Anomalous expansion of Nb nanowires in a NiTi matrix under high pressure
Yu, Cun; Ren, Yang; Cui, Lishan; ...
2016-10-17
Under high pressure, materials usually shrink during compression as described by an equation of state. Here, we present the anomalous volume expansion behavior of a one-dimensional Nb nanowire embedded in a NiTi transforming matrix, while the matrix undergoes a pressure-induced martensitic transformation. The Nb volume expansion depends on the NiTi transition pressure range from the matrix, which is controlled by the shear strain induced by different pressure transmitting media. The transformation-induced interfacial stresses between Nb and NiTi may play a major role in this anomaly. In conclusion, our discovery sheds new light on the nano-interfacial effect on mechanical anomalies inmore » heterogeneous systems during a pressure-induced phase transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Cun; Ren, Yang; Cui, Lishan
Under high pressure, materials usually shrink during compression as described by an equation of state. Here, we present the anomalous volume expansion behavior of a one-dimensional Nb nanowire embedded in a NiTi transforming matrix, while the matrix undergoes a pressure-induced martensitic transformation. The Nb volume expansion depends on the NiTi transition pressure range from the matrix, which is controlled by the shear strain induced by different pressure transmitting media. The transformation-induced interfacial stresses between Nb and NiTi may play a major role in this anomaly. In conclusion, our discovery sheds new light on the nano-interfacial effect on mechanical anomalies inmore » heterogeneous systems during a pressure-induced phase transition.« less
High pressure phase transformations revisited
NASA Astrophysics Data System (ADS)
Levitas, Valery I.
2018-04-01
High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum theories, and (d) to couple experimental, theoretical, and computational studies of the behavior of a tested sample to extract information about fields of stress and strain tensors and concentration of high pressure phase, transformation criteria and kinetics. The ideal characterization should contain complete information which is required for simulation of the same experiments.
High pressure phase transformations revisited.
Levitas, Valery I
2018-04-25
High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum theories, and (d) to couple experimental, theoretical, and computational studies of the behavior of a tested sample to extract information about fields of stress and strain tensors and concentration of high pressure phase, transformation criteria and kinetics. The ideal characterization should contain complete information which is required for simulation of the same experiments.
NASA Astrophysics Data System (ADS)
Engstler, Justin; Giovambattista, Nicolas
2017-08-01
We characterize the phase behavior of glassy water by performing extensive out-of-equilibrium molecular dynamics simulations using the TIP4P/2005 water model. Specifically, we study (i) the pressure-induced transformations between low-density (LDA) and high-density amorphous ice (HDA), (ii) the pressure-induced amorphization (PIA) of hexagonal ice (Ih), (iii) the heating-induced LDA-to-HDA transformation at high pressures, (iv) the heating-induced HDA-to-LDA transformation at low and negative pressures, (v) the glass transition temperatures of LDA and HDA as a function of pressure, and (vi) the limit of stability of LDA upon isobaric heating and isothermal decompression (at negative pressures). These transformations are studied systematically, over a wide range of temperatures and pressures, allowing us to construct a P-T phase diagram for glassy TIP4P/2005 water. Our results are in qualitative agreement with experimental observations and with the P-T phase diagram obtained for glassy ST2 water that exhibits a liquid-liquid phase transition and critical point. We also discuss the mechanism for PIA of ice Ih and show that this is a two-step process where first, the hydrogen-bond network (HBN) is distorted and then the HBN abruptly collapses. Remarkably, the collapse of the HB in ice Ih occurs when the average molecular orientations order, a measure of the tetrahedrality of the HBN, is of the same order as in LDA, suggesting a common mechanism for the LDA-to-HDA and Ih-to-HDA transformations.
Engstler, Justin; Giovambattista, Nicolas
2017-08-21
We characterize the phase behavior of glassy water by performing extensive out-of-equilibrium molecular dynamics simulations using the TIP4P/2005 water model. Specifically, we study (i) the pressure-induced transformations between low-density (LDA) and high-density amorphous ice (HDA), (ii) the pressure-induced amorphization (PIA) of hexagonal ice (I h ), (iii) the heating-induced LDA-to-HDA transformation at high pressures, (iv) the heating-induced HDA-to-LDA transformation at low and negative pressures, (v) the glass transition temperatures of LDA and HDA as a function of pressure, and (vi) the limit of stability of LDA upon isobaric heating and isothermal decompression (at negative pressures). These transformations are studied systematically, over a wide range of temperatures and pressures, allowing us to construct a P-T phase diagram for glassy TIP4P/2005 water. Our results are in qualitative agreement with experimental observations and with the P-T phase diagram obtained for glassy ST2 water that exhibits a liquid-liquid phase transition and critical point. We also discuss the mechanism for PIA of ice I h and show that this is a two-step process where first, the hydrogen-bond network (HBN) is distorted and then the HBN abruptly collapses. Remarkably, the collapse of the HB in ice I h occurs when the average molecular orientations order, a measure of the tetrahedrality of the HBN, is of the same order as in LDA, suggesting a common mechanism for the LDA-to-HDA and I h -to-HDA transformations.
NASA Astrophysics Data System (ADS)
Li, Bo; Cai Ren, Fa; Tang, Xiao Ying
2018-03-01
The manufacture of pressure vessels with austenitic stainless steel strain strengthening technology has become an important technical means for the light weight of cryogenic pressure vessels. In the process of increasing the strength of austenitic stainless steel, strain can induce the martensitic phase transformation in austenite phase. There is a quantitative relationship between the transformation quantity of martensitic phase and the basic mechanical properties. Then, the martensitic phase variables can be obtained by means of detection, and the mechanical properties and safety performance are evaluated and calculated. Based on this, the quantitative relationship between strain hardening and deformation induced martensite phase content is studied in this paper, and the mechanism of deformation induced martensitic transformation of austenitic stainless steel is detailed.
Multiple pathways in pressure-induced phase transition of coesite
NASA Astrophysics Data System (ADS)
Liu, Wei; Wu, Xuebang; Liang, Yunfeng; Liu, Changsong; Miranda, Caetano R.; Scandolo, Sandro
2017-12-01
High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture.
Radiation-induced disorder in compressed lanthanide zirconates.
Park, Sulgiye; Tracy, Cameron L; Zhang, Fuxiang; Park, Changyong; Trautmann, Christina; Tkachev, Sergey N; Lang, Maik; Mao, Wendy L; Ewing, Rodney C
2018-02-28
The effects of swift heavy ion irradiation-induced disordering on the behavior of lanthanide zirconate compounds (Ln 2 Zr 2 O 7 where Ln = Sm, Er, or Nd) at high pressures are investigated. After irradiation with 2.2 GeV 197 Au ions, the initial ordered pyrochlore structure (Fd3[combining macron]m) transformed to a defect-fluorite structure (Fm3[combining macron]m) in Sm 2 Zr 2 O 7 and Nd 2 Zr 2 O 7 . For irradiated Er 2 Zr 2 O 7 , which has a defect-fluorite structure, ion irradiation induces local disordering by introducing Frenkel defects despite retention of the initial structure. When subjected to high pressures (>29 GPa) in the absence of irradiation, all of these compounds transform to a cotunnite-like (Pnma) phase, followed by sluggish amorphization with further compression. However, if these compounds are irradiated prior to compression, the high pressure cotunnite-like phase is not formed. Rather, they transform directly from their post-irradiation defect-fluorite structure to an amorphous structure upon compression (>25 GPa). Defects and disordering induced by swift heavy ion irradiation alter the transformation pathways by raising the energetic barriers for the transformation to the high pressure cotunnite-like phase, rendering it inaccessible. As a result, the high pressure stability field of the amorphous phase is expanded to lower pressures when irradiation is coupled with compression. The responses of materials in the lanthanide zirconate system to irradiation and compression, both individually and in tandem, are strongly influenced by the specific lanthanide composition, which governs the defect energetics at extreme conditions.
Multiple pathways in pressure-induced phase transition of coesite
Liu, Wei; Wu, Xuebang; Liu, Changsong; Miranda, Caetano R.; Scandolo, Sandro
2017-01-01
High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture. PMID:29162690
Yeddu, Hemantha Kumar; Zong, Hongxiang; Lookman, Turab
2015-09-28
Here, a three dimensional (3D) elastoplastic phase-field model is developed for modeling the hydrostatic pressure-induced alpha – omega phase transformation and the reverse phase transformation, i.e. omega – alpha, in zirconium (Zr). Plastic deformation and strain hardening of the material are also considered in the model. The microstructure evolution during both phase transformations is studied. The transformation start pressures at different temperatures are predicted and are plotted as a phase diagram. The effect of phase transformations on the mechanical properties of the material is also studied. The input data corresponding to pure Zr are acquired from experimental studies as wellmore » as by using the CALPHAD method. Our simulations show that three different omega variants form as laths. On release of pressure, reverse phase transformation initiates at lath boundaries. We observe that both phase transformations are martensitic in nature and also occur at the same pressure, i.e. little hysteresis. The transformation start pressures and the kinetics of the transformation predicted by our model are in good agreement with experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeddu, Hemantha Kumar; Zong, Hongxiang; Lookman, Turab
Here, a three dimensional (3D) elastoplastic phase-field model is developed for modeling the hydrostatic pressure-induced alpha – omega phase transformation and the reverse phase transformation, i.e. omega – alpha, in zirconium (Zr). Plastic deformation and strain hardening of the material are also considered in the model. The microstructure evolution during both phase transformations is studied. The transformation start pressures at different temperatures are predicted and are plotted as a phase diagram. The effect of phase transformations on the mechanical properties of the material is also studied. The input data corresponding to pure Zr are acquired from experimental studies as wellmore » as by using the CALPHAD method. Our simulations show that three different omega variants form as laths. On release of pressure, reverse phase transformation initiates at lath boundaries. We observe that both phase transformations are martensitic in nature and also occur at the same pressure, i.e. little hysteresis. The transformation start pressures and the kinetics of the transformation predicted by our model are in good agreement with experimental results.« less
Tang, Ruilian; Li, Yan; Xie, Shengyi; Li, Nana; Chen, Jiuhua; Gao, Chunxiao; Zhu, Pinwen; Wang, Xin
2016-01-01
Raman spectroscopy, synchrotron angle-dispersive X-ray diffraction (ADXRD), first-principles calculations, and electrical resistivity measurements were carried out under high pressure to investigate the structural stability and electrical transport properties of metavanadate MgV2O6. The results have revealed the coordination change of vanadium ions (from 5+1 to 6) at around 4 GPa. In addition, a pressure-induced structure transformation from the C2/m phase to the C2 phase in MgV2O6 was detected above 20 GPa, and both phases coexisted up to the highest pressure. This structural phase transition was induced by the enhanced distortions of MgO6 octahedra and VO6 octahedra under high pressure. Furthermore, the electrical resistivity decreased with pressure but exhibited different slope for these two phases, indicating that the pressure-induced structural phase transitions of MgV2O6 was also accompanied by the obvious changes in its electrical transport behavior. PMID:27924843
Pressure-induced transformations of nitrogen implanted into silicon
NASA Astrophysics Data System (ADS)
Akhmetov, V. D.; Misiuk, A.; Barcz, A.; Richter, H.
2006-03-01
Czochralski (CZ) Si samples implanted with nitrogen, with doses 1017 ion/cm2 and 1018 ion/cm2, at 140 keV, were studied by means of Fourier transform infrared spectroscopy after annealing at 1130 °C/5 h under different hydrostatic pressures, from 1 bar to 10.7 kbar. It has been found for each pressure applied, that the increased nitrogen dose leads to transformation of the broadband spectra to the fine structure ones, corresponding to crystalline silicon nitride. The spectral position of observed sharp peaks in the investigated pressure region is red shifted in comparison to that for the peaks of crystalline silicon oxynitride found recently by other investigators in nitrogen-containing poly-Si as well as in a residual melt of nitrogen-doped CZ-Si. The application of the pressure during annealing results in further red shift of the nitrogen-related bands. The observed decrease of frequency of vibrational bands is explained in terms of the pressure induced lowered incorporation of oxygen into growing oxynitride phase. Secondary ion mass spectrometry data reveal the decrease of oxygen content in implanted layer with increasing pressure during annealing.
NASA Astrophysics Data System (ADS)
Zarkevich, Nikolai A.; Johnson, Duane D.
2015-03-01
Materials under pressure may exhibit critical electronic and structural transitions that affect equation of states, as known for superconductors and the magneto-structural transformations of iron with both geophysical and planetary implications. While experiments often use constant-pressure (diamond-anvil cell, DAC) measurements, many theoretical results address a constant-volume transitions, which avoid issues with magnetic collapse but cannot be directly compared to experiment. We establish a modified solid-state nudge elastic band (MSS-NEB) method to handle magnetic systems that may exhibit moment (and volume) collapse during transformation. We apply it to the pressure-induced transformation in iron between the low-pressure body-centered cubic (bcc) and the high-pressure hexagonal close-packed (hcp) phases, find the bcc-hcp equilibrium coexistence pressure and a transitional pathway, and compare to shock and DAC experiments. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under contract DE-AC02-07CH11358.
Pressure-induced structural change in liquid GaIn eutectic alloy.
Yu, Q; Ahmad, A S; Ståhl, K; Wang, X D; Su, Y; Glazyrin, K; Liermann, H P; Franz, H; Cao, Q P; Zhang, D X; Jiang, J Z
2017-04-25
Synchrotron x-ray diffraction reveals a pressure induced crystallization at about 3.4 GPa and a polymorphic transition near 10.3 GPa when compressed a liquid GaIn eutectic alloy up to ~13 GPa at room temperature in a diamond anvil cell. Upon decompression, the high pressure crystalline phase remains almost unchanged until it transforms to the liquid state at around 2.3 GPa. The ab initio molecular dynamics calculations can reproduce the low pressure crystallization and give some hints on the understanding of the transition between the liquid and the crystalline phase on the atomic level. The calculated pair correlation function g(r) shows a non-uniform contraction reflected by the different compressibility between the short (1st shell) and the intermediate (2nd to 4th shells). It is concluded that the pressure-induced liquid-crystalline phase transformation likely arises from the changes in local atomic packing of the nearest neighbors as well as electronic structures at the transition pressure.
High-pressure transformation in the cobalt spinel ferrites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blasco, J., E-mail: jbc@posta.unizar.es; Subías, G.; García, J.
2015-01-15
We report high pressure angle-dispersive x-ray diffraction measurements on Co{sub x}Fe{sub 3−x}O{sub 4} (x=1, 1.5, 1.75) spinels at room temperature up to 34 GPa. The three samples show a similar structural phase transformation from the cubic spinel structure to an analogous post-spinel phase at around 20 GPa. Spinel and post-spinel phases coexist in a wide pressure range (∼20–25 GPa) and the transformation is irreversible. The equation of state of the three cubic spinel ferrites was determined and our results agree with the data obtained in related oxide spinels showing the role of the pressure-transmitting medium for the accurate determination ofmore » the equation of state. Measurements releasing pressure revealed that the post-spinel phase is stable down to 4 GPa when it decomposes yielding a new phase with poor crystallinity. Later compression does not recover either the spinel or the post-spinel phases. This phase transformation induced by pressure explains the irreversible lost of the ferrimagnetic behavior reported in these spinels. - Graphical abstract: Pressure dependence of the unit cell volume per formula unit for Co{sub 1.5}Fe{sub 1.5}O{sub 4} spinel. Circles and squares stand for spinel and postspinel phases, respectively. Dark (open) symbols: determination upon compression (decompression). - Highlights: • The pressure induces similar phase transformation in Co{sub 3−x}Fe{sub x}O{sub 4} spinels (1≤x≤2). • The postspinel phases decompose after releasing pressure. • The irreversibility of this phase transformation explains the disappearance of magnetism in these spinels after applying pressure. • Accurate equation of state can be obtained up to 10 GPa using an alcohol mixture as pressure transmitting medium. • The equation of state suggests similar elastic properties for these spinels in this composition range.« less
High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation
NASA Astrophysics Data System (ADS)
Nakano, S.; Nakayama, A.; Kikegawa, T.
2008-07-01
Lithium borohydride (LiBH4) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P42/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.
2015-06-28
Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops weremore » open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, F.X., E-mail: zhangfx@umich.ed; Wang, J.W.; Lang, M.
The structure of orthorhombic rare earth titanates of La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5}, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (axbx2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO{sub 5} polyhedra remain during the formationmore » of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations. - Graphical abstract: At high pressures, La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5} transform from the orthorhombic phase to an axbx2c superlattice of the orthorhombic structure and then to a hexagonal high-pressure phase. Display Omitted« less
Gradual pressure-induced change in the magnetic structure of the noncollinear antiferromagnet Mn3Ge
NASA Astrophysics Data System (ADS)
Sukhanov, A. S.; Singh, Sanjay; Caron, L.; Hansen, Th.; Hoser, A.; Kumar, V.; Borrmann, H.; Fitch, A.; Devi, P.; Manna, K.; Felser, C.; Inosov, D. S.
2018-06-01
By means of powder neutron diffraction we investigate changes in the magnetic structure of the coplanar noncollinear antiferromagnet Mn3Ge caused by an application of hydrostatic pressure up to 5 GPa. At ambient conditions the kagomé layers of Mn atoms in Mn3Ge order in a triangular 120∘ spin structure. Under high pressure the spins acquire a uniform out-of-plane canting, gradually transforming the magnetic texture to a noncoplanar configuration. With increasing pressure the canted structure fully transforms into the collinear ferromagnetic one. We observed that magnetic order is accompanied by a noticeable magnetoelastic effect, namely, spontaneous magnetostriction. The latter induces an in-plane magnetostrain of the hexagonal unit cell at ambient pressure and flips to an out-of-plane strain at high pressures in accordance with the change of the magnetic structure.
Negative pressure driven phase transformation in Sr doped SmCoO₃.
Arshad Farhan, M; Javed Akhtar, M
2010-02-24
Atomistic computer simulation techniques based on energy minimization procedures are utilized for the structural investigation of perovskite-type SmCoO(3). A reliable potential model is derived which reproduces both cubic as well as orthorhombic phases of SmCoO(3). We observe a negative chemical pressure induced structural phase transformation from distorted perovskite (orthorhombic) to perfect perovskite (cubic) due to the substitution of Sr(2 + ) at the Sm(3 + ) sites. However, external hydrostatic pressure shows isotropic compression and no pressure-induced structural transformation is observed up to 100 GPa. To maintain the electroneutrality of the system, charge compensation is through oxygen vacancies which results in the brownmillerite-type structure. A defect model is proposed, which is consistent with experimental results. The solution energies for divalent and trivalent cations are also calculated. These results show that the cations having ionic radii less than 0.75 Å will occupy the Co sites and those with ionic radii larger than 0.75 Å will substitute at the Sm sites.
Titanium α-ω phase transformation pathway and a predicted metastable structure
Zarkevich, Nickolai A.; Johnson, Duane D.
2016-01-15
A titanium is a highly utilized metal for structural lightweighting and its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We also find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.
Pressure-induced structural transformations of the Zintl phase sodium silicide
NASA Astrophysics Data System (ADS)
Cabrera, Raúl Quesada; Salamat, Ashkan; Barkalov, Oleg I.; Leynaud, Olivier; Hutchins, Peter; Daisenberger, Dominik; Machon, Denis; Sella, Andrea; Lewis, Dewi W.; McMillan, Paul F.
2009-09-01
The high-pressure behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction to observe the onset of structural phase transformations and potential oligomerisation into anionic Si nanoclusters with extended dimensionality. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation above 15 GPa, suggesting the formation of Si-Si bonds with oxidation of the Si - species and reduction of Na + to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure.
NASA Astrophysics Data System (ADS)
Pankov, A. M.; Bredikhina, A. S.; Kulnitskiy, B. A.; Perezhogin, I. A.; Skryleva, E. A.; Parkhomenko, Yu. N.; Popov, M. Yu.; Blank, V. D.
2017-08-01
A pressure-induced phase transition of multiwall carbon nanotubes (MWNT) to a new structure at room temperature is studied using a shear diamond anvil cell, X-ray photoelectron spectra (XPS), transmission electron microscope (TEM) and Raman procedures. We observe a cardinal pressure-induced change in the nanoparticles shape from multi-shell tubes to multi-shell spheres. MWNT transforms to onions with layers cross-linked by sp3 bonds under the 45-65 GPa compressive stress combined with shear deformation at room temperature. TEM and XPS results show that about 40% of the carbon atoms in the new phase are sp3-bounded.
NASA Astrophysics Data System (ADS)
Guan, Jiwen; Daljeet, Roshan; Kieran, Arielle; Song, Yang
2018-06-01
Conjugated polymers are prominent semiconductors that have unique electric conductivity and photoluminescence. Synthesis of conjugated polymers under high pressure is extremely appealing because it does not require a catalyst or solvent used in conventional chemical methods. Transformation of acetylene and many of its derivatives to conjugated polymers using high pressure has been successfully achieved, but not with dimethyl acetylene (DMA). In this work, we present a high-pressure study on solid DMA using a diamond anvil cell up to 24.4 GPa at room temperature characterized by in situ Fourier transform infrared and Raman spectroscopy. Our results show that solid DMA exists in a phase II crystal structure and is stable up to 12 GPa. Above this pressure, amorphization was initiated and the process was completed at 24.4 GPa. The expected polymeric transformation was not evident upon compression, but only observed upon decompression from a threshold compression pressure (e.g. 14.4 GPa). In situ florescence measurements suggest excimer formation via crystal defects, which induces the chemical reactions. The vibrational spectral analysis suggests the products contain the amorphous poly(DMA) and possibly additional amorphous hydrogenated carbon material.
Guan, Jiwen; Daljeet, Roshan; Kieran, Arielle; Song, Yang
2018-06-06
Conjugated polymers are prominent semiconductors that have unique electric conductivity and photoluminescence. Synthesis of conjugated polymers under high pressure is extremely appealing because it does not require a catalyst or solvent used in conventional chemical methods. Transformation of acetylene and many of its derivatives to conjugated polymers using high pressure has been successfully achieved, but not with dimethyl acetylene (DMA). In this work, we present a high-pressure study on solid DMA using a diamond anvil cell up to 24.4 GPa at room temperature characterized by in situ Fourier transform infrared and Raman spectroscopy. Our results show that solid DMA exists in a phase II crystal structure and is stable up to 12 GPa. Above this pressure, amorphization was initiated and the process was completed at 24.4 GPa. The expected polymeric transformation was not evident upon compression, but only observed upon decompression from a threshold compression pressure (e.g. 14.4 GPa). In situ florescence measurements suggest excimer formation via crystal defects, which induces the chemical reactions. The vibrational spectral analysis suggests the products contain the amorphous poly(DMA) and possibly additional amorphous hydrogenated carbon material.
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.
2012-01-01
By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.
Pressure-induced Structural Transformations in LanthanideTitanates: La2TiO5 and Nd2TiO5
DOE Office of Scientific and Technical Information (OSTI.GOV)
F Zhang; J Wang; M Lang
The structure of orthorhombic rare earth titanates of La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5}, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (a x b x 2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO{sub 5} polyhedramore » remain during the formation of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulvestad, A.; Welland, M. J.; Cha, W.
Crystallographic imperfections can significantly alter material properties and responses to external stimuli, including solute induced phase transformations and crystal growth and dissolution . Despite recent progress in imaging defects using both electron and x-ray techniques, in situ three-dimensional imaging studies of defect dynamics, necessary to understand and engineer nanoscale processes, remains challenging. Here, we report in situ three-dimensional imaging of defect dynamics during the hydriding phase transformation of individual palladium nanocrystals by Bragg Coherent Diffractive Imaging (BCDI) . During constant pressure experiments, we observed that the phase transformation begins after the nucleation of dislocations in large (300 nm) particles. Themore » 3D dislocation network shows that dislocations are close to the phase boundary. The 3D phase morphology resolved by BCDI suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than the core-shell model commonly assumed. We substantiate this conclusion using 3D phase field modeling and demonstrate how phase morphology affects the critical size for dislocation nucleation. We determine the size dependence of the transformation pressure for large (150-300 nm) palladium nanocrystals using variable pressure experiments. Our results reveal a pathway for solute induced structural phase transformations in nanocrystals and demonstrate BCDI as a novel method for understanding dislocation dynamics in phase transforming systems at the nanoscale.« less
Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation
Ulvestad, A.; Welland, M. J.; Cha, W.; ...
2017-01-16
Crystallographic imperfections can significantly alter material properties and responses to external stimuli, including solute induced phase transformations and crystal growth and dissolution . Despite recent progress in imaging defects using both electron and x-ray techniques, in situ three-dimensional imaging studies of defect dynamics, necessary to understand and engineer nanoscale processes, remains challenging. Here, we report in situ three-dimensional imaging of defect dynamics during the hydriding phase transformation of individual palladium nanocrystals by Bragg Coherent Diffractive Imaging (BCDI) . During constant pressure experiments, we observed that the phase transformation begins after the nucleation of dislocations in large (300 nm) particles. Themore » 3D dislocation network shows that dislocations are close to the phase boundary. The 3D phase morphology resolved by BCDI suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than the core-shell model commonly assumed. We substantiate this conclusion using 3D phase field modeling and demonstrate how phase morphology affects the critical size for dislocation nucleation. We determine the size dependence of the transformation pressure for large (150-300 nm) palladium nanocrystals using variable pressure experiments. Our results reveal a pathway for solute induced structural phase transformations in nanocrystals and demonstrate BCDI as a novel method for understanding dislocation dynamics in phase transforming systems at the nanoscale.« less
The Pressure-Induced Polymorphic Transformations in Fluconazole.
Gorkovenko, Ekaterina A; Kichanov, Sergey E; Kozlenko, Denis P; Belushkin, Alexandr V; Wąsicki, Jan; Nawrocik, Wojciech; Mielcarek, Jadwiga; Dubrovinsky, Leonid S; Lathe, Christian; Savenko, Boris N
2015-12-01
The structural properties and Raman spectra of fluconazole have been studied by means of X-ray diffraction and Raman spectroscopy at pressures up to 2.5 and 5.5 GPa, respectively. At a pressure of 0.8 GPa, a polymorphic phase transition from the initial form I to a new triclinic form VIII has been observed. At higher pressure of P = 3.2 GPa, possible transformation into another new polymorphic form IX has been detected. The unit cell parameters and volumes, and vibration modes as functions of pressure have been obtained for the different forms of fluconazole. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Corsini, Niccolo R C; Zhang, Yuanpeng; Little, William R; Karatutlu, Ali; Ersoy, Osman; Haynes, Peter D; Molteni, Carla; Hine, Nicholas D M; Hernandez, Ignacio; Gonzalez, Jesus; Rodriguez, Fernando; Brazhkin, Vadim V; Sapelkin, Andrei
2015-11-11
Over the last two decades, it has been demonstrated that size effects have significant consequences for the atomic arrangements and phase behavior of matter under extreme pressure. Furthermore, it has been shown that an understanding of how size affects critical pressure-temperature conditions provides vital guidance in the search for materials with novel properties. Here, we report on the remarkable behavior of small (under ~5 nm) matrix-free Ge nanoparticles under hydrostatic compression that is drastically different from both larger nanoparticles and bulk Ge. We discover that the application of pressure drives surface-induced amorphization leading to Ge-Ge bond overcompression and eventually to a polyamorphic semiconductor-to-metal transformation. A combination of spectroscopic techniques together with ab initio simulations were employed to reveal the details of the transformation mechanism into a new high density phase-amorphous metallic Ge.
Gong, Kaizheng; Chen, Yiu-Fai; Li, Peng; Lucas, Jason A.; Hage, Fadi G.; Yang, Qinglin; Nozell, Susan E.; Oparil, Suzanne; Xing, Dongqi
2012-01-01
Objectives Pharmacological activation of peroxisome proliferator-activated receptor gamma (PPARγ) has been shown to attenuate pressure overload-induced cardiac fibrosis, suggesting that PPARγ has an antifibrotic effect. This study tested the hypothesis that there is a functional interaction between transforming growth factor-β (TGF-β) signaling and endogenous PPARγ expression in cardiac fibroblasts and pressure overloaded heart. Methods and results We observed that, in response to pressure overload induced by transverse aortic constriction, left-ventricular PPARγ protein levels were decreased in wild-type mice, but increased in mice with an inducible overexpression of dominant negative mutation of the human TGF-β type II receptor (DnTGFβRII), in which TGF-β signaling is blocked. In isolated mouse cardiac fibroblasts, we demonstrated that TGF-β1 treatment decreased steady state PPARγ mRNA (−34%) and protein (−52%) levels, as well as PPARγ transcriptional activity (−53%). Chromatin immunoprecipitation analysis showed that TGF-β1 treatment increased binding of Smad2/3, Smad4 and histone deacetylase 1, and decreased binding of acetylated histone 3 to the PPARγ promoter in cardiac fibroblasts. Both pharmacological activation and overexpression of PPARγ significantly inhibited TGF-β1-induced extracellular matrix molecule expression in isolated cardiac fibroblasts, whereas treatment with the PPARγ agonist rosiglitazone inhibited, and treatment with the PPARγ antagonist T0070907 exacerbated chronic pressure overload-induced cardiac fibrosis and remodeling in wild-type mice in vivo. Conclusion These data provide strong evidence that TGF-β1 directly suppresses PPARγ expression in cardiac fibroblasts via a transcriptional mechanism and suggest that the down-regulation of endogenous PPARγ expression by TGF-β may be involved in pressure overload-induced cardiac fibrosis. PMID:21836474
Pressure-induced transformations in computer simulations of glassy water.
Chiu, Janet; Starr, Francis W; Giovambattista, Nicolas
2013-11-14
Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.
Pressure-induced transformations in computer simulations of glassy water
NASA Astrophysics Data System (ADS)
Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas
2013-11-01
Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.
Size-dependent pressure-induced amorphization: a thermodynamic panorama.
Machon, Denis; Mélinon, Patrice
2015-01-14
Below a critical particle size, some pressurized compounds (e.g. TiO2, Y2O3, PbTe) undergo a crystal-to-amorphous transformation instead of a polymorphic transition. This effect reflects the greater propensity of nanomaterials for amorphization. In this work, a panorama of thermodynamic interpretations is given: first, a descriptive analysis based on the energy landscape concept gives a general comprehension of the balance between thermodynamics and kinetics to obtain an amorphous state. Then, a formal approach based on Gibbs energy to describe the thermodynamics and phase transitions in nanoparticles gives a basic explanation of size-dependent pressure-induced amorphization. The features of this transformation (amorphization occurs at pressures lower than the polymorphic transition pressure!) and the nanostructuration can be explained in an elaborated model based on the Ginzburg-Landau theory of phase transition and on percolation theory. It is shown that the crossover between polymorphic transition and amorphization is highly dependent on the defect density and interfacial energy, i.e., on the synthesis process. Their behavior at high pressure is a quality control test for the nanoparticles.
Pressure Induced Phase Transformations of Silica Polymorphs and Glasses
NASA Astrophysics Data System (ADS)
Cagin, Tahir; Demiralp, Ersan; Goddard, William A., III
1998-03-01
Silica, SiO_2, is one of the most widely studied substance, and it has some complex and unusual properties. We have used a recently developed 2-body interaction force field (E. Demiralp, T. Cagin, W.A. Goddard, III, unpublished.) to study the structural phase transformations in silica under various pressure loading conditions. The specific transformations we studied are α-quartz to stishovite, coesite to stishovite and fused glass to stishovite-like dense, a dominantly six-coordinated glassy phase. Molecular dynamics simulations are performed under the constant loading rates ranging from 0.1 GPa/ps to 2.0 GPa/ps, pressures upto 100 GPa and at temperatures 300, 500, 700 and 900 K. We observe the crystal to crystal transformations to occur reconstructively, whereas it occurs in a smooth and displacive manner from glass to a stishovite-like phase confirming earlier conjectures. (E.M. Stolper and T.J. Ahrens, Geophys. Res. Let.) 14, 1231 (1987). To elucidate the shock loading experiments, we studied the dependence of transition pressure on the loading rate and the temperature. To assess the hysterisis effect we also studied the unloading behavior of each transformation.
Shock-induced transformations in the system NaAlSiO4-SiO2 - A new interpretation
NASA Technical Reports Server (NTRS)
Sekine, Toshimori; Ahrens, Thomas J.
1992-01-01
New internally consistent interpretations of the phases represented by the high pressure phase shock wave data for an albite-rich rock, jadeite, and nepheline in the system NaAlSiO4-SiO2, are obtained using the results of static high pressure investigations, and the recent discovery of the hollandite phase in a shocked meteorite. We conclude that nepheline transforms directly to the calcium ferrite structure, whereas albite transforms possibly to the hollandite structure. Shock Hugoniots for the other plagioclase and alkali feldspars also indicate that these transform to hollandite structures. The pressure-volume data at high pressure could alternatively represent the compression of an amorphous phase. Moreover, the shock Hugoniot data are expected to reflect the properties of the melt above shock stresses of 60-80 GPa. The third order Birch-Murnaghan equation of state parameters are given for the calcium ferrite type NaAlSiO4 and for albite-rich, orthoclase-rich, and anorthite-rich hollandites.
Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure.
Salamat, Ashkan; McMillan, Paul F; Firth, Steven; Woodhead, Katherine; Hector, Andrew L; Garbarino, Gaston; Stennett, Martin C; Hyatt, Neil C
2013-02-04
There is interest in identifying novel materials for use in radioactive waste applications and studying their behavior under high pressure conditions. The mineral zirconolite (CaZrTi(2)O(7)) exists naturally in trace amounts in diamond-bearing deep-seated metamorphic/igneous environments, and it is also identified as a potential ceramic phase for radionuclide sequestration. However, it has been shown to undergo radiation-induced metamictization resulting in amorphous forms. In this study we probed the high pressure structural properties of this pyrochlore-like structure to study its phase transformations and possible amorphization behavior. Combined synchrotron X-ray diffraction and Raman spectroscopy studies reveal a series of high pressure phase transformations. Starting from the ambient pressure monoclinic structure, an intermediate phase with P2(1)/m symmetry is produced above 15.6 GPa via a first order transformation resulting in a wide coexistence range. Upon compression to above 56 GPa a disordered metastable phase III with a cotunnite-related structure appears that is recoverable to ambient conditions. We examine the similarity between the zirconolite behavior and the structural evolution of analogous pyrochlore systems under pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gloss, Jonas; Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno; Shah Zaman, Sameena
2013-12-23
Metastable face-centered cubic (fcc) Fe/Cu(100) thin films are good candidates for ion-beam magnetic patterning due to their magnetic transformation upon ion-beam irradiation. However, pure fcc Fe films undergo spontaneous transformation when their thickness exceeds 10 ML. This limit can be extended to approximately 22 ML by deposition of Fe at increased CO background pressures. We show that much thicker films can be grown by alloying with Ni for stabilizing the fcc γ phase. The amount of Ni necessary to stabilize nonmagnetic, transformable fcc Fe films in dependence on the residual background pressure during the deposition is determined and a phasemore » diagram revealing the transformable region is presented.« less
NASA Astrophysics Data System (ADS)
Comyn, Tim P.; Stevenson, Tim; Al-Jawad, Maisoon; Marshall, William G.; Smith, Ronald I.; Herrero-Albillos, Julia; Cywinski, Robert; Bell, Andrew J.
2013-05-01
BiFeO3-PbTiO3 exhibits both ferroelectric and antiferromagnetic order, depending on the composition. Moderate hydrostatic pressures have been used at room temperature to transform the crystallographic phase from P4mm to R3c for the compositions 0.7BiFeO3-0.3PbTiO3 and 0.65BiFeO3-0.35PbTiO3, as determined using in-situ neutron diffraction. Using Rietveld refinements, the resultant data showed that, for both compositions, a transformation from para- to G-type antiferromagnetic order accompanied the structural transition. The transformation occurred over the range 0.4-0.77 and 0.67-0.88 GPa for 0.7BiFeO3-0.3PbTiO3 and 0.65BiFeO3-0.35PbTiO3, respectively; at intermediate pressures, a mixture of P4mm and R3c phases were evident. These pressures are far lower than required to induce a phase transition in either the BiFeO3 or PbTiO3 end members. The driving force for this pressure induced first order phase transition is a significant difference in volume between the two phases, P4mm > R3c of 4%-5%, at ambient pressure. Upon removal of the pressure, 0.65BiFeO3-0.35PbTiO3 returned to the paramagnetic tetragonal state, whereas in 0.7BiFeO3-0.3PbTiO3 antiferromagnetic ordering persisted, and the structural phase remained rhombohedral. Using conventional laboratory x-ray diffraction with a hot-stage, the phase readily reverted back to a tetragonal phase, at temperatures between 100 and 310 °C for 0.7BiFeO3-0.3PbTiO3, far lower than the ferroelectric Curie point for this composition of 632 °C. To our knowledge, the reported pressure induced para- to antiferromagnetic transition is unique in the literature.
Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; ...
2015-07-28
We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can bemore » attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.« less
NASA Astrophysics Data System (ADS)
Catledge, Shane A.; Spencer, Philemon T.; Vohra, Yogesh K.
2000-11-01
We have carried out mechanical property measurements on zirconium metal compressed in a diamond anvil cell to 19 GPa at room temperature with subsequent quenching to room pressure. The irreversible transformation from the ambient hexagonal-close-packed phase to the simple hexagonal ω phase (AlB2 structure) is confirmed by synchrotron energy dispersive x-ray diffraction followed by nanoindentation of the pressure-quenched sample. We document an 80% increase in hardness as a consequence of the pressure-induced transformation to the ω phase at room temperature. This is a large increase for a metallic phase transformation and can be attributed to the presence of sp2-hybrid bonds forming graphite-like nets in the (0001) plane of the AlB2 structure. Atomic force microscopy of the indents shows that a plastic deformation of 2 μm in depth was achieved with a force of 200 mN.
Hydraulic pressure inducing renal tubular epithelial-myofibroblast transdifferentiation in vitro.
Li, Fei-yan; Xie, Xi-sheng; Fan, Jun-ming; Li, Zi; Wu, Jiang; Zheng, Rong
2009-09-01
The effects of hydraulic pressure on renal tubular epithelial-myofibroblast transdifferentiation (TEMT) were investigated. We applied hydraulic pressure (50 cm H2O) to normal rat kidney tubular epithelial cells (NRK52E) for different durations. Furthermore, different pressure magnitudes were applied to cells. The morphology, cytoskeleton, and expression of myofibroblastic marker protein and transforming growth factor-beta1 (TGF-beta1) of NRK52E cells were examined. Disorganized actin filaments and formation of curling clusters in actin were seen in the cytoplasm of pressurized cells. We verified that de novo expression of alpha-smooth muscle actin induced by pressure, which indicated TEMT, was dependent on both the magnitude and duration of pressure. TGF-beta1 expression was significantly upregulated under certain conditions, which implies that the induction of TEMT by hydraulic pressure is related with TGF-beta1. We illustrate for the first time that hydraulic pressure can induce TEMT in a pressure magnitude- and duration-dependent manner, and that this TEMT is accompanied by TGF-beta1 secretion.
Pressure-magnetic field induced phase transformation in Ni{sub 46}Mn{sub 41}In{sub 13} Heusler alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rama Rao, N. V., E-mail: nvrrao@dmrl.drdo.in; Manivel Raja, M.; Pandian, S.
2014-12-14
The effect of hydrostatic pressure and magnetic field on the magnetic properties and phase transformation in Ni{sub 46}Mn{sub 41}In{sub 13} Heusler alloy was investigated. Pressure (P)-magnetic field (H)-temperature (T) phase diagram has been constructed from experimental results. In the P–T contour of the phase diagram, the slope of the austenite-martensite phase boundary line appears positive (dT/dP > 0), while it appears negative (dT/dH < 0) in the H–T contour. The results revealed that pressure and magnetic field have opposite effect on phase stabilization. The combined effect of pressure and magnetic field on martensitic transition has led to two important findings: (i) pressure dependent shiftmore » of austenite start temperature (A{sub s}) is higher when larger field is applied, and (ii) field dependent shift of A{sub s} is lowered when a higher pressure is applied. The pressure and magnetic field dependent shift observed in the martensitic transformation has been explained on the basis of thermodynamic calculations. Curie temperature of the phases was found to increase with pressure at a rate of 0.6 K/kbar.« less
NASA Astrophysics Data System (ADS)
Dang, Nhan C.; Ciezak-Jenkins, Jennifer A.
2018-04-01
In this work, the dependence of the morphology and stability of the extended solid of carbon monoxide (CO) is correlated to the rate of transformation from the molecular CO to extended solid of CO using optical imaging, photoluminescence, Raman spectroscopy, and X-ray diffraction. The analyses show the rate and pressure of the transformation to be strongly controlled by catalytic effects, both chemical and optical. In a larger volume per reaction area, the transformation was found to require either a longer time at an elevated pressure or a higher pressure compared to a sample synthesized in a smaller volume per reaction area, leading to the conclusion that the transformation rate is slower for a sample in a larger volume per reaction area. A faster rate of transformation was also noted when the reaction area of a CO sample was catalyzed with H2SO4. Through variation of the volume per reaction area, pressure or the addition of catalysts, it was possible to control the rate of the phase transition and therefore the morphology. In general, the extended solid of CO synthesized with a faster rate showed a more ordered structure and increased metastability relative to the material formed with a slower compression rate.
Transition of dislocation glide to shear transformation in shocked tantalum
Hsiung, Luke L.; Campbell, Geoffrey H.
2017-02-28
A TEM study of pure tantalum and tantalum-tungsten alloys explosively shocked at a peak pressure of 30 GPa (strain rate: ~1 x 10 4 sec -1) is presented. While no ω (hexagonal) phase was found in shock-recovered pure Ta and Ta-5W that contain mainly a low-energy cellular dislocation structure, shock-induced ω phase was found to form in Ta-10W that contains evenly distributed dislocations with a stored dislocation density higher than 1 x 10 12 cm -2. The TEM results clearly reveal that shock-induced α (bcc) → ω (hexagonal) shear transformation occurs when dynamic recovery reactions which lead the formation low-energymore » cellular dislocation structure become largely suppressed in Ta-10W shocked under dynamic (i.e., high strain-rate and high-pressure) conditions. A novel dislocation-based mechanism is proposed to rationalize the transition of dislocation glide to twinning and/or shear transformation in shock-deformed tantalum. Lastly, twinning and/or shear transformation take place as an alternative deformation mechanism to accommodate high-strain-rate straining when the shear stress required for dislocation multiplication exceeds the threshold shear stresses for twinning and/or shear transformation.« less
High pressure study of acetophenone azine
NASA Astrophysics Data System (ADS)
Tang, X. D.; Ding, Z. J.; Zhang, Z. M.
2009-02-01
High pressure Raman spectra of acetophenone azine (APA) have been measured up to 17.7 GPa with a diamond anvil cell. Two crystalline-to-crystalline phase transformations are found at pressures about 3.6 and 5.8 GPa. A disappearance of external modes and the C-H vibration at pressures higher than 8.7 GPa suggests that the sample undergoes a phase transition to amorphous or orientationally disordered (plastic) state, and the amorphization was completed at about 12.1 GPa. The disordered state is unstable and, then, a polymerization transformation reaction occurs with a further pressure increase. After the pressure has been released, the polymerization state can remain at the ambient condition, indicating that the virgin crystalline state is not recovered. The results show that the phenomenon underlying the pressure induced phase transition of APA may involve profound changes in the coordination environments of the symmetric aromatic azine.
NASA Astrophysics Data System (ADS)
Shi, F.; Wang, Y.; Zhang, J.; Yu, T.; Zhu, L.
2017-12-01
Global earthquake occurrence rate falls exponentially from the surface to 300 km depth, and then peaks again near 500 km depth. Unassisted frictional sliding will not function at depth below the brittle-ductile transition depth (10-15 km) because increasing pressure trends to inhibit frictional sliding and increasing temperature promotes ductile flow. Two main hypotheses have been proposed and demonstrated in the laboratory for the generation of earthquakes at depth, including dehydration embrittlement (e.g., Rayleigh and Paterson, 1965) for intermediate-depth (70-300 km) earthquakes, metastable olivine phase transformation induced anticrack faulting (e.g., Green and Burnley, 1989) for deep-focus (410-660 km) earthquakes. However, the possibility of earthquake generation by pyroxene phase transformation, another important constituent mineral in the upper mantle and transition zone has never been explored in the laboratory. Here we report axial deformation experiments on hypersthene [(Mg,Fe)SiO3], which has the same structure as enstatite, with the phase transformation to high-pressure monoclinic phase (same structure as the high-pressure clinoenstatite) occurring at lower pressures, in a deformation-DIA (D-DIA) apparatus interfaced with an acoustic emission (AE) monitoring system. Our results show that hypersthene deformed within its stability field (<2GPa and 1000 oC) behaves in a ductile manner without any AE activity. In contrast, numerous AE events were observed during the deformation of metastable hyposthene in its high pressure monoclinic phase field (>5GPa, 1000-1300 oC). This finding provides an additional viable mechanism for earthquakes at depths >300km and moonquakes at 700 - 1200 km depths. Reference: Barcheck, C. Grace, et al. EPSL,349 (2012): 153-160;van Keken, Peter E., et al.JGR,116.B1 (2011);Green II, H. W., and P. C. Burnley. Nature 341.6244 (1989): 733-737.
Air-broadened Lorentz halfwidths and pressure-induced line shifts in the nu(4) band of C-13H4
NASA Technical Reports Server (NTRS)
Devi, V. Malathy; Benner, D. Chris; Rinsland, Curtis P.; Smith, Mary Ann H.
1988-01-01
Air-broadened halfwidths and pressure-induced line shifts in the nu(4) fundamental of C-13H4 were determined from spectra recorded at room temperature and at 0.01/cm resolution using a Fourier transform spectrometer. Halfwidths and pressure shifts were determined for over 180 transitions belonging to J-double prime values of less than or = to 16. Comparisons of air-broadened halfwidths and pressure-induced line shifts made for identical transitions in the nu(4) bands of C-12H4 and C-13H4 have shown that C-13H4 air-broadened halfwidths are about 5 percent smaller than the corresponding C-12H4 halfwidths, and the pressure shifts for C-13H4 lines are about 5-15 percent larger than those for C-12H4.
Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev
2011-01-01
Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST. PMID:21670255
Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev
2011-06-28
Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te-Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yanwei, E-mail: yanwei.huang@hpstar.ac.cn, E-mail: wangling@hpstar.ac.cn; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018; Chen, Fengjiao
We report a unique phase transition in compressed exposed curved surface nano-TiO{sub 2} with high photocatalytic activity using in situ synchrotron X-ray diffraction and Raman Spectroscopy. High-pressure studies indicate that the anatase phase starts to transform into baddeleyite phase upon compression at 19.4 GPa, and completely transforms into the baddeleyite phase above 24.6 GPa. Upon decompression, the baddeleyite phase was maintained until the pressure was released to 6.4 GPa and then transformed into the α-PbO{sub 2} phase at 2.7 GPa. Together with the results of high-resolution transmission electron microscopy and the pressure-volume relationship, this phase transition's characteristics during the compression-decompression cycle demonstrate that themore » truncated biconic morphology possessed excellent stability. This study may provide an insight to the mechanisms of stability for high photocatalytic activity of nano-TiO{sub 2}.« less
Increased likelihood of induced seismicity in highly overpressured shale formations
NASA Astrophysics Data System (ADS)
Eaton, David W.; Schultz, Ryan
2018-05-01
Fluid-injection processes such as disposal of saltwater or hydraulic fracturing can induce earthquakes by increasing pore pressure and/or shear stress on faults. Natural processes, including transformation of organic material (kerogen) into hydrocarbon and cracking to produce gas, can similarly cause fluid overpressure. Here we document two examples from the Western Canada Sedimentary Basin where earthquakes induced by hydraulic fracturing are strongly clustered within areas characterized by pore-pressure gradient in excess of 15 kPa/m. Despite extensive hydraulic-fracturing activity associated with resource development, induced earthquakes are virtually absent in the Montney and Duvernay Formations elsewhere. Statistical analysis suggests a negligible probability that this spatial correlation developed by chance. This implies that, in addition to known factors such as anthropogenic pore-pressure increase and proximity to critically stressed faults, high in-situ overpressure of shale formations may also represent a controlling factor for inducing earthquakes by hydraulic fracturing. On a geological timescale, natural pore-pressure generation may lead to fault-slip episodes that regulate magnitude of formation-overpressure.
NASA Astrophysics Data System (ADS)
Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei
2018-03-01
In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.
Mencke, A P; Caffrey, M
1991-03-05
By using synchrotron radiation, a movie was made of the X-ray scattering pattern from a biological liquid crystal undergoing a phase transition induced by a pressure jump. The system studied includes the fully hydrated phospholipid dihexadecylphosphatidylethanolamine in the lamellar gel (L beta') phase at a temperature of 68 degrees C and a pressure of 9.7 MPa (1400 psig). Following the rapid release of pressure to atmospheric the L beta' phase transforms slowly into the lamellar liquid crystal (L alpha) phase. The pressure perturbation is applied with the intention of producing a sudden phase disequilibrium followed by monitoring the system as it relaxes to its new equilibrium condition. Remarkably, the proportion of sample in the L alpha phase grows linearly with time, taking 37 s to totally consume the L beta' phase. The time dependencies of radius, peak intensity, and width of the powder diffraction ring of the low-angle (001) lamellar reflections were obtained from the movie by image processing. The concept of an "effective pressure" is introduced to account for the temperature variations that accompany the phase transition and to establish that the observed large transit time is indeed intrinsic to the sample and not due to heat exchange with the environment. The reverse transformation, L alpha to L beta', induced by a sudden jump from atmospheric pressure to 9.7 MPa, is complete in less than 13 s. These measurements represent a new approach for studying the kinetics of lipid phase transitions and for gaining insights into the mechanism of the lamellar order/disorder transition.
Phase transformations and equation of state of praseodymium metal to 103 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesnut, Gary N.; Vohra, Yogesh K.
2000-08-01
Pressure-induced structural phase transformations in a trivalent rare-earth metal praseodymium (Pr) were studied at room temperature in a diamond anvil cell to 103 GPa by energy dispersive x-ray diffraction using a synchrotron source. Our x-ray diffraction studies document the following crystal structure sequence: dhcp{yields}fcc{yields}distorted fcc(hR24 type){yields}monoclinic(C2/m){yields}{alpha}-uranium with increasing pressure. We measure a 16.7% volume collapse at the transition to the {alpha}-uranium phase at 20 GPa. The high-pressure {alpha}-uranium phase in Pr was found to be stable to the highest pressure of 103 GPa, which corresponds to a volume compression V/V{sub 0}=0.407. (c) 2000 The American Physical Society.
Phase transition induced strain in ZnO under high pressure
Yan, Xiaozhi; Dong, Haini; Li, Yanchun; ...
2016-05-13
Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strengthmore » decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. Ultimately, these findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.« less
Bonding Transition in SiO2 Glass at High Pressures: Applications to SiO2 Liquid in Earth's Interior
NASA Astrophysics Data System (ADS)
Yoo, C.; Lin, J.; Fukui, H.; Prendergast, D.; Okuchi, T.; Cai, Y.; Hiraoka, N.; Trave, A.; Eng, P.; Hu, M. Y.; Chow, P.
2006-12-01
SiO2 and MgSiO3 liquids are two major components in the magma deep inside the Earth. Knowledge of their electronic bonding characters at high pressures is essential to understanding the complex properties of the materials in the melts. The nature of pressure-induced bonding change in amorphous SiO2 has been an intriguing and long-standing problem that remains to be further understood. For example, previous infrared and X-ray diffraction studies suggested that a continuous transformation from the four- to six-fold coordinated silicon occurred in amorphous SiO2 at high pressures, whereas separate optical Raman studies attributed to a pressure-induced shift in the local ring statistics and a breakdown in the intermediate-range order. Here we have studied the oxygen near K-edge spectra of SiO2 glass to 51 GPa obtained using X-ray Raman scattering in a diamond-anvil cell, which directly probes the electronic bonding character of the sample. Our results provide conclusive evidence for a pressure-induced electronic bonding transition in SiO2 glass at high pressures. Although a progressive decrease in the mean Si-O-Si angle in the SiO4 tetrahedra is believed to be responsible for the irreversible densification in SiO2 glass at high pressures, our observed transition is reversible upon decompression. A similar transformation is also expected to occur in silicate glasses and melts, which will most definitely alter their physical, mechanical and transport properties in the magma chamber deep in the Earth's interior. This work was performed under the auspices of the U.S. DOE by UC/LLNL under Contract W-7405-Eng-48.
Pressure-induced structural transformations of the Zintl phase sodium silicide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabrera, Raul Quesada; Salamat, Ashkan; Barkalov, Oleg I.
The high-pressure behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction to observe the onset of structural phase transformations and potential oligomerisation into anionic Si nanoclusters with extended dimensionality. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation above 15 GPa, suggesting the formation of Si-Si bonds with oxidation of the Si{sup -} species and reduction of Na{sup +} to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure. - Abstract: The high-pressuremore » behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation, suggesting the formation of Si-Si bonds with oxidation of the Si{sup -} species and reduction of Na{sup +} to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure. Display Omitted« less
NASA Astrophysics Data System (ADS)
Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.
2017-12-01
Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa). Stannate and hafnate pyrochlore compositions taken to high pressure show structural transformations consistent with irradiated pyrochlore, and compositionally disordered pyrochlore: a long-range structure best described by defect-fluorite, and a short-range structure best described by weberite.
Microbial production of metabolites and associated enzymatic reactions under high pressure.
Dong, Yongsheng; Jiang, Hua
2016-11-01
High environmental pressure exerts an external stress on the survival of microorganisms that are commonly found under normal pressure. In response, many growth traits alter, including cell morphology and physiology, cellular structure, metabolism, physical and chemical properties, the reproductive process, and defense mechanisms. The high-pressure technology (HP) has been industrially utilized in pressurized sterilization, synthesis of stress-induced products, and microbial/enzymatic transformation of chemicals. This article reviews current research on pressure-induced production of metabolites in normal-pressure microbes and their enzymatic reactions. Factors that affect the production of such metabolites are summarized, as well as the effect of pressure on the performance of microbial fermentation and the yield of flavoring compounds, different categories of induced enzymatic reactions and their characteristics in the supercritical carbon dioxide fluid, effects on enzyme activity, and the selection of desirable bacterial strains. Technological challenges are discussed, and future research directions are proposed. Information presented here will benefit the research, development, and application of the HP technology to improve microbial fermentation and enzymatic production of biologically active substances, thereby help to meet their increasing demand from the ever-expanding market.
Levitas, Valery I; Javanbakht, Mahdi
2014-01-07
There are two main challenges in the discovery of new high pressure phases (HPPs) and transforming this discovery into technologies: finding conditions to synthesize new HPPs and finding ways to reduce the phase transformation (PT) pressure to an economically reasonable level. Based on the results of pressure-shear experiments in the rotational diamond anvil cell (RDAC), superposition of plastic shear on high pressure is a promising way to resolve these problems. However, physical mechanisms behind these phenomena are not yet understood. Here, we elucidate generic mechanisms of coupled nucleation and evolution of dislocation and HPP structures in the nanograin material under pressure and shear utilizing the developed advanced phase field approach (PFA). Dislocations are generated at the grain boundaries and are densely piled up near them, creating a strong concentrator of the stress tensor. Averaged shear stress is essentially larger in the nanograin material due to grain boundary strengthening. This leads to the increase in the local thermodynamic driving force for PT, which allows one to significantly reduce the applied pressure. For all cases, the applied pressure is 3-20 times lower than the PT pressure and 2-12.5 times smaller than the phase equilibrium pressure. Interaction between nuclei leads sometimes to their coalescence and growth of the HPP away from stress concentrators. Plasticity plays a dual role: in addition to creating stress concentrators, it may relax stresses at other concentrators, thus competing with PT. Some ways to optimize the loading parameters have been found that lead to methods for controlling PT. Since such a local stress tensor with high shear stress component cannot be created without plastic deformations, this may lead to new transformation paths and phases, which are hidden during pressure induced PTs.
A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion
NASA Astrophysics Data System (ADS)
Xiao, J.; Li, J. L.; Liu, P.; Yang, G. W.
2014-11-01
The investigation of carbon allotropes such as graphite, diamond, fullerenes, nanotubes and carbon onions and mechanisms that underlie their mutual phase transformation is a long-standing problem of great fundamental importance. New diamond (n-diamond) is a novel metastable phase of carbon with a face-centered cubic structure; it is called ``new diamond'' because many reflections in its electron diffraction pattern are similar to those of diamond. However, producing n-diamond from raw carbon materials has so far been challenging due to n-diamond's higher formation energy than that of diamond. Here, we, for the first time, demonstrate a new phase transformation path from nanodiamond to n-diamond via an intermediate carbon onion in the unique process of laser ablation in water, and establish that water plays a crucial role in the formation of n-diamond. When a laser irradiates colloidal suspensions of nanodiamonds at ambient pressure and room temperature, nanodiamonds are first transformed into carbon onions serving as an intermediate phase, and sequentially carbon onions are transformed into n-diamonds driven by the laser-induced high temperature and high pressure from the carbon onion as a nanoscaled temperature and pressure cell upon the process of laser irradiation in a liquid. This phase transformation not only provides new insight into the physical mechanism involved, but also offers one suitable opportunity for breaking controllable pathways between n-diamond and carbon allotropes such as diamond and carbon onions.The investigation of carbon allotropes such as graphite, diamond, fullerenes, nanotubes and carbon onions and mechanisms that underlie their mutual phase transformation is a long-standing problem of great fundamental importance. New diamond (n-diamond) is a novel metastable phase of carbon with a face-centered cubic structure; it is called ``new diamond'' because many reflections in its electron diffraction pattern are similar to those of diamond. However, producing n-diamond from raw carbon materials has so far been challenging due to n-diamond's higher formation energy than that of diamond. Here, we, for the first time, demonstrate a new phase transformation path from nanodiamond to n-diamond via an intermediate carbon onion in the unique process of laser ablation in water, and establish that water plays a crucial role in the formation of n-diamond. When a laser irradiates colloidal suspensions of nanodiamonds at ambient pressure and room temperature, nanodiamonds are first transformed into carbon onions serving as an intermediate phase, and sequentially carbon onions are transformed into n-diamonds driven by the laser-induced high temperature and high pressure from the carbon onion as a nanoscaled temperature and pressure cell upon the process of laser irradiation in a liquid. This phase transformation not only provides new insight into the physical mechanism involved, but also offers one suitable opportunity for breaking controllable pathways between n-diamond and carbon allotropes such as diamond and carbon onions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05246c
Influence of Pressure on Physical Property of Ammonia Borane and its Re-hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiuhua
The project systematically studied the high pressure behavior of ammonia borane and its derivative lithium amidoborane. Phase transitions in these materials are investigated in the pressure range up to 20 GPa and temperature range from 80 K to 400K. A number of new phase transitions are discovered in this pressure and temperature range including a second order transformation at 5 GPa and a first order transformation at 12 GPa at room temperature, and four new transitions at high pressure and low temperatures. The Clapeyron slopes for both pressure-induce tetragonal (I4mm) phase to orthorhombic (Cmc21) phase and temperature-induce tetragonal (I4mm) phasemore » to orthorhombic (Pmn21) phase are determined to be positive, indicating these phase transitions are exothermic. This result demonstrates that the high pressure orthorhombic phase of ammonia borane has lower enthalpy than that of tetragonal phase at ambient conditions. If we assume decomposition from the orthorhombic phase yields the same products as that from the tetragonal phase, the decomposition of the orthorhombic phase will be less exothermic. Therefore rehydrogenation from the decomposed product into the orthorhombic phase at high pressure may become easier. The project also studied the influences of nanoconfinement on the phase transitions. Comparative study using Raman spectroscopy indicates that the temperature induced I4mm to Pmn21 transition is suppressed from 217 K to 195 K when the sample is confined in SBA15 (7-9 nm pore size). When the pore size is reduced from 7-9 nm to 3-4 nm, this transition is totally suppressed in the temperature down to 80 K. A similar influence of the nanoconfiement on pressure induced phase transitions is also observed using Raman spectroscopy. The phase boundary between the I4mm phase and high pressure Cmc21 phase at ambient temperature shifts from 0.9 GPa to 0.5 GPa; and that between the Cmc21 phase and higher pressure P21 phase shifts from 10.2 GPa to 9.7 GPa.« less
Pressure-induced densification in GeO{sub 2} glass: A transmission x-ray microscopy study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yu, E-mail: lyforest@stanford.edu; Zeng, Qiaoshi; Yang, Wenge
2013-12-23
Nanoscale transmission x-ray microscopy measurements have been performed to determine the effect of pressure (P) on the volume (V) change in GeO{sub 2} glass up to 38.5 GPa. The P-V data show a continuous increase upon compression, indicating that the density-driven structural transformation is a gradual process. Over the pressure range studied, a transition is observed at approximately 10–13 GPa, where the material displays distinct compression behaviors. The pressure-induced densification that involves the coordination number change has been discussed. Using this newly developed high-pressure imaging technique with tens of nanometer resolution, we have provided a direct and unequivocal way for measuring densitymore » of amorphous materials to much higher pressures with accuracy rivaling x-ray diffraction of crystalline solids.« less
Pressure induced structural transitions in CuSbS 2 and CuSbSe 2 thermoelectric compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel
Here, we investigate the structural behavior of CuSbS 2 and CuSbSe 2 thermoelectric materials under high pressure conditions up to 80 GPa using angle dispersive X-ray diffraction in a diamond anvil cell (DAC). We also perform high pressure Raman spectroscopy measurements up to 16 GPa. We observed a pressure-induced structural transformation from the ambient orthorhombic structure with space group Pnma to a triclinic type structure with space group P1 beginning around 8 GPa in both samples and completing at 13 GPa and 10 GPa in CuSbS 2 and CuSbSe 2, respectively. High pressure Raman experiments complement the transitions observed bymore » high pressure X-ray diffraction (HPXRD). Finally, the transitions were found to be reversible on releasing the pressure to ambient in the DAC. The bulk modulus and compressibility of these materials are further discussed.« less
Pressure induced structural transitions in CuSbS 2 and CuSbSe 2 thermoelectric compounds
Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel; ...
2015-04-27
Here, we investigate the structural behavior of CuSbS 2 and CuSbSe 2 thermoelectric materials under high pressure conditions up to 80 GPa using angle dispersive X-ray diffraction in a diamond anvil cell (DAC). We also perform high pressure Raman spectroscopy measurements up to 16 GPa. We observed a pressure-induced structural transformation from the ambient orthorhombic structure with space group Pnma to a triclinic type structure with space group P1 beginning around 8 GPa in both samples and completing at 13 GPa and 10 GPa in CuSbS 2 and CuSbSe 2, respectively. High pressure Raman experiments complement the transitions observed bymore » high pressure X-ray diffraction (HPXRD). Finally, the transitions were found to be reversible on releasing the pressure to ambient in the DAC. The bulk modulus and compressibility of these materials are further discussed.« less
NASA Technical Reports Server (NTRS)
Schmitt, Douglas R.; Ahrens, Thomas J.
1989-01-01
Observations of shock-induced radiative thermal emissions are used to determine the gray body temperatures and emittances of silica glass under shock compression between 10 and 30 GPa. The results suggest that fused quartz deforms heterogeneously in this shock pressure range. It is shown that the 10-16 GPa range coincides with the permanent densification region, while the 16-30 GPa range coincides with the inferred mixed phase region along the silica glass Hugoniot. Low emittances in the mixed phase region are thought to represent the melting temperature of the high-pressure phase, stishovite. Also, consideration is given to the effects of pressure on melting relations for the system SiO2-Mg2SiO4.
NASA Astrophysics Data System (ADS)
Rosa, A. D.; Merkel, S.; Ghosh, S.; Hilairet, N.; Perrillat, J.; Mezouar, N.; Vaughan, G.
2013-12-01
The series of phase transitions between olivine, wadsleyite and ringwoodite play an essential role for large scale dynamical processes in the Earth mantle. Detailed knowledge of the microscopic mechanism at the origin of these high-pressure and high-temperature phase transformations is useful to connect global seismic observations and geodynamics. Indeed, the textures of these phases can be induced either during mantle flow or during the phase transformations and they greatly affect the characteristics of seismic wave propagation. Here, we present a new design of diamond anvil cell experiments to collect three-dimensional diffraction images and track individual grains inside a polycristalline sample at high pressure and high temperature. The instrumentation includes a new resistively heated diamond anvil cell developed at beamline ID27 of the ESRF which provided stable and homogenous temperature condition over more than 24 hours. In our experiments, the pressure is first increased up to 12 GPa at a constant temperature of T = 800 K. The temperature is then further increased to 1300 K to reach the stability field of the high-pressure polymorph. Upon further compression the transformation of olivine to its high-pressure polymorph is successfully monitored. At each pressure-temperature step and while the sample is transforming the crystallographic parameters, the orientations and positions of grains within the sample are tracked in situ using three-dimensional X-ray diffraction. This will provide important information on the micromechanical properties of olivine including orientation statistics, orientation relations between parent and daughter phases, and transformation textures at different stages of the phase transition. This in turn will help in interpreting the geophysical observations. Details of the experimental and analytical approach used in this study will be given.
Simulation studies of GST phase change alloys
NASA Astrophysics Data System (ADS)
Martyna, Glenn
2008-03-01
In order to help drive post-Moore's Law technology development, switching processes involving novel materials, in particular, GeSbTe (GST) alloys are being investigated for use in memory and eFuse applications. An anneal/quench thermal process crystallizes/amorphosizes a GST alloy which then has a low/high resistance and thereby forms a readable/writeable bit; for example, a ``one'' might be the low resistance, conducting crystalline state and a ``zero'' might be the high resistance, glassy state. There are many open questions about the precise nature of the structural transitions and the coupling to electronic structure changes. Computational and experimental studies of the effect of pressure on the GST materials were initiated in order to probe the physics behind the thermal switching process. A new pathway to reversible phase change involving pressure-induced structural metal insulator transitions was discovered. In a binary GS system, a room-temperature, direct, pressure-induced transformation from the high resistance amorphous phase to the low resistance crystalline phase was observed experimentally while the reverse process under tensile load was demonstrated via ab initio MD simulations performed on IBM's Blue Gene/L enabled by massively parallel software. Pressure induced transformations of the ternary material GST-225 (Ge2Sb2Te5) were, also, examined In the talk, the behavior of the two systems will be compared and insight into the nature of the phase change given.
High-pressure phase transitions, amorphization, and crystallization behaviors in Bi2Se3.
Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Gu, Genda
2013-03-27
The phase transition, amorphization, and crystallization behaviors of the topological insulator bismuth selenide (Bi2Se3) were discovered by performing in situ high-pressure angle-dispersive x-ray diffraction experiments during an increasing, decreasing, and recycling pressure process. In the compression process, Bi2Se3 transforms from the original rhombohedral structure (phase I(A)) to a monoclinic structure (phase II) at about 10.4 GPa, and further to a body-centered tetragonal structure (phase III) at about 24.5 GPa. When releasing pressure to ambient conditions after the complete transformation from phase II to III, Bi2Se3 becomes an amorphous solid (AM). In the relaxation process from this amorphous state, Bi2Se3 starts crystallizing into an orthorhombic structure (phase I(B)) about five hours after releasing the pressure to ambient. A review of the pressure-induced phase transition behaviors of A2B3-type materials composed from the V and VI group elements is presented.
Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W; Poole, Peter H
2016-12-14
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.
NASA Astrophysics Data System (ADS)
Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W.; Poole, Peter H.
2016-12-01
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.
Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.
Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a functionmore » of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.« less
NASA Technical Reports Server (NTRS)
Ahrens, T. J.; Tsay, F.-D.; Live, D. H.
1976-01-01
Electron spin resonance (ESR) studies have been carried out on three single grains of terrestrial olivine (Fo90) shock loaded along the 010 line to peak pressures of 280, 330, and 440 kbar. The results indicate that neither metallic Fe similar to that observed in returned lunar soils nor paramagnetic Fe(3+) caused by oxidation of Fe(2+) has been produced in these shock experiments. Trace amounts of Mn (2+) have been detected in both shocked and unshocked olivine. The ESR signals of Mn(2+) show spectral features which are found to correlate with the degree of shock-induced recrystallization observed petrographically. The increasing mass fraction of recrystallized olivine correlates with increasing shock pressures. This phenomenon is modelled assuming it results from the progressive effect of the shock-induced transformation of the olivine to a yet unknown high-pressure phase and its subsequent reversion to the low-pressure olivine phase. The mass fraction of recrystallized material is predicted to be nearly linear with shock pressure.
Effect of grain boundaries on shock-induced phase transformation in iron bicrystals
NASA Astrophysics Data System (ADS)
Zhang, Xueyang; Wang, Kun; Zhu, Wenjun; Chen, Jun; Cai, Mengqiu; Xiao, Shifang; Deng, Huiqiu; Hu, Wangyu
2018-01-01
Non-equilibrium molecular-dynamic simulations with a modified analytic embedded-atom model potential have been performed to investigate the effect of three kinds of grain boundaries (GBs) on the martensitic transformation in iron bicrystals with three different GBs under shock loadings. Our results show that the phase transition was influenced by the GBs. All three GBs provide a nucleation site for the α → ɛ transformation in samples shock-loaded with up = 0.5 km/s, and in particular, the elastic wave can induce the phase transformation at Σ3 ⟨110⟩ twist GB, which indicates that the phase transformation can occur at Σ3 ⟨110⟩ twist GB with a much lower pressure. The effect of GBs on the stress assisted transformation (SAT) mechanisms is discussed. All variants nucleating at the vicinity of these GBs meet the maximum strain work (MSW) criterion. Moreover, all of the variants with the MSW nucleate at Σ5 ⟨001⟩ twist GB and Σ3 ⟨110⟩ tilt GB, but only part of them nucleate at Σ3 ⟨110⟩ twist GB. This is because the coincident planes between both sides of the GB would affect the slip process, which is the second stage of the martensitic transformation and influences the selection of variant. We also find that the martensitic transformation at the front end of the bicrystals would give rise to stress attenuation in samples shock-loaded with up = 0.6 km/s, which makes the GBs seem to be unfavorable to the martensitic transformation. Our findings have the potential to affect the interface engineering and material design under high pressure conditions.
Pressure-induced phase transition and fracture in α-MoO3 nanoribbons
NASA Astrophysics Data System (ADS)
Silveira, Jose V.; Vieira, Luciana L.; Aguiar, Acrisio L.; Freire, Paulo T. C.; Mendes Filho, Josue; Alves, Oswaldo L.; Souza Filho, Antonio G.
2018-03-01
MoO3 nanoribbons were studied under different pressure conditions ranging from 0 to 21 GPa at room temperature. The effect of the applied pressure on the spectroscopic and morphologic properties of the MoO3 nanoribbons was investigated by means of Raman spectroscopy and scanning electron microscopy techniques. The pressure dependent Raman spectra of the MoO3 nanoribbons indicate that a structural phase transition occurs at 5 GPa from the orthorhombic α-MoO3 phase (Pbnm) to the monoclinic MoO3-II phase (P21/m), which remains stable up to 21 GPa. Such phase transformation occurs at considerably lower pressure than the critical pressure for α-MoO3 microcrystals (12 GPa). We suggested that the applanate morphology combined with the presence of crystalline defects in the sample play an important role in the phase transition of the MoO3 nanoribbons. Frequencies and linewidths of the Raman bands as a function of pressure also suggest a pressure-induced morphological change and the decreasing of the nanocrystal size. The observed spectroscopic changes are supported by electron microscopy images, which clearly show a pressure-induced morphologic change in MoO3 nanoribbons.
Tuning and synthesis of metallic nanostructures by mechanical compression
Fan, Hongyou; Li, Binsong
2015-11-17
The present invention provides a pressure-induced phase transformation process to engineer metal nanoparticle architectures and to fabricate new nanostructured materials. The reversible changes of the nanoparticle unit cell dimension under pressure allow precise control over interparticle separation in 2D or 3D nanoparticle assemblies, offering unique robustness for interrogation of both quantum and classic coupling interactions. Irreversible changes above a threshold pressure of about 8 GPa enables new nanostructures, such as nanorods, nanowires, or nanosheets.
Yin, Tingting; Fang, Yanan; Chong, Wee Kiang; Ming, Koh Teck; Jiang, Shaojie; Li, Xianglin; Kuo, Jer-Lai; Fang, Jiye; Sum, Tze Chien; White, Timothy J; Yan, Jiaxu; Shen, Ze Xiang
2018-01-01
High pressure (HP) can drive the direct sintering of nanoparticle assemblies for Ag/Au, CdSe/PbS nanocrystals (NCs). Instead of direct sintering for the conventional nanocrystals, this study experimentally observes for the first time high-pressure-induced comminution and recrystallization of organic-inorganic hybrid perovskite nanocrystals into highly luminescent nanoplates with a shorter carrier lifetime. Such novel pressure response is attributed to the unique structural nature of hybrid perovskites under high pressure: during the drastic cubic-orthorhombic structural transformation at ≈2 GPa, (301) the crystal plane fully occupied by organic molecules possesses a higher surface energy, triggering the comminution of nanocrystals into nanoslices along such crystal plane. Beyond bulk perovskites, in which pressure-induced modifications on crystal structures and functional properties will disappear after pressure release, the pressure-formed variants, i.e., large (≈100 nm) and thin (<10 nm) perovskite nanoplates, are retained and these exhibit simultaneous photoluminescence emission enhancing (a 15-fold enhancement in the photoluminescence) and carrier lifetime shortening (from ≈18.3 ± 0.8 to ≈7.6 ± 0.5 ns) after releasing of pressure from 11 GPa. This pressure-induced comminution of hybrid perovskite NCs and a subsequent amorphization-recrystallization treatment offer the possibilities of engineering the advanced hybrid perovskites with specific properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pressure-induced kinetics of the α to ω transition in zirconium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, M. K.; Velisavljevic, N., E-mail: nenad@lanl.gov; Sinogeikin, S. V.
Diamond anvil cells (DAC) coupled with x-ray diffraction (XRD) measurements are one of the primary techniques for investigating structural stability of materials at high pressure-temperature (P-T) conditions. DAC-XRD has been predominantly used to resolve structural information at set P-T conditions and, consequently, provides P-T phase diagram information on a broad range of materials. With advances in large scale synchrotron x-ray facilities and corresponding x-ray diagnostic capabilities, it is now becoming possible to perform sub-second time resolved measurements on micron sized DAC samples. As a result, there is an opportunity to gain valuable information about the kinetics of structural phase transformationsmore » and extend our understanding of material behavior at high P-T conditions. Using DAC-XRD time resolved measurements, we have investigated the kinetics of the α to ω transformation in zirconium. We observe a clear time and pressure dependence in the martensitic α-ω transition as a function of pressure-jump, i.e., drive pressure. The resulting data are fit using available kinetics models, which can provide further insight into transformation mechanism that influence transformation kinetics. Our results help shed light on the discrepancies observed in previous measurements of the α-ω transition pressure in zirconium.« less
Pressure-induced kinetics of the α to ω transition in zirconium
Jacobsen, M. K.; Velisavljevic, N.; Sinogeikin, S. V.
2015-07-13
Diamond anvil cells (DAC) coupled with x-ray diffraction (XRD) measurements are one of the primary techniques for investigating structural stability of materials at high pressure-temperature (P-T) conditions. DAC-XRD has been predominantly used to resolve structural information at set P-T conditions and, consequently, provides P-T phase diagram information on a broad range of materials. With advances in large scale synchrotron x-ray facilities and corresponding x-ray diagnostic capabilities, it is now becoming possible to perform sub-second time resolved measurements on micron sized DAC samples. As a result, there is an opportunity to gain valuable information about the kinetics of structural phase transformationsmore » and extend our understanding of material behavior at high P-T conditions. Using DAC-XRD time resolved measurements, we have investigated the kinetics of the α to ω transformation in zirconium. We observe a clear time and pressure dependence in the martensitic α-ω transition as a function of pressure-jump, i.e., drive pressure. The resulting data are fit using available kinetics models, which can provide further insight into transformation mechanism that influence transformation kinetics. Our results help shed light on the discrepancies observed in previous measurements of the α-ω transition pressure in zirconium.« less
Reversible pressure-induced crystal-amorphous structural transformation in ice Ih
NASA Astrophysics Data System (ADS)
English, Niall J.; Tse, John S.
2014-08-01
Molecular dynamics (MD) simulation of depressurised high-density amorphous ice (HDA) at 80 K and at negative pressures has been performed. Over several attempts, HDA recrystallised to a form close to hexagonal ice Ih, albeit with some defects. The results support the hypothesis that compression of ice-Ih to HDA is a reversible first-order phase transition, with a large hysteresis. Therefore, it would appear that LDA is not truly amorphous. The elastic energy estimated from the area of the hysteresis loop is ca. 4.5 kJ/mol, in some way consistent with experimentally-determined accumulated successive heats of transformations from recovered HDA → ice Ih.
AB-stacked square-like bilayer ice in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn
2016-08-10
Water, when constrained between two graphene sheets and under ultrahigh pressure, can manifest dramatic differences from its bulk counterparts such as the van der Waals pressure induced water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquid. Here, we present result of a new crystalline structure of bilayer ice with the AB-stacking order, observed from molecular dynamics simulations of constrained water. This AB-stacked bilayer ice (BL-ABI) is transformed from the puckered monolayer square-like ice (pMSI) under higher lateral pressure in the graphene nanocapillary at ambient temperature. BL-ABI is a proton-ordered ice with square-like pattern. The transition from pMSI to BL-ABI is through crystal-to-amorphous-to-crystal pathway with notable hysteresis-loop in the potential energy during the compression/decompression process, reflecting the compression/tensile limit of the 2D monolayer/bilayer ice. In a superheating process, the BL-ABI transforms into the AB-stacked bilayer amorphous ice with the square-like pattern.
Stability limits and transformation pathways of α-quartz under high pressure
NASA Astrophysics Data System (ADS)
Hu, Q. Y.; Shu, J.-F.; Yang, W. G.; Park, C.; Chen, M. W.; Fujita, T.; Mao, H.-K.; Sheng, H. W.
2017-03-01
Ubiquitous on Earth, α-quartz plays an important role in modern science and technology. However, despite extensive research in the past, the mechanism of the polymorphic transitions of α-quartz at high pressures remains poorly understood. Here, combining in situ single-crystal x-ray diffraction experiment and advanced ab initio modeling, we report two stability limits and competing transition pathways of α-quartz under high pressure. Under near-equilibrium compression conditions at room temperature, α-quartz transits to a new P 2 /c silica phase via a structural intermediate. If the thermally activated transition is kinetically suppressed, the ultimate stability of α-quartz is controlled by its phonon instability and α-quartz collapses into a different crystalline phase. Our studies reveal that pressure-induced solid-state transformation of α-quartz undergoes a succession of structural stability limits, due to thermodynamic and mechanical catastrophes, and exhibits a hierarchy of transition pathways contingent upon kinetic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yonggang; Lu, Xujie; Yang, Wenge
Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH 3NH 3PbBr 3 (MAPbBr 3), under hydrostatic pressure up to 34 GPa at room temperature: Two phase transformations below 2 GPa (from Pm3¯m to Im3¯, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr 6 octahedra and destroying of long-rangemore » ordering of MA cations, respectively. The visible light response of MAPbBr 3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Lastly, our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.« less
Wang, Yonggang; Lü, Xujie; Yang, Wenge; Wen, Ting; Yang, Liuxiang; Ren, Xiangting; Wang, Lin; Lin, Zheshuai; Zhao, Yusheng
2015-09-02
Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH3NH3PbBr3 (MAPbBr3), under hydrostatic pressure up to 34 GPa at room temperature. Two phase transformations below 2 GPa (from Pm3̅m to Im3̅, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr6 octahedra and destroying of long-range ordering of MA cations, respectively. The visible light response of MAPbBr3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.
Wang, Yonggang; Lu, Xujie; Yang, Wenge; ...
2015-08-18
Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH 3NH 3PbBr 3 (MAPbBr 3), under hydrostatic pressure up to 34 GPa at room temperature: Two phase transformations below 2 GPa (from Pm3¯m to Im3¯, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr 6 octahedra and destroying of long-rangemore » ordering of MA cations, respectively. The visible light response of MAPbBr 3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Lastly, our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.« less
Pressure-induced structural modifications of rare-earth hafnate pyrochlore
NASA Astrophysics Data System (ADS)
Turner, Katlyn M.; Rittman, Dylan R.; Heymach, Rachel A.; Tracy, Cameron L.; Turner, Madison L.; Fuentes, Antonio F.; Mao, Wendy L.; Ewing, Rodney C.
2017-06-01
Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A2Hf2O7) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A2Hf2O7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy2Hf2O7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr4+ and Hf4+, rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Pressure-induced structural modifications of rare-earth hafnate pyrochlore.
Turner, Katlyn M; Rittman, Dylan R; Heymach, Rachel A; Tracy, Cameron L; Turner, Madison L; Fuentes, Antonio F; Mao, Wendy L; Ewing, Rodney C
2017-06-28
Complex oxides with the pyrochlore (A 2 B 2 O 7 ) and defect-fluorite ((A,B) 4 O 7 ) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A 2 Hf 2 O 7 ) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A 2 Hf 2 O 7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy 2 Hf 2 O 7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr 4+ and Hf 4+ , rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Hacker, B.R.; Kirby, S.H.
1993-01-01
We conducted deformation experiments on Carrara marble in the aragonite and calcite stability fields to observe the synkinematic transformation of calcite to aragonite, and to identify any relationships between transformation and deformation or sample strength. Deformation-induced microstructures in calcite crystals varied most significantly with temperature, ranging from limited slip and twinning at 400??C, limited recrystallization at 500??C, widespread recrystallization at 600 and 700??C, to grain growth at 800-900??C. Variations in confining pressure from 0.3 to 2.0 GPa have no apparent effect on calcite deformation microstructures. Aragonite grew in 10-6-10-7 s-1strain rate tests conducted for 18-524 h at confining pressures of 1.7-2.0 GPa and temperatures of 500-600??C. As in our previously reported hydrostatic experiments on this same transformation, the aragonite nucleated on calcite grain boundaries. The extent of transformation varied from a few percent conversion near pistons at 400??C, 2.0 GPa and 10-4 s-1 strain rate in a 0.8 h long experiment, to 98% transformation in a 21-day test at a strain rate of 10-7 s-7, a temperature of 600??C and a pressure of 2.0 GPa. At 500??C, porphyroblastic 100-200 ??m aragonite crystals grew at a rate faster than 8 ?? 10-1m s-1. At 600??C, the growth of aragonite neoblasts was slower, ???6 ?? 10-1 m s -1, and formed 'glove-and-finger' cellularprecipitation-like textures identical to those observed in hydrostatic experiments. The transformation to aragonite is not accompanied by a shear instability or anisotropic aragonite growth, consistent with its relatively small volume change and latent heat in comparison with compounds that do display those features. ?? 1993.
Control of shock-wave boundary-layer interactions by bleed in supersonic mixed compression inlets
NASA Technical Reports Server (NTRS)
Fukuda, M. K.; Reshotko, E.; Hingst, W. R.
1975-01-01
An experimental investigation has been conducted to determine the effect of bleed region geometry and bleed rate on shock wave-boundary layer interactions in an axisymmetric, mixed-compression inlet at a Mach number of 2.5. The full realizable reduction in transformed form factor is obtained by bleeding off about half the incident boundary layer mass flow. Bleeding upstream or downstream of the shock-induced pressure rise is preferable to bleeding across the shock-induced pressure rise. Slanted holes are more effective than normal holes. Two different bleed hole sizes were tested without detectable difference in performance.
Pressure-Induced Phase Transitions of n-Tridecane
NASA Astrophysics Data System (ADS)
Yamashita, Motoi
Pressure-induced phase transition behavior of n-tridecane from the ordered phase through the rotator phase into the liquid phase has been investigated by using Fourier transform infrared spectroscopy at 25 °C. The transition between the ordered and rotator phases has been observed in the pressure range of 270-220 MPa and the transition between the rotator and liquid phases has been observed in the pressure range of 171-112 MPa, within the experimental error of ±50 MPa. The populations of the -gtg- + -gtg'-, -gg- and gt- defects determined from the methylene wagging mode are smaller in the rotator phase than in the liquid phase and are smaller under higher pressure in both of the rotator and liquid phases. A relationship has been found between the conformation and the intensity of the 890 cm-1 band, which has been assigned as the methyl rocking mode and has been considered as insensitive to conformation.
Pressure induced Ag 2Te polymorphs in conjunction with topological non trivial to metal transition
Zhu, J.; Oganov, A. R.; Feng, W. X.; ...
2016-08-01
Silver telluride (Ag 2Te) is well known as superionic conductor and topologica insulator with polymorphs. Pressure induced three phase transitions in Ag 2Te hav been reported in previous. Here, we experimentally identified high pressure phas above 13 GPa of Ag 2Te by using high pressure synchrotron x ray diffraction metho in combination with evolutionary crystal structure prediction, showing it crystallize into a monoclinic structure of space group C2/m with lattice parameters a = 6.081Å b = 5.744Å, c = 6.797 Å, β = 105.53°. The electronic properties measurements of Ag 2Te reveal that the topologically non-trivial semiconducting phase I andmore » semimetalli phase II previously predicated by theory transformed into bulk metals fo high pressure phases in consistent with the first principles calculations« less
Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in Chlorella spp.
Praveenkumar, Ramasamy; Kim, Bohwa; Lee, Jiye; Vijayan, Durairaj; Lee, Kyubock; Nam, Bora; Jeon, Sang Goo; Kim, Dong-Myung; Oh, You-Kwan
2016-11-01
Effective enhancement of neutral lipid (especially triacylglycerol, TAG) content in microalgae is an important issue for commercialization of microalgal biorefineries. Pressure is a key physical factor affecting the morphological, physiological, and biochemical behaviors of organisms. In this paper, we report a new stress-based method for induction of TAG accumulation in microalgae (specifically, Chlorella sp. KR-1 and Ch. sp. AG20150) by very-short-duration application of mild pressure. Pressure treatments of 10-15bar for 2h resulted in a considerable, ∼55% improvement of the 10-100g/Lcells' TAG contents compared with the untreated control. The post-pressure-treatment increase of cytoplasmic TAG granules was further confirmed by transmission electron microscopy (TEM). Notwithstanding the increased TAG content, the total lipid content was not changed by pressurization, implying that pressure stress possibly induces rapid remodeling/transformation of algal lipids rather than de novo biosynthesis of TAG. Copyright © 2016 Elsevier Ltd. All rights reserved.
Apex shift of a circular biconcave vesicle induced by osmotic pressure
NASA Astrophysics Data System (ADS)
Liu, Quan-Hui; Yan, Jie; Zhong-Can, Ou-Yang
1999-09-01
The contribution of a small osmotic pressure into the exact circular biconcave solution (H. Naito, M. Okuda, Ou-Yang Zhong-Can, Phys. Rev. E 48 (1993) 2304; 54 (1996) 2816) of the spontaneous curvature model of Helfrich leads to a definite and new theoretical consequence, the radius of the apex of the biconcave shape can shift toward to or apart from the center depending on the increase or decrease of the osmotic pressure. This result is in agreement with the following observed phenomena: The first stage of the discocyte-echinocyte and the discocyte-spherocyte transformation induced by exposing the cells to high concentrations of certain chemical agents; and the ring-shaped torocyte formation due to the iron deficiency or thalassemia.
Zarkevich, N. A.; Johnson, D. D.
2015-08-14
We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron—from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We also find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yetmore » all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Furthermore, our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimanis, Ivar; Cioabanu, Cristian
The study of materials with unusual properties offers new insight into structure-property relations as well as promise for the design of novel composites. In this spirit, the PIs seek to (1) understand fundamental mechanical phenomena in ceramics that exhibit pressure-induced phase transitions, negative coefficient of thermal expansion (CTE), and negative compressibility, and (2) explore the effect of these phenomena on the mechanical behavior of composites designed with such ceramics. The broad and long-term goal is to learn how to utilize these unusual behaviors to obtain desired mechanical responses. While the results are expected to be widely applicable to many ceramics,more » most of the present focus is on silicates, as they exhibit remarkable diversity in structure and properties. Eucryptite, a lithium aluminum silicate (LiAlSiO 4), is specifically targeted because it exhibits a pressure-induced phase transition at a sufficiently low pressure to be accessible during conventional materials processing. Thus, composites with eucryptite may be designed to exhibit a novel type of transformation toughening. The PIs have performed a combination of activities that encompass synthesis and processing to control structures, atomistic modeling to predict and understand structures, and characterization to study mechanical behavior. Several materials behavior discoveries were made. It was discovered that small amounts of Zn (as small as 0.1 percent by mol) reverse the sign of the coefficient of thermal expansion of beta-eucryptite from negative to slightly positive. The presence of Zn also significantly mitigates microcracking that occurs during thermal cycling of eucryptite. It is hypothesized that Zn disrupts the Li ordering in beta-eucryptite, thereby altering the thermal expansion behavior. A nanoindentation technique developed to characterize incipient plasticity was applied to examine the initial stages of the pressure induced phase transformation from beta to epsilon-eucryptite and show that the transformation nucleation is related to the motion of the tetrahedral units making up the structure. It was revealed that the conduction of Li ions through the structure is also dictated by the tetrahedral unit arrangement and how their positions change with temperature. The critical pressure to obtain the high pressure phase of eucryptite was shown to depend on the grain size. The structure of the high pressure phase was determined with a combination of atomistic modeling and in situ x-ray diffraction experiments.« less
NASA Technical Reports Server (NTRS)
Schmitt, D. R.; Ahrens, T. J.
1983-01-01
New emission spectra for MgO and CaAl2Si2O8 (glass) are observed from 430 to 820 nm. Taken with previous data, it is suggested that transparent solids display three regimes of light emission upon shock compression to successively higher pressures: (1) characteristic radiation such as observed in MgO and previously in other minerals, (2) heterogeneous hot spot (greybody) radiation observed in CaAl2Si2O8 and previously in all transparent solids undergoing shock-induced phase transformations, and (3) blackbody emission observed in the high pressure phase regime in NaCl, SiO2, CaO, CaAl2Si2O8, and Mg2SiO4. The onset of the second regime may delineate the onset of shock-induced polymorphism whereas the onset of the third regime delineates the Hugoniot pressure required to achieve local thermal equilibrium in the shocked solid. It is also proposed that the hot spot temperatures and corresponding shock pressures determined in the second regime delineate points on the fusion curves of the high pressure phase.
Pressure-induced transformations in amorphous silicon: A computational study
NASA Astrophysics Data System (ADS)
Garcez, K. M. S.; Antonelli, A.
2014-02-01
We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.
NASA Astrophysics Data System (ADS)
Wong, Jessina; Jahn, David A.; Giovambattista, Nicolas
2015-08-01
We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - TMCT)-γ as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, TMCT = 209 K and γ = 2.14, very close to the corresponding experimental values TMCT = 221 K and γ = 2.2.
Wong, Jessina; Jahn, David A; Giovambattista, Nicolas
2015-08-21
We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - T(MCT))(-γ) as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, T(MCT) = 209 K and γ = 2.14, very close to the corresponding experimental values T(MCT) = 221 K and γ = 2.2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhenhai; Wang, Qinglin; Ma, Yanzhang
Nanoscale materials exhibit properties that are quite distinct from those of bulk materials because of their size restricted nature. Here, we investigated the high-pressure structural stability of cubic (C-type) nano-Eu2O3 using in situ synchrotron X-ray diffraction (XRD), Raman and luminescence spectroscopy, and impedance spectra techniques. Our high-pressure XRD experimental results revealed a pressure-induced structural phase transition in nano-Eu2O3 from the C-type phase (space group: Ia-3) to a hexagonal phase (A-type, space group: P-3m1). Our reported transition pressure (9.3 GPa) in nano-Eu2O3 is higher than that of the corresponding bulk-Eu2O3 (5.0 GPa), which is contrary to the preceding reported experimental result.more » After pressure release, the A-type phase of Eu2O3 transforms into a new monoclinic phase (B-type, space group: C2/m). Compared with bulk-Eu2O3, C-type and A-type nano-Eu2O3 exhibits a larger bulk modulus. Our Raman and luminescence findings and XRD data provide consistent evidence of a pressure-induced structural phase transition in nano-Eu2O3. To our knowledge, we have performed the first high-pressure impedance spectra investigation on nano-Eu2O3 to examine the effect of the structural phase transition on its transport properties. We propose that the resistance inflection exhibited at ~12 GPa results from the phase boundary between the C-type and A-type phases. Besides, we summarized and discussed the structural evolution process by the phase diagram of lanthanide sesquioxides (Ln2O3) under high pressure.« less
Phase transformation of GaAs at high pressures and temperatures
NASA Astrophysics Data System (ADS)
Ono, Shigeaki; Kikegawa, Takumi
2018-02-01
The high-pressure behavior of gallium arsenide, GaAs, has been investigated using an in-situ X-ray powder diffraction technique in a diamond anvil cell combined with a resistance heating method, at pressures and temperatures up to 25 GPa and 1000 K respectively. The pressure-induced phase transition from a zincblende to an orthorhombic (Cmcm) structure was observed. This transition occurred at 17.3 GPa and at room temperature, where a negative temperature dependence for this transition was confirmed. The transition boundary was determined to be P (GPa) = 18.0 - 0.0025 × T (K).
Pressure-Induced Structural Transition and Enhancement of Energy Gap of CuAlO2
NASA Astrophysics Data System (ADS)
Nakanishi, Akitaka
2011-02-01
By using first-principles calculations, we studied the stable crystal structures and energy gaps of CuAlO2 under high pressure. Our simulation shows that CuAlO2 transforms from a delafossite structure to a leaning delafossite structure. The critical pressure of the transition was determined to be 60 GPa. The energy gap of CuAlO2 increases through the structural transition due to the enhanced covalency of Cu 3d and O 2p states. We found that a chalcopyrite structure does not appear as a stable structure under high pressure.
Melting in feldspar-bearing systems to high pressures and the structures of aluminosilicate liquids
NASA Astrophysics Data System (ADS)
Boettcher, Art; Guo, Qiti; Bohlen, Steve; Hanson, Brooks
1984-04-01
To test the possibility that aluminosilicate liquids exhibit pressure-induced transformations, particularly involving changes in the coordination of aluminum, we determined melting relationships for the feldspar-bearing systems NaAlSi3O8-SiO2, KAlSi3O8-SiO2, and CaAl2Si2O8-SiO2 from 1 atm to 25 kbar. Albite and anorthite behave similarly in that they, and presumably liquids of these compositions, transform at high pressures to jadeite, kyanite, corundum, and other structures with aluminum in six-fold coordination, releasing SiO2 component. This results in a large increase in the activity of SiO2 component in the liquid (alqz), which is manifested by a significant decrease in the melting-point depression of albite and of anorthite by the addition of quartz at pressures above ˜15 kbar. In contrast, sanidine does not transform to denser phases at pressures below at least 100 kbar, but it melts incongruently to leucite + SiO2-rich liquid up to ˜ 15 kbar. This produces a relatively large alqz and a small freezing-point depression by quartz below this pressure; the opposite holds above ˜15 kbar. These results support the concept that significant structural changes, including coordination changes in aluminum, occur in magmas in the upper mantle.
Comparing Sliding-Wear Characteristics of the Electro-Pressure Sintered and Wrought Cobalt
NASA Astrophysics Data System (ADS)
Lee, J. E.; Kim, Y. S.; Kim, T. W.
Dry sliding wear tests of hot-pressure sintered and wrought cobalt were carried out to compare their wear characteristics. Cobalt powders with average size of 1.5µm were electro-pressure sintered to make sintered-cobalt disk wear specimens. A vacuum-induction melted cobalt ingot was hot-rolled at 800°C to a plate, from which wrought-cobalt disk specimens were machined. The specimens were heat treated at various temperatures to vary grain size and phase fraction. Wear tests of the cobalt specimens were carried out using a pin-on-disk wear tester against a glass (83% SiO2) bead at 100N with the constant sliding speed and distance of 0.36m/s and 600m, respectively. Worn surfaces, their cross sections, and wear debris were examined by an SEM. The wear of the cobalt was found to be strongly influenced by the strain-induced phase transformation of ɛ-Co (hcp) to α-Co (fcc). The sintered cobalt had smaller uniform grain size and showed higher wear rate than the wrought cobalt. The higher wear rate of the sintered cobalt was explained by the more active deformation-induced phase transformation than in the wrought cobalt with larger irregular grains.
Heating-induced glass-glass and glass-liquid transformations in computer simulations of water.
Chiu, Janet; Starr, Francis W; Giovambattista, Nicolas
2014-03-21
Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA).
Heating-induced glass-glass and glass-liquid transformations in computer simulations of water
NASA Astrophysics Data System (ADS)
Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas
2014-03-01
Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA).
Mechanically Induced Graphite-Nanodiamonds-Phase Transformations During High-Energy Ball Milling
NASA Astrophysics Data System (ADS)
El-Eskandarany, M. Sherif
2017-05-01
Due to their unusual mechanical, chemical, physical, optical, and biological properties, nearly spherical-like nanodiamonds have received much attention as desirable advanced nanomaterials for use in a wide spectrum of applications. Although, nanodiamonds can be successfully synthesized by several approaches, applications of high temperature and/or high pressure may restrict the real applications of such strategic nanomaterials. Distinct from the current preparation approaches used for nanodiamonds preparation, here we show a new process for preparing ultrafine nanodiamonds (3-5 nm) embedded in a homogeneous amorphous-carbon matrix. Our process started from high-energy ball milling of commercial graphite powders at ambient temperature under normal atmospheric helium gas pressure. The results have demonstrated graphite-single wall carbon nanotubes-amorphous-carbon-nanodiamonds phase transformations carried out through three subsequent stages of ball milling. Based on XRD and RAMAN analyses, the percentage of nanodiamond phase + C60 (crystalline phase) produced by ball milling was approximately 81%, while the amorphous phase amount was 19%. The pressure generated on the powder together the with temperature increase upon the ball-powder-ball collision is responsible for the phase transformations occurring in graphite powders.
Pyroxenes and olivines: Structural implications of shock-wave data for high pressure phases
NASA Technical Reports Server (NTRS)
Jeanloz, R.; Ahrens, T. J.
1975-01-01
The nature of the shock-induced, high-pressure phases of olivine and pyroxene rocks is examined in the light of data for the densities of a new class of perovskite-related silicate structures. Also examined are some new Hugoniot and release adiabat data for bronzite. Reexamining available shock data for magnesian pyroxenes and olivines leads to the conclusion that they define a mixed phase (or disequilibrium) region to about the 100 GPa range, related to the kinetics of phase transformation in these silicates. By recognizing this point, certain discrepancies in previous interpretations of shock data can be explained. A set of theoretical Hugonoits for pyroxene and olivine stoichiometry, perovskite-bearing assemblages was constructed based on their properties deduced from high-pressure work, showing that the shock data is compatible with transformations to perovskites in the 45-7GPa region. Finally, the shock data indicate very similar properties for olivine and pyroxene at high pressures making them both equally likely candidates for the lower mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H.; Tse, J. S., E-mail: john.tse@usask.ca; Hu, M. Y.
2015-10-28
The pressure-induced amorphization and subsequent recrystallization of SnI{sub 4} have been investigated using first principles molecular dynamics calculations together with high-pressure {sup 119}Sn nuclear resonant inelastic x-ray scattering measurements. Above ∼8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ∼64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI{sub 4} under ambient conditions. Although high pressure structures of SnI{sub 4} were thought to be determined by randommore » packing of equal-sized spheres, we detected electron charge transfer in each phase. This charge transfer results in a crystal structure packing determined by larger than expected iodine atoms.« less
Pressure-induced effects and phase relations in Mg2NiH4
NASA Astrophysics Data System (ADS)
Gavra, Z.; Kimmel, G.; Gefen, Y.; Mintz, Moshe H.
1985-05-01
The low-temperature (<210 °C) crystallographic structure, electrical conductivity, and thermal stability of Mg2NiH4 powders compacted under isostatic pressures of up to 10 kbar were studied. A comparison is made with the corresponding properties of the noncompressed material. It has been concluded that under stress-free hydriding conditions performed below 210 °C, a two-phase hydride mixture is formed. Each of the hydride particles consists of an inner core composed of an hydrogen-deficient monoclinic phase coated by a layer of a stoichiometric orthorhombic phase. The monoclinic phase has a metalliclike electrical conductivity while the orthorhombic phase is insulating. High compaction pressures cause the transformation of the orthorhombic structure into the monoclinic one, thereby resulting in a pressure-induced insulator-to-conductor transition. Reduced decomposition temperatures are obtained for the compressed hydrides. This reduction is attributed to kinetic factors rather than to a reduced thermodynamic stability.
Liu, Hanyu; Tse, John S.; Hu, Michael Y.; ...
2015-10-27
The pressure-induced amorphization and subsequent recrystallization of SnI 4 have been investigated using first principles molecular dynamics calculations together with high-pressure 119Sn nuclear resonant inelastic x-ray scattering measurements. Above ~8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ~64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI 4 under ambient conditions. Although high pressure structures of SnI 4 were thought to be determined by random packingmore » of equal-sized spheres, we detected electron charge transfer in each phase. As a result, this charge transfer results in a crystal structure packing determined by larger than expected iodine atoms. (C) 2015 AIP Publishing LLC.« less
Liu, H; Tse, J S; Hu, M Y; Bi, W; Zhao, J; Alp, E E; Pasternak, M; Taylor, R D; Lashley, J C
2015-10-28
The pressure-induced amorphization and subsequent recrystallization of SnI4 have been investigated using first principles molecular dynamics calculations together with high-pressure (119)Sn nuclear resonant inelastic x-ray scattering measurements. Above ∼8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ∼64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI4 under ambient conditions. Although high pressure structures of SnI4 were thought to be determined by random packing of equal-sized spheres, we detected electron charge transfer in each phase. This charge transfer results in a crystal structure packing determined by larger than expected iodine atoms.
Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng
2016-07-18
Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure-structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.
Influence of supercritical CO(2) pressurization on the phase behavior of mixed cholesteryl esters.
Huang, Zhen; Feng, Mei; Su, Junfeng; Guo, Yuhua; Liu, Tie-Yan; Chiew, Yee C
2010-09-15
Evidences indicating the presence of phase transformations in the mixed cholesteryl benzoate (CBE) and cholesteryl butyrate (CBU) under the supercritical CO(2) pressurization, by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD), are presented in this work. These include (1) the DSC heating curve of pure CBU; (2) the DSC heating curves of CBU/CBE mixtures; (3) the XRD spectra of pure CBU; (4) the XRD spectra of CBU/CBE mixtures; (5) CBU and CBE are miscible in either solid phase or liquid phase over the whole composition range. As a result of the presence of these phase transformations induced by pressurization, it could be deduced that a solid solution of the CBU/CBE mixture might have formed at the interfaces under supercritical conditions, subsequently influencing their dissolving behaviors in supercritical CO(2). Copyright 2010 Elsevier B.V. All rights reserved.
Synthesis, characterization and thermodynamic study of carbon dioxide adsorption on akaganéite
Roque-Malherbe, R.; Lugo, F.; Rivera-Maldonado, C.; ...
2015-04-01
A mixture of akaganeite nanoparticles and sodium salts was synthesized and modi fied, first by washing, and then by Li exchange. The structural characterization of the produced materials was performed with: powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, thermogravimetric analysis, diffuse reflectance infrared Fourier transform spectrometry, Mossbauer spectros- € copy and magnetization measurements. Additionally low pressure nitrogen and high pressure carbon dioxide adsorption experiments were performed. The sum of the characterization information made possible to conclude that the produced akaganeite phases crystallized in a structure exhibiting the symmetry of the I2/m space group, where the measured equivalentmore » spherical diameter of the akaganeite crystallites yielded 9 nm, as well, the tested phases exhibited a standard behaviour under heating and displayed a superparamagnetic behaviour. Finally the high pressure carbon dioxide adsorption experiments demonstrated a pressure-responsive framework opening event due to a structural transformation of the adsorbent framework induced by the guest molecules. This fact opens new applications for akaganeite as a high pressure adsorbent.« less
Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures
Coppari, F.; Smith, R. F.; Eggert, J. H.; ...
2013-09-22
Here, magnesium oxide, an important component of the Earth’s mantle, has been extensively studied in the pressure and temperature range found within the Earth. However,much less is known about its behavior under conditions appropriate for newly-discovered super-Earth planets, where pressures can exceed 1000 GPa (10 Mbar). It is widely believed that MgO will follow the rocksalt (B1) to cesium chloride (B2) transformation pathway commonly found for many alkali halides, alkaline earth oxides and various other ionic compounds. Static compression experiments have determined the structure of MgO to 250 GPa but have been unable to reach pressures necessary to induce themore » predicted transformation, resulting in large uncertainties regarding its properties under conditions relevant to super-Earths and other large planets. Here we report new dynamic x-ray diffraction measurements of ramp-compressed MgO to 900 GPa.We report evidence for the B2 phase beginning near 600 GPa, remaining stable on further compression to 900 GPa, the highest pressure diffraction data ever collected.« less
Stress-state effects on the stress-induced martensitic transformation of carburized 4320 steels
NASA Astrophysics Data System (ADS)
Karaman, I.; Balzer, M.; Sehitoglu, Huseyin; Maier, H. J.
1998-02-01
The effect of different stress states on the stress-induced martensitic transformation of retained austenite was investigated in carburized 4320 steels with an initial retained austenite content of 15 pct. Experiments were conducted utilizing a specialized pressure rig and comparison between stress-strain behaviors of specimens with different austenitization and tempering histories was performed under these stress states. Experimental results indicated considerable asymmetry between tension and compression, with triaxial stress states resulting in the highest strength levels for the untempered material. Fine carbide precipitates due to low-temperature tempering increased the strength and ductility of the specimens and also changed the austenite-to-martensite transformation behavior. Numerical simulations of stress-strain behaviors under different stress states were obtained, with an existing micromechanical self-consistent framework utilizing the crystallographic theory of austenite/martensite transformation and the minimum complementary free-energy principle. The model was modified for carburized steels upon microstructural investigation and predicted the same trends in effective stress-effective strain behavior as observed experimentally.
Molecular Dynamics Simulations of Shear Induced Transformations in Nitromethane
NASA Astrophysics Data System (ADS)
Larentzos, James; Steele, Brad
2017-06-01
Recent experiments demonstrate that NM undergoes explosive chemical initiation under compressive shear stress. The atomistic dynamics of the shear response of single-crystalline and bi-crystalline nitromethane (NM) are simulated using molecular dynamics simulations under high pressure conditions to aid in interpreting these experiments. The atomic interactions are described using a recently re-optimized ReaxFF-lg potential trained specifically for NM under pressure. The simulations demonstrate that the NM crystal transforms into a disordered state upon sufficient application of shear stress; its maximum value, shear angle, and atomic-scale dynamics being highly dependent on crystallographic orientation of the applied shear. Shear simulations in bi-crystalline NM show more complex behavior resulting in the appearance of the disordered state at the grain boundary.
Molecular Dynamics Simulations of Shear Induced Transformations in Nitromethane
NASA Astrophysics Data System (ADS)
Larentzos, James; Steele, Brad
Recent experiments demonstrate that NM undergoes explosive chemical initiation under compressive shear stress. The atomistic dynamics of the shear response of single-crystalline and bi-crystalline nitromethane (NM) are simulated using molecular dynamics simulations under high pressure conditions to aid in interpreting these experiments. The atomic interactions are described using a recently re-optimized ReaxFF-lg potential trained specifically for NM under pressure. The simulations demonstrate that the NM crystal transforms into a disordered state upon sufficient application of shear stress; its maximum value, shear angle, and atomic-scale dynamics being highly dependent on crystallographic orientation of the applied shear. Shear simulations in bi-crystalline NM show more complex behavior resulting in the appearance of the disordered state at the grain boundary.
Pressure-induced transformations of multiferroic relaxor PbFe0.5Nb0.5O3
NASA Astrophysics Data System (ADS)
Basu, Abhisek; Ahart, Muhtar; Holtgrewe, Nicholas; Lin, Chuanlong; Hemley, Russell J.
2018-02-01
The effects of hydrostatic pressure at ambient temperature on the structural and dielectric properties of PbFe0.5Nb0.5O3 (PFN) were investigated using second harmonic generation (SHG) and powder x-ray diffraction measurements to 31 GPa. The results demonstrate that PFN undergoes a pressure-induced structural transition from the R3m ferroelectric to the R 3 ¯ m paraelectric phase. SHG measurements showed a continuous decrease in the signal with pressure and complete disappearance at 7.1 GPa. Effective nonlinear optical coefficients were determined from the SHG data, and their pressure behavior was used to infer the nature of the transition. The loss of the SHG signal is accompanied by drastic changes in line widths of Bragg reflections, but no discontinuous change in volume was observed. The pressure-volume data were fit to various equations of state, and a bulk modulus K0 = 136 (±2) GPa, bulk modulus pressure derivative K0' = 4.0 (±0.2), and initial volume V0 = 64.5 (±0.1) Å3 were obtained.
Pressure-induced phase transitions of β-type pyrochlore CsTaWO 6
Zhang, F. X.; Tracy, C. L.; Shamblin, J.; ...
2016-09-30
The β-type pyrochlore CsTaWO 6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P2 1/c) at ~18 GPa. The structural evolution in CsTaWO 6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that themore » pressure-induced phase transitions in CsTaWO 6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os 2O 6 at high pressure conditions.« less
Pressure-induced phase transitions of β-type pyrochlore CsTaWO 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, F. X.; Tracy, C. L.; Shamblin, J.
The β-type pyrochlore CsTaWO 6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P2 1/c) at ~18 GPa. The structural evolution in CsTaWO 6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that themore » pressure-induced phase transitions in CsTaWO 6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os 2O 6 at high pressure conditions.« less
Quasi-dynamic pressure and temperature initiated β<-->δ solid phase transitions in HMX
NASA Astrophysics Data System (ADS)
Zaug, Joseph M.; Farber, Daniel L.; Craig, Ian M.; Blosch, Laura L.; Shuh, David K.; Hansen, Donald W.; Aracne-Ruddle, Chantel M.
2000-04-01
The phase transformation of β-HMX (>0.5% RDX) to δ phase has been studied for over twenty years and more recently with an high-contrast optical second harmonic generation technique. Shock studies of the plastic binder composites of HMX have indicated that the transition is perhaps irreversible, a result that concurs with the static pressure results published by F. Goetz et al. [1] in 1978. However, the stability field favors the β polymorph over δ as pressure is increased (up to 5.4 GPa) along any thermodynamically reasonable isotherm. In this experiment, strict control of pressure and temperature is maintained while x-ray and optical diagnostics are applied to monitor the conformational dynamics of HMX. Unlike the temperature induced β→δ transition, the pressure induced is heterogeneous in nature. The 1 bar 25 °C δ→β transition is not immediate, occuring over tens of hours. Transition points and kinetics are path dependent and consequently this paper describes our work in progress.
NASA Astrophysics Data System (ADS)
Sharp, T. G.; Hu, J.; Walton, E. L.
2013-12-01
Martian meteorites are important samples for understanding the origin and age of the Martian crust. All of these samples have been shocked to some degree during their ejection from Mars or earlier. Tissint, a picritic shergottite, has many high-pressure phases that have been used to constrain shock conditions and suggest a deep crustal origin [1] and to argue for multiple impact events [2]. Here we investigate the products and mechanisms of various olivine transformation reactions. Olivine in and adjacent to shock-melt veins and pockets is transformed into high-pressure minerals. In the hottest parts of the sample, olivine dissociated into 50-nm crystals of magnesiowüstite intergrown with either a pyroxene-composition glass or with low-Ca clinopyroxene. In both cases, the olivine is inferred to have transformed to silicate perovskite + magnesiowüstite during shock with subsequent breakdown of the perovskite after pressure release. Olivine along the margins of shock veins transformed into ringwoodite. Polycrystalline ringwoodite formed at the olivine-melt interface wheras coherent ringwoodite lamellae formed farther from the melt. These ringwoodite lamellae have the same topotaxial relationship to olivine as seen in static high-pressure experiments [3] and shocked meteorites [4]: (100)Ol || {111}Rw and [011]Ol || <110>Rw. The various olivine reactions can be explained by a single shock to above 24 GPa where only the highest temperatures allowed the dissociation of olivine to silicate-perovskite plus magnesiowüstite. The silicate perovskite in the melt pocket transformed to pyroxene because the melt pocket remained very hot after pressure release. At lower temperatures, the kinetically easier polymorphic transformation of olivine to metastable ringwoodite occurred. At the lowest temperatures, this reaction was facilitated by nucleation of ringwoodite lamellae on stacking faults in olivine. The variation in assemblages that we see are consistent with a single shock and a relatively short shock pulse. References: [1] Baziotis1, I. P. et. al 2013 Nature Communications 4:1404, [2] El Goresey, A. et. al 2013 #1037. 44th LPSC. [3] Kerschhofer, L. et. al 1996 Science 274, 79-81. [4] Miyahara et. al, 2010 EPSL. 295, 321-327.
Li, Kuo; Zheng, Haiyan; Hattori, Takanori; Sano-Furukawa, Asami; Tulk, Christopher A; Molaison, Jamie; Feygenson, Mikhail; Ivanov, Ilia N; Yang, Wenge; Mao, Ho-Kwang
2015-12-07
Pressure-induced polymerization of charged triple-bond monomers like acetylide and cyanide could lead to formation of a conductive metal-carbon network composite, thus providing a new route to synthesize inorganic/organic conductors with tunable composition and properties. The industry application of this promising synthetic method is mainly limited by the reaction pressure needed, which is often too high to be reached for gram amounts of sample. Here we successfully synthesized highly conductive Li3Fe(CN)6 at maximum pressure around 5 GPa and used in situ diagnostic tools to follow the structural and functional transformations of the sample, including in situ X-ray and neutron diffraction and Raman and impedance spectroscopy, along with the neutron pair distribution function measurement on the recovered sample. The cyanide anions start to react around 1 GPa and bond to each other irreversibly at around 5 GPa, which are the lowest reaction pressures in all known metal cyanides and within the technologically achievable pressure range for industrial production. The conductivity of the polymer is above 10(-3) S · cm(-1), which reaches the range of conductive polymers. This investigation suggests that the pressure-induced polymerization route is practicable for synthesizing some types of functional conductive materials for industrial use, and further research like doping and heating can hence be motivated to synthesize novel materials under lower pressure and with better performances.
Phase transformations in a Cu−Cr alloy induced by high pressure torsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korneva, Anna, E-mail: a.korniewa@imim.pl; Straumal, Boris; Institut für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen
2016-04-15
Phase transformations induced by high pressure torsion (HPT) at room temperature in two samples of the Cu-0.86 at.% Cr alloy, pre-annealed at 550 °C and 1000 °C, were studied in order to obtain two different initial states for the HPT procedure. Observation of microstructure of the samples before HPT revealed that the sample annealed at 550 °C contained two types of Cr precipitates in the Cu matrix: large particles (size about 500 nm) and small ones (size about 70 nm). The sample annealed at 1000 °C showed only a little fraction of Cr precipitates (size about 2 μm). The subsequentmore » HPT process resulted in the partial dissolution of Cr precipitates in the first sample and dissolution of Cr precipitates with simultaneous decomposition of the supersaturated solid solution in another. However, the resulting microstructure of the samples after HPT was very similar from the standpoint of grain size, phase composition, texture analysis and hardness measurements. - Highlights: • Cu−Cr alloy with two different initial states was deformed by HPT. • Phase transformations in the deformed materials were studied. • SEM, TEM and X-ray diffraction techniques were used for microstructure analysis. • HPT leads to formation the same microstructure independent of the initial state.« less
Phase transformations in the hematite-metal system during mechanical alloying
NASA Astrophysics Data System (ADS)
Kozlov, K. A.; Shabashov, V. A.; Litvinov, A. V.; Sagaradze, V. V.
2009-04-01
Mössbauer spectroscopy and X-ray diffraction are used to show that the phase transformations in hematite α-Fe2O3-metal ( M = Fe, Ni, Ti, Zr) powder mixtures induced by severe cold plastic deformation in ball mills occur via the formation of M-Fe-O solid solutions, redox reactions with the reduction of metallic iron, and the formation of secondary M x O y oxides and M x Fe y intermetallics. Mechanical activation in a ball mill is compared to that under high-pressure shear in Bridgman anvils. The transformations that take place in a ball mill are found to have several stages and to be accelerated.
Polyamorphism in Yb-based metallic glass induced by pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Liangliang; Luo, Qiang; Li, Renfeng
2017-04-25
The Yb 62.5Zn 15Mg 17.5Cu 5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. Furthermore, this discovery in Yb-based metallic glass, combinedmore » with the previous reports on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses.« less
Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation
NASA Astrophysics Data System (ADS)
Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong
2018-05-01
The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.
Zheng, Haiyan; Wang, Lijuan; Li, Kuo; Yang, Youyou; Wang, Yajie; Wu, Jiajia; Dong, Xiao; Wang, Chun-Hai; Tulk, Christopher A; Molaison, Jamie J; Ivanov, Ilia N; Feygenson, Mikhail; Yang, Wenge; Guthrie, Malcolm; Zhao, Yusheng; Mao, Ho-Kwang; Jin, Changqing
2017-01-01
Transformation between different types of carbon-carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC 2 ) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC 2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6- are identified with gas chromatography-mass spectrometry and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 10 7 fold enhancement of the electrical conductivity. The polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.
Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation
NASA Astrophysics Data System (ADS)
Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong
2018-03-01
The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.
Creation and formation mechanism of new carbon phases constructed by amorphous carbon
NASA Astrophysics Data System (ADS)
Yao, Mingguang; Cui, Wen; Liu, Bingbing
Our recent effort is focusing on the creation of new hard/superhard carbon phases constructed by disordered carbons or amorphous carbon clusters under high pressure. We showed that the pressure-induced amorphous hard carbon clusters from collapsed fullerenes can be used as building blocks (BBs) for constructing novel carbon structures. This new strategy has been verified by compressing a series of intercalated fullerides, pre-designed by selecting various dopants with special features. We demonstrate that the boundaries of the amorphous BBs are mediated by intercalated dopants and several new superhard materials have been prepared. We also found that the dopant-mediated BBs can be arranged in either ordered or disordered structures, both of which can be hard enough to indent the diamond anvils. The hardening mechanisms of the new phases have also been discussed. For the glassy carbon (GC) constructructed by disordered fullerene-like nanosized fragments, we also found that these disordered fragments can bond and the compressed GC transformed into a transparent superhard phase. Such pressure-induced transformation has been discovered to be driven by a novel mechanism (unpublished). By understanding the mechanisms we can clarify the controversial results on glassy carbon reported recently. The authors would like to thank the financial support from the National Natural Science Foundation of China (No. 11474121, 51320105007).
NASA Astrophysics Data System (ADS)
Xie, Z.; Li, X.; Sharp, T. G.; de Carli, P. S.
2009-12-01
Introduction: High-pressure minerals, produced by shock metamorphism, are common in and around melt veins in highly shocked chondrites. The shock duration can be constrained by using transformation kinetics, such as the crystallization rate of the melt-vein matrix[1-2], or growth rate of the high-pressure minerals [3-4], or using elements diffusion rate between two minerals [5]. Using transformation kinetics to constrain shock duration de-pend on the details of the transformation mechanism. For example, growth of topotaxial ringwoodite in olivine with coherent interfaces is slower than growth of inclusions with incoherent interfaces [4-5]. Similarly, diffusion-controlled growth, where rates are determined by long-range diffusion, is generally much slower than interface-controlled growth, which is only dependent on diffusion across the interface [6-8]. The occurrences of the high-pressure mineral rims were recently reported in shock-induced melt veins in several heavily shocked (S6) chondrites, ALH78003, Peace River and GRV052049 [9-11]. Here we report EMAP and Raman results of the ringwoodite rims around olivine cores in shock veins of the Antarctic chondrites GRV 022321, and to elucidate the mechanisms of transformation and Mg-Fe diffusion of the olivine to ringwoodite. Results: GRV022321 has a network of black veins which enclose abundant host-rock fragments. The enclosed fragments have sizes ranging from 5 µm to 30 µm, with a brighter rim up to several µm wide and a dark core in reflected light and BSE image. The Raman data reveal that the rim mineral is ringwoodite signature, and the core minerals are dominated by olivine and mixed minor ringwoodite. EMAP data confirm that the ringwoodite in rim is richer in faylite (Fa) than the olivine core. The Fa values range from 50 to 10 with the outer rim having highest Fa value, and the inside darker area with a lower value. Discussion: The occurrence of the rounded shape grains with smooth edges embedded in the fine matrix in shock-induced melt veins suggest that they are enclosed host-rock fragments and that the ringwoodite in the rim was transformed by solid-state transformation from previous olivine. The variable extent of transformation is likely a result of temperature variations during shock, with the hottest outer olivine forming the ringwoodite rim. The outer hotter ringwoodite attract more Fe than inside cooler olivine, and Mg-Fe diffusion occurs in rapid transformation at high pressure and temperature over up to 10 µm distance. The sample is unique because we can test and double check different shock duration constraints in future work. References: [1] Langenhorst and Poirier (2000) EPSL 184, 37-55. [2] Xie, Z. et al. (2006) GCA, 70. 504-515. [3] Ohtani et al. (2004) EPSL 227(3-4), 505-515. [4] Xie and Sharp (2007), EPLS, 433-445. [5] Beck, et al. (2005) Nature 435, 1071-1074. [6] Kerschhofer et al. (1996) Science 274 (5284), 79-81. [7] Kerschhofer et al. (2000) PEPI 121, 59-76. [8] Sharp and DeCarli (2006) MESS II, 653-677. [9] Ohtani et al. (2006), Shock Waves, 16:45-52. [10] Miyahara et al. (2008) Proceedings. of NAS 105,8542-8547. [11] Feng et al. (2007), MAPS 42, A45.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efthimiopoulos, I.; Tsurkan, V.; Loidl, A.
We have conducted high-pressure measurements on the CuCr2O4 and CuCr2Se4 spinels to unravel the structural systematics of these materials under compression. Our studies have revealed diverse structural behavior in these two compounds. In particular, CuCr2O4 retains its ambient-pressure I41/amd structure up to 50 GPa. Close inspection of the lattice and interatomic parameters reveals a compressibility change near 23 GPa, which is accompanied by an expansion of the apical Cr–O bond distances. We speculate that an outer Cr3+ 3d orbital reorientation might be at play in this system, manifesting as the change in compressibility at that pressure point. On the othermore » hand, CuCr2Se4 undergoes a structural transformation from the starting Fd3¯m phase toward a monoclinic structure initiated at ~8 GPa and completed at ~20 GPa. This high-pressure behavior resembles that of ZnCr2Se4, and it appears that, unlike similar chalcogenide Cr spinels, steric effects take a leading role in this pressure-induced Fd3¯m → monoclinic transition. Close comparison of our results with the reported literature yields significant insights behind the pressure-induced structural systematics of this important family of materials, thus both allowing for the careful manipulation of the structural/physical properties of these systems by strain and promoting our understanding of similar pressure-induced effects in relevant systems.« less
NASA Astrophysics Data System (ADS)
Liu, J. B.; Johnson, D. D.
2009-04-01
Using density-functional theory, we calculate the potential-energy surface (PES), minimum-energy pathway (MEP), and transition state (TS) versus hydrostatic pressure σhyd for the reconstructive transformation in Fe from body-centered cubic (bcc) to hexagonal closed-packed (hcp). At fixed σhyd , the PES is described by coupled shear (γ) and shuffle (η) modes and is determined from structurally minimized hcp-bcc energy differences at a set of (η,γ) . We fit the PES using symmetry-adapted polynomials, permitting the MEP to be found analytically. The MEP is continuous and fully explains the transformation and its associated magnetization and volume discontinuity at TS. We show that σhyd (while not able to induce shear) dramatically alters the MEP to drive reconstruction by a shuffle-only mode at ≤30GPa , as observed. Finally, we relate our polynomial-based results to Landau and nudge-elastic-band approaches and show they yield incorrect MEP in general.
Modeling of wave-coherent pressures in the turbulent boundary layer above water waves
NASA Technical Reports Server (NTRS)
Papadimitrakis, Yiannis ALEX.
1988-01-01
The behavior of air pressure fluctuations induced by progressive water waves generated mechanically in a laboratory tank was simulated by solving a modified Orr-Sommerfeld equation in a transformed Eulerian wave-following frame of reference. Solution is obtained by modeling the mean and wave-coherent turbulent Reynolds stresses, the behavior of which in the turbulent boundary layer above the waves was simulated using a turbulent kinetic energy-dissipation model, properly modified to account for free-surface proximity and favorable pressure gradient effects. The distribution of both the wave-coherent turbulent Reynolds stress and pressure amplitudes and their corresponding phase lags was found to agree reasonably well with available laboratory data.
NASA Astrophysics Data System (ADS)
Lin, Kung-Liang; Lin, Chih-Ming; Lin, Yu-Sheng; Jian, Sheng-Rui; Liao, Yen-Fa; Chuang, Yu-Chun; Wang, Chuan-Sheng; Juang, Jenh-Yih
2016-02-01
Pressure-induced phase transitions in n-type silicon-doped gallium arsenide (GaAs:Si ) at ambient temperature were investigated by using angular-dispersive X-ray diffraction (ADXRD) under high pressure up to around 18.6 (1) GPa, with a 4:1 (in volume ratio) methanol-ethanol mixture as the pressure-transmitting medium. In situ ADXRD measurements revealed that n-type GaAs:Si starts to transform from zinc- blende structure to an orthorhombic structure [GaAs-II phase], space group Pmm2, at 16.4 (1) GPa. In contrast to previous studies of pure GaAs under pressure, our results show no evidence of structural transition to Fmmm or Cmcm phase. The fitting of volume compression data to the third-order Birch-Murnaghan equation of state yielded that the zero-pressure isothermal bulk moduli and the first-pressure derivatives were 75 (3) GPa and 6.4 (9) for the B3 phase, respectively. After decompressing to the ambient pressure, the GaAs:Si appears to revert to the B3 phase completely. By fitting to the empirical relations, the Knoop microhardness numbers are between H PK = 6.21 and H A = 5.85, respectively, which are substantially smaller than the values of 7-7.5 for pure GaAs reported previously. A discontinuous drop in the pressure-dependent lattice parameter, N- N distances, and V/ V 0 was observed at a pressure of 11.5 (1) GPa, which was tentatively attributed to the pressure-induced dislocation activities in the crystal grown by vertical gradient freeze method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glascoe, E A; Zaug, J M; Burnham, A K
The effect of pressure on the thermal decomposition rate of the energetic material HMX was studied. HMX was precompressed in a diamond anvil cell (DAC) and heated at various rates. The parent species population was monitored as a function of time and temperature using Fourier transform infrared (FTIR) spectroscopy. Decomposition rates were determined by fitting the fraction reacted to the extended-Prout-Tompkins nucleation-growth model and the Friedman isoconversional method. The results of these experiments and analysis indicate that pressure accelerates the decomposition at low to moderate pressures (i.e. between ambient pressure and 1 GPa) and decelerates the decomposition at higher pressures.more » The decomposition acceleration is attributed to pressure enhanced autocatalysis whereas the deceleration at high pressures is attributed pressure inhibiting bond homolysis step(s), which would result in an increase in volume. These results indicate that both {beta} and {delta} phase HMX are sensitive to pressure in the thermally induced decomposition kinetics.« less
Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan
2017-02-08
The crystal to amorphous transformation is a common phenomenon in Nature and has important impacts on material properties. Our current knowledge on such complex solid transformation processes is, however, limited because of their slow kinetics and the lack of long-range ordering in amorphous structures. To reveal the kinetics in the amorphization of solids, this work, by developing iterative reaction sampling based on the stochastic surface walking global optimization method, investigates the well-known crystal to amorphous transformation of silica (SiO 2 ) under external pressures, the mechanism of which has long been debated for its non-equilibrium, pressure-sensitive kinetics and complex product components. Here we report for the first time the global potential energy surface (PES) and the lowest energy pathways for α-quartz amorphization from first principles. We show that the pressurization at 15 GPa, the reaction condition, can lift the quartz phase energetically close to the amorphous zone, which thermodynamically initializes the amorphization. More importantly, the large flexibility of Si cation coordination (including four, five and six coordination) results in many kinetically competing routes to more stable dense forms, including the known MI, stishovite, newly-identified MII and TI phases. All these pathways have high barriers due to the local Si-O bond breaking and are mediated by amorphous structures with five-fold Si. This causes simultaneous crystal-to-crystal and crystal-to-amorphous transitions. The high barrier and the reconstructive nature of the phase transition are the key kinetics origin for silica amorphization under pressures.
NASA Astrophysics Data System (ADS)
Lee, S.; Mysen, B. O.; Fei, Y.; Cody, G. D.; Mao, H.; Eng, P.
2006-12-01
Full understanding of the atomic arrangement of oxides glasses and melts both at ambient and high-pressure has long been one of the fundamental and yet difficult problems in earth sciences, condensed matter physics as well as glass sciences. The structures of archetypal oxide glasses (e.g. SiO2 and B2O3) as well as complex silicate glasses (ternary and quaternary aluminosilicate glasses) at high pressure are essential to elucidate origins of anomalous macroscopic properties of melts and global geophysical processes in the Earth's interior. Recent progress in inelastic x-ray scattering (IXS) with high brilliance 3rd generation synchrotron x-rays combined with DAC techniques allows us to explore pressure-induced changes in the bonding nature of archetypal amorphous oxide, illustrating a new opportunity to study amorphous oxides with IXS (Lee SK et al. Nature Materials 2005, 4, p851). 2 dimensional solid-state NMR have offered much improved resolution over conventional 1D NMR, unveiling previously unknown structural details of amorphous silicates at high pressure (Lee SK. Geochim. Cosmochim. Acta 2005, 69, p3695; J. Phys. Chem. B. 2006, 110, p16408) Here, we report the synchrotron inelastic x-ray scattering results (oxygen and boron K-edge) for divers oxide glasses at pressure up to 40 GPa, revealing the nature of pressure-induced bonding changes and the structure. Direct in-situ measurements provide evidence for a continuous transformation with multiple densification mechanisms. 2D solid-state NMR spectra for silicate and germinate glasses shows detailed information about extent of disorder among framework units at high pressure. The chemical ordering among framework units leads to the formation of ^{[5,6]}Si-O-^{[4]}Si in silicates and ^{[5,6]}Al-O-^{[4]}Si in aluminosilicates. Whereas the densification mechanism can be dependent on the chemical composition and the fraction of non-bridging oxygen, the pressure dependence of both simple and complex multi-component silicate glasses showed similar characteristics: low pressure regime was marked with topological variation without coordination transformation and inter-mediate pressure region (about 5-10 GPa) was characterized by the largest (d(^{[4]}B or ^{[5,6]}Si)/dP) value. Finally high-pressure regime (above 10 GPa) was characterized by a larger energy penalty for coordination transformation than in intermediate pressure regime. These results provide improved prospect for the bonding nature of amorphous materials at high pressure using synchrotron inelastic x-ray scattering and 2D NMR and aid in understanding the microscopic origins of the properties of melts and geological processes in the Earth's interior.
Forced wave induced by an atmospheric pressure disturbance moving towards shore
NASA Astrophysics Data System (ADS)
Chen, Yixiang; Niu, Xiaojing
2018-05-01
Atmospheric pressure disturbances moving over a vast expanse of water can induce different wave patterns, which can be determined by the Froude number Fr. Generally, Fr = 1 is a critical value for the transformation of the wave pattern and the well-known Proudman resonance happens when Fr = 1. In this study, the forced wave induced by an atmospheric pressure disturbance moving over a constant slope from deep sea to shore is numerically investigated. The wave pattern evolves from a concentric-circle type into a triangular type with the increase of the Froude number, as the local water depth decreases, which is in accord with the analysis in the unbounded flat-bottom cases. However, a hysteresis effect has been observed, which implies the obvious amplification of the forced wave induced by a pressure disturbance can not be simply predicted by Fr = 1. The effects of the characteristic parameters of pressure disturbances and slope gradient have been discussed. The results show that it is not always possible to observe significant peak of the maximum water elevation before the landing of pressure disturbances, and a significant peak can be generated by a pressure disturbance with small spatial scale and fast moving velocity over a milder slope. Besides, an extremely high run-up occurs when the forced wave hits the shore, which is an essential threat to coastal security. The results also show that the maximum run-up is not monotonously varying with the increase of disturbance moving speed and spatial scale. There exists a most dangerous speed and scale which may cause disastrous nearshore surge.
Experimental studies of transplutonium metals and compounds under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, J.R.; Haire, R.G.; Benedict, U.
1986-01-01
The structural behavior of the first four transplutonium metals and two Bk-Cf alloys as a function of pressure has been studied in diamond anvil cells via x-ray diffraction. The sequence of structures exhibited as pressure is increased is dhcp ..-->.. ccp ..-->.. orthorhombic. In addition a distorted ccp phase is observed in Am, Bk/sub 0.40/Cf/sub 0.60/, and Cf between the ccp and orthorhombic phases. Diamond anvil cells have also been used to contain AmI/sub 3/, CfBr/sub 3/, and CfCl/sub 3/ under pressure for investigation by absorption spectrophotometry. Both AmI/sub 3/ and CfBr/sub 3/ exhibit pressure-induced, irreversible phase transformations to themore » PuBr/sub 3/-type orthorhombic structure, a more dense form of these compounds. Thus the driving force for these transformations is more efficient crystal packing. Both hexagonal (to 22 GPa) and orthorhombic (to 35 GPa) CfCl/sub 3/ exhibit only reversible spectral changes with pressure. This probably reflects their nearly identical RTP unit cell volumes. In both cases the spectra obtained are consistent with a continuous alteration of the RTP structure with pressure; physical compression seems to make a given f-f transition easier. Additional data are being sought to elucidate more completely the behavior of CfCl/sub 3/ under pressure. 23 refs., 4 figs.« less
Structure and elasticity of serpentine at high-pressure
NASA Astrophysics Data System (ADS)
Mookherjee, Mainak; Stixrude, Lars
2009-03-01
Serpentines occur in the subduction zone settings, both along the slab and within the mantle wedge, they are candidates for transporting water in to the deep earth. Their presence is manifested by serpentine mud volcanoes, high electrical conductivities, magnetic and seismic anomalies. Using theoretical methods, we predict a pressure induced structural transformations in serpentine. The transformations are related to the behavior of the silicate framework and misfit between octahedral and tetrahedral layers. As the structure is compressed, the octahedral layer and tetrahedral layers are compressed at different rates. At 7 GPa, the misfit between the layers vanishes. This causes non-linear pressure dependence of tetrahedral rotational angle. This is also manifested by the onset of anomalous pressure dependence of the elastic constants c11, c33, c12, c13. Beyond 7 GPa, the misfit between the layers grows again reaching extremum at 22 GPa. This is also manifested by discontinuity in average Si-O bond length, volume of tetrahedron and re-orientation of hydroxyl vector. The symmetry of the crystal-structure however, remains unaffected. Evidence of pressure-induced hydrogen bonding is absent in serpentine, as evident from reduction of O-H bond length upon compression. Results of compression for the low-pressure regime ( P < 7 GPa) is well represented by a fourth order Birch-Murnaghan finite strain expression with K0 = 79 GPa, K0' = 12 and K0″ = - 2, where K is the bulk modulus, prime indicates pressure derivatives, and O refers to zero pressure. Our best estimates of K0, K0' and the Grüneisen parameter, γ at 300 K and zero pressure based on our results are: 61 GPa, 17, and 0.77, respectively. At low pressures, serpentine structure is anisotropic with c11 ~ 2.4 × c33. The pressure derivative of elastic constants ( ∂cij/ ∂P) are such, that around 22 GPa c11~ c33. An elastic instability ( c66 < 0) at somewhat higher pressures (> 50 GPa) is also noted. The elastic constant tensor reveals large acoustic anisotropy (41% in VP) and seismic wave velocities that are significantly higher than those inferred from experiments on serpentinites.
Corsini, Niccolò R C; Greco, Andrea; Hine, Nicholas D M; Molteni, Carla; Haynes, Peter D
2013-08-28
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.
NASA Astrophysics Data System (ADS)
Corsini, Niccolò R. C.; Greco, Andrea; Hine, Nicholas D. M.; Molteni, Carla; Haynes, Peter D.
2013-08-01
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], 10.1103/PhysRevLett.94.145501, it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.
Li, Kuo; Zheng, Haiyan; Hattori, Takanori; ...
2015-11-17
By providing a new route to synthesize inorganic/organic conductors with tunable composition and properties, pressure-induced polymerization of charged triple-bond monomers like acetylide and cyanide could lead to formation of a conductive metal–carbon network composite. The industry application of this promising synthetic method is mainly limited by the reaction pressure needed, which is often too high to be reached for gram amounts of sample. Here we successfully synthesized highly conductive Li 3Fe(CN) 6 at maximum pressure around 5 GPa and used in situ diagnostic tools to follow the structural and functional transformations of the sample, including in situ X-ray and neutronmore » diffraction and Raman and impedance spectroscopy, along with the neutron pair distribution function measurement on the recovered sample. The cyanide anions start to react around 1 GPa and bond to each other irreversibly at around 5 GPa, which are the lowest reaction pressures in all known metal cyanides and within the technologically achievable pressure range for industrial production. Moreover, the conductivity of the polymer is above 10 –3 S·cm –1, which reaches the range of conductive polymers. Our investigation suggests that the pressure-induced polymerization route is practicable for synthesizing some types of functional conductive materials for industrial use, and further research like doping and heating can hence be motivated to synthesize novel materials under lower pressure and with better performances.« less
Simple-to-Complex Transformation in Liquid Rubidium.
Gorelli, Federico A; De Panfilis, Simone; Bryk, Taras; Ulivi, Lorenzo; Garbarino, Gaston; Parisiades, Paraskevas; Santoro, Mario
2018-05-18
We investigated the atomic structure of liquid Rb along an isothermal path at 573 K, up to 23 GPa, by X-ray diffraction measurements. By raising the pressure, we observed a liquid-liquid transformation from a simple metallic liquid to a complex one. The transition occurs at 7.5 ± 1 GPa which is slightly above the first maximum of the T-P melting line. This transformation is traced back to the density-induced hybridization of highest electronic orbitals leading to the accumulation of valence electrons between Rb atoms and to the formation of interstitial atomic shells, a behavior that Rb shares with Cs and is likely to be common to all alkali metals.
NASA Technical Reports Server (NTRS)
Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.
1998-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.
Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng
2016-01-01
Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials. PMID:27426219
Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L.; Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305
2014-01-13
We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1})more » phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.« less
Pressure induced enhancement of the magnetic ordering temperature in rhenium(IV) monomers
NASA Astrophysics Data System (ADS)
Woodall, Christopher H.; Craig, Gavin A.; Prescimone, Alessandro; Misek, Martin; Cano, Joan; Faus, Juan; Probert, Michael R.; Parsons, Simon; Moggach, Stephen; Martínez-Lillo, José; Murrie, Mark; Kamenev, Konstantin V.; Brechin, Euan K.
2016-12-01
Materials that demonstrate long-range magnetic order are synonymous with information storage and the electronics industry, with the phenomenon commonly associated with metals, metal alloys or metal oxides and sulfides. A lesser known family of magnetically ordered complexes are the monometallic compounds of highly anisotropic d-block transition metals; the `transformation' from isolated zero-dimensional molecule to ordered, spin-canted, three-dimensional lattice being the result of through-space interactions arising from the combination of large magnetic anisotropy and spin-delocalization from metal to ligand which induces important intermolecular contacts. Here we report the effect of pressure on two such mononuclear rhenium(IV) compounds that exhibit long-range magnetic order under ambient conditions via a spin canting mechanism, with Tc controlled by the strength of the intermolecular interactions. As these are determined by intermolecular distance, `squeezing' the molecules closer together generates remarkable enhancements in ordering temperatures, with a linear dependence of Tc with pressure.
Highly efficient and selective pressure-assisted photon-induced polymerization of styrene
NASA Astrophysics Data System (ADS)
Guan, Jiwen; Song, Yang
2016-06-01
The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the sole product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.
Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation
NASA Astrophysics Data System (ADS)
Ulvestad, A.; Welland, M. J.; Cha, W.; Liu, Y.; Kim, J. W.; Harder, R.; Maxey, E.; Clark, J. N.; Highland, M. J.; You, H.; Zapol, P.; Hruszkewycz, S. O.; Stephenson, G. B.
2017-05-01
Crystallographic imperfections significantly alter material properties and their response to external stimuli, including solute-induced phase transformations. Despite recent progress in imaging defects using electron and X-ray techniques, in situ three-dimensional imaging of defect dynamics remains challenging. Here, we use Bragg coherent diffractive imaging to image defects during the hydriding phase transformation of palladium nanocrystals. During constant-pressure experiments we observe that the phase transformation begins after dislocation nucleation close to the phase boundary in particles larger than 300 nm. The three-dimensional phase morphology suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than to the core-shell model commonly assumed. We substantiate this using three-dimensional phase field modelling, demonstrating how phase morphology affects the critical size for dislocation nucleation. Our results reveal how particle size and phase morphology affects transformations in the PdH system.
NASA Astrophysics Data System (ADS)
Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen
2018-03-01
Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.
Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen
2018-03-01
Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.
NASA Astrophysics Data System (ADS)
Renard, F.; Zheng, X.; Cordonnier, B.; Zhu, W.; Jamtveit, B.
2017-12-01
Several geological processes involve mineral transformations where nominally dry rocks transform into hydrated ones when left in contact with water (i.e. eclogitization, serpentinization). In these systems, the transformation induces stress if the rock is confined, and the new minerals create a so-called force of crystallization. Here, we study a model retrograde metamorphic reaction, the hydration of periclase, MgO, into brucite, Mg(OH)2, to quantify the coupling between reaction, stress generation, porosity evolution and fracturing. This hydration reaction generates a volume increase of 110%, and a density decrease of 33.8% of the solid. Samples of a microporous MgO ceramics were reacted at 170-211°C, 5-80 MPa confining pressure, 6-95 MPa differential stress and 5 MPa pore fluid pressure. They were installed into an X-ray transparent triaxial deformation rig, called Hades, and mounted on a synchrotron microtomography stage. Each experiment lasted between 2 and 5 hours, during which between 35 and 130 three-dimensional images were acquired, allowing to follow the chemical transformation and the deformation of the sample. Below 30 MPa mean pressure, the hydration reaction was coupled to fracturing of the MgO ceramics, and the transformation rate followed a sigmoidal kinetics curve with a slow initiation, a fast reaction coupled to fracturing and the generation of a transient porosity pulse, and a slow-down until an almost complete transformation of periclase into brucite.. Conversely, above 30 MPa, the reaction kinetics was very slow, without fracturing over the time scale of the experiment. When considering the driving force of the hydration reaction, stress generation should be several hundreds MPa, whereas the present experiments show that fracturing occurred only below 30 MPa. This indicates that the potential energy due to phase transformation generates much lower stress than what is estimated from non-equilibrium thermodynamics. A possible interpretation of this observation is that the stress created by the reaction may overcome the disjoining pressure at the grain-grain interface, expelling the water film trapped there and reducing the kinetics of reaction. As a consequence, only a fraction of the available potential driving force was used to accelerate the reaction by microfracturing.
Zheng, Haiyan; Wang, Lijuan; Li, Kuo; ...
2016-08-17
Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC 2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC 2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6– are identified with gas chromatography-mass spectrometrymore » and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 10 7 fold enhancement of the electrical conductivity. As a result, the polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.« less
NASA Astrophysics Data System (ADS)
Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.
2018-04-01
Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.
Mori, Takefumi; Cowley, Allen W
2004-04-01
Renal perfusion pressure was servo-controlled chronically in rats to quantify the relative contribution of elevated arterial pressure versus angiotensin II (Ang II) on the induction of renal injury in Ang II-induced hypertension. Sprague-Dawley rats fed a 4% salt diet were administered Ang II for 14 days (25 ng/kg per minute IV; saline only for sham rats), and the renal perfusion pressure to the left kidney was continuously servo-controlled to maintain a normal pressure in that kidney throughout the period of hypertension. An aortic occluder was implanted around the aorta between the two renal arteries and carotid and femoral arterial pressure were measured continuously throughout the experiment to determine uncontrolled and controlled renal perfusion pressure, respectively. Renal perfusion pressure of uncontrolled, controlled, and sham kidneys over the period of Ang II or saline infusion averaged 152.6+/-7.0, 117.4+/-3.5, and 110.7+/-2.2 mm Hg, respectively. The high-pressure uncontrolled kidneys exhibited tubular necrosis and interstitial fibrosis, especially prominent in the outer medullary region. Regional glomerular sclerosis and interlobular artery injury were also pronounced. Controlled kidneys were significantly protected from interlobular artery injury, juxtamedullary glomeruli injury, tubular necrosis, and interstitial fibrosis as determined by comparing the level of injury. Glomerular injury was not prevented in the outer cortex. Transforming growth factor (TGF)-beta and active NF-kappaB proteins determined by immunohistochemistry were colocalized in the uncontrolled kidney in regions of interstitial fibrosis. We conclude that the preferential juxtamedullary injury found in Ang II hypertension is largely induced by pressure and is probably mediated through the TGF-beta and NF-kappaB pathway.
Krbal, Milos; Bartak, Jaroslav; Kolar, Jakub; Prytuliak, Anastasiia; Kolobov, Alexander V; Fons, Paul; Bezacier, Lucile; Hanfland, Michael; Tominaga, Junji
2017-07-17
We demonstrate that pressure-induced amorphization in Ge-Sb-Te alloys across the ferroelectric-paraelectric transition can be represented as a mixture of coherently distorted rhombohedral Ge 8 Sb 2 Te 11 and randomly distorted cubic Ge 4 Sb 2 Te 7 and high-temperature Ge 8 Sb 2 Te 11 phases. While coherent distortion in Ge 8 Sb 2 Te 11 does not prevent the crystalline state from collapsing into its amorphous counterpart in a similar manner to pure GeTe, the pressure-amorphized Ge 8 Sb 2 Te 11 phase begins to revert to the crystalline cubic phase at ∼9 GPa in contrast to Ge 4 Sb 2 Te 7 , which remains amorphous under ambient conditions when gradually decompressed from 40 GPa. Moreover, experimentally, it was observed that pressure-induced amorphization in Ge 8 Sb 2 Te 11 is a temperature-dependent process. Ge 8 Sb 2 Te 11 transforms into the amorphous phase at ∼27.5 and 25.2 GPa at room temperature and 408 K, respectively, and completely amorphizes at 32 GPa at 408 K, while some crystalline texture could be seen until 38 GPa (the last measurement point) at room temperature. To understand the origins of the temperature dependence of the pressure-induced amorphization process, density functional theory calculations were performed for compositions along the (GeTe) x - (Sb 2 Te 3 ) 1-x tie line under large hydrostatic pressures. The calculated results agreed well with the experimental data.
NASA Astrophysics Data System (ADS)
Lin, Chien-Han; Wang, Chien-Kai; Chen, Yu-An; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung
2016-11-01
In various physiological activities, cells experience stresses along their in-plane direction when facing substrate deformation. Capability of continuous monitoring elasticity of live cell layers during a period is highly desired to investigate cell property variation during various transformations under normal or disease states. This paper reports time-lapsed measurement of live cell layer in-plane elasticity using a pressure sensor embedded microfluidic device. The sensor converts pressure-induced deformation of a flexible membrane to electrical signals. When cells are cultured on top of the membrane, flexural rigidity of the composite membrane increases and further changes the output electrical signals. In the experiments, human embryonic lung fibroblast (MRC-5) cells are cultured and analyzed to estimate the in-plane elasticity. In addition, the cells are treated with a growth factor to simulate lung fibrosis to study the effects of cell transformation on the elasticity variation. For comparison, elasticity measurement on the cells by atomic force microscopy (AFM) is also performed. The experimental results confirm highly anisotropic configuration and material properties of cells. Furthermore, the in-plane elasticity can be monitored during the cell transformation after the growth factor stimulation. Consequently, the developed microfluidic device provides a powerful tool to study physical properties of cells for fundamental biophysics and biomedical researches.
Optimization of Kink Stability in High-Beta Quasi-axisymmetric Stellarators
NASA Astrophysics Data System (ADS)
Fu, G. Y.; Ku, L.-P.; Manickam, J.; Cooper, W. A.
1998-11-01
A key issue for design of Quasi-axisymmetric stellarators( A. Reiman et al, this conference.) (QAS) is the stability of external kink modes driven by pressure-induced bootstrap current. In this work, the 3D MHD stability code TERPSICHORE(W.A. Cooper, Phys. Plasmas 3), 275(1996). is used to calculate the stability of low-n external kink modes in a high-beta QAS. The kink stability is optimized by adjusting plasma boundary shape (i.e., external coil configuration) as well as plasma pressure and current profiles. For this purpose, the TERPSICHORE code has been implemented successfully in an optimizer which maximizes kink stability as well as quasi-symmetry. A key factor for kink stability is rotational transform profile. It is found that the edge magnetic shear is strongly stabilizing. The amount of the shear needed for complete stabilization increases with edge transform. It is also found that the plasma boundary shape plays an important role in the kink stability besides transform profile. The physics mechanisms for the kink stability are being studied by examining the contributions of individual terms in δ W of the energy principle: the field line bending term, the current-driven term, the pressure-driven term, and the vacuum term. Detailed results will be reported.
Pressure-dependent decomposition kinetics of the energetic material HMX up to 3.6 GPa.
Glascoe, Elizabeth A; Zaug, Joseph M; Burnham, Alan K
2009-12-03
The effect of pressure on the global thermal decomposition rate of the energetic material HMX was studied. HMX was precompressed in a diamond anvil cell (DAC) and heated at various rates. The parent species population was monitored as a function of time and temperature using Fourier transform infrared (FTIR) spectroscopy. Global decomposition rates were determined by fitting the fraction reacted to the extended-Prout-Tompkins nucleation-growth model and the Friedman isoconversional method. The results of these experiments and analysis indicate that pressure accelerates the decomposition at low-to-moderate pressures (i.e., between ambient pressure and 0.1 GPa) and decelerates the decomposition at higher pressures. The decomposition acceleration is attributed to pressure-enhanced autocatalysis, whereas the deceleration at high pressures is attributed to pressure-inhibiting bond homolysis step(s), which would result in an increase in volume. These results indicate that both the beta- and delta-polymorphs of HMX are sensitive to pressure in the thermally induced decomposition kinetics.
Syrek, Christine J; Apostel, Ella; Antoni, Conny H
2013-07-01
The objective of this article is to investigate transformational leadership as a potential moderator of the negative relationship of time pressure to work-life balance and of the positive relationship between time pressure and exhaustion. Recent research regards time pressure as a challenge stressor; while being positively related to motivation and performance, time pressure also increases employee strain and decreases well-being. Building on the Job Demand-Resources model, we hypothesize that transformational leadership moderates the relationships between time pressure and both employees' exhaustion and work-life balance such that both relationships will be weaker when transformational leadership is higher. Of seven information technology organizations in Germany, 262 employees participated in the study. Established scales for time pressure, transformational leadership, work-life balance, and exhaustion were used, all showing good internal consistencies. The results support our assumptions. Specifically, we find that under high transformational leadership the impact of time pressure on exhaustion and work-life balance was less strong. The results of this study suggest that, particularly under high time pressure, transformational leadership is an important factor for both employees' work-life balance and exhaustion. PsycINFO Database Record (c) 2013 APA, all rights reserved.
He, Zhipeng; Liu, Zhao; Zhou, Xiaofeng; Huang, He
2018-06-01
The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time-resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β-sheet structure. Under constant pressure there is an optimum amount of D 2 O in the wet film (D 2 O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β-sheet structure. Under constant amount of D 2 O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α-helix, and β-turn were quickly transformed into β-sheet. In the second stage, random coil and β-turn were relatively slowly transformed into β-sheet and α-helix, and the content of α-helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure. © 2018 Wiley Periodicals, Inc.
A high-temperature shape memory alloy sensor for combustion monitoring and control
NASA Astrophysics Data System (ADS)
Shaw, Greg S.; Snyder, Joseph T.; Prince, Troy S.; Willett, Michael C.
2005-05-01
Innovations in the use of thin film SMA materials have enabled the development of a harsh environment pressure sensor useful for combustion monitoring and control. Development of such active combustion control has been driven by rising fuel costs and environmental pressures. Active combustion control, whether in diesel, spark ignited or turbine engines requires feedback to the engine control system in order to adjust the quantity, timing, and placement of fuel charges. To be fully effective, sensors must be integrated into each engine in a manner that will allow continuous combustion monitoring (turbine engines) or monitoring of each discrete combustion event (diesel and SI engines). To date, the sensors available for detection of combustion events and processes have suffered from one or more of three problems: 1) Low sensitivity: The sensors are unable to provide and adequate signal-to-noise ratio in the high temperature and electrically noisy environment of the engine compartment. Attempts to overcome this difficulty have focused on heat removal and/or temperature compensation or more challenging high temperature electronics. 2) Low reliability: Sensors and/or sensor packages have been unable to withstand the engine environment for extended periods of time. Issues have included gross degradation and more subtle issues such as migration of dopants in semiconductor sensor materials. 3) High cost: The materials that have been used, the package concepts employed, and the required support electronics have all contributed to the high cost of the few sensor systems available. Prices have remained high due to the limited demand associated with the poor reliability and the high price itself. Ternary titanium nickel alloys, with platinum group metal substitution for the nickel, are deposited as thin films on MEMS-based diaphragms and patterned to form strain gages of a standard metal film configuration. The strain induced phase transformation of the SMA is used as a natural signal enhancement. These sensors are maintained at a temperature just in excess of the austenite finish temperature (Af). When the diaphragm is deformed by an applied pressure, the film undergoes the reversible martensite phase transformation. The fraction of the austenite transformed to martensite is a fraction of the applied pressure. The large difference in the resistivity of the two phases results in a very sensitive strain gage, and hence a pressure sensor with a very high gage factor. The combination of the thin film and the fact that the transformation is strain induced (rather than thermally induced) results in a sensor with very high response rate. In fact, the response rate of the sensor has been shown to be strictly a function of the mechanical response of the diaphragm. Unlike other sensor systems, the temperature of the SMA sensor is controlled above the temperature of the local environment. By controlling above the temperature of the environment, the sensor is largely immune to temperature fluctuations that can affect the response of other sensors. This technology has been demonstrated for a variety of target temperature regimes and a variety of pressure regimes. Sensor design and testing to date has ranged from 180C to >500C and design pressures of 50 to 3500 psi, with higher pressures achievable. Characterization has included analysis of the response rate, the temperature sensitivity, reliability, and the effect of gross alloy changes. Sensor performance has also been evaluated in a diesel engine test cell. Ongoing work includes the sensitivity to minor composition changes, sensitivity to film thickness, and extended reliability and engine testing.
Laser-driven formation of a high-pressure phase in amorphous silica.
Salleo, Alberto; Taylor, Seth T; Martin, Michael C; Panero, Wendy R; Jeanloz, Raymond; Sands, Timothy; Génin, François Y
2003-12-01
Because of its simple composition, vast availability in pure form and ease of processing, vitreous silica is often used as a model to study the physics of amorphous solids. Research in amorphous silica is also motivated by its ubiquity in modern technology, a prominent example being as bulk material in transmissive and diffractive optics for high-power laser applications such as inertial confinement fusion (ICF). In these applications, stability under high-fluence laser irradiation is a key requirement, with optical breakdown occurring when the fluence of the beam is higher than the laser-induced damage threshold (LIDT) of the material. The optical strength of polished fused silica transmissive optics is limited by their surface LIDT. Surface optical breakdown is accompanied by densification, formation of point defects, cratering, material ejection, melting and cracking. Through a combination of electron diffraction and infrared reflectance measurements we show here that synthetic vitreous silica transforms partially into a defective form of the high-pressure stishovite phase under high-intensity (GW cm(-2)) laser irradiation. This phase transformation offers one suitable mechanism by which laser-induced damage grows catastrophically once initiated, thereby dramatically shortening the service lifetime of optics used for high-power photonics.
High-pressure minerals in shocked meteorites
NASA Astrophysics Data System (ADS)
Tomioka, Naotaka; Miyahara, Masaaki
2017-09-01
Heavily shocked meteorites contain various types of high-pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high-pressure minerals are micron to submicron sized and occur within and in the vicinity of shock-induced melt veins and melt pockets in chondrites and lunar, howardite-eucrite-diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid-state high-pressure transformation of the host-rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to 25 GPa. Textural, crystallographic, and chemical characteristics of high-pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high-pressure minerals in shocked meteorites that have been reported over the past 50 years.
Ultrahigh-pressure polyamorphism in GeO2 glass with coordination number >6
NASA Astrophysics Data System (ADS)
Kono, Yoshio; Kenney-Benson, Curtis; Ikuta, Daijo; Shibazaki, Yuki; Wang, Yanbin; Shen, Guoyin
2016-03-01
Knowledge of pressure-induced structural changes in glasses is important in various scientific fields as well as in engineering and industry. However, polyamorphism in glasses under high pressure remains poorly understood because of experimental challenges. Here we report new experimental findings of ultrahigh-pressure polyamorphism in GeO2 glass, investigated using a newly developed double-stage large-volume cell. The Ge-O coordination number (CN) is found to remain constant at ∼6 between 22.6 and 37.9 GPa. At higher pressures, CN begins to increase rapidly and reaches 7.4 at 91.7 GPa. This transformation begins when the oxygen-packing fraction in GeO2 glass is close to the maximal dense-packing state (the Kepler conjecture = ∼0.74), which provides new insights into structural changes in network-forming glasses and liquids with CN higher than 6 at ultrahigh-pressure conditions.
Formation of superconducting platinum hydride under pressure: an ab initio approach
NASA Astrophysics Data System (ADS)
Kim, Duck Young; Scheicher, Ralph; Pickard, Chris; Needs, Richard; Ahuja, Rajeev
2012-02-01
Noble metals such as Pt, Au, or Re are commonly used for electrodes and gaskets in diamond anvil cells for high-pressure research because they are expected to rarely undergo structural transformation and possess simple equation of states. Specifically Pt has been used widely for high-pressure experiments and has been considered to resist hydride formation under pressure. Pressure-induced reactions of metals with hydrogen are in fact quite likely because hydrogen atoms can occupy interstitial positions in the metal lattice, which can lead to unexpected effects in experiments. In our study, PRL 107 117002 (2011), we investigated crystal structures using ab initio random structure searching (AIRSS) and predicted the formation of platinum mono-hydride above 22 GPa and superconductivity Tc was estimated to be 10 -- 25 K above around 80 GPa. Furthermore, we showed that the formation of fcc noble metal hydrides under pressure is common and examined the possibility of superconductivity in these materials.
Theoretical analysis of the structural phase transformation in the ZnO under high pressure
NASA Astrophysics Data System (ADS)
Verma, Saligram; Jain, Arvind; Nagarch, R. K.; Shah, S.; Kaurav, Netram
2018-05-01
We report a phenomenological model based calculation of pressure-induced structural phase transition and elastic properties of ZnO compound. Gibb's free energy is obtained as a function of pressure by applying an effective inter ionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. From the present study, we predict a structural phase transition from ZnS structure (B3) to NaCl structure (B1) at 8.5 GPa. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data. The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of ZnS type structure family.
NASA Astrophysics Data System (ADS)
Werwein, Viktor; Li, Gang; Serdyukov, Anton; Brunzendorf, Jens; Werhahn, Olav; Ebert, Volker
2018-06-01
In the present study, we report highly accurate air-induced broadening and shift coefficients for the nitrous oxide (N2O) 0002-0000 band at 2.26 μm of the main isotopologue retrieved from high-resolution Fourier transform infrared (FTIR) measurements with metrologically determined pressure, temperature, absorption path length and chemical composition. Most of our retrieved air-broadening coefficients agree with previously generated datasets within the expanded (confidence interval of 95%) uncertainties. For the air-shift coefficients our results suggest a different rotational dependence compared to literature. The present study benefits from improved measurement conditions and a detailed metrological uncertainty description. Comparing to literature, the uncertainties of the previous broadening and shift coefficients are improved by a factor of up to 39 and up to 22, respectively.
NASA Astrophysics Data System (ADS)
Laukhin, V.; Copie, O.; Rozenberg, M. J.; Weht, R.; Bouzehouane, K.; Reyren, N.; Jacquet, E.; Bibes, M.; Barthélémy, A.; Herranz, G.
2012-11-01
It is well known that transport in lightly n-doped SrTiO3 involves light and heavy electron bands. We have found that upon application of moderate quasi-isotropic pressures, the relative positions of these subbands are changed by a few meV and, eventually, a band inversion occurs at ˜1kbar. Such effects are, however, suppressed in the closely related KTaO3 perovskite. We show that the extremely subtle electronic reconfiguration in SrTiO3 is triggered by strain-induced structural transformations that are accompanied by remarkable mobility enhancements up to about Δμ/μ≈300%. Our results provide a microscopic rationale for the recently discovered transport enhancement under strain and underscore the role of the internal structural degrees of freedom in the modulation of the perovskite electronic properties.
Shi, Yi-Xiang; Li, Wu-Xiang; Zhang, Wen-Hua; Lang, Jian-Ping
2018-06-29
Flexible metal-organic frameworks (MOFs) have attracted great interest for their dynamically structural transformability in response to external stimuli. Herein, we report a switchable "breathing" or "gate-opening" behavior associated with the phase transformation between a narrow pore (np) and a large pore (lp) in a flexible pillared-layered MOF, denoted as MOF-1 as, which is also confirmed by SCXRD and PXRD. The desolvated phase (MOF-1 des) features a unique stepwise adsorption isotherm for N 2 coupled with a pronounced negative gas adsorption pressure. For comparison, however, no appreciable CO 2 adsorption and gate-opening phenomenon with stepwise sorption can be observed. Furthermore, the polar micropore walls decorated with thiophene groups in MOF-1 des reveals the selective sorption of toluene over benzene and p-xylene associated with self-structural adjustment in spite of the markedly similar physicochemical properties of these vapor molecules.
In-situ x-ray diffraction of a shock-induced phase transition in fluorite, CaF2
NASA Astrophysics Data System (ADS)
Glam, Benny; June Tracy, Sally; Turneaure, Stefan; Duffy, Thomas
2017-06-01
The difluorides are an important class of ionic compounds that show extensive polymorphism under both static and dynamic loading. In this study, the shock-induced phase transitions in CaF2 were investigated by in situ x-ray diffraction measurements in plate impact experiments carried out with the two-stage gas gun at the Dynamic Compression Sector of Argonne National Laboratory. Single-crystal samples in (100) and (111) orientations were shock loaded to pressures between 32 GPa to 70 GPa. The particle velocities at the interface between the sample and a LiF window were measured by VISAR and PDV. Synchrotron x-ray diffraction data were recorded at 153.4 ns intervals using a four-frame detector. The measured diffraction patterns show a high degree of sample texturing at all pressures. We observe evidence for a transition to a high-pressure phase followed by reverse transformation at late times during release. This study provides the first direct constraints on the high-pressure lattice structure of fluorite under shock compression.
Density driven structural transformations in amorphous semiconductor clathrates
Tulk, Christopher A.; dos Santos, Antonio M.; Neuefeind, Joerg C.; ...
2015-01-16
The pressure induced crystalline collapse at 14.7 GPa and polyamorphic structures of the semiconductor clathrate Sr8Ga16Ge30 are reported up to 35 GPa. In-situ total scattering measurements under pressure allow the direct microscopic inspection of the mechanisms associated with pressure induced amorphization in these systems, as well as the structure of the recovered phase. It is observed that, between 14.7 and 35 GPa the second peak in the structure factor function gradually disappears. Analysis of the radial distribution function extracted from those data indicate that this feature is associated with gradual cage collapse and breakdown of the tetrahedral structure with themore » consequent systematic lengthening of the nearest-neighbor framework bonds. This suggests an overall local coordination change to an even higher density amorphous form. Upon recovery from high pressure, the sample remains amorphous, and while there is some indication of the guest-host cage reforming, it doesn't seem that the tetrahedral coordination is recovered. As such, the compresion-decompression process in this systems gives rise to three distict amorphous forms.« less
Static high pressure studies on Nd and Sc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akella, J.; Xu, J.; Smith, G.S.
1985-06-24
We have investigated the crystal structural transformations in neodymium and scandium up to 4.0 GPa pressure and at room temperature, in a diamond-anvil high pressure apparatus. Nd has a double hexagonal-close packed (dhcp) structure at ambient pressure and temperature. Then it transforms to a face-centered cubic (fcc) structure at 3.8 GPa, which further transforms to a triple hexagonal-close packed structure (thcp) at about 18.0 GPa. In scandium we observed only one transformation from the hexagonal-close packed (hcp) structure at room temperature to a tetragonal structure. This transformation occurs between 19.0 and 23.2 GPa pressure.
NASA Astrophysics Data System (ADS)
Zhang, Yuanlei; He, Xijia; Li, Zhe; Xu, Kun; Liu, Changqin; Huang, Yinsheng; Jing, Chao
2018-04-01
The electrical transport properties at martensitic transformation (MT) in polycrystalline Ni43.7Fe5.3Mn35.4In15.6 have been intensively investigated under different hydrostatic pressures. For this alloy, the experimental results show that applying a higher hydrostatic pressure can convert its MT from the metamagnetic type into the paramagnetic type. It provides a unique opportunity to separate the relative contributions of electron-spin and electron-lattice scatterings across the metamagnetic MT based on the dynamical Clausius-Clapeyron equation, which delivers a deeper insight into the resistivity change of metamagnetic MT for the Mn-rich Ni-Mn based Heusler alloys. In addition, the studied alloy also reveals a giant positive baroresistance (BR) effect with a saturated value of 115% at 242 K. This performance originates from the combined effect of electron-spin and electron-lattice scatterings associated with a prominent hydrostatic pressure-induced MT, which contribute 46% and 69% to the overall BR ratio, respectively.
NASA Astrophysics Data System (ADS)
Lin, Yan-Cheng; Chou, Wu-Ching; Susha, Andrei S.; Kershaw, Stephen V.; Rogach, Andrey L.
2013-03-01
The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NC powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.
Water-soluble CdTe nanocrystals under high pressure
NASA Astrophysics Data System (ADS)
Lin, Yan-Cheng
2015-02-01
The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NCs powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.
NASA Astrophysics Data System (ADS)
Walton, Erin L.
2013-04-01
Lithology A of Martian meteorite Elephant Moraine (EET) A79001 contains fragments entrained within a 100 μm-thick shear-induced shock vein. These fragments, the shock vein matrix and walls of olivine along the vein, as well as shock deformation and transformation in rock-forming minerals in the bulk rock, were investigated using scanning electron microscopy, the electron microprobe and Raman spectroscopy. The presence of ringwoodite, the spinel-structured high-pressure (Mg,Fe)2SiO4 polymorph, has been confirmed in EETA79001 for the first time. Ringwoodite occurs within and around the shock vein, exhibiting granular and lamellar textures. In both textures ringwoodite consists of ˜500 nm size distinct grains. Ringwoodite lamellae are 115 nm to 1.3 μm wide. Planar fractures in olivine provided sites for heterogeneous nucleation of ringwoodite. Analyses performed on the largest grains (⩾1 μm) show that ringwoodite is consistently higher in iron (Fa27.4-32.4) relative to surrounding olivine (Fa25.1-267.7), implying that there was Fe-Mg exchange during their transformation, and therefore their growth was diffusion-controlled. In the shock environment, diffusion takes place dynamically, i.e., with concurrent deformation and grain size reduction. This results in enhanced diffusion rates (⩾10-8 m2/s) over nm - μm distances. Shock deformation in host rock minerals including strong mosaicism, pervasive fracturing, polysynthetic twinning (pyroxene only), extensive shock melting, local transformation of olivine to ringwoodite, and complete transformation of plagioclase to maskelynite in the bulk rock, indicate that EETA79001 was strongly shocked. The short shock duration (0.01 s) combined with a complex thermal history, resulted in crystallization of the 100 μm thick shock vein in EETA79001 during the pressure release, and partial back-transformation of ringwoodite to olivine. Based on the pressure stabilities of clinopyroxene + ringwoodite, crystallization at the shock vein margin began at ˜18 GPa. Olivine and clinopyroxene crystallized at <14 GPa closer to the shock vein center. These represent a minimum limit to the shock pressure loading experienced by EETA79001.
Identification of yellow luminescence centers in Be-doped GaN through pressure-dependent studies
NASA Astrophysics Data System (ADS)
Teisseyre, Henryk; Lyons, John L.; Kaminska, Agata; Jankowski, Dawid; Jarosz, Dawid; Boćkowski, Michał; Suchocki, Andrzej; Van de Walle, Chris G.
2017-06-01
Effective acceptor doping of wide-band-gap semiconductors is still an outstanding problem. Beryllium has been suggested as a shallow acceptor in GaN, but despite sporadic announcements, Be-induced p-type doping has never been practically realized. Be-doped GaN possesses two luminescence bands; one at 3.38 eV and a second near 2.2 eV at an energy close to that of the parasitic yellow luminescence often found in undoped GaN crystals. We have performed high hydrostatic pressure studies of bulk, Be-doped gallium nitride crystals using the diamond anvil cell technique. We observed a splitting of the yellow luminescence line under hydrostatic pressure into two components, one which is strongly dependent on applied pressure and another whose pressure dependence is more modest. Together with hybrid functional calculations, we attribute the strongly-varying component to the beryllium-oxygen complex. The second component of the yellow luminescence possesses very similar pressure behavior to the yellow luminescence observed in undoped samples grown by the same method, behavior which we find consistent with the CN acceptor. At higher pressure, we observe the vanishing of yellow luminescence and a rapid increase in luminescence intensity of the UV line. We explain this as the pressure-induced transformation of the Be-O complex from a highly localized state with large lattice relaxation to a delocalized state with limited lattice relaxation.
Pressure-induced Ge coordination change in SiO2-GeO2 glasses
NASA Astrophysics Data System (ADS)
Majérus, O.; Cormier, L.; Itié, J.-P.; Calas, G.
2003-04-01
Among the parameters controlling igneous processes in Earth, the density and transport properties of silicate melts are playing a major role. These properties are strongly dependent upon pressure, in a way that can significantly differ from the crystalline phases. The study of the pressure-induced structural changes can give a further understanding of the peculiar microscopic origins of these properties in molten phases. As in silicate minerals, the coordination change IVSi towards VISi is expected to be the major transformation occurring in melts at mantle conditions, yielding amorphous phases with properties distinct to those corresponding to a tetrahedral framework. This change is predicted by molecular dynamics simulations, but experimental evidences are scarce because of difficult technical constraints. The binary SiO_2-GeO_2 system allows a further insight into the compression mechanism of a tetrahedral framework glass structure. The Ge coordination change and its composition dependence can be assessed by using XAS spectroscopy at Ge K-edge with a diamond anvil cell. In this study, we report an in situ investigation carried out on well characterized glasses of the SiO_2-GeO_2 system. Experiments were preformed on the D11 beamline which is a unique dispersive experimental setup developed at the Laboratoire pour l’Utilisation du Rayonnement Magnétique (LURE, Orsay, France). Pressures up to 25 GPa have been obtained. With increasing SiO_2 content, both Ge-O distances extracted from EXAFS data and XANES features indicate the regular increase of the pressure threshold for the Ge coordination change (from 4 in pure GeO_2 to 12 Gpa in 80 mol% SiO_2-bearing glass), which corresponds to the end of the elastic compression regime, and the achievement of the transformation on a broader pressure range as predicted in pure SiO_2. These data are compared to results on slightly depolymerised glasses of Na_2O-GeO_2 composition, where a greater variety of compression mechanisms takes place.
Pressures of Partial Crystallization of Magmas Along Transforms: Implications for Crustal Accretion
NASA Astrophysics Data System (ADS)
Scott, J. L.; Zerda, C.; Brown, D.; Ciaramitaro, S. C.; Barton, M.
2016-12-01
Plate spreading at mid-ocean ridges is responsible for the creation of most of the crust on earth. The ridge system is very complex and many questions remain unresolved. Among these is the nature of magma plumbing systems beneath transform faults. Pervious workers have suggested that increased conductive cooling along transforms promotes higher pressures of partial crystallization, and that this explains the higher partial pressures of crystallization inferred for magmas erupted along slow spreading ridges compared to magmas erupted along faster spreading ridges. To test this hypothesis, we undertook a detailed analysis of pressures of partial crystallization for magmas erupted at 3 transforms along the fast to intermediate spreading East Pacific Rise(Blanco, Clipperton, and Siqueiros) and 3 transforms along the slow spreading Mid Atlantic Ridge(Famous Transform B, Kane, and 15°20'N). Pressures of partial crystallization were calculated from the compositions of glasses (quenched liquids) lying along the P (and T) dependent olivine, plagioclase, and augite cotectic using the method described by Kelley and Barton (2008). Published analyses of mid-ocean ridge basalt glasses sampled from these transforms and surrounding ridge segments were used as input data. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The pressures of partial crystallization for the remaining 916 samples ranged from 0 to 520 MPa with the great majority ( 95%) of sample returning pressures of less than 300 MPa. Pressures of < 300 MPa are within error of the pressure range associated with partial crystallization within oceanic crust with a thickness of 7 km. Higher (sub-crustal) pressures (>300 MPa) are associated with a small number of samples from the Pacific segments. Except for the Blanco, pressures of partial crystallization do not increase as transforms are approached. These observations contrast with those of previous workers, who reported anomalously high pressures (up to 1000 MPa) for a large number of samples erupted near both Atlantic and Pacific Transforms. We conclude that higher rates of cooling along transform does not have a major effect on the onset of partial crystallization along the mid-ocean ridges
Pressure-induced amorphization in orthorhombic Ta{sub 2}O{sub 5}: An intrinsic character of crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Quanjun; Zhang, Huafang; Cheng, Benyuan
2014-05-21
The phase transition of orthorhombic Ta{sub 2}O{sub 5} was investigated by in situ synchrotron X-ray diffraction and Raman spectroscopy. The orthorhombic phase transforms into an amorphous form completely at 24.7 GPa. A bulk modulus B{sub 0} = 139 (9) GPa for the orthorhombic Ta{sub 2}O{sub 5} is derived from the P-V data. We suggest that the pressure-induced amorphization (PIA) in Ta{sub 2}O{sub 5} can be attributed to the unstability of the a axis under high pressure leads to the connections of polyhedral breaking down and even triggers disorder of the whole crystal frame. These results demonstrate that the PIA is an intrinsic charactermore » of Ta{sub 2}O{sub 5} which depends on its orthorhombic crystal structure rather than nanosize effects. This study provides a new kind of bulk material for investigating PIA in metal oxides.« less
A metastable liquid melted from a crystalline solid under decompression
NASA Astrophysics Data System (ADS)
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin
2017-01-01
A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.
Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; ...
2016-07-18
Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO 2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexiblemore » VO x polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.« less
Pressure induced enhancement of the magnetic ordering temperature in rhenium(IV) monomers
Woodall, Christopher H.; Craig, Gavin A.; Prescimone, Alessandro; Misek, Martin; Cano, Joan; Faus, Juan; Probert, Michael R.; Parsons, Simon; Moggach, Stephen; Martínez-Lillo, José; Murrie, Mark; Kamenev, Konstantin V.; Brechin, Euan K.
2016-01-01
Materials that demonstrate long-range magnetic order are synonymous with information storage and the electronics industry, with the phenomenon commonly associated with metals, metal alloys or metal oxides and sulfides. A lesser known family of magnetically ordered complexes are the monometallic compounds of highly anisotropic d-block transition metals; the ‘transformation' from isolated zero-dimensional molecule to ordered, spin-canted, three-dimensional lattice being the result of through-space interactions arising from the combination of large magnetic anisotropy and spin-delocalization from metal to ligand which induces important intermolecular contacts. Here we report the effect of pressure on two such mononuclear rhenium(IV) compounds that exhibit long-range magnetic order under ambient conditions via a spin canting mechanism, with Tc controlled by the strength of the intermolecular interactions. As these are determined by intermolecular distance, ‘squeezing' the molecules closer together generates remarkable enhancements in ordering temperatures, with a linear dependence of Tc with pressure. PMID:28000676
Mechanism of the α -ɛ phase transformation in iron
NASA Astrophysics Data System (ADS)
Dewaele, A.; Denoual, C.; Anzellini, S.; Occelli, F.; Mezouar, M.; Cordier, P.; Merkel, S.; Véron, M.; Rausch, E.
2015-05-01
The α -Fe↔ɛ -Fe pressure-induced transformation under pure hydrostatic static compression has been characterized with in situ x-ray diffraction using α -Fe single crystals as starting samples. The forward transition starts at 14.9 GPa, and the reverse at 12 GPa, with a width of α -ɛ coexistence domain of the order of 2 GPa. The elastic stress in the sample increases in this domain, and partially relaxes after completion of the transformation. Orientation relations between parent α -Fe and child ɛ -Fe have been determined, which definitely validates the Burgers path for the direct transition. On the reverse transition, an unexpected variant selection is observed. X-ray diffraction data, complemented with ex situ microstructural observations, suggest that this selection is caused by defects and stresses accumulated during the direct transition.
A new strategy of transforming pharmaceutical crystal forms.
Tian, Jian; Dalgarno, Scott J; Atwood, Jerry L
2011-02-09
The robust nature of network materials allows them to (for example) respond to external stimuli such as pressure, temperature, light, or gas/solvent adsorption and desorption. There is difficulty in retaining long-range order in purely molecular organic solids, due to weak intermolecular interactions such as van der Waals forces. Here, we show gas-induced transformations of the well-known pharmaceuticals clarithromycin and lansoprazole. For clarithromycin, the stimulus is capable of converting the kinetic solvate and guest-free crystal forms to the commercial thermodynamically stable polymorph with a huge saving in energy cost relative to industrially employed methods. The synthesis of the marketing form of lansoprazole involves a solvate that readily decomposes and that is stirred in water, filtered, and dried intensively. Our method readily circumvents such synthetic problems and transforms the sensitive solvate to the marketed drug substance with ease. Such expedient transformations hold great implications for the pharmaceutical industry in general when considering the ease of transformation and mild conditions employed.
Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles
2010-10-01
Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.
Glass polymorphism in glycerol–water mixtures: II. Experimental studies
Bachler, Johannes; Fuentes-Landete, Violeta; Jahn, David A.; Wong, Jessina; Giovambattista, Nicolas
2016-01-01
We report a detailed experimental study of (i) pressure-induced transformations in glycerol–water mixtures at T = 77 K and P = 0–1.8 GPa, and (ii) heating-induced transformations of glycerol–water mixtures recovered at 1 atm and T = 77 K. Our samples are prepared by cooling the solutions at ambient pressure at various cooling rates (100 K s–1–10 K h–1) and for the whole range of glycerol mole fractions, χ g. Depending on concentration and cooling rates, cooling leads to samples containing amorphous ice (χ g ≥ 0.20), ice (χ g ≤ 0.32), and/or “distorted ice” (0 < χ g ≤ 0.38). Upon compression, we find that (a) fully vitrified samples at χ g ≥ 0.20 do not show glass polymorphism, in agreement with previous works; (b) samples containing ice show pressure-induced amorphization (PIA) leading to the formation of high-density amorphous ice (HDA). PIA of ice domains within the glycerol–water mixtures is shown to be possible only up to χ g ≈ 0.32 (T = 77 K). This is rather surprising since it has been known that at χ g < 0.38, cooling leads to phase-separated samples with ice and maximally freeze-concentrated solution of χ g ≈ 0.38. Accordingly, in the range 0.32 < χ g < 0.38, we suggest that the water domains freeze into an interfacial ice, i.e., a highly-distorted form of layered ice, which is unable to transform to HDA upon compression. Upon heating samples recovered at 1 atm, we observe a rich phase behavior. Differential scanning calorimetry indicates that only at χ g ≤ 0.15, the water domains within the sample exhibit polyamorphism, i.e., the HDA-to-LDA (low-density amorphous ice) transformation. At 0.15 < χ g ≤ 0.38, samples contain ice, interfacial ice, and/or HDA domains. All samples (χ g ≤ 0.38) show: the crystallization of amorphous ice domains, followed by the glass transition of the vitrified glycerol–water domains and, finally, the melting of ice at high temperatures. Our work exemplifies the complex “phase” behavior of glassy binary mixtures due to phase-separation (ice formation) and polyamorphism, and the relevance of sample preparation, concentration as well as cooling rates. The presence of the distorted ice (called “interphase” by us) also explains the debated “drift anomaly” upon melting. These results are compatible with the high-pressure study by Suzuki and Mishima indicating disappearance of polyamorphism at P ≈ 0.03–0.05 GPa at χ g ≈ 0.12–0.15 [J. Chem. Phys., 2014, 141, 094505]. PMID:27044677
NASA Technical Reports Server (NTRS)
Zhang, D.; Gaussin, V.; Taffet, G. E.; Belaguli, N. S.; Yamada, M.; Schwartz, R. J.; Michael, L. H.; Overbeek, P. A.; Schneider, M. D.
2000-01-01
The transforming-growth-factor-beta-activated kinase TAK1 is a member of the mitogen-activated protein kinase kinase kinase family, which couples extracellular stimuli to gene transcription. The in vivo function of TAK1 is not understood. Here, we investigated the potential involvement of TAK1 in cardiac hypertrophy. In adult mouse myocardium, TAK1 kinase activity was upregulated 7 days after aortic banding, a mechanical load that induces hypertrophy and expression of transforming growth factor beta. An activating mutation of TAK1 expressed in myocardium of transgenic mice was sufficient to produce p38 mitogen-activated protein kinase phosphorylation in vivo, cardiac hypertrophy, interstitial fibrosis, severe myocardial dysfunction, 'fetal' gene induction, apoptosis and early lethality. Thus, TAK1 activity is induced as a delayed response to mechanical stress, and can suffice to elicit myocardial hypertrophy and fulminant heart failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kuo; Zheng, Haiyan; Hattori, Takanori
By providing a new route to synthesize inorganic/organic conductors with tunable composition and properties, pressure-induced polymerization of charged triple-bond monomers like acetylide and cyanide could lead to formation of a conductive metal–carbon network composite. The industry application of this promising synthetic method is mainly limited by the reaction pressure needed, which is often too high to be reached for gram amounts of sample. Here we successfully synthesized highly conductive Li 3Fe(CN) 6 at maximum pressure around 5 GPa and used in situ diagnostic tools to follow the structural and functional transformations of the sample, including in situ X-ray and neutronmore » diffraction and Raman and impedance spectroscopy, along with the neutron pair distribution function measurement on the recovered sample. The cyanide anions start to react around 1 GPa and bond to each other irreversibly at around 5 GPa, which are the lowest reaction pressures in all known metal cyanides and within the technologically achievable pressure range for industrial production. Moreover, the conductivity of the polymer is above 10 –3 S·cm –1, which reaches the range of conductive polymers. Our investigation suggests that the pressure-induced polymerization route is practicable for synthesizing some types of functional conductive materials for industrial use, and further research like doping and heating can hence be motivated to synthesize novel materials under lower pressure and with better performances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meletov, K. P., E-mail: mele@issp.ac.ru; Konarev, D. V.; Tolstikova, A. O.
2015-06-15
The Raman spectra of crystals of C{sub 60} fullerene-cadmium diethyldithiocarbamate molecular donor-acceptor complexes (Cd(dedtc){sub 2}){sub 2} · C{sub 60} were measured at pressures of up to 17 GPa, and the crystal lattice parameters of these complexes were determined at pressures of up to 6 GPa. An increase in pressure up to ∼2 GPa leads to changes in the Raman spectra, which are manifested by splitting of the intramolecular H{sub g}(1)-H{sub g}(8) phonon modes and by softening of the A{sub g}(2) mode of the C{sub 60} molecule. A further increase in pressure up to 17 GPa does not induce significant newmore » changes to the Raman spectra, while a decrease is accompanied by the reverse transformation at a pressure of about 2 GPa. The pressure dependence of the lattice parameters also exhibits a reversible feature at 2 GPa related to a jumplike decrease in compressibility. All these data are indicative of a phase transition in the vicinity of 2 GPa related to the formation of covalent bonds between C{sub 60} molecules and, probably, the appearance of C{sub 120} dimers in fullerene layers. It was also found that, in the pressure interval from 2 to 6.3 GPa, the Raman spectra of complexes exhibit photoinduced transformations under prolonged exposure to laser radiation with a wavelength of λ = 532 nm and power density up to 5000 W/cm{sup 2}. These changes are manifested by splitting and softening of the A{sub g}(2) mode and resemble analogous changes accompanying the photopolymerization of C{sub 60} fullerene. The intensity of new bands exhibits exponential growth with increasing exposure time. The photopolymer yield depends on both the laser radiation power and external pressure. The A{sub g}(2) mode splitting under irradiation can be related to the formation of photo-oligomers with various numbers of intermolecular covalent bonds per C{sub 60} molecule.« less
New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials
NASA Astrophysics Data System (ADS)
Kocher, Gabriel; Provatas, Nikolas
2015-04-01
A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.
Pressure-induced magnetic collapse and metallization of TlF e1.6S e2
NASA Astrophysics Data System (ADS)
Naumov, P. G.; Filsinger, K.; Shylin, S. I.; Barkalov, O. I.; Ksenofontov, V.; Qi, Y.; Palasyuk, T.; Schnelle, W.; Medvedev, S. A.; Greenblatt, M.; Felser, C.
2017-08-01
The crystal structure, magnetic ordering, and electrical resistivity of TlF e1.6S e2 were studied at high pressures. Below ˜7 GPa , TlF e1.6S e2 is an antiferromagnetically ordered semiconductor with a ThC r2S i2 -type structure. The insulator-to-metal transformation observed at a pressure of ˜7 GPa is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range ˜7.5 -11 GPa a remarkable downturn in resistivity, which resembles a superconducting transition, is observed below 15 K. We discuss this feature as the possible onset of superconductivity originating from a phase separation in a small fraction of the sample in the vicinity of the magnetic transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lei; Ding, Xiangdong, E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk; Sun, Jun
2016-07-18
The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ωmore » transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.« less
High Resolution Spectroscopy to Support Atmospheric Measurements
NASA Technical Reports Server (NTRS)
Benner, D. Chris; Venkataraman, Malathy Devi
2000-01-01
The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.
High Resolution Spectroscopy to Support Atmospheric Measurements
NASA Technical Reports Server (NTRS)
Benner, D. Chris; Venkataraman, Malathy Devi
2000-01-01
The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon-and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.
Control of shock wave-boundary layer interactions by bleed in supersonic mixed compression inlets
NASA Technical Reports Server (NTRS)
Fukuda, M. K.; Hingst, W. G.; Reshotko, E.
1975-01-01
An experimental investigation was conducted to determine the effect of bleed on a shock wave-boundary layer interaction in an axisymmetric mixed-compression supersonic inlet. The inlet was designed for a free-stream Mach number of 2.50 with 60-percent supersonic internal area contraction. The experiment was conducted in the NASA Lewis Research Center 10-Foot Supersonic Wind Tunnel. The effects of bleed amount and bleed geometry on the boundary layer after a shock wave-boundary layer interaction were studied. The effect of bleed on the transformed form factor is such that the full realizable reduction is obtained by bleeding of a mass flow equal to about one-half of the incident boundary layer mass flow. More bleeding does not yield further reduction. Bleeding upstream or downstream of the shock-induced pressure rise is preferable to bleeding across the shock-induced pressure rise.
NASA Astrophysics Data System (ADS)
Kaigorodova, L. I.; Rasposienko, D. Yu.; Pushin, V. G.; Pilyugin, V. P.; Smirnov, S. V.
2015-04-01
The structural and phase transformations have been studied in aging commercial aluminum-lithium alloy Al-1.2 Li-3.2 Cu-0.09 Zr-0.11 Sc-0.4 Ag-0.3 Mg in the as-delivered state and after severe plastic deformation by torsion for 1, 5 and 10 revolutions under a high pressure of 4 GPa. Deformation-induced nanofragmentation and dynamic recrystallization have been found to occur in the alloy. The degree of recrystallization increases with deformation. Nanofragmentation and recrystallization processes are accompanied by the deformation-induced decomposition of solid solution and changes in both the nucleation mechanism of precipitation and the phase composition of the alloy. The influence of a nanostructured nanophase state of the alloy on its mechanical properties (microhardness, plasticity, elastic modulus, and stiffness) is discussed.
Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice.
Lin, Chuanlong; Yong, Xue; Tse, John S; Smith, Jesse S; Sinogeikin, Stanislav V; Kenney-Benson, Curtis; Shen, Guoyin
2017-09-29
We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ∼1 Pa, to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.
Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb
NASA Astrophysics Data System (ADS)
Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.
2013-08-01
The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.
Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice
NASA Astrophysics Data System (ADS)
Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin
2017-09-01
We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.
Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chuanlong; Yong, Xue; Tse, John S.
We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transitionmore » to low-density amorphous ice at 96 K and ~ 1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.« less
Lin, Yi; Chen, Jianglei; Sun, Zhongjie
2016-03-01
Klotho was originally discovered as an aging-suppressor gene. The objective of this study is to investigate whether klotho gene deficiency affects high-fat diet (HFD)-induced arterial stiffening. Heterozygous Klotho-deficient (KL(+/-)) mice and WT littermates were fed on HFD or normal diet. HFD increased pulse wave velocity within 5 weeks in KL(+/-) mice but not in wild-type mice, indicating that klotho deficiency accelerates and exacerbates HFD-induced arterial stiffening. A greater increase in blood pressure was found in KL(+/-) mice fed on HFD. Protein expressions of phosphorylated AMP-activated protein kinase-α (AMPKα), phosphorylated endothelial nitric oxide synthase (eNOS), and manganese-dependent superoxide dismutase (Mn-SOD) were decreased, whereas protein expressions of collagen I, transforming growth factor-β1, and Runx2 were increased in aortas of KL(+/-) mice fed on HFD. Interestingly, daily injections of an AMPKα activator, 5-aminoimidazole-4-carboxamide-3-ribonucleoside, abolished the increases in pulse wave velocity, blood pressure, and blood glucose in KL(+/-) mice fed on HFD. Treatment with 5-aminoimidazole-4-carboxamide-3-ribonucleoside for 2 weeks not only abolished the downregulation of phosphorylated AMPKα, phosphorylated eNOS, and Mn-SOD levels but also attenuated the increased levels of collagen I, transforming growth factor-β1, Runx2, superoxide, elastic lamellae breaks, and calcification in aortas of KL(+/-) mice fed on HFD. In cultured mouse aortic smooth muscle cells, cholesterol plus KL-deficient serum decreased phosphorylation levels of AMPKα and LKB1 (an important upstream regulator of AMPKα activity) but increased collagen I synthesis, which can be eliminated by activation of AMPKα by 5-aminoimidazole-4-carboxamide-3-ribonucleoside. In conclusions, Klotho deficiency promoted HFD-induced arterial stiffening and hypertension via downregulation of AMPKα activity. © 2016 American Heart Association, Inc.
Shock induced polymorphic transition in quartz, carbon, and boron nitride
NASA Technical Reports Server (NTRS)
Tan, Hua; Ahrens, Thomas J.
1990-01-01
The model proposed by Ahrens (1988) to explain the mechanism of the polymorphism in silicates is revised, and the revised model is applied to the quartz/stishovite, graphite/diamond, and graphite-boron nitride (g-BN) phase transformations. In this model, a key assumption is that transformation to a high-density amorphous or possibly liquid phase which rapidly crystallized to the high-pressure phase is triggered by the high temperatures in the shear band and upon crossing the metastable extension of a melting curve. Good agreement between the calcualted results and published data is obtained. The present theory predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.
Gao, Chan; Zhang, Xueyong; Zhang, Chuanchao; Sui, Zhilei; Hou, Meng; Dai, Rucheng; Wang, Zhongping; Zheng, Xianxu; Zhang, Zengming
2018-05-17
Herein, pressure-induced phase transitions of RDX up to 50 GPa were systematically studied under different compression conditions. Precise phase transition points were obtained based on high-quality Raman spectra with small pressure intervals. This favors the correctness of the theoretical formula for detonation and the design of a precision weapon. The experimental results indicated that α-RDX immediately transformed to γ-RDX at 3.5 GPa due to hydrostatic conditions and possible interaction between the penetrating helium and RDX, with helium gas as the pressure-transmitting medium (PTM). Mapping of pressure distribution in samples demonstrates that the pressure gradient is generated in the chamber and independent of other PTMs. The gradient induced the first phase transition starts at 2.3 GPa and completed at 4.1 GPa. The larger pressure gradient promoted phase transition in advance under higher pressures. Experimental results supported that there existed two conformers of AAI and AAE for γ-RDX, as proposed by another group. δ-RDX was considered to only occur in a hydrostatic environment around 18 GPa using helium as the PTM. This study confirms that δ-RDX is independent of PTM and exists under non-hydrostatic conditions. Evidence for a new phase (ζ) was found at about 28 GPa. These 4 phases have also been verified via XRD under high pressures. In addition to this, another new phase (η) may exist above 38 GPa, and it needs to be further confirmed in the future. Moreover, all the phase transitions were reversible after the pressure was released, and original α-RDX was always obtained at ambient pressure.
Boron monosulfide: Equation of state and pressure-induced phase transition
NASA Astrophysics Data System (ADS)
Cherednichenko, K. A.; Kruglov, I. A.; Oganov, A. R.; Le Godec, Y.; Mezouar, M.; Solozhenko, V. L.
2018-04-01
Quasi-hydrostatic compression of rhombohedral boron monosulfide (r-BS) has been studied up to 50 GPa at room temperature using diamond-anvil cells and angle-dispersive synchrotron X-ray diffraction. A fit of the experimental P-V data to the Vinet equation of state yields the bulk modulus B0 of 42.2(1.4) GPa and its first pressure derivative B0' of 7.6(2) that are in excellent agreement with our ab initio calculations. Formation of a new high-pressure phase of boron monosulfide (hp-BS) has been observed above 35 GPa. According to ab initio evolutionary crystal structure predictions combined with Rietveld refinement of high-pressure X-ray diffraction data, the structure of hp-BS has trigonal symmetry and belongs to the space group P-3m1. As it follows from the electron density of state calculations, the phase transformation is accompanied by an insulator-metal transition.
Shock-induced decomposition of a high density glass (ZF6)
NASA Astrophysics Data System (ADS)
Zhou, Xianming; Liu, Xun; Li, Jiabo; Li, Jun; Cao, Xiuxia
2011-07-01
The dynamic high-pressure behavior of a high density glass (ZF6) was investigated in this study. The Hugoniot data, shock temperature (TH) and release sound velocity (C) of ZF6 were measured by a time-resolved multi-channel pyrometer in the shock pressure (PH) range of 50-170 GPa. The Hugoniot data is in accord with the Los Alamos Scientific Laboratory (LASL) shock Hugoniot data and shows a good linearity over 21 GPa. Polymorphic phase transitions were identified by the kinks in the measured TH-PH and C-PH relationships. The onset pressures of the transformations are ˜75 and ˜128 GPa, respectively. A thermodynamic calculation suggests that the phase transition at 75 GPa is its disproportionation to massicot (high pressure phase of PbO) and melted silica while the transition at 128 GPa is from the melting of massicot.
NASA Technical Reports Server (NTRS)
Fleet, M. E.; Henderson, G. S.; Herzberg, C. T.; Crozier, E. D.; Osborne, M. D.; Scarfe, C. M.
1984-01-01
For some time, it has been recognized that the structure of silicate liquids has a great bearing on such magma properties as viscosity, diffusivity, and thermal expansion and on the extrapolation of thermodynamic quantities outside of the experimentally measurable range. In this connection it is vital to know if pressure imposes changes in melt structure similar to the pressure-induced reconstructive transformations in crystals. In the present study on 1 bar and high pressure glasses, an investigation is conducted regarding the coordination of Fe(3+) in Fe silicate glasses by Moessbauer spectroscopy. Raman spectroscopy is employed to explore the coordinations of Ge(4+) in GeO2 glasses and of Ga(3+) in NaGa silicate glasses, while the coordination of Ga(3+) in NaGaSiO4 glasses is studied with the aid of methods of X-ray absorption spectroscopy.
NASA Astrophysics Data System (ADS)
Fleet, M. E.; Herzberg, C. T.; Henderson, G. S.; Crozier, E. D.; Osborne, M. D.; Scarfe, C. M.
1984-07-01
For some time, it has been recognized that the structure of silicate liquids has a great bearing on such magma properties as viscosity, diffusivity, and thermal expansion and on the extrapolation of thermodynamic quantities outside of the experimentally measurable range. In this connection it is vital to know if pressure imposes changes in melt structure similar to the pressure-induced reconstructive transformations in crystals. In the present study on 1 bar and high pressure glasses, an investigation is conducted regarding the coordination of Fe(3+) in Fe silicate glasses by Moessbauer spectroscopy. Raman spectroscopy is employed to explore the coordinations of Ge(4+) in GeO2 glasses and of Ga(3+) in NaGa silicate glasses, while the coordination of Ga(3+) in NaGaSiO4 glasses is studied with the aid of methods of X-ray absorption spectroscopy.
Duwal, Sakun; Yoo, Choong-Shik
2016-02-16
Pressure-induced structural and electronic transformations of tungsten disulfide (WS 2) have been studied to 60 GPa, in both hydrostatic and non-hydrostatic conditions, using four-probe electrical resistance measurements, micro-Raman spectroscopy and synchrotron x-ray diffraction. Our results show the evidence for an isostructural phase transition from hexagonal 2H c phase to hexagonal 2H a phase, which accompanies the metallization at ~37 GPa. This isostructural transition occurs displacively over a large pressure range between 15 and 45 GPa and is driven by the presence of strong shear stress developed in the layer structure of WS 2 under non-hydrostatic compression. Interestingly, this transition ismore » absent in hydrostatic conditions using He pressure medium, underscoring its strong dependence on the state of stress. We also attribute the absence to the incorporation of He atoms between the layers, mitigating the development of shear stress. We also conjecture a possibility of magnetic ordering in WS 2 that may occur at low temperature near the metallization.« less
Zhang, Cheng-Lin; Zhao, Qian; Liang, Hui; Qiao, Xue; Wang, Jin-Yu; Wu, Dan; Wu, Li-Ling; Li, Li
2018-03-01
Cardiac fibrosis is characterized by excessive deposition of extracellular matrix (ECM) proteins in the myocardium and results in decreased ventricular compliance and diastolic dysfunction. Cartilage intermediate layer protein-1 (CILP-1), a novel identified cardiac matricellular protein, is upregulated in most conditions associated with cardiac remodeling, however, whether CILP-1 is involved in pressure overload-induced fibrotic response is unknown. Here, we investigated whether CILP-1 was critically involved in the fibrotic remodeling induced by pressure overload. Western blot analysis and immunofluorescence staining showed that CILP-1 was predominantly detected in cardiac myocytes and to a less extent in the interstitium. In isolated adult mouse ventricular myocytes and nonmyocytes, CILP-1 was found to be mainly synthesized by myocytes. CILP-1 expression in left ventricles was upregulated in C57BL/6 mice undergoing transverse aortic constriction (TAC). Myocardial CILP-1 knockdown aggravated whereas CILP-1 overexpression attenuated TAC-induced ventricular remodeling and dysfunction, as measured by echocardiography test, morphological examination, and gene expressions of fibrotic molecules. Incubation of cardiac fibroblasts with the conditioned medium containing full-length, N-terminal, or C-terminal CILP-1 inhibited transforming growth factor (TGF)-β1-induced Smad3 phosphorylation and the subsequent profibrotic events. We first demonstrated that C-terminal CILP-1 increased Akt phosphorylation, promoted the interaction between Akt and Smad3, and suppressed Smad3 phosphorylation. Blockade of PI3K-Akt pathway attenuated the inhibitory effect of C-CILP-1 on TGF-β1-induced Smad3 activation. We conclude that CILP-1 is a novel ECM protein possessing anti-fibrotic ability in pressure overload-induced fibrotic remodeling. This anti-fibrotic effect of CILP-1 attributes to interfering TGF-β1 signaling through its N- and C- terminal fragments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dynamic Pressure Induced Transformation Toughening and Strengthening in Bulk Metallic Glasses
2013-11-01
involved impact of 303 stainless steel flyer-plate on 303 stainless steel sample holder containing two BMGMC samples, at varying velocities. The Hugoniot...Technology. An aluminum sabot was used as the projectile with 303 Stainless Steel (SS) flyer plate to impact the DV1 bulk metallic glass composite. As...crystallization; polyamorphism; shear banding; high- strain -rate deformation REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR
Effect of impurity on high pressure behavior of nano indium titanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitnis, Abhishek, E-mail: abhishekchitnis87@gmail.com; Garg, Nandini; Mishra, A. K.
2015-06-24
Angle dispersive x-ray diffraction studies were carried out on a mixture of nano particles of indium titanate, indium oxide, and disordered TiO{sub 2} upto pressures of ∼ 45 GPa. Our studies show that indium titanate undergoes a partial decomposition to its constituent high pressure oxides. However, concomitantly a very small fraction of indium titanate transforms to a denser phase at ∼ 27.5 GPa. This transformation to new phase was found to be irreversible. At this pressure even cubic In{sub 2}O{sub 3} transformed to the In{sub 2}O{sub 3} (II) (iso-structural to Rh{sub 2}O{sub 3} (II)) phase, without any signature of themore » intermediate corundum phase. The high pressure In{sub 2}O{sub 3} (II) phase transforms to the corundum structure on release of pressure. These studies indicate that the presence of a large fraction of seed impurities could have facilitated the decomposition of indium titanate into its constituent oxides at the cost of its incomplete transformation to the high pressure denser phase.« less
Phase transformation pathways of Ln2O3 irradiated by ultrafast laser
NASA Astrophysics Data System (ADS)
Rittman, Dylan; Solomon, Jonathan; Chen, Curtis; Tracy, Cameron; Yalisove, Steven; Asta, Mark; Mao, Wendy; Ewing, Rodney
Ultrafast laser irradiation induces highly non-equilibrium conditions in materials through intense electronic excitation over very short timescales. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln2O3 (Ln = Er-Lu). A combination of grazing incidence X-ray diffraction and transmission electron microscopy is used to characterize the amount and depth-dependence of the phase transformation. Results indicate that-although all materials experience the same transformation-it is achieved through different damage mechanisms (pressure vs. thermal), and the short timescales associated with damage provides non-equilibrium routes of material modification. Ab initio molecular dynamics are used to isolate the effects of electronic excitations, and results are shown to be consistent with the trend in radiation resistance observed experimentally. Overall, this study provides a path to gain insight into the relationship between a material's equilibrium phase diagram and its behavior under highly non-equilibrium conditions. DOE/BES.
Liu, Jinyan; Hu, Feng; Tang, Jintian; Tang, Shijie; Xia, Kun; Wu, Song; Yin, Chaoqi; Wang, Shaohua; He, Quanyong; Xie, Huiqing; Zhou, Jianda
2017-01-01
Vacuum sealing drainage (VSD) is an effective technique used to promote wound healing. However, recent studies have shown that it exerts positive pressure (PP) rather than negative pressure (NP) on skin. In this study, we created a homemade device that could maintain NP on the wound, and compared the therapeutic effects of VSD-induced PP to those of our home-made device which induced NP on wound healing. The NP induced by our device required less time for wound healing and decreased the wound area more efficiently than the PP induced by VSD. NP and PP both promoted the inflammatory response by upregulating neutrophil infiltration and interleukin (IL)-1β expression, and downregulating IL-10 expression. Higher levels of epidermal growth factor (EGF), transforming growth factor (TGF)-β and platelet-derived growth factor (PDGF), and lower levels of basic fibroblast growth factor (bFGF) were observed in the wound tissue treated with NP compared to the wound tissue exposed to PP. Proliferation in the wound tissue exposed to NP on day 10 was significantly higher than that in wound tissue exposed to PP. NP generated more fibroblasts, keratinized stratified epithelium, and less epithelia with stemness than PP. The levels of ccollagen I and III were both decreased in both the NP and PP groups. NP induced a statistically significant increase in the expression of fibronectin (FN) on days 3 and 10 compared to PP. Furthermore, the level of matrix metalloproteinase (MMP)-13 increased in the NP group, but decreased in the PP group on day 3. NP also induced a decrease in the levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 during the early stages of wound healing, which was significantly different from the increasing effect of PP on TIMP-1 and TIMP-2 levels at the corresponding time points. On the whole, our data indicate that our homemade device which induced NP, was more efficient than VSD-induced PP on wound healing by regulating inflammation, secretion, proliferation and the distribution of different cells in wound tissue. PMID:28290607
High pressure synthesis of amorphous TiO2 nanotubes
NASA Astrophysics Data System (ADS)
Li, Quanjun; Liu, Ran; Wang, Tianyi; Xu, Ke; Dong, Qing; Liu, Bo; Liu, Jing; Liu, Bingbing
2015-09-01
Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD) method. The starting anatase structure is stable up to ˜20GPa, and transforms into a high-density amorphous (HDA) form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM) study. In addition, the bulk modulus (B0 = 158 GPa) of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa). We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.
Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPa
NASA Astrophysics Data System (ADS)
Rosa, A. D.; Garbarino, G.; Briggs, R.; Svitlyk, V.; Morard, G.; Bouhifd, M. A.; Jacobs, J.; Irifune, T.; Mathon, O.; Pascarelli, S.
2018-03-01
Solid krypton (Kr) undergoes a pressure-induced martensitic phase transition from a face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. These two phases coexist in a very wide pressure domain inducing important modifications of the bulk properties of the resulting mixed phase system. Here, we report a detailed in situ x-ray diffraction and absorption study of the influence of the fcc-hcp phase transition on the compression behavior of solid krypton in an extended pressure domain up to 140 GPa. The onset of the hcp-fcc transformation was observed in this study at around 2.7 GPa and the coexistence of these two phases up to 140 GPa, the maximum investigated pressure. The appearance of the hcp phase is also evidenced by the pressure-induced broadening and splitting of the first peak in the XANES spectra. We demonstrate that the transition is driven by a continuous nucleation and intergrowth of nanometric hcp stacking faults that evolve in the fcc phase. These hcp stacking faults are unaffected by high-temperature annealing, suggesting that plastic deformation is not at their origin. The apparent small Gibbs free-energy differences between the two structures that decrease upon compression may explain the nucleation of hcp stacking faults and the large coexistence domain of fcc and hcp krypton. We observe a clear anomaly in the equation of state of the fcc solid at ˜20 GPa when the proportion of the hcp form reaches ˜20 % . We demonstrate that this anomaly is related to the difference in stiffness between the fcc and hcp phases and propose two distinct equation of states for the low and high-pressure regimes.
The transformation of nitrogen during pressurized entrained-flow pyrolysis of Chlorella vulgaris.
Maliutina, Kristina; Tahmasebi, Arash; Yu, Jianglong
2018-08-01
The transformation of nitrogen in microalgae during entrained-flow pyrolysis of Chlorella vulgaris was systematically investigated at the temperatures of 600-900 °C and pressures of 0.1-4.0 MPa. It was found that pressure had a profound impact on the transformation of nitrogen during pyrolysis. The nitrogen retention in bio-char and its content in bio-oil reached a maximum value at 1.0 MPa. The highest conversion of nitrogen (50.25 wt%) into bio-oil was achieved at 1.0 MPa and 800 °C, which was about 7 wt% higher than that at atmospheric pressure. Higher pressures promoted the formation of pyrrolic-N (N-5) and quaternary-N (N-Q) compounds in bio-oil at the expense of nitrile-N and pyridinic-N (N-6) compounds. The X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results on bio-chars clearly evidenced the transformation of N-5 structures into N-6 and N-Q structures at elevated pressures. The nitrogen transformation pathways during pyrolysis of microalgae were proposed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Del Mauro, Julieta S; Prince, Paula D; Donato, Martín; Fernandez Machulsky, Nahuel; Morettón, Marcela A; González, Germán E; Bertera, Facundo M; Carranza, Andrea; Gorzalczany, Susana B; Chiappetta, Diego A; Berg, Gabriela; Morales, Celina; Gelpi, Ricardo J; Taira, Carlos A; Höcht, Christian
2017-04-01
The aim of the study was to compare the effects of chronic oral treatment with carvedilol or amlodipine on blood pressure, blood pressure variability and target organ damage in N-nitro-l-arginine methyl ester (L-NAME) hypertensive rats. Wistar rats were treated with L-NAME administered in the drinking water for 8 weeks together with oral administration of carvedilol 30 mg/kg (n = 6), amlodipine 10 mg/kg (n = 6), or vehicle (n = 6). At the end of the treatment, echocardiographic evaluation, blood pressure, and short-term variability measurements were performed. Left ventricular and thoracic aortas were removed to assess activity of metalloproteinase 2 and 9 and expression levels of transforming growth factor β, tumor necrosis factor α, and interleukin 6. Histological samples were prepared from both tissues. Carvedilol and amlodipine induced a comparable reduction of systolic and mean arterial pressure and its short-term variability in L-NAME rats. The expression of transforming growth factor β, tumor necrosis factor α, and interleukin 6 decreased in both organs after carvedilol or amlodipine treatment and the activity of metalloproteinase was reduced in aortic tissue. Treatment with carvedilol or amlodipine completely prevented left ventricular collagen deposition and morphometric alterations in aorta. Oral chronic treatment with carvedilol or amlodipine significantly attenuates blood pressure variability and reduces target organ damage and biomarkers of tissue fibrosis and inflammation in L-NAME hypertensive rats. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
Pressure-induced amorphization of YVO₄:Eu³⁺ nanoboxes.
Ruiz-Fuertes, J; Gomis, O; León-Luis, S F; Schrodt, N; Manjón, F J; Ray, S; Santamaría-Pérez, D; Sans, J A; Ortiz, H M; Errandonea, D; Ferrer-Roca, C; Segura, A; Martínez-García, D; Lavín, V; Rodríguez-Mendoza, U R; Muñoz, A
2016-01-15
A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu(3+) nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu(3+) photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two (5)D0-->(7)F0 photoluminescence peaks confirms the existence of two local environments for Eu(3+), at least for the low-pressure phase. One environment is the expected for substituting Y(3+) and the other is likely a disordered environment possibly found at the surface of the nanoboxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Haiyan; Wang, Lijuan; Li, Kuo
Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6- are identified with gas chromatography-mass spectrometry and severalmore » other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 107 fold enhancement of the electrical conductivity. The polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.« less
Effect of high pressure on the photochemical reaction center from Rhodobacter sphaeroides R26.1.
Gall, A; Ellervee, A; Bellissent-Funel, M C; Robert, B; Freiberg, A
2001-01-01
High-pressure studies on the photochemical reaction center from the photosynthetic bacterium Rhodobacter sphaeroides, strain R26.1, shows that, up to 0.6 GPa, this carotenoid-less membrane protein does not loose its three-dimensional structure at room temperature. However, as evidenced by Fourier-transform preresonance Raman and electronic absorption spectra, between the atmospheric pressure and 0.2 GPa, the structure of the bacterial reaction center experiences a number of local reorganizations in the binding site of the primary electron donor. Above that value, the apparent compressibility of this membrane protein is inhomogeneous, being most noticeable in proximity to the bacteriopheophytin molecules. In this elevated pressure range, no more structural reorganization of the primary electron donor binding site can be observed. However, its electronic structure becomes dramatically perturbed, and the oscillator strength of its Q(y) electronic transition drops by nearly one order of magnitude. This effect is likely due to very small, pressure-induced changes in its dimeric structure. PMID:11222309
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blandin, J.J.; Varloteaux, A.; Suery, M.
Superplastic deformation of aluminium alloys induces cavity formation throughout the material, so that superplastic forming usually requires to be carried out under superimposed gas pressure to minimize strain-induced damage. This paper deals with the beneficial effects of heat treatment at high temperature for several hours before deformation on cavitation behavior of a superplastically deformed 7475 alloy. Transmission electron microscopy observations show that several microstructural transformations are induced by superplastic deformation and affected by the heat treatment. At first, the generation of dispersoid free zones at the periphery of the grains is observed, the composition of which depends on the priormore » history of the specimen. Secondly, the formation of long thin fibers extending in the cavities in the as received specimens, these fibers being no longer present in the heat-treated conditions. A TEM characterization of the fibers is presented and a mechanism of their formation is discussed. Such a reduction of the cavitation level for a given strain is interesting in view of superplastic forming of aluminium alloys under atmospheric pressure.« less
Dynamic excitations in membranes induced by optical tweezers.
Bar-Ziv, R; Moses, E; Nelson, P
1998-01-01
We present the phenomenology of transformations in lipid bilayers that are excited by laser tweezers. A variety of dynamic instabilities and shape transformations are observed, including the pearling instability, expulsion of vesicles, and more exotic ones, such as the formation of passages. Our physical picture of the laser-membrane interaction is based on the generation of tension in the bilayer and loss of surface area. Although tension is the origin of the pearling instability, it does not suffice to explain expulsion of vesicles, where we observe opening of giant pores and creeping motion of bilayers. We present a quantitative theoretical framework to understand most of the observed phenomenology. The main hypothesis is that lipid is pulled into the optical trap by the familiar dielectric effect, is disrupted, and finally is repackaged into an optically unresolvable suspension of colloidal particles. This suspension, in turn, can produce osmotic pressure and depletion forces, driving the observed transformations. PMID:9649388
Experimental and Theoretical Investigations on d and f Electron Systems under High Pressure
NASA Astrophysics Data System (ADS)
Gupta, Satish C.; Joshi, K. D.; Banerjee, S.
2008-07-01
The pressure-induced electron transfer from sp to d band in transition elements, and spd to f band in the light actinides significantly influences the stability of crystal structures in these metals. Although α → ω → β phase transition with increasing pressure in group IV transition elements is well documented, the β → ω transition under pressure has not been reported until recently. Our experimental study on the β-stabilized Zr-20Nb alloy reveals that it transforms to ω phase on shock compression, whereas this transition is not seen in a hydrostatic pressure condition. The platelike morphology of ω formed under shock compression is in contrast to the fine particle morphology seen in this system under thermal treatment, which clearly indicates that the mechanism of the β → ω transformation under shock treatment involves a large shear component. In this article, we have analyzed why the ω → β transition pressures in Ti, Zr, and Hf do not follow the trend implied by the principle of corresponding states. Our analysis shows that the ω → β transition depends on how the increased d population caused by the sp → d transfer of electron is distributed among various d substates. In Th, we have analyzed the role of 5f electrons in determining the mechanical stability of fcc and bct structures under hydrostatic compressions. Our analysis shows that the fcc to bct transition in this metal, which has been reported by high-pressure experiments, occurs because of softening of the tetragonal shear modulus C' = ( C 11 - C 12)/2 under compression. From the total energy calculated as a function of specific volume, we have determined the 0 K isotherm, which is then used to deduce the shock Hugoniot. The theoretical Hugoniot compares well with the experimental data.
NASA Astrophysics Data System (ADS)
Choudhary, Ritika; Chauhan, Rishi Pal
2017-07-01
The modification in various properties of thin films using high energetic ion beam is an exciting area of basic and applied research in semiconductors. In the present investigations, cadmium selenide (CdSe) thin films were deposited on ITO substrate using electrodeposition technique. To study the swift heavy ion (SHI) induced effects, the deposited thin films were irradiated with 120 MeV heavy Ag9+ ions using pelletron accelerator facility at IUAC, New Delhi, India. Structural phase transformation in CdSe thin film from metastable cubic phase to stable hexagonal phase was observed after irradiation leading to decrease in the band gap from 2.47 eV to 2.12 eV. The phase transformation was analyzed through X-ray diffraction patterns. During SHI irradiation, Generation of high temperature and pressure by thermal spike along the trajectory of incident ions in the thin films might be responsible for modification in the properties of thin films.[Figure not available: see fulltext.
Grosu, Yaroslav; Mierzwa, Michał; Eroshenko, Valentine A; Pawlus, Sebastian; Chorażewski, Mirosław; Nedelec, Jean-Marie; Grolier, Jean-Pierre E
2017-03-01
This paper presents the first experimental evidence of pronounced electrification effects upon reversible cycle of forced water intrusion-extrusion in nanoporous hydrophobic materials. Recorded generation of electricity combined with high-pressure calorimetric measurements improves the energy balance of {nanoporous solid + nonwetting liquid} systems by compensating mechanical and thermal energy hysteresis in the cycle. Revealed phenomena provide a novel way of "mechanical to electrical" and/or "thermal to electrical" energy transformation with unprecedented efficiency and additionally open a perspective to increase the efficiency of numerous energy applications based on such systems taking advantage of electricity generation during operational cycle.
High-pressure polymorphism of Pb F 2 to 75 GPa
Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.; ...
2016-07-06
Lead fluoride, PbF 2, was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c. Theoretical calculations of valence electron densities at 22 GPa showed that α-PbFmore » 2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite Co 2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a/c and (a+c)/b, which are used to distinguish among cotunnite-, Co 2Si-, and Ni 2In-type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K 0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V 0, of 182(2)Å 3, and K 0=81(4)GPa for the Co 2Si-type phase when fixing the pressure derivative of the bulk modulus, K 0'=4. Upon heating above 1200 K at pressures at or above 25.9 GPa, PbF 2 partially transformed to the hexagonal Ni 2In-type phase but wholly or partially reverted back to Co 2Si-type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the Ni 2In-type PbF 2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of PbF 2 is distinct from that of the alkaline earth fluorides with similar ionic radii. These results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.« less
High-pressure polymorphism of Pb F2 to 75 GPa
NASA Astrophysics Data System (ADS)
Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.; Prakapenka, Vitali; Duffy, Thomas S.
2016-07-01
Lead fluoride, Pb F2 , was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c . Theoretical calculations of valence electron densities at 22 GPa showed that α -Pb F2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite C o2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a /c and (a +c )/b , which are used to distinguish among cotunnite-, C o2Si -, and N i2In -type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V0, of 182 (2 ) Å3 , and K0=81 (4 ) GPa for the C o2Si -type phase when fixing the pressure derivative of the bulk modulus, K0 '=4 . Upon heating above 1200 K at pressures at or above 25.9 GPa, Pb F2 partially transformed to the hexagonal N i2In -type phase but wholly or partially reverted back to C o2Si -type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the N i2In -type Pb F2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of Pb F2 is distinct from that of the alkaline earth fluorides with similar ionic radii. Our results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.
Analytical one-dimensional model for laser-induced ultrasound in planar optically absorbing layer.
Svanström, Erika; Linder, Tomas; Löfqvist, Torbjörn
2014-03-01
Ultrasound generated by means of laser-based photoacoustic principles are in common use today and applications can be found both in biomedical diagnostics, non-destructive testing and materials characterisation. For certain measurement applications it could be beneficial to shape the generated ultrasound regarding spectral properties and temporal profile. To address this, we studied the generation and propagation of laser-induced ultrasound in a planar, layered structure. We derived an analytical expression for the induced pressure wave, including different physical and optical properties of each layer. A Laplace transform approach was employed in analytically solving the resulting set of photoacoustic wave equations. The results correspond to simulations and were compared to experimental results. To enable the comparison between recorded voltage from the experiments and the calculated pressure we employed a system identification procedure based on physical properties of the ultrasonic transducer to convert the calculated acoustic pressure to voltages. We found reasonable agreement between experimentally obtained voltages and the voltages determined from the calculated acoustic pressure, for the samples studied. The system identification procedure was found to be unstable, however, possibly from violations of material isotropy assumptions by film adhesives and coatings in the experiment. The presented analytical model can serve as a basis when addressing the inverse problem of shaping an acoustic pulse from absorption of a laser pulse in a planar layered structure of elastic materials. Copyright © 2013 Elsevier B.V. All rights reserved.
Similar solutions for viscous hypersonic flow over a slender three-fourths-power body of revolution
NASA Technical Reports Server (NTRS)
Lin, Chin-Shun
1987-01-01
For hypersonic flow with a shock wave, there is a similar solution consistent throughout the viscous and inviscid layers along a very slender three-fourths-power body of revolution The strong pressure interaction problem can then be treated by the method of similarity. Numerical calculations are performed in the viscous region with the edge pressure distribution known from the inviscid similar solutions. The compressible laminar boundary-layer equations are transformed into a system of ordinary differential equations. The resulting two-point boundary value problem is then solved by the Runge-Kutta method with a modified Newton's method for the corresponding boundary conditions. The effects of wall temperature, mass bleeding, and body transverse curvature are investigated. The induced pressure, displacement thickness, skin friction, and heat transfer due to the previously mentioned parameters are estimated and analyzed.
Pineapple [Ananas comosus (L.) Merr].
Yabor, Lourdes; Espinosa, Patricia; Arencibia, Ariel D; Lorenzo, José C
2006-01-01
A procedure for pineapple [Ananas comosus (L.) Merr.] genetic transformation is described, which involves temporary immersion bioreactors (TIB) for selection of transgenic plants. Success in the production of transgenic pineapple plants combines tissue culture factors. Firstly, the use of regenerable pineapple callus as starting material for transformation whose cells shown to be competent for Agrobacterium infection. Secondly, the used of filtered callus, resulting in homogeneously sized clusters, thereby increasing the contact between the cell surfaces and A. tumefaciens and releasing phenolic compounds which induce Agrobacterium virulence. Thirdly, regeneration of primary plants without selection pressure, that allowing a massive production of putative transgenic pineapples. Finally, we support that TIB technology is a powerful system to recover nonchimera transgenic plants by micropropagation with the use of an adequate selection agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischoff, A. J., E-mail: alina.bischoff@iom-leipzig.de; Arabi-Hashemi, A.; Ehrhardt, M.
Combining experimental methods and classical molecular dynamics (MD) computer simulations, we explore the martensitic transformation in Fe{sub 70}Pd{sub 30} ferromagnetic shape memory alloy thin films induced by laser shock peening. X-ray diffraction and scanning electron microscope measurements at shock wave pressures of up to 2.5 GPa reveal formation of martensitic variants with preferred orientation of the shorter c-axis of the tetragonal unit cell perpendicular to the surface plane. Moreover, consequential merging of growth islands on the film surface is observed. MD simulations unveil the underlying physics that are characterized by an austenite-martensite transformation with a preferential alignment of the c-axis alongmore » the propagation direction of the shock wave, resulting in flattening and in-plane expansion of surface features.« less
Liu, Yan; Qi, Hanping; E, Mingyao; Shi, Pilong; Zhang, Qianhui; Li, Shuzhi; Wang, Ye; Cao, Yonggang; Chen, Yunping; Ba, Lina; Gao, Jingquan; Huang, Wei; Sun, Hongli
2018-02-01
Cardiac fibrosis is a common pathologic change along with pressure overload. Recent studies indicated that transient receptor potential (TRP) channels played multiple roles in heart. However, the functional role of transient receptor potential vanilloid-3 (TRPV3) in cardiac fibrosis remained unclear. The present study was designed to investigate the relationship between TRPV3 activation and pressure overload-induced cardiac fibrosis. Pressure overload rats were successfully established by abdominal aortic constriction (AAC), and cardiac fibrosis was simulated by 100 nM angiotensin II (Ang II) in neonatal cardiac fibroblasts. Echocardiographic parameters, cardiac fibroblast proliferation, cell cycle, intracellular calcium concentration ([Ca 2+ ] i ), and the protein expressions of collagen I, collagen III, transforming growth factor beta 1 (TGF-β 1 ), cyclin E, and cyclin-dependent kinase 2 (CDK2) were measured. Echocardiographic and histological measurements suggested that the activation of TRPV3 exacerbated the cardiac dysfunction and increased interstitial fibrosis in pressure overload rats. Further results showed that TRPV3 activation upregulated the expressions of collagen I, collagen III, TGF-β 1 , cyclin E, and CDK2 in vivo and in vitro. At the same time, blocking TGF-β 1 pathway could partially reverse the effect of TRPV3 activation. These results suggested that TRPV3 activation exacerbated cardiac fibrosis by promoting cardiac fibroblast proliferation through TGF-β 1 /CDK2/cyclin E pathway in the pressure-overloaded rat hearts.
Alvarez-Rivera, Gerardo; Llompart, Maria; Garcia-Jares, Carmen; Lores, Marta
2016-04-01
The stability and photochemical transformations of cosmetic preservatives in topical applications exposed to UV-light is a serious but poorly understood problem. In this study, a high throughput extraction and selective method based on pressurized liquid extraction (PLE) coupled to gas chromatography-mass spectrometry (GC-MS) was validated and applied to investigate the photochemical transformation of the antioxidant butylated hydroxytoluene (BHT), as well as the antimicrobials triclosan (TCS) and phenyl benzoate (PhBz) in an artificial skin model. Two sets of photodegradation experiments were performed: (i) UV-Irradiation (8W, 254nm) of artificial skin directly spiked with the target preservatives, and (ii) UV-irradiation of artificial skin after the application of a cosmetic cream fortified with the target compounds. After irradiation, PLE was used to isolate the target preservatives and their transformation products. The follow-up of the photodegradation kinetics of the parent preservatives, the identification of the arising by-products, and the monitorization of their kinetic profiles was performed by GC-MS. The photochemical transformation of triclosan into 2,8-dichloro-dibenzo-p-dioxin (2,8-DCDD) and other dioxin-like photoproducts has been confirmed in this work. Furthermore, seven BHT photoproducts, and three benzophenones as PhBz by-products, have been also identified. These findings reveal the first evidences of cosmetic ingredients phototransformation into unwanted photoproducts on an artificial skin model. Copyright © 2016 Elsevier B.V. All rights reserved.
Levitas, Valery I; Henson, Bryan F; Smilowitz, Laura B; Asay, Blaine W
2006-05-25
We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta --> delta PT and from 520 to 400 K for the beta phase during the delta --> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not change the PT thermodynamics or kinetics appreciably for the first and the second PT beta <--> delta cycles, as predicted by theory; (f) beta <--> delta PTs start at a very small driving force (in contrast to all known solid-solid transformations with large transformation strain), that is, elastic energy and athermal interface friction must be negligible; (g) beta --> alpha and alpha --> beta PTs, which are thermodynamically possible in the temperature range 382.4 < theta < 430 K and below 382.4 K, respectively, do not occur.
NASA Astrophysics Data System (ADS)
Lo, Men-Tzung; Hu, Kun; Liu, Yanhui; Peng, C.-K.; Novak, Vera
2008-12-01
Quantification of nonlinear interactions between two nonstationary signals presents a computational challenge in different research fields, especially for assessments of physiological systems. Traditional approaches that are based on theories of stationary signals cannot resolve nonstationarity-related issues and, thus, cannot reliably assess nonlinear interactions in physiological systems. In this review we discuss a new technique called multimodal pressure flow (MMPF) method that utilizes Hilbert-Huang transformation to quantify interaction between nonstationary cerebral blood flow velocity (BFV) and blood pressure (BP) for the assessment of dynamic cerebral autoregulation (CA). CA is an important mechanism responsible for controlling cerebral blood flow in responses to fluctuations in systemic BP within a few heart-beats. The MMPF analysis decomposes BP and BFV signals into multiple empirical modes adaptively so that the fluctuations caused by a specific physiologic process can be represented in a corresponding empirical mode. Using this technique, we showed that dynamic CA can be characterized by specific phase delays between the decomposed BP and BFV oscillations, and that the phase shifts are significantly reduced in hypertensive, diabetics and stroke subjects with impaired CA. Additionally, the new technique can reliably assess CA using both induced BP/BFV oscillations during clinical tests and spontaneous BP/BFV fluctuations during resting conditions.
NASA Astrophysics Data System (ADS)
Manimunda, Praveena; Hintsala, Eric; Asif, Syed; Mishra, Manish Kumar
2017-01-01
The ability to correlate mechanical and chemical characterization techniques in real time is both lacking and powerful tool for gaining insights into material behavior. This is demonstrated through use of a novel nanoindentation device equipped with Raman spectroscopy to explore the deformation-induced structural changes in piroxicam crystals. Mechanical anisotropy was observed in two major faces ( 0bar{1}1 ) and (011), which are correlated to changes in the interlayer interaction from in situ Raman spectra recorded during indentation. The results of this study demonstrate the considerable potential of an in situ Raman nanoindentation instrument for studying a variety of topics, including stress-induced phase transformation mechanisms, mechanochemistry, and solid state reactivity under mechanical forces that occur in molecular and pharmaceutical solids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.
Lead fluoride, PbF 2, was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c. Theoretical calculations of valence electron densities at 22 GPa showed that α-PbFmore » 2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite Co 2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a/c and (a+c)/b, which are used to distinguish among cotunnite-, Co 2Si-, and Ni 2In-type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K 0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V 0, of 182(2)Å 3, and K 0=81(4)GPa for the Co 2Si-type phase when fixing the pressure derivative of the bulk modulus, K 0'=4. Upon heating above 1200 K at pressures at or above 25.9 GPa, PbF 2 partially transformed to the hexagonal Ni 2In-type phase but wholly or partially reverted back to Co 2Si-type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the Ni 2In-type PbF 2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of PbF 2 is distinct from that of the alkaline earth fluorides with similar ionic radii. These results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.« less
Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics
NASA Astrophysics Data System (ADS)
Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya
2018-04-01
The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.
Deviatoric stress-induced phase transitions in diamantane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Lin, Yu; Dahl, Jeremy E. P.
2014-10-21
The high-pressure behavior of diamantane was investigated using angle-dispersive synchrotron x-ray diffraction (XRD) and Raman spectroscopy in diamond anvil cells. Our experiments revealed that the structural transitions in diamantane were extremely sensitive to deviatoric stress. Under non-hydrostatic conditions, diamantane underwent a cubic (space group Pa3) to a monoclinic phase transition at below 0.15 GPa, the lowest pressure we were able to measure. Upon further compression to 3.5 GPa, this monoclinic phase transformed into another high-pressure monoclinic phase which persisted to 32 GPa, the highest pressure studied in our experiments. However, under more hydrostatic conditions using silicone oil as a pressuremore » medium, the transition pressure to the first high-pressure monoclinic phase was elevated to 7–10 GPa, which coincided with the hydrostatic limit of silicone oil. In another experiment using helium as a pressure medium, no phase transitions were observed to the highest pressure we reached (13 GPa). In addition, large hysteresis and sluggish transition kinetics were observed upon decompression. Over the pressure range where phase transitions were confirmed by XRD, only continuous changes in the Raman spectra were observed. This suggests that these phase transitions are associated with unit cell distortions and modifications in molecular packing rather than the formation of new carbon-carbon bonds under pressure.« less
A metastable liquid melted from a crystalline solid under decompression
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; ...
2017-01-23
A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. Themore » decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Finally, akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.« less
A metastable liquid melted from a crystalline solid under decompression
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin
2017-01-01
A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought. PMID:28112152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.
A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. Themore » decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Finally, akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.« less
NASA Astrophysics Data System (ADS)
Canbay, Canan Aksu; Polat, Tercan
2017-09-01
In this work the effects of the applied pressure on the characteristic transformation temperatures, the high temperature order-disorder phase transitions, the variation in diffraction peaks and the surface morphology of the CuAlMnNi shape memory alloy was investigated. The evolution of the transformation temperatures was studied by differential scanning calorimetry (DSC) with different heating and cooling rates. The differential thermal analysis measurements were performed to obtain the ordered-disordered phase transformations from room temperature to 900 °C. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the applied pressure and also the applied pressure affected the thermodynamic parameters. The activation energy of the sample according to applied pressure values calculated by Kissinger method. The structural changes of the samples were studied by X-ray diffraction (XRD) measurements and by optical microscope observations at room temperature.
Volume Change During Intermartensitic Transformations in Ni-Mn-Ga Alloy
NASA Astrophysics Data System (ADS)
Polyakov, P. I.; Slyusarev, V. V.; Kokorin, V. V.; Konoplyuk, S. M.; Semenova, Yu. S.; Khovaylo, V. V.
2014-09-01
Characteristics of phase transitions in Ni54Mn24Ga22 alloy were studied at different hydrostatic pressures to shed light on the nature and mechanisms of intermartensitic transformations. The temperature dependence of resistivity of the alloy was used to find characteristic temperatures of martensitic and intermartensitic transformations as a function of hydrostatic pressure. The latent heat of these transformations was determined by differential scanning calorimetry. The transformation volume effects were calculated using Clausius-Clapeyron equation. They make up 0.082% for martensitic and 0.024% for intermartensitic transformations.
NASA Astrophysics Data System (ADS)
Chellappa, Raja S.
This dissertation presents the phase diagram calculations and high pressure Raman spectroscopy studies on organic "plastic crystal" thermal storage materials. The organic "plastic crystals" that were studied include pentaerythritol [PE:C(CH 2OH)4], neopentylglycol [NPG:(CH3)2C(CH 2OH)2], tris(hydroxymethyl)-aminomethane [TRIS:(NH2 )C(CH2OH)3], and 2-amino-2-methyl-1,3-propanediol [AMPL: (NH2)(CH3)C(CH2OH)2]. Thermodynamic optimization of the experimental data of AMPL-NPG and PE-AMPL binary system was performed and the calculated phase diagrams are presented. A preliminary calculated phase diagram of the TRIS-NPG binary system is also presented. A thorough reevaluation of the existing calorimetric and x-ray diffraction data of the PE-AMPL binary system is also presented. This analysis resulted in the correct interpretation of the phase boundaries and a revised phase diagram has been drawn. The results of high pressure Raman spectroscopy experiments on neopentylglycol and pentaerythritol presented. The phase transformation pressures were determined by analyzing the frequency shifts as a function of pressure as well as the changes in the internal modes of vibration for these compounds. A simplified assignment of the vibrational modes for NPG at ambient pressure is presented. The results indicate experiments were carried out using Diamond Anvil Cell (DAC) and the pressure induced transformations were studied by Raman spectroscopy. In NPG, a phase transition occurs at ˜3.6 GPa from Phase I (Monoclinic) to Phase II (unknown structure). In PE, the proposed phase transformation pressures are ˜4.8 GPa (Phase I to Phase II), ˜6.9 GPa (Phase II to Phase III), ˜9.5 GPa (Phase III to Phase IV), and ˜15 GPa (Phase IV to Amorphous). The results of a critical assessment of the vapor pressure data of solid metal carbonyls. The vapor pressure data of Chromium Carbonyl (Cr(CO)6), Tungsten Carbonyl (W(CO)6 ), Osmium Carbonyl (Os3(CO)12), Molybdenum Carbonyl (MO(CO)6). Rhenium Carbonyl (Re2(CO)10), and Manganese Carbonyl (Mn(CO)5) were assessed using the "Oonk Methodology". The sublimation properties using the assessed data (Delta subGo,DeltasubH o and Deltasub Cop,m ) of these compounds have been evaluated and a discussion on the mutual consistency of various data sets for each compound over a wide range of temperature is also presented.
Pressure-Induced Phase Transitions in the Cd-Yb Periodic Approximant to a Quasicrystal
NASA Astrophysics Data System (ADS)
Watanuki, Tetsu; Machida, Akihiko; Ikeda, Tomohiro; Aoki, Katsutoshi; Kaneko, Hiroshi; Shobu, Takahisa; Sato, Taku J.; Tsai, An Pang
2006-03-01
The phase study of a Cd-Yb 1/1 approximant crystal over a wide pressure and temperature range is crucial for the comparison study between periodic and quasiperiodic crystals. The Cd4 tetrahedra, the most inner part of the atomic clusters, exhibited various structural ordering in the orientation sensitive to pressure and temperature. Five ordered phases appeared in a P-T span up to 5.2 GPa and down to 10 K. The propagation direction of ordering alternated from [110] to ⟨111⟩ at about 1.0 GPa and again to [110] at 3.5 4.3 GPa. The primarily ordered phases that appeared by cooling to 210 250 K between 1.0 5.2 GPa further transformed to finely ordered ones at 120 155 K. Besides the original short-range type interaction, a long-range type interaction was likely developed under pressure to lead to the primary ordering of Cd4 tetrahedra. Coexistence of these interactions is responsible for the complicated phase behavior.
NASA Astrophysics Data System (ADS)
Tyrman, Muriel; Ahmim, Smail; Pasko, Alexandre; Etgens, Victor; Mazaleyrat, Frédéric; Quetel-Weben, Simon; Perrière, Loïc; Guillot, Ivan
2018-05-01
The metastable τ-phase of MnAl equi-atomic compound belongs to a family of ferromagnetic alloys with L10 crystal structure. Stabilization of the phase by adding 2 at. % using manganese carbide (Mn23C6) enhances the magnetization in relation with the increase in lattice volume. It is thus a promising candidate for rare-earth-free permanent magnets. Coercivity of Mn-Al-C alloys being still weak, there is an interest to see to which extend sintering/transformation of the ɛ-phase by Spark Plasma Sintering (SPS) can increase the coercivity and the anisotropy. The structural and the magnetic properties were studied for samples sintered at 550 °C under uniaxial pressure of 100, 200, 300 and 400 MPa. Coercivity, remanence and anistotropy appears with the sintering pressure. The high pressure applied while sintering produces preferential orientation of the flake-shaped grains which influences the remanence.
Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin
2013-01-01
The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures. PMID:24253589
Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb) 2 (Se,Te) 3
Jeffries, J. R.; Butch, N. P.; Vohra, Y. K.; ...
2015-03-18
The group V-VI compounds|like Bi 2Se 3, Sb 2Te 3, or Bi 2Te 3|have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and crystal structure of a pseudobinary (Bi,Sb) 2(Te,Se) 3 compound. Similar to some ofmore » its sister compounds, the (Bi,Sb) 2(Te,Se) 3 pseudobinary compound undergoes multiple, pressure-induced phase transformations that result in metallization, the onset of a close-packed crystal structure, and the development of distinct superconducting phases.« less
Seif, R; Martin, R G
1979-01-01
Simian virus 40 deletion mutants affecting the 20,000-dalton (20K) t antigen and tsA mutants rendering the 90K T antigen temperature sensitive, as well as double mutants containing both mutations, induced host DNA synthesis in resting rat cells at the restrictive temperature. Nonetheless, the deletion mutants and double mutants did not induce transformation in resting cells even at the permissive temperature. On the other hand, the deletion mutants did induce full transformants when actively growing rat cells were infected; the transformants grew efficiently in agar and to high saturation densities on platic. The double mutants did not induce T-antigen-independent (temperature-insensitive) transformants which were shown previously to arise preferentially from resting cells. Thus, small t antigen was dispensable for the maintenance of the transformed phenotype in T-antigen-dependent rat transformants (transformants derived from growing cells) and may play a role in the establishment of T-antigen-independent transformants. We attempt to establish a parallel between transformation induced by chemical carcinogens and simian virus 40-induced transformation. Images PMID:229274
Seif, R; Martin, R G
1979-12-01
Simian virus 40 deletion mutants affecting the 20,000-dalton (20K) t antigen and tsA mutants rendering the 90K T antigen temperature sensitive, as well as double mutants containing both mutations, induced host DNA synthesis in resting rat cells at the restrictive temperature. Nonetheless, the deletion mutants and double mutants did not induce transformation in resting cells even at the permissive temperature. On the other hand, the deletion mutants did induce full transformants when actively growing rat cells were infected; the transformants grew efficiently in agar and to high saturation densities on platic. The double mutants did not induce T-antigen-independent (temperature-insensitive) transformants which were shown previously to arise preferentially from resting cells. Thus, small t antigen was dispensable for the maintenance of the transformed phenotype in T-antigen-dependent rat transformants (transformants derived from growing cells) and may play a role in the establishment of T-antigen-independent transformants. We attempt to establish a parallel between transformation induced by chemical carcinogens and simian virus 40-induced transformation.
Revisiting pressure-induced phase transition in silicon clathrates using Ge substitution
Blancon, Jean-Christophe Robert; Machon, Denis; Pischedda, Vittoria; ...
2016-04-11
Ba 8Si 39Ge 7 and Ba 8Si 29Ge 17 have been studied at high pressure using x-ray diffraction and x-ray absorption spectroscopy (XAS) at the Ge K edge. In Ba 8Si 39Ge 7, a transition is observed similar to the one in Ba 8Si 46, apparently isostructural. However, the XAS data analysis shows that the transformation is related to the off-centering of the Ba atoms. A theoretical model based on a Landau potential suggests that this transition is second order, with a symmetry-breaking mechanism related to the Ba displacement probably initiated by the vacancy creation or local distortion predicted theoretically.more » Lastly, this analysis gives a coherent picture of the phase transition mechanism. In the case of Ba 8Si 29Ge 17, such phase transition is not observed as the Ba atoms appear already off-center at ambient pressure.« less
Revisiting pressure-induced phase transition in silicon clathrates using Ge substitution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blancon, Jean-Christophe Robert; Machon, Denis; Pischedda, Vittoria
Ba 8Si 39Ge 7 and Ba 8Si 29Ge 17 have been studied at high pressure using x-ray diffraction and x-ray absorption spectroscopy (XAS) at the Ge K edge. In Ba 8Si 39Ge 7, a transition is observed similar to the one in Ba 8Si 46, apparently isostructural. However, the XAS data analysis shows that the transformation is related to the off-centering of the Ba atoms. A theoretical model based on a Landau potential suggests that this transition is second order, with a symmetry-breaking mechanism related to the Ba displacement probably initiated by the vacancy creation or local distortion predicted theoretically.more » Lastly, this analysis gives a coherent picture of the phase transition mechanism. In the case of Ba 8Si 29Ge 17, such phase transition is not observed as the Ba atoms appear already off-center at ambient pressure.« less
Negative-pressure-induced enhancement in a freestanding ferroelectric
NASA Astrophysics Data System (ADS)
Wang, Jin; Wylie-van Eerd, Ben; Sluka, Tomas; Sandu, Cosmin; Cantoni, Marco; Wei, Xian-Kui; Kvasov, Alexander; McGilly, Leo John; Gemeiner, Pascale; Dkhil, Brahim; Tagantsev, Alexander; Trodahl, Joe; Setter, Nava
2015-10-01
Ferroelectrics are widespread in technology, being used in electronics and communications, medical diagnostics and industrial automation. However, extension of their operational temperature range and useful properties is desired. Recent developments have exploited ultrathin epitaxial films on lattice-mismatched substrates, imposing tensile or compressive biaxial strain, to enhance ferroelectric properties. Much larger hydrostatic compression can be achieved by diamond anvil cells, but hydrostatic tensile stress is regarded as unachievable. Theory and ab initio treatments predict enhanced properties for perovskite ferroelectrics under hydrostatic tensile stress. Here we report negative-pressure-driven enhancement of the tetragonality, Curie temperature and spontaneous polarization in freestanding PbTiO3 nanowires, driven by stress that develops during transformation of the material from a lower-density crystal structure to the perovskite phase. This study suggests a simple route to obtain negative pressure in other materials, potentially extending their exploitable properties beyond their present levels.
Substitutional alloy of Ce and Al
Zeng, Qiao-Shi; Ding, Yang; Mao, Wendy L.; Luo, Wei; Blomqvist, Andreas; Ahuja, Rajeev; Yang, Wenge; Shu, Jinfu; Sinogeikin, Stas V.; Meng, Yue; Brewe, Dale L.; Jiang, Jian-Zhong; Mao, Ho-kwang
2009-01-01
The formation of substitutional alloys has been restricted to elements with similar atomic radii and electronegativity. Using high-pressure at 298 K, we synthesized a face-centered cubic disordered alloy of highly dissimilar elements (large Ce and small Al atoms) by compressing the Ce3Al intermetallic compound >15 GPa or the Ce3Al metallic glass >25 GPa. Synchrotron X-ray diffraction, Ce L3-edge absorption spectroscopy, and ab initio calculations revealed that the pressure-induced Kondo volume collapse and 4f electron delocalization of Ce reduced the differences between Ce and Al and brought them within the Hume-Rothery (HR) limit for substitutional alloying. The alloy remained after complete release of pressure, which was also accompanied by the transformation of Ce back to its ambient 4f electron localized state and reversal of the Kondo volume collapse, resulting in a non-HR alloy at ambient conditions. PMID:19188608
Pressure-induced polymerization of P(CN) 3
Gou, Huiyang; Yonke, Brendan L.; Epshteyn, Albert; ...
2015-05-21
Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN) 3, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder Xray diffraction (PXRD) measurements taken during compression show that molecular P(CN) 3 is highly compressible with a bulk modulus of 10.0±0.3 GPa and polymerizes into an amorphous solid above ~10.0 GPa. Raman and infrared (IR) spectra, togethermore » with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp 2 character, similar to known carbon nitrides, resulting in a novel PCN polymeric phase, which is recoverable to ambient pressure.« less
Glass Transitions in a Monatomic Liquid with Two Glassy States
NASA Astrophysics Data System (ADS)
Gordon, Andrew; Giovambattista, Nicolas
2014-04-01
We perform out-of-equilibrium molecular dynamics simulations of a monatomic liquid that exhibits liquid and glass polymorphism, with two distinct glasses, low- (LDA) and high-density (HDA) amorphous solids. By performing isobaric heating simulations of LDA and HDA at different pressures, we determine (a) the glass transition temperature of LDA and HDA, TgLDA(P) and TgHDA(P), as well as (b) the corresponding glass-glass transformation temperatures, TLDA-HDA(P) and THDA-LDA(P). It is found that TgLDA(P) is anomalous; i.e., it decreases with increasing pressure, while TgHDA(P) increases with increasing pressure. Interestingly, the TgLDA(P) and TLDA-HDA(P) loci, as well as the TgHDA(P) and THDA-LDA(P) loci, constitute smooth single lines in the P -T plane, suggesting that heating-induced glass-glass and glass transitions are related. We discuss the present results in the context of water experiments and simulations.
First principles electronic and thermal properties of some AlRE intermetallics
NASA Astrophysics Data System (ADS)
Srivastava, Vipul; Sanyal, Sankar P.; Rajagopalan, M.
2008-10-01
A study on structural and electronic properties of non-magnetic cubic B 2-type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grüneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grüneisen model and compared with the others’ theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics.
Liu, Jinyan; Hu, Feng; Tang, Jintian; Tang, Shijie; Xia, Kun; Wu, Song; Yin, Chaoqi; Wang, Shaohua; He, Quanyong; Xie, Huiqing; Zhou, Jianda
2017-04-01
Vacuum sealing drainage (VSD) is an effective technique used to promote wound healing. However, recent studies have shown that it exerts positive pressure (PP) rather than negative pressure (NP) on skin. In this study, we created a homemade device that could maintain NP on the wound, and compared the therapeutic effects of VSD-induced PP to those of our homemade device which induced NP on wound healing. The NP induced by our device required less time for wound healing and decreased the wound area more efficiently than the PP induced by VSD. NP and PP both promoted the inflammatory response by upregulating neutrophil infiltration and interleukin (IL)‑1β expression, and downregulating IL‑10 expression. Higher levels of epidermal growth factor (EGF), transforming growth factor (TGF)‑β and platelet-derived growth factor (PDGF), and lower levels of basic fibroblast growth factor (bFGF) were observed in the wound tissue treated with NP compared to the wound tissue exposed to PP. Proliferation in the wound tissue exposed to NP on day 10 was significantly higher than that in wound tissue exposed to PP. NP generated more fibroblasts, keratinized stratified epithelium, and less epithelia with stemness than PP. The levels of ccollagen Ⅰ and Ⅲ were both decreased in both the NP and PP groups. NP induced a statistically significant increase in the expression of fibronectin (FN) on days 3 and 10 compared to PP. Furthermore, the level of matrix metalloproteinase (MMP)‑13 increased in the NP group, but decreased in the PP group on day 3. NP also induced a decrease in the levels of tissue inhibitor of metalloproteinase (TIMP)‑1 and TIMP‑2 during the early stages of wound healing, which was significantly different from the increasing effect of PP on TIMP‑1 and TIMP‑2 levels at the corresponding time points. On the whole, our data indicate that our homemade device which induced NP, was more efficient than VSD‑induced PP on wound healing by regulating inflammation, secretion, proliferation and the distribution of different cells in wound tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Haiyan; Wang, Lijuan; Li, Kuo
Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC 2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC 2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6– are identified with gas chromatography-mass spectrometrymore » and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 10 7 fold enhancement of the electrical conductivity. As a result, the polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.« less
Waveform shape analysis: extraction of physiologically relevant information from Doppler recordings.
Ramsay, M M; Broughton Pipkin, F; Rubin, P C; Skidmore, R
1994-05-01
1. Doppler recordings were made from the brachial artery of healthy female subjects during a series of manoeuvres which altered the pressure-flow characteristics of the vessel. 2. Changes were induced in the peripheral circulation of the forearm by the application of heat or ice-packs. A sphygmomanometer cuff was used to create graded occlusion of the vessel above and below the point of measurement. Recordings were also made whilst the subjects performed a standardized Valsalva manoeuvre. 3. The Doppler recordings were analysed both with the standard waveform indices (systolic/diastolic ratio, pulsatility index and resistance index) and by the method of Laplace transform analysis. 4. The waveform parameters obtained by Laplace transform analysis distinguished the different changes in flow conditions; they thus had direct physiological relevance, unlike the standard waveform indices.
Dense Carbon Monoxide to 160 GPa: Stepwise Polymerization to Two-Dimensional Layered Solid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Young-Jay; Kim, Minseob; Lim, Jinhyuk
Carbon monoxide (CO) is the first molecular system found to transform into a nonmolecular “polymeric” solid above 5.5 GPa, yet been studied beyond 10 GPa. Here, we show a series of pressure-induced phase transformations in CO to 160 GPa: from a molecular solid to a highly colored, low-density polymeric phase I to translucent, high-density phase II to transparent, layered phase III. The properties of these phases are consistent with those expected from recently predicted 1D P2 1/m, 3D I2 12 12 1, and 2D Cmcm structures, respectively. Thus, the present results advocate a stepwise polymerization of CO triple bonds tomore » ultimately a 2D singly bonded layer structure with an enhanced ionic character.« less
Air- and N2-Broadening Coefficients and Pressure-Shift Coefficients in the C-12(O2-16) Laser Bands
NASA Technical Reports Server (NTRS)
Devi, V. Malathy; Benner, D. Chris; Smith, Mary Ann H.; Rinsland, Curtis P.
1998-01-01
In this paper we report the pressure broadening and the pressure-induced line shift coefficients for 46 individual rovibrational lines in both the (12)C(16)O2, 00(sup 0)1-(10(sup 0)0-02(sup 0)0)I, and 00(sup 0)1-(10(sup 0)0-02(sup 0)0)II, laser bands (laser band I centered at 960.959/cm and laser band II centered at 1063.735/cm) determined from spectra recorded with the McMath-Pierce Fourier transform spectrometer. The results were obtained from analysis of 10 long-path laboratory absorption spectra recorded at room temperature using a multispectrum nonlinear least-squares technique. Pressure effects caused by both air and nitrogen have been investigated. The air-broadening coefficients determined in this study agree well with the values in the 1996 HITRAN database; ratios and standard deviations of the ratios of the present air-broadening measurements to the 1996 HITRAN values for the two laser bands are: 1.005(15) for laser band I and 1.005(14) for laser band II. Broadening by nitrogen is 3 to 4% larger than that of air. The pressure-induced line shift coefficients are found to be transition dependent and different for the P- and R-branch lines with same J" value. No noticeable differences in the shift coefficients caused by air and nitrogen were found. The results obtained are compared with available values previously reported in the literature.
Rea, Maria Angelica; Standish, Christopher D; Shuster, Jeremiah; Bissett, Andrew; Reith, Frank
2018-05-03
Biofilms on placer gold (Au)-particle surfaces drive Au solubilization and re-concentration thereby progressively transforming the particles. Gold solubilization induces Au-toxicity; however, Au-detoxifying community members ameliorates Au-toxicity by precipitating soluble Au to metallic Au. We hypothesize that Au-dissolution and re-concentration (precipitation) places selective pressures on associated microbial communities, leading to compositional changes and subsequent Au-particle transformation. We analyzed Au-particles from eight United Kingdom sites using next generation sequencing, electron microscopy and micro-analyses. Gold particles contained biofilms composed of prokaryotic cells and extracellular polymeric substances intermixed with (bio)minerals. Across all sites communities were dominated by Proteobacteria (689, 97% Operational Taxonomic Units, 59.3% of total reads), with β-Proteobacteria being the most abundant. A wide range of Au-morphotypes including nanoparticles, micro-crystals, sheet-like Au and secondary rims, indicated that dissolution and re-precipitation occurred, and from this transformation indices were calculated. Multivariate statistical analyses showed a significant relationship between the extent of Au-particle transformation and biofilm community composition, with putative metal-resistant Au-cycling taxa linked to progressive Au transformation. These included the genera Pseudomonas, Leptothrix and Acinetobacter. Additionally, putative exoelectrogenic genera Rhodoferax and Geobacter were highly abundant. In conclusion, biogeochemical Au-cycling and Au-particle transformation occurred at all sites and exerted a strong influence on biofilm community composition.
Thermally induced phase transformation in multi-phase iron oxide nanoparticles on vacuum annealing
NASA Astrophysics Data System (ADS)
Anupama, A. V.; Keune, W.; Sahoo, B.
2017-10-01
The evolution of magnetic phases in multi-phase iron oxide nanoparticles, synthesized via the transferred arc plasma induced gas phase condensation method, was investigated by X-ray diffraction, vibrating sample magnetometry and 57Fe Mössbauer spectroscopy. The particles are proposed to be consisting of three different iron oxide phases: α-Fe2O3, γ-Fe2O3 and Fe3O4. These nanoparticles were exposed to high temperature (∼935 K) under vacuum (10-3 mbar He pressure), and the thermally induced phase transformations were investigated. The Rietveld refinement of the X-ray diffraction data corroborates the least-squares fitting of the transmission Mössbauer spectra in confirming the presence of Fe3O4, γ-Fe2O3 and α-Fe2O3 phases before the thermal treatment, while only Fe3O4 and α-Fe2O3 phases exist after thermal treatment. On thermal annealing in vacuum, conversion from γ-Fe2O3 to Fe3O4 and α-Fe2O3 was observed. Interestingly, we have observed a phase transformation occurring in the temperature range ∼498 K-538 K, which is strikingly lower than the phase transformation temperature of γ-Fe2O3 to α-Fe2O3 (573-623 K) in air. Combining the results of Rietveld refinement of X-ray diffraction patterns and Mössbauer spectroscopy, we have attributed this phase transformation to the phase conversion of a metastable "defected and strained" d-Fe3O4 phase, present in the as-prepared sample, to the α-Fe2O3 phase. Stabilization of the phases by controlling the phase transformations during the use of different iron-oxide nanoparticles is the key factor to select them for a particular application. Our investigation provides insight into the effect of temperature and chemical nature of the environment, which are the primary factors governing the phase stability, suitability and longevity of the iron oxide nanomaterials prepared by the gas-phase condensation method for various applications.
NASA Astrophysics Data System (ADS)
El Goresy, Ahmed; Gillet, Ph.; Miyahara, M.; Ohtani, E.; Ozawa, S.; Beck, P.; Montagnac, G.
2013-01-01
Shergottites and Chassignites practiced major deformation effects whose nature, magnitude and relevance were controversially evaluated and disputatively debated. Our studies of many shocked shergottites present, contrary to numerous previous reports, ample evidence for pervasive shock-induced melting amounting of at least 23 vol.% of the shergottite consisting of maskelynite and pyrrhotite, partial melting of pyroxene, titanomagnetite, ilmenite and finding of several high-pressure polymorphs and pressure-induced dissociation reactions. Our results cast considerable doubt on using the refractive index (RI) or cathodoluminescence (CL) spectra of maskelynite, in estimating the magnitudes of peak-shock pressure in both shergottites and ordinary chondrites. RI of maskelynite was set after quenching of the feldspar liquid before decompression to maskelynite glass followed by glass relaxation after decompression at the closure temperature of relaxation. The RI procedure widely practiced in the past 38 years revealed unrealistic very high-pressure estimates discrepant with the high-pressure mineral inventory in shocked shergottites and ordinary chondrites and with results obtained by robust laboratory static experiments. Shergottites contain the silica high-pressure polymorphs: the scrutinyite-structured polymorph seifertite, a monoclinic ultra dense polymorph of silica with ZrO2-structure, stishovite, a dense liquidus assemblage consisting of stishovite + Na-hexa-aluminosilicate (Na-CAS) and both K-lingunite and Ca-lingunite. Applying individual high-pressure silica polymorphs alone like stishovite, to estimate the equilibrium shock pressure, is inadequate due to the considerable shift of their nominal upper pressure bounds intrinsically induced by spatially variable absorptions of minor oxides like Al2O3, Na2O, FeO, MgO and TiO2. This practice revealed variable pressure estimates even within the same shergottite subjected to the same peak-shock pressure. Occurrence of Na-CAS + stishovite, lack of the NaAlSiO4 Ca-ferrite structured polymorph or jadeite indicates that the peak-shock pressures barely exceeded 22 GPa. We present convincing and ample evidence refuting the claim that the shock-induced high-pressure inventory in shergottites and ordinary chondrites are disequilibrium assemblages resulted from local pressure spikes in excess of 80 GPa and during the decompression stage. Such scenario calls for a series of incomplete and quenched retrograde reactions starting with the crystallization of Mg-silicate perovskite + magnesiowüstite, if the claimed peak-shock pressure was in excess of 80 GPa. This would be followed by replacement of this pair by majorite-pyropess + magnesiowüstite or akimotoite + magnesiowüstite below 23 GPa and 2000 °C, polycrystalline ringwoodite above 16 GPa, respectively and finally replacement by polycrystalline olivine below 16 GPa. Such incomplete retrograde reactions were never encountered in any shergottite, chassignite or shocked ordinary chondrite so far. Olivine-ringwoodite phase transformation in the L6 Y-791384 commences with the coherent mechanism producing ringwoodite lamellae with their (1 1 1) planes parallel to the (1 0 0) of olivine followed by the incoherent mechanism due to build up of strain in the parental olivine. This is in accord with the olivine-ringwoodite settings produced in static laboratory experiments in a multi-anvil device. Olivine-ringwoodite phase transitions were also encountered in comparable settings in the shergottite NWA 1068. Application of experimentally obtained kinetic parameters of the olivine-ringwoodite phase transitions reveals possible duration of the natural dynamic events up to few seconds thus unambiguously refuting the claimed disequilibrium decompression mechanism. The shock-induced pervasive melting of labradorite, pyrrhotite, titanomagnetite, ilmenite and partial melting of clinopyroxene strongly suggests shock-induced partial to complete resetting of the Ar-Ar, Rb-Sr, Sm-Nd, Re-Os, U-Pb and Lu-Hf radiometric systems. This also casts considerable doubt on the radiometric ages shorter than 575 Ma reported in the past 38 years to allegedly be the igneous crystallization ages. These short ages probably resulted from partial or total shock-induced age resetting.
Ou, Tianji; Yan, Jiejuan; Xiao, Chuanhai; Shen, Wenshu; Liu, Cailong; Liu, Xizhe; Han, Yonghao; Ma, Yanzhang; Gao, Chunxiao
2016-06-02
Recent scientific advances on organic-inorganic hybrid perovskites are mainly focused on the improvement of power conversion efficiency. So far, how compression tunes their electronic and structural properties remains less understood. By combining in situ photocurrent, impedance spectroscopy, and X-ray diffraction (XRD) measurements, we have studied the electrical transport and structural properties of compressed CH3NH3PbI3 (MAPbI3) nanorods. The visible light response of MAPbI3 remains robust below 3 GPa while it is suppressed when it becomes amorphous. Pressure-induced electrical transport properties of MAPbI3 including resistance, relaxation frequency, and relative permittivity have been investigated under pressure up to 8.5 GPa by in situ impedance spectroscopy measurements. These results indicate that the discontinuous changes of these physical parameters occur around the structural phase transition pressure. The XRD studies of MAPbI3 under high pressure up to 20.9 GPa show that a phase transformation below 0.7 GPa, could be attributed to the tilting and distortion of PbI6 octahedra. And pressure-induced amorphization is reversible at a low density amorphous state but irreversible at a relatively higher density state. Furthermore, the MAPbI3 nanorods crush into nanopieces around 0.9 GPa which helps us to explain why the mixed phase of tetragonal and orthorhombic was observed at 0.5 GPa. The pressure modulated changes of electrical transport and visible light response properties open up a new approach for exploring CH3NH3PbI3-based photo-electronic applications.
NASA Technical Reports Server (NTRS)
Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Rinsland, C. P.
1994-01-01
High-resolution (0.01/cm) absorption spectra of lean mixtures of CH4 in dry air were recorded with the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory on Kitt Peak at various temperatures between 24 and -61 C. The spectra have been analyzed to determine the values at room temperature of pressure-broadened widths and pressure-induced shifts of more than 740 transitions. The temperature dependence of air-broadened widths and pressure-induced shifts was deduced for approx. 370 transitions in the nu(sub 1) + nu(sub 4), nu(sub 3) + nu(sub 4), and nu(sub 2) + nu(sub 3) bands of (12)CH4 located between 4118 and 4615/cm. These results were obtained by analyzing a total of 29 spectra simultaneously using a multi-spectral non-linear least-squares fitting technique. This new technique allowed the determination of correlated spectral line parameters (e.g. intensity and broadening coefficient) better than the procedure of averaging values obtained by fitting the spectra individually. This method also provided a direct determination of the uncertainties in the retrieved parameters due to random errors. For each band analysed in this study the dependence of the various spectral line parameters upon the tetrahedral symmetry species and the rotational quantum numbers of the transitions is also presented.
Transfer function analysis of dynamic cerebral autoregulation in humans
NASA Technical Reports Server (NTRS)
Zhang, R.; Zuckerman, J. H.; Giller, C. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)
1998-01-01
To test the hypothesis that spontaneous changes in cerebral blood flow are primarily induced by changes in arterial pressure and that cerebral autoregulation is a frequency-dependent phenomenon, we measured mean arterial pressure in the finger and mean blood flow velocity in the middle cerebral artery (VMCA) during supine rest and acute hypotension induced by thigh cuff deflation in 10 healthy subjects. Transfer function gain, phase, and coherence function between changes in arterial pressure and VMCA were estimated using the Welch method. The impulse response function, calculated as the inverse Fourier transform of this transfer function, enabled the calculation of transient changes in VMCA during acute hypotension, which was compared with the directly measured change in VMCA during thigh cuff deflation. Beat-to-beat changes in VMCA occurred simultaneously with changes in arterial pressure, and the autospectrum of VMCA showed characteristics similar to arterial pressure. Transfer gain increased substantially with increasing frequency from 0.07 to 0.20 Hz in association with a gradual decrease in phase. The coherence function was > 0.5 in the frequency range of 0.07-0.30 Hz and < 0.5 at < 0.07 Hz. Furthermore, the predicted change in VMCA was similar to the measured VMCA during thigh cuff deflation. These data suggest that spontaneous changes in VMCA that occur at the frequency range of 0.07-0.30 Hz are related strongly to changes in arterial pressure and, furthermore, that short-term regulation of cerebral blood flow in response to changes in arterial pressure can be modeled by a transfer function with the quality of a high-pass filter in the frequency range of 0.07-0.30 Hz.
Modeling normal shock velocity curvature relations for heterogeneous explosives
NASA Astrophysics Data System (ADS)
Yoo, Choong-Shik; Tomasino, Dane; Smith, Jesse; Kim, Minseob
2017-01-01
Many simple molecules such as N2 and CO2 have the potential to form extended "polymeric" solids under extreme conditions, which can store a large sum of chemical energy in its three-dimensional network structures made of strong covalent bonds. Diatomic nitrogen is particularly of interest because of the uniquely large energy difference between the single (160 kJ/mol) and triple (950 kJ/mol) bonds. As such, the transformation of singly bonded polymeric nitrogen back to triply bonded diatomic nitrogen molecules can release large energy ( 33 kJ/cm3 - three times that of HMX) without any negative environmental impact. Therefore, the goal of the present study has been to investigate the transformation of nitrogen and nitrogen-rich compounds to new singly bonded nitrogen-rich solids at high pressures and temperatures, using heated diamond anvil cells, Raman spectroscopy, and third-generation synchrotron x-ray diffraction. Recently, we have found a new form of singly bonded layered polymeric nitrogen (LP-N), synthesized in the stability pressure-temperature field higher than that of cg-N. This new phase is characterized by a 2D layered structure similar to the predicted Pba2 and two colossal Raman bands, arising from two groups of highly polarized nitrogen atoms. This result also provides a new constraint for the nitrogen phase diagram, highlighting an unusual symmetry lowering 3D cg- to 2D LP-N transition and thereby the enhanced electrostatic contribution to the stabilization of this densely packed LP-N. In this paper, we will review this finding of LP-N, update the phase diagram of nitrogen, and offer a chemistry view of pressure-induced transformations in dense molecular solids.
Study of bulk Hafnium oxide (HfO2) under compression
NASA Astrophysics Data System (ADS)
Pathak, Santanu; Mandal, Guruprasad; Das, Parnika
2018-04-01
Hafnium oxide (HfO2) is a technologically important material. This material has K-value of 25 and band gap 5.8 eV. A k value of 25-30 is preferred for a gate dielectric [1]. As it shows good insulating and capacitive properties, HfO2 is being considered as a replacement to SiO2 in microelectronic devices as gate dielectrics. On the other hand because of toughening mechanism due to phase transformation induced by stress field observed in these oxides, HFO2 has been a material of investigations in various configurations for a very long time. However the controversies about phase transition of HfO2 under pressure still exists. High quality synchrotron radiation has been used to study the structural phase transition of HfO2 under pressure.
Microstructure of calcite deformed by high-pressure torsion: An X-ray line profile study
NASA Astrophysics Data System (ADS)
Schuster, Roman; Schafler, Erhard; Schell, Norbert; Kunz, Martin; Abart, Rainer
2017-11-01
Calcite aggregates were deformed to high strain using high-pressure torsion and applying confining pressures of 1-6 GPa and temperatures between room temperature and 450 °C. The run products were characterized by X-ray diffraction, and key microstructural parameters were extracted employing X-ray line profile analysis. The dominant slip system was determined as r { 10 1 bar 4 } ⟨ 2 bar 021 ⟩ with edge dislocation character. The resulting dislocation density and the size of the coherently scattering domains (CSD) exhibit a systematic dependence on the P-T conditions of deformation. While high pressure generally impedes recovery through reducing point defect mobility, the picture is complicated by pressure-induced phase transformations in the CaCO3 system. Transition from the calcite stability field to those of the high-pressure polymorphs CaCO3-II, CaCO3-III and CaCO3-IIIb leads to a change of the microstructural evolution with deformation. At 450 °C and pressures within the calcite stability field, dislocation densities and CSD sizes saturate at shear strains exceeding 10 in agreement with earlier studies at lower pressures. In the stability field of CaCO3-II, the dislocation density exhibits a more complex behavior. Furthermore, at a given strain and strain rate, the dislocation density increases and the CSD size decreases with increasing pressure within the stability fields of either calcite or of the high-pressure polymorphs. There is, however, a jump from high dislocation densities and small CSDs in the upper pressure region of the calcite stability field to lower dislocation densities and larger CSDs in the low-pressure region of the CaCO3-II stability field. This jump is more pronounced at higher temperatures and less so at room temperature. The pressure influence on the deformation-induced evolution of dislocation densities implies that pressure variations may change the rheology of carbonate rocks. In particular, a weakening is expected to occur at the transition from the calcite to the CaCO3-II stability field, if aragonite does not form.
NASA Astrophysics Data System (ADS)
Wang, Y.; Zhu, L.; Shi, F.; Schubnel, A.; Hilairet, N.; Yu, T.; Rivers, M. L.; Gasc, J.; Li, Z.; Brunet, F.
2016-12-01
Global earthquake hypocenters depth displays a bimodal distribution: a first peak at < 50 km and a second peak around 550 - 600 km, before ceasing abruptly near 700 km. How fractures initiate, nucleate, and propagate at depths >70 km remains one of the greatest puzzles in earth science, since increasing pressure inhibits fracture propagation. Here we report high-resolution acoustic emission (AE) analysis of fractures triggered by partial transformation from olivine to spinel in Mg2GeO4, an analog to (Mg,Fe)2SiO4, the dominant mineral in the upper mantle. State-of-the-art synchrotron techniques and seismological methodologies were used for fault imaging and for event location and waveform analysis. Our results reveal unprecedented details of rupture nucleation and propagation, in both space and time: AE event magnitudes follow the Gutenberg-Richter law, with b values generally consistent with seismological observations, while the empirical relation between magnitude and rupture area is extended to millimeter-sized samples. A new rupture model for deep-focus earthquakes is proposed based on the well-known strain localization theory for pressure sensitive (dilatant) materials. The results show that shear failure processes, even at great depths, are scale-invariant.
NASA Astrophysics Data System (ADS)
Liu, Yuan; Li, Lianqing; Zhao, Lin; Wang, Jiqiang; Liu, Tongyu
2017-12-01
Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, the optimization of the packaging process, and material of the sensor. Through the calibration experiment to calibrate the sensor, the field test results of the Taikai transformer factory show that the sensitivity of the sensor is 0.133 pm/kPa and the repeatability error is 2.7% FS. The data of the fiber-optic pressure sensor in different positions maintain consistent and repeatable, which can meet the requirement of the real-time monitoring of the axial force of transformer winding.
Onset of ice VII phase during ps laser pulse propagation through liquid water
NASA Astrophysics Data System (ADS)
Kumar, V. Rakesh; Kiran, P. Prem
2017-01-01
Water dominantly present in liquid state on earth gets transformed to crystalline polymorphs under different dynamic loading conditions. Out of different crystalline phases discovered till date, ice VII is observed to be stable over wide pressure (2-63 GPa) and temperature (>273 K) ranges. The formation of ice VII crystalline structure has been vastly reported during high pressure static compression using diamond anvil cell and propagation of high energy (>50 mJ/pulse) nanosecond laser pulse induced dynamic high pressures through liquid water. We present the onset of ice VII phase at low threshold of 2 mJ/pulse during 30 ps (532 nm, 10 Hz) laser pulse induced shock propagating through liquid water. Role of input pulse energy on the evolution of Stoke's and anti-Stoke's Raman shift of the dominant A1g mode of ice VII, filamentation, free-electrons, plasma shielding is presented. The H-bond network rearrangement, electron ion energy transfer time coinciding with the excitation pulse duration supported by the filamentation and plasma shielding of the ps laser pulses reduced the threshold of ice VII structure formation. Filamentation and the plasma shielding have shown the localized creation and sustenance of ice VII structure in liquid water over 3 mm length and 50 μm area of cross-section.
Zankov, Dimitar P.; Shimizu, Akio; Tanaka-Okamoto, Miki; Miyoshi, Jun; Ogita, Hisakazu
2017-01-01
Adhesive intercellular connections at cardiomyocyte intercalated disks (IDs) support contractile force and maintain structural integrity of the heart muscle. Disturbances of the proteins at IDs deteriorate cardiac function and morphology. An adaptor protein afadin, one of the components of adherens junctions, is expressed ubiquitously including IDs. At present, the precise role of afadin in cardiac physiology or disease is unknown. To explore this, we generated conditional knockout (cKO) mice with cardiomyocyte-targeted deletion of afadin. Afadin cKO mice were born according to the expected Mendelian ratio and have no detectable changes in cardiac phenotype. On the other hand, chronic pressure overload induced by transverse aortic constriction (TAC) caused systolic dysfunction, enhanced fibrogenesis and apoptosis in afadin cKO mice. Afadin deletion increased macrophage infiltration and monocyte chemoattractant protein-1 expression, and suppressed transforming growth factor (TGF) β receptor signaling early after TAC procedure. Afadin also associated with TGFβ receptor I at IDs. Pharmacological antagonist of TGFβ receptor I (SB431542) augmented mononuclear infiltration and fibrosis in the hearts of TAC-operated control mice. In conclusion, afadin is a critical molecule for cardiac protection against chronic pressure overload. The beneficial effects are likely to be a result from modulation of TGFβ receptor signaling pathways by afadin. PMID:28045017
NASA Astrophysics Data System (ADS)
Giovambattista, N.; Sciortino, F.; Starr, F. W.; Poole, P. H.
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics for describing supercooled liquids and glasses. We use the PEL formalism and computer simulations to study the transformation between low-density (LDL) and high-density liquid (HDL) water, and between low-density (LDA) and high-density amorphous ice (HDA). We employ the ST2 water model that exhibits a LDL-HDL first-order phase transition and a sharp LDA-HDA transformation, as observed in experiments. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that LDL configurations are located in the same megabasin as LDA, and that HDL configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid and the amorphous ice differ. We also study the liquid-to-ice-VII first-order phase transition. The PEL properties across this transition are qualitatively similar to the changes found during the LDA-HDA transformation, supporting the interpretation that the LDA-HDA transformation is a first-order-like phase transition between out-of-equilibrium states.
Chen, Jing-Yin; Kim, Minseob; Yoo, Choong-Shik; Dattelbaum, Dana M; Sheffield, Stephen
2010-06-07
We have studied the pressure-induced phase transition and chemical decomposition of hydrogen peroxide and its mixtures with water to 50 GPa, using confocal micro-Raman and synchrotron x-ray diffractions. The x-ray results indicate that pure hydrogen peroxide crystallizes into a tetragonal structure (P4(1)2(1)2), the same structure previously found in 82.7% H(2)O(2) at high pressures and in pure H(2)O(2) at low temperatures. The tetragonal phase (H(2)O(2)-I) is stable to 15 GPa, above which transforms into an orthorhombic structure (H(2)O(2)-II) over a relatively large pressure range between 13 and 18 GPa. Inferring from the splitting of the nu(s)(O-O) stretching mode, the phase I-to-II transition pressure decreases in diluted H(2)O(2) to around 7 GPa for the 41.7% H(2)O(2) and 3 GPa for the 9.5%. Above 18 GPa H(2)O(2)-II gradually decomposes to a mixture of H(2)O and O(2), which completes at around 40 GPa for pure and 45 GPa for the 9.5% H(2)O(2). Upon pressure unloading, H(2)O(2) also decomposes to H(2)O and O(2) mixtures across the melts, occurring at 2.5 GPa for pure and 1.5 GPa for the 9.5% mixture. At H(2)O(2) concentrations below 20%, decomposed mixtures form oxygen hydrate clathrates at around 0.8 GPa--just after H(2)O melts. The compression data of pure H(2)O(2) and the stability data of the mixtures seem to indicate that the high-pressure decomposition is likely due to the pressure-induced densification, whereas the low-pressure decomposition is related to the heterogeneous nucleation process associated with H(2)O(2) melting.
High pressure Raman spectroscopy of H2O-CH3OH mixtures.
Hsieh, Wen-Pin; Chien, Yu-Hsiang
2015-02-23
Complex intra-molecular interactions and the hydrogen-bonding network in H2O-volatile mixtures play critical roles in many dynamics processes in physical chemistry, biology, and Earth and planetary sciences. We used high pressure Raman spectroscopy to study the pressure evolution of vibrational frequencies and bonding behavior in H2O-CH3OH mixtures. We found that the presence of low CH3OH content in H2O increases the transition pressure where water crystallizes to ice VI, but does not significantly change the pressure where ice VI transforms to ice VII. Furthermore, the stiffening rates of C-H stretching frequencies dω/dP in CH3OH significantly decrease upon the crystallization of water, and the softening rates of the O-H stretching frequencies of ice VII are suppressed over a narrow pressure range, after which the frequencies of these modes shift with pressure in ways similar to pure CH3OH and ice VII, respectively. Such complex pressure evolution of Raman frequencies along with pronounced variations in Raman intensities of CH3OH within the sample, and the hysteresis of the water-ice VI phase transition suggest pressure-induced segregation of low content CH3OH from ice VII. These findings indicate the significant influence of volatiles on the crystallization of sub-surface ocean and thermal evolution within large icy planets and satellites.
NASA Astrophysics Data System (ADS)
Grünwald, Nikolas; Sebold, Doris; Sohn, Yoo Jung; Menzler, Norbert Heribert; Vaßen, Robert
2017-09-01
Dense coatings on metallic interconnectors are necessary to suppress chromium poisoning of SOFC cathodes. Atmospherically plasma sprayed (APS) Mn1.0Co1.9Fe0.1O4 (MCF) protective layers demonstrated reduced chromium related degradation in laboratory and stack tests. Previous analyses revealed strong microstructural changes comparing the coating's as-sprayed and operated condition. This work concentrates on the layer-densification and crack-healing observed by annealing APS-MCF in air, which simulates the cathode operation conditions. The effect is described by a volume expansion induced by a phase transformation. Reducing conditions during the spray process lead to a deposition of the MCF in a metastable rock salt configuration. Annealing in air activates diffusion processes for a phase transformation to the low temperature stable spinel phase (T < 1050 °C). This transformation is connected to an oxygen incorporation which occurs at regions facing high oxygen partial pressures, as there are the sample surface, cracks and pore surfaces. Calculations reveal a volume expansion induced by the oxygen uptake which seals the cracks and densifies the coating. The process decelerates when the cracks are closed, as the gas route is blocked and further oxidation continues over solid state diffusion. The self-healing abilities of metastable APS coatings could be interesting for other applications.
Study Of The Perovskite to Post-Perovskite Transformation Using Multigrain Crystallography
NASA Astrophysics Data System (ADS)
Merkel, Sébastien; Langrand, Christopher; Hilairet, Nadège; Rosa, Angelika; Svitlyk, Volodymyr; Dobson, David
2017-04-01
At P/T conditions of the D'' layer, Bridgmanite transforms into its high-pressure phase of (Mg,Fe)SiO3 post-perovskite(pPv). Observations of seismic anisotropy in D'' are inferred to arise from textures and microstructures within pPv. Specifically, mantle flow is though to cause pPv to deform, creating lattice-preferred orientations (Merkel et al, 2006, 2007; Miyagi et al, 2010; Nisr et al, 2012). However, debates emerged in the literature whether experimentally observed textures were induced by plastic deformation of the sample or by phase transformation from a previous phase (Walte et al 2009, Okada et al, 2010, Miyagi et al, 2011) and whether this could explain the observed patterns of anisotropy in the lowermost mantle (Dobson et al, 2013). Here, we use multigrain crystallography (Sørensen et al, 2012) to characterize hundreds of crystals in a polycrystalline material in-situ as it is transforming. This technique has been recently adapted for Diamond Anvil Cell (DAC) high pressure experiments (Ice et al, 2005; Nisr et al, 2012, 2014; Barton et al, 2012; Zhang et al, 2013, 2016; Rosa et al, 2015, 2016). Potentially, DAC multigrain crystallography is useful for the determination of the orientation and position of individual grains with an average resolution in grain orientation and position below 0.2° and 5 μm, respectively (Langrand et al, in press). We will presents results on the potential resolution of the method with tests on (Mg,Fe)SiO3 itself and on how the method is now being used for tracking individual grains during the Pv/pPv transition in NaCoF3 up to 25 GPa and at T between 600-900 K. At 600 K, the sample transforms to powder rings and looses the grain microstructure. At 900 K, large grains are preserved as the sample fully transforms to pPv and back to Pv. At the end, the results of such experiments will be used to understand transformation mechanisms between Pv and pPv and the development of microstructures and anisotropy in the Earth's D'' layer.
NASA Technical Reports Server (NTRS)
Naghipour, P.; Pineda, E. J.; Arnold, S.
2014-01-01
Lightning is a major cause of damage in laminated composite aerospace structures during flight. Due to the dielectric nature of Carbon fiber reinforced polymers (CFRPs), the high energy induced by lightning strike transforms into extreme, localized surface temperature accompanied with a high-pressure shockwave resulting in extensive damage. It is crucial to develop a numerical tool capable of predicting the damage induced from a lightning strike to supplement extremely expensive lightning experiments. Delamination is one of the most significant failure modes resulting from a lightning strike. It can be extended well beyond the visible damage zone, and requires sophisticated techniques and equipment to detect. A popular technique used to model delamination is the cohesive zone approach. Since the loading induced from a lightning strike event is assumed to consist of extreme localized heating, the cohesive zone formulation should additionally account for temperature effects. However, the sensitivity to this dependency remains unknown. Therefore, the major focus point of this work is to investigate the importance of this dependency via defining various temperature dependency profiles for the cohesive zone properties, and analyzing the corresponding delamination area. Thus, a detailed numerical model consisting of multidirectional composite plies with temperature-dependent cohesive elements in between is subjected to lightning (excessive amount of heat and pressure) and delamination/damage expansion is studied under specified conditions.
Lemke, Sonja; Handle, Philip H; Plaga, Lucie J; Stern, Josef N; Seidl, Markus; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Köster, Karsten W; Gainaru, Catalin; Loerting, Thomas; Böhmer, Roland
2017-07-21
Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping. The kinetics of the HDA to LDA transformation lacks a proton/deuteron isotope effect, revealing that this process is dominated by the restructuring of the oxygen network. The x-ray diffraction experiments performed on samples at intermediate transition stages reflect a linear combination of the LDA and HDA patterns implying a macroscopic phase separation, instead of a local intermixing of the two amorphous states.
NASA Astrophysics Data System (ADS)
Lemke, Sonja; Handle, Philip H.; Plaga, Lucie J.; Stern, Josef N.; Seidl, Markus; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Köster, Karsten W.; Gainaru, Catalin; Loerting, Thomas; Böhmer, Roland
2017-07-01
Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping. The kinetics of the HDA to LDA transformation lacks a proton/deuteron isotope effect, revealing that this process is dominated by the restructuring of the oxygen network. The x-ray diffraction experiments performed on samples at intermediate transition stages reflect a linear combination of the LDA and HDA patterns implying a macroscopic phase separation, instead of a local intermixing of the two amorphous states.
Ion specific 2D to 3D structural modification of Langmuir monolayer at lower surface pressure
NASA Astrophysics Data System (ADS)
Das, Kaushik; Kundu, Sarathi
2017-05-01
2D to 3D structural transformation of stearic acid Langmuir monolayer in presence of Ca2+ and Zn2+ ions at lower surface pressure (≈25 mN/m) has been studied at lower (pH ≈ 6.8) and higher (pH ≈ 9.5) subphase pH. Generally, 2D to 3D structural transformation of monolayer occurs at higher surface pressure (>50 mN/m) after collapse point which can be identified from surface pressure (π) vs. specific molecular area (A) isotherms. In presence of Ca2+ ions and for both lower and higher subphase pH, stearic acid monolayer remains as 2D monolayer at that lower surface pressure as confirmed from the Atomic Force Microscopy (AFM) studies on the films deposited at π ≈ 25mN/m. However, in presence of Zn2+ at higher subphase pH, stearic acid monolayer shows 2D to 3D structural transformation where less covered bilayer-like structure forms on top of the monolayer as obtained from the AFM studies. Fourier transform infrared (FTIR) spectroscopy results reveal that formation of relatively more amount of bidentate bridging coordination of metal carboxylate headgroup may be the key reason of such 2D to 3D structural transformation for Zn2+.
In situ structural analysis of calcium aluminosilicate glasses under high pressure.
Muniz, R F; de Ligny, D; Martinet, C; Sandrini, M; Medina, A N; Rohling, J H; Baesso, M L; Lima, S M; Andrade, L H C; Guyot, Y
2016-08-10
In situ micro-Raman spectroscopy was used to investigate the structural evolution of OH(-)-free calcium aluminosilicate glasses, under high pressure and at room temperature. Evaluation was made of the role of the SiO2 concentration in percalcic join systems, for Al/(Al + Si) in the approximate range from 0.9 to 0.2. Under high pressure, the intensity of the main band related to the bending mode of bridging oxygen ([Formula: see text][T-O-T], where T = Si or Al) decreased gradually, suggesting that the bonds were severely altered or even destroyed. In Si-rich glasses, compression induced a transformation of Q (n) species to Q (n-1). In the case of Al-rich glass, the Al in the smallest Q (n) units evolved from tetrahedral to higher-coordinated Al (([5])Al and ([6])Al). Permanent structural changes were observed in samples recovered from the highest pressure of around 15 GPa and, particularly for Si-rich samples, the recovered structure showed an increase of three-membered rings in the Si/Al tetrahedral network.
Hydrostatic pressure effects on the structural and electronicproperties of carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capaz,Rodrigo B.; Spataru, Catalin D.; Tangney, Paul
2004-03-15
We study the structural and electronic properties ofisolated single-wall carbon nanotubes (SWNTs) under hydrostatic pressureusing a combination of theoretical techniques: continuum elasticitymodels, classical molecular dynamics simulations, tight-bindingelectronic structure methods, and first-principles total energycalculations within the density-functional and pseudopotentialframeworks. For pressures below a certain critica pressure Pc, the SWNTs'structure remains cylindrical and the Kohn-Sham energy gaps ofsemiconducting SWNTs have either positive or negative pressurecoefficients depending on the value of (n,m) with a distinct "family" (ofthe same n-m) behavior. The diameter and chirality dependence of thepressure coefficients can be described by a simple analytical expression.At Pc, molecular-dynamics simulations predict that isolated SWNTsmore » undergoa pressure-induced symmetry-breaking transformation from a cylindricalshape to a collapsed geometry. This transition is described by a simpleelastic model as arising from the competition between the bond-bendingand PV terms in the enthalpy. The good agreement between calculated andexperimental values of Pc provides a strong support to the "collapse"interpretation of the experimental transitions in bundles.« less
Pressure-induced structural transformations and polymerization in ThC2
Guo, Yongliang; Yu, Cun; Lin, Jun; Wang, Changying; Ren, Cuilan; Sun, Baoxing; Huai, Ping; Xie, Ruobing; Ke, Xuezhi; Zhu, Zhiyuan; Xu, Hongjie
2017-01-01
Thorium-carbon systems have been thought as promising nuclear fuel for Generation IV reactors which require high-burnup and safe nuclear fuel. Existing knowledge on thorium carbides under extreme condition remains insufficient and some is controversial due to limited studies. Here we systematically predict all stable structures of thorium dicarbide (ThC2) under the pressure ranging from ambient to 300 GPa by merging ab initio total energy calculations and unbiased structure searching method, which are in sequence of C2/c, C2/m, Cmmm, Immm and P6/mmm phases. Among these phases, the C2/m is successfully observed for the first time via in situ synchrotron XRD measurements, which exhibits an excellent structural correspondence to our theoretical predictions. The transition sequence and the critical pressures are predicted. The calculated results also reveal the polymerization behaviors of the carbon atoms and the corresponding characteristic C-C bonding under various pressures. Our work provides key information on the fundamental material behavior and insights into the underlying mechanisms that lay the foundation for further exploration and application of ThC2. PMID:28383571
Pressure-induced structural transformations and polymerization in ThC2
NASA Astrophysics Data System (ADS)
Guo, Yongliang; Yu, Cun; Lin, Jun; Wang, Changying; Ren, Cuilan; Sun, Baoxing; Huai, Ping; Xie, Ruobing; Ke, Xuezhi; Zhu, Zhiyuan; Xu, Hongjie
2017-04-01
Thorium-carbon systems have been thought as promising nuclear fuel for Generation IV reactors which require high-burnup and safe nuclear fuel. Existing knowledge on thorium carbides under extreme condition remains insufficient and some is controversial due to limited studies. Here we systematically predict all stable structures of thorium dicarbide (ThC2) under the pressure ranging from ambient to 300 GPa by merging ab initio total energy calculations and unbiased structure searching method, which are in sequence of C2/c, C2/m, Cmmm, Immm and P6/mmm phases. Among these phases, the C2/m is successfully observed for the first time via in situ synchrotron XRD measurements, which exhibits an excellent structural correspondence to our theoretical predictions. The transition sequence and the critical pressures are predicted. The calculated results also reveal the polymerization behaviors of the carbon atoms and the corresponding characteristic C-C bonding under various pressures. Our work provides key information on the fundamental material behavior and insights into the underlying mechanisms that lay the foundation for further exploration and application of ThC2.
Pressure-induced structural transformations and polymerization in ThC2.
Guo, Yongliang; Yu, Cun; Lin, Jun; Wang, Changying; Ren, Cuilan; Sun, Baoxing; Huai, Ping; Xie, Ruobing; Ke, Xuezhi; Zhu, Zhiyuan; Xu, Hongjie
2017-04-06
Thorium-carbon systems have been thought as promising nuclear fuel for Generation IV reactors which require high-burnup and safe nuclear fuel. Existing knowledge on thorium carbides under extreme condition remains insufficient and some is controversial due to limited studies. Here we systematically predict all stable structures of thorium dicarbide (ThC 2 ) under the pressure ranging from ambient to 300 GPa by merging ab initio total energy calculations and unbiased structure searching method, which are in sequence of C2/c, C2/m, Cmmm, Immm and P6/mmm phases. Among these phases, the C2/m is successfully observed for the first time via in situ synchrotron XRD measurements, which exhibits an excellent structural correspondence to our theoretical predictions. The transition sequence and the critical pressures are predicted. The calculated results also reveal the polymerization behaviors of the carbon atoms and the corresponding characteristic C-C bonding under various pressures. Our work provides key information on the fundamental material behavior and insights into the underlying mechanisms that lay the foundation for further exploration and application of ThC 2 .
NASA Technical Reports Server (NTRS)
Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Predoi-Cross, A.
2012-01-01
Temperature dependences of pressure-broadened half-width and pressure-induced shift coefficients along with accurate positions and intensities have been determined for transitions in the 2<--0 band of C-12 O-16 from analyzing high-resolution and high signal-to-noise spectra recorded with two different Fourier transform spectrometers. A total of 28 spectra, 16 self-broadened and 12 air-broadened, recorded using high- purity (greater than or equal to 99.5% C-12-enriched) CO samples and CO diluted with dry air(research grade) at different temperatures and pressures, were analyzed simultaneously to maximize the accuracy of the retrieved parameters. The sample temperatures ranged from 150 to 298K and the total pressures varied between 5 and 700 Torr. A multispectrum nonlinear least squares spectrum fitting technique was used to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters (including Herman-Wallis coefficients), rather than determining individual line positions and intensities. Self-and air-broadened Lorentz half-width coefficients, their temperature dependence exponents, self- and air-pressure-induced shift coefficients, their temperature dependences, self- and air-line mixing coefficients, their temperature dependences and speed dependence have been retrieved from the analysis. Speed-dependent line shapes with line mixing employing off-diagonal relaxation matrix element formalism were needed to minimize the fit residuals. This study presents a precise and complete set of spectral line parameters that consistently reproduce the spectrum of carbon monoxide over terrestrial atmospheric conditions.
Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo
2014-01-01
Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics. PMID:25297473
Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo
2014-10-09
Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics.
NASA Astrophysics Data System (ADS)
Feng, Caihui; Shan, Jingfeng; Xu, Aoshu; Xu, Yang; Zhang, Meiguang; Lin, Tingting
2017-10-01
Trigonal yttrium hypocarbide (Y2C), crystallizing in a layered hR3 structure, is an intriguing quasi-two-dimensional electride metal with potential application for the next generation of electronics. By using an efficient structure search method in combination with first-principles calculations, we have extensively explored the phase transitions and electronic properties of Y2C in a wide pressure range of 0-200 GPa. Three structural transformations were predicted, as hR3 → oP12 → tI12 → mC12. Calculated pressures of phase transition are 20, 118, and 126 GPa, respectively. The high-pressure oP12 phase exhibits a three-dimensional extended C-Y network built up from face- and edge-sharing CY8 hendecahedrons, whereas both the tI12 and mC12 phases are featured by the presence of C2 units. No anionic electrons confined to interstitial spaces have been found in the three predicted high-pressure phases, indicating that they are not electrides. Moreover, Y2C is dynamically stable and also energetically stable relative to the decomposition into its elemental solids.
Role of Oxidative Stress in Transformation Induced by Metal Mixture
Martín, Silva-Aguilar; Emilio, Rojas; Mahara, Valverde
2011-01-01
Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity. PMID:22191014
NASA Astrophysics Data System (ADS)
Hashemi, R.; Dudaryonok, A. S.; Lavrentieva, N. N.; Vandaele, A. C.; Vander Auwera, J.; Tyuterev, AV Nikitin G., VI; Sung, K.; Smith, M. A. H.; Devi, V. M.; Predoi-Cross, A.
2017-02-01
Two atmospheric trace gases, namely methane and carbon monoxide have been considered in this study. Fourier transform absorption spectra of the 2-0 band of 12C16O mixed with CO2 have been recorded at total pressures from 156 to 1212 hPa and at 4 different temperatures between 240 K and 283 K. CO2 pressure-induced line broadening and line shift coefficients, and the associated temperature dependence have been measured in an multi-spectrum non-linear least squares analysis using Voigt profiles with an asymmetric profile due to line mixing. The measured CO2-broadening and CO2-shift parameters were compared with theoretical values, calculated by collaborators. In addition, the CO2-broadening and shift coefficients have been calculated for individual temperatures using the Exponential Power Gap (EPG) semi-empirical method. We also discuss the retrieved line shape parameters for Methane transitions in the spectral range known as the Methane Octad. We used high resolution spectra of pure methane and of dilute mixtures of methane in dry air, recorded with high signal to noise ratio at temperatures between 148 K and room temperature using the Bruker IFS 125 HR Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory, Pasadena, California. Theoretical calculations for line parameters have been performed and the results are compared with the previously published values and with the line parameters available in the GEISA2015 [1] and HITRAN2012 [2] databases.
Quantum Hooke's Law to classify pulse laser induced ultrafast melting
Hu, Hao; Ding, Hepeng; Liu, Feng
2015-02-03
Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes ofmore » materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dT m/dP < 0, where T m is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a “super pressing” state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.« less
Quantum Hooke's Law to Classify Pulse Laser Induced Ultrafast Melting
NASA Astrophysics Data System (ADS)
Hu, Hao; Ding, Hepeng; Liu, Feng
2015-02-01
Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a ``super pressing'' state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.
Quantum Hooke's Law to Classify Pulse Laser Induced Ultrafast Melting
Hu, Hao; Ding, Hepeng; Liu, Feng
2015-01-01
Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a “super pressing” state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions. PMID:25645258
Quantum Hooke's law to classify pulse laser induced ultrafast melting.
Hu, Hao; Ding, Hepeng; Liu, Feng
2015-02-03
Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a "super pressing" state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.
NASA Astrophysics Data System (ADS)
Shigematsu, T.; Hayashi, M.; Nakajima, K.; Uno, Y.; Sakano, A.; Murakami, M.; Narahara, Y.; Ueno, S.; Fujii, T.
2010-03-01
High hydrostatic pressure (HP) with approximately below 400 MPa can induce a transformation of food materials to an alternative form, where membrane systems are damaged but certain enzymes are still active. HP treatment of water soaked brown rice grain could modify the mass transfer inside and apparent activities of enzymes, resulting in HP-dependent change of distribution of free amino acids. Thus, the distribution of free amino acids in brown rice grain during preservation after HP treatment was analyzed. Just after HP treatment at 200 MPa for 10 min, the distribution of free amino acids was not apparently different from that of untreated control. In contrast, after 1 to 4 days preservation at 25°C, amino acids, such as Ala, Glu, Gly, Asp and Val, showed higher concentrations than those in control. This result suggested that HP treatment induced proteolysis to produce free amino acids. However, Gln, Thr and Cys, showed no apparent difference, suggesting that conversion of certain amino acids produced by proteolysis occurred. Moreover, the concentration of γ-aminobutyric acid (GABA) in HP-treated sample was higher than that in untreated control. These results suggested that HP treatment induced alteration of distribution of free amino acids of rice grains via proteolysis and certain amino acids metabolism pathways.
Jiang, Ting; Chen, Yu; Mao, Lu; Marshall, Alan G; Xu, Wei
2016-01-14
It is known that the ion collision cross section (CCS) may be calculated from the linewidth of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectral peak at elevated pressure (e.g., ∼10(-6) Torr). However, the high mass resolution of FT-ICR is sacrificed in those experiments due to high buffer gas pressure. In this study, we describe a linewidth correction method to eliminate the windowing-induced peak broadening effect. Together with the energetic ion-neutral collision model previously developed by our group, this method enables the extraction of CCSs of biomolecules from high-resolution FT-ICR mass spectral linewidths, obtained at a typical operating buffer gas pressure of modern FT-ICR instruments (∼10(-10) Torr). CCS values of peptides including MRFA, angiotensin I, and bradykinin measured by the proposed method agree well with ion mobility measurements, and the unfolding of protein ions (ubiquitin) at higher charge states is also observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Haiyan; Li, Kuo; Cody, George D.
Acetonitrile (CH 3CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. In this study, it is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH 3 to CN along the CH···N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed spmore » 2 and sp 3 bonded carbon. Lastly, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.« less
Extraterrestrial diamond inclusions reveal a Mars-sized planet
NASA Astrophysics Data System (ADS)
Nabiei, F.; Badro, J.; Dennenwaldt, T.; Oveisi, E.; Cantoni, M.; Hébert, C.; El Goresy, A.; Barrat, J. A.; Gillet, P.
2017-12-01
Ureilites are achondritic meteorites, distinct by their high carbon content. Carbon dominantly exists as graphite and diamond forming veins between olivine and pyroxene grains in the matrix. The presence of diamonds is, often, attributed to the shock-induced transformation from graphite. However, a recent study (Miyahara et al. 2016) on Almahata Sitta MS-170 mainly based on the large size of diamonds suggested their growth in the static high pressure conditions of planetary interior. We prepared five thin sections by the focused ion beam (FIB) from the diamonds in Almahatta Sitta MS-170 for transmission electron microscopy (TEM) analysis. Abundance of dislocations, stacking faults and {111} twinnings indicate significant deformation. Moreover, large numbers of inclusions are found in diamonds. Electron energy-loss spectroscopy (EELS) showed that when a twinning is intersected with an inclusion, it transforms to graphite. This together with other morphological and crystallographical characteristics of the graphite and diamond phases point to the shock-induced transformation of diamond to graphite. Energy dispersive X-ray (EDX) spectroscopy and electron diffraction were used to chemically and structurally characterize the diamond inclusions. Most of the inclusions are Fe-Ni-S-P type up to 60 nm in diameter, each consisting of three phases: kamacite (Fe, Ni), troilite (FeS) and Schreibersite ((Fe,Ni)3P). The inclusions always have euhedral shape indicating the existence of a parent phase that later broke down. Chemical analysis of complete inclusions (identified with electron tomography) agrees with the stoichiometric (Fe0.93,Ni0.07)3(S0.88,P0.12) phase that only forms above 21 GPa (Gu et al. 2016). The ureilite parent body (UPB) needs to be at least about Mars-sized to generate such a pressure at its core-mantle boundary. This is in the same size range estimated for the planetary embryos forming early in the Solar System. Moreover, although the UPB did not go through an extensive magma ocean period, it was partially differentiated through segregation of S-rich core (Warren et al. 2006). The existence of Mg-free chromite (Cr2FeO4) inclusions in diamond and the vein-like arrangement of Fe-S inclusions suggest that the diamonds are formed from Fe-S-C melt at the pressures exceeding 21 GPa inside the UPB.
High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy
NASA Astrophysics Data System (ADS)
Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.
2015-02-01
Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.
NASA Astrophysics Data System (ADS)
Feng, S. D.; Jiao, W.; Jing, Q.; Qi, L.; Pan, S. P.; Li, G.; Ma, M. Z.; Wang, W. H.; Liu, R. P.
2016-11-01
Structural evolution in nanoscale Cu50Zr50 metallic glasses during high-pressure torsion is investigated using molecular dynamics simulations. Results show that the strong cooperation of shear transformations can be realized by high-pressure torsion in nanoscale Cu50Zr50 metallic glasses at room temperature. It is further shown that high-pressure torsion could prompt atoms to possess lower five-fold symmetries and higher potential energies, making them more likely to participate in shear transformations. Meanwhile, a higher torsion period leads to a greater degree of forced cooperative flow. And the pronounced forced cooperative flow at room temperature under high-pressure torsion permits the study of the shear transformation, its activation and characteristics, and its relationship to the deformations behaviors. This research not only provides an important platform for probing the atomic-level understanding of the fundamental mechanisms of high-pressure torsion in metallic glasses, but also leads to higher stresses and homogeneous flow near lower temperatures which is impossible previously.
Nanoscale heterogeneity as remnant hexagonal-type local structures in shocked Cu-Pb and Zr
NASA Astrophysics Data System (ADS)
Tayal, Akhil; Conradson, Steven D.; Batuk, Olga N.; Fensin, Saryu; Cerreta, Ellen; Gray, George T.; Saxena, Avadh
2017-09-01
Extended X-ray absorption fine structure spectroscopy was used to determine the local structure in: (1) Zr that had undergone quasistatic elongation; (2) Zr that had undergone plastic deformation by shock at pressures above and below the ω-phase transformation; and (3) shocked Cu that contained a few percent of insoluble Pb. Below the transition pressure, Zr samples showed only general disorder as increases in the widths of the Zr-Zr pair distributions. Above this pressure, Zr that was a mixture of the original hcp and the high pressure ω-phase when measured by diffraction showed two sets of peaks in its distribution corresponding to these two phases. Some of the ones from the ω-phase were at distances substantially different from those calculated from the diffraction pattern, although they are still consistent with small domains exhibiting stacking faults associated with hexagonal-type structural components exhibiting variability in the [0001] basal plane spacing. A similar result, new pairs at just over 3 and 4 Å consistent with hexagonal-type stacking faults in addition to the original fcc structure, is found in shocked Cu despite the absence of a second diffraction pattern and peak pressures being far below those expected to induce an fcc to hcp transition. This result, therefore, demonstrates that the correlation between high strain rates and reduced stacking fault energy continues down to the length scale of atom pairs. These findings are significant as: (1) a microscopic description of the behavior of systems far from equilibrium; (2) a demonstration of the importance of strain rate at short length scales; and (3) a bridge between the abruptness of macroscopic pressure-induced phase transitions and the continuity of martensitic ones over their fluctuation region in terms of the inverse relationship between the length scale of the martensitic texture, manifested here as ordered lattice distortions and the lower pressure at which such texture first appears relative to the bulk transition pressure.
Parish, Joanna L.; Kowalczyk, Anna; Chen, Hsin-Tien; Roeder, Geraldine E.; Sessions, Richard; Buckle, Malcolm; Gaston, Kevin
2006-01-01
The E2 proteins from oncogenic (high-risk) human papillomaviruses (HPVs) can induce apoptotic cell death in both HPV-transformed and non-HPV-transformed cells. Here we show that the E2 proteins from HPV type 6 (HPV6) and HPV11, two nononcogenic (low-risk) HPV types, fail to induce apoptosis. Unlike the high-risk HPV16 E2 protein, these low-risk E2 proteins fail to bind p53 and fail to induce p53-dependent transcription activation. Interestingly, neither the ability of p53 to activate transcription nor the ability of p53 to bind DNA, are required for HPV16 E2-induced apoptosis in non-HPV-transformed cells. However, mutations that reduce the binding of the HPV16 E2 protein to p53 inhibit E2-induced apoptosis in non-HPV-transformed cells. In contrast, the interaction between HPV16 E2 and p53 is not required for this E2 protein to induce apoptosis in HPV-transformed cells. Thus, our data suggest that this high-risk HPV E2 protein induces apoptosis via two pathways. One pathway involves the binding of E2 to p53 and can operate in both HPV-transformed and non-HPV-transformed cells. The second pathway requires the binding of E2 to the viral genome and can only operate in HPV-transformed cells. PMID:16611918
Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys
NASA Astrophysics Data System (ADS)
Kolli, R. Prakash; Joost, William J.; Ankem, Sreeramamurthy
2015-06-01
In this article, we provide a brief review of the recent developments related to the relationship between phase stability and stress-induced transformations in metastable body-centered-cubic β-phase titanium alloys. Stress-induced transformations occur during tensile, compressive, and creep loading and influence the mechanical response. These transformations are not fully understood and increased understanding of these mechanisms will permit future development of improved alloys for aerospace, biomedical, and energy applications. In the first part of this article, we review phase stability and discuss a few recent developments. In the second section, we discuss the current status of understanding stress-induced transformations and several areas that require further study. We also provide our perspective on the direction of future research efforts. Additionally, we address the occurrence of the hcp ω-phase and the orthorhombic α″-martensite phase stress-induced transformations.
High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi
Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; ...
2017-05-25
High pressure x-ray diffraction measurements reveal that the face-centered cubic (fcc) high-entropy alloy CrMnFeCoNi transforms martensitically to a hexagonal close-packed (hcp) phase at ~14 GPa. We attribute this to suppression of the local magnetic moments, destabilizing the fcc phase. Similar to fcc-to-hcp transformations in Al and the noble gases, this transformation is sluggish, occurring over a range of >40 GPa. But, the behavior of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures.
BARRINGER AWARD ADDRESS: Shock Metamorphism of Quartz in Nature and Experiment: A Review
NASA Astrophysics Data System (ADS)
Stoffler, D.
1993-07-01
Quartz as a widespread rock-forming mineral of the Earth's crust represents the most sensitive indicator of impact-induced shock waves and therefore provides an outstanding tool for the recognition of terrestrial impact formations and for the pressure calibration of shock metamorphosed rocks. This paper attempts to summarize the current knowledge in this field. Shocked quartz has been observed in quite variable spatial relations to impact craters: (1) in the crater basement, (2) in rock and mineral clasts of polymict breccias, and (3) in distal ejecta such as tektites and global air- fall beds (e.g., K/T boundary). Quartz displays a wide variety of shock- induced mechanical deformations and transformations [1,2]. Microscopically observable effects are multiple sets of planar fractures (PF) and planar deformation features (PDF) parallel to low indices crystallographic planes; mosaickism; reduced refractivity and birefringence; partial transformation to stishovite; increased optic axial angle; amorphization (diaplectic glass), partial transformation to coesite; and melting (lechatelierite). Additional effects at the atomic scale are well documented by TEM, X-ray diffraction and spectroscopy [3-7]. All types of shock effects observed so far in natural quartz have been reproduced by experimental shock waves in the laboratory and in large scale TNT and nuclear explosions. By means of sophisticated techniques the pressure dependence of shock effects has been calibrated with high precision. Threshold pressures at room temperature (given in GPa) for the onset of certain effects in single crystals and in nonporous quartzofeldpathic rocks are: 7.5 +- 2, 10 +- 2, 20 +- 2 (various PFs and PDFs), 12 +- 1 (stishovite), 25 +- 1 (reduced refractive index and density), ~30 (coesite), 34 +- 1 (total transformation to diaplectic glass), 50 +- 2 (melting and formation of lechatelierite) [8-12]. The type of shock effects, their paragenetic combination, and their formation pressure are strongly dependent on the physical and textural properties of the impacted quartz-bearing target. Porosity [13] and preshock temperature [9,12,14] are most effective. Both properties are lowering the threshold pressure for certain shock effects and they affect the orientation and type of planar deformation structures (PFs and PDFs). Upon thermometamorphism shocked quartz displays characteristic annealing effects useful for (limited) geothermometry. PDFs transform to "decorated planar features" due to recrystallization. These features persist up to the conditions of recrystallization of the primary quartz. Annealing of diaplectic glass leads to densification of the glass between 700 and 1200 degrees C and to complete recrystallization to alpha-quartz + alpha-cristobalite above 1200 degrees C [10]. In impact craters this transformation produces the characteristic "ballen" texture as observed in clasts of melt rocks. Stishovite and coesite decompose near 350 degrees C and above about 1150 degrees C, respectively. These annealing features provide important boundary conditions for interpreting the temperature-time history of impact formations. There is unequivocal evidence, strongly supported by TEM studies [3,4,8], that most of the shock effects discussed above and, certainly, the complete set cannot be produced by endogenic processes in near-surface environments of the Earth's crust where the strain rates are several orders of magnitude lower than those in impact processes, and the peak pressures exceed 5 GPa only in very special tectonic settings at great depth. References: [1] Stoffler D. (1972) Fortschr. Mineral., 49, 50-113, and references therein. [2] Stoffler D. (1974) Fortschr. Mineral., 51, 256-289. [3] Gratz A. J. et al. (1988) Phys. Chem. Mineral., 16, 221-233. [4] Goltrant O. et al. (1991) EPSL 106, 103-115. [5] Cygan R. T. et al. (1990) LPSC XX, 451-457. [6] Jakubith M. and Lehmann G. (1981) Phys. Chem. Mineral., 7, 165- 168. [7] Ashworth J. R. and Schneider H. (1985) Phys. Chem. Mineral., 11, 241- 249. [8] Stoffler D. (1984) J. Non-Cryst. Solids, 67, 465-502, and references therein. [9] Gratz A. J. (1992) Phys. Chem. Mineral., 19, 267-288, [10] Rehfeldt-Oskierski A. (1986) Ph.D. thesis, Univ. of Munster. [11] Grothues J. (1988) Diploma thesis, Univ. of Muenster [12] Langenhorst F. (1993), Ph.D. thesis, Univ. of Munster. [13] Kieffer S. W. et al. (1976) Contr. Mineral. Petrol., 59, 41-93, [14] Langenhorst F. (1992) Nature, 356, 507-509.
NASA Astrophysics Data System (ADS)
Giovambattista, Nicolas; Starr, Francis W.; Poole, Peter H.
2017-07-01
Experiments and computer simulations of the transformations of amorphous ices display different behaviors depending on sample preparation methods and on the rates of change of temperature and pressure to which samples are subjected. In addition to these factors, simulation results also depend strongly on the chosen water model. Using computer simulations of the ST2 water model, we study how the sharpness of the compression-induced transition from low-density amorphous ice (LDA) to high-density amorphous ice (HDA) is influenced by the preparation of LDA. By studying LDA samples prepared using widely different procedures, we find that the sharpness of the LDA-to-HDA transformation is correlated with the depth of the initial LDA sample in the potential energy landscape (PEL), as characterized by the inherent structure energy. Our results show that the complex phenomenology of the amorphous ices reported in experiments and computer simulations can be understood and predicted in a unified way from knowledge of the PEL of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Song-Ze, E-mail: dingsongze@hotmail.com; Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536; Yang, Yu-Xiu
2013-05-15
Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology.more » Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and transformation.« less
Atomic structure and pressure-induced phase transformations in a phase-change alloy
NASA Astrophysics Data System (ADS)
Xu, Ming
Phase-change materials exist in at least two phases under the ambient condition. One is the amorphous state and another is crystalline phase. These two phases have vastly different physical properties, such as electrical conductivity, optical reflectivity, mass density, thermal conductivity, etc. The distinct physical properties and the fast transformation between amorphous and crystalline phases render these materials the ability to store information. For example, the DVD and the Blue-ray discs take advantage of the optical reflectivity contrast, and the newly developed solid-state memories make use of the large conductivity difference. In addition, both the amorphous and crystalline phases in phase-change memories (PCMs) are very stable at room temperature, and they are easy to be scaled up in the production of devices with large storage density. All these features make phase-change materials the ideal candidates for the next-generation memories. Despite of the fast development of these new memory materials in industry, many fundamental physics problems underlying these interesting materials are still not fully resolved. This thesis is aiming at solving some of the key issues in phase-change materials. Most of phase-change materials are composed of Ge-Sb-Te constituents. Among all these Ge-Sb-Te based materials, Ge2Sb2Te5 (GST) has the best performance and has been frequently studied as a prototypical phase-change material. The first and foremost issue is the structure of the two functioning phases. In this thesis, we investigate the unique atomic structure and bonding nature of amorphous GST (a-GST) and crystalline GST ( c-GST), using ab initio tools and X-ray diffraction (XRD) methods. Their local structures and bonding scenarios are then analyzed using electronic structure calculations. In order to gain insight into the fast phase transformation mechanism, we also carried out a series of high-pressure experiments on GST. Several new polymorphs and their transformations have been revealed under high pressure via in situ XRD and in situ electrical resistivity measurements. The mechanisms of the structural and property changes have been uncovered via ab initio molecular dynamics simulations.
NASA Astrophysics Data System (ADS)
Richter, B.; Stünitz, H.; Heilbronner, R.
2016-11-01
Coesite was found in quartz aggregates, experimentally deformed at confining pressures of 1.0-1.5 GPa and temperatures between 600°C and 900°C. The confining pressure (Pc) and, in most cases, the mean stress (σm) of the experiments were below those of the quartz-to-coesite phase transformation. Yet coesite formed when the maximum principal stress (σ1) was within the P-T range of the coesite stability field. In one sample, the euhedral coesite grains were corroded indicating that coesite started to transform back to quartz. It is inferred that this sample started to deform with σ1 above the quartz-to-coesite phase transformation and, with ongoing deformation, σ1 decreased to values in the quartz stability field due to strain weakening. In all cases, σ1 triggered the quartz-to-coesite reaction as well as the reverse reaction, suggesting that σ1 is the critical parameter for the quartz-to-coesite transformation—not Pc or σm. With progressive deformation, the coesite laths rotated toward the shear plane as more rigid particles with the sense of shear. In case of back reaction, new quartz grains exhibit no systematic crystallographic relationship with respect to old coesite. The experiments cover different degrees of pressure "overstepping," different temperatures, and different experimental durations at P and T, and deformation always enhances the reaction kinetics. The observation that σ1 is critical for a pressure-dependent phase transformation (also for reversals) poses questions for the thermodynamic treatment of such phase transformations.
Zarkevich, N. A.; Johnson, D. D.
2015-05-12
We revisit results from decades of pressure experiments on the bcc ↔ hcp transformations in iron, which are sensitive to non-hydrostatic conditions and sample size. We emphasize the role of martensitic stress in the observed pressure hysteresis and address the large spread in values for onset pressures of the nucleating phase. From electronic-structure calculations, we find a bcc ↔ hcp equilibrium coexistence pressure of 8.4 GPa. Accounting for non-hydrostatic martensitic stress and a stress-dependent transition barrier, we suggest a pressure inequality for better comparison to experiment and observed hysteresis. We construct the equation of state for bcc and hcp phasesmore » under hydrostatic pressure, and compare to experiments and previous calculations.« less
Phase transformation dependence on initial plastic deformation mode in Si via nanoindentation
Wong, Sherman; Haberl, Bianca; Williams, James S.; ...
2016-09-30
Silicon in its diamond-cubic phase is known to phase transform to a technologically interesting mixture of the body-centred cubic and rhombohedral phases under nanoindentation pressure. In this study, we demonstrate that during plastic deformation the sample can traverse two distinct pathways, one that initially nucleates a phase transformation while the other initially nucleates crystalline defects. These two pathways remain distinct even after sufficient pressure is applied such that both deformation mechanisms are present within the sample. Here, it is further shown that the indents that initially nucleate a phase transformation generate larger, more uniform volumes of the phase transformed materialmore » than indents that initially nucleate crystalline defects.« less
Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles
NASA Astrophysics Data System (ADS)
Kraus, B. F.; Hudson, S. R.
2017-09-01
In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. Applying these results to a given rotational-transform profile in cylindrical geometry, we find magnetic field and current density profiles compatible with the fractal pressure.
NASA Astrophysics Data System (ADS)
Mahmoud Nasef, Mohamed; Abbasi, Ali; Ting, T. M.
2014-10-01
A new CO2 adsorbent containing triethylamine (TEA) was prepared by radiation induced grafting of glycidyl methacrylate (GMA) onto polyethylene coated polypropylene (PE-PP) non-woven sheet followed by amination reaction. The degree of grafting (DOG%) was controlled by variation of monomer concentration and absorbed dose. The incorporation of aminated poly(GMA) was investigated by Fourier transform infrared (FTIR) and scanning electron microscope (SEM). The adsorbent with DOG of 350% and amination yield of 60% exhibited CO2 adsorption capacity of 4.52 mol/kg at ambient temperature and pressure.
Collisional Detachment of Anions using Fourier Transform Mass Spectrometry
1992-12-01
cross section. which itself may be the object of the measurement. Two pressure gauges are employed to monitor system pressure: a standard nude ion...Transform Ion Cyclotron Res- onance Mass Spectrometry: The Teen Years," Analytical Chemistry, 63:215A-229A (February 1991). 88. Marshall, Alan G., et al
Analysing Policy Contexts as a Political Strategy
ERIC Educational Resources Information Center
Pillay, Krishnavani Shervani
2014-01-01
The transformation of South Africa from a deeply iniquitous apartheid regime to a more inclusive democratic dispensation remains a huge challenge for all South Africans and its social institutions. The university remains one institution that is under severe pressure to transform. This pressure is exacerbated by the deeply entrenched apartheid…
NASA Astrophysics Data System (ADS)
Brand, U.
1985-04-01
Gas-insulated failsafe high voltage instrument transformers with system voltages in the range of 123 to 420 kV for outdoor service were developed. The basic physics and high power tests performed on gas-filled instrument transformer housings are discussed. Construction and design of gas-insulated voltage transformers are explained. The insulation of the 123 kV model consists of low pressurized SF6 gas and plastic foils. The 245 kV unit has the same principal design; however, a higher SF6 pressure is used and the apparatus is fitted with a hollow composite insulator made of a fiber reinforced plastics tube and silicone casing. For the 420 kV model the same insulator type is used and a design for the voltage grading along the insulator is developed. The transformers show good performance in service; they are a safe and environment-protecting alternative to oil insulated equipment.
Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing
2013-07-15
High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.
Rapid compression transforms interfacial monolayers of pulmonary surfactant.
Crane, J M; Hall, S B
2001-04-01
Films of pulmonary surfactant in the lung are metastable at surface pressures well above the equilibrium spreading pressure of 45 mN/m but commonly collapse at that pressure when compressed in vitro. The studies reported here determined the effect of compression rate on the ability of monolayers containing extracted calf surfactant at 37 degrees C to maintain very high surface pressures on the continuous interface of a captive bubble. Increasing the rate from 2 A(2)/phospholipid/min (i.e., 3% of (initial area at 40 mN/m)/min) to 23%/s produced only transient increases to 48 mN/m. Above a threshold rate of 32%/s, however, surface pressures reached > 68 mN/m. After the rapid compression, static films maintained surface pressures within +/- 1 mN/m both at these maximum values and at lower pressures following expansion at < 5%/min to > or = 45 mN/m. Experiments with dimyristoyl phosphatidylcholine at 37 degrees C produced similar results. These findings indicate that compression at rates comparable to values in the lungs can transform at least some phospholipid monolayers from a form that collapses readily at the equilibrium spreading pressure to one that is metastable for prolonged periods at higher pressures. Our results also suggest that transformation of surfactant films can occur without refinement of their composition.
Shock Pressures, Temperatures and Durations in L Chondrites: Constraints from Shock-Vein Mineralogy
NASA Astrophysics Data System (ADS)
Xie, Z.; Aramovish Weaver, C.; Decarli, P. S.; Sharp, T. G.
2003-12-01
Shock effects in meteorites provide a record of major impact events on meteorite parent bodies. Shock veins in chondrites, which result from local melting during shock loading, are the location of all high-pressure minerals. Shock veins contain igneous assemblages, produced by the crystallization of shock-induced melt, and metamorphic assemblages, produced by solid-state transformation in entrained host-rock clasts and wall rock. The mineralogy, distribution of high-pressure minerals and microstructures in shock veins provide a record of crystallization pressures and quench histories that can be used to constrain shock pressures and pulse duration. Here we report mineralogical and microstructural studies of shock-induced melt veins in L chondrites that provide insight into the impact history of the L-chondrite parent body. Eight L6 chondrites were investigated using FESEM and TEM and Raman spectroscopy: RC 106 (S6), Tenham (S6), Umbarger (S4-S6), Roy (S3-S5), Ramsdorf (S4), Kunashak (S4), Nakhon Pathon (S4) and La Lande (S4). Igneous melt-vein assemblages, combined with published phase equilibrium data (Agee et al. 1996), indicate crystallization pressures from less than 2.5 GPa for Kunashack and LaLande to approximately 25 GPa for Tenham. Because shock veins quench primarily by thermal conduction, crystallization starts at vein edges and progresses inward. Variation in the igneous assemblage across shock veins, combined with thermal modelling, provides constraints on quench times and pressure variation during quench. Most samples appear to have crystallized prior to shock release, whereas Kunashack and LaLande apparently crystallized after pressure release. RC 106 and Tenham (both S6), which have thick melt veins with uniform igneous assemblages, crystallized under equilibrium shock pressures of approximately 22-25 GPa during shock events that lasted at least 500 ms and 50ms, respectively. The fact that S6 samples do not appear to have crystallized at a pressures greater than about 25 GPa, suggest that the impacts that produced shock veins in chondrites had low relative impact velocities.
Martensitic transformation in as-grown and annealed near-stoichiometric epitaxial Ni2MnGa thin films
NASA Astrophysics Data System (ADS)
Machain, P.; Condó, A. M.; Domenichini, P.; Pozo López, G.; Sirena, M.; Correa, V. F.; Haberkorn, N.
2015-08-01
Magnetic shape memory nanostructures have a great potential in the field of the nanoactuators. The relationship between dimensionality, microstructure and magnetism characterizes the materials performance. Here, we study the martensitic transformation in supported and free-standing epitaxial Ni47Mn24Ga29 films grown by sputtering on (0 0 1) MgO using a stoichiometric Ni2MnGa target. The films have a Curie temperature of ~390 K and a martensitic transition temperature of ~120 K. Similar transition temperatures have been observed in films with thicknesses of 1, 3 and 4 μm. Thicker films (with longer deposition time) present a wider martensitic transformation range that can be associated with small gradients in their chemical concentration due to the high vapour pressure of Mn and Ga. The magnetic anisotropy of the films shows a strong change below the martensitic transformation temperature. No features associated with variant reorientation induced by magnetic field have been observed. Annealed films in the presence of a Ni2MnGa bulk reference change their chemical composition to Ni49Mn26Ga25. The change in the chemical composition increases the martensitic transformation temperature, being closer to the stoichiometric compound, and reduces the transformation hysteresis. In addition, sharper transformations are obtained, which indicate that chemical inhomogeneities and defects are removed. Our results indicate that the properties of Ni-Mn-Ga thin films grown by sputtering can be optimized (fixing the chemical concentration and removing crystalline defects) by the annealing process, which is promising for the development of micromagnetic shape memory devices.
Addessio, Francis L.; Luscher, Darby Jon; Cawkwell, Marc Jon; ...
2017-05-14
A continuum model for the high-rate, thermo-mechanical deformation of single-crystal cyclotrimethylene trinitramine (RDX) is developed. The model includes the effects of anisotropy, large deformations, nonlinear thermo-elasticity, phase transformations, and plastic slip. A multiplicative decomposition of the deformation gradient is used. The volumetric elastic component of the deformation is accounted for through a free-energy based equation of state for the low- (α) and high-pressure (γ) polymorphs of RDX. Crystal plasticity is addressed using a phenomenological thermal activation model. The deformation gradient for the phase transformation is based on an approach that has been applied to martensitic transformations. Simulations were conducted andmore » compared to high-rate, impact loading of oriented RDX single crystals. The simulations considered multiple orientations of the crystal relative to the direction of shock loading and multiple sample thicknesses. Thirteen slip systems, which were inferred from indentation and x-ray topography, were used to model the α-polymorph. It is shown that by increasing the number of slip systems from the previously considered number of six (6) to thirteen (13) in the α-polymorph, better comparisons with data may be obtained. Simulations of impact conditions in the vicinity of the α- to γ-polymorph transformation (3.8 GPa) are considered. Eleven of the simulations, which were at pressures below the transformation value (3.0 GPa), were compared to experimental data. Comparison of the model was also made with available data for one experiment above the transformation pressure (4.4 GPa). Also, simulations are provided for a nominal pressure of 7.5 GPa to demonstrate the effect of the transformation kinetics on the deformation of a high-rate plate impact problem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addessio, Francis L.; Luscher, Darby Jon; Cawkwell, Marc Jon
A continuum model for the high-rate, thermo-mechanical deformation of single-crystal cyclotrimethylene trinitramine (RDX) is developed. The model includes the effects of anisotropy, large deformations, nonlinear thermo-elasticity, phase transformations, and plastic slip. A multiplicative decomposition of the deformation gradient is used. The volumetric elastic component of the deformation is accounted for through a free-energy based equation of state for the low- (α) and high-pressure (γ) polymorphs of RDX. Crystal plasticity is addressed using a phenomenological thermal activation model. The deformation gradient for the phase transformation is based on an approach that has been applied to martensitic transformations. Simulations were conducted andmore » compared to high-rate, impact loading of oriented RDX single crystals. The simulations considered multiple orientations of the crystal relative to the direction of shock loading and multiple sample thicknesses. Thirteen slip systems, which were inferred from indentation and x-ray topography, were used to model the α-polymorph. It is shown that by increasing the number of slip systems from the previously considered number of six (6) to thirteen (13) in the α-polymorph, better comparisons with data may be obtained. Simulations of impact conditions in the vicinity of the α- to γ-polymorph transformation (3.8 GPa) are considered. Eleven of the simulations, which were at pressures below the transformation value (3.0 GPa), were compared to experimental data. Comparison of the model was also made with available data for one experiment above the transformation pressure (4.4 GPa). Also, simulations are provided for a nominal pressure of 7.5 GPa to demonstrate the effect of the transformation kinetics on the deformation of a high-rate plate impact problem.« less
Donato-Trancoso, Aline; Monte-Alto-Costa, Andréa; Romana-Souza, Bruna
2016-07-01
The overproduction of reactive oxygen species (ROS) and exacerbated inflammatory response are the main events that impair healing of pressure ulcers. Therefore, olive oil may be a good alternative to improve the healing of these chronic lesions due to its anti-inflammatory and antioxidant properties. This study investigated the effect of olive oil administration on wound healing of pressure ulcers in mice. Male Swiss mice were daily treated with olive oil or water until euthanasia. One day after the beginning of treatment, two cycles of ischemia-reperfusion by external application of two magnetic plates were performed in skin to induced pressure ulcer formation. The olive oil administration accelerated ROS and nitric oxide (NO) synthesis and reduced oxidative damage in proteins and lipids when compared to water group. The inflammatory cell infiltration, gene tumor necrosis factor-α (TNF-α) expression and protein neutrophil elastase expression were reduced by olive oil administration when compared to water group. The re-epithelialization and blood vessel number were higher in the olive oil group than in the water group. The olive oil administration accelerated protein expression of TNF-α, active transforming growth factor-β1 and vascular endothelial growth factor-A when compared to water group. The collagen deposition, myofibroblastic differentiation and wound contraction were accelerated by olive oil administration when compared to water group. Olive oil administration improves cutaneous wound healing of pressure ulcers in mice through the acceleration of the ROS and NO synthesis, which reduces oxidative damage and inflammation and promotes dermal reconstruction and wound closure. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
A case study of the fluid structure interaction of a Francis turbine
NASA Astrophysics Data System (ADS)
Müller, C.; Staubli, T.; Baumann, R.; Casartelli, E.
2014-03-01
The Francis turbine runners of the Grimsel 2 pump storage power plant showed repeatedly cracks during the last decade. It is assumed that these cracks were caused by flow induced forces acting on blades and eventual resonant runner vibrations lead to high stresses in the blade root areas. The eigenfrequencies of the runner were simulated in water using acoustic elements and compared to experimental data. Unsteady blades pressure distribution determined by a transient CFD simulation of the turbine were coupled to a FEM simulation. The FEM simulation enabled analyzing the stresses in the runner and the eigenmodes of the runner vibrations. For a part-load operating point, transient CFD simulations of the entire turbine, including the spiral case, the runner and the draft tube were carried out. The most significant loads on the turbine runner resulted from the centrifugal forces and the fluid forces. Such forces effect temporally invariant runner blades loads, in contrast rotor stator interaction or draft tube instabilities induce pressure fluctuations which cause the temporally variable forces. The blades pressure distribution resulting from the flow simulation was coupled by unidirectional-harmonic FEM simulation. The dominant transient blade pressure distribution of the CFD simulation were Fourier transformed, and the static and harmonic portion assigned to the blade surfaces in the FEM model. The evaluation of the FEM simulation showed that the simulated part load operating point do not cause critical stress peaks in the crack zones. The pressure amplitudes and frequencies are very small and interact only locally with the runner blades. As the frequencies are far below the modal frequencies of the turbine runner, resonant vibrations obviously are not excited.
NASA Astrophysics Data System (ADS)
Lider, Ofer; Karin, Nathan; Shinitzky, Meir; Cohen, Irun R.
1987-07-01
An ideal treatment for autoimmune diseases would be a nontoxic means of specifically neutralizing the autoreactive lymphocytes responsible for the disease. This goal has been realized in experimental autoimmunity models by immunizing rats or mice against their own autoimmune cells such that the animals generate an immune response specifically repressive to the disease-producing lymphocytes. This maneuver, termed lymphocyte vaccination, was demonstrated to be effective using some, but not all, autoimmune helper T-lymphocyte lines. We now report that T lymphocytes, otherwise incapable of triggering an immune response, can be transformed into effective immunogens by treating the cells in vitro with hydrostatic pressure. Clone A2b, as effector clone that recognized cartilage proteoglycan and caused adjuvant arthritis in Lewis rats, is such a cell. Untreated A2b could not trigger an immune response, but inoculating rats with pressure-treated A2b induced early remission of established adjuvant arthritis as well as resistance to subsequent disease. Specific resistance to arthritis was associated with anti-idiotypic T-cell reactivity to clone A2b and could be transferred from vaccinated rats to naive recipients using donor lymphoid cells. Aggregation of T-lymphocyte membrane components appeared to be important for an immune response because the effects of hydrostatic pressure could be reproduced by treatment of A2b with chemical cross-linkers or with agents disrupting the cytoskeleton. Populations of lymph node cells from antigen-primed rats, when treated with hydrostatic pressure, could also induce suppression of disease. Thus, effective vaccines can be developed without having to isolate the autoimmune T lymphocytes as lines or clones. These results demonstrate that effector T lymphocytes suitably treated may serve as agents for specifically controlling the immune system.
Experimental shock deformation in zircon: a transmission electron microscopic study
NASA Astrophysics Data System (ADS)
Leroux, H.; Reimold, W. U.; Koeberl, C.; Hornemann, U.; Doukhan, J.-C.
1999-06-01
In recent years, apparently shock-induced and, thus, impact-characteristic microdeformations, in the form of planar microdeformation features and so-called strawberry (granular) texture, have been observed in zircons in rocks from confirmed impact structures and from the K/ T boundary. The nature of the planar microdeformations in this mineral is, however, still unknown, and critical information is needed regarding the shock pressure range in which these deformation effects are produced. We experimentally shock deformed two series of thin zircon (ZrSiO 4) target plates, cut perpendicular to the c-axis, at shock pressures of 20, 40, and 60 GPa. The recovered samples were characterized by optical and scanning electron microscopy. In addition, one sample series was studied by transmission electron microscopy (TEM). Microdeformation effects observed at 20 GPa include pervasive micro-cleavage and dislocation patterns. Plastic deformation is indicated by a high density of straight dislocations in glide configuration. The dominant glide systems are <100>{010}. Micro-cleavages, induced by shear stresses during the compression stage, occur mostly in the {100} planes. The large density of dislocations at crack tips shows that plastic deformation was initiated by the micro-cracking processs. At 40 GPa, the sample was partly transformed from the zircon (z) to a scheelite (CaWO 4)-type (s) structure. Planar deformation features (PDFs) containing an amorphous phase of zircon composition are present in the not yet transformed zircon relics. The phase with scheelite structure, initiated in the {100} planes of zircon, consists of thin (0.1 to several μm) bands that crosscut the zircon matrix. The phase transformation is displacive (martensitic) and can be related by {100} z // {112} s and [001] z // <110> s. The scheelite structure phase is densely twinned, with twins in the (112) plane. The 60-GPa sample consists completely of the scheelite structure phase. Crosscutting and displacing relationships between twins and PDFs demonstrate that PDFs are formed in the zircon structure, i.e., before the phase transformation to the scheelite structure occurred, most likely at the shock front. Crystallographic orientations of optically visible planar features in zircon, in comparison with orientations of planar defects at the TEM scale, suggest that the optically visible features are more likely planar microfractures than PDFs.
Stoddart, Martin; Lezuo, Patrick; Forkmann, Christoph; Wimmmer, Markus A.; Alini, Mauro; Van Oosterwyck, Hans
2014-01-01
Fibrin–polyurethane composite scaffolds support chondrogenesis of human mesenchymal stem cells (hMSCs) derived from bone marrow and due to their robust mechanical properties allow mechanical loading in dynamic bioreactors, which has been shown to increase the chondrogenic differentiation of MSCs through the transforming growth factor beta pathway. The aim of this study was to use the finite element method, mechanical testing, and dynamic in vitro cell culture experiments on hMSC-enriched fibrin–polyurethane composite scaffolds to quantitatively decipher the mechanoregulation of chondrogenesis within these constructs. The study identified compressive principal strains as the key regulator of chondrogenesis in the constructs. Although dynamic uniaxial compression did not induce chondrogenesis, multiaxial loading by combined application of dynamic compression and interfacial shear induced significant chondrogenesis at locations where all the three principal strains were compressive and had a minimum magnitude of 10%. In contrast, no direct correlation was identified between the level of pore fluid velocity and chondrogenesis. Due to the high permeability of the constructs, the pore fluid pressures could not be increased sufficiently by mechanical loading, and instead, chondrogenesis was induced by triaxial compressive deformations of the matrix with a minimum magnitude of 10%. Thus, it can be concluded that dynamic triaxial compressive deformations of the matrix is sufficient to induce chondrogenesis in a threshold-dependent manner, even where the pore fluid pressure is negligible. PMID:24199606
Experimental Shock Transformation of Gypsum to Anhydrite: A New Low Pressure Regime Shock Indicator
NASA Technical Reports Server (NTRS)
Bell, Mary S.; Zolensky, Michael E.
2011-01-01
The shock behavior of gypsum is important in understanding the Cretaceous/Paleogene event and other terrestrial impacts that contain evaporite sediments in their targets (e.g., Mars Exploration Rover Spirit detected sulfate at Gusev crater, [1]). Most interest focuses on issues of devolatilization to quantify the production of SO2 to better understand its role in generating a temporary atmosphere and its effects on climate and biota [2,3]. Kondo and Ahrens [4] measured induced radiation emitted from single crystal gypsum shocked to 30 and 40 GPa. They observed greybody emission spectra corresponding to temperatures in the range of 3,000 to 4,000 K that are a factor of 2 to 10 times greater than calculated pressure-density energy equation of state temperatures (Hugoniot) and are high enough to melt gypsum. Chen et al. [5] reported results of shock experiments on anhydrite, gypsum, and mixtures of these phases with silica. Their observations indicated little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another report of shock experiments on calcite, anhydrite, and gypsum, Badjukov et al. [6] observed only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa but have not experimentally shocked gypsum in a step-wise manner to constrain possible incipient transformation effects. Schmitt and Hornemann [7] shock loaded anhydrite and quartz to a peak pressure of 60 GPa and report the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggested that recrystallization of anhydrite grains is the result of a solid-state transformation. They concluded that significant decomposition of anhydrite requires shock pressures higher than 60 GPa. Gupta et al. [8] reanalyzed the calcite and anhydrite shock wave experiments of Yang [9] using improved equations of state of porous materials and vaporized products. They determined the pressures for incipient and complete vaporization to be 32.5 and 122 GPa for anhydrite GPa which is a factor of 2 to 3 lower than reported earlier by Yang [9]. These studies are not in agreement regarding the onset of sulfate decomposition and documentation of shock effects in gypsum is incomplete.
Phase Stability and Transformations in Vanadium Oxide Nanocrystals
NASA Astrophysics Data System (ADS)
Bergerud, Amy Jo
Vanadium oxides are both fascinating and complex, due in part to the many compounds and phases that can be stabilized as well as the phase transformations which occur between them. The metal to insulator transitions (MITs) that take place in vanadium oxides are particularly interesting for both fundamental and applied study as they can be induced by a variety of stimuli ( i.e., temperature, pressure, doping) and utilized in many applications (i.e., smart windows, sensors, phase change memory). Nanocrystals also tend to demonstrate interesting phase behavior, due in part to the enhanced influence of surface energy on material thermodynamics. Vanadium oxide nanocrystals are thus expected to demonstrate very interesting properties in regard to phase stability and phase transformations, although synthesizing vanadium oxides in nanocrystal form remains a challenge. Vanadium sesquioxide (V2O3) is an example of a material that undergoes a MIT. For decades, the low temperature monoclinic phase and high temperature corundum phase were the only known crystal structures of V2O3. However, in 2011, a new metastable polymorph of V2O3 was reported with a cubic, bixbyite crystal structure. In Chapter 2, a colloidal route to bixbyite V2O 3 nanocrystals is presented. In addition to being one of the first reported observations of the bixbyite phase in V2O3, it is also one of the first successful colloidal syntheses of any of the vanadium oxides. The nanocrystals possess a flower-like morphology, the size and shape of which are dependent on synthesis time and temperature, respectively. An aminolysis reaction mechanism is determined from Fourier transform infrared spectroscopy data and the bixbyite crystal structure is confirmed by Rietveld refinement of X-ray diffraction (XRD) data. Phase stability is assessed in both air and inert environments, confirming the metastable nature of the material. Upon heating in an inert atmosphere above 700°C, the nanocrystals irreversibly transform to the bulk stable corundum phase of V2O3 with concurrent particle coarsening. This, in combination with the enhanced stability of the nanocrystals over bulk, suggests that the bixbyite phase may be stabilized due to surface energy effects, a well-known phenomenon in nanocrystal research. In Chapter 3, the reversible incorporation of oxygen in bixbyite V 2O3 is reported, which can be controlled by varying temperature and oxygen partial pressure. Based on XRD and thermogravimetric analysis, it is found that oxygen occupies interstitial sites in the bixbyite lattice. Two oxygen atoms per unit cell can be incorporated rapidly and with minimal changes to the structure while the addition of three or more oxygen atoms destabilizes the structure, resulting in a phase change that can be reversed upon oxygen removal. Density functional theory (DFT) supports the reversible occupation of interstitial sites in bixbyite by oxygen and the 1.1 eV barrier to oxygen diffusion predicted by DFT matches the activation energy of the oxidation process derived from observations by in situ XRD. The observed rapid oxidation kinetics are thus facilitated by short diffusion paths through the bixbyite nanocrystals. Due to the exceptionally low temperatures of oxidation and reduction, this material, made from earth-abundant atoms, is proposed for use in oxygen storage applications, where oxygen is reversibly stored and released. Further oxidation of bixbyite V2O3 under controlled oxygen partial pressure can lead to the formation of nanocrystalline vanadium dioxide (VO2), a material that is studied for its MIT that occurs at 68 C in the bulk. This transformation is accompanied by a change in crystal structure, from monoclinic to rutile phase, and a change in optical properties, from infrared transparent to infrared blocking. Because of this, VO2 is promising for thermochromic smart window applications, where optical properties vary with temperature. Recently, alternative stimuli have been utilized to trigger MITs in VO2, including electrochemical gating. Rather than inducing the expected monoclinic to rutile phase transition as originally proposed, electrochemical gating of the insulating phase was recently shown to induce oxygen vacancy formation in VO2, thereby inducing metallization, while the characteristic V-V dimerization of the monoclinic phase was retained. In Chapter 4, the preparation and electrochemical reduction of VO2 nanocrystal films is presented. The nanocrystalline morphology allows for the study of transformations under conditions that enhance the gating effect by creating a large VO2-electrolyte interfacial area and by reducing the path length for diffusion. The resulting transitions are observed optically, from insulator to metal to insulator and back, with in situ visible-near infrared spectroelectrochemistry and correlated with structural changes monitored by Raman and X-ray absorption spectroscopies. The never-before-seen transition to an insulating phase under progressive electrochemical reduction is attributed to an oxygen defect induced phase transition to a new phase. This is likely enabled by the nanocrystalline nature of the sample, which may enhance the kinetics of oxygen diffusion, support a higher degree of lattice expansion-induced strain, or simply alter the thermodynamics of the system.
DX-center transformation of Te donors in GaSb under hydrostatic pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro-Contreras, H.; de Anda-Salazar, F.; Hsu, L.
1998-05-01
We have observed the transformation of Te shallow donors in GaSb into DX centers at hydrostatic pressures of 27.8{plus_minus}2.6kbar. The position of the Te DX energy level at zero pressure is calculated to lie 300{plus_minus}70meV above the conduction band at atmospheric pressure, consistent with the theory that in the III-V compounds the DX centers line up in energy with respect to the vacuum level within experimental error. This binding energy at zero pressure of the Te DX compares well with the value of 210 meV calculated from the cation-cation bonded DX-center model recently proposed by Park and Chadi. At pressuresmore » where the Te shallow donor into DX-center transformation has taken place we observe evidence of the existence of a bound phonon associated with the Te DX center. From its observed pressure dependence the LO optical phonon Gr{umlt u}neisen parameter is calculated to be {gamma}{sub LO}=0.93{plus_minus}0.09. {copyright} {ital 1998} {ital The American Physical Society}« less
NASA Astrophysics Data System (ADS)
Dutta, R. K.; Huizenga, R. M.; Amirthalingam, M.; Hermans, M. J. M.; King, A.; Richardson, I. M.
2013-09-01
In situ phase transformation behavior of a high strength S690QL1 steel during continuous cooling under different mechanical loading conditions has been used to investigate the effect of small external loads on the transformation-induced plasticity during bainitic and martensitic transformations. The results show that during phase transformations, the untransformed austenite undergoes plastic deformation, thereby retarding further transformation to bainite/martensite. This occurs independent of external load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu; Pratheeshkumar, Poyil; Budhraja, Amit
Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROSmore » levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous report. The present study has also shown that the arsenic-transformed cells acquired apoptosis resistance. The inhibition of catalase to increase ROS level restored apoptosis capability of arsenic-transformed BEAS-2B cells, further showing that ROS levels are low in these cells. The apoptosis resistance due to the low ROS levels may increase cells proliferation, providing a favorable environment for tumorigenesis of arsenic-transformed cells.« less
NASA Astrophysics Data System (ADS)
Cios, G.; Tokarski, T.; Żywczak, A.; Dziurka, R.; Stępień, M.; Gondek, Ł.; Marciszko, M.; Pawłowski, B.; Wieczerzak, K.; Bała, P.
2017-10-01
This paper presents a comprehensive study on the strain-induced martensitic transformation and reversion transformation of the strain-induced martensite in AISI 304 stainless steel using a number of complementary techniques such as dilatometry, calorimetry, magnetometry, and in-situ X-ray diffraction, coupled with high-resolution microstructural transmission Kikuchi diffraction analysis. Tensile deformation was applied at temperatures between room temperature and 213 K (-60 °C) in order to obtain a different volume fraction of strain-induced martensite (up to 70 pct). The volume fraction of the strain-induced martensite, measured by the magnetometric method, was correlated with the total elongation, hardness, and linear thermal expansion coefficient. The thermal expansion coefficient, as well as the hardness of the strain-induced martensitic phase was evaluated. The in-situ thermal treatment experiments showed unusual changes in the kinetics of the reverse transformation (α' → γ). The X-ray diffraction analysis revealed that the reverse transformation may be stress assisted—strains inherited from the martensitic transformation may increase its kinetics at the lower annealing temperature range. More importantly, the transmission Kikuchi diffraction measurements showed that the reverse transformation of the strain-induced martensite proceeds through a displacive, diffusionless mechanism, maintaining the Kurdjumov-Sachs crystallographic relationship between the martensite and the reverted austenite. This finding is in contradiction to the results reported by other researchers for a similar alloy composition.
Phase transformations in amorphous fullerite C60 under high pressure and high temperature
NASA Astrophysics Data System (ADS)
Borisova, P. A.; Blanter, M. S.; Brazhkin, V. V.; Somenkov, V. A.; Filonenko, V. P.
2015-08-01
First phase transformations of amorphous fullerite C60 at high temperatures (up to 1800 K) and high pressures (up to 8 GPa) have been investigated and compared with the previous studies on the crystalline fullerite. The study was conducted using neutron diffraction and Raman spectroscopy. The amorphous fullerite was obtained by ball-milling. We have shown that under thermobaric treatment no crystallization of amorphous fullerite into С60 molecular modification is observed, and it transforms into amorphous-like or crystalline graphite. A kinetic diagram of phase transformation of amorphous fullerite in temperature-pressure coordinates was constructed for the first time. Unlike in crystalline fullerite, no crystalline polymerized phases were formed under thermobaric treatment on amorphous fullerite. We found that amorphous fullerite turned out to be less resistant to thermobaric treatment, and amorphous-like or crystalline graphite were formed at lower temperatures than in crystalline fullerite.
Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles
Kraus, B. F.; Hudson, S. R.
2017-09-29
In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. As a result, applying these results to a given rotational-transform profile in cylindricalmore » geometry, we find magnetic field and current density profiles compatible with the fractal pressure.« less
Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, B. F.; Hudson, S. R.
In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. As a result, applying these results to a given rotational-transform profile in cylindricalmore » geometry, we find magnetic field and current density profiles compatible with the fractal pressure.« less
On the Stability of c-BN-Reinforcing Particles in Ceramic Matrix Materials
Wolfrum, Anne-Kathrin; Michaelis, Alexander; Herrmann, Mathias
2018-01-01
Cubic boron nitride (c-BN) composites produced at high pressures and temperatures are widely used as cutting tool materials. The advent of new, effective pressure-assisted densification methods, such as spark plasma sintering (SPS), has stimulated attempts to produce these composites at low pressures. Under low-pressure conditions, however, transformation of c-BN to the soft hexagonal BN (h-BN) phase can occur, with a strong deterioration in hardness and wear. In the present work, the influence of secondary phases (B2O3, Si3N4, and oxide glasses) on the transformation of c-BN was studied in the temperature range between 1100 °C and 1575 °C. The different heat treated c-BN particles and c-BN composites were analyzed by SEM, X-ray diffraction, and Raman spectroscopy. The transformation mechanism was found to be kinetically controlled solution–diffusion–precipitation. Given a sufficiently low liquid phase viscosity, the transformation could be observed at temperatures as low as 1200 °C for the c-BN–glass composites. In contrast, no transformation was found at temperatures up to 1575 °C when no liquid oxide phase is present in the composite. The results were compared with previous studies concerning the c-BN stability and the c-BN phase diagram. PMID:29414847
Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon
2015-07-28
Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate in the top surface region is momentarily faster than the humidification rate (due to the initial roughness of the newly formed surface); (3) after some time, the top layer itself becomes humidified through diffusion of water from the subphase, and thus it becomes non-glassy, leading to the relaxation of the applied compressive stress.
NASA Astrophysics Data System (ADS)
Biermann, Horst; Glage, Alexander; Droste, Matthias
2016-01-01
Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.
Shyu, Kou-Gi; Cheng, Wen-Pin; Wang, Bao-Wei; Chang, Hang
2014-03-01
The expression of MURC (muscle-restricted coiled-coil protein), a hypertrophy-regulated gene, increases during pressure overload. Hypoxia can cause myocardial hypertrophy; however, how hypoxia affects the regulation of MURC in cardiomyocytes undergoing hypertrophy is still unknown. The aim of the present study was to test the hypothesis that hypoxia induces MURC expression in cardiomyocytes during hypertrophy. The expression of MURC was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia and in an in vivo model of AMI (acute myocardial infarction) to induce myocardial hypoxia in adult rats. MURC protein and mRNA expression were significantly enhanced by hypoxia. MURC proteins induced by hypoxia were significantly blocked after the addition of PD98059 or ERK (extracellular-signal-regulated kinase) siRNA 30 min before hypoxia. Gel-shift assay showed increased DNA-binding activity of SRF (serum response factor) after hypoxia. PD98059, ERK siRNA and an anti-TGF-β (transforming growth factor-β) antibody abolished the SRF-binding activity enhanced by hypoxia or exogenous administration of TGF-β. A luciferase promoter assay demonstrated increased transcriptional activity of SRF in cardiomyocytes by hypoxia. Increased βMHC (β-myosin heavy chain) and BNP (B-type natriuretic peptide) protein expression and increased protein synthesis was identified after hypoxia with the presence of MURC in hypertrophic cardiomyocytes. MURC siRNA inhibited the hypertrophic marker protein expression and protein synthesis induced by hypoxia. AMI in adult rats also demonstrated increased MURC protein expression in the left ventricular myocardium. In conclusion, hypoxia in cultured rat neonatal cardiomyocytes increased MURC expression via the induction of TGF-β, SRF and the ERK pathway. These findings suggest that MURC plays a role in hypoxia-induced hypertrophy in cardiomyocytes.
Phase transformation pathways of ultrafast-laser-irradiated Ln2O3 (Ln =Er -Lu )
NASA Astrophysics Data System (ADS)
Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; Solomon, Jonathan M.; Asta, Mark; Mao, Wendy L.; Yalisove, Steven M.; Ewing, Rodney C.
2018-01-01
Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln2O3 (Ln =Er -Lu ), and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln =Tm -Lu , consistent with the material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln =Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.
Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung
Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less
Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )
Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; ...
2018-01-10
Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less
Diffraction studies of the high pressure phases of GaAs and GaP
NASA Technical Reports Server (NTRS)
Baublitz, M., Jr.; Ruoff, A. L.
1982-01-01
High pressure structural phase transitions of GaAs and GaP have been studied by energy dispersive X-ray diffraction with the radiation from the Cornell High Energy Synchrotron Source. GaAs began to transform at 172 + or - 7 kbar to an orthorhombic structure possibly belonging to space group Fmmm. GaP transformed to a tetragonal beta-Sn type phase at 215 + or - 8 kbar. Although pressure transmitting media were used to minimize shear stresses in the specimens, the high pressure diffraction results were interpreted as showing evidence for planar defects in the specimens.
Kuang, Shao-Qing; Geng, Liang; Prakash, Siddharth K; Cao, Jiu-Mei; Guo, Steven; Villamizar, Carlos; Kwartler, Callie S; Peters, Andrew M; Brasier, Allan R; Milewicz, Dianna M
2013-09-01
Although hypertension is the most common risk factor for thoracic aortic diseases, it is not understood how increased pressures on the ascending aorta lead to aortic aneurysms. We investigated the role of angiotensin II type 1 receptor activation in ascending aortic remodeling in response to increased biomechanical forces using a transverse aortic constriction (TAC) mouse model. Two weeks after TAC, the increased biomechanical pressures led to ascending aortic dilatation and thickening of the medial and adventitial layers of the aorta. There was significant adventitial hyperplasia and inflammatory responses in TAC ascending aortas were accompanied by increased adventitial collagen, elevated inflammatory and proliferative markers, and increased cell density attributable to accumulation of myofibroblasts and macrophages. Treatment with losartan significantly blocked TAC-induced vascular inflammation and macrophage accumulation. However, losartan only partially prevented TAC-induced adventitial hyperplasia, collagen accumulation, and ascending aortic dilatation. Increased Tgfb2 expression and phosphorylated-Smad2 staining in the medial layer of TAC ascending aortas were effectively blocked with losartan. In contrast, the increased Tgfb1 expression and adventitial phospho-Smad2 staining were only partially attenuated by losartan. In addition, losartan significantly blocked extracellular signal-regulated kinase activation and reactive oxygen species production in the TAC ascending aorta. Inhibition of the angiotensin II type 1 receptor using losartan significantly attenuated the vascular remodeling associated with TAC but did not completely block the increased transforming growth factor-β1 expression, adventitial Smad2 signaling, and collagen accumulation. These results help to delineate the aortic transforming growth factor-β signaling that is dependent and independent of the angiotensin II type 1 receptor after TAC.
Biolistic transformation of Scoparia dulcis L.
Srinivas, Kota; Muralikrishna, Narra; Kumar, Kalva Bharath; Raghu, Ellendula; Mahender, Aileni; Kiranmayee, Kasula; Yashodahara, Velivela; Sadanandam, Abbagani
2016-01-01
Here, we report for the first time, the optimized conditions for microprojectile bombardment-mediated genetic transformation in Vassourinha (Scoparia dulcis L.), a Plantaginaceae medicinal plant species. Transformation was achieved by bombardment of axenic leaf segments with Binary vector pBI121 harbouring β-glucuronidase gene (GUS) as a reporter and neomycin phosphotransferase II gene (npt II) as a selectable marker. The influence of physical parameters viz., acceleration pressure, flight distance, gap width & macroprojectile travel distance of particle gun on frequency of transient GUS and stable (survival of putative transformants) expressions have been investigated. Biolistic delivery of the pBI121 yielded the best (80.0 %) transient expression of GUS gene bombarded at a flight distance of 6 cm and rupture disc pressure/acceleration pressure of 650 psi. Highest stable expression of 52.0 % was noticed in putative transformants on RMBI-K medium. Integration of GUS and npt II genes in the nuclear genome was confirmed through primer specific PCR. DNA blot analysis showed more than one transgene copy in the transformed plantlet genomes. The present study may be used for metabolic engineering and production of biopharmaceuticals by transplastomic technology in this valuable medicinal plant.
Phase transformation in tantalum under extreme laser deformation
Lu, C. -H.; Hahn, E. N.; Remington, B. A.; ...
2015-10-19
The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centeredmore » cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. In conclusion, molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).« less
Phase Transformation in Tantalum under Extreme Laser Deformation
Lu, C.-H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.
2015-01-01
The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear). PMID:26478106
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jian, E-mail: lujian@ujs.edu.cn; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013; Zhou, Zhongping
Cadmium is a toxic heavy metal present in the environment and in industrial materials. Cadmium has demonstrated carcinogenic activity that induces cell transformation, but how this occurs is unclear. We used 2D-DIGE and MALDI TOF/TOF MS combined with bioinformatics and immunoblotting to investigate the molecular mechanism of cadmium transformation. We found that small GTPases were critical for transformation. Additionally, proteins involved in mitochondrial transcription, DNA repair, and translation also had altered expression patterns in cadmium treated cells. Collectively, our results suggest that activation of small GTPases contributes to cadmium-induced transformation of colon cells. - Highlights: • Colon epithelial cell linemore » is firstly successfully transformed by cadmium. • 2D-DIGE is applied to visualize the differentially expressed proteins. • RhoA plays an important role in cadmium induced malignant transformation. • Bioinformatic and experimental methods are combined to explore new mechanisms.« less
Induced over voltage test on transformers using enhanced Z-source inverter based circuit
NASA Astrophysics Data System (ADS)
Peter, Geno; Sherine, Anli
2017-09-01
The normal life of a transformer is well above 25 years. The economical operation of the distribution system has its roots in the equipments being used. The economy being such, that it is financially advantageous to replace transformers with more than 15 years of service in the second perennial market. Testing of transformer is required, as its an indication of the extent to which a transformer can comply with the customers specified requirements and the respective standards (IEC 60076-3). In this paper, induced over voltage testing on transformers using enhanced Z source inverter is discussed. Power electronic circuits are now essential for a whole array of industrial electronic products. The bulky motor generator set, which is used to generate the required frequency to conduct the induced over voltage testing of transformers is nowadays replaced by static frequency converter. First conventional Z-source inverter, and second an enhanced Z source inverter is being used to generate the required voltage and frequency to test the transformer for induced over voltage test, and its characteristics is analysed.
Vacancies in MgO at ultrahigh pressure: About mantle rheology of super-Earths
NASA Astrophysics Data System (ADS)
Ritterbex, Sebastian; Harada, Takafumi; Tsuchiya, Taku
2018-05-01
First-principles calculations are performed to investigate vacancy formation and migration in the B2 phase of MgO. Defect energetics suggest the importance of intrinsic non-interacting vacancy pairs, even though the extrinsic vacancy concentration might govern atomic diffusion in the B2 phase of MgO. The enthalpies of ionic vacancy migration are generally found to decrease across the B1-B2 phase transition around a pressure of 500 GPa. It is shown that this enthalpy change induces a substantial increase in the rate of vacancy diffusion in MgO of almost four orders of magnitude (∼104) when the B1 phase transforms into the B2 phase with increasing pressure. If plastic deformation is controlled by vacancy diffusion, mantle viscosity is expected to decrease in relation to this enhanced diffusion rate in MgO across the B1-B2 transition in the interior of Earth-like large exoplanets. Our results of atomic relaxations near the defects suggest that diffusion controlled creep viscosity may generally decrease across high-pressure phase transitions with increasing coordination number. Plastic flow and resulting mantle convection in the interior of these super-Earths may be therefore less sluggish than previously thought.
Experimental Investigation of Cavitation Induced Feedline Instability from an Orifice
NASA Technical Reports Server (NTRS)
Hitt, Matthew A.; Lineberry, David M.; Ahuja, Vineet; Frederick, Robert A,
2012-01-01
This paper details the results of an experimental investigation into the cavitation instabilities created by a circular orifice conducted at the University of Alabama in Huntsville Propulsion Research Center. This experiment was conducted in concert with a computational simulation to serve as a reference point for the simulation. Testing was conducted using liquid nitrogen as a cryogenic propellant simulant. A 1.06 cm diameter thin orifice with a rounded inlet was tested in an approximately 1.25 kg/s flow with inlet pressures ranging from 504.1 kPa to 829.3 kPa. Pressure fluctuations generated by the orifice were measured using a high frequency pressure sensor located 0.64 tube diameters downstream of the orifice. Fast Fourier Transforms were performed on the high frequency data to determine the instability frequency. Shedding resulted in a primary frequency with a cavitation related subharmonic frequency. For this experiment, the cavitation instability ranged from 153 Hz to 275 Hz. Additionally, the strength of the cavitation occur red as a function of cavitation number. At lower cavitation numbers, the strength of the cavitation instability ranged from 2.4 % to 7 % of the inlet pressure. However, at higher cavitation numbers, the strength of the cavitation instability ranged from 0.6 % to 1 % of the inlet pressure.
High-pressure structural behavior of hydrogarnet, katoite Ca3Al2(O4H4)3
NASA Astrophysics Data System (ADS)
Kyono, A.; Kato, M.; Sano-Furukawa, A.; Machida, S. I.; Hattori, T.
2016-12-01
High-pressure structural behavior of hydrogarnet, katoite Ca3Al2(O4H4)3, was investigated using single-crystal synchrotron x-ray diffraction, Raman spectroscopic, and neutron diffraction analyses. The high-pressure single-crystal synchrotron x-ray diffraction was performed at BL10A, Photon Factory, KEK, Japan. With compression, the a lattice parameter decreased continuously from 12.565 (1) Å to 12.226 (3) Å up to 7.1 GPa. A fit to the Birch-Murnaghan equation of state (EoS) based on the P-V data gives K0 = 56.0 (6) GPa, K' = 4.3 (1), and V0 = 1984.2 (5) Å3, which were consistent with the previous study by Lager et al. (2002). Weak reflections forbidden by the systematic absence of hk0 with k, l = 2n were observed at 5.5 GPa and their intensities became stronger as increasing pressure. The pattern change of systematic absence implies phase transformation from space group Ia-3d to its non-centrosymmetric space group I-43d. High-pressure Raman spectroscopic study was performed up to 8.3 GPa at room temperature. The pressure dependence of lattice modes showed a positive pressure shifts, whereas that of OH stretching vibration mode was changed negative above 5.1 GPa. The change indicates that the strength of hydrogen bonding turns to increase above 5.1 GPa. High-pressure and high-temperature neutron diffraction study was performed with six-axis large volume press, ATSUHIME, at BL11 (PLANET), J-PARC, Japan. At a pressure of approximately 8 GPa, the a lattice parameter increased with temperature, but neither thermal decomposition nor dehydroxylation process occurred up to 1123 K. The crystal structure of katoite was determined by Rietveld method using neutron diffraction data with the space group I-43d. The volume of dodecahedral site containing Ca cations and that of octahedral site occupied by Al cations remained almost constant with temperature, but two crystallographically inequivalent tetrahedral sites which were caused by phase transformation behaved differently from each other. The volume of T2 site was continuously increased, but that of T1 site was constantly decreased, resulting from anisotropic expansion of the dodecahedral site. Consequently, these anisotropic modifications of coordination polyhedra seem to induce the thermal decomposition of katoite at 1123 K and 8 GPa.
Reaction-induced rheological weakening enables oceanic plate subduction.
Hirauchi, Ken-Ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi
2016-08-26
Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the 'cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets.
Molecular dynamics simulation of shock-wave loading of copper and titanium
NASA Astrophysics Data System (ADS)
Bolesta, A. V.; Fomin, V. M.
2017-10-01
At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.
NASA Technical Reports Server (NTRS)
Smith, MaryAnn H.; Benner, D. Chris; Predoi-Cross, Adriana; Venkataraman, Malathy Devi
2009-01-01
Lorentz air-broadened half widths, pressure-induced shifts and their temperature dependences have been measured for over 430 transitions (allowed and forbidden) in the v4 band of (CH4)-12 over the temperature range 210 to 314 K. A multispectrum non linear least squares fitting technique was used to simultaneously fit a large number of high-resolution (0.006 to 0.01/cm) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The measured parameters are compared to air- and N2-broadened values reported in the literature for the v4 and other bands. The dependence of the various spectral line parameters upon the tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All data used in the present work were recorded using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak.
Phototransformation of selected pharmaceuticals during UV treatment of drinking water.
Canonica, Silvio; Meunier, Laurence; von Gunten, Urs
2008-01-01
The kinetics of Ultraviolet C (UV-C)-induced direct phototransformation of four representative pharmaceuticals, i.e., 17alpha-ethinylestradiol (EE2), diclofenac, sulfamethoxazole, and iopromide, was investigated in dilute solutions of pure water buffered at various pH values using a low-pressure and a medium-pressure mercury arc lamp. Except for iopromide, pH-dependent rate constants were observed, which could be related to acid-base equilibria. Quantum yields for direct phototransformation were found to be largely wavelength-independent, except for EE2. This compound, which also had a rather inefficient direct phototransformation, mainly underwent indirect phototransformation in natural water samples, while the UV-induced depletion of the other pharmaceuticals appeared to be unaffected by the presence of natural water components. At the UV-C (254 nm) drinking-water disinfection fluence (dose) of 400 Jm(-2), the degree of depletion of the select pharmaceuticals at pH=7.0 in pure water was 0.4% for EE2, 27% for diclofenac, 15% for sulfamethoxazole, and 15% for iopromide, indicating that phototransformation should be seriously taken into account when evaluating the possibility of formation of UV transformation products from pharmaceuticals present as micropollutants.
High-pressure behavior of amorphous selenium from ultrasonic measurements and Raman spectroscopy
NASA Astrophysics Data System (ADS)
He, Z.; Wang, Z. G.; Zhu, H. Y.; Liu, X. R.; Peng, J. P.; Hong, S. M.
2014-07-01
The high-pressure behavior of melt-quenched amorphous selenium (a-Se) has been investigated via ultrasonic measurements and Raman scattering at room temperature. The ultrasonic measurements were conducted on a-Se in a multi-anvil apparatus with two different sample assemblies at pressures of up to 4.5 and 4.8 GPa. We discovered that similar kinks occur in the slopes of the pressure dependence characteristics of the travel time and the sound velocity in both shear and longitudinal waves in the 2.0-2.5 GPa range. These kinks are independent of the sample assemblies, indicating an intrinsic transformation of the a-Se. Additionally, we deduced the pressure-volume relationship of a-Se from the sound velocity characteristics using the Birch-Murnaghan equation of state, and the results agreed well with those of previous reports. In situ high-pressure Raman scattering measurements of a-Se were conducted in a diamond anvil cell with an 830 nm excitation line up to a pressure of 4.3 GPa. We found that the characteristic band of a-Se at ˜250 cm-1 experienced a smooth shift to a lower frequency with pressure, but a sharp slope change in the band intensity versus pressure occurred near 2.5 GPa. The results of X-ray diffraction and differential scanning calorimetry measurements indicate that the samples remain in their amorphous states after decompression. Thus, we proposed that the abnormal compression behavior of a-Se in the 2.0-2.5 GPa range can be attributed to pressure-induced local atomic reconfiguration, implying an amorphous-amorphous transition of the elementary selenium.
Bragin, Denis E; Statom, Gloria L; Yonas, Howard; Dai, Xingping; Nemoto, Edwin M
2014-12-01
The lower limit of cerebral blood flow autoregulation is the critical cerebral perfusion pressure at which cerebral blood flow begins to fall. It is important that cerebral perfusion pressure be maintained above this level to ensure adequate cerebral blood flow, especially in patients with high intracranial pressure. However, the critical cerebral perfusion pressure of 50 mm Hg, obtained by decreasing mean arterial pressure, differs from the value of 30 mm Hg, obtained by increasing intracranial pressure, which we previously showed was due to microvascular shunt flow maintenance of a falsely high cerebral blood flow. The present study shows that the critical cerebral perfusion pressure, measured by increasing intracranial pressure to decrease cerebral perfusion pressure, is inaccurate but accurately determined by dopamine-induced dynamic intracranial pressure reactivity and cerebrovascular reactivity. Cerebral perfusion pressure was decreased either by increasing intracranial pressure or decreasing mean arterial pressure and the critical cerebral perfusion pressure by both methods compared. Cortical Doppler flux, intracranial pressure, and mean arterial pressure were monitored throughout the study. At each cerebral perfusion pressure, we measured microvascular RBC flow velocity, blood-brain barrier integrity (transcapillary dye extravasation), and tissue oxygenation (reduced nicotinamide adenine dinucleotide) in the cerebral cortex of rats using in vivo two-photon laser scanning microscopy. University laboratory. Male Sprague-Dawley rats. At each cerebral perfusion pressure, dopamine-induced arterial pressure transients (~10 mm Hg, ~45 s duration) were used to measure induced intracranial pressure reactivity (Δ intracranial pressure/Δ mean arterial pressure) and induced cerebrovascular reactivity (Δ cerebral blood flow/Δ mean arterial pressure). At a normal cerebral perfusion pressure of 70 mm Hg, 10 mm Hg mean arterial pressure pulses had no effect on intracranial pressure or cerebral blood flow (induced intracranial pressure reactivity = -0.03 ± 0.07 and induced cerebrovascular reactivity = -0.02 ± 0.09), reflecting intact autoregulation. Decreasing cerebral perfusion pressure to 50 mm Hg by increasing intracranial pressure increased induced intracranial pressure reactivity and induced cerebrovascular reactivity to 0.24 ± 0.09 and 0.31 ± 0.13, respectively, reflecting impaired autoregulation (p < 0.05). By static cerebral blood flow, the first significant decrease in cerebral blood flow occurred at a cerebral perfusion pressure of 30 mm Hg (0.71 ± 0.08, p < 0.05). Critical cerebral perfusion pressure of 50 mm Hg was accurately determined by induced intracranial pressure reactivity and induced cerebrovascular reactivity, whereas the static method failed.
Xue, Siwen; Yu, Xiaobo; Yang, Huijuan; Xu, Xinglian; Ma, Hanjun; Zhou, Guanghong
2017-06-01
Rabbit meat batters were subjected to high pressure (HP, 100 to 300 MPa for 3, 9, or 15 min) to elucidate their effects on proteins structures, the microenvironment, and the resulting functionalities of the subsequently heated products. To determine these effects, we investigated structural and microenvironmental changes using Raman spectroscopy and also expressible moisture content, textural characteristics, and dynamic rheological properties of batters during heating (20 to 80 °C). Untreated samples served as controls. Analysis of specific Raman spectral regions demonstrated that applications of HP to rabbit meat batters tended to induce the transformation of the all-gauche S-S conformation to gauche-gauche-trans in the batter system. HP treatment higher than 100 MPa for 9 min promoted secondary structural rearrangements, and molecular polarity enhancement in the proteins prior to cooking. Also, increases of O-H stretching intensities of rabbit meat sausages were obtained by HP treatment, denoting the strengthening of water-holding capacity. These HP-induced alterations resulted in improved texture and, perhaps, improved juiciness of rabbit meat sausages (P < 0.05), however they had relatively poorer rheological properties than the controls. Nevertheless, HP treatment, especially 200 MPa for 9 or 15 min, was an effective technique for improving the functionalities of gel-type products through modification of meat proteins. © 2017 Institute of Food Technologists®.
Three-dimensional wave-induced current model equations and radiation stresses
NASA Astrophysics Data System (ADS)
Xia, Hua-yong
2017-08-01
After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinate transformation, the phase-averaged wave dynamic pressure is well treated, and a continuous and depth-dependent radiation stress tensor, rather than the controversial delta Dirac function at the surface shown in Mellor (2008), is provided. Besides, a phase-averaged vertical momentum flux over a sloping bottom is introduced. All the inconsistencies in Mellor (2003, 2008), pointed out by Ardhuin et al. (2008) and Bennis and Ardhuin (2011), are overcome in the presently revised equations. In a test case with a sloping sea bed, as shown in Ardhuin et al. (2008), the wave-driving forces derived in the present equations are in good balance, and no spurious vertical circulation occurs outside the surf zone, indicating that Airy's wave theory and the approach of Mellor (2003, 2008) are applicable for the derivation of the wave-induced current model.
Modeling Microscale Electro-thermally Induced Vortex Flows
NASA Astrophysics Data System (ADS)
Paul, Rajorshi; Tang, Tian; Kumar, Aloke
2017-11-01
In presence of a high frequency alternating electric field and a laser induced heat source, vortex flows are generated inside micro-channels. Such electro-thermally influenced micro-vortices can be used for manipulating nano-particles, programming colloidal assemblies, trapping biological cells as well as for fabricating designed bacterial biofilms. In this study, a theoretical model is developed for microscale electro-thermally induced vortex flows with multiple heat sources. Semi-analytical solutions are obtained, using Hankel transformation and linear superposition, for the temperature, pressure and velocity fields. The effect of material properties such as electrical and thermal conductivities, as well as experimental parameters such as the frequency and strength of the alternating electric field, and the intensity and heating profile of the laser source, are systematically investigated. Resolution for a pair of laser sources is determined by analyzing the strength of the micro-vortices under the influence of two heating sources. Results from this work will provide useful insights into the design of efficient optical tweezers and Rapid Electrokinetic Patterning techniques.
Li, Hongkun; He, Changbo; Malekian, Reza; Li, Zhixiong
2018-04-19
The Centrifugal compressor is a piece of key equipment for petrochemical factories. As the core component of a compressor, the blades suffer periodic vibration and flow induced excitation mechanism, which will lead to the occurrence of crack defect. Moreover, the induced blade defect usually has a serious impact on the normal operation of compressors and the safety of operators. Therefore, an effective blade crack identification method is particularly important for the reliable operation of compressors. Conventional non-destructive testing and evaluation (NDT&E) methods can detect the blade defect effectively, however, the compressors should shut down during the testing process which is time-consuming and costly. In addition, it can be known these methods are not suitable for the long-term on-line condition monitoring and cannot identify the blade defect in time. Therefore, the effective on-line condition monitoring and weak defect identification method should be further studied and proposed. Considering the blade vibration information is difficult to measure directly, pressure sensors mounted on the casing are used to sample airflow pressure pulsation signal on-line near the rotating impeller for the purpose of monitoring the blade condition indirectly in this paper. A big problem is that the blade abnormal vibration amplitude induced by the crack is always small and this feature information will be much weaker in the pressure signal. Therefore, it is usually difficult to identify blade defect characteristic frequency embedded in pressure pulsation signal by general signal processing methods due to the weakness of the feature information and the interference of strong noise. In this paper, continuous wavelet transform (CWT) is used to pre-process the sampled signal first. Then, the method of bistable stochastic resonance (SR) based on Woods-Saxon and Gaussian (WSG) potential is applied to enhance the weak characteristic frequency contained in the pressure pulsation signal. Genetic algorithm (GA) is used to obtain optimal parameters for this SR system to improve its feature enhancement performance. The analysis result of experimental signal shows the validity of the proposed method for the enhancement and identification of weak defect characteristic. In the end, strain test is carried out to further verify the accuracy and reliability of the analysis result obtained by pressure pulsation signal.
Li, Hongkun; He, Changbo
2018-01-01
The Centrifugal compressor is a piece of key equipment for petrochemical factories. As the core component of a compressor, the blades suffer periodic vibration and flow induced excitation mechanism, which will lead to the occurrence of crack defect. Moreover, the induced blade defect usually has a serious impact on the normal operation of compressors and the safety of operators. Therefore, an effective blade crack identification method is particularly important for the reliable operation of compressors. Conventional non-destructive testing and evaluation (NDT&E) methods can detect the blade defect effectively, however, the compressors should shut down during the testing process which is time-consuming and costly. In addition, it can be known these methods are not suitable for the long-term on-line condition monitoring and cannot identify the blade defect in time. Therefore, the effective on-line condition monitoring and weak defect identification method should be further studied and proposed. Considering the blade vibration information is difficult to measure directly, pressure sensors mounted on the casing are used to sample airflow pressure pulsation signal on-line near the rotating impeller for the purpose of monitoring the blade condition indirectly in this paper. A big problem is that the blade abnormal vibration amplitude induced by the crack is always small and this feature information will be much weaker in the pressure signal. Therefore, it is usually difficult to identify blade defect characteristic frequency embedded in pressure pulsation signal by general signal processing methods due to the weakness of the feature information and the interference of strong noise. In this paper, continuous wavelet transform (CWT) is used to pre-process the sampled signal first. Then, the method of bistable stochastic resonance (SR) based on Woods-Saxon and Gaussian (WSG) potential is applied to enhance the weak characteristic frequency contained in the pressure pulsation signal. Genetic algorithm (GA) is used to obtain optimal parameters for this SR system to improve its feature enhancement performance. The analysis result of experimental signal shows the validity of the proposed method for the enhancement and identification of weak defect characteristic. In the end, strain test is carried out to further verify the accuracy and reliability of the analysis result obtained by pressure pulsation signal. PMID:29671821
Hierarchical coarse-graining transform.
Pancaldi, Vera; King, Peter R; Christensen, Kim
2009-03-01
We present a hierarchical transform that can be applied to Laplace-like differential equations such as Darcy's equation for single-phase flow in a porous medium. A finite-difference discretization scheme is used to set the equation in the form of an eigenvalue problem. Within the formalism suggested, the pressure field is decomposed into an average value and fluctuations of different kinds and at different scales. The application of the transform to the equation allows us to calculate the unknown pressure with a varying level of detail. A procedure is suggested to localize important features in the pressure field based only on the fine-scale permeability, and hence we develop a form of adaptive coarse graining. The formalism and method are described and demonstrated using two synthetic toy problems.
New transformations between crystalline and amorphous ice
NASA Technical Reports Server (NTRS)
Hemley, R. J.; Chen, L. C.; Mao, H. K.
1989-01-01
High-pressure optical and spectroscopic techniques were used to obtain directly the ice I(h) - hda-ice transformation in a diamond-anvil cell, and the stability of the amorphous form is examined as functions of pressure and temperature. It is demonstrated that hda-ice transforms abruptly at 4 GPa and 77 K to a crystalline phase close in structure to orientationally disordered ice-VII and to a more highly ordered, ice-VIII-like structure at higher temperatures. This is the first time that an amorphous solid is observed to convert to a crystalline solid at low temperatures by compression alone. Phase transitions of this type may be relevant on icy planetary satellites, and there may also be implications for the high-pressure behavior of silica.
NASA Astrophysics Data System (ADS)
Yokoyama, Ken'ichi; Hashimoto, Tatsuki; Sakai, Jun'ichi
2017-11-01
The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni-Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.
Hydrostatic pressure mimics gravitational pressure in characean cells
NASA Technical Reports Server (NTRS)
Staves, M. P.; Wayne, R.; Leopold, A. C.
1992-01-01
Hydrostatic pressure applied to one end of a horizontal Chara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl-, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.
Hydrostatic pressure mimics gravitational pressure in characean cells.
Staves, M P; Wayne, R; Leopold, A C
1992-01-01
Hydrostatic pressure applied to one end of a horizontal Chara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl-, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, M.; Ong, T.; Nath, J.
1997-10-01
The rat tracheal epithelial (RTE) cell transformation system is an important short-term assay for respiratory carcinogenesis. In our laboratories, studies have been performed using this assay system to determine the carcinogenic potential of dibenzo(a,i)pyrene (DBP) and 1-nitropyrene (1-NP), two compounds commonly contaminating occupational and environmental settings. RTE cells were exposed in vivo to DBP or 1-NP by intertracheal instillation. RTE cells were then isolated and plated on a medium for determination of cloning and transformation frequencies. Cell lines established from transformed cells induced by DBP and 1-NP were analyzed for their neoplastic potential with the soft agar cloning and themore » athymic nude mouse tumorigenicity assays. Results showed that: (1) incidence of transformed foci in cultures treated with DBP or 1-NP in vivo was significantly higher than that in the control cultures; (2) 8 and 25 cell lines were established from 28 and 48 transformed foci induced by DBP and 1-NP, respectively; (3) 3 of 5 cell lines from DBP and 5 anchorage independent growth in soft agar; (4) some of the cell lines from DBP and 1-NP induced transformed foci formed tumors after cells were injected in athymic nude mice. These results indicate that in vivo exposure to DBP and 1-NP can induce RTE cell transformation and that transformed cells induced by DBP and 1-NP may have neoplastic potential.« less
NASA Astrophysics Data System (ADS)
Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I.; Mazelle, C.
2016-12-01
The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the stellar radiation pressure on planetary exospheres. In a series of papers, we present with a Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain [1989] Icarus, 81, 145-163. In this third paper, we investigate the effect of the stellar radiation pressure on the Circular Restricted Three Body Problem (CR3BP), called also the photogravitational CR3BP, and its implication on the escape and the stability of planetary exospheres, especially for hot Jupiters. In particular, we describe the transformation of the equipotentials and the location of the Lagrange points, and we provide a modified equation for the Hill sphere radius that includes the influence of the radiation pressure. Finally, an application to the hot Jupiter HD 209458b and hot Neptune GJ 436b reveals the existence of a blow-off escape regime induced by the stellar radiation pressure.
Energy harvesting from arterial blood pressure for powering embedded brain sensors
NASA Astrophysics Data System (ADS)
Nanda, Aditya; Karami, M. Amin
2016-04-01
This paper investigates energy harvesting from arterial blood pressure via the piezoelectric effect by using a novel streaked cylinder geometry for the purpose of powering embedded micro-sensors in the brain. Initially, we look at the energy harvested by a piezoelectric cylinder placed inside an artery acted upon by blood pressure. Such an arrangement would be tantamount to constructing a stent out of piezoelectric materials. A stent is a cylinder placed in veins and arteries to prevent obstruction in blood flow. The governing equations of a conductor coated piezoelectric cylinder are obtained using Hamilton's principle. Pressure acting in arteries is radially directed and this is used to simplify the modal analysis and obtain the transfer function relating pressure to the induced voltage across the surface of the harvester. The power harvested by the cylindrical harvester is obtained for different shunt resistances. Radially directed pressure occurs elsewhere and we also look at harvesting energy from oil flow in pipelines. Although the energy harvested by the cylindrical energy harvester is significant at resonance, the natural frequency of the system is found to be very high. To decrease the natural frequency, we propose a novel streaked stent design by cutting it along the length, transforming it to a curved plate and decreasing the natural frequency. The governing equations corresponding to the new geometry are derived using Hamilton's principle and modal analysis is used to obtain the transfer function.
Electrical Resistivity of natural Marcasite at High-pressures
NASA Astrophysics Data System (ADS)
Parthasarathy, Gopalakrishnarao
2013-06-01
Marcasite is considered to be a common iron sulfide in reducing Martian sediments and may enclose microbial remains during growth and hence study of marcasite may have significance in the search for fossil life on Mars. The high-pressure phase stability investigations of marcasite are useful in understanding the sulfide mineralogy of Martian surface, affected by meteorite impacts. The sulfides were characterized by electron microprobe micro analyses (EPMA), powder X-ray diffraction, DTA, and FTIR spectroscopic measurements. The samples were powdered using a porcelain mortar and pestle. The chemical composition of the sample was determined by an electron probe micro-analyzer (EPMA). High-pressure electrical resistivity measurements were carried out on natural marcasite, and marcasite rich samples (Marcasite 95 mol % pyrite 5 mol %) up to 7 GPa. Marcasite sample shows a discontinuous decrease in the electrical resistivity at 5. 2 (+/- 0.5) GPa indicating a first order phase transition. The Differential thermal analyses and the Fourier transform infrared spectroscopic measurements on the pressure quenched sample shows the characteristics of pyrite, indicating the pressure induced marcasite-to -pyrite transition of the natural marcasite at 5. 2 (+/- 0.5) GPa. The observation of marcasite to pyrite phase transition may be useful in estimating the pressure experienced by shock events on the Martian surface as well as the meteorites where marcasite- pyrite phases coexist. Financial support from CSIR-SHORE-PSC0205.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yuan; Zhao, Yue; Xu, Wenchao
Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover,more » IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis. - Highlights: • Arsenite induces inflammation. • Arsenite-induced the increases of IL-6 and IL-8 via HIF-2α. • Inflammation is involved in arsenite-induced carcinogenesis.« less
A 2 TiO 5 (A = Dy, Gd, Er, Yb) at High Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sulgiye; Rittman, Dylan R.; Tracy, Cameron L.
The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, and Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates, and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal and cubic), respectively. All samples undergo irreversible high pressure phase transformations, but with different onset pressures depending on the initial structure. While individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressuremore » range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ~ 21 GPa, followed by Im-3m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (~ 55 GPa) reached, indicating a kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high pressure cubic X-type phase (Im-3m) is confirmed using highresolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.« less
NASA Technical Reports Server (NTRS)
Stevens, F W
1932-01-01
This study of gaseous explosive reaction has brought out a number of important fundamental characteristics of the explosive reaction indicating that the basal processes of the transformation are much simpler and corresponds more closely to the general laws and principles of ordinary transformations than is usually supposed. The report calls attention to the point that the rate of molecular transformation within the zone was found in all cases to be proportional to pressure, that the transformation within the zone is the result of binary impacts. This result is of unusual interest in the case of the reaction of heavy hydrocarbon fuels and the reaction mechanism proposed by the recent kinetic theory of chain reactions.
NASA Astrophysics Data System (ADS)
Zhang, D. C.; Xue, Q.; Lei, J. F.; Ma, Y. J.; Yang, R.; Wang, C.
2018-06-01
Metastable β Ti-12Mo wt pct alloys with controllable grain sizes are successfully produced, and the effect of grain size on mechanical responses has been thoroughly investigated. It is found that target alloys possess concurrent twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) features. Mechanisms governing mechanical properties through well-manipulated tensile experiments, detailed microstructure analysis, as well as strong correlations between triggering stress and twinning/phase transformation are offered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.
High pressure x-ray diffraction measurements reveal that the face-centered cubic (fcc) high-entropy alloy CrMnFeCoNi transforms martensitically to a hexagonal close-packed (hcp) phase at ~14 GPa. We attribute this to suppression of the local magnetic moments, destabilizing the fcc phase. Similar to fcc-to-hcp transformations in Al and the noble gases, this transformation is sluggish, occurring over a range of >40 GPa. But, the behavior of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures.
New perspectives on potential hydrogen storage materials using high pressure.
Song, Yang
2013-09-21
In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.
Zheng, Haiyan; Li, Kuo; Cody, George D; Tulk, Christopher A; Dong, Xiao; Gao, Guoying; Molaison, Jamie J; Liu, Zhenxian; Feygenson, Mikhail; Yang, Wenge; Ivanov, Ilia N; Basile, Leonardo; Idrobo, Juan-Carlos; Guthrie, Malcolm; Mao, Ho-Kwang
2016-09-19
Acetonitrile (CH3 CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. It is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH⋅⋅⋅N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp(2) and sp(3) bonded carbon. Finally, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Haiyan; Li, Kuo; Cody, George D.; ...
2016-08-25
Acetonitrile (CH 3CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. In this study, it is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH 3 to CN along the CH···N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed spmore » 2 and sp 3 bonded carbon. Lastly, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.« less
Nb-H system at high pressures and temperatures
NASA Astrophysics Data System (ADS)
Liu, Guangtao; Besedin, Stanislav; Irodova, Alla; Liu, Hanyu; Gao, Guoying; Eremets, Mikhail; Wang, Xin; Ma, Yanming
2017-03-01
We studied the Nb-H system over extended pressure and temperature ranges to establish the highest level of hydrogen abundance we could achieve from the resulting alloy. We probed the Nb-H system with laser heating and x-ray diffraction complemented by numerical density functional theory-based simulations. New quenched double hexagonal close-packed (hcp) Nb H2.5 appears under 46 GPa, and above 56 GPa cubic Nb H3 is formed as theoretically predicted. Nb atoms are arranged in close-packed lattices which are martensitically transformed in the sequence: face-centered cubic (fcc) → hcp → double hcp (dhcp) → distorted body-centered cubic (bcc) as pressure increases. The appearance of fcc Nb H2.5 -3 and dhcp Nb H2.5 cannot be understood in terms of enthalpic stability, but can be rationalized when finite temperatures are taken into account. The structural and compressional behavior of Nb Hx >2 is similar to that of NbH. Nevertheless, a direct H-H interaction emerges with hydrogen concentration increases, which manifests itself via a reduction in the lattice expansion induced by hydrogen dissolution.
Irradiation-induced phenomena in carbon nanomaterials
NASA Astrophysics Data System (ADS)
Krasheninnikov, Arkady
2008-03-01
The irradiation of solids with energetic particles such as electrons or ions is associated with disorder, normally an undesirable phenomenon. However, recent experiments [for an overview, see A.V Krasheninnikov, F. Banhart, Nature Materials, 6 (2007) 723] on bombardment of carbon nanostructures with energetic particles demonstrate that irradiation can have beneficial effects and that electron or ion beams may serve as tools to change the morphology and tailor mechanical, electronic and even magnetic properties of nanostructured carbon systems. We systematically study irradiation effects in carbon nanotubes and other forms of nano-structured carbon experimentally and theoretically by employing various atomistic models ranging from empirical potentials to time-dependent density functional theory. In my presentation, I will briefly review the recent progress in our understanding of ion-irradiation-induced phenomena in nano-structured carbon and present our recent theoretical [A.V Krasheninnikov, et al., Phys. Rev. Lett., 99 (2007) 016104, A. Tolvanen et al, Appl. Phys. Lett. 91 (2007) 173109.] and experimental [O. Lehtinen et al., to be published] results. I dwell on the ``beneficial'' role of defects and impurities in nanotubes and related systems. Finally, I will present the results of simulations of irradiation-induced pressure build-up inside nanotubes encapsulated with metals [L. Sun, et al., Science 312 (2006) 1199]. Electron irradiation of such composite systems in the transmission electron microscope gives rise to contraction of nanotube shells and thus to high pressure. The irradiation-stimulated pressure can be as high as 40 GPa, which makes it possible to study phase transformations at the nanoscale with high spatial resolution. I will also address the mechanisms of plastic deformation of small metal particles inside carbon shells at high temperatures, which may be important for understanding catalytic growth of carbon nanotubes.
NASA Astrophysics Data System (ADS)
Takenouchi, Atsushi; Mikouchi, Takashi; Kogure, Toshihiro
2017-12-01
Martian meteorites, in particular shergottites, contain darkened olivine (so-called "brown olivine") whose color is induced by iron nanoparticles formed in olivine during a shock event. The formation process and conditions of brown olivine have been discussed in the Northwest Africa 2737 (NWA 2737) chassignite. However, formation conditions of brown olivine in NWA 2737 cannot be applied to shergottites because NWA 2737 has a different shock history from that of shergottites. Therefore, this study observed brown olivine in the NWA 1950 shergottite and discusses the general formation process and conditions of brown olivine in shergottites. Our observation of NWA 1950 revealed that olivine is heterogeneously darkened between and within grains different from brown olivine in NWA 2737. XANES analysis showed that brown olivine contains small amounts of Fe3+ and TEM/STEM observation revealed that there is no SiO-rich phase around iron metal nanoparticles. These observations indicate that iron nanoparticles were formed by a disproportionation reaction of olivine (3Fe2+olivine → Fe0metal + 2Fe3+olivine + Volivine, where Volivine means a vacancy in olivine). Some parts of brown olivine show lamellar textures in SEM observation and Raman peaks in addition to those expected for olivine, implying that brown olivine experienced a phase transition (to e.g., ringwoodite). In order to induce heterogeneous darkening, heterogeneous high temperature of about 1500-1700 K and shock duration of at least 90 ms are required. This heterogeneous high temperature resulted in high postshock temperature (>900 K) inducing back-transformation of most high-pressure phases. Therefore, in spite of lack of high-pressure phases, NWA 1950 (= Martian meteorites with brown olivine) experienced higher pressure and temperature compared to other highly shocked meteorite groups.
Polycomb (PcG) Proteins, BMI1 and SUZ12, Regulate Arsenic-induced Cell Transformation*
Kim, Hong-Gyum; Kim, Dong Joon; Li, Shengqing; Lee, Kun Yeong; Li, Xiang; Bode, Ann M.; Dong, Zigang
2012-01-01
Inorganic arsenic is a well-documented human carcinogen associated with cancers of the skin, lung, liver, and bladder. However, the underlying mechanisms explaining the tumorigenic role of arsenic are not well understood. The present study explored a potential mechanism of cell transformation induced by arsenic exposure. Exposure to a low dose (0.5 μm) of arsenic trioxide (As2O3) caused transformation of BALB/c 3T3 cells. In addition, in a xenograft mouse model, tumor growth of the arsenic-induced transformed cells was dramatically increased. In arsenic-induced transformed cells, polycomb group (PcG) proteins, including BMI1 and SUZ12, were activated resulting in enhanced histone H3K27 tri-methylation levels. On the other hand, tumor suppressor p16INK4a and p19ARF mRNA and protein expression were dramatically suppressed. Introduction of small hairpin (sh) RNA-BMI1 or -SUZ12 into BALB/c 3T3 cells resulted in suppression of arsenic-induced transformation. Histone H3K27 tri-methylation returned to normal in BMI1- or SUZ12-knockdown BALB/c 3T3 cells compared with BMI1- or SUZ12-wildtype cells after arsenic exposure. As a consequence, the expression of p16INK4a and p19ARF was recovered in arsenic-treated BMI1- or SUZ12-knockdown cells. Thus, arsenic-induced cell transformation was blocked by inhibition of PcG function. Taken together, these results strongly suggest that the polycomb proteins, BMI1 and SUZ12 are required for cell transformation induced by organic arsenic exposure. PMID:22843710
Modeling fluid injection induced microseismicity in shales
NASA Astrophysics Data System (ADS)
Carcione, José M.; Currenti, Gilda; Johann, Lisa; Shapiro, Serge
2018-02-01
Hydraulic fracturing in shales generates a cloud of seismic—tensile and shear—events that can be used to evaluate the extent of the fracturing (event clouds) and obtain the hydraulic properties of the medium, such as the degree of anisotropy and the permeability. Firstly, we investigate the suitability of novel semi-analytical reference solutions for pore pressure evolution around a well after fluid injection in anisotropic media. To do so, we use cylindrical coordinates in the presence of a formation (a layer) and spherical coordinates for a homogeneous and unbounded medium. The involved differential equations are transformed to an isotropic diffusion equation by means of pseudo-spatial coordinates obtained from the spatial variables re-scaled by the permeability components. We consider pressure-dependent permeability components, which are independent of the spatial direction. The analytical solutions are compared to numerical solutions to verify their applicability. The comparison shows that the solutions are suitable for a limited permeability range and moderate to minor pressure dependences of the permeability. Once the pressure evolution around the well has been established, we can model the microseismic events. Induced seismicity by failure due to fluid injection in a porous rock depends on the properties of the hydraulic and elastic medium and in situ stress conditions. Here, we define a tensile threshold pressure above which there is tensile emission, while the shear threshold is obtained by using the octahedral stress criterion and the in situ rock properties and conditions. Subsequently, we generate event clouds for both cases and study the spatio-temporal features. The model considers anisotropic permeability and the results are spatially re-scaled to obtain an effective isotropic medium representation. For a 3D diffusion in spherical coordinates and exponential pressure dependence of the permeability, the results differ from those of the classical diffusion equation. Use of the classical front to fit cloud events spatially, provides good results but with a re-scaled value of these components. Modeling is required to evaluate the scaling constant in real cases.
Modulating factors in the expression of radiation-induced oncogenic transformation.
Hall, E J; Hei, T K
1990-01-01
Many assays for oncogenic transformation have been developed ranging from those in established rodent cell lines where morphological alteration is scored, to those in human cells growing in nude mice where tumor invasiveness is scored. In general, systems that are most quantitative are also the least relevant in terms of human carcinogenesis and human risk estimation. The development of cell culture systems has made it possible to assess at the cellular level the oncogenic potential of a variety of chemical, physical and viral agents. Cell culture systems afford the opportunity to identify factors and conditions that may prevent or enhance cellular transformation by radiation and chemicals. Permissive and protective factors in radiation-induced transformation include thyroid hormone and the tumor promoter TPA that increase the transformation incidence for a given dose of radiation, and retinoids, selenium, vitamin E, and 5-aminobenzamide that inhibit the expression of transformation. Densely ionizing alpha-particles, similar to those emitted by radon daughters, are highly effective in inducing transformations and appear to interact in a supra-additive fashion with asbestos fibers. The activation of a known dominant oncogene has not yet been demonstrated in radiation-induced oncogenic transformation. The most likely mechanism for radiation activation of an oncogene would be via the production of a chromosomal translocation. Radiation also efficiently induces deletions and may thus lead to the loss of a suppressor gene. Images FIGURE 4. PMID:2272310
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isom, H.C.; Mummaw, J.; Kreider, J.W.
1983-04-30
Guinea pig cells were malignantly transformed in vitro by ultraviolet (uv)-irradiated guinea pig cytomegalovirus (GPCMV). When guinea pig hepatocyte monolayers were infected with uv-irradiated GPCMV, three continuous epithelioid cell lines which grew in soft agarose were established. Two independently derived GPCMV-transformed liver cells and a cell line derived from a soft agarose clone of one of these lines induced invasive tumors when inoculated subcutaneously or intraperitoneally into nude mice. The tumors were sarcomas possibly derived from hepatic stroma or sinusoid. Transformed cell lines were also established after infection of guinea pig hepatocyte monolayers with human cytomegalovirus (HCMV) or simian virusmore » 40 (SV40). These cell lines also formed colonies in soft agarose and induced sarcomas in nude mice. It is concluded that (i) GPCMV can malignantly transform guinea pig cells; (ii) cloning of GPCMV-transformed cells in soft agarose produced cells that induced tumors with a shorter latency period but with no alteration in growth rate or final tumor size; and (iii) the tumors produced by GPCMV-and HCMV-transformed guinea pig cells were more similar to each other in growth rate than to those induced by SV40-transformed guinea pig cells.« less
Pressure effect on the Raman and photoluminescence spectra of Eu3+-doped Na2Ti6O13 nanorods
NASA Astrophysics Data System (ADS)
Zeng, Q. G.; Yang, G. T.; Chen, F.; Luo, J. Y.; Zhang, Z. M.; Leung, C. W.; Ding, Z. J.; Sheng, Y. Q.
2013-12-01
Eu3+-doped Na2Ti6O13 (Na2Ti6O13:Eu) nanorods with diameters of 30 nm and lengths 400 nm were synthesized by hydrothermal and heat treatment methods. Raman spectra at ambient conditions indicated a pure monoclinic phase (space group C2/m) of the nanorods. The relations between structural and optical properties of Na2Ti6O13:Eu nanorods under high pressures were obtained by photoluminescence and Raman spectra. Two structural transition points at 1.39 and 15.48 GPa were observed when the samples were pressurized. The first transition point was attributed to the crystalline structural distortion. The later transition point was the result of pressure-induced amorphization, and the high-density amorphous (HDA) phase formed after 15.48 GPa was structurally related to the monoclinic baddeleyite structured TiO2 (P21/c). However, the site symmetry of the local environment around the Eu3+ ions in Na2Ti6O13 increased with the rising pressure. These above results indicate the occurrence of short-range order for the local asymmetry around the Eu3+ ions and long-range disorder for the crystalline structure of Na2Ti6O13:Eu nanorods by applying pressure. After releasing the pressure from 22.74 GPa, the HDA phase is transformed to low-density amorphous form, which is attributed to be structurally related to the α-PbO2-type TiO2.
Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC)
NASA Astrophysics Data System (ADS)
Halevy, Itzhak; Haroush, Shlomo; Eisen, Yosef; Silberman, Ido; Moreno, Dany; Hen, Amir; Winterrose, Mike L.; Ghose, Sanjit; Chen, Zhiqiang
2010-04-01
Annealed (H1) and cold-rolled (H2) HAVAR has been studied using high-pressure synchrotron X-ray diffraction. A structural phase transformation was discovered at ˜13 GPa at ambient temperature, transforming from m - 3 m (S.G. 225) to P 63/m m c (S.G. 194) symmetry. The transition was not reversible on pressure release. The low-pressure cubic phase was found to be more compressible than the high-pressure hexagonal phase. Conventional Mössbauer and NFS shows that the HAVAR is not magnetic at room temperature and no splitting is observed. The SQUID indicates a huge difference in the temperature dependence of the magnetic susceptibility between the cold Rolled HAVAR compared to the annealed HAVAR.
Nanocrystalline hexagonal diamond formed from glassy carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.
Carbon exhibits a large number of allotropes and its phase behaviour is still subject to signifcant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defned material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100GPa and 400 C. The nanocrystalline materialmore » was recovered at ambient and analysed using difraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic fow under compression in the diamond anvil cell, which lowers the energy barrier by locking in favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by frst principles calculations of transformation pathways and explains why the new phase is found in an annular region. Furthermore, our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.« less
Nanocrystalline hexagonal diamond formed from glassy carbon
Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.; ...
2016-11-29
Carbon exhibits a large number of allotropes and its phase behaviour is still subject to signifcant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defned material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100GPa and 400 C. The nanocrystalline materialmore » was recovered at ambient and analysed using difraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic fow under compression in the diamond anvil cell, which lowers the energy barrier by locking in favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by frst principles calculations of transformation pathways and explains why the new phase is found in an annular region. Furthermore, our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.« less
NASA Astrophysics Data System (ADS)
Haidemenopoulos, G. N.; Constantinou, M.; Kamoutsi, H.; Krizan, D.; Bellas, I.; Koutsokeras, L.; Constantinides, G.
2018-06-01
X-ray diffraction analysis, magnetic force microscopy, and the saturation magnetization method have been employed to study the evolution of the percentage and size of retained austenite (RA) particles during strain-induced transformation in a transformation-induced plasticity (TRIP) steel. A low-alloy TRIP-700 steel with nominal composition Fe-0.2C-0.34Si-1.99Mn-1Al (mass%) was subjected to interrupted tensile testing at strain levels of 0-22% and the microstructure subsequently studied. The results of the three experimental techniques were in very good agreement regarding the estimated austenite volume fraction and its evolution with strain. Furthermore, this multitechnique approach revealed that the average particle size of RA reduced as the applied strain was increased, suggesting that larger particles are less stable and more susceptible to strain-induced phase transformation. Such experimentally determined evolution of the austenite size with strain could serve as an input to kinetic models that aim to predict the strain-induced transformation in low-alloy TRIP steels.
NASA Astrophysics Data System (ADS)
Janzen, Christoph; Fleige, Rüdiger; Noll, Reinhard; Schwenke, Heinrich; Lahmann, Wilhelm; Knoth, Joachim; Beaven, Peter; Jantzen, Eckard; Oest, Andreas; Koke, Peter
2005-08-01
The miniaturization of analytical techniques is a general trend in speciation analytics. We have developed a new analytical technique combining high pressure liquid chromatography (HPLC) with laser-induced breakdown spectroscopy (LIBS). This enables a molecule-specific separation followed by an element-specific analysis of smallest amounts of complex samples. The liquid flow coming from a HPLC pump is transformed into a continuous stream of small droplets (diameter 50-100 μm, volume 65-500 pl) using a piezoelectric pulsed nozzle. After the detection of single droplets with a droplet detector, a Q-switched Nd:YAG Laser is triggered to emit a synchronized laser pulse that irradiates a single droplet. The droplets are evaporated and transformed to the plasma state. The spectrum emitted from the plasma is collected by a spherical mirror and directed through the entrance slit of a Paschen-Runge spectrometer equipped with channel photomultipliers. The spectrometer detects 31 elements simultaneously covering a spectral range from 120 to 589 nm. Purging the measurement chamber with argon enables the detection of vacuum-UV lines. Since the sample is transferred to the plasma state without dilution, very low flow rates in the sub-μl/min range can be realised.
Huang, Haishan; Zhu, Junlan; Li, Yang; Zhang, Liping; Gu, Jiayan; Xie, Qipeng; Jin, Honglei; Che, Xun; Li, Jingxia; Huang, Chao; Chen, Lung-Chi; Lyu, Jianxin; Gao, Jimin; Huang, Chuanshu
2016-10-02
Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.
Huang, Haishan; Zhu, Junlan; Li, Yang; Zhang, Liping; Gu, Jiayan; Xie, Qipeng; Jin, Honglei; Che, Xun; Li, Jingxia; Huang, Chao; Chen, Lung-Chi; Lyu, Jianxin; Gao, Jimin; Huang, Chuanshu
2016-01-01
ABSTRACT Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure. PMID:27467530
A comprehensive review of metal-induced cellular transformation studies.
Chen, Qiao Yi; Costa, Max
2017-09-15
In vitro transformation assays not only serve practical purposes in screening for potential carcinogenic substances in food, drug, and cosmetic industries, but more importantly, they provide a means of understanding the critical biological processes behind in vivo cancer development. In resemblance to cancer cells in vivo, successfully transformed cells display loss of contact inhibition, gain of anchorage independent growth, resistant to proper cell cycle regulation such as apoptosis, faster proliferation rate, potential for cellular invasion, and ability to form tumors in experimental animals. Cells purposely transformed using metal exposures enable researchers to examine molecular changes, dissect various stages of tumor formation, and ultimately elucidate metal induced cancer mode of action. For practical purposes, this review specifically focuses on studies incorporating As-, Cd-, Cr-, and Ni-induced cell transformation. Through investigating and comparing an extensive list of studies using various methods of metal-induced transformation, this review serves to bridge an information gap and provide a guide for avoiding procedural discrepancies as well as maximizing experimental efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Nishiumi, Shin; Yabushita, Yoshiyuki; Fukuda, Itsuko; Mukai, Rie; Yoshida, Ken-Ichi; Ashida, Hitoshi
2006-02-01
Dioxins enter the body mainly through diet and cause the various toxicological effects by binding to the cytosolic aryl hydrocarbon receptor (AhR) followed by its transformation. In recent reports, it has been shown that certain natural compounds suppress AhR transformation in vitro. In this study, we demonstrated that ethanolic extract from molokhia, known as Egyptian spinach, showed the strongest suppressive effect on AhR transformation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in cell-free system using rat hepatic cytosol among 41 kinds of extracts from vegetables and fruits. The molokhia extract also suppressed TCDD-induced AhR transformation in mouse hepatoma Hepa-1c1c7 cells and in intestinal permeability system constructed with human colon adenocarcinoma Caco-2 cells and human hepatoma HepG2 cells. Moreover, oral administration of the molokhia extract (100mg/kg body weight) decreased 3-methylcholanthrene-induced AhR transformation to the control level by inhibiting translocation of the AhR from cytosol into the nucleus in the liver of rats. The molokhia extract-administered rat liver showed a tolerance to TCDD-induced AhR transformation by ex vivo experiment. These results indicate that molokhia is an attractive food for isolation and identification of a natural antagonist for the AhR.
Enhanced densification under shock compression in porous silicon
NASA Astrophysics Data System (ADS)
Lane, J. Matthew D.; Thompson, Aidan P.; Vogler, Tracy J.
2014-10-01
Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.
Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.
Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi
2017-08-09
The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.
Pycnogenol reduces talc-induced neoplastic transformation in human ovarian cell cultures.
Buz'Zard, Amber R; Lau, Benjamin H S
2007-06-01
Talc and poor diet have been suggested to increase the risk of developing ovarian cancer; which can be reduced by a diet rich in fruit and vegetables. Talc is ubiquitous despite concern about its safety, role as a possible carcinogen and known ability to cause irritation and inflammation. It was recently shown that Pycnogenol (Pyc; a proprietary mixture of water-soluble bioflavonoids extracted from French maritime pine bark) was selectively toxic to established malignant ovarian germ cells. This study investigated talc-induced carcinogenesis and Pyc-induced chemoprevention. Normal human epithelial and granulosa ovarian cell lines and polymorphonuclear neutrophils (PMN) were treated with talc, or pretreated with Pyc then talc. Cell viability, reactive oxygen species (ROS) generation and neoplastic transformation by soft agar assay were measured. Talc increased proliferation, induced neoplastic transformation and increased ROS generation time-dependently in the ovarian cells and dose-dependently in the PMN. Pretreatment with Pyc inhibited the talc-induced increase in proliferation, decreased the number of transformed colonies and decreased the ROS generation in the ovarian cells. The data suggest that talc may contribute to ovarian neoplastic transformation and Pyc reduced the talc-induced transformation. Taken together, Pyc may prove to be a potent chemopreventative agent against ovarian carcinogenesis. (c) 2007 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Dongyun; Li Jingxia; Gao Jimin
2009-02-15
Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cellmore » transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure.« less
Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs).
Deng, Xiaoyu; Li, Zhaohui; García, Hermenegildo
2017-08-22
With the aim of developing renewable energy based processes, researchers are paying increasing interest to light induced organic transformations. Metal-organic frameworks (MOFs), a class of micro-/mesoporous hybrid materials, are recently emerging as a new type of photoactive materials for organic syntheses due to their unique structural characteristics. In this Review, we summarized the recent applications of MOFs as photocatalysts for light induced organic transformations, including (1) oxidation of alcohols, amines, alkene, alkanes and sulfides; (2) hydroxylation of aromatic compounds like benzene; (3) activation of the C-H bonds to construct new C-C or C-X bonds; (4) atom-transfer radical polymerization (ATRP). This Review starts with general background information of using MOFs in photocatalysis, followed by a description of light induced organic transformations promoted by photoactive inorganic nodes and photocatalytic active ligands in MOFs, respectively. Thereafter, the use of MOFs as multifunctional catalysts for light induced organic transformations via an efficient merge of the metal/ligand/guest based catalysis where the photocatalytic activity of MOFs plays a key role are discussed. Finally, the limitations, challenges and the future perspective of the application of MOFs for light induced organic transformations were addressed. The objective of this Review is to serve as a starting point for other researchers to get into this largely unexplored field. It is also our goal to stimulate intensive research in this field for rational designing of MOF materials to overcome their current limitations in photocatalysis, which can lead to more creative visible-light-induced organic transformations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition.
Cabrera-Benítez, Nuria E; Parotto, Matteo; Post, Martin; Han, Bing; Spieth, Peter M; Cheng, Wei-Erh; Valladares, Francisco; Villar, Jesús; Liu, Mingayo; Sato, Masaaki; Zhang, Haibo; Slutsky, Arthur S
2012-02-01
Many mechanically ventilated patients with acute respiratory distress syndrome develop pulmonary fibrosis. Stresses induced by mechanical ventilation may explain the development of fibrosis by a number of mechanisms (e.g., damage the alveolar epithelium, biotrauma). The objective of this study was t test the hypothesis that mechanical ventilation plays an important role in the pathogenesis of lung fibrosis. C57BL/6 mice were randomized into four groups: healthy controls; hydrochloric acid aspiration alone; vehicle control solution followed 24 hrs later by mechanical ventilation (peak inspiratory pressure 22 cm H(2)O and positive end-expiratory pressure 2 cm H(2)O for 2 hrs); and acid aspiration followed 24 hrs later by mechanical ventilation. The animals were monitored for up to 15 days after acid aspiration. To explore the direct effects of mechanical stress on lung fibrotic formation, human lung epithelial cells (BEAS-2B) were exposed to mechanical stretch for up to 48 hrs. Impaired lung mechanics after mechanical ventilation was associated with increased lung hydroxyproline content, and increased expression of transforming growth factor-β, β-catenin, and mesenchymal markers (α-smooth muscle actin and vimentin) at both the gene and protein levels. Expression of epithelial markers including cytokeratin-8, E-cadherin, and prosurfactant protein B decreased. Lung histology demonstrated fibrosis formation and potential epithelia-mesenchymal transition. In vitro direct mechanical stretch of BEAS-2B cells resulted in similar fibrotic and epithelia-mesenchymal transition formation. Mechanical stress induces lung fibrosis, and epithelia-mesenchymal transition may play an important role in mediating the ventilator-induced lung fibrosis.
Mechanochromic Luminescence of Aggregation-Induced Emission Luminogens.
Dong, Yong Qiang; Lam, Jacky W Y; Tang, Ben Zhong
2015-09-03
Mechanochromic (MC) luminogens have found promising applications in mechanosensors, security papers, and optical storage for their change in emission behaviors in response to mechanical stimuli. Examples on MC luminescent materials are rare before the discovery of MC luminescence in aggregation-induced emission (AIE) luminogens. The twisted conformations of AIE luminogens (AIEgens) with appropriate crystallization capability afford loosely packing patterns, which facilitates their phase transformation in the solid state. The amorphous films of AIEgens exhibit enhanced emission intensity upon pressurization due to the increased molecular interactions, whereas crystals of AIEgens exhibit MC luminescence due to their amorphization by mechanical stimuli. AIEgens enrich the type of MC luminogens but those showing high emission contrast and multicolor emission switching and those working in a turn-on emission mode are seldom reported. Disclosure of the design strategy of high performance MC luminogens and exploration of their high-tech applications may be the future research directions for MC luminogens.
A shear localization mechanism for lubricity of amorphous carbon materials
Ma, Tian-Bao; Wang, Lin-Feng; Hu, Yuan-Zhong; Li, Xin; Wang, Hui
2014-01-01
Amorphous carbon is one of the most lubricious materials known, but the mechanism is not well understood. It is counterintuitive that such a strong covalent solid could exhibit exceptional lubricity. A prevailing view is that lubricity of amorphous carbon results from chemical passivation of dangling bonds on surfaces. Here we show instead that lubricity arises from shear induced strain localization, which, instead of homogeneous deformation, dominates the shearing process. Shear localization is characterized by covalent bond reorientation, phase transformation and structural ordering preferentially in a localized region, namely tribolayer, resulting in shear weakening. We further demonstrate an anomalous pressure induced transition from stick-slip friction to continuous sliding with ultralow friction, due to gradual clustering and layering of graphitic sheets in the tribolayer. The proposed shear localization mechanism sheds light on the mechanism of superlubricity, and would enrich our understanding of lubrication mechanism of a wide variety of amorphous materials. PMID:24412998
Magnetic properties of solid oxygen under pressure (Review Article)
NASA Astrophysics Data System (ADS)
Freiman, Yu. A.
2015-11-01
Solid oxygen is a unique crystal combining properties of a simple molecular solid and a magnet. Unlike ordinary magnets, the exchange interaction in solid oxygen acts on a background of weak Van der Waals forces, providing a significant part of the total lattice energy. Therefore, the magnetic and lattice properties of solid oxygen are very closely related. This manifests itself in a very rich phase diagram and numerous anomalies of thermal, magnetic and optical properties. Low-temperature low-pressure α-O2 is a two-sublattice collinear Neel antiferromagnet. At a pressure of ˜6 GPa, α-O2 is transformed into δ-O2, in which three different magnetic structures are realized upon increasing temperature. At ˜8 GPa δ-O2 is transformed into ɛ-O2. In this transition, O2 molecules combine into four-molecule clusters (O2)4. This transformation is accompanied by a magnetic collapse. This review describes the evolution of the magnetic structure with increasing pressure, and analyzes the causes behind this behavior.
Hydrogen-induced morphotropic phase transformation of single-crystalline vanadium dioxide nanobeams.
Hong, Woong-Ki; Park, Jong Bae; Yoon, Jongwon; Kim, Bong-Joong; Sohn, Jung Inn; Lee, Young Boo; Bae, Tae-Sung; Chang, Sung-Jin; Huh, Yun Suk; Son, Byoungchul; Stach, Eric A; Lee, Takhee; Welland, Mark E
2013-04-10
We report a morphotropic phase transformation in vanadium dioxide (VO2) nanobeams annealed in a high-pressure hydrogen gas, which leads to the stabilization of metallic phases. Structural analyses show that the annealed VO2 nanobeams are hexagonal-close-packed structures with roughened surfaces at room temperature, unlike as-grown VO2 nanobeams with the monoclinic structure and with clean surfaces. Quantitative chemical examination reveals that the hydrogen significantly reduces oxygen in the nanobeams with characteristic nonlinear reduction kinetics which depend on the annealing time. Surprisingly, the work function and the electrical resistance of the reduced nanobeams follow a similar trend to the compositional variation due mainly to the oxygen-deficiency-related defects formed at the roughened surfaces. The electronic transport characteristics indicate that the reduced nanobeams are metallic over a large range of temperatures (room temperature to 383 K). Our results demonstrate the interplay between oxygen deficiency and structural/electronic phase transitions, with implications for engineering electronic properties in vanadium oxide systems.
Wavelet pressure reactivity index: A validation study.
Liu, Xiuyun; Czosnyka, Marek; Donnelly, Joseph; Cardim, Danilo; Cabeleira, Manuel; Hutchinson, Peter J; Hu, Xiao; Smielewski, Peter; Brady, Ken
2018-04-17
The brain is vulnerable to damage from too little or too much blood flow. A physiological mechanism called cerebral autoregulation (CA) exists to maintain stable blood flow even if cerebral perfusion pressure (CPP) is changing. A robust method for assessing CA is not yet available. There are still some problems with the traditional measure, the pressure reactivity index (PRx). We introduced a new method, wavelet transform method (wPRx) to assess CA using data from two sets of controlled hypotension experiments in piglets: One set with artificially manipulated ABP oscillations; the other group were spontaneous ABP waves. A significant linear relationship was found between wPRx and PRx in both groups, with wPRx rendering a more stable result for the spontaneous waves. Although both methods showed similar accuracy in distinguishing intact and impaired CA, it seems that wPRx tend to perform better than PRx, though not significantly. We present a novel method to monitor cerebral autoregulation (CA) using the wavelet transform (WT). The new method is validated against the pressure reactivity index (PRx) in two piglet experiments with controlled hypotension. The first experiment (n = 12) had controlled haemorrhage with artificial stationary arterial blood pressure (ABP) and intracranial pressure (ICP) oscillations induced by sinusoidal slow changes in positive end-expiratory pressure ('PEEP group') . The second experiment (n = 17) had venous balloon inflation during spontaneous, non-stationary ABP and ICP oscillations ('non-PEEP group'). Wavelet transform phase shift (WTP) between ABP and ICP was calculated in the frequency 0.0067-0.05 Hz. Wavelet semblance, the cosine of WTP was used to make the values comparable to PRx, and the new index was termed wavelet pressure reactivity index (wPRx). The traditional PRx, the running correlation coefficient between ABP and ICP, was calculated. The result showed a significant linear relationship between wPRx and PRx in the PEEP group (R = 0.88) and non-PEEP group (R = 0.56). In non-PEEP group, wPRx showed better performance than PRx in distinguishing CPP above and below lower limit of autoregulation (LLA). When CPP was decreased below LLA, wPRx increased from 0.43 ± 0.28 to 0.69 ± 0.12 (p = 0.003) while PRx increased from 0.07 ± 0.21 to 0.27 ± 0.37 (p = 0.04). Moreover, wPRx rendered a more stable result than PRx (SD of PRx was 0.40 ± 0.07, and SD of wPRx was 0.28 ± 0.11, p = 0.001). Assessment of CA using wavelet derived phase shift between ABP and ICP is feasible. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
High-pressure behavior of amorphous selenium from ultrasonic measurements and Raman spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Z.; Liu, X. R.; Hong, S. M., E-mail: hpswjtu@gmail.com, E-mail: smhong@home.swjtu.edu.cn
2014-07-07
The high-pressure behavior of melt-quenched amorphous selenium (a-Se) has been investigated via ultrasonic measurements and Raman scattering at room temperature. The ultrasonic measurements were conducted on a-Se in a multi-anvil apparatus with two different sample assemblies at pressures of up to 4.5 and 4.8 GPa. We discovered that similar kinks occur in the slopes of the pressure dependence characteristics of the travel time and the sound velocity in both shear and longitudinal waves in the 2.0–2.5 GPa range. These kinks are independent of the sample assemblies, indicating an intrinsic transformation of the a-Se. Additionally, we deduced the pressure-volume relationship of a-Se frommore » the sound velocity characteristics using the Birch–Murnaghan equation of state, and the results agreed well with those of previous reports. In situ high-pressure Raman scattering measurements of a-Se were conducted in a diamond anvil cell with an 830 nm excitation line up to a pressure of 4.3 GPa. We found that the characteristic band of a-Se at ∼250 cm{sup −1} experienced a smooth shift to a lower frequency with pressure, but a sharp slope change in the band intensity versus pressure occurred near 2.5 GPa. The results of X-ray diffraction and differential scanning calorimetry measurements indicate that the samples remain in their amorphous states after decompression. Thus, we proposed that the abnormal compression behavior of a-Se in the 2.0–2.5 GPa range can be attributed to pressure-induced local atomic reconfiguration, implying an amorphous-amorphous transition of the elementary selenium.« less
Mechanisms of the Wurtzite to Rocksalt Transformation in CdSe Nanocrystals
NASA Astrophysics Data System (ADS)
Grünwald, Michael; Rabani, Eran; Dellago, Christoph
2006-06-01
We study the pressure-driven phase transition from the four-coordinate wurtzite to the six-coordinate rocksalt structure in CdSe nanocrystals with molecular dynamics computer simulations. With an ideal gas as the pressure medium, we apply hydrostatic pressure to spherical and faceted nanocrystals ranging in diameter from 25 to 62 Å. In spherical crystals, the main mechanism of the transformation involves the sliding of (100) planes, but depending on the specific surface structure we also observe a second mechanism proceeding through the flattening of (100) planes. In faceted crystals, the transition proceeds via a five-coordinated hexagonal structure, which is stabilized at intermediate pressures due to dominant surface energetics.
Higuchi, Masaya; Takahashi, Masahiko; Tanaka, Yuetsu; Fujii, Masahiro
2014-01-01
Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion–induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo. PMID:25175936
Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev
2015-02-25
A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.
Wu, M-J; Gu, Z-Y; Sun, W
2008-01-01
Recent experimental evidence has suggested that pressure may play an important role in the pathogenesis of arthritic diseases such as temporomandibular disorders (TMDs), rheumatic diseases and osteoarthritis. This study examines the effects of hydrostatic pressure (HP) on cytoskeleton and protein production of bone morphogenetic protein-2 (BMP-2), transforming growth factor-beta (TGF-beta) and the SRY HMG box related gene 9 (SOX-9) in synovial fibroblasts (SFs) of rat temporomandibular joint (TMJ). SFs derived from rat TMJ were grown to confluence in Dulbecco's modified Eagle medium supplemented with 15% fetal calf serum. The monolayer of SFs was subjected to different HPs (0, 30, 60, and 90kPa) by an in-house designed pressure chamber for 12h. Changes of cell morphology were observed by fluorescent microscope. Production of TGF-beta, BMP-2 and SOX-9 was examined by immunocytochemical assay and western blot. Compared with the untreated control, the cellular actin configuration of SFs became elongated and more intense F-actin stress fiber staining was observed after HP loading. Exposure of SFs to HP for 12h resulted in significant up-regulation of BMP-2 by 46, 54, and 66% at 30, 60, and 90kPa, respectively, whilst TGF-beta increased by 11, 19, and 28% at 30, 60, and 90kPa, respectively. HP also induced the increase of SOX-9 by 72% at 30kPa and 83% at 60kPa, but only 54% at 90kPa. The obtained data suggest that HP induced the alteration of cytoskeleton and bone-morphogenetic-related proteins' production of SFs, which may influence the pathological condition of TMDs.
High Resolution Spectroscopy to Support Atmospheric Measurements
NASA Technical Reports Server (NTRS)
Venkataraman, Malathy Devi
2006-01-01
The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States and abroad.
Limpens, Ronald W. A. L.; van der Schaar, Hilde M.; Kumar, Darshan; Koster, Abraham J.; Snijder, Eric J.; van Kuppeveld, Frank J. M.; Bárcena, Montserrat
2011-01-01
ABSTRACT All positive-strand RNA viruses induce membrane structures in their host cells which are thought to serve as suitable microenvironments for viral RNA synthesis. The structures induced by enteroviruses, which are members of the family Picornaviridae, have so far been described as either single- or double-membrane vesicles (DMVs). Aside from the number of delimiting membranes, their exact architecture has also remained elusive due to the limitations of conventional electron microscopy. In this study, we used electron tomography (ET) to solve the three-dimensional (3-D) ultrastructure of these compartments. At different time points postinfection, coxsackievirus B3-infected cells were high-pressure frozen and freeze-substituted for ET analysis. The tomograms showed that during the exponential phase of viral RNA synthesis, closed smooth single-membrane tubules constituted the predominant virus-induced membrane structure, with a minor proportion of DMVs that were either closed or connected to the cytosol in a vase-like configuration. As infection progressed, the DMV number steadily increased, while the tubular single-membrane structures gradually disappeared. Late in infection, complex multilamellar structures, previously unreported, became apparent in the cytoplasm. Serial tomography disclosed that their basic unit is a DMV, which is enwrapped by one or multiple cisternae. ET also revealed striking intermediate structures that strongly support the conversion of single-membrane tubules into double-membrane and multilamellar structures by a process of membrane apposition, enwrapping, and fusion. Collectively, our work unravels the sequential appearance of distinct enterovirus-induced replication structures, elucidates their detailed 3-D architecture, and provides the basis for a model for their transformation during the course of infection. PMID:21972238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Tushar; Robles, Maria Teresa Sáenz; Schowalter, Rachel M.
Polyomaviruses induce cell proliferation and transformation through different oncoproteins encoded within the early region (ER): large T antigen (LT), small T antigen (sT) and, in some cases, additional components. Each virus utilizes different mechanisms to achieve transformation. For instance, the LTs of Simian virus 40 (SV40), BK and/or JC virus can induce transformation; but Merkel Cell Polyomavirus (MCPyV) requires expression of sT. Lymphotropic Papovavirus (LPV) is closely related to Human Polyomavirus 9 (HuPyV9) and, under similar conditions, mice expressing LPV.ER exhibit higher rates of tumor formation than mice expressing SV40.ER. We have investigated the contributions of individual LPV.ER components tomore » cell transformation. In contrast to SV40, LPV.ER transforms mouse embryonic fibroblasts (MEFs), but expression of LPV LT is insufficient to transform MEFs. Furthermore, LPV sT induces immortalization and transformation of MEFs. Thus, in the case of LPV, sT is the main mediator of oncogenesis. - Highlights: • Characterization of early region products from the Lymphotropic Polyomavirus (LPV). • On its own, sT immortalizes and transforms mouse primary cells, and is able to block p53 activation. • Combined LT and sT expression induces a greater rate of proliferation than either LT or sT alone.« less
Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Richard L.; Jiang, Yue; Jing, Yi
2011-10-28
Highlights: Black-Right-Pointing-Pointer Chronic exposure to arsenite induces cell proliferation and transformation. Black-Right-Pointing-Pointer Arsenite-induced transformation increases ROS production and downstream signalings. Black-Right-Pointing-Pointer Inhibition of ROS levels via catalase reduces arsenite-induced cell transformation. Black-Right-Pointing-Pointer Interruption of AKT, ERK, or p70S6K1 inhibits arsenite-induced cell transformation. -- Abstract: Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidencemore » suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.« less
Reduction of estrogen-induced transformation of mouse mammary epithelial cells by N-acetylcysteine
Venugopal, Divya; Zahid, Muhammad; Mailander, Paula C; Meza, Jane L.; Rogan, Eleanor G.; Cavalieri, Ercole L.; Chakravarti, Dhrubajyoti
2009-01-01
A growing number of studies indicate that breast cancer initiation is related to abnormal estrogen oxidation to form an excess of estrogen-3,4-quinones, which react with DNA to form depurinating adducts and induce mutations. This mechanism is often called estrogen genotoxicity. 4-catechol estrogens, precursors of the estrogen-3,4-quinones, were previously shown to account for most of the transforming and tumorigenic activity. We examined whether estrogen-induced transformation can be reduced by inhibiting the oxidation of a 4-catechol estrogen to its quinone. We demonstrate that E6 cells (a normal mouse epithelial cell line) can be transformed by a single treatment with a catechol estrogen or its quinone. The transforming activities of 4-hydroxyestradiol and estradiol-3,4-quinone were comparable. N-acetylcysteine, a common antioxidant, inhibited the oxidation of 4-hydroxyestradiol to the quinone and consequent formation of DNA adducts. It also drastically reduced estrogen-induced transformation of E6 cells. These results strongly implicate estrogen genotoxicity in mammary cell transformation. Since N-acetylcysteine is well-tolerated in clinical studies, it may be a promising candidate for breast cancer prevention. PMID:18226522
Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells.
Liu, G; Bibus, D M; Bode, A M; Ma, W Y; Holman, R T; Dong, Z
2001-06-19
Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (omega3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (omega6) fatty acids such as arachidonic acid (AA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the omega3 fatty acids EPA and DHA and of the omega6 fatty acid AA on phorbol 12-tetradecanoate 13-acetate (TPA)-induced or epidermal growth factor (EGF)-induced transcription activator protein 1 (AP-1) transactivation and on the subsequent cellular transformation in a mouse epidermal JB6 cell model. DHA treatment resulted in marked inhibition of TPA- and EGF-induced cell transformation by inhibiting AP-1 transactivation. EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation. AA treatment had no effect on either TPA- or EGF-induced AP-1 transactivation or transformation, but did abrogate the inhibitory effects of DHA on TPA- or EGF-induced AP-1 transactivation and cell transformation in a dose-dependent manner. The results of this study demonstrate that the inhibitory effects of omega3 fatty acids on tumorigenesis are more significant for DHA than for EPA and are related to an inhibition of AP-1. Similarly, because AA abrogates the beneficial effects of DHA, the dietary ratio of omega6 to omega3 fatty acids may be a significant factor in mediating tumor development.
Structural phase transitions in Bi2Se3 under high pressure
Yu, Zhenhai; Wang, Lin; Hu, Qingyang; Zhao, Jinggeng; Yan, Shuai; Yang, Ke; Sinogeikin, Stanislav; Gu, Genda; Mao, Ho-kwang
2015-01-01
Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi2Se3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi2Se3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculations favor the viewpoint that the I4/mmm phase Bi2Se3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi2Se3 from this work (two independent runs) are still Raman active up to ~35 GPa. It is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi2Se3 may explain why Bi2Se3 shows different structural behavior than isocompounds Bi2Te3 and Sb2Te3. PMID:26522818
Structural phase transitions in Bi 2Se 3 under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhenhai; Gu, Genda; Wang, Lin
2015-11-02
Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi 2Se 3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi 2Se 3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculationsmore » favor the viewpoint that the I4/mmm phase Bi 2Se 3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi 2Se 3 from this work (two independent runs) are still Raman active up to ~35 GPa. Furthermore, it is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi 2Se 3 may explain why Bi 2Se 3 shows different structural behavior than isocompounds Bi 2Te 3 and Sb 2Te 3.« less
Pressure induced elastic softening in framework aluminosilicate- albite (NaAlSi 3O 8)
Mookherjee, Mainak; Mainprice, David; Maheshwari, Ketan; ...
2016-10-13
Albite (NaAlSi 3O 8) is an aluminosilicate mineral. Its crystal structure consists of 3-D framework of Al and Si tetrahedral units. We have used Density Functional Theory to investigate the high-pressure behavior of the crystal structure and how it affects the elasticity of albite. Our results indicate elastic softening between 6–8 GPa. This is observed in all the individual elastic stiffness components. Our analysis indicates that the softening is due to the response of the three-dimensional tetrahedral framework, in particular by the pressure dependent changes in the tetrahedral tilts. At pressure <6 GPa, the PAW-GGA can be described by amore » Birch-Murnaghan equation of state with V GGA 0 = 687.4Å 3, K GGA 0 = 51.7 GPa, and G GGA 0 = 4.7. The shear modulus and its pressure derivative are K ⊕GGA 0 = 33.7 GPa, and G ⊕GGA 0 = 2.9. At 1 bar, the azimuthal compressional and shear wave anisotropy AV GGA P = 42.8%, and AV GGA S = 50.1%. We also investigate the densification of albite to a mixture of jadeite and quartz. The transformation is likely to cause a discontinuity in density, compressional, and shear wave velocity across the crust and mantle. Furthermore, this could partially account for the Mohorovicic discontinuity in thickened continental crustal regions.« less
Biochemical transformation of coals
Lin, Mow S.; Premuzic, Eugene T.
1999-03-23
A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.
Unusual Mott transition in multiferroic PbCrO 3
Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; ...
2015-11-24
The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. When turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by "bandwidth" control or "band filling." However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. We report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of similar to 3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrentmore » with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at similar to 300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid-gas transition. Moreover, the anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking.« less
Melting of the precipitated ice IV in LiCl aqueous solution and polyamorphism of water.
Mishima, Osamu
2011-12-08
Melting of the precipitated ice IV in supercooled LiCl-H(2)O solution was studied in the range of 0-0.6 MPa and 160-270 K. Emulsified solution was used to detect this metastable transition. Ice IV was precipitated from the aqueous solution of 2.0 mol % LiCl (or 4.8 mol % LiCl) in each emulsion particle at low-temperature and high-pressure conditions, and the emulsion was decompressed at different temperatures. The melting of ice IV was detected from the temperature change of the emulsified sample during the decompression. There was an apparently sudden change in the slope of the ice IV melting curve (liquidus) in the pressure-temperature diagram. At the high-pressure and high-temperature side of the change, the solute-induced freezing point depression was observed. At the low-pressure and low-temperature side, ice IV transformed into ice Ih on the decompression, and the transition was almost unrelated to the concentration of LiCl. These experimental results were roughly explained by the presumed existence of two kinds of liquid water (low-density liquid water and high-density liquid water), or polyamorphism in water, and by the simple assumption that LiCl dissolved maily in high-density liquid water. © 2011 American Chemical Society
Unusual Mott transition in multiferroic PbCrO3
Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; Yu, Xiaohui; Zhang, Jianzhong; Wang, Wendan; Bai, Ligang; Qian, Jiang; Yin, Liang; Sullivan, Neil S.; Jin, Changqing; He, Duanwei; Xu, Jian; Zhao, Yusheng
2015-01-01
The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. Turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by “bandwidth” control or “band filling.” However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. Here, we report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of ∼3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrent with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at ∼300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid–gas transition. The anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking. PMID:26604314
Schrader, Wolfgang; Panda, Saroj K; Brockmann, Klaus J; Benter, Thorsten
2008-07-01
We report on the successful application of the recently introduced atmospheric pressure laser ionization (APLI) method as a novel tool for the analysis of crude oil and its components. Using Fourier transform ion cyclotron resonance mass spectrometry, unambiguous determination of key compounds in this complex matrix with unprecedented sensitivity is presented.
Le Lay, Pascaline; Böddi, Béla; Kovacevic, Dragan; Juneau, Philippe; Dewez, David; Popovic, Radovan
2001-01-01
Effects of water deficit on the chlorophyllide (Chlide) transformation pathway were studied in etiolated barley (Hordeum vulgare) leaves by analyzing absorption spectra and 77-K fluorescence spectra deconvoluted in components. Chlide transformations were examined in dehydrated leaves exposed to a 35-ms saturating flash triggering protochlorophyllide (Pchlide) and Chlide transformation processes. During the 90 min following the flash, we found that dehydration induced modifications of Chlide transformations, but no effect on Pchlide phototransformation into Chlide was observed. During this time, content of NADPH-Pchlide oxydoreductase in leaves did not change. Chlide transformation process in dehydrated leaves was characterized by the alteration of the Shibata shift process, by the appearance of a new Chlide species emitting at 692 nm, and by the favored formation of Chl(ide) A668F676. The formation of Chl(ide) A668F676, so-called “free Chlide,” was probably induced by disaggregation of highly aggregated Chlide complexes. Here, we offer evidence for the alteration of photoactive Pchlide regeneration process, which may be caused by the desiccation-induced inhibition of Pchlide synthesis. PMID:11553748
Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.
Babij, Michał; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor
2014-05-01
The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.
Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babij, Michał; Kowalski, Zbigniew W., E-mail: zbigniew.w.kowalski@pwr.wroc.pl; Nitsch, Karol
The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with themore » absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Yang; Kojima, Chikara; Chignell, Colin
2011-09-15
Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100 nM) did not induce ODD during the 30 weeks required for malignant transformation. Although acute UV-treatment (UVA, 25 J/cm{supmore » 2}) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (> 50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD. - Highlights: > Arsenic transformation adapted to UV-induced apoptosis. > Arsenic transformation diminished oxidant response. > Arsenic transformation enhanced UV-induced DNA damage.« less
Uranyl peroxide nanoclusters at high-pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Katlyn M.; Szymanowski, Jennifer E. S.; Zhang, Fuxiang
Here, U 60 ([UO 2(O 2)(OH)] 60 60– in water) is a uranyl peroxide nanocluster with a fullerene topology and O h symmetry. U 60 clusters can exist in crystalline solids or in liquids; however, little is known of their behavior at high pressures. We compressed the U 60-bearing material: Li 68K 12(OH) 20[UO 2(O 2)(OH)] 60(H 2O) 310 ( Fm3¯; a = 37.884 Å) in a diamond anvil cell to determine its response to increasing pressure. Three length scales and corresponding structural features contribute to the compression response: uranyl peroxide bonds (<0.5 nm), isolated single nanoclusters (2.5 nm), andmore » the long-range periodicity of nanoclusters within the solid (>3.7 nm). Li 68K 12(OH) 20[UO 2(O 2)(OH)] 60(H 2O) 310 transformed to a tetragonal structure below 2 GPa and irreversibly amorphized between 9.6 and 13 GPa. The bulk modulus of the tetragonal U 60-bearing material was 25 ± 2 GPa. The pressure-induced amorphous phase contained intact U 60 clusters, which were preserved beyond the loss of long-range periodicity. The persistence of U 60 clusters at high pressure may have been enhanced by the interaction between U 60 nanoclusters and the alcohol pressure medium. Once formed, U 60 nanoclusters persist regardless of their associated long-range ordering—in crystals, amorphous solids, or solutions.« less
Electron Density Distribution Changes of Magnesiowüstite With Pressure
NASA Astrophysics Data System (ADS)
Diamond, M. R.; Popov, D.; Shen, G.; Jeanloz, R.
2017-12-01
Magnesiowüstite is one of the dominant minerals in the earth's lower mantle; its density and elasticity, substantially altered by its spin crossover, have direct consequence to interpreting deep-earth geophysical data. High-resolution single-crystal x-ray diffraction data can portray the 3-dimensional distribution of electron density through the Fourier transform of measured form factors. Here we present experimentally measured changes in electron density distribution of single-crystal (Mg.85,Fe.15)O as it goes through its iron(II) high-spin to low-spin electronic transition between about 40 and 60 GPa [Lin and Tsuchiya, 2008], in a diamond-anvil cell. As (Mg,Fe)O undergoes a pressure induced spin crossover (from high spin at low pressure to low spin at high pressure) due to overlap of its eg orbitals, the t2g orbitals become more pronounced to due a higher population of electrons, while the eg orbitals diminish. The spin splitting energy becomes increasingly unfavorable compared to the spin orbital pairing energy. By looking at the population of electrons at different directions in real space, we directly observe these changes in orbital occupation leading up to and during the spin crossover. Since high-Mg magnesiowüstite has a high symmetry structure at these pressure conditions, detecting relative changes in electron density distribution (comparing subsequent pressure steps) is feasible by collecting high resolution data offered by high-energy X rays and wide opening-angle diamond-anvil cells.
Uranyl peroxide nanoclusters at high-pressure
Turner, Katlyn M.; Szymanowski, Jennifer E. S.; Zhang, Fuxiang; ...
2017-08-14
Here, U 60 ([UO 2(O 2)(OH)] 60 60– in water) is a uranyl peroxide nanocluster with a fullerene topology and O h symmetry. U 60 clusters can exist in crystalline solids or in liquids; however, little is known of their behavior at high pressures. We compressed the U 60-bearing material: Li 68K 12(OH) 20[UO 2(O 2)(OH)] 60(H 2O) 310 ( Fm3¯; a = 37.884 Å) in a diamond anvil cell to determine its response to increasing pressure. Three length scales and corresponding structural features contribute to the compression response: uranyl peroxide bonds (<0.5 nm), isolated single nanoclusters (2.5 nm), andmore » the long-range periodicity of nanoclusters within the solid (>3.7 nm). Li 68K 12(OH) 20[UO 2(O 2)(OH)] 60(H 2O) 310 transformed to a tetragonal structure below 2 GPa and irreversibly amorphized between 9.6 and 13 GPa. The bulk modulus of the tetragonal U 60-bearing material was 25 ± 2 GPa. The pressure-induced amorphous phase contained intact U 60 clusters, which were preserved beyond the loss of long-range periodicity. The persistence of U 60 clusters at high pressure may have been enhanced by the interaction between U 60 nanoclusters and the alcohol pressure medium. Once formed, U 60 nanoclusters persist regardless of their associated long-range ordering—in crystals, amorphous solids, or solutions.« less
Flame Speeds and Energy Considerations for Explosions in a Spherical Bomb
NASA Technical Reports Server (NTRS)
Fiock, Ernest F; Marvin, Charles F , Jr; Caldwell, Frank R; Roeder, Carl H
1940-01-01
Simultaneous measurements were made of the speed of flame and the rise in pressure during explosions of mixtures of carbon monoxide, normal heptane, iso-octane, and benzene in a 10-inch spherical bomb with central ignition. From these records, fundamental properties of the explosive mixtures, which are independent of the apparatus, were computed. The transformation velocity, or speed at which flame advances into and transforms the explosive mixture, increases with both the temperature and the pressure of the unburned gas. The rise in pressure was correlated with the mass of charge inflamed to show the course of the energy developed.
RECOZ data reduction and analysis: Programs and procedures
NASA Technical Reports Server (NTRS)
Reed, E. I.
1984-01-01
The RECOZ data reduction programs transform data from the RECOZ photometer to ozone number density and overburden as a function of altitude. Required auxiliary data are the altitude profile versus time and for appropriate corrections to the ozone cross sections and scattering effects, air pressure and temperature profiles. Air temperature and density profiles may also be used to transform the ozone density versus geometric altitude to other units, such as to ozone partial pressure or mixing ratio versus pressure altitude. There are seven programs used to accomplish this: RADAR, LISTRAD, RAW OZONE, EDIT OZONE, MERGE, SMOOTH, and PROFILE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Kuang, Lisha; Hitron, John Andrew
Environmental exposure to arsenic is known to cause various cancers. There are some potential relationships between cell malignant transformation and C-X-C chemokine receptor type 4 (CXCR4) expressions. Metastasis, one of the major characteristics of malignantly transformed cells, contributes to the high mortality of cells. CXCR4 and its natural chemokine ligand C-X-C motif ligand 12 (CXCL12) play a critical role in metastasis. Therefore, identification of nutritional factors which are able to inhibit CXCR4 is important for protection from environmental arsenic-induced carcinogenesis and for abolishing metastasis of malignantly transformed cells. The present study demonstrates that apigenin (4′,5,7-trihydroxyflavone), a natural dietary flavonoid, suppressedmore » CXCR4 expression in arsenic-transformed Beas-2B cells (B-AsT) and several other types of transformed/cancer cells in a dose- and time-dependent manner. Neither proteasome nor lysosome inhibitor had any effect in reducing the apigenin-induced down-regulation of CXCR4, indicating that apigenin-induced down-regulation of CXCR4 is not due to proteolytic degradation. The down-regulation of CXCR4 is mainly due to the inhibition of nuclear factor κB (NF-κB) transcriptional activity. Apigenin also abolished migration and invasion of transformed cells induced by CXCL12. In a xenograft mouse model, apigenin down-regulated CXCR4 expression and suppressed tumor growth. Taken together, our results show that apigenin is a novel inhibitor of CXCR4 expression. This dietary flavonoid has the potential to suppress migration and invasion of transformed cells and prevent environmental arsenic-induced carcinogenesis. - Highlights: • Apigenin has a potential in preventing environmental arsenic induced carcinogenesis. • Apigenin suppresses CXCR4 in malignant transformed cells in vitro and in vivo. • The down-regulation of CXCR4 is mainly due to inhibition of NF-κB activity.« less
NASA Technical Reports Server (NTRS)
Smith, M. A. H.; Benner, D. Chris; Pedroi-Cross, A.; Devi, V. Malathy
2013-01-01
Lorentz self- and air-broadened half width and pressure-induced shift coefficients and their dependences on temperature have been measured from laboratory absorption spectra for nearly 130 transitions in the nu(sub 2) band of (12)CH4. In addition line mixing coefficients (using the relaxation matrix element formalism) for both self- and airbroadening were experimentally determined for the first time for a small number of transitions in this band. Accurate line positions and absolute line intensities were also determined. These parameters were obtained by analyzing high-resolution (approx. 0.003 to 0.01 per cm) laboratory spectra of high-purity natural CH4 and air-broadened CH4 recorded at temperatures between 226 and 297 K using the McMath-Pierce Fourier transform spectrometer (FTS) located at the National Solar Observatory on Kitt Peak, Arizona. A multispectrum nonlinear least squares technique was used to fit short (5-15 per cm) spectral intervals in 24-29 spectra simultaneously. Parameters were determined for nu(sub 2) transitions up to J" = 16. The variations of the measured broadening and shift parameters with the rotational quantum number index and tetrahedral symmetry species are examined. The present results are also compared with previous measurements available in the literature.
Vezzalini, Giovanna; Arletti, Rossella; Quartieri, Simona
2014-06-01
This is a comparative study on the high-pressure behavior of microporous materials with an MFI framework type (i.e. natural mutinaite, ZSM-5 and the all-silica phase silicalite-1), based on in-situ experiments in which penetrating and non-penetrating pressure-transmitting media were used. Different pressure-induced phenomena and deformation mechanisms (e.g. pressure-induced over-hydration, pressure-induced amorphization) are discussed. The influence of framework and extra-framework composition and of the presence of silanol defects on the response to the high pressure of MFI-type zeolites is discussed.
Biochemical transformation of solid carbonaceous material
Lin, Mow S.; Premuzic, Eugene T.
2001-09-25
A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.
Biochemical transformation of coals
Lin, M.S.; Premuzic, E.T.
1999-03-23
A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.
In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials
Liu, Y.; Wang, H.; Zhang, X.
2015-11-30
Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentationmore » studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.« less
High pressure–low temperature phase diagram of barium: Simplicity versus complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desgreniers, Serge; Tse, John S., E-mail: John.Tse@usask.ca; State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun
2015-11-30
Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that ofmore » complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.« less
NASA Astrophysics Data System (ADS)
Zheng, Zhiyuan; Gao, Hua; Gao, Lu; Xing, Jie
2014-11-01
Acoustic waves generated in nanosecond pulsed-laser ablation of a solid target in both air and water-confined environments were measured experimentally. It was found that the amplitude of the acoustic wave tended to decrease with an increase in water thickness. The waves were analyzed by means of fast Fourier transform. It was shown that there are several frequency components in the acoustic waves with the dominant frequency shifting from high frequency to low frequency as the thickness of the water layer increases. Furthermore, strong acoustic pressure led to enhancement of the coupling of the laser energy to the target in laser plasma propulsion.
The mathematical model that describes the periodic spouting of a geyser induced by boiling
NASA Astrophysics Data System (ADS)
Kagami, Hiroyuki
2017-04-01
We have derived and modified the dynamical model of a geyser induced by gas inflow and regular or irregular spouting dynamics of geysers induced by gas inflow has been reproduced by the model. On the other hand, though we have derived the dynamical model of a geyser induced by boiling, periodic change between the spouting state and the pause state has not been adequately modeled by the model. In this connection, concerning a geyser induced by gas inflow we have proposed the model as described below. Because pressure in the spouting tube decreases obeying to the Bernoulli's theorem when the spouting state begins and water in the spouting tube begins to flow, inflow of groundwater into the spouting tube occurs. When the amount of this inflow reaches a certain amount, the spouting state transforms to the pause state. In this study, by applying this idea to the dynamical model of a geyser induced by boiling, the periodic change between the spouting state and the pause state could be reappeared. As a result, the whole picture of the spouting mechanism of a geyser induced by boiling became clear. This research results would give hints on engineering repair in order to prevent the weakening or the depletion of the geyser. And this study would be also useful for protection of geysers as tourism and environmental resources.
NASA Astrophysics Data System (ADS)
da Silva, Antonio N.; Neto, Antonio B. S.; Oliveira, Alcemira C.; Junior, Manoel C.; Junior, Jose A. L.; Freire, Paulo T. C.; Filho, Josué M.; Oliveira, Alcineia C.; Lang, Rossano
2018-06-01
High temperature and pressure effects on the physicochemical properties of binary oxides catalysts were investigated. The nanocomposites catalysts comprising of CeAl, CeMn and NiAl were characterized through various physicochemical techniques. A study of the temperature and pressure induced phenomena monitored by Raman spectroscopy was proposed and discussed. Spectral modifications of the Raman modes belonging to the CeMn suggest structural changes in the solid due to the MnO2 phase oxidation with increasing temperature. The thermal expansion and lattice anharmonicity effects were observed on CeMn due to lack of stability of the lattice vacancies. The CeAl and NiAl composites presented crystallographic stability at low temperatures however, undertake a phase transformation of NiO/Al2O3 into NiAl2O4, mostly without any deformation in its structure with increasing the temperature. It was also inferred that the binary oxides are more stables in comparison with monoxides. Detailed pressure-dependent Raman measurements of the T2g phonon mode of CeMn and NiAl revealed that the pressure contributes to modify bonds length and reduces the particles sizes of the solids. On the contrary, high pressure on CeAl sample improved the stability with addition of Al2O3 in the CeO2 lattice. The results then suggest a good stability of CeAl and NiAl composite catalysts at high pressure and low temperature and show how to prospect of tuning the catalysis for surface reactions entirely through in situ spectroscopic investigations means.
Temperature and field induced strain measurements in single crystal Gd 5Si 2Ge 2
McCall, S. K.; Nersessian, N.; Carman, G. P.; ...
2016-03-29
The first-order magneto-structural transformation that occurs in Gd 5Si 2Ge 2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd 5Si 2.05Ge 1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of –8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of –8500 ppm, +900 ppm and +2300 ppm were measured along the a,more » b and c axes, respectively. Furthermore, using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.« less
Metastable high-pressure transformations of orthoferrosilite Fs82
NASA Astrophysics Data System (ADS)
Dera, Przemyslaw; Finkelstein, Gregory J.; Duffy, Thomas S.; Downs, Robert T.; Meng, Yue; Prakapenka, Vitali; Tkachev, Sergey
2013-08-01
High-pressure single-crystal X-ray diffraction experiments with natural ferrosilite Fs82 (Fe2+0.82Mg0.16Al0.01Ca0.01)(Si0.99Al0.01)O3 orthopyroxene (opx) reveal that at ambient temperature the sample does not transform to the clinopyroxene (cpx) structure, as reported earlier for a synthetic Fs100 end-member (Hugh-Jones et al., 1996), but instead undergoes a series of two polymorphic transitions, first above 10.1(1) GPa, to the monoclinic P21/c phase β-opx (distinctly different from both P21/c and C2/c cpx), also observed in natural enstatite (Zhang et al., 2012), and then, above 12.3(1) GPa to a high-pressure orthorhombic Pbca phase γ-opx, predicted for MgSiO3 by atomistic simulations (Jahn, 2008). The structures of phases α, β and γ have been determined from the single-crystal data at pressures of 2.3(1), 11.1(1), and 14.6(1) GPa, respectively. The two new high-pressure transitions, very similar in their character to the P21/c-C2/c transformation of cpx, make opx approximately as dense as cpx above 12.3(1) GPa and significantly change the elastic anisotropy of the crystal, with the [1 0 0] direction becoming almost twice as stiff as in the ambient α-opx phase. Both transformations involve mainly tetrahedral rotation, are reversible and are not expected to leave microstructural evidence that could be used as a geobarometric proxy. The high Fe2+ content in Fs82 shifts the α-β transition to slightly lower pressure, compared to MgSiO3, and has a very dramatic effect on reducing the (meta) stability range of the β-phase.
High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye
2017-01-24
In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A = Eu, Dy; B = Ti, Zr) up to ~50 GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B = Ti and ~16 GPa B = Zr. But, the A-site cation affected the kinetics of the phase transformation,more » with the transformation for compositions with the smaller ionic radii, i.e., A = Dy, proceeding faster than those with a larger ionic radii, i.e., A = Eu. Our results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B = Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A = Eu than A = Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less
High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye
2017-01-28
In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionicmore » radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less
Triggering conditions and mobility of debris flows associated to complex earthflows
NASA Astrophysics Data System (ADS)
Malet, J.-P.; Laigle, D.; Remaître, A.; Maquaire, O.
2005-03-01
Landslides on black marl slopes of the French Alps are, in most cases, complex catastrophic failures in which the initial structural slides transform into slow-moving earthflows. Under specific hydrological conditions, these earthflows can transform into debris flows. Due to their sediment volume and their high mobility, debris flow induced by landslides are far much dangerous than these resulting from continuous erosive processes. A fundamental point to correctly delineate the area exposed to debris flows on the alluvial fans is therefore to understand why and how some earthflows transform into debris flow while most of them stabilize. In this paper, a case of transformation from earthflow to debris flow is presented and analysed. An approach combining geomorphology, hydrology, geotechnics and rheology is adopted to model the debris flow initiation (failure stage) and its runout (postfailure stage). Using the Super-Sauze earthflow (Alpes-de-Haute-Provence, France) as a case study, the objective is to characterize the hydrological and mechanical conditions leading to debris flow initiation in such cohesive material. Results show a very good agreement between the observed runout distances and these calculated using the debris flow modeling code Cemagref 1-D. The deposit thickness in the depositional area and the velocities of the debris flows are also well reproduced. Furthermore, a dynamic slope stability analysis shows that conditions in the debris source area under average pore water pressures and moisture contents are close to failure. A small excess of water can therefore initiate failure. Seepage analysis is used to estimate the volume of debris that can be released for several hydroclimatic conditions. The failed volumes are then introduced in the Cemagref 1-D runout code to propose debris flow hazard scenarios. Results show that clayey earthflow can transform under 5-year return period rainfall conditions into 1-km runout debris flow of volumes ranging between 2000 to 5000 m 3. Slope failures induced by 25-year return period rainfall can trigger large debris flow events (30,000 to 50,000 m 3) that can reach the alluvial fan and cause damage.
NASA Astrophysics Data System (ADS)
McDermid, J. R.; Zurob, H. S.; Bian, Y.
2011-12-01
Two galvanizable high-Al, low-Si transformation-induced plasticity (TRIP)-assisted steels were subjected to isothermal bainitic transformation (IBT) temperatures compatible with the continuous galvanizing (CGL) process and the kinetics of the retained austenite (RA) to martensite transformation during room temperature deformation studied as a function of heat treatment parameters. It was determined that there was a direct relationship between the rate of strain-induced transformation and optimal mechanical properties, with more gradual transformation rates being favored. The RA to martensite transformation kinetics were successfully modeled using two methodologies: (1) the strain-based model of Olsen and Cohen and (2) a simple relationship with the normalized flow stress, ( {{{σ_{{flow}} - σ_{YS} }/{σ_{YS }}}} ) . For the strain-based model, it was determined that the model parameters were a strong function of strain and alloy thermal processing history and a weak function of alloy chemistry. It was verified that the strain-based model in the present work agrees well with those derived by previous workers using TRIP-assisted steels of similar composition. It was further determined that the RA to martensite transformation kinetics for all alloys and heat treatments could be described using a simple model vs the normalized flow stress, indicating that the RA to martensite transformation is stress-induced rather than strain-induced for temperatures above the Ms^{σ }.
Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study
NASA Astrophysics Data System (ADS)
Kürkçü, Cihan; Merdan, Ziya; Öztürk, Hülya
2016-12-01
We have studied the structural properties of the antiferromagnetic NiF2 tetragonal structure with P42/ mnm symmetry using density functional theory (DFT) under rapid hydrostatic pressure up to 400 GPa. For the exchange correlation energy we used the local density approximation (LDA) of Ceperley and Alder (CA). Two phase transformations are successfully observed through the simulations. The structures of XF2-type compounds crystallize in rutile-type structure. NiF2 undergoes phase transformations from the tetragonal rutile-type structure with space group P42/ mnm to orthorhombic CaCl2-type structure with space group Pnnm and from this orthorhombic phase to monoclinic structure with space group C2/ m at 152 GPa and 360 GPa, respectively. These phase changes are also studied by total energy and enthalpy calculations. According to these calculations, we perdict these phase transformations at about 1.85 and 30 GPa.
Enhanced densification under shock compression in porous silicon
Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy
2014-10-27
Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less
The influence of hold time on the onset of plastic deformation in silicon
Wong, Sherman; Haberl, Bianca; Bradby, Jodie E.; ...
2015-12-24
Here, the formation of silicon (Si) in its -Sn form is known to be nucleation limited, with an undetermined period of time between when critical pressure for the trans- formation is reached and when the transformation actually occurs. In this letter, we use nanoindentation to apply critical pressure to diamond cubic Si and hold the sample under pressure to promote deformation via phase transformation and crystalline defects. We report that the number of indents in which phase transformation is observed increases with increasing hold time. Interestingly, the number of indents in which crystalline defects are observed also increase with increasingmore » hold time, suggesting crystalline defects are also nucleation limited. Raman spectroscopy and cross-sectional transmission electron microscopy is used to show that these two deformation mechanisms are mutually exclusive under the indentation conditions used within this letter.« less
Guo, Minghui; Liu, Shucheng; Ismail, Marliya; Farid, Mohammed M; Ji, Hongwu; Mao, Weijie; Gao, Jing; Li, Chengyong
2017-07-15
Dense phase carbon dioxide (DPCD) could induce protein conformation changes. Myosin and shrimp surimi from Litopenaeus vannamei were treated with DPCD at 5-25MPa and 40-60°C for 20min. Myosin secondary structure was investigated by circular dichroism and shrimp surimi gel strength was determined using textural analysis to develop correlations between them. DPCD had a greater effect on secondary structure and gel strength than heating. With increasing pressure and temperature, the α-helix content of DPCD-treated myosin decreased, while the β-sheet, β-turn and random coil contents increased, and the shrimp surimi gel strength increased. The α-helix content was negatively correlated with gel strength, while the β-sheet, β-turn and random coil contents were positively correlated with gel strength. Therefore, when DPCD induced myosin to form a gel, the α-helix of myosin was unfolded and gradually converted to a β-sheet. Such transformations led to protein-protein interactions and cross-linking, which formed a three-dimensional network to enhance the gel strength. Copyright © 2017 Elsevier Ltd. All rights reserved.
Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6
NASA Astrophysics Data System (ADS)
Custers, J.; Lorenzer, K.-A.; Müller, M.; Prokofiev, A.; Sidorenko, A.; Winkler, H.; Strydom, A. M.; Shimura, Y.; Sakakibara, T.; Yu, R.; Si, Q.; Paschen, S.
2012-03-01
How ground states of quantum matter transform between one another reveals deep insights into the mechanisms stabilizing them. Correspondingly, quantum phase transitions are explored in numerous materials classes, with heavy-fermion compounds being among the most prominent ones. Recent studies in an anisotropic heavy-fermion compound have shown that different types of transitions are induced by variations of chemical or external pressure, raising the question of the extent to which heavy-fermion quantum criticality is universal. To make progress, it is essential to broaden both the materials basis and the microscopic parameter variety. Here, we identify a cubic heavy-fermion material as exhibiting a field-induced quantum phase transition, and show how the material can be used to explore one extreme of the dimensionality axis. The transition between two different ordered phases is accompanied by an abrupt change of Fermi surface, reminiscent of what happens across the field-induced antiferromagnetic to paramagnetic transition in the anisotropic YbRh2Si2. This finding leads to a materials-based global phase diagram—a precondition for a unified theoretical description.
Pressure-Induced Polymerization of LiN(CN) 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keefer, Derek W.; Gou, Huiyang; Purdy, Andrew P.
The high-pressure behavior of lithium dicyanamide (LiN(CN) 2) was studied with in situ Raman and infrared (IR) spectroscopies, and synchrotron angle-dispersive powder X-ray diffraction (PXRD) in a diamond anvil cell (DAC) to 22 GPa. The fundamental vibrational modes associated with molecular units were assigned using a combination of experimental data and density functional perturbation theory. Some low-frequency modes were observed for the first time. On the basis of spectroscopic and diffraction data, we suggest a polymorphic phase transformation at ~8 GPa, wherein dicyanamide ions remain as discrete molecular species. Above ca. 18 GPa, dicyanamide units polymerize, forming a largely disorderedmore » network, and the extent of polymerization may be increased by annealing at elevated temperature. The polymerized product consists of tricyanomelaminate-like groups containing sp 2-hybidized carbon–nitrogen bonds and exhibits a visible absorption edge near 540 nm. The product is recoverable to ambient conditions but is not stable in air/moisture.« less
Li, Hongkun; Zhang, Xuefeng; Xu, Fujian
2013-09-18
Centrifugal compressors are a key piece of equipment for modern production. Among the components of the centrifugal compressor, the impeller is a pivotal part as it is used to transform kinetic energy into pressure energy. Blade crack condition monitoring and classification has been broadly investigated in the industrial and academic area. In this research, a pressure pulsation (PP) sensor arranged in close vicinity to the crack area and the corresponding casing vibration signals are used to monitor blade crack information. As these signals cannot directly demonstrate the blade crack, the method employed in this research is based on the extraction of weak signal characteristics that are induced by blade cracking. A method for blade crack classification based on the signals monitored by using a squared envelope spectrum (SES) is presented. Experimental investigations on blade crack classification are carried out to verify the effectiveness of this method. The results show that it is an effective tool for blade crack classification in centrifugal compressors.
Ryu, Young Jay; Kim, Minseob; Yoo, Choong -Shik
2015-10-12
In this study, we present the phase diagram of Fe(CO) 5, consisting of three molecular polymorphs (phase I, II and III) and an extended polymeric phase that can be recovered at ambient condition. The phase diagram indicates a limited stability of Fe(CO) 5 within a pressure-temperature dome formed below the liquid- phase II- polymer triple point at 4.2 GPa and 580 K. The limited stability, in turn, signifies the temperature-induced weakening of Fe-CO back bonds, which eventually leads to the dissociation of Fe-CO at the onset of the polymerization of CO. The recovered polymer is a composite of novel nm-lamellarmore » layers of crystalline hematite Fe 2O 3 and amorphous carbon-oxygen polymers. These results, therefore, demonstrate the synthesis of carbon-oxygen polymer by compressing Fe(CO) 5, which advocates a novel synthetic route to develop atomistic composite materials by compressing organometallic compounds.« less
Reaction-induced rheological weakening enables oceanic plate subduction
Hirauchi, Ken-ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi
2016-01-01
Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the ‘cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets. PMID:27562366
NASA Astrophysics Data System (ADS)
Asadollahi, Siavash; Farzaneh, Masoud; Stafford, Luc
2018-02-01
Aluminum 6061 samples were exposed to the jet of an atmospheric pressure rotating arc discharge operated in either nitrogen or air. After multiple passes of treatment with an air-based plasma jet at very short source-to-substrate distances, scanning electron microscopy combined with x-ray photoelectron spectroscopy revealed a highly porous micro-roughened alumina-based structure on the surface of aluminum. Based on optical emission spectroscopy and high-speed optical imaging of the jet interacting with aluminum samples, it was found that the process is mainly driven by the energy transfer from the plasma source to the surface through transient plasma-transferred arcs. The occurrence of multiple arc discharges over very short time scales can induce rapid phase transformations of aluminum with characteristics similar to the ones usually observed during laser ablation of materials with femto- to nanosecond laser pulses or during the formation of cathode spots on the surface of metals.
An interatomic pair potential for cadmium selenide
NASA Astrophysics Data System (ADS)
Rabani, Eran
2002-01-01
We have developed a set of interatomic pair potentials for cadmium selenide based on a form similar to the Born-Mayer model. We show that this simple form of the pair potential, which has been used to describe the properties of alkali halides in the sixfold-coordinate structure, provides a realistic description of the properties of cadmium selenide in all three crystal structures: wurtzite, zinc blende, and rocksalt. Using the new pair potential we have studied the pressure-induced phase transition from the fourfold-coordinate wurtzite structure to the sixfold-coordinate rocksalt structure. The pressure transformation and the equation of state are in good agreement with experimental observations. Using the dispersion term in our pair potential we have also calculated the Hamaker constant for cadmium selenide within the framework of the original microscopic approach due to Hamaker. The results indicate that for ionic materials many-body terms that are included in the Lifshitz theory are well captured by the simple pair potential.
Li, Hongkun; Zhang, Xuefeng; Xu, Fujian
2013-01-01
Centrifugal compressors are a key piece of equipment for modern production. Among the components of the centrifugal compressor, the impeller is a pivotal part as it is used to transform kinetic energy into pressure energy. Blade crack condition monitoring and classification has been broadly investigated in the industrial and academic area. In this research, a pressure pulsation (PP) sensor arranged in close vicinity to the crack area and the corresponding casing vibration signals are used to monitor blade crack information. As these signals cannot directly demonstrate the blade crack, the method employed in this research is based on the extraction of weak signal characteristics that are induced by blade cracking. A method for blade crack classification based on the signals monitored by using a squared envelope spectrum (SES) is presented. Experimental investigations on blade crack classification are carried out to verify the effectiveness of this method. The results show that it is an effective tool for blade crack classification in centrifugal compressors. PMID:24051521
NASA Astrophysics Data System (ADS)
Mueller, H. J.; Schilling, F. R.; Lauterjung, J.; Lathe, C.
2001-12-01
The high pressure SiO2-polymorph coesite seems to be an important mineral in the subduction process including crustal material (Chopin, 1984; Schreyer, 1995). The quartz to coesite transition is thus of fundamental importance to understand the processes within a subducting crust. Furthermore, the nature of the quartz to coesite transition is discussed controversially, because high pressure XRD-studies suggest an intermediate phase during the transformation process (Zinn et al., 1997). For the combined determination of elastic properties and structure a cubic multi-anvil high pressure apparatus (MAX80) was used. For the maximum sample volume of 20 mm3 the pressure limit is about 7GPa. The pressure is measured by use of NaCl as an internal pressure marker with calibrated PVT-data. The maximum temperature of about 2,000K is generated by an internal graphite heater and controlled by a thermocouple. The synchrotron beam (100x100 microns) is guided by a collimator through the sample between the anvils. For energy-dispersive X-ray diffraction, a Ge-solid state detector analyses the diffracted white beam at a fixed angle. The compressional and shear wave velocities were determined simultaneously by ultrasonic interferometry inside MAX80. Two of the six anvils are equipped with overtone polished lithium niobate transducers at their rear side, outside the volume under pressure, for generation and detection of ultrasonic waves between 10 and 60 MHz. Different buffer - reflector combinations and transducer arrangements were used to optimize the critical interference between both sample echoes. Therefore MAX80 is equipped for asymmetrical and symmetrical interferometric set-ups, i.e. compressional and shear waves are generated from the same or from two anvils, opposite to each other. We used for our transient measurements 3 natural fine-grained quartzites from Turkey and Germany. As a first step the pressure was increased gradually up to 4GPa at ambient temperature. At each pressure Vp and Vs was measured by ultrasonic interferometry. After reaching a given pressure, temperature was increased. At 4.5GPa and 800\\deg C the phase transition to coesite took place in less than 2 minutes. The fast kinetic of transformation was observed by synchrotron radiation. The compressional wave velocity increased by 30% and the shear wave velocity by 10% during the phase transition. The kinetic of the transition was varied by choosing different pressure and temperature conditions. The transformation with lower kinetic was studied in detail by XRD and ultrasonic interferometry. At 4.2 GPa the transformation could not be observed even above 950\\deg C. At 4.5 GPa and 750\\deg C the transition stopped at about 50% transformation, but transforms complete while increasing temperature to 800\\deg C. After the phase transition monitored by X-ray scattering the sample was quenched and Vp and Vs of coesite was measured at ambient temperatures up to the maximum pressure. Small differences in grain size, shape and in minor graphite contents did not change systematically the PT-conditions and kinetics. In addition to the kinetic and change of elastic properties the pressure and temperature derivatives of elastic properties of coesite will be presented.\\Chopin, C., Contr. Min. Petrol., 86 (1984), 107-118\\Schreyer, W., J. Geophys. Res., 100 (1995), 8,353-8,366\\Zinn P., Lauterjung J., Wirth R. & Hinze E. Zeitschrift für Kristallographie, 212 (1997), 691-698.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamali, K.; Ravindran, T.R., E-mail: trr@igcar.gov.in; Chandra Shekar, N.V.
2015-01-15
Raman spectroscopic and x-ray diffraction measurements on NaZr{sub 2}(PO{sub 4}){sub 3} were carried out up to 30 GPa at close intervals of pressure, revealing two structural phase transformations around 5 and 6.6 GPa. The second phase at 5.4 GPa is indexed to R3 space group similar to that of RbTi{sub 2}(PO{sub 4}){sub 3}. Bulk modulus decreases abruptly from 53 GPa (B′=4) to 36 GPa (B′=4) in the second phase above 5 GPa. The structure of the phase III at 8.2 GPa is indexed as orthorhombic similar to the case of high temperature phase of monoclinic LiZr{sub 2}(PO{sub 4}){sub 3}. Bulkmore » modulus of this phase III is found to be 65 GPa (B′=4), which is higher than that of the ambient phase. In high pressure Raman studies, modes corresponding to 72 and 112 cm{sup −1} soften in the ambient phase whereas around 5 GPa, the ones at 60, 105, 125 and 190 cm{sup −1} soften with pressure contributing negatively to overall thermal expansion. - Graphical abstract: High pressure study of NaZr{sub 2}(PO{sub 4}){sub 3} shows a reversible phase transition from R-3c to R3 structure at 5 GPa accompanied by an increase in compressibility signaling a polyhedral tilt transition. - Highlights: • NaZr{sub 2}(PO{sub 4}){sub 3} undergoes two reversible phase transitions at 5 and 6.7 GPa. • The transition at 5 is from rhombohedral R-3c to R3 structure. • Bulk modulus of NaZr{sub 2}(PO{sub 4}){sub 3} is lower than that for the isostructural RbTi{sub 2}(PO{sub 4}){sub 3.} • Compressibility increases with substitution of a smaller cation (Na). • Zr-translational and PO{sub 4} librational modes contribute to phase transition.« less
NASA Astrophysics Data System (ADS)
Parsard, Gregory G.
Boron carbide is a lightweight ceramic commonly used in applications requiring high hardness. At sufficiently high stresses, the material experiences a localized phase transformation (amorphization) which seemingly weakens its structure. Raman spectroscopy is used to distinguish these transformed regions from crystalline material based on the evolution of new peaks in collected Raman spectra. Vickers indentations of various loads were created at quasistatic and dynamic strain rates to trigger amorphization. The resulting imprints and subsurface regions were scanned with Raman spectroscopy to map amorphization intensity at several depths to generate three-dimensional representations of the amorphized zones, which were analyzed to determine the influence of load and strain rate upon amorphized zone characteristics. The square of amorphized zone depth beneath Vickers indentations increases linearly with load and shows little to no strain rate dependence. Sudden decreases in amorphization intensity at certain depths coincided with the presence of lateral cracks, suggesting that lateral cracks may lead to a loss of amorphized material during mechanical polishing. Experimental results were compared against finite element simulations to estimate critical values of stress and strain associated with amorphization. Raman spectra were also analyzed to determine the indentation-induced residual compressive pressure in crystalline boron carbide. In unstressed crystalline boron carbide, a peak exists near 1088 cm-1 which shifts to higher wavenumbers with the application of compressive pressure. The change in position of this crystalline peak was tracked across surfaces at various depths beneath the indentations and then converted into pressure using the piezospectroscopic coefficient of boron carbide. Residual compressive pressures on the order of gigapascals were found near the indentations, with stress relaxation near regions affected by radial cracks, spall, and graphitic inclusions. These measured residual compressive pressures were consistently higher than those predicted by finite element simulations at various loads, suggesting that amorphization, which was not accounted for by the simulations, may increase compressive residual stress in the crystalline material. Amorphization may cause affected regions to expand relative to their formerly crystalline state and exerting radial compressive forces upon the surrounding crystalline regions and circumferential tension along its boundary, thus promoting crack propagation within the amorphized region.
New structure of high-pressure body-centered orthorhombic Fe 2 SiO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki
2015-08-01
A structural change in Fe2SiO4 spinel (ringwoodite) has been found by synchrotron powder diffraction study and the structure of a new high-pressure phase was determined by Monte-Carlo simulation method and Rietveld profile fitting of X-ray diffraction data up to 64 GPa at ambient temperature. A transition from the cubic spinel structure to a body centered orthorhombic phase (I-Fe2SiO4) with space group Imma and Z = 4 was observed at approximately 34 GPa. The structure of I-Fe2SiO4 has two crystallographically independent FeO6 octahedra. Iron resides in two different sites of sixfold coordination: Fe1 and Fe2, which are arranged in layers parallelmore » to (101) and (011) and are very similar to the layers of FeO6 octahedra in the spinel structure. Silicon is located in the sixfold coordination in I-Fe2SiO4. The transformation to the new high-pressure phase is reversible under decompression at ambient temperature. A martensitic transformation of each slab of the spinel structure with translation vector Embedded Image generates the I-Fe2SiO4 structure. Laser heating of I-Fe2SiO4 at 1500 K results in a decomposition of the material to rhombohedral FeO and SiO2 stishovite. FeKβ X-ray emission measurements at high pressure up to 65 GPa show that the transition from a high spin (HS) to an intermediate spin (IS) state begins at 17 GPa in the spinel phase. The IS electron spin state is gradually enhanced with pressure. The Fe2+ ion at the octahedral site changes the ion radius under compression at the low spin, which results in the changes of the lattice parameter and the deformation of the octahedra of the spinel structure. The compression curve of the lattice parameter of the spinel is discontinuous at ~20 GPa. The spin transition induces an isostructural change.« less
Deformation of olivine during phase transformation to wadsleyite
NASA Astrophysics Data System (ADS)
Mohiuddin, A.; Girard, J.; Karato, S. I.
2017-12-01
The strength of subducting slabs in the transition zone is critical in controlling the style of mantle convection. However, rheological properties of a subducted slab are elusive: low temperatures of a slab would make slabs strong, but in many regions there is evidence of intense deformation of slabs in the transition zone. One potential cause of intense deformation of subducting slabs is grain size reduction and accompanied microstructural changes during phase transformation of olivine to its higher-pressure polymorphs. There have been no experimental studies to quantify the influence of grain-size evolution. In addition to grain size reduction, distribution of small grains during phase transformation governs the degree of weakening during phase transformation (for e.g. load bearing framework vs. inter-connected layered framework). We conducted laboratory studies on the size and spatial distribution of new grains of wadsleyite after the transformation from olivine. Our results under static conditions show that an interconnected microstructure develops during the initial stage of phase transformation and that the grain size of the interconnected phase (wadsleyite) depends on the temperature at which the phase transformation occurs (smaller grains at lower temperatures). Development of an interconnected microstructure may lead to strain localization in the weaker phase, i.e. the fine-grained interconnected network accommodates most of the strain and therefore weakening of the entire composite. We will test this model through a series of two synchrotron in-situ deformation experiments: (i) Olivine aggregate will be deformed during slow pressure increase from deep upper mantle pressure ( 10 GPa) to transition zone pressure ( 15 GPa) at a given temperature simulating the deformation of a slab penetrating into the transition zone (ii) olivine is partially transformed to wadsleyite in a multi anvil apparatus at Yale and will be deformed within the stability field where olivine and wadsleyite coexist. We will use the Rotational Drickamer Apparatus (RDA) at a synchrotron facility (Argonne National Lab, 6-BM-B beamline, white beam and x-ray radiography) and characterize the stresses acting on olivine and wadsleyite during such simulations. We plan to present our preliminary results.
Crystal grain growth at the α -uranium phase transformation in praseodymium
NASA Astrophysics Data System (ADS)
Cunningham, Nicholas C.; Velisavljevic, Nenad; Vohra, Yogesh K.
2005-01-01
Structural phase transformations under pressure are examined in praseodymium metal for the range 0-40GPa at ambient temperature. Pressure was generated with a diamond-anvil cell, and data were collected using high-resolution synchrotron x-ray diffraction and the image plate technique. The structural sequence double hexagonal close packed (dhcp)→face centered cubic (fcc)→distorted-fcc (d-fcc)→ α -uranium (α-U) is observed with increasing pressure. Rietveld refinement of all crystallographic phases provided confirmation of the hR24 structure for the d-fcc phase while the previously reported monoclinic phase between the d-fcc and the α-U phase was not confirmed. We observe dramatic crystal grain growth during the volume collapse concurrent with the symmetry-lowering transition to the α-U structure. No preferred orientation axis is observed, and the formation process for these large grains is expected to be via a nucleation and growth mechanism. An analogous effect in rare earth metal cerium suggests that the grain growth during transformation to the α-U structure is a common occurrence in f -electron metals at high pressures.
NASA Astrophysics Data System (ADS)
Opie, Saul
Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic strain rates and pressures. In particular, little stress-strain constitutive information at large strain rates and pressures is available for transient material phases formed at high pressures, and the continuum effect the phase transformation process has on the instability evolution. In this work, a phase-aware isotropic strength model is developed and partially validated with a novel RM-based instability experiment in addition to existing data from the literature. With the validated material model additional simulations are performed to provide insight into to the role that robust material constitutive behavior (e.g., pressure, temperature, rate dependence) has on RM instability and how RM instability experiments can be used to characterize and validated expected material behavior. For phase aware materials, particularly iron in this work, the simulations predict a strong dependence on the Atwood number that single phase materials do not have. At Atwood numbers close to unity, and pressures in the high pressure stability region, the high pressure phase dominates the RM evolution. However, at Atwood numbers close to negative one, the RM evolution is only weakly affected by the high-pressure phase even for shocks well above the phase transformation threshold. In addition to RM evolution this work looks at the closely related shock front perturbation evolution. Existing analytical models for isentropic processes in gases and liquids are modified for metal equation of states and plastic behavior for the first time. It is found that the presence of a volume collapsing phase transformation with increased pressure causes shock front perturbations to decay sooner, while plastic strength has the opposite effect which is significantly different from the effect viscosity has. These results suggest additional experimental setups to validate material models, or relevant material parameters that can be optimized for system design objectives, e.g., minimize feed through perturbations in inertial confinement fusion capsules.
Dong, Juncai; Zhu, Hailiang; Chen, Dongliang
2015-01-01
As a fundamental property of pressure-induced amorphization (PIA) in ice and ice-like materials (notably α-quartz), the occurrence of mechanical instability can be related to violation of Born criteria for elasticity. The most outstanding elastic feature of α-quartz before PIA has been experimentally reported to be the linear softening of shear modulus C44, which was proposed to trigger the transition through Born criteria B3. However, by using density-functional theory, we surprisingly found that both C44 and C66 in α-quartz exhibit strong nonlinearity under compression and the Born criteria B3 vanishes dominated by stiffening of C14, instead of by decreasing of C44. Further studies of archetypal quartz homeotypes (GeO2 and AlPO4) repeatedly reproduced the same elastic-hardening-driven mechanical instability, suggesting a universal feature of this family of crystals and challenging the long-standing idea that negative pressure derivatives of individual elastic moduli can be interpreted as the precursor effect to an intrinsic structural instability preceding PIA. The implications of this elastic anomaly in relation to the dispersive softening of the lowest acoustic branch and the possible transformation mechanism were also discussed. PMID:26099720
Dong, Juncai; Zhu, Hailiang; Chen, Dongliang
2015-06-23
As a fundamental property of pressure-induced amorphization (PIA) in ice and ice-like materials (notably α-quartz), the occurrence of mechanical instability can be related to violation of Born criteria for elasticity. The most outstanding elastic feature of α-quartz before PIA has been experimentally reported to be the linear softening of shear modulus C44, which was proposed to trigger the transition through Born criteria B3. However, by using density-functional theory, we surprisingly found that both C44 and C66 in α-quartz exhibit strong nonlinearity under compression and the Born criteria B3 vanishes dominated by stiffening of C14, instead of by decreasing of C44. Further studies of archetypal quartz homeotypes (GeO2 and AlPO4) repeatedly reproduced the same elastic-hardening-driven mechanical instability, suggesting a universal feature of this family of crystals and challenging the long-standing idea that negative pressure derivatives of individual elastic moduli can be interpreted as the precursor effect to an intrinsic structural instability preceding PIA. The implications of this elastic anomaly in relation to the dispersive softening of the lowest acoustic branch and the possible transformation mechanism were also discussed.
Particle-in-cell simulation study of a lower-hybrid shock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckmann, M. E.; Ynnerman, A.; Sarri, G.
2016-06-15
The expansion of a magnetized high-pressure plasma into a low-pressure ambient medium is examined with particle-in-cell simulations. The magnetic field points perpendicular to the plasma's expansion direction and binary collisions between particles are absent. The expanding plasma steepens into a quasi-electrostatic shock that is sustained by the lower-hybrid (LH) wave. The ambipolar electric field points in the expansion direction and it induces together with the background magnetic field a fast E cross B drift of electrons. The drifting electrons modify the background magnetic field, resulting in its pile-up by the LH shock. The magnetic pressure gradient force accelerates the ambientmore » ions ahead of the LH shock, reducing the relative velocity between the ambient plasma and the LH shock to about the phase speed of the shocked LH wave, transforming the LH shock into a nonlinear LH wave. The oscillations of the electrostatic potential have a larger amplitude and wavelength in the magnetized plasma than in an unmagnetized one with otherwise identical conditions. The energy loss to the drifting electrons leads to a noticeable slowdown of the LH shock compared to that in an unmagnetized plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, J. P.; Ye, G. Z.; Shahi, P.
The importance of electron-hole interband interactions is widely acknowledged for iron-pnictide superconductors with high transition temperatures (T c). However, high-T c superconductivity without hole carriers has been suggested in FeSe single-layer films and intercalated iron-selenides, raising a fundamental question whether iron pnictides and chalcogenides have different pairing mechanisms. Here, we study the properties of electronic structure in another high-T c phase induced by pressure in bulk FeSe from magneto-transport measurements and first-principles calculations. With increasing pressure, the low-T c superconducting phase transforms into high-T c phase, where we find the normal-state Hall resistivity changes sign from negative to positive, demonstratingmore » dominant hole carriers in striking contrast to other FeSe-derived high-T c systems. Moreover, the Hall coefficient is remarkably enlarged and the magnetoresistance exhibits anomalous scaling behaviours, evidencing strongly enhanced interband spin fluctuations in the high-T c phase. These results in FeSe highlight similarities with high-T c phases of iron pnictides, constituting a step toward a unified understanding of iron-based superconductivity.« less
Sun, J. P.; Ye, G. Z.; Shahi, P.; ...
2017-04-07
The importance of electron-hole interband interactions is widely acknowledged for iron-pnictide superconductors with high transition temperatures (T c). However, high-T c superconductivity without hole carriers has been suggested in FeSe single-layer films and intercalated iron-selenides, raising a fundamental question whether iron pnictides and chalcogenides have different pairing mechanisms. Here, we study the properties of electronic structure in another high-T c phase induced by pressure in bulk FeSe from magneto-transport measurements and first-principles calculations. With increasing pressure, the low-T c superconducting phase transforms into high-T c phase, where we find the normal-state Hall resistivity changes sign from negative to positive, demonstratingmore » dominant hole carriers in striking contrast to other FeSe-derived high-T c systems. Moreover, the Hall coefficient is remarkably enlarged and the magnetoresistance exhibits anomalous scaling behaviours, evidencing strongly enhanced interband spin fluctuations in the high-T c phase. These results in FeSe highlight similarities with high-T c phases of iron pnictides, constituting a step toward a unified understanding of iron-based superconductivity.« less
NASA Astrophysics Data System (ADS)
Rajaji, V.; Malavi, Pallavi S.; Yamijala, Sharma S. R. K. C.; Sorb, Y. A.; Dutta, Utpal; Guin, Satya N.; Joseph, B.; Pati, Swapan K.; Karmakar, S.; Biswas, Kanishka; Narayana, Chandrabhas
2016-10-01
We report the effect of strong spin orbit coupling inducing electronic topological and semiconductor to metal transitions on the thermoelectric material AgBiSe2 at high pressures. The synchrotron X-ray diffraction and the Raman scattering measurement provide evidence for a pressure induced structural transition from hexagonal (α-AgBiSe2) to rhombohedral (β-AgBiSe2) at a relatively very low pressure of around 0.7 GPa. The sudden drop in the electrical resistivity and clear anomalous changes in the Raman line width of the A1g and Eg(1) modes around 2.8 GPa was observed suggesting a pressure induced electronic topological transition. On further increasing the pressure, anomalous pressure dependence of phonon (A1g and Eg(1)) frequencies and line widths along with the observed temperature dependent electrical resistivity show a pressure induced semiconductor to metal transition above 7.0 GPa in β-AgBiSe2. First principles theoretical calculations reveal that the metallic character of β-AgBiSe2 is induced mainly due to redistributions of the density of states (p orbitals of Bi and Se) near to the Fermi level. Based on its pressure induced multiple electronic transitions, we propose that AgBiSe2 is a potential candidate for the good thermoelectric performance and pressure switches at high pressure.
Higuchi, Masaya; Takahashi, Masahiko; Tanaka, Yuetsu; Fujii, Masahiro
2014-12-01
Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion-induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapozhnikov, K.V.; Vetrov, V.V.; Pulnev, S.A.
1996-05-15
Internal friction (IF) during temperature-induced thermoelastic martensitic transformation (TMT) has been studied extensively, whereas IF behavior during stress-induced TMT has not attracted much attention so far. It is known that quasistatic flow stress may decrease under superimposition of an oscillatory stress in the case of dislocation plasticity (acoustoplastic or Blaha effect). Strain originating from the reversible TMT (so-called transformation pseudoelasticity), in contrast to the dislocation plastic strain, may be completely reversible, however, accompanied by macroscopic hysteresis. The existence of the pseudoelastic hysteresis is usually attributed to the presence of obstacles impeding the mobility of interfaces during stress-induced transformation. A numbermore » of theories also consider the mobility of interfaces as the main source of IF during TMT. As a consequence, one should expect certain interconnection between the ADIF during stress-induced TMT and the macroscopically observed hysteresis. Thus the purpose of present paper is to study in a wide oscillatory strain amplitude range the ADIF during stress-induced TMT and the effect of ultrasound on this mode of deformation.« less
Chen, Yuting; Chen, Jiajia; Yun, Lin; Xu, Longmei; Liu, Jiaxian; Xu, Yongchun; Yang, Hui; Liang, Hairong; Tang, Huanwen
2016-09-30
Hydroquinone (HQ), known as one of the metabolic products of benzene, causes a number of hematologic malignancies. The study evaluated the potential mechanism of Sirtuin 1 (SIRT1) in HQ-induced TK6 cell malignant transformation. The data of our study show that short term exposure of TK6 cells to HQ led to a decrease expression of SIRT1. Knockdown of SIRT1 sensitized to the HQ-induced apoptosis in vitro and increased the expression of p53, p21 and γ-H2AX. Furthermore, chronic HQ-treated (20μM once a week for 19 weeks) caused carcinogenic transformation and was confirmed by abnormal cell proliferation, matrix metalloproteinase 9(MMP9) and subcutaneous tumor formation in nude mice. SIRT1 increased KRAS expression, and decreased H3K9 and H3K18 acetylation, inhibited p53 signaling and the level of caspase-3 in HQ-induced transformation cells. Taken together, these data suggest that SIRT1 is involved in HQ-induced malignant transformation associated with suppressing p53 signaling and activation of KRAS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutz, Helmut; Reisbach, Gilbert; Schultheiss, Ute
The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) transforms cells activating signal transduction pathways such as NF-{kappa}B, PI3-kinase, or c-Jun N-terminal kinase (JNK). Here, we investigated the functional role of the LMP1-induced JNK pathway in cell transformation. Expression of a novel dominant-negative JNK1 allele caused a block of proliferation in LMP1-transformed Rat1 fibroblasts. The JNK-specific inhibitor SP600125 reproduced this effect in Rat1-LMP1 cells and efficiently interfered with proliferation of EBV-transformed lymphoblastoid cells (LCLs). Inhibition of the LMP1-induced JNK pathway in LCLs caused the downregulation of c-Jun and Cdc2, the essential G2/M cell cycle kinase, which was accompanied bymore » a cell cycle arrest of LCLs at G2/M phase transition. Moreover, SP600125 retarded tumor growth of LCLs in a xenograft model in SCID mice. Our data support a critical role of the LMP1-induced JNK pathway for proliferation of LMP1-transformed cells and characterize JNK as a potential target for intervention against EBV-induced malignancies.« less
NASA Technical Reports Server (NTRS)
Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)
1998-01-01
The detection of CF(x) (x=1-3) radicals in low pressure discharges using source gases such as CF4 and CHF3 is of importance to the understanding of their chemical structure and relevance in plasma based etching processes. These radicals are known to contribute to the formation of fluorocarbon polymer films, which affect the selectivity and anisotropy of etching. In this study, we present preliminary results of the quantitative measurement of trifluoromethyl radicals, CF3, in low pressure discharges. The discharge studied here is an inductively (transformer) coupled plasma (ICP) source in the GEC reference cell, operating on pure CF4 at pressures ranging from 10 - 100 mTorr, This plasma source generates higher electron number densities at lower operating pressures than obtainable with the parallel-plate capacitively coupled version of the GEC reference cell. Also, this expanded operating regime is more relevant to new generations of industrial plasma reactors being used by the microelectronics industry. Fourier transform infrared (FTIR) spectroscopy is employed to observe the absorption band of CF3 radicals in the electronic ground state X2Al in the region of 1233-1270/cm. The spectrometer is equipped with a high sensitivity HgCdTe (MCT) detector and has a fixed resolution of 0.125/cm. The CF3 concentrations are measured for a range of operating pressures and discharge power levels.
Stability of whole inactivated influenza virus vaccine during coating onto metal microneedles
Choi, Hyo-Jick; Bondy, Brian J.; Yoo, Dae-Goon; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.
2012-01-01
Immunization using a microneedle patch coated with vaccine offers the promise of simplified vaccination logistics and increased vaccine immunogenicity. This study examined the stability of influenza vaccine during the microneedle coating process, with a focus on the role of coating formulation excipients. Thick, uniform coatings were obtained using coating formulations containing a viscosity enhancer and surfactant, but these formulations retained little functional vaccine hemagglutinin (HA) activity after coating. Vaccine coating in a trehalose-only formulation retained about 40 – 50% of vaccine activity, which is a significant improvement. The partial viral activity loss observed in the trehalose-only formulation was hypothesized to come from osmotic pressure-induced vaccine destabilization. We found that inclusion of a viscosity enhancer, carboxymethyl cellulose, overcame this effect and retained full vaccine activity on both washed and plasma-cleaned titanium surfaces. The addition of polymeric surfactant, Lutrol® micro 68, to the trehalose formulation generated phase transformations of the vaccine coating, such as crystallization and phase separation, which was correlated to additional vaccine activity loss, especially when coating on hydrophilic, plasma-cleaned titanium. Again, the addition of a viscosity enhancer suppressed the surfactant-induced phase transformations during drying, which was confirmed by in vivo assessment of antibody response and survival rate after immunization in mice. We conclude that trehalose and a viscosity enhancer are beneficial coating excipients, but the inclusion of surfactant is detrimental to vaccine stability. PMID:23246470