Sample records for pressure phase transformations

  1. Alpha – omega and omega – alpha phase transformations in zirconium under hydrostatic pressure: A 3D mesoscale study

    DOE PAGES

    Yeddu, Hemantha Kumar; Zong, Hongxiang; Lookman, Turab

    2015-09-28

    Here, a three dimensional (3D) elastoplastic phase-field model is developed for modeling the hydrostatic pressure-induced alpha – omega phase transformation and the reverse phase transformation, i.e. omega – alpha, in zirconium (Zr). Plastic deformation and strain hardening of the material are also considered in the model. The microstructure evolution during both phase transformations is studied. The transformation start pressures at different temperatures are predicted and are plotted as a phase diagram. The effect of phase transformations on the mechanical properties of the material is also studied. The input data corresponding to pure Zr are acquired from experimental studies as wellmore » as by using the CALPHAD method. Our simulations show that three different omega variants form as laths. On release of pressure, reverse phase transformation initiates at lath boundaries. We observe that both phase transformations are martensitic in nature and also occur at the same pressure, i.e. little hysteresis. The transformation start pressures and the kinetics of the transformation predicted by our model are in good agreement with experimental results.« less

  2. Alpha – omega and omega – alpha phase transformations in zirconium under hydrostatic pressure: A 3D mesoscale study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeddu, Hemantha Kumar; Zong, Hongxiang; Lookman, Turab

    Here, a three dimensional (3D) elastoplastic phase-field model is developed for modeling the hydrostatic pressure-induced alpha – omega phase transformation and the reverse phase transformation, i.e. omega – alpha, in zirconium (Zr). Plastic deformation and strain hardening of the material are also considered in the model. The microstructure evolution during both phase transformations is studied. The transformation start pressures at different temperatures are predicted and are plotted as a phase diagram. The effect of phase transformations on the mechanical properties of the material is also studied. The input data corresponding to pure Zr are acquired from experimental studies as wellmore » as by using the CALPHAD method. Our simulations show that three different omega variants form as laths. On release of pressure, reverse phase transformation initiates at lath boundaries. We observe that both phase transformations are martensitic in nature and also occur at the same pressure, i.e. little hysteresis. The transformation start pressures and the kinetics of the transformation predicted by our model are in good agreement with experimental results.« less

  3. High pressure phase transformations revisited

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum theories, and (d) to couple experimental, theoretical, and computational studies of the behavior of a tested sample to extract information about fields of stress and strain tensors and concentration of high pressure phase, transformation criteria and kinetics. The ideal characterization should contain complete information which is required for simulation of the same experiments.

  4. High pressure phase transformations revisited.

    PubMed

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum theories, and (d) to couple experimental, theoretical, and computational studies of the behavior of a tested sample to extract information about fields of stress and strain tensors and concentration of high pressure phase, transformation criteria and kinetics. The ideal characterization should contain complete information which is required for simulation of the same experiments.

  5. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.

    2015-06-28

    Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops weremore » open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.« less

  6. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Lei; Ding, Xiangdong, E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk; Sun, Jun

    2016-07-18

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ωmore » transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.« less

  7. Multiple pathways in pressure-induced phase transition of coesite

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wu, Xuebang; Liang, Yunfeng; Liu, Changsong; Miranda, Caetano R.; Scandolo, Sandro

    2017-12-01

    High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture.

  8. Effect of impurity on high pressure behavior of nano indium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitnis, Abhishek, E-mail: abhishekchitnis87@gmail.com; Garg, Nandini; Mishra, A. K.

    2015-06-24

    Angle dispersive x-ray diffraction studies were carried out on a mixture of nano particles of indium titanate, indium oxide, and disordered TiO{sub 2} upto pressures of ∼ 45 GPa. Our studies show that indium titanate undergoes a partial decomposition to its constituent high pressure oxides. However, concomitantly a very small fraction of indium titanate transforms to a denser phase at ∼ 27.5 GPa. This transformation to new phase was found to be irreversible. At this pressure even cubic In{sub 2}O{sub 3} transformed to the In{sub 2}O{sub 3} (II) (iso-structural to Rh{sub 2}O{sub 3} (II)) phase, without any signature of themore » intermediate corundum phase. The high pressure In{sub 2}O{sub 3} (II) phase transforms to the corundum structure on release of pressure. These studies indicate that the presence of a large fraction of seed impurities could have facilitated the decomposition of indium titanate into its constituent oxides at the cost of its incomplete transformation to the high pressure denser phase.« less

  9. High-pressure transformation in the cobalt spinel ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blasco, J., E-mail: jbc@posta.unizar.es; Subías, G.; García, J.

