface-coating. Changes of the photoacoustic signal intensity on the band-L region (640 to 830 nm) upon dilution of the stock magnetic fluid sample were discussed in terms of molecular surface desorption. The model proposed here assumes that the driving force taking the molecules out from the nanoparticle surface into the bulk solvent is the gradient of osmotic pressure. This gradient of osmotic pressure is established between the nanoparticle surface and the bulk suspension. It is further assumed that the photoacoustic signal intensity (area under the photoacoustic spectra) scales linearly with the number of coating molecules (surface grafting) at the nanoparticle surface. This model picture provides a non-linear analytical description for the reduction of the surface grafting coefficient upon dilution, which was successfully-used to curve-fit the photoacoustic experimental data.
Acoustic propagation in rigid ducts with blockage
NASA Technical Reports Server (NTRS)
El-Raheb, M.; Wagner, P.
1982-01-01
Acoustic levitation has been suggested for moving nonmagnetic material in furnaces for heat processing in space experiments. Basically, acoustic standing waves under resonant conditions are excited in the cavity of the furnace while the material blockage is located at a pressure node and thus at a maximum gradient. The position of the blockage is controlled by displacing the node as a result of frequency change. The present investigation is concerned with the effect of blockage on the longitudinal and transverse resonances of a cylindrical cavity, taking into account the results of a one-dimensional and three-dimensional (3-D) analysis. Based on a Green's function surface element method, 3-D analysis is tested experimentally and proved to be accurate over a wide range of geometric parameters and boundary shapes. The shift in resonance depends on the change in pressure gradient and duct shortening caused by the blockage.
A unified wall function for compressible turbulence modelling
NASA Astrophysics Data System (ADS)
Ong, K. C.; Chan, A.
2018-05-01
Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Tokugawa, Naoko; Li, Fei; Chang, Chau-Lyan; White, Jeffery A.; Ishikawa, Hiroaki; Ueda, Yoshine; Atobe, Takashi; Fujii, Keisuke
2012-01-01
Boundary layer transition over axisymmetric bodies at non-zero angle of attack in supersonic flow is numerically investigated as part of joint research between the National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). Transition over four axisymmetric bodies (namely, Sears-Haack body, semi-Sears-Haack body, 5-degree straight cone and flared cone) with different axial pressure gradients has been studied at Mach 2 in order to understand the effect of axial pressure gradient on instability amplification along the leeward symmetry plane and in the region of nonzero crossflow away from it. Comparisons are made with measured transition data in Mach 2 facilities as well as with predicted and measured transition characteristics for a 5-degree straight cone in a Mach 3.5 low disturbance tunnel. Limitations of using linear stability correlations for predicting transition over axisymmetric bodies at angle of attack are pointed out.
Heat release effects in a turbulent, reacting shear layer
NASA Astrophysics Data System (ADS)
Hermanson, James Carl
The effects of heat release were studied in a planar, gaseous reacting mixing layer formed between free streams containing hydrogen and fluorine in inert diluents. Sufficiently high concentrations of reactants were employed to produce adiabatic flame temperature rises of up to 940 K (1240 K absolute). The Reynolds number at the measuring station, based on velocity difference, 1% temperature thickness and cold kinematic viscosity was approximately 6x10^4. The temperature field was measured with cold wire resistance thermometers and thermocouples. Flow visualization was accomplished by schlieren spark and motion picture photography. Mean velocity information was extracted from mean pitot probe dynamic pressure measurements.Though the displacement thickness of the layer, for zero streamwise pressure gradient, increased with increasing heat release, the actual growth rate of the layer did not increase, but instead decreased slightly. The overall entrainment into the layer was seen to be substantially reduced as a consequence of heat release. Calculations showed that the decrease in layer growth rate can be accounted for by a corresponding reduction in turbulent shear stress.The mean temperature rise profiles, normalized by the adiabatic flame temperature rise, were not greatly changed in shape by heat release. A small decrease in normalized mean temperature rise with heat release was observed. Large scale coherent structures were observed to persist at all levels of heat release in this investigation. The mean structure spacing decreased with increasing temperature. This decrease exceeded the rate of layer growth rate reduction, and suggests that the mechanisms of vortex amalgamation were, to some extent, inhibited by heat release.Imposition of a favorable pressure gradient resulted in additional thinning of the layer, and caused a slight increase in the mixing and amount of chemical product formation. The change in layer growth rate can be shown to be related to a change in free stream velocity ratio induced by pressure gradient.
Computational modeling of venous sinus stenosis in idiopathic intracranial hypertension
Levitt, Michael R; McGah, Patrick M; Moon, Karam; Albuquerque, Felipe C; McDougall, Cameron G; Kalani, M Yashar S; Kim, Louis J; Aliseda, Alberto
2016-01-01
Background and Purpose Idiopathic intracranial hypertension has been associated with dural venous sinus stenosis in some patients, but the hemodynamic environment of the dural venous sinuses has not been quantitatively described. Here, we present the first such computational fluid dynamics model using patient-specific blood pressure measurements. Materials and Methods Six patients with idiopathic intracranial hypertension and at least one stenosis or atresia at the transverse-sigmoid sinus junction underwent MRV followed by cerebral venography and manometry throughout the dural venous sinuses. Patient-specific computational fluid dynamics models were created using MRV anatomy, with venous pressure measurements as boundary conditions. Blood flow and wall shear stress were calculated for each patient. Results Computational models of dural venous sinuses were successfully reconstructed in all six patients with patient-specific boundary conditions. Three patients demonstrated a pathologic pressure gradient (≥ 8 mm Hg) across four dural venous sinus stenoses. Small sample size precludes statistical comparisons, but average overall flow throughout the dural venous sinuses of patients with pathologic pressure gradients was higher than in those without (1041.00 ± 506.52 vs. 358.00 ± 190.95 mL/min). Wall shear stress was also higher across stenoses in patients with pathologic pressure gradients (37.66 ± 48.39 vs 7.02 ± 13.60 Pa). Conclusion The hemodynamic environment of the dural venous sinuses can be computationally modeled using patient-specific anatomy and physiological measurements in patients with idiopathic intracranial hypertension. There was substantially higher blood flow and wall shear stress in patients with pathological pressure gradients. PMID:27197986
Pressure balance inconsistency exhibited in a statistical model of magnetospheric plasma
NASA Astrophysics Data System (ADS)
Garner, T. W.; Wolf, R. A.; Spiro, R. W.; Thomsen, M. F.; Korth, H.
2003-08-01
While quantitative theories of plasma flow from the magnetotail to the inner magnetosphere typically assume adiabatic convection, it has long been understood that these convection models tend to overestimate the plasma pressure in the inner magnetosphere. This phenomenon is called the pressure crisis or the pressure balance inconsistency. In order to analyze it in a new and more detailed manner we utilize an empirical model of the proton and electron distribution functions in the near-Earth plasma sheet (-50 RE < X < -10 RE), which uses the [1989] magnetic field model and a plasma sheet representation based upon several previously published statistical studies. We compare our results to a statistically derived particle distribution function at geosynchronous orbit. In this analysis the particle distribution function is characterized by the isotropic energy invariant λ = EV2/3, where E is the particle's kinetic energy and V is the magnetic flux tube volume. The energy invariant is conserved in guiding center drift under the assumption of strong, elastic pitch angle scattering. If, in addition, loss is negligible, the phase space density f(λ) is also conserved along the same path. The statistical model indicates that f(λ, ?) is approximately independent of X for X ≤ -35 RE but decreases with increasing X for X ≥ -35 RE. The tailward gradient of f(λ, ?) might be attributed to gradient/curvature drift for large isotropic energy invariants but not for small invariants. The tailward gradient of the distribution function indicates a violation of the adiabatic drift condition in the plasma sheet. It also confirms the existence of a "number crisis" in addition to the pressure crisis. In addition, plasma sheet pressure gradients, when crossed with the gradient of flux tube volume computed from the [1989] magnetic field model, indicate Region 1 currents on the dawn and dusk sides of the outer plasma sheet.
Effect of venous stenting on intracranial pressure in idiopathic intracranial hypertension.
Matloob, Samir A; Toma, Ahmed K; Thompson, Simon D; Gan, Chee L; Robertson, Fergus; Thorne, Lewis; Watkins, Laurence D
2017-08-01
Idiopathic intracranial hypertension (IIH) is characterised by an increased intracranial pressure (ICP) in the absence of any central nervous system disease or structural abnormality and by normal CSF composition. Management becomes complicated once surgical intervention is required. Venous sinus stenosis has been suggested as a possible aetiology for IIH. Venous sinus stenting has emerged as a possible interventional option. Evidence for venous sinus stenting is based on elimination of the venous pressure gradient and clinical response. There have been no studies demonstrating the immediate effect of venous stenting on ICP. Patients with a potential or already known diagnosis of IIH were investigated according to departmental protocol. ICP monitoring was performed for 24 h. When high pressures were confirmed, CT venogram and catheter venography were performed to look for venous stenosis to demonstrate a pressure gradient. If positive, venous stenting would be performed and ICP monitoring would continue for a further 24 h after deployment of the venous stent. Ten patients underwent venous sinus stenting with concomitant ICP monitoring. Nine out of ten patients displayed an immediate reduction in their ICP that was maintained at 24 h. The average reduction in mean ICP and pulsatility was significant (p = 0.003). Six out of ten patients reported a symptomatic improvement within the first 2 weeks. Venous sinus stenting results in an immediate reduction in ICP. This physiological response to venous stenting has not previously been reported. Venous stenting could offer an alternative treatment option in correctly selected patients with IIH.
Characterization of Rare Reverse Flow Events in Adverse Pressure Gradient Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Kaehler, Christian J.; Bross, Matthew; Fuchs, Thomas
2017-11-01
Time-resolved tomographic flow fields measured in the viscous sublayer region of a turbulent boundary layer subjected to an adverse pressure gradient (APG) are examined with the aim to resolve and characterize reverse flow events at Reτ = 5000. The fields were measured using a novel high resolution tomographic particle tracking technique. It is shown that this technique is able to fully resolve mean and time dependent features of the complex three-dimensional flow with high accuracy down to very near-wall distances ( 10 μm). From time resolved Lagrangian particle trajectories, statistical information as well as instantaneous topological features of near-wall flow events are deduced. Similar to the zero pressure gradient case (ZPG), it was found that individual events with reverse flow components still occur relatively rarely under the action of the pressure gradient investigated here. However, reverse flow events comprised of many individual events, are shown to appear in relatively organized groupings in both spanwise and streamise directions. Furthermore, instantaneous measurements of reverse flow events show that these events are associated with the motion of low-momentum streaks in the near-wall region. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures and the individual project Grant KA1808/8-2 of the Deutsche Forschungsgemeinschaft.
Low-level nocturnal wind maximum over the Central Amazon Basin
NASA Technical Reports Server (NTRS)
Greco, Steven; Ulanski, Stanley; Garstang, Michael; Houston, Samuel
1992-01-01
A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Meteorological data indicate the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3-7 m/s between 300 and 1000 m increase to 10-15 m/s shortly after sunset. The wind-speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. Low-level winds are thought to be pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.
NASA Technical Reports Server (NTRS)
Tetervin, Neal
1959-01-01
The minimum critical Reynolds numbers for the similar solutions of the compressible laminar boundary layer computed by Cohen and Reshotko and also for the Falkner and Skan solutions as recomputed by Smith have been calculated by Lin's rapid approximate method for two-dimensional disturbances. These results enable the stability of the compressible laminar boundary layer with heat transfer and pressure gradient to be easily estimated after the behavior of the boundary layer has been computed by the approximate method of Cohen and Reshotko. The previously reported unusual result (NACA Technical Note 4037) that a highly cooled stagnation point flow is more unstable than a highly cooled flat-plate flow is again encountered. Moreover, this result is found to be part of the more general result that a favorable pressure gradient is destabilizing for very cool walls when the Mach number is less than that for complete stability. The minimum critical Reynolds numbers for these wall temperature ratios are, however, all larger than any value of the laminar-boundary-layer Reynolds number likely to be encountered. For Mach numbers greater than those for which complete stability occurs a favorable pressure gradient is stabilizing, even for very cool walls.
Relationships between heat flow, thermal and pressure fields in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Husson, L.; Henry, P.; Le Pichon, X.
2004-12-01
The thermal field of the Gulf of Mexico (GoM) is restored from a comprehensive temperature-depth database. A striking feature is the systematic sharp gradient increase between 2500 and 4000 m. The analysis of the pressure (fracturation tests and mud weights) indicates a systematic correlation between the pressure and temperature fields, as well as with the thickness of Plio-Pleistocene sedimentary layer, and is interpreted as the fact of cooling from fluid flow in the upper, almost hydrostatically pressured layer. The Nusselt number, that we characterize by the ratio between the near high-P gradient over low-P gradient varies spatially and is correlated to the structural pattern of the GoM; this observation outlines the complex relationships between heat and fluid flows, structure and sedimentation. The deep thermal signal is restored in terms of gradient and heat flow density from a statistical analysis of the thermal data combined to the thermal modelling of about 175 wells. At a regional scale, although the sedimentary cover is warmer in Texas than in Louisiana in terms of temperature, the steady state basal heat flow is higher in Louisiana. In addition, beneath the Corsair Fault, which lay offshore parallel to the Texan coast, the high heat flow suggests a zone of Tertiary lithospheric thinning.
NASA Technical Reports Server (NTRS)
Bogdonoff, Seymour M.
1991-01-01
This report on a program to study in-plane streamline curvature effects in a turbulent boundary layer at a Mach number of 3. The original proposal, for a 3-year program to explore in-plane streamline curvature effects on a supersonic turbulent boundary layer using three-dimensional pressure fields generated by fins and wall geometry, ended after one year. The purpose of these tests was to compare these streamline curvature effects to the more classical two-dimensional curvature generated by wall shape and imposed pressure gradients, previously considered primarily in a plane normal to the floor. The studies were carried out in the Mach number of 3, 8 x 8 inch High Reynolds Number Supersonic Tunnel. The usual surface visualization and mean wall static pressures were supplemented by the use of many small high frequency wall static pressure gauges (Kulites) to get some indication of the amplification of boundary layer disturbances by the in-plane streamline curvature caused by the three-dimensional pressure fields imposed on the boundary layer.
NASA Astrophysics Data System (ADS)
Dou, Ruifeng; Phillion, A. B.
2016-08-01
Hot tearing susceptibility is commonly assessed using a pressure drop equation in the mushy zone that includes the effects of both tensile deformation perpendicular to the thermal gradient as well as shrinkage feeding. In this study, a Pore Fraction hot tearing model, recently developed by Monroe and Beckermann (JOM 66:1439-1445, 2014), is extended to additionally include the effect of strain rate parallel to the thermal gradient. The deformation and shrinkage pore fractions are obtained on the basis of the dimensionless Niyama criterion and a scaling variable method. First, the model is applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore fractions because of an increase in the time spent in the brittle temperature region. Second, the model is applied to the industrial aluminum alloy AA5182 as part of a finite element simulation of the Direct Chill (DC) casting process. It is shown that an increase in the casting speed during DC casting increases the deformation and shrinkage pore fractions, causing the maximum point of pore fraction to move towards the base of the casting. These results demonstrate that including the strain rate parallel to the thermal gradient significantly improves the predictive quality of hot tearing criteria based on the pressure drop equation.
Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes
NASA Technical Reports Server (NTRS)
Kaszeta, Richard W.; Simon, Terrence W.; Ashpis, David (Technical Monitor)
2002-01-01
Experimental results from a study of the effects of passing wakes upon laminar-to-turbulent transition in a low-pressure turbine passage are presented. The test section geometry is designed to simulate the effects of unsteady wakes resulting from rotor-stator interaction upon laminar-to-turbulent transition in turbine blade boundary layers and separated flow regions over suction surfaces. Single-wire, thermal anemometry techniques were used to measure time-resolved and phase-averaged, wall-normal profiles of velocity, turbulence intensity, and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady state, wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and exit velocity of 50,000 and an approach flow turbulence intensity of 2.5 percent. From these data, the effects of passing wakes and associated increased turbulence levels and varying pressure gradients on transition and separation in the near-wall flow are presented. The results show that the wakes affect transition both by virtue of their difference in turbulence level from that of the free-stream but also by virtue of their velocity deficit relative to the freestream velocity, and the concomitant change in angle of attack and temporal pressure gradients. The results of this study seem to support the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. The data also show a significant lag between when the wake is present over the surface and when transition begins. The accompanying CD-ROM includes tabulated data, animations, higher resolution plots, and an electronic copy of this report.
Features of self-organized plasma physics in tokamaks
NASA Astrophysics Data System (ADS)
Razumova, K. A.
2018-01-01
The history of investigations the role of self-organization processes in tokamak plasma confinement is presented. It was experimentally shown that the normalized pressure profile is the same for different tokamaks. Instead of the conventional Fick equation, where the thermal flux is proportional to a pressure gradient, processes in the plasma are well described by the Dyabilanin’s energy balance equation, in which the heat flux is proportional to the difference of normalized gradients for self-consistent and real pressure profiles. The transport coefficient depends on the values of heat flux, which compensates distortion of the pressure profile with external impacts. Radiative cooling of the plasma edge decreases the heat flux and improves the confinement.
Erni, F; Frei, R W
1976-09-29
A device is described that makes use of an eight-port motor valve to generate step gradients on the low-pressure side of a piston pump with a low dead volume. Such a gradient device with an automatic control unit, which also permits repetition of previous steps, can be built for about half the cost of a gradient system with two pumps. Applications of this gradient unit to the separation of complex mixtures of glycosides and alkaloids are discussed and compared with separations systems using two high-pressure pumps. The gradients that are used on reversed-phase material with solvent mixtures of water and completely miscible organic solvents are suitable for quantitative routine control of pharmaceutical products. The reproducibility of retention data is excellent over several months and, with the use of loop injectors, major components can be determined quantitatively with a reproducibility of better than 2% (relative standard deviation). The step gradient selector valve can also be used as an introduction system for very large sample volumes. Up to 11 can be injected and samples with concentrations of less than 1 ppb can be determined with good reproducibilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raats, P.A.C.
1975-12-01
Balances of mass for the water in N distinct phases and a balance of heat for the medium as a whole were formulated. Following Philip and de Vries, it was assumed that the flux of water in each phase is proportional to the gradient of the pressure in that phase and that the diffusive component of the flux of heat is proportional to the gradient of the temperature. Clapeyron equations were used to express the gradient of the pressure in any phase in terms of the gradient of the pressure in a reference state and of the temperature. The referencemore » state may be the water in one of the phases or the water in some measuring device such as a tensiometer or a psychrometer. Expressions for the total flux of water and for the diffusive flux of heat plus the convective flux of heat associated with the conversion from any phase to the reference state were shown to satisfy the onsager reciprocal relations. A theorem due to Meixner was used to delineate the class of fluxes and forces that preserves these relations. In particular, it was shown that if the gradients of water content and temperature are used as the driving forces, the onsager relations are no longer satisfied.« less
The Relationships Between ELM Suppression, Pedestal Profiles, and Lithium Wall Coatings in NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.P. Boyle, R. Maingi, P.B. Snyder, J. Manickam, T.H. Osborne, R.E. Bell, B.P. LeBlanc, and the NSTX Team
2012-08-17
Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated to wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, D. P.; Maingi, R.; Snyder, P. B.
2011-01-01
Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated with wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX.« less
Numerical simulations of katabatic jumps in coats land, Antartica
NASA Astrophysics Data System (ADS)
Yu, Ye; Cai, Xiaoming; King, John C.; Renfrew, Ian A.
A non-hydrostatic numerical model, the Regional Atmospheric Modeling System (RAMS), has been used to investigate the development of katabatic jumps in Coats Land, Antarctica. In the control run with a 5 m s-1downslope directed initial wind, a katabatic jump develops near the foot of the idealized slope. The jump is manifested as a rapid deceleration of the downslope flow and a change from supercritical to subcritical flow, in a hydraulic sense, i.e., the Froude number (Fr) of the flow changes from Fr > 1 to Fr> 1. Results from sensitivity experiments show that an increase in the upstream flow rate strengthens the jump, while an increase in the downstream inversion-layer depth results in a retreat of the jump. Hydraulic theory and Bernoulli''s theorem have been used to explain the surface pressure change across the jump. It is found that hydraulic theory always underestimates the surface pressure change, while Bernoulli''s theorem provides a satisfactory estimation. An analysis of the downs balance for the katabatic jump indicates that the important forces are those related to the pressure gradient, advection and, to a lesser extent, the turbulent momentum divergence. The development of katabatic jumps can be divided into two phases. In phase I, the t gradient force is nearly balanced by advection, while in phase II, the pressure gradient force is counterbalanced by turbulent momentum divergence. The upslope pressure gradient force associated with a pool of cold air over the ice shelf facilitates the formation of the katabatic jump.
NASA Astrophysics Data System (ADS)
Lanni, Cristiano; McDonnell, Jeff
2010-05-01
Shallow Landslides are one of the most important causes of loss of human life and socio-economic damage related to the hydro-geological risk issues. The danger of these phenomena is related to their speed of development, the diffculty of foreseeing their location, and the high density of individual phenomena, whose downhill trajectories have a relevant probability of interfering with urbanized areas. Research activity on precipitation-induced landslides has focused mainly on developing predictive understanding of where and when landslides are likely to occur. Nevertheless, some major aspects that may be related to activation of landslides have been poorly investigated. For instance, landslide susceptibility zones are generally predicted assuming constant thickness of soil over an impervious bedrock layer. Nevertheless, recent studies showed subsurface topography could be a first order control for subsurface water-flow dynamics, because of the effects of its own irregular shape. Tromp-van Meerveld and McDonnell (2006) argued that connectivity of patches of transient saturation were a necessary prerequisite for exceeding the rainfall threshold necessary to drive lateral flow. Connectivity - "how the hillslope architecture controls the filling and spilling of isolated patches of saturation" (Hopp and McDonnell, 2009) - appears to be a possible unifying concept and theoretical platform for moving hillslope and watershed hydrology forward. Connectivity could also have important implications on triggering of shallow landslides, because the particular shape of bedrock may limit the water-flow downhill. Here we present a number of virtual numerical experiments performed to investigate the role of bedrock shape and hillslope gradient on pore-water pressure development. On this purpose, our test is represented by the subsurface topography of the Panola Experiment Hillslope (PEH). That is because scientific literature on PEH provides substantial documentation about the role of bedrock layer on subsurface water-flow dynamics. We also exploit the concept of Downslope Index (DWI) (Hjerdt et al., 2004) and Upslope Contributing Area (UCA) as indicators of the areas more susceptible to landslide. The results indicate that bedrock shape influences the max pore-water pressure, even with different hillslope gradients; meanwhile, hillslope gradient affects the persistence-time of the max pore-water pressure. Moreover, results suggest DWI as an useful index to improve the capability of the very-used SHALSTAB model to assess for landslide susceptibility areas.
Frič, Radek; Lindstrøm, Erika Kristina; Ringstad, Geir Andre; Mardal, Kent-André; Eide, Per Kristian
2016-12-01
In symptomatic Chiari malformation type 1 (CMI), impaired intracranial compliance (ICC) is associated with an increased cranio-spinal pulsatile pressure gradient. Phase-contrast magnetic resonance imaging (MRI) represents a non-invasive modality for the assessment of the pulse pressure gradient at the cranio-cervical junction (CCJ). We wished to explore how the MRI-derived pulse pressure gradient (MRI-dP) compares with invasively measured pulsatile intracranial pressure (ICP) in CMI, and with healthy controls. From phase-contrast MRI of CMI patients and healthy controls, we computed cerebrospinal fluid (CSF) flow velocities and MRI-dP at the CCJ. We assessed bidirectional flow and compared the flow between the anterior and the posterior subarachnoid space at the CCJ. We computed total intracranial volume (ICV), ventricular CSF volume (VV), and posterior cranial fossa volume (PCFV). We analyzed the static and pulsatile ICP scores from overnight monitoring in CMI patients. Five CMI patients and four healthy subjects were included. The CMI group had a significantly larger extent of tonsillar ectopia, smaller PCFV, and a smaller area of CSF in the FM. The pulsatile ICP (mean ICP wave amplitude, MWA) was abnormally increased in 4/5 CMI patients and correlated positively with MRI-dP. However, the MRI-dP as well as the CSF flow velocities did not differ significantly between CMI and healthy subjects. Moreover, bidirectional flow was observed in both CMI as well as healthy subjects, with no significant difference. In symptomatic CMI patients, we found a significant association between the pulse pressure gradient at the CCJ derived from phase-contrast MRI and the pulsatile ICP (MWA) measured invasively. However, the MRI-dP was close to identical in CMI patients and healthy subjects. Moreover, the CSF flow velocities at the CCJ and the occurrence of bidirectional flow were not different in CMI patients and healthy individuals. Further studies are required to determine the diagnostic role of phase-contrast MRI in CMI patients.
High-pressure nuclear magnetic resonance studies of fuel cell membranes
NASA Astrophysics Data System (ADS)
Mananga, Eugene Stephane
This thesis focuses on the use of high pressure NMR to study transport properties in electrolyte membranes used for fuel cells. The main concern is in studying the self-diffusion coefficients of ions and molecules in membranes and solutions, which can be used to characterize electrolytes in fuel cells. For this purpose, a high-pressure fringe field NMR method to study transport properties in material systems useful for fuel cell and battery electrolytes, was designed, developed, and implemented. In this investigation, pressure is the thermodynamic variable to obtain additional information about the ionic transport process, which could yield the crucial parameter, activation volume. Most of the work involves proton NMR, with additional investigations of others nuclei, such as fluorine, phosphorus and lithium. Using the FFG method, two fuel cell membrane types (NAFION-117, SPTES), and different dilutions of phosphoric acid were investigated, as was LiTf salt in Diglyme solution, which is used as a lithium battery electrolyte. In addition to high-pressure NMR diffusion measurements carried out in the fringe field gradient for the investigation of SPTES, pulse field gradient spin echo NMR was also used to characterize the water diffusion, in addition to measuring diffusion rates as a function of temperature. This second method allows us to measure distinct diffusion coefficients in cases where the different nuclear (proton) environments can be resolved in the NMR spectrum. Polymer electrolyte systems, in which the mobility of both cations and anions is probed by NMR self-diffusion measurements using standard pulsed field gradient methods and static gradient measurements as a function of applied hydrostatic pressure, were also investigated. The material investigated is the low molecular weight liquid diglyme/LiCF3SO3 (LiTf) complexes which can be used as electrolytes in lithium batteries. Finally, high-pressure diffusion coefficient measurements of phosphoric acid in water at different concentrations: proton (1H) and phosphorus (31P) nuclei have been performed using the static field gradient spin-echo nuclear magnetic resonance. This study is expected to be helpful in improving the understanding of phosphoric acid fuel cell technology.
Kimer, Nina; Pedersen, Julie Steen; Busk, Troels Malte; Gluud, Lise Lotte; Hobolth, Lise; Krag, Aleksander; Møller, Søren; Bendtsen, Flemming
2017-02-01
Decompensated cirrhosis is characterized by disturbed systemic and splanchnic hemodynamics. Bacterial translocation from the gut is considered the key driver in this process. Intestinal decontamination with rifaximin may improve hemodynamics. This double-blind, randomized, controlled trial (clinicaltrials.gov, NCT01769040) investigates the effects of rifaximin on hemodynamics, renal function, and vasoactive hormones. We randomized 54 stable outpatients with cirrhosis and ascites to rifaximin 550 mg twice a day (n = 36) or placebo twice a day (n = 18). Forty-five patients were male, mean age 56 years (±8.4), average Child score 8.3 (±1.3), and Model for End-Stage Liver Disease score 11.7 (±3.9). Measurements of hepatic venous pressure gradient, cardiac output, and systemic vascular resistance were made at baseline and after 4 weeks. The glomerular filtration rate and plasma renin, noradrenaline, lipopolysaccharide binding protein, troponin T, and brain natriuretic peptide levels were measured. Rifaximin had no effect on hepatic venous pressure gradient, mean 16.8 ± 3.8 mm Hg at baseline versus 16.6 ± 5.3 mm Hg at follow-up, compared to the placebo, mean 16.4 ± 4 mm Hg at baseline versus 16.3 ± 4.4 mm Hg at follow-up, P = 0.94. No effect was found on cardiac output, mean 6.9 ± 1.7 L/min at baseline versus 6.9 ± 2.3 L/min at follow-up, compared to placebo, mean 6.6 ± 1.9 L/min at baseline compared to 6.5 ±2.1 L/min at follow-up, P = 0.66. No effects on the glomerular filtration rate, P = 0.14, or vasoactive hormones were found. Subgroup analyses on patients with increased lipopolysaccharide binding protein and systemic vascular resistance below the mean (1,011 dynes × s/cm 5 ) revealed no effect of rifaximin. Four weeks of treatment with rifaximin did not reduce the hepatic venous pressure gradient or improve systemic hemodynamics in patients with cirrhosis and ascites; rifaximin did not affect glomerular filtration rate or levels of vasoactive hormones. (Hepatology 2017;65:592-603). © 2016 by the American Association for the Study of Liver Diseases.
Qiu, Mingfeng; Bailey, Brian N.; Stoll, Rob
2014-01-01
The validity of the compressible Reynolds equation to predict the local pressure in a gas-lubricated, textured parallel slider bearing is investigated. The local bearing pressure is numerically simulated using the Reynolds equation and the Navier-Stokes equations for different texture geometries and operating conditions. The respective results are compared and the simplifying assumptions inherent in the application of the Reynolds equation are quantitatively evaluated. The deviation between the local bearing pressure obtained with the Reynolds equation and the Navier-Stokes equations increases with increasing texture aspect ratio, because a significant cross-film pressure gradient and a large velocity gradient in the sliding direction develop in the lubricant film. Inertia is found to be negligible throughout this study. PMID:25049440
Hand-Portable Gradient Capillary Liquid Chromatography Pumping System.
Sharma, Sonika; Plistil, Alex; Barnett, Hal E; Tolley, H Dennis; Farnsworth, Paul B; Stearns, Stanley D; Lee, Milton L
2015-10-20
In this work, a novel splitless nanoflow gradient generator integrated with a stop-flow injector was developed and evaluated using an on-column UV-absorption detector. The gradient pumping system consisted of two nanoflow pumps controlled by micro stepper motors, a mixer connected to a serpentine tube, and a high-pressure valve. The gradient system weighed only 4 kg (9 lbs) and could generate up to 55 MPa (8000 psi) pressure. The system could operate using a 24 V DC battery and required 1.2 A for operation. The total volume capacity of the pump was 74 μL, and a sample volume of 60 nL could be injected. The system provided accurate nanoflow rates as low as 10 nL/min without employing a splitter, making it ideal for capillary column use. The gradient dwell volume was calculated to be 1.3 μL, which created a delay of approximately 4 min with a typical flow rate of 350 nL/min. Gradient performance was evaluated for gradient step accuracy, and excellent reproducibility was obtained in day-to-day experiments (RSD < 1.2%, n = 4). Linear gradient reproducibility was tested by separating a three-component pesticide mixture on a poly(ethylene glycol) diacrylate (PEGDA) monolithic column. The retention time reproducibility was very good in run-to-run experiments (RSD < 1.42%, n = 4). Finally, excellent separation of five phenols was demonstrated using the nanoflow gradient system.
Latitudinal gradients in ecosystem engineering by oysters vary across habitats.
McAfee, Dominic; Cole, Victoria J; Bishop, Melanie J
2016-04-01
Ecological theory predicts that positive interactions among organisms will increase across gradients of increasing abiotic stress or consumer pressure. This theory has been supported by empirical studies examining the magnitude of ecosystem engineering across environmental gradients and between habitat settings at local scale. Predictions that habitat setting, by modifying both biotic and abiotic factors, will determine large-scale gradients in ecosystem engineering have not been tested, however. A combination of manipulative experiments and field surveys assessed whether along the east Australian coastline: (1) facilitation of invertebrates by the oyster Saccostrea glomerata increased across a latitudinal gradient in temperature; and (2) the magnitude of this effect varied between intertidal rocky shores and mangrove forests. It was expected that on rocky shores, where oysters are the primary ecosystem engineer, they would play a greater role in ameliorating latitudinal gradients in temperature than in mangroves, where they are a secondary ecosystem engineer living under the mangrove canopy. On rocky shores, the enhancement of invertebrate abundance in oysters as compared to bare microhabitat decreased with latitude, as the maximum temperatures experienced by intertidal organisms diminished. By contrast, in mangrove forests, where the mangrove canopy resulted in maximum temperatures that were cooler and of greater humidity than on rocky shores, we found no evidence of latitudinal gradients of oyster effects on invertebrate abundance. Contrary to predictions, the magnitude by which oysters enhanced biodiversity was in many instances similar between mangroves and rocky shores. Whether habitat-context modifies patterns of spatial variation in the effects of ecosystem engineers on community structure will depend, in part, on the extent to which the environmental amelioration provided by an ecosystem engineer replicates that of other co-occurring ecosystem engineers.
Nonlinear analysis of aortic flow in living dogs.
NASA Technical Reports Server (NTRS)
Ling, S. C.; Atabek, H. B.; Letzing, W. G.; Patel, D. J.
1973-01-01
A nonlinear theory which considered the convective accelerations of blood and the nonlinear elastic behavior and taper angle of the vascular wall was used to study the nature of blood flow in the descending thoracic aorta of living dogs under a wide range of pressures and flows. Velocity profiles, wall friction, and discharge waves were predicted from locally measured input data about the pressure-gradient wave and arterial distention. The results indicated that a major part of the mean pressure gradient was balanced by convective accelerations; the theory, which took this factor into account, predicted the correct velocity distributions and flow waves.
Effect of Water Cut on Pressure Drop of Oil (D130) -Water Flow in 4″Horizontal Pipe
NASA Astrophysics Data System (ADS)
Basha, Mehaboob; Shaahid, S. M.; Al-Hems, Luai M.
2018-03-01
The oil-water flow in pipes is a challenging subject that is rich in physics and practical applications. It is often encountered in many oil and chemical industries. The pressure gradient of two phase flow is still subject of immense research. The present study reports pressure measurements of oil (D130)-water flow in a horizontal 4″ diameter stainless steel pipe at different flow conditions. Experiments were carried out for different water cuts (WC); 0-100%. Inlet oil-water flow rates were varied from 4000 to 8000 barrels-per-day in steps of 2000. It has been found that the frictional pressure drop decreases for WC = 0 - 40 %. With further increase in WC, friction pressure drop increases, this could be due to phase inversion.
NASA Technical Reports Server (NTRS)
Nosek, S. M.; Straight, D. M.
1976-01-01
Plug nozzle film cooling data were obtained downstream of a slot located at 42 percent of the total plug length on a J-85 engine. Film cooling reduced the aft end wall temperature as much as 150 K, reduced total pressure loss in the upstream convection cooling passages by 50 percent, and reduced estimated compressor bleed flow requirement by 14 percent compared to an all convectively cooled nozzle. Shock waves along the plug surface strongly influenced temperature distributions on both convection and film cooled portions. The effect was most severe at nozzle pressure ratios below 10 where adverse pressure gradients were most severe.
Bed failure induced by internal solitary waves
NASA Astrophysics Data System (ADS)
Rivera-Rosario, Gustavo A.; Diamessis, Peter J.; Jenkins, James T.
2017-07-01
The pressure field inside a porous bed induced by the passage of an Internal Solitary Wave (ISW) of depression is examined using high-accuracy numerical simulations. The velocity and density fields are obtained by solving the Dubreil-Jacotin-Long Equation, for a two-layer, continuously stratified water column. The total wave-induced pressure across the surface of the bed is computed by vertically integrating for the hydrostatic and nonhydrostatic contributions. The bed is assumed to be a continuum composed of either sand or silt, with a small amount of trapped gas. Results show variations in pore-water pressure penetrating deeper into more conductive materials and remaining for a prolonged period after the wave has passed. In order to quantify the potential for failure, the vertical pressure gradient is compared against the buoyant weight of the bed. The pressure gradient exceeds this weight for weakly conductive materials. Failure is further enhanced by a decrease in bed saturation, consistent with studies in surface-wave induced failure. In deeper water, the ISW-induced pressure is stronger, causing failure only for weakly conductive materials. The pressure associated with the free-surface displacement that accompanies ISWs is significant, when the water depth is less than 100 m, but has little influence when it is greater than 100 m, where the hydrostatic pressure due to the pycnocline displacement is much larger. Since the pore-pressure gradient reduces the specific weight of the bed, results show that particles are easier for the flow to suspend, suggesting that pressure contributes to the powerful resuspension events observed in the field.
WNDCOM: estimating surface winds in mountainous terrain
Bill C. Ryan
1983-01-01
WNDCOM is a mathematical model for estimating surface winds in mountainous terrain. By following the procedures described, the sheltering and diverting effect of terrain, the individual components of the windflow, and the surface wind in remote mountainous areas can be estimated. Components include the contribution from the synoptic scale pressure gradient, the sea...
NASA Astrophysics Data System (ADS)
Wang, W. P.; Shen, B. F.; Xu, Z. Z.
2017-05-01
The accelerating gradient of a proton beam is crucial for stable radiation pressure acceleration (RPA) because the multi-dimensional instabilities increase γ times slower in the relativistic region. In this paper, a shape-tailored laser is proposed to significantly accelerate the ions in a controllable high accelerating gradient. In this method, the fastest ions initially rest in the middle of the foil are controlled to catch the compressed electron layer at the end of the hole-boring stage, thus the light-sail stage can start as soon as possible. Then the compressed electron layer is accelerated tightly together with the fastest ions by the shaped laser intensity, which further increases the accelerating gradient in the light-sail stage. Such tailored pulse may be beneficial for the RPA driven by the 10-fs 10 petawatt laser in the future.
Effects of wave shape on sheet flow sediment transport
Hsu, T.-J.; Hanes, D.M.
2004-01-01
A two-phase model is implemented to study the effects of wave shape on the transport of coarse-grained sediment in the sheet flow regime. The model is based on balance equations for the average mass, momentum, and fluctuation energy for both the fluid and sediment phases. Model simulations indicate that the responses of the sheet flow, such as the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady free-stream velocity and may be correlated with the magnitude of local horizontal pressure gradient (or free-stream acceleration). A net sediment flux in the direction of wave advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and breaking waves. The model further suggests that at critical values of the horizontal pressure gradient, there is a failure event within the bed that mobilizes more sediment into the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize the total bed shear stress and the total sediment flux appear promising. Copyright 2004 by the American Geophysical Union.
Exploration of Characteristics Governing Dynamics of Whirlwinds: Application to Dust Devils
NASA Astrophysics Data System (ADS)
Pandey, Sanjay Kumar; Maurya, Jagdish Prasad
2017-08-01
It is intended to model mathematically an ideal whirlwind which characterises this geo-physical phenomenon and eventually helps us decode the inherent dynamics. A dense cylindrical aerial mass is taken into consideration surrounding a rarer aerial region in order to keep a radial favourable gradient of pressure to sustain a rotational motion. It has been concluded that the whirlwind will survive as long as the low pressure region exists. The vertical pressure gradient also plays an equally important role. Since it is not connected to any cloud and the axial velocity is in the vertically upward direction, the momentary vertical gradient of pressure is required for its growth and survival. Horizontal ambient winds that rush towards low pressure zone, crush the air in the buffer zone, and turn vertically upward may also take the dust carried with them visibly to some height. It is considered that the angular azimuthal velocity varies within the annulus. An inference is that no whirlwind without a low pressure region within it can survive. This may be termed as the fundamental characteristic of whirlwind. It is further concluded that if the radial pressure difference between the outermost and innermost layers is larger, the whirlwind is thicker and consequently, it will last longer. Moreover, another conclusion arrived at is that the angular velocity will vanish if the inner radius is zero.
NASA Technical Reports Server (NTRS)
Stover, E. K.; York, T. M.
1971-01-01
The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with several plasma diagnostics; they were: a rapid response pressure transducer, a magnetic field probe, a voltage probe, and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior: (1) strong axial pressure asymmetry noted early in plasma column lifetime, (2) followed by plasma heating in which there is a rapid rise in static pressure, and (3) a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating could be attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity.
NASA Technical Reports Server (NTRS)
Saripalli, K. R.; Simpson, R. L.
1979-01-01
The behavior of two dimensional incompressible turbulent wall jets submerged in a boundary layer when they are used to prevent boundary layer separation on plane surfaces is investigated. The experimental set-up and instrumentation are described. Experimental results of zero pressure gradient flow and adverse pressure gradient flow are presented. Conclusions are given and discussed.
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Tuttle, M. H.
1979-01-01
A survey was conducted and a bibliography compiled on attainment of laminar flow in air through the use of favorable pressure gradient and suction. This report contains the survey, summaries of data for both ground and flight experiments, and abstracts of referenced reports. Much early information is also included which may be of some immediate use as background material for LFC applications.
Generating a Simulated Fluid Flow Over an Aircraft Surface Using Anisotropic Diffusion
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
A fluid-flow simulation over a computer-generated aircraft surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using a pressure gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure-gradient vector.
DNS of a non-equilibrium adverse pressure gradient turbulent boundary layer
NASA Astrophysics Data System (ADS)
Gungor, Taygun R.; Gungor, Ayse G.; Maciel, Yvan; Simens, Mark P.
2017-11-01
A new direct numerical simulation (DNS) dataset of a non-equilibrium adverse pressure gradient (APG) turbulent boundary layer (TBL) that evolves from a zero-pressure-gradient (ZPG) TBL to a TBL which is very close to separation at Reθ is around 8200 is presented. There are two simulations running together in the DNS computational setup. The APG TBL spans Reθ = 1476 - 8276 . Mean velocity results do not satisfy the log law as the defect in the velocity increases. The production and the Reynolds stress peak are observed around y /δ* = 1 after the flow is evolved up to a certain point. The new dataset is compared with other datasets in terms of mean values, Reynolds stresses and turbulent kinetic energy budgets and using this comparison scaling study is performed. Funded by in part by ITU-AYP and NSERC of Canada.
Trailing edge flow conditions as a factor in airfoil design
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.; Maughmer, M. D.
1984-01-01
Some new developments relevant to the design of single-element airfoils using potential flow methods are presented. In particular, the role played by the non-dimensional trailing edge velocity in design is considered and the relationship between the specified value and the resulting airfoil geometry is explored. In addition, the ramifications of the unbounded trailing edge pressure gradients generally present in the potential flow solution of the flow over an airfoil are examined, and the conditions necessary to obtain a class of airfoils having finite trailing edge pressure gradients developed. The incorporation of these conditions into the inverse method of Eppler is presented and the modified scheme employed to generate a number of airfoils for consideration. The detailed viscous analysis of airfoils having finite trailing edge pressure gradients demonstrates a reduction in the strong inviscid-viscid interactions generally present near the trailing edge of an airfoil.
Effect of pressure on the Raman-active modes of zircon (ZrSiO4): a first-principles study
NASA Astrophysics Data System (ADS)
Sheremetyeva, Natalya; Cherniak, Daniele J.; Watson, E. Bruce; Meunier, Vincent
2018-02-01
Density-functional theory (DFT) was employed in a first-principles study of the effects of pressure on the Raman-active modes of zircon (ZrSiO4), using both the generalized gradient and local density approximations (GGA and LDA, respectively). Beginning with the equilibrium structure at zero pressure, we conducted a calibration of the effect of pressure in a manner procedurally similar to an experimental calibration. For pressures between 0 and 7 GPa, we find excellent qualitative agreement of frequency-pressure slopes partial ω /partial P calculated from GGA DFT with results of previous experimental studies. In addition, we were able to rationalize the ω vs. P behavior based on details of the vibrational modes and their atomic displacements. Most of the partial ω /partial P slopes are positive as expected, but the symmetry of the zircon lattice also results in two negative slopes for modes that involve slight shearing and rigid rotation of SiO4 tetrahedra. Overall, LDA yields absolute values of the frequencies of the Raman-active modes in good agreement with experimental values, while GGA reproduces the shift in frequency with pressure especially well.
Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows
NASA Technical Reports Server (NTRS)
LaGraff, John E. (Editor); Ashpis, David E.
2004-01-01
This Minnowbrook IV 2003 workshop on Transition and Unsteady Aspects of Turbomachinery Flows includes the following topics: 1) Current Issues in Unsteady Turbomachinery Flows; 2) Global Instability and Control of Low-Pressure Turbine Flows; 3) Influence of End Wall Leakage on Secondary Flow Development in Axial Turbines; 4) Active and Passive Flow Control on Low Pressure Turbine Airfoils; 5) Experimental and Numerical Investigation of Transitional Flows as Affected by Passing Wakes; 6) Effects of Freestream Turbulence on Turbine Blade Heat Transfer; 7) Bypass Transition Via Continuous Modes and Unsteady Effects on Film Cooling; 8) High Frequency Surface Heat Flux Imaging of Bypass Transition; 9) Skin Friction and Heat Flux Oscillations in Upstream Moving Wave Packets; 10) Transition Mechanisms and Use of Surface Roughness to Enhance the Benefits of Wake Passing in LP Turbines; 11) Transient Growth Approach to Roughness-Induced Transition; 12) Roughness- and Freestream-Turbulence-Induced Transient Growth as a Bypass Transition Mechanism; 13) Receptivity Calculations as a Means to Predicting Transition; 14) On Streamwise Vortices in a Curved Wall Jet and Their Effect on the Mean Flow; 15) Plasma Actuators for Separation Control of Low Pressure Turbine Blades; 16) Boundary-Layer Separation Control Under Low-Pressure-Turbine Conditions Using Glow-Discharge Plasma Actuators; 17) Control of Separation for Low Pressure Turbine Blades: Numerical Simulation; 18) Effects of Elevated Free-Stream Turbulence on Active Control of a Separation Bubble; 19) Wakes, Calming and Transition Under Strong Adverse Pressure Gradients; 20) Transitional Bubble in Periodic Flow Phase Shift; 21) Modelling Spots: The Calmed Region, Pressure Gradient Effects and Background; 22) Modeling of Unsteady Transitional Flow on Axial Compressor Blades; 23) Challenges in Predicting Component Efficiencies in Turbomachines With Low Reynolds Number Blading; 24) Observations on the Causal Relationship Between Blade Count and Developing Rotating Stall in a Four Stage Axial Compressor; 25) Experimental and Numerical Study of Non-Linear Interactions in Transonic Nozzle Flow; 26) Clocking Effects on a Modern Stage and One-Half Transonic Turbine; 27) DNS and LES of Transition on Turbine Blades; 28) The Use of Cellular Automata in Modeling the Transition; 29) Predicting Unsteady Buffet Onset Using RANS Solutions; 30) Transition Modelling With the SST Turbulence Model and an Intermittency Transport; and 31) Equation Workshop Summary Transcript
Navier-Stokes analysis and experimental data comparison of compressible flow within ducts
NASA Technical Reports Server (NTRS)
Harloff, G. J.; Reichert, B. A.; Sirbaugh, J. R.; Wellborn, S. R.
1992-01-01
Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models. The present study compares results for both the Baldwin-Lomas and k-epsilon turbulence models and is conducted with a refined grid. For the transition duct, two inlet conditions were considered, the first with straight flow and the second with swirling flow. The first case permits examination of the effects of the geometric transition on the flow field, while the second case includes the rotational flow effect characteristic of a gas turbine engine.
Plasma shaping effects on tokamak scrape-off layer turbulence
NASA Astrophysics Data System (ADS)
Riva, Fabio; Lanti, Emmanuel; Jolliet, Sébastien; Ricci, Paolo
2017-03-01
The impact of plasma shaping on tokamak scrape-off layer (SOL) turbulence is investigated. The drift-reduced Braginskii equations are written for arbitrary magnetic geometries, and an analytical equilibrium model is used to introduce the dependence of turbulence equations on tokamak inverse aspect ratio (ε ), Shafranov’s shift (Δ), elongation (κ), and triangularity (δ). A linear study of plasma shaping effects on the growth rate of resistive ballooning modes (RBMs) and resistive drift waves (RDWs) reveals that RBMs are strongly stabilized by elongation and negative triangularity, while RDWs are only slightly stabilized in non-circular magnetic geometries. Assuming that the linear instabilities saturate due to nonlinear local flattening of the plasma gradient, the equilibrium gradient pressure length {L}p=-{p}e/{{\
Effects of surface roughness on an adverse-pressure-gradient separating turbulent boundary layer
NASA Astrophysics Data System (ADS)
Wu, Wen; Piomelli, Ugo; Turbulence Simulation; Modelling Laboratory Team
2017-11-01
Separating turbulent boundary layers over smooth and rough flat plates are investigated by large-eddy simulations. A suction-blowing velocity distribution is imposed at the top boundary to produce an adverse-to-favourable pressure gradient and a closed separation bubble. Sandgrain roughness in the fully-rough regime is modelled by an immersed boundary method. In the rough-wall case, streamline detachment occurs earlier and the separation region is substantially larger due to the momentum deficit caused by the roughness. The adverse pressure gradient decreases the form drag and causes a thin reversed-flow region below the roughness crest, so that Cf = 0 does not coincide with the detachment of the flow from the surface. The wake regions behind roughness elements affect the intermittency of the near-wall flow, so that upstream of the detachment point the flow can be reversed half of the time, but its average is positive. The separated shear layer exhibits higher turbulent kinetic energy (TKE); the growth of the TKE there begins earlier relative to the separation point, and the peak TKE occurs close to the separation point. The momentum deficit caused by the roughness, again, plays a critical role in these changes. The authors acknowledge the support from Hydro-Québec and the NSERC Collaborative Research & Development program (CRDPJ 418786-11). The simulations were performed at CAC Queen't site. UP also thanks the support of Canada Research Chair Program.
On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients
NASA Astrophysics Data System (ADS)
Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.
2016-02-01
The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.
Influence of the Proton Pressure Tensor on the Turbulent Velocity Spectrum at Ion Kinetic Scales
NASA Astrophysics Data System (ADS)
Vasquez, B. J.; Markovskii, S.
2011-12-01
Numerical hybrid simulations with particle protons and fluid electrons are presented for turbulent fluctuations with spatial variations in a plane perpendicular to the background magnetic field. The steepened portion of the proton bulk velocity spectrum is found at smaller wavenumbers for larger background proton temperature. The velocity spectrum is determined, in part, by the proton pressure tensor. The proton pressure tensor is shown to possess non-gyrotropic and finite off-diagonal components in the places where the turbulent fluctuations have developed strong gradients. Proton demagnetization at these places is a factor in the departure from a Maxwellian velocity distribution function. How demagnetization could connect with both reversible and effectively irreversible aspects of the pressure tensor is considered. The effectively irreversible aspect corresponds to the net heating of the protons and to the dissipation of the turbulent energy cascade.
Oktay, Ahmet Afşşin; Gilliland, Yvonne E; Lavie, Carl J; Ramee, Stephen J; Parrino, Patrick E; Bates, Michael; Shah, Sangeeta; Cash, Michael E; Dinshaw, Homeyar; Qamruddin, Salima
2017-03-01
Degenerative mitral stenosis (DMS) is characterized by decreased mitral valve (MV) orifice area and increased transmitral pressure gradient due to chronic noninflammatory degeneration and subsequent calcification of the fibrous mitral annulus and the MV leaflets. The "true" prevalence of DMS in the general population is unknown. DMS predominantly affects elderly individuals, many of whom have multiple other comorbidities. Transcatheter MV replacement techniques, although their long-term outcomes are yet to be tested, have been gaining popularity and may emerge as more effective and relatively safer treatment option for patients with DMS. Echocardiography is the primary imaging modality for evaluation of DMS and related hemodynamic abnormalities such as increased transmitral pressure gradient and pulmonary arterial pressure. Classic echocardiographic techniques used for evaluation of mitral stenosis (pressure half time, proximal isovelocity surface area, continuity equation, and MV area planimetry) lack validation for DMS. Direct planimetry with 3-dimensional echocardiography and color flow Doppler is a reasonable technique for determining MV area in DMS. Cardiac computed tomography is an essential tool for planning potential interventions or surgeries for DMS. This article reviews the current concepts on mitral annular calcification and its role in DMS. We then discuss the epidemiology, natural history, differential diagnosis, mechanisms, and echocardiographic assessment of DMS. Copyright © 2017 Elsevier Inc. All rights reserved.
Fekete, Szabolcs; Veuthey, Jean-Luc; McCalley, David V; Guillarme, Davy
2012-12-28
A possible complication of ultra-high pressure liquid chromatography (UHPLC) is related to the effect of pressure and mobile phase velocity on the retention properties of the analytes. In the present work, numerous model compounds have been selected including small molecules, peptides, and proteins (such as monoclonal antibodies). Two instrumental setups were considered to attain elevated pressure drops, firstly the use of a post-column restrictor capillary at low mobile phase flow rate (pure effect of pressure) and secondly the increase of mobile phase flow rate without restrictor (i.e. a combined effect of pressure and frictional heating). In both conditions, the goal was to assess differences in retention behaviour, depending on the type or character of the analyte. An important conclusion is that the effect of pressure and mobile phase velocity on retention varied in proportion with the size of the molecule and in some cases showed very different behaviour. In isocratic mode, the pure effect of pressure (experiments with a post-column restrictor capillary) induces an increase in retention by 25-100% on small molecules (MW<300 g/mol), 150% for peptides (~1.3 kDa), 800% for insulin (~6 kDa) and up to >3000% for myoglobin (~17 kDa) for an increase in pressure from 100 bar up to 1100 bar. The important effect observed for the isocratic elution of proteins is probably related to conformational changes of the protein in addition to the effect of molecular size. Working in gradient elution mode, the pressure related effects on retention were found to be less pronounced but still present (an increase of apparent retention factor between 0.2 and 2.5 was observed). Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Esgar, Jack B; Lea, Alfred L
1951-01-01
In an in experimental investigation of local recovery factors for a blade having a pressure distribution similar to that of a typical reaction-type turbine blade, it a was found that the recovery factors were essentially independent of Mach number, Reynolds number, pressure gradient, and position on the blade surface except for regions where the boundary layer was probably in the transition range from laminar to turbulent. The recommended value of local subsonic recovery factor for use in calculating the effective gas temperature for gas turbine blades was 0.89.
Effects of magnetic islands on drift wave instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, P., E-mail: jiangp@pku.edu.cn; Department of Physics and Astronomy, University of California, Irvine, California 92697; Lin, Z., E-mail: zhihongl@uci.edu
2014-12-15
Magnetic islands have been implemented in the gyrokinetic toroidal code to study the effects of the islands on microturbulence. The pressure profile flattening is verified in the simulation with the islands. Simulations of ion temperature gradient instability find that different toroidal modes are linearly coupled together and that toroidal spectra become broader when the island width increases. The real frequencies and growth rates of different toroidal modes approach each other with the averaged value independent of the island width. The linear mode structures are enhanced at the island separatrices and weakened at the island centers, consistent with the flattening ofmore » the pressure profile inside the islands.« less
NASA Technical Reports Server (NTRS)
Stenger, M. B.; Lee, S. M. C.; Westby, C. M.; Platts, S. H.
2010-01-01
Orthostatic intolerance after space flight is still an issue for astronaut health. No in-flight countermeasure has been 100% effective to date. NASA currently uses an inflatable anti-gravity suit (AGS) during reentry, but this device is uncomfortable and loses effectiveness upon egress from the Shuttle. The Russian Space Agency currently uses a mechanical counter-pressure garment (Kentavr) that is difficult to adjust alone, and prolonged use may result in painful swelling at points where the garment is not continuous (feet, knees, and groin). To improve comfort, reduce upmass and stowage requirements, and control fabrication and maintenance costs, we have been evaluating a variety of gradient compression, mechanical counter-pressure garments, constructed from spandex and nylon, as a possible replacement for the current AGS. We have examined comfort and cardiovascular responses to knee-high garments in normovolemic subjects; thigh-high garments in hypovolemic subjects and in astronauts after space flight; and 1-piece, breast-high garments in hypovolemic subjects. These gradient compression garments provide 55 mmHg of compression over the ankle, decreasing linearly to 35 mmHg at the knee. In thigh-high versions the compression continues to decrease to 20 mmHg at the top of the leg, and for breast-high versions, to 15 mmHg over the abdomen. Measures of efficacy include increased tilt survival time, elevated blood pressure and stroke volume, and lower heart-rate response to orthostatic stress. Results from these studies indicate that the greater the magnitude of compression and the greater the area of coverage, the more effective the compression garment becomes. Therefore, we are currently testing a 3-piece breast-high compression garment on astronauts after short-duration flight. We chose a 3-piece garment consisting of thigh-high stockings and shorts, because it is easy to don and comfortable to wear, and should provide the same level of protection as the 1-piece breast-high garments evaluated in hypovolemic test subjects.
Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest
NASA Astrophysics Data System (ADS)
Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo
2018-02-01
The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community and species levels, which can have significant implications for the ecosystem functioning of SDTF under increasing levels of disturbance, climate change and soil nutrient depletion.
Aljalloud, Ali; Shoaib, Mohamed; Egron, Sandrine; Arias, Jessica; Tewarie, Lachmandath; Schnoering, Heike; Lotfi, Shahram; Goetzenich, Andreas; Hatam, Nima; Pott, Desiree; Zhong, Zhaoyang; Steinseifer, Ulrich; Zayat, Rachad; Autschbach, Ruediger
2018-05-17
Sutureless aortic valve prostheses are gaining popularity due to the substantial reduction in cross-clamp time. In this study, we report our observations on the cusp-fluttering phenomenon of the Perceval bioprosthesis (LivaNova, London, UK) using a combination of technical and medical perspectives. Between August 2014 and December 2016, a total of 108 patients (69% women) with a mean age of 78 years had aortic valve replacement using the Perceval bioprosthesis (34 combined procedures). All patients underwent transoesophageal echocardiography (TOE) intraoperatively. TOE was performed postoperatively to detect paravalvular leakage and to measure gradients, acceleration time, Doppler velocity indices (Vmax and LVOT/Vmax AV) and effective orifice area indices. In addition, a TOE examination was performed in 21 patients postoperatively. Data were collected retrospectively from our hospital database. The retrospective evaluation of the intraoperative TOE examinations revealed consistent fluttering in all patients with the Perceval bioprosthesis. The echocardiographic postoperative measurements showed a mean effective orifice area index of 0.91 ± 0.12 cm2/m2. The overall mean pressure and peak pressure gradients were in a higher range (13.5 ± 5.1 mmHg and 25.5 ± 8.6 mmHg, respectively), whereas acceleration time (62.8 ± 16.4 ms) and Doppler velocity indices (0.43 ± 0.11) were within the normal range according to the American Society of Echocardiography or european association of echocardiography (EAE) guidelines. The 2-dimensional TOE in Motion Mode (M-Mode) that was performed in patients with elevated lactate dehydrogenase (LDH) levels revealed remarkable fluttering of the cusps of the Perceval bioprosthesis. In our study cohort, we observed the fluttering phenomenon in all patients who received the Perceval bioprosthesis, which was correlated with elevated LDH levels and higher pressure gradients.
A cosmic ray driven instability
NASA Technical Reports Server (NTRS)
Dorfi, E. A.; Drury, L. O.
1985-01-01
The interaction between energetic charged particles and thermal plasma which forms the basis of diffusive shock acceleration leads also to interesting dynamical phenomena. For a compressional mode propagating in a system with homogeneous energetic particle pressure it is well known that friction with the energetic particles leads to damping. The linear theory of this effect has been analyzed in detail by Ptuskin. Not so obvious is that a non-uniform energetic particle pressure can addition amplify compressional disturbances. If the pressure gradient is sufficiently steep this growth can dominate the frictional damping and lead to an instability. It is important to not that this effect results from the collective nature of the interaction between the energetic particles and the gas and is not connected with the Parker instability, nor with the resonant amplification of Alfven waves.
Conical diffuser for fuel cells
NASA Technical Reports Server (NTRS)
Craft, D. W.
1976-01-01
Diffuser is inserted into inlet manifold, producing smooth transition of flow from pipe diameter to manifold diameter. Expected pressure gradient and resulting cell-to-cell temperature gradient are reduced. Outlet manifold has nozzle insert that reduces exit losses.
Effects of copper vapour on thermophysical properties of CO2-N2 plasma
NASA Astrophysics Data System (ADS)
Zhong, Linlin; Wang, Xiaohua; Rong, Mingzhe; Cressault, Yann
2016-10-01
CO2-N2 mixtures are often used as arc quenching medium (to replace SF6) in circuit breakers and shielding gas in arc welding. In such applications, copper vapour resulting from electrode surfaces can modify characteristics of plasmas. This paper therefore presents an investigation of the effects of copper on thermophysical properties of CO2-N2 plasma. The equilibrium compositions, thermodynamic properties (including mass density, specific enthalpy, and specific heat), transport coefficients (including electrical conductivity, viscosity, and thermal conductivity), and four kinds of combined diffusion coefficients due to composition gradients, applied electric fields, temperature gradients, and pressure gradients respectively, were calculated and discussed for CO2-N2 (mixing ratio 7:3) plasma contaminated by different proportions of copper vapour. The significant influences of copper were observed on all the properties of CO2-N2-Cu mixtures. The better ionization ability and larger molar mass of copper and larger collision integrals related to copper, should be responsible for such influences.
Ecological and evolutionary drivers of the elevational gradient of diversity.
Laiolo, Paola; Pato, Joaquina; Obeso, José Ramón
2018-05-02
Ecological, evolutionary, spatial and neutral theories make distinct predictions and provide distinct explanations for the mechanisms that control the relationship between diversity and the environment. Here, we test predictions of the elevational diversity gradient focusing on Iberian bumblebees, grasshoppers and birds. Processes mediated by local abundance and regional diversity concur in explaining local diversity patterns along elevation. Effects expressed through variation in abundance were similar among taxa and point to the overriding role of a physical factor, temperature. This determines how energy is distributed among individuals and ultimately how the resulting pattern of abundance affects species incidence. Effects expressed through variation in regional species pools depended instead on taxon-specific evolutionary history, and lead to diverging responses under similar environmental pressures. Local filters and regional variation also explain functional diversity gradients, in line with results from species richness that indicate an (local) ecological and (regional) historical unfolding of diversity-elevation relationships. © 2018 John Wiley & Sons Ltd/CNRS.
NASA Technical Reports Server (NTRS)
Annis, J. F.; Webb, P.
1980-01-01
Using a new nomex lycra elastic fabric and individualized garment engineering techniques, reverse gradient garments (RGG's) were designed, constructed, and tested for effectiveness as a countermeasure against cardiovascular deconditioning. By combining torso compensated positive pressure breathing with a distally diminishing gradient of counterpressure supplied by the elastic fabric on the limbs, the RGG acts to pool blood in the extremities of recumbent persons much as though they were standing erect in 1 g. The RGG stresses the vasculature in a fashion similar to that experienced by the normally active man, hence preventing or limiting the development of post weightlessness orthostatic intolerance and related conditions. Four male, college age subjects received daily treatments with the RGG during a 15 day bedrest study. Four additional subjects also underwent the bedrest, but received no treatments; they served as controls. The preliminary indication was that the RGG was somewhat effective in limiting the deconditioning process.
Ha, Minjeong; Lim, Seongdong; Cho, Soowon; Lee, Youngoh; Na, Sangyun; Baig, Chunggi; Ko, Hyunhyub
2018-04-24
The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 μW/cm 2 ), pressure (0.55 V/kPa), and bending (∼0.1 V/°) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics.
Sea breezes and advective effects in southwest James Bay
NASA Technical Reports Server (NTRS)
Mckendry, Ian; Roulet, Nigel
1994-01-01
Observations from a transect extending 100 km inland during the Northern Wetlands Study (NOWES) in 1990 show that the sea breeze develops on approximately 25% of days during summer and may penetrate up to 100 km inland on occasions. The sea breeze exhibits a marked diurnal clockwise rotation as a result of the Coriolis effect along the unobstructed coastline. The marine advective effect is shown to depend on gradient wind direction. With northwesterly upper level flow the sea breeze tends to be northeasterly in direction and is associated with decreased temperatures and vapor pressure deficits (VPD). With southwesterly upper level flow the sea breeze tends to have a southeasterly direction and less effect on temperatures and VPD. This is attributed to shorter residence times of air parcels over water. For two cases, Colorado State University mesoscale model simulations show good agreement with surface wind observations and suggest that under northwesterly gradient flow, Bowen ratios are increased in the onshore flow along western James Bay, while during southwesterly gradient flow these effects are negligible. These results have implications for the interpretation of local climate, ecology, and hydrology as well as land-based and airborne turbulent flux measurements made during NOWES.
Preferential paths in yield stress fluid flow through a porous medium
NASA Astrophysics Data System (ADS)
Guasto, Jeffrey; Waisbord, Nicolas; Stoop, Norbert; Dunkel, Jörn
2016-11-01
A broad range of biological, geological, and industrial materials with complex rheological properties are subjected to flow through porous media in applications ranging from oil recovery to food manufacturing. In this experimental study, we examine the flow of a model yield stress fluid (Carbopol micro-gel) through a quasi-2D porous medium, fabricated in a microfluidic channel. The flow is driven by applying a precisely-controlled pressure gradient and measured by particle tracking velocimetry, and our observations are complemented by a pore-network model of the yield stress fluid flow. While remaining unyielded at small applied pressure, the micro-gel begins to yield at a critical pressure gradient, exhibiting a single preferential flow path that percolates through the porous medium. As the applied pressure gradient increases, we observe a subsequent coarsening and invasion of the yielded, fluidized network. An examination of both the yielded network topology and pore-scale flow reveal that two cooperative phenomena are involved in sculpting the preferential flow paths: (1) the geometry of the porous microstructure, and (2) the adhesive surface interactions between the micro-gel and substrate. NSF CBET-1511340.
Closed-loop Separation Control Using Oscillatory Flow Excitation
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.
2000-01-01
Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.
Pleural mechanics and fluid exchange.
Lai-Fook, Stephen J
2004-04-01
The pleural space separating the lung and chest wall of mammals contains a small amount of liquid that lubricates the pleural surfaces during breathing. Recent studies have pointed to a conceptual understanding of the pleural space that is different from the one advocated some 30 years ago in this journal. The fundamental concept is that pleural surface pressure, the result of the opposing recoils of the lung and chest wall, is the major determinant of the pressure in the pleural liquid. Pleural liquid is not in hydrostatic equilibrium because the vertical gradient in pleural liquid pressure, determined by the vertical gradient in pleural surface pressure, does not equal the hydrostatic gradient. As a result, a viscous flow of pleural liquid occurs in the pleural space. Ventilatory and cardiogenic motions serve to redistribute pleural liquid and minimize contact between the pleural surfaces. Pleural liquid is a microvascular filtrate from parietal pleural capillaries in the chest wall. Homeostasis in pleural liquid volume is achieved by an adjustment of the pleural liquid thickness to the filtration rate that is matched by an outflow via lymphatic stomata.
Fox, W.; Sciortino, F.; v. Stechow, A.; ...
2017-03-21
We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. Furthermore, these results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models ofmore » the importance of electron pressure gradients for obtaining fast magnetic reconnection.« less
NASA Astrophysics Data System (ADS)
Smirnov, N. A.
2018-03-01
The paper investigates the role of spin-orbit interaction in the prediction of structural stability, lattice dynamics, elasticity, thermodynamic and transport properties (electrical resistivity and thermal conductivity) of lead under pressure with the FP-LMTO (full-potential linear-muffin-tin orbital) method for the first-principles band structure calculations. Our calculations were carried out for three polymorphous lead modifications (fcc, hcp, and bcc) in generalized gradient approximation with the exchange-correlation functional PBEsol. They suggest that compared to the scalar-relativistic calculation, the account for the SO effects insignificantly influences the compressibility of Pb. At the same time, in the calculation of phonon spectra and transport properties, the role of SO interaction is important, at least, for P ≲150 GPa. At higher pressures, the contribution from SO interaction reduces but not vanishes. As for the relative structural stability, our studies show that SO effects influence weakly the pressure of the fcc →hcp transition and much higher the pressure of the hcp →bcc transition.
Quantifying patterns of change in marine ecosystem response to multiple pressures.
Large, Scott I; Fay, Gavin; Friedland, Kevin D; Link, Jason S
2015-01-01
The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator's variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response curves provide ecologically informed transformations of pressure variables to explain patterns of ecosystem structure and functioning. By concurrently identifying thresholds for a suite of ecological indicator responses to multiple pressures, we demonstrate that ecosystem reference points can be evaluated and used to support ecosystem-based management.
Mechanical models for dikes: A third school of thought
NASA Astrophysics Data System (ADS)
Townsend, Meredith R.; Pollard, David D.; Smith, Richard P.
2017-04-01
Geological and geophysical data from continental volcanic centers and giant radial swarms, and from oceanic shield volcanoes and rift zones, indicate that dikes propagate laterally for distances that can be 10 to over 100 times their height. What traps dikes within the shallow lithosphere and promotes these highly eccentric shapes? Gravity-induced stress gradients in the surrounding rock and pressure gradients in the magma are the primary loading mechanisms; pressure gradients due to magma flow are secondary to insignificant, because the flow direction is dominantly horizontal. This configuration of vertical, blade-shaped dikes with horizontal dike propagation and magma flow is fundamentally different from the two dike model configurations described in a recent review paper as two schools of thought for mechanical models of dikes. In School I, a dike is disconnected from its source and ascends under the influence of buoyancy. In School II, a dike is connected to a magma reservoir and is driven upward by magma flux from the source. We review the geological and geophysical data supporting the vertical dike - horizontal flow/propagation configuration and suggest the abundance and veracity of these data in many different geological settings, and the modeling results that address this physical process, warrant adding this as a third school of thought. A new analytical solution for the boundary-value problem of a homogeneous, isotropic, and linear elastic solid with a vertical, fluid-filled crack is used to investigate the effects of gravitationally induced stress and pressure gradients on the aperture distribution, dike-tip stress intensity, and stable height. Model results indicate that in a homogeneous crust, dikes can achieve stable heights greater than a kilometer only if the host rock fracture toughness KIC 100 MPa · m1/2. However, density stratification of the crust is an effective mechanism for trapping kilometer-scale dikes even if the host rock is very weak (KIC = 0). This analysis may explain why vertical dikes propagate laterally for great distances, but reside within a narrow range of depths in the crust.
Wood, Chelsea L; Baum, Julia K; Reddy, Sheila M W; Trebilco, Rowan; Sandin, Stuart A; Zgliczynski, Brian J; Briggs, Amy A; Micheli, Fiorenza
2015-05-01
Variability in primary productivity and fishing pressure can shape the abundance, species composition, and diversity of marine life. Though parasites comprise nearly half of marine species, their responses to these important forces remain little explored. We quantified parasite assemblages at two spatial scales, across a gradient in productivity and fishing pressure that spans six coral islands of the Line Islands archipelago and within the largest Line Island, Kiritimati, which experiences a west-to-east gradient in fishing pressure and upwelling-driven productivity. In the across-islands data set, we found that increasing productivity was correlated with increased parasite abundance overall, but that the effects of productivity differed among parasite groups. Trophically transmitted parasites increased in abundance with increasing productivity, but directly transmitted parasites did not exhibit significant changes. This probably arises because productivity has stronger effects on the abundance of the planktonic crustaceans and herbivorous snails that serve as the intermediate hosts of trophically transmitted parasites than on the higher-trophic level fishes that are the sole hosts of directly transmitted parasites. We also found that specialist parasites increased in response to increasing productivity, while generalists did not, possibly because specialist parasites tend to be more strongly limited by host availability than are generalist parasites. After the effect of productivity was controlled for, fishing was correlated with decreases in the abundance of trophically transmitted parasites, while directly transmitted parasites appeared to track host density; we observed increases in the abundance of parasites using hosts that experienced fishing-driven compensatory increases in abundance. The within-island data set confirmed these patterns for the combined effects of productivity and fishing on parasite abundance, suggesting that our conclusions are robust across a span of spatial scales. Overall, these results indicate that there are strong and variable effects of anthropogenic and natural drivers on parasite abundance and taxonomic richness. These effects are likely to be mediated by parasite traits, particularly by parasite transmission strategies.
On the accurate analysis of vibroacoustics in head insert gradient coils.
Winkler, Simone A; Alejski, Andrew; Wade, Trevor; McKenzie, Charles A; Rutt, Brian K
2017-10-01
To accurately analyze vibroacoustics in MR head gradient coils. A detailed theoretical model for gradient coil vibroacoustics, including the first description and modeling of Lorentz damping, is introduced and implemented in a multiphysics software package. Numerical finite-element method simulations were used to establish a highly accurate vibroacoustic model in head gradient coils in detail, including the newly introduced Lorentz damping effect. Vibroacoustic coupling was examined through an additional modal analysis. Thorough experimental studies were used to validate simulations. Average experimental sound pressure levels (SPLs) and accelerations over the 0-3000 Hz frequency range were 97.6 dB, 98.7 dB, and 95.4 dB, as well as 20.6 g, 8.7 g, and 15.6 g for the X-, Y-, and Z-gradients, respectively. A reasonable agreement between simulations and measurements was achieved. Vibroacoustic coupling showed a coupled resonance at 2300 Hz for the Z-gradient that is responsible for a sharp peak and the highest SPL value in the acoustic spectrum. We have developed and used more realistic multiphysics simulation methods to gain novel insights into the underlying concepts for vibroacoustics in head gradient coils, which will permit improved analyses of existing gradient coils and novel SPL reduction strategies for future gradient coil designs. Magn Reson Med 78:1635-1645, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Early Student Support for a Process Study of Oceanic Responses to Typhoons
2015-06-21
responses to tropical cyclone forcing are surface waves, wind-driven currents, shear and turbulence, and inertial currents. Quantifying the effect ...Cd is estimated assuming a balance between the time rate change of the depth-integrated horizontal momentum, Coriolis force, and the wind stress. This...negligible pressure gradient effect . Most of the observed horizontal kinetic energy is within the upper 100 m. The available potential energy and
Measurements of Form and Frictional Drags over a Rough Topographic Bank
2014-09-01
processes, Topographic effects Unclassified Unclassified Unclassified UU 24 Hemantha Wijesekera (228) 688-4845 Reset I PAI!fElNTATION RELEASE...sea surface height associated with the sea surface slope resulting from rota- tional effects . Here barotropic pressure gradients associ- ated with...surface elevation are balanced by the Coriolis force; hTi(x, y, t) is the surface elevation resulting from accelerations/decelerations of flow over the
Analysis of edge stability for models of heat flux width
Makowski, Michael A.; Lasnier, Charles J.; Leonard, Anthony W.; ...
2017-05-12
Detailed measurements of the n e, and T e, and T i profiles in the vicinity of the separatrix of ELMing H-mode discharges have been used to examine plasma stability at the extreme edge of the plasma and assess stability dependent models of the heat flux width. The results are strongly contrary to the critical gradient model, which posits that a ballooning instability determines a gradient scale length related to the heat flux width. The results of this analysis are not sensitive to the choice of location to evaluate stability. Significantly, it is also found that the results are completelymore » consistent with the heuristic drift model for the heat flux width. Here the edge pressure gradient scales with plasma density and is proportional to the pressure gradient inferred from the equilibrium in accordance with the predictions of that theory.« less
Gradient microstructure and microhardness in a nitrided 18CrNiMo7-6 gear steel
NASA Astrophysics Data System (ADS)
Yang, R.; Wu, G. L.; Zhang, X.; Fu, W. T.; Huang, X.
2017-07-01
A commercial gear steel (18CrNiMo7-6) containing a tempered martensite structure was nitrided using a pressurized gas nitriding process under a pressure of 5 atm at 530 °C for 5 hours. The mechanical properties and microstructure of the nitrided sample were characterized by Vickers hardness measurements, X-ray diffraction, and backscatter electron imaging in a scanning electron microscope. A micro-hardness gradient was identified over a distance of 500 μm with hardness values of 900 HV at the top surface and 300 HV in the core. This micro-hardness gradient corresponds to a gradient in the microstructure that changes from a nitride compound layer at the top surface (∼ 20 μm thick) to a diffusion zone with a decreasing nitrogen concentration and precipitate density with distance from the surface, finally reaching the core matrix layer with a recovered martensite structure.
Gasdynamic Inlet Isolation in Rotating Detonation Engine
2010-12-01
2D Total Variation Diminishing (TVD): Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Total Variation Diminishing (TVD) limiter: Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Continuous 94 Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate pressure gradient switch: Normal
NASA Astrophysics Data System (ADS)
Bicen, Baris
Measuring acoustic pressure gradients is critical in many applications such as directional microphones for hearing aids and sound intensity probes. This measurement is especially challenging with decreasing microphone size, which reduces the sensitivity due to small spacing between the pressure ports. Novel, micromachined biomimetic microphone diaphragms are shown to provide high sensitivity to pressure gradients on one side of the diaphragm with low thermal mechanical noise. These structures have a dominant mode shape with see-saw like motion in the audio band, responding to pressure gradients as well as spurious higher order modes sensitive to pressure. In this dissertation, integration of a diffraction based optical detection method with these novel diaphragm structures to implement a low noise optical pressure gradient microphone is described and experimental characterization results are presented, showing 36 dBA noise level with 1mm port spacing, nearly an order of magnitude better than the current gradient microphones. The optical detection scheme also provides electrostatic actuation capability from both sides of the diaphragm separately which can be used for active force feedback. A 4-port electromechanical equivalent circuit model of this microphone with optical readout is developed to predict the overall response of the device to different acoustic and electrostatic excitations. The model includes the damping due to complex motion of air around the microphone diaphragm, and it calculates the detected optical signal on each side of the diaphragm as a combination of two separate dominant vibration modes. This equivalent circuit model is verified by experiments and used to predict the microphone response with different force feedback schemes. Single sided force feedback is used for active damping to improve the linearity and the frequency response of the microphone. Furthermore, it is shown that using two sided force feedback one can significantly suppress or enhance the desired vibration modes of the diaphragm. This approach provides an electronic means to tailor the directional response of the microphones, with significant implications in device performance for various applications. As an example, the use of this device as a particle velocity sensor for sound intensity and sound power measurements is investigated. Without force feedback, the gradient microphone provides accurate particle velocity measurement for frequencies below 2 kHz, after which the pressure response of the second order mode becomes significant. With two-sided force feedback, the calculations show that this upper frequency limit may be increased to 10 kHz. This improves the pressure residual intensity index by more than 15 dB in the 50 Hz--10 kHz range, matching the Class I requirements of IEC 1043 standards for intensity probes without any need for multiple spacers.
NASA Astrophysics Data System (ADS)
Harp, D. R.; Ortiz, J. P.; Pandey, S.; Karra, S.; Viswanathan, H. S.; Stauffer, P. H.; Anderson, D. N.; Bradley, C. R.
2017-12-01
In unsaturated fractured media, the rate of gas transport is much greater than liquid transport in many applications (e.g., soil vapor extraction operations, methane leaks from hydraulic fracking, shallow CO2 transport from geologic sequestration operations, and later-time radionuclide gas transport from underground nuclear explosions). However, the relatively immobile pore water can inhibit or promote gas transport for soluble constituents by providing storage. In scenarios with constant pressure gradients, the gas transport will be retarded. In scenarios with reversing pressure gradients (i.e. barometric pressure variations) pore water storage can enhance gas transport by providing a ratcheting mechanism. Recognizing the computational efficiency that can be gained using a single-phase model and the necessity of considering pore water storage, we develop a Richard's solution approach that includes kinetic dissolution/volatilization of constituents. Henry's Law governs the equilibrium gaseous/aqueous phase partitioning in the approach. The approach is implemented in a development branch of the PFLOTRAN simulator. We verify the approach with analytical solutions of: (1) 1D gas diffusion, (2) 1D gas advection, (3) sinusoidal barometric pumping of a fracture, and (4) gas transport along a fracture with uniform flow and diffusive walls. We demonstrate the retardation of gas transport in cases with constant pressure gradients and the enhancement of gas transport with reversing pressure gradients. The figure presents the verification of our approach to the analytical solution of barometric pumping of a fracture from Nilson et al (1991) where the x-axis "Horizontal axis" is the distance into the matrix block from the fracture.
NASA Astrophysics Data System (ADS)
Harp, D. R.; Ortiz, J. P.; Pandey, S.; Karra, S.; Viswanathan, H. S.; Stauffer, P. H.; Anderson, D. N.; Bradley, C. R.
2016-12-01
In unsaturated fractured media, the rate of gas transport is much greater than liquid transport in many applications (e.g., soil vapor extraction operations, methane leaks from hydraulic fracking, shallow CO2 transport from geologic sequestration operations, and later-time radionuclide gas transport from underground nuclear explosions). However, the relatively immobile pore water can inhibit or promote gas transport for soluble constituents by providing storage. In scenarios with constant pressure gradients, the gas transport will be retarded. In scenarios with reversing pressure gradients (i.e. barometric pressure variations) pore water storage can enhance gas transport by providing a ratcheting mechanism. Recognizing the computational efficiency that can be gained using a single-phase model and the necessity of considering pore water storage, we develop a Richard's solution approach that includes kinetic dissolution/volatilization of constituents. Henry's Law governs the equilibrium gaseous/aqueous phase partitioning in the approach. The approach is implemented in a development branch of the PFLOTRAN simulator. We verify the approach with analytical solutions of: (1) 1D gas diffusion, (2) 1D gas advection, (3) sinusoidal barometric pumping of a fracture, and (4) gas transport along a fracture with uniform flow and diffusive walls. We demonstrate the retardation of gas transport in cases with constant pressure gradients and the enhancement of gas transport with reversing pressure gradients. The figure presents the verification of our approach to the analytical solution of barometric pumping of a fracture from Nilson et al (1991) where the x-axis "Horizontal axis" is the distance into the matrix block from the fracture.
Infiltration of MHD liquid into a deformable porous material
NASA Astrophysics Data System (ADS)
Naseem, Anum; Mahmood, Asif; Siddique, J. I.; Zhao, Lifeng
2018-03-01
We analyze the capillary rise dynamics for magnetohydrodynamics (MHD) fluid flow through deformable porous material in the presence of gravity effects. The modeling is performed using mixture theory approach and mathematical manipulation yields a nonlinear free boundary problem. Due to the capillary rise action, the pressure gradient in the liquid generates a stress gradient that results in the deformation of porous substrate. The capillary rise process for MHD fluid slows down as compared to Newtonian fluid case. Numerical solutions are obtained using a method of lines approach. The graphical results are presented for important physical parameters, and comparison is presented with Newtonian fluid case.
Guelrud, M; Mendoza, S; Vicent, S; Gomez, M; Villalta, B
1983-02-01
To determine the significance of manometric pressure, measurements of the sphincter of Oddi in a control group and in patients with cholelithiasis with common duct stones with and without recurrent pancreatitis were studied. Sphincter of Oddi pressure was recorded continuously and by station pull-through by a triple lumen catheter. The basal sphincter of Oddi pressure, the mean pressure gradient between common duct and duodenum, and the sphincter of Oddi wave amplitude were measured. There was no significant difference between control subjects and patients with gallstones and common duct stones. In patients with common duct stones and recurrent pancreatitis the basal sphincter of Oddi pressure, the pressure gradient between common duct and duodenum, and the wave amplitude were significantly increased over control patients. These studies suggest that abnormalities in the sphincter of Oddi motor function are more common in patients with common duct stones with recurrent pancreatitis than in similar patients without pancreatitis.
Pressure anisotropy and radial stress balance in the Jovian neutral sheet
NASA Technical Reports Server (NTRS)
Paranicas, C. P.; Mauk, B. H.; Krimigis, S. M.
1991-01-01
By examining particle and magnetic field data from the Voyager 1 and 2 spacecraft, signatures were found indicating that the (greater than about 28 keV) particle pressure parallel to the magnetic field is greater than the pressure perpendicular to the field within the nightside neutral sheet (three nightside neutral sheet crossings, with favorable experimental conditions, were used). By incorporating the pressure anisotropy into the calculation of radial forces within the hightside neutral sheet, it is found that (1) force balance is approximately achieved and (2) the anisotropy force term provides the largest contribution of the other particle forces considered (pressure gradients and the corotation centrifugal force). With regard to the problem of understanding the balance of radial forces within the dayside neutral sheet (McNutt, 1984; Mauk and Krimigis, 1987), the nightside pressure anisotropy force is larger than the dayside pressure gradient forces at equivalent radial distances; however, a full accounting of the dayside regions remains to be achieved.
Effects of forebody geometry on subsonic boundary-layer stability
NASA Technical Reports Server (NTRS)
Dodbele, Simha S.
1990-01-01
As part of an effort to develop computational techniques for design of natural laminar flow fuselages, a computational study was made of the effect of forebody geometry on laminar boundary layer stability on axisymmetric body shapes. The effects of nose radius on the stability of the incompressible laminar boundary layer was computationally investigated using linear stability theory for body length Reynolds numbers representative of small and medium-sized airplanes. The steepness of the pressure gradient and the value of the minimum pressure (both functions of fineness ratio) govern the stability of laminar flow possible on an axisymmetric body at a given Reynolds number. It was found that to keep the laminar boundary layer stable for extended lengths, it is important to have a small nose radius. However, nose shapes with extremely small nose radii produce large pressure peaks at off-design angles of attack and can produce vortices which would adversely affect transition.
Measurement of anal pressure and motility.
Hancock, B D
1976-01-01
A fine open perfused system and a closed balloon system for the measurement of anal pressure and motility have been compared. Measurements were made in 40 normal subjects and 84 patients with haemorrhoids. The rate of perfusion had a marked effect on the recorded pressure and motility details. The motility pattern was seen most clearly with the balloon probe and the pressure recorded was reproducible and easy to measure, making this a convenient method for recording activity of the internal anal sphincter. Anal motility in normal subjects was characterised by slow pressure waves (10-20/min). The frequency was fastest in the distal anal canal and this frequency gradient may represent a normal mechanism to keep the anal canal empty. Ultra slow pressure waves (0-6-1-9/min) were seen in 42% of patients with haemorrhoids and 5% of normal subjects and arose from a synchronous contraction of the whole internal sphincter. Images Fig. 1 PMID:976803
High-pressure structural, elastic, and electronic properties of the scintillator host material KMgF3
NASA Astrophysics Data System (ADS)
Vaitheeswaran, G.; Kanchana, V.; Kumar, Ravhi S.; Cornelius, A. L.; Nicol, M. F.; Svane, A.; Delin, A.; Johansson, B.
2007-07-01
The high-pressure structural behavior of the fluoroperovskite KMgF3 is investigated by theory and experiment. Density functional calculations were performed within the local density approximation and the generalized gradient approximation for exchange and correlation effects, as implemented within the full-potential linear muffin-tin orbital method. In situ high-pressure powder x-ray diffraction experiments were performed up to a maximum pressure of 40GPa using synchrotron radiation. We find that the cubic Pm3¯m crystal symmetry persists throughout the pressure range studied. The calculated ground state properties—the equilibrium lattice constant, bulk modulus, and elastic constants—are in good agreement with experimental results. By analyzing the ratio between the bulk and shear moduli, we conclude that KMgF3 is brittle in nature. Under ambient conditions, KMgF3 is found to be an indirect gap insulator, with the gap increasing under pressure.
Gyrokinetic GDC turbulence simulations: confirming a new instability regime in LAPD plasmas
NASA Astrophysics Data System (ADS)
Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.
2016-10-01
Recent high-beta experiments at the LArge Plasma Device have found significant parallel magnetic fluctuations in the region of large pressure gradients. Linear gyrokinetic simulations show the dominant instability at these radii to be the gradient-driven drift coupling (GDC) mode, a non-textbook mode driven by pressure gradients and destabilized by the coupling of ExB and grad-B∥ drifts. Unlike in previous studies, the large parallel extent of the device allows for finite-kz versions of this instability in addition to kz = 0 . The locations of maximum linear growth match very well with experimentally observed peaks of B∥ fluctuations. Local nonlinear simulations reproduce many features of the observations fairly well, with the exception of Bperp fluctuations, for which experimental profiles suggest a source unrelated to pressure gradients. In toto, the results presented here show that turbulence and transport in these experiments are driven by the GDC instability, that important characteristics of the linear instability carry over to nonlinear simulations, and - in the context of validation - that the gyrokinetic framework performs surprisingly well far outside its typical area of application, increasing confidence in its predictive abilities. Supported by U.S. DOE.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges
2014-01-10
Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.
14 CFR 23.67 - Climb: One engine inoperative.
Code of Federal Regulations, 2010 CFR
2010-01-01
... knots must be able to maintain a steady climb gradient of at least 1.5 percent at a pressure altitude of... requirements prescribed in § 23.562(d), or that has a VSO of 61 knots or less, the steady gradient of climb or... acrobatic category— (1) The steady gradient of climb at an altitude of 400 feet above the takeoff must be...
Detecting overpressure using the Eaton and Equivalent Depth methods in Offshore Nova Scotia, Canada
NASA Astrophysics Data System (ADS)
Ernanda; Primasty, A. Q. T.; Akbar, K. A.
2018-03-01
Overpressure is an abnormal high subsurface pressure of any fluids which exceeds the hydrostatic pressure of column of water or formation brine. In Offshore Nova Scotia Canada, the values and depth of overpressure zone are determined using the eaton and equivalent depth method, based on well data and the normal compaction trend analysis. Since equivalent depth method is using effective vertical stress principle and Eaton method considers physical property ratio (velocity). In this research, pressure evaluation only applicable on Penobscot L-30 well. An abnormal pressure is detected at depth 11804 feet as possibly overpressure zone, based on pressure gradient curve and calculation between the Eaton method (7241.3 psi) and Equivalent Depth method (6619.4 psi). Shales within Abenaki formation especially Baccaro Member is estimated as possible overpressure zone due to hydrocarbon generation mechanism.
Chhatriwalla, Adnan K; Allen, Keith B; Saxon, John T; Cohen, David J; Aggarwal, Sanjeev; Hart, Anthony J; Baron, Suzanne J; Dvir, Danny; Borkon, A Michael
2017-07-01
Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) may be less effective in small surgical valves because of patient/prosthesis mismatch. Bioprosthetic valve fracture (BVF) using a high-pressure balloon can be performed to facilitate VIV TAVR. We report data from 20 consecutive clinical cases in which BVF was successfully performed before or after VIV TAVR by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF. BVF was successfully performed in 20 patients undergoing VIV TAVR with balloon-expandable (n=8) or self-expanding (n=12) transcatheter valves in Mitroflow, Carpentier-Edwards Perimount, Magna and Magna Ease, Biocor Epic and Biocor Epic Supra, and Mosaic surgical valves. Successful fracture was noted fluoroscopically when the waist of the balloon released and by a sudden drop in inflation pressure, often accompanied by an audible snap. BVF resulted in a reduction in the mean transvalvular gradient (from 20.5±7.4 to 6.7±3.7 mm Hg, P <0.001) and an increase in valve effective orifice area (from 1.0±0.4 to 1.8±0.6 cm 2 , P <0.001). No procedural complications were reported. BVF can be performed safely in small surgical valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area. © 2017 American Heart Association, Inc.
NASA Technical Reports Server (NTRS)
Goradia, S. H.; Bobbitt, P. J.; Morgan, H. L.; Ferris, J. C.; Harvey, William D.
1989-01-01
Results of correlative and design studies for transition location, laminar and turbulent boundary-layer parameters, and wake drag for forward swept and aft swept wings are presented. These studies were performed with the use of an improved integral-type boundary-layer and transition-prediction methods. Theoretical predictions were compared with flight measurements at subsonic and transonic flow conditions for the variable aft swept wing F-14 aircraft for which experimental pressure distributions, transition locations, and turbulent boundary-layer velocity profiles were measured. Flight data were available at three spanwise stations for several values of sweep, freestream unit Reynolds number, Mach numbers, and lift coefficients. Theory/experiment correlations indicate excellent agreement for both transition location and turbulent boundary-layer parameters. The results of parametric studies performed during the design of a laminar glove for the forward swept wing X-29 aircraft are also presented. These studies include the effects of a spanwise pressure gradient on transition location and wake drag for several values of freestream Reynolds numbers at a freestream Mach number of 0.9.
Absence of B1-B2 structural transition in lithium halides under hydrostatic pressure
NASA Astrophysics Data System (ADS)
de Coss, Romeo; Murrieta, Gabriel
2005-03-01
We have investigated the B1-B2 structural transition in LiF, LiCl, LiBr, and LiI under hydrostatic pressure by means of first-principles total-energy calculations using the Full- Potential LAPW method. In order to analyze the gradient effects, we have performed calculations using the local density approximation (LDA) and the generalized gradient approximation (GGA), for the exchange and correlation potential. In agreement with the experimental observations, we find that even for pressures higher than 100 GPa, the Li halides do not present the B1-B2 structural transition. In order to understand this behavior, we have calculated the distribution of the electron densities. From the analysis of the distribution of electron densities for the Li halides in the B1 and B2 phases, we find that for this group of ionic compounds the B1 phase have a distribution of electron densities more homogeneous than in the B2 phase, preventing the B1-B2 structural transition. This work was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.
Elevation correction factor for absolute pressure measurements
NASA Technical Reports Server (NTRS)
Panek, Joseph W.; Sorrells, Mark R.
1996-01-01
With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.
Acoustic instability driven by cosmic-ray streaming
NASA Technical Reports Server (NTRS)
Begelman, Mitchell C.; Zweibel, Ellen G.
1994-01-01
We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic-ray pressure are separated by either laminar or turbulent jumps in which the thermal gas is subject to intense heating.
The behaviour of turbulence anisotropy through shock waves and expansions
NASA Technical Reports Server (NTRS)
Minh, H. H.; Kollmann, W.; Vandromme, D.
1985-01-01
A second order closure has been implemented in an implicit Navier-Stokes solver to study the behavior of the Reynolds stresses under the influence of severe pressure gradients. In the boundary layer zone, the strongly sheared character of the mean flow dominates the turbulence generation mechanisms. However, the pressure gradients play also a very important role for these processes, but at different locations within the boundary layer. This aspect may be emphasized by the analysis of turbulence anisotropy through shock waves and expansions.
NASA Technical Reports Server (NTRS)
Anderson, P. S.; Kays, W. M.; Moffat, R. J.
1972-01-01
An experimental investigation of transpired turbulent boundary layers in zero and adverse pressure gradients has been carried out. Profiles of: (1) the mean velocity, (2) the three intensities of the turbulent fluctuations, and (3) the Reynolds stress were obtained by hot-wire anemometry. The friction coefficients were measured by using an integrated form of the boundary layer equation to extrapolate the measured shear stress profiles to the wall.
Cosmic-ray shock acceleration in oblique MHD shocks
NASA Technical Reports Server (NTRS)
Webb, G. M.; Drury, L. OC.; Volk, H. J.
1986-01-01
A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.
Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence
NASA Astrophysics Data System (ADS)
Danish, Mohammad; Meneveau, Charles
2018-04-01
Knowledge of local flow-topology, the patterns of streamlines around a moving fluid element as described by the velocity-gradient tensor, is useful for developing insights into turbulence processes, such as energy cascade, material element deformation, or scalar mixing. Much has been learned in the recent past about flow topology at the smallest (viscous) scales of turbulence. However, less is known at larger scales, for instance, at the inertial scales of turbulence. In this work, we present a detailed study on the scale dependence of various quantities of interest, such as the population fraction of different types of flow-topologies, the joint probability distribution of the second and third invariants of the velocity gradient tensor, and the geometrical alignment of vorticity with strain-rate eigenvectors. We perform the analysis on a simulation dataset of isotropic turbulence at Reλ=433 . While quantities appear close to scale invariant in the inertial range, we observe a "bump" in several quantities at length scales between the inertial and viscous ranges. For instance, the population fraction of unstable node-saddle-saddle flow topology shows an increase when reducing the scale from the inertial entering the viscous range. A similar bump is observed for the vorticity-strain-rate alignment. In order to document possible dynamical causes for the different trends in the viscous and inertial ranges, we examine the probability fluxes appearing in the Fokker-Plank equation governing the velocity gradient invariants. Specifically, we aim to understand whether the differences observed between the viscous and inertial range statistics are due to effects caused by pressure, subgrid-scale, or viscous stresses or various combinations of these terms. To decompose the flow into small and large scales, we mainly use a spectrally compact non-negative filter with good spatial localization properties (Eyink-Aluie filter). The analysis shows that when going from the inertial range into the viscous range, the subgrid-stress effect decreases more rapidly as a function of scale than the viscous effects increase. To make up for the difference, the pressure Hessian also behaves somewhat differently in the viscous than in the inertial range. The results have implications for models for the velocity gradient tensor showing that the effects of subgrid scales may not be simply modeled via a constant eddy viscosity in the inertial range if one wishes to reproduce the observed trends.
NASA Astrophysics Data System (ADS)
Sivaiah, R.; Hemadri Reddy, R.
2017-11-01
In this paper, we investigate the peristaltic transport of a conducting Newtonian fluid bounded by permeable walls with suction and injection moving with constant velocity of the wave in the wave frame of reference under the consideration of long wavelength and low Reynolds number. The analytical solution for the velocity field, pressure gradient and the frictional force are obtained. The effect of suction/injection parameter, amplitude ratio and the permeability parameter including slip on the flow quantities are discussed graphically. It is found that the greater the suction/injection parameter, the smaller the pressure rise against the pump works. Further, the pressure rise increases with increasing Magnetic parameter.
Preretinal partial pressure of oxygen gradients before and after experimental pars plana vitrectomy.
Petropoulos, Ioannis K; Pournaras, Jean-Antoine C; Stangos, Alexandros N; Pournaras, Constantin J
2013-01-01
To evaluate preretinal partial pressure of oxygen (PO2) gradients before and after experimental pars plana vitrectomy. Arteriolar, venous, and intervascular preretinal PO2 gradients were recorded in 7 minipigs during slow withdrawal of oxygen-sensitive microelectrodes (10-μm tip diameter) from the vitreoretinal interface to 2 mm into the vitreous cavity. Recordings were repeated after pars plana vitrectomy and balanced salt solution (BSS) intraocular perfusion. Arteriolar, venous, and intervascular preretinal PO2 at the vitreoretinal interface were 62.3 ± 13.8, 22.5 ± 3.3, and 17.0 ± 7.5 mmHg, respectively, before vitrectomy; 97.7 ± 19.9, 40.0 ± 21.9, and 56.3 ± 28.4 mmHg, respectively, immediately after vitrectomy; and 59.0 ± 27.4, 25.2 ± 3.0, and 21.5 ± 4.5 mmHg, respectively, 2½ hours after interruption of BSS perfusion. PO2 2 mm from the vitreoretinal interface was 28.4 ± 3.6 mmHg before vitrectomy; 151.8 ± 4.5 mmHg immediately after vitrectomy; and 34.8 ± 4.1 mmHg 2½ hours after interruption of BSS perfusion. PO2 gradients were still present after vitrectomy, with the same patterns as before vitrectomy. Preretinal PO2 gradients are not eliminated after pars plana vitrectomy. During BSS perfusion, vitreous cavity PO2 is very high. Interruption of BSS perfusion evokes progressive equilibration of vitreous cavity PO2 with concomitant progressive return of preretinal PO2 gradients to their previtrectomy patterns. This indicates that preretinal diffusion of oxygen is not altered after vitrectomy. The beneficial effect of vitrectomy in ischemic retinal diseases or macular edema may be related to other mechanisms, such as increased oxygen convection currents or removal of growth factors and cytokines secreted in the vitreous.
NASA Technical Reports Server (NTRS)
Keil, J.
1985-01-01
Wind tunnel tests were conducted on airfoil models in order to study the flow separation phenomena occurring for high angles of attack. Pressure distribution on wings of different geometries were measured. Results show that for three-dimensional airfoils layout and span lift play a role. Separation effects on airfoils with moderate extension are three-dimensional. The flow domains separated from the air foil must be treated three-dimensionally. The rolling-up of separated vortex layers increases with angle in intensity and induction effect and shows strong nonlinearities. Boundary layer material moves perpendicularly to the flow direction due to the pressure gradients at the airfoil; this has a stabilizing effect. The separation starts earlier with increasing pointed profiles.
NASA Technical Reports Server (NTRS)
Whitesides, R. H.; Ghosh, A.; Jenkins, S. L.; Bacchus, D. L.
1989-01-01
A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru a scaling analysis and the results compared well with the 3-D computational fluid dynamics computer model.
Lestremau, François; Wu, Di; Szücs, Roman
2010-07-23
The present study focuses on the evaluation of 1.0 mm i.d. (internal diameter) columns on a commercial Ultra-High Pressure system. These systems have been developed specifically to operate columns with small volumes, typically 2.1 mm i.d., by reducing extra-column volume dispersion. The use of columns with smaller i.d. results in a reduced solvent consumption and required sample volume. The evaluation of the columns was carried out with samples containing neutral and pharmaceutical compounds. In isocratic mode, the extra-column volume produced additional band broadening leading to poor performances compared to equivalent 2.1 mm i.d. columns. By increasing the length of the column, the influence of the extra-column bandspreading could be reduced and 75,000 plates were obtained when four columns were coupled. In gradient mode, the effect of the extra-column contribution on efficiency was limited and about 80% of the performance of the 2.1 mm i.d. columns was obtained. Optimum conditions in gradient mode were further investigated by changing flow rate, gradient time and column length. A different approach of the calculation of peak capacity was also considered for the comparison of the influence of these different parameters. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Fugacity and concentration gradients in a gravity field
NASA Technical Reports Server (NTRS)
May, C. E.
1986-01-01
Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.
Eddies in a bottleneck: an arbitrary Debye length theory for capillary electroosmosis.
Park, Stella Y; Russo, Christopher J; Branton, Daniel; Stone, Howard A
2006-05-15
Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (kappa(-1)) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction.
Eddies in a Bottleneck: An Arbitrary Debye Length Theory for Capillary Electroosmosis
Park, Stella Y.; Russo, Christopher J.; Branton, Daniel; Stone, Howard A.
2011-01-01
Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (κ−1) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction. PMID:16376361
A pressure-gradient mechanism for vortex shedding in constricted channels
Boghosian, M. E.; Cassel, K. W.
2013-01-01
Numerical simulations of the unsteady, two-dimensional, incompressible Navier–Stokes equations are performed for a Newtonian fluid in a channel having a symmetric constriction modeled by a two-parameter Gaussian distribution on both channel walls. The Reynolds number based on inlet half-channel height and mean inlet velocity ranges from 1 to 3000. Constriction ratios based on the half-channel height of 0.25, 0.5, and 0.75 are considered. The results show that both the Reynolds number and constriction geometry have a significant effect on the behavior of the post-constriction flow field. The Navier–Stokes solutions are observed to experience a number of bifurcations: steady attached flow, steady separated flow (symmetric and asymmetric), and unsteady vortex shedding downstream of the constriction depending on the Reynolds number and constriction ratio. A sequence of events is described showing how a sustained spatially growing flow instability, reminiscent of a convective instability, leads to the vortex shedding phenomenon via a proposed streamwise pressure-gradient mechanism. PMID:24399860
Aircraft Boundary-layer Measurements in the Gulf of Tehuantepec
NASA Astrophysics Data System (ADS)
Friehe, Carl; Melville, W. K.
2005-11-01
Airborne flux, meteorological, and wave measurements were made from the NSF/NCAR EC130Q aircraft in the Gulf of Tehuantepec under strong boundary-layer gap winds up to 25 m/sec at 33 m height. Statistics of flux estimates were obtained from multiple 33-m tracks flown under reasonably stationary and homogeneous conditions. Flux divergence was obtained from stack patterns flown at various distances from shore. Tracks flown at 33 m between the stacks provided the pressure gradient and advection terms in the momentum balance. Near shore, flux divergence was important and approximately balanced by the pressure gradient and advective terms; off-shore (400 km), divergence was small and again approximately in balance with the other two terms. Data from dropsondes and the Scanning Aerosol Backscatter LIDAR (SABL) revealed that the internal boundary layer initially thins off-shore as the gap wind field spreads horizontally, and then thickens due to turbulent mixing and possible hydraulic effects. Supported by NSF Division of Ocean Sciences.
Microstructure actuation and gas sensing by the Knudsen thermal force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strongrich, Andrew; Alexeenko, Alina, E-mail: alexeenk@purdue.edu
2015-11-09
The generation of forces and moments on structures immersed in rarefied non-isothermal gas flows has received limited practical implementation since first being discovered over a century ago. The formation of significant thermal stresses requires both large thermal gradients and characteristic dimensions which are comparable to the gas molecular mean free path. For macroscopic geometries, this necessitates impractically high temperatures and very low pressures. At the microscale, however, these conditions are easily achieved, allowing the effects to be exploited, namely, for gas-property sensing and microstructure actuation. In this letter, we introduce and experimentally evaluate performance of a microelectromechanical in-plane Knudsen radiometricmore » actuator, a self-contained device having Knudsen thermal force generation, sensing, and tuning mechanisms integrated onto the same platform. Sensitivity to ambient pressure, temperature gradient, as well as gas composition is demonstrated. Results are presented in terms of a non-dimensional force coefficient, allowing measurements to be directly compared to the previous experimental and computational data on out-of-plane cantilevered configurations.« less
NASA Technical Reports Server (NTRS)
Houdeville, R.; Cousteix, J.
1979-01-01
The development of a turbulent unsteady boundary layer with a mean pressure gradient strong enough to induce separation, in order to complete the extend results obtained for the flat plate configuration is presented. The longitudinal component of the velocity is measured using constant temperature hot wire anemometer. The region where negative velocities exist is investigated with a laser Doppler velocimeter system with BRAGG cells. The boundary layer responds by forced pulsation to the perturbation of potential flow. The unsteady effects observed are very important. The average location of the zero skin friction point moves periodically at the perturbation frequency. Average velocity profiles from different instants in the cycle are compared. The existence of a logarithmic region enables a simple calculation of the maximum phase shift of the velocity in the boundary layer. An attempt of calculation by an integral method of boundary layer development is presented, up to the point where reverse flow starts appearing.
Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)
NASA Technical Reports Server (NTRS)
Balakumar, P.
2015-01-01
Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.
Schubert, Michael; Musolff, Andreas; Weiss, Holger
2018-06-13
Elevated indoor radon concentrations ( 222 Rn) in dwellings pose generally a potential health risk to the inhabitants. During the last decades a considerable number of studies discussed both the different sources of indoor radon and the drivers for diurnal and multi day variations of its concentration. While the potential sources are undisputed, controversial opinions exist regarding their individual relevance and regarding the driving influences that control varying radon indoor concentrations. These drivers include (i) cyclic forced ventilation of dwellings, (ii) the temporal variance of the radon exhalation from soil and building materials due to e.g. a varying moisture content and (iii) diurnal and multi day temperature and pressure patterns. The presented study discusses the influences of last-mentioned temporal meteorological parameters by effectively excluding the influences of forced ventilation and undefined radon exhalation. The results reveal the continuous variation of the indoor/outdoor pressure gradient as key driver for a constant "breathing" of any interior space, which affects the indoor radon concentration with both diurnal and multi day patterns. The diurnally recurring variation of the pressure gradient is predominantly triggered by the day/night cycle of the indoor temperature that is associated with an expansion/contraction of the indoor air volume. Multi day patterns, on the other hand, are mainly due to periods of negative air pressure indoors that is triggered by periods of elevated wind speeds as a result of Bernoulli's principle. Copyright © 2018 Elsevier Ltd. All rights reserved.
Immediate effects of endoscopic sphincterotomy on sphincter of Oddi motility.
Błaut, U; Marecik, J; Gniady, J; Laskiewicz, J; Thor, P J
2000-01-01
The evidence exists that incomplete sphincterotomy in patients with biliary tract diseases may result in early symptoms reoccurrence or lack of improvement. Sphincter of Oddi manometry (SOM) can be used to verify the completeness of the procedure. The purpose of the study was to investigate the immediate effects of biliary endoscopic sphincterotomy (BES) and common bile duct stones (CBDS) clearance on biliary sphincter of Oddi (SO) motility. Moreover the percentage of incomplete sphincterotomies was estimated. 26 patients (6 male, 20 female, 24-93 years) with confirmed choledocholithiasis were investigated. All underwent BES followed by CBDS extraction, and then SO manometry (SOM) was performed. Moreover 6 patients underwent SOM prior to BES. SOM was performed with a triple lumen 5 Fr catheter attached to the water perfused low compliance system. Immediately after sphincterotomy and extraction of the CBDS common bile duct pressure dropped from a mean of 10.9 mmHg to 2.9 mmHg (p < 0.05). Similarly basal biliary sphincter pressure decreased from 22.7 mmHg to 7.3 mmHg (p < 0.05). 20 patients presented duodeno-choledochal gradient of less than 5 mmHg. However only 10 patients had also basal sphincter pressure lower than 5 mmHg. The phasic sphincter activity was abolished in 16 patients, whereas phasic contractions persisted in 10 patients. Seven patients displayed uncoordinated, low amplitude contractility. BES significantly decreases SO and CBD pressures, but when performed for CBDS extraction, commonly does not abolish SO motor activity nor ablate choledocho-duodenal gradient. Therefore to confirm the completeness of sphincterotomy, SO manometry is recommended.
Magnetic pressure effects in a plasma-liner interface
NASA Astrophysics Data System (ADS)
García-Rubio, F.; Sanz, J.
2018-04-01
A theoretical analysis of magnetic pressure effects in a magnetized liner inertial fusion-like plasma is presented. In previous publications [F. García-Rubio and J. Sanz, Phys. Plasmas 24, 072710 (2017)], the evolution of a hot magnetized plasma in contact with a cold unmagnetized plasma, aiming to represent the hot spot and liner, respectively, was investigated in planar geometry. The analysis was made in a double limit low Mach and high thermal to magnetic pressure ratio β. In this paper, the analysis is extended to an arbitrary pressure ratio. Nernst, Ettingshausen, and Joule effects come into play in the energy balance. The region close to the liner is governed by thermal conduction, while the Joule dissipation becomes predominant far from it when the pressure ratio is low. Mass ablation, thermal energy, and magnetic flux losses are reduced with plasma magnetization, characterized by the electron Hall parameter ω e τ e , until β values of order unity are reached. From this point forward, increasing the electron Hall parameter no longer improves the magnetic flux conservation, and mass ablation is enhanced due to the magnetic pressure gradients. A thoughtful simplification of the problem that allows to reduce the order of the system of governing equations while still retaining the finite β effects is presented and compared to the exact case.
NASA Astrophysics Data System (ADS)
Ma, Y.; Dong, C.; van der Holst, B.; Nagy, A. F.; Bougher, S. W.; Toth, G.; Cravens, T.; Yelle, R. V.; Jakosky, B. M.
2017-12-01
The multi-fluid (MF) magnetohydrodynamic (MHD) model of Mars is further improved by solving an additional electron pressure equation. Through the electron pressure equation, the electron temperature is calculated based on the effects from various electrons related heating and cooling processes (e.g. photo-electron heating, electron-neutral collision and electron-ion collision), and thus the improved model is able to calculate the electron temperature and the electron pressure force self-consistently. Electron thermal conductivity is also considered in the calculation. Model results of a normal case with electron pressure equation included (MFPe) are compared in detail to an identical case using the regular MF model to identify the effect of the improved physics. We found that when the electron pressure equation is included, the general interaction patterns are similar to that of the case with no electron pressure equation. The model with electron pressure equation predicts that electron temperature is much larger than the ion temperature in the ionosphere, consistent with both Viking and MAVEN observations. The inclusion of electron pressure equation significantly increases the total escape fluxes predicted by the model, indicating the importance of the ambipolar electric field(electron pressure gradient) in driving the ion loss from Mars.
NASA Astrophysics Data System (ADS)
Erum, Nazia; Iqbal, Muhammad Azhar
2017-11-01
The structural, electronic, elastic, optical and thermodynamic properties of cubic fluoroperovskite SrLiF3 at ambient and high-pressure are investigated by using first-principles total energy calculations within the framework of Generalized Gradient Approximation (GGA), combined with Quasi-harmonic Debye model in which the phonon effects are considered. The pressure effects are determined in the range of 0-50 GPa, in which cubic stability of SrLiF3 fluoroperovskite remains valid. The computed lattice parameters agree well with experimental and previous theoretical results. Decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 50 GPa. The effect of increase in pressure on electronic band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. All the calculated optical properties such as the complex dielectric function Ԑ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n (ω), reflectivity R (ω), and effective number of electrons neff, via sum rules shift towards the higher energies under the application of pressure. Moreover, important thermodynamic properties heat capacities (Cp and Cv), volume expansion coefficient (α), and Debye temperature (θD) are predicted successfully in the wide temperature and pressure ranges.
Abadeh, Aryan; Lew, Roger R
2013-11-01
Movement of nuclei, mitochondria and vacuoles through hyphal trunks of Neurospora crassa were vector-mapped using fluorescent markers and green fluorescent protein tags. The vectorial movements of all three were strongly correlated, indicating the central role of mass (bulk) flow in cytoplasm movements in N. crassa. Profiles of velocity versus distance from the hyphal wall did not match the parabolic shape predicted by the ideal Hagen-Poiseuille model of flow at low Reynolds number. Instead, the profiles were flat, consistent with a model of partial plug flow due to the high concentration of organelles in the flowing cytosol. The intra-hyphal pressure gradients were manipulated by localized external osmotic treatments to demonstrate the dependence of velocity (and direction) on pressure gradients within the hyphae. The data support the concept that mass transport, driven by pressure gradients, dominates intra-hyphal transport. The transport occurs by partial plug flow due to the organelles in the cytosol.
A High-Lift Building Block Flow: Turbulent Boundary Layer Relaminarization
NASA Technical Reports Server (NTRS)
Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.
2001-01-01
A working wind tunnel test facility has been constructed at the University of Notre Dame's Hessert Center. The relaminarization test facility has been constructed in the 1.5m x 1.5m (5ft x 5 ft) atmospheric wind tunnel and generates a Re(theta)=4694 turbulent boundary layer in nominally zero-pressure gradient before it is exposed to the Case #1 pressure gradient (K approximately equal to 4.2 x 10(exp -6), which is believed to be sufficient to achieve relaminarization. Future work to be conducted will include measuring the response of the turbulent boundary layer to the favorable pressure gradients created in the test facility and documenting this response in order to understand the underlying flow physics responsible for relaminarization. It is the goal of this research to have a better understanding of accelerated turbulent boundary layers which will aid in the development of future flow diagnostic utilities to be implemented in applied aerodynamic research.
Echo planar imaging at 4 Tesla with minimum acoustic noise.
Tomasi, Dardo G; Ernst, Thomas
2003-07-01
To minimize the acoustic sound pressure levels of single-shot echo planar imaging (EPI) acquisitions on high magnetic field MRI scanners. The resonance frequencies of gradient coil vibrations, which depend on the coil length and the elastic properties of the materials in the coil assembly, were measured using piezoelectric transducers. The frequency of the EPI-readout train was adjusted to avoid the frequency ranges of mechanical resonances. Our MRI system exhibited two sharp mechanical resonances (at 720 and 1220 Hz) that can increase vibrational amplitudes up to six-fold. A small adjustment of the EPI-readout frequency made it possible to reduce the sound pressure level of EPI-based perfusion and functional MRI scans by 12 dB. Normal vibrational modes of MRI gradient coils can dramatically increase the sound pressure levels during echo planar imaging (EPI) scans. To minimize acoustic noise, the frequency of EPI-readout trains and the resonance frequencies of gradient coil vibrations need to be different. Copyright 2003 Wiley-Liss, Inc.
Joule-Thomson effect and internal convection heat transfer in turbulent He II flow
NASA Technical Reports Server (NTRS)
Walstrom, P. L.
1988-01-01
The temperature rise in highly turbulent He II flowing in tubing was measured in the temperature range 1.6-2.1 K. The effect of internal convection heat transport on the predicted temperature profiles is calculated from the two-fluid model with mutual friction. The model predictions are in good agreement with the measurements, provided that the pressure gradient term is retained in the expression for internal convection heat flow.
Quick, Christopher M; Venugopal, Arun M; Dongaonkar, Ranjeet M; Laine, Glen A; Stewart, Randolph H
2008-05-01
To return lymph to the great veins of the neck, it must be actively pumped against a pressure gradient. Mean lymph flow in a portion of a lymphatic network has been characterized by an empirical relationship (P(in) - P(out) = -P(p) + R(L)Q(L)), where P(in) - P(out) is the axial pressure gradient and Q(L) is mean lymph flow. R(L) and P(p) are empirical parameters characterizing the effective lymphatic resistance and pump pressure, respectively. The relation of these global empirical parameters to the properties of lymphangions, the segments of a lymphatic vessel bounded by valves, has been problematic. Lymphangions have a structure like blood vessels but cyclically contract like cardiac ventricles; they are characterized by a contraction frequency (f) and the slopes of the end-diastolic pressure-volume relationship [minimum value of resulting elastance (E(min))] and end-systolic pressure-volume relationship [maximum value of resulting elastance (E(max))]. Poiseuille's law provides a first-order approximation relating the pressure-flow relationship to the fundamental properties of a blood vessel. No analogous formula exists for a pumping lymphangion. We therefore derived an algebraic formula predicting lymphangion flow from fundamental physical principles and known lymphangion properties. Quantitative analysis revealed that lymph inertia and resistance to lymph flow are negligible and that lymphangions act like a series of interconnected ventricles. For a single lymphangion, P(p) = P(in) (E(max) - E(min))/E(min) and R(L) = E(max)/f. The formula was tested against a validated, realistic mathematical model of a lymphangion and found to be accurate. Predicted flows were within the range of flows measured in vitro. The present work therefore provides a general solution that makes it possible to relate fundamental lymphangion properties to lymphatic system function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.
Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less
Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.; ...
2017-07-28
Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less
Transport Coefficients in weakly compressible turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Erlebacher, Gordon
1996-01-01
A theory of transport coefficients in weakly compressible turbulence is derived by applying Yoshizawa's two-scale direct interaction approximation to the compressible equations of motion linearized about a state of incompressible turbulence. The result is a generalization of the eddy viscosity representation of incompressible turbulence. In addition to the usual incompressible eddy viscosity, the calculation generates eddy diffusivities for entropy and pressure, and an effective bulk viscosity acting on the mean flow. The compressible fluctuations also generate an effective turbulent mean pressure and corrections to the speed of sound. Finally, a prediction unique to Yoshizawa's two-scale approximation is that terms containing gradients of incompressible turbulence quantities also appear in the mean flow equations. The form these terms take is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, Lawrence Mark; Miller, Phillip Isaac; Moro, Erik Allan
In the instance of multiple fragment impact on cased explosive, isolated curved shocks are generated in the explosive. These curved shocks propagate and may interact and form irregular or Mach reflections along the interaction loci, thereby producing a single shock that may be sufficient to initiate PBX-9501. However, the incident shocks are divergent and their intensity generally decreases as they expand, and the regions behind the Mach stem interaction loci are generally unsupported and allow release waves to rapidly affect the flow. The effects of release waves and divergent shocks may be considered theoretically through a “Shock Change Equation”.
Xue, Xiuzhan; Yu, Cunming; Wang, Jingming; Jiang, Lei
2016-12-27
Microbubbles are tiny bubbles with diameters below 50 μm. Because of their minute buoyant force, the microbubbles stagnate in aqueous media for a long time, and they sometimes cause serious damage. Most traditional methods chosen for elimination of gas bubbles utilize buoyancy forces including chemical methods and physical methods, and they only have a minor effect on microbubbles. Several approaches have been developed to collect and transport microbubbles in aqueous media. However, the realization of innovative strategies to directly collect and transport microbubbles in aqueous media remains a big challenge. In nature, both spider silk and cactus spines take advantage of their conical-shaped surface to yield the gradient of Laplace pressure and surface free energy for collecting fog droplets from the environment. Inspired by this, we introduce here the gradient of Laplace pressure and surface free energy to the interface of superhydrophobic copper cones (SCCs), which can continuously collect and directionally transport CO 2 microbubbles (from tip side to base side) in CO 2 -supersaturated solution. A gas layer was formed when the microbubbles encounter the SCCs. This offers a channel for microbubble directional transportation. The efficiency of microbubble transport is significantly affected by the apex angle of SCCs and the carbon dioxide concentration. The former provides different gradients of Laplace pressure as the driving force. The latter represents the capacity, which offers the quantity of CO 2 microbubbles for collection and transportation. We believe that this approach provides a simple and valid way to remove microbubbles.
Thermal transpiration: A molecular dynamics study
NASA Astrophysics Data System (ADS)
T, Joe Francis; Sathian, Sarith P.
2014-12-01
Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.
Specifics of heat and mass transfer in spherical dimples under the effect of external factors
NASA Astrophysics Data System (ADS)
Shchukin, A. V.; Il'inkov, A. V.; Takmovtsev, V. V.; Khabibullin, I. I.
2017-06-01
The specifics are examined of heat transfer enhancement with spherical dimples under the effect of factors important for practice and characteristic of cooling systems of gas-turbine engines and power units. This experimental investigation deals with the effect of the following factors on the flow in a channel with hemispherical dimples: continuous air swirl in an annulus with dimples on its concave wall, dimples on the convex or concave wall of a curved rectangular channel, imposition of regular velocity fluctuations on the external flow in a straight rectangular channel, and adverse or favorable pressure gradient along the flow direction. The flow is turbulent. Reynolds numbers based on the channel hydraulic diameter are on the order of 104. Results of the investigation of a model of a two-cavity diffuser dimple proposed by the authors are presented. It has been found that results for channels with spherical dimples and for smooth channels differ not only quantitatively but also qualitatively. Thus, if the effect of centrifugal mass forces on convex and concave surfaces with hemispherical dimples and in a smooth channel is almost the same (quantitative and qualitative indicators are identical), the pressure gradient in the flow direction brings about the drastically opposite results. At the same time, the quantitative contribution to a change in heat transfer in hemispherical dimples is different and depends on the impact type. The results are discussed with the use of physical models created on the basis of the results of flow visualization studies and data on the turbulence intensity, pressure coefficient, etc. Results of the investigations suggest that application of spherical dimples under nonstandard conditions requires the calculated heat transfer to be corrected to account for one or another effect.
Hydraulic effects in a radiative atmosphere with ionization
NASA Astrophysics Data System (ADS)
Bhat, P.; Brandenburg, A.
2016-03-01
Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.
Lindstrøm, Erika Kristina; Schreiner, Jakob; Ringstad, Geir Andre; Haughton, Victor; Eide, Per Kristian; Mardal, Kent-Andre
2018-06-01
Background Investigators use phase-contrast magnetic resonance (PC-MR) and computational fluid dynamics (CFD) to assess cerebrospinal fluid dynamics. We compared qualitative and quantitative results from the two methods. Methods Four volunteers were imaged with a heavily T2-weighted volume gradient echo scan of the brain and cervical spine at 3T and with PC-MR. Velocities were calculated from PC-MR for each phase in the cardiac cycle. Mean pressure gradients in the PC-MR acquisition through the cardiac cycle were calculated with the Navier-Stokes equations. Volumetric MR images of the brain and upper spine were segmented and converted to meshes. Models of the subarachnoid space were created from volume images with the Vascular Modeling Toolkit. CFD simulations were performed with a previously verified flow solver. The flow patterns, velocities and pressures were compared in PC-MR and CFD flow images. Results PC-MR images consistently revealed more inhomogeneous flow patterns than CFD, especially in the anterolateral subarachnoid space where spinal nerve roots are located. On average, peak systolic and diastolic velocities in PC-MR exceeded those in CFD by 31% and 41%, respectively. On average, systolic and diastolic pressure gradients calculated from PC-MR exceeded those of CFD by 11% and 39%, respectively. Conclusions PC-MR shows local flow disturbances that are not evident in typical CFD. The velocities and pressure gradients calculated from PC-MR are systematically larger than those calculated from CFD.
Objective sea level pressure analysis for sparse data areas
NASA Technical Reports Server (NTRS)
Druyan, L. M.
1972-01-01
A computer procedure was used to analyze the pressure distribution over the North Pacific Ocean for eleven synoptic times in February, 1967. Independent knowledge of the central pressures of lows is shown to reduce the analysis errors for very sparse data coverage. The application of planned remote sensing of sea-level wind speeds is shown to make a significant contribution to the quality of the analysis especially in the high gradient mid-latitudes and for sparse coverage of conventional observations (such as over Southern Hemisphere oceans). Uniform distribution of the available observations of sea-level pressure and wind velocity yields results far superior to those derived from a random distribution. A generalization of the results indicates that the average lower limit for analysis errors is between 2 and 2.5 mb based on the perfect specification of the magnitude of the sea-level pressure gradient from a known verification analysis. A less than perfect specification will derive from wind-pressure relationships applied to satellite observed wind speeds.