    2015-01-15

    We report high pressure angle-dispersive x-ray diffraction measurements on Co{sub x}Fe{sub 3−x}O{sub 4} (x=1, 1.5, 1.75) spinels at room temperature up to 34 GPa. The three samples show a similar structural phase transformation from the cubic spinel structure to an analogous post-spinel phase at around 20 GPa. Spinel and post-spinel phases coexist in a wide pressure range (∼20–25 GPa) and the transformation is irreversible. The equation of state of the three cubic spinel ferrites was determined and our results agree with the data obtained in related oxide spinels showing the role of the pressure-transmitting medium for the accurate determination ofmore » the equation of state. Measurements releasing pressure revealed that the post-spinel phase is stable down to 4 GPa when it decomposes yielding a new phase with poor crystallinity. Later compression does not recover either the spinel or the post-spinel phases. This phase transformation induced by pressure explains the irreversible lost of the ferrimagnetic behavior reported in these spinels. - Graphical abstract: Pressure dependence of the unit cell volume per formula unit for Co{sub 1.5}Fe{sub 1.5}O{sub 4} spinel. Circles and squares stand for spinel and postspinel phases, respectively. Dark (open) symbols: determination upon compression (decompression). - Highlights: • The pressure induces similar phase transformation in Co{sub 3−x}Fe{sub x}O{sub 4} spinels (1≤x≤2). • The postspinel phases decompose after releasing pressure. • The irreversibility of this phase transformation explains the disappearance of magnetism in these spinels after applying pressure. • Accurate equation of state can be obtained up to 10 GPa using an alcohol mixture as pressure transmitting medium. • The equation of state suggests similar elastic properties for these spinels in this composition range.« less

  10. Multiple pathways in pressure-induced phase transition of coesite

    PubMed Central

    Liu, Wei; Wu, Xuebang; Liu, Changsong; Miranda, Caetano R.; Scandolo, Sandro

    2017-01-01

    High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture. PMID:29162690

  11. Phase transformation dependence on initial plastic deformation mode in Si via nanoindentation

    DOE PAGES

    Wong, Sherman; Haberl, Bianca; Williams, James S.; ...

    2016-09-30

    Silicon in its diamond-cubic phase is known to phase transform to a technologically interesting mixture of the body-centred cubic and rhombohedral phases under nanoindentation pressure. In this study, we demonstrate that during plastic deformation the sample can traverse two distinct pathways, one that initially nucleates a phase transformation while the other initially nucleates crystalline defects. These two pathways remain distinct even after sufficient pressure is applied such that both deformation mechanisms are present within the sample. Here, it is further shown that the indents that initially nucleate a phase transformation generate larger, more uniform volumes of the phase transformed materialmore » than indents that initially nucleate crystalline defects.« less

  12. Pressure-magnetic field induced phase transformation in Ni{sub 46}Mn{sub 41}In{sub 13} Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rama Rao, N. V., E-mail: nvrrao@dmrl.drdo.in; Manivel Raja, M.; Pandian, S.

    2014-12-14

    The effect of hydrostatic pressure and magnetic field on the magnetic properties and phase transformation in Ni{sub 46}Mn{sub 41}In{sub 13} Heusler alloy was investigated. Pressure (P)-magnetic field (H)-temperature (T) phase diagram has been constructed from experimental results. In the P–T contour of the phase diagram, the slope of the austenite-martensite phase boundary line appears positive (dT/dP > 0), while it appears negative (dT/dH < 0) in the H–T contour. The results revealed that pressure and magnetic field have opposite effect on phase stabilization. The combined effect of pressure and magnetic field on martensitic transition has led to two important findings: (i) pressure dependent shiftmore » of austenite start temperature (A{sub s}) is higher when larger field is applied, and (ii) field dependent shift of A{sub s} is lowered when a higher pressure is applied. The pressure and magnetic field dependent shift observed in the martensitic transformation has been explained on the basis of thermodynamic calculations. Curie temperature of the phases was found to increase with pressure at a rate of 0.6 K/kbar.« less

  13. Molecular dynamics simulation of shock-wave loading of copper and titanium

    NASA Astrophysics Data System (ADS)

    Bolesta, A. V.; Fomin, V. M.

    2017-10-01

    At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.

  14. The Investigation on Strain Strengthening Induced Martensitic Phase Transformation of Austenitic Stainless Steel: A Fundamental Research for the Quality Evaluation of Strain Strengthened Pressure Vessel

    NASA Astrophysics Data System (ADS)

    Li, Bo; Cai Ren, Fa; Tang, Xiao Ying

    2018-03-01

    The manufacture of pressure vessels with austenitic stainless steel strain strengthening technology has become an important technical means for the light weight of cryogenic pressure vessels. In the process of increasing the strength of austenitic stainless steel, strain can induce the martensitic phase transformation in austenite phase. There is a quantitative relationship between the transformation quantity of martensitic phase and the basic mechanical properties. Then, the martensitic phase variables can be obtained by means of detection, and the mechanical properties and safety performance are evaluated and calculated. Based on this, the quantitative relationship between strain hardening and deformation induced martensite phase content is studied in this paper, and the mechanism of deformation induced martensitic transformation of austenitic stainless steel is detailed.

  15. Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation

    DOE PAGES

    Ulvestad, A.; Welland, M. J.; Cha, W.; ...

    2017-01-16

    Crystallographic imperfections can significantly alter material properties and responses to external stimuli, including solute induced phase transformations and crystal growth and dissolution . Despite recent progress in imaging defects using both electron and x-ray techniques, in situ three-dimensional imaging studies of defect dynamics, necessary to understand and engineer nanoscale processes, remains challenging. Here, we report in situ three-dimensional imaging of defect dynamics during the hydriding phase transformation of individual palladium nanocrystals by Bragg Coherent Diffractive Imaging (BCDI) . During constant pressure experiments, we observed that the phase transformation begins after the nucleation of dislocations in large (300 nm) particles. Themore » 3D dislocation network shows that dislocations are close to the phase boundary. The 3D phase morphology resolved by BCDI suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than the core-shell model commonly assumed. We substantiate this conclusion using 3D phase field modeling and demonstrate how phase morphology affects the critical size for dislocation nucleation. We determine the size dependence of the transformation pressure for large (150-300 nm) palladium nanocrystals using variable pressure experiments. Our results reveal a pathway for solute induced structural phase transformations in nanocrystals and demonstrate BCDI as a novel method for understanding dislocation dynamics in phase transforming systems at the nanoscale.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulvestad, A.; Welland, M. J.; Cha, W.

    Crystallographic imperfections can significantly alter material properties and responses to external stimuli, including solute induced phase transformations and crystal growth and dissolution . Despite recent progress in imaging defects using both electron and x-ray techniques, in situ three-dimensional imaging studies of defect dynamics, necessary to understand and engineer nanoscale processes, remains challenging. Here, we report in situ three-dimensional imaging of defect dynamics during the hydriding phase transformation of individual palladium nanocrystals by Bragg Coherent Diffractive Imaging (BCDI) . During constant pressure experiments, we observed that the phase transformation begins after the nucleation of dislocations in large (300 nm) particles. Themore » 3D dislocation network shows that dislocations are close to the phase boundary. The 3D phase morphology resolved by BCDI suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than the core-shell model commonly assumed. We substantiate this conclusion using 3D phase field modeling and demonstrate how phase morphology affects the critical size for dislocation nucleation. We determine the size dependence of the transformation pressure for large (150-300 nm) palladium nanocrystals using variable pressure experiments. Our results reveal a pathway for solute induced structural phase transformations in nanocrystals and demonstrate BCDI as a novel method for understanding dislocation dynamics in phase transforming systems at the nanoscale.« less

  17. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    DOE PAGES

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; ...

    2017-05-25

    High pressure x-ray diffraction measurements reveal that the face-centered cubic (fcc) high-entropy alloy CrMnFeCoNi transforms martensitically to a hexagonal close-packed (hcp) phase at ~14 GPa. We attribute this to suppression of the local magnetic moments, destabilizing the fcc phase. Similar to fcc-to-hcp transformations in Al and the noble gases, this transformation is sluggish, occurring over a range of >40 GPa. But, the behavior of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures.

  18. Pressure-induced structural transformations in lanthanide titanates: La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, F.X., E-mail: zhangfx@umich.ed; Wang, J.W.; Lang, M.

    The structure of orthorhombic rare earth titanates of La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5}, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (axbx2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO{sub 5} polyhedra remain during the formationmore » of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations. - Graphical abstract: At high pressures, La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5} transform from the orthorhombic phase to an axbx2c superlattice of the orthorhombic structure and then to a hexagonal high-pressure phase. Display Omitted« less

  19. Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure.

    PubMed

    Salamat, Ashkan; McMillan, Paul F; Firth, Steven; Woodhead, Katherine; Hector, Andrew L; Garbarino, Gaston; Stennett, Martin C; Hyatt, Neil C

    2013-02-04

    There is interest in identifying novel materials for use in radioactive waste applications and studying their behavior under high pressure conditions. The mineral zirconolite (CaZrTi(2)O(7)) exists naturally in trace amounts in diamond-bearing deep-seated metamorphic/igneous environments, and it is also identified as a potential ceramic phase for radionuclide sequestration. However, it has been shown to undergo radiation-induced metamictization resulting in amorphous forms. In this study we probed the high pressure structural properties of this pyrochlore-like structure to study its phase transformations and possible amorphization behavior. Combined synchrotron X-ray diffraction and Raman spectroscopy studies reveal a series of high pressure phase transformations. Starting from the ambient pressure monoclinic structure, an intermediate phase with P2(1)/m symmetry is produced above 15.6 GPa via a first order transformation resulting in a wide coexistence range. Upon compression to above 56 GPa a disordered metastable phase III with a cotunnite-related structure appears that is recoverable to ambient conditions. We examine the similarity between the zirconolite behavior and the structural evolution of analogous pyrochlore systems under pressure.

  20. Pressure-induced phase transitions of exposed curved surface nano-TiO{sub 2} with high photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yanwei, E-mail: yanwei.huang@hpstar.ac.cn, E-mail: wangling@hpstar.ac.cn; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018; Chen, Fengjiao

    We report a unique phase transition in compressed exposed curved surface nano-TiO{sub 2} with high photocatalytic activity using in situ synchrotron X-ray diffraction and Raman Spectroscopy. High-pressure studies indicate that the anatase phase starts to transform into baddeleyite phase upon compression at 19.4 GPa, and completely transforms into the baddeleyite phase above 24.6 GPa. Upon decompression, the baddeleyite phase was maintained until the pressure was released to 6.4 GPa and then transformed into the α-PbO{sub 2} phase at 2.7 GPa. Together with the results of high-resolution transmission electron microscopy and the pressure-volume relationship, this phase transition's characteristics during the compression-decompression cycle demonstrate that themore » truncated biconic morphology possessed excellent stability. This study may provide an insight to the mechanisms of stability for high photocatalytic activity of nano-TiO{sub 2}.« less

  1. Titanium α-ω phase transformation pathway and a predicted metastable structure

    DOE PAGES

    Zarkevich, Nickolai A.; Johnson, Duane D.

    2016-01-15

    A titanium is a highly utilized metal for structural lightweighting and its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We also find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.

  2. Phase transformation pathways of ultrafast-laser-irradiated Ln2O3 (Ln =Er -Lu )

    NASA Astrophysics Data System (ADS)

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; Solomon, Jonathan M.; Asta, Mark; Mao, Wendy L.; Yalisove, Steven M.; Ewing, Rodney C.

    2018-01-01

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln2O3 (Ln =Er -Lu ), and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln =Tm -Lu , consistent with the material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln =Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.

  3. Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less

  4. Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )

    DOE PAGES

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; ...

    2018-01-10

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less

  5. A 2 TiO 5 (A = Dy, Gd, Er, Yb) at High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sulgiye; Rittman, Dylan R.; Tracy, Cameron L.

    The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, and Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates, and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal and cubic), respectively. All samples undergo irreversible high pressure phase transformations, but with different onset pressures depending on the initial structure. While individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressuremore » range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ~ 21 GPa, followed by Im-3m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (~ 55 GPa) reached, indicating a kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high pressure cubic X-type phase (Im-3m) is confirmed using highresolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.« less

  6. In situ 3D-X-ray diffraction tracking of individual grains of olivine during high-pressure/ high-temperature phase transitions

    NASA Astrophysics Data System (ADS)

    Rosa, A. D.; Merkel, S.; Ghosh, S.; Hilairet, N.; Perrillat, J.; Mezouar, N.; Vaughan, G.

    2013-12-01

    The series of phase transitions between olivine, wadsleyite and ringwoodite play an essential role for large scale dynamical processes in the Earth mantle. Detailed knowledge of the microscopic mechanism at the origin of these high-pressure and high-temperature phase transformations is useful to connect global seismic observations and geodynamics. Indeed, the textures of these phases can be induced either during mantle flow or during the phase transformations and they greatly affect the characteristics of seismic wave propagation. Here, we present a new design of diamond anvil cell experiments to collect three-dimensional diffraction images and track individual grains inside a polycristalline sample at high pressure and high temperature. The instrumentation includes a new resistively heated diamond anvil cell developed at beamline ID27 of the ESRF which provided stable and homogenous temperature condition over more than 24 hours. In our experiments, the pressure is first increased up to 12 GPa at a constant temperature of T = 800 K. The temperature is then further increased to 1300 K to reach the stability field of the high-pressure polymorph. Upon further compression the transformation of olivine to its high-pressure polymorph is successfully monitored. At each pressure-temperature step and while the sample is transforming the crystallographic parameters, the orientations and positions of grains within the sample are tracked in situ using three-dimensional X-ray diffraction. This will provide important information on the micromechanical properties of olivine including orientation statistics, orientation relations between parent and daughter phases, and transformation textures at different stages of the phase transition. This in turn will help in interpreting the geophysical observations. Details of the experimental and analytical approach used in this study will be given.

  7. Phase transformation in tantalum under extreme laser deformation

    DOE PAGES

    Lu, C. -H.; Hahn, E. N.; Remington, B. A.; ...

    2015-10-19

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centeredmore » cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. In conclusion, molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).« less

  8. Phase Transformation in Tantalum under Extreme Laser Deformation

    PubMed Central

    Lu, C.-H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.

    2015-01-01

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear). PMID:26478106

  9. Pressure Induced Phase Transformations of Silica Polymorphs and Glasses

    NASA Astrophysics Data System (ADS)

    Cagin, Tahir; Demiralp, Ersan; Goddard, William A., III

    1998-03-01

    Silica, SiO_2, is one of the most widely studied substance, and it has some complex and unusual properties. We have used a recently developed 2-body interaction force field (E. Demiralp, T. Cagin, W.A. Goddard, III, unpublished.) to study the structural phase transformations in silica under various pressure loading conditions. The specific transformations we studied are α-quartz to stishovite, coesite to stishovite and fused glass to stishovite-like dense, a dominantly six-coordinated glassy phase. Molecular dynamics simulations are performed under the constant loading rates ranging from 0.1 GPa/ps to 2.0 GPa/ps, pressures upto 100 GPa and at temperatures 300, 500, 700 and 900 K. We observe the crystal to crystal transformations to occur reconstructively, whereas it occurs in a smooth and displacive manner from glass to a stishovite-like phase confirming earlier conjectures. (E.M. Stolper and T.J. Ahrens, Geophys. Res. Let.) 14, 1231 (1987). To elucidate the shock loading experiments, we studied the dependence of transition pressure on the loading rate and the temperature. To assess the hysterisis effect we also studied the unloading behavior of each transformation.

  10. Heating- and pressure-induced transformations in amorphous and hexagonal ice: A computer simulation study using the TIP4P/2005 model

    NASA Astrophysics Data System (ADS)

    Engstler, Justin; Giovambattista, Nicolas

    2017-08-01

    We characterize the phase behavior of glassy water by performing extensive out-of-equilibrium molecular dynamics simulations using the TIP4P/2005 water model. Specifically, we study (i) the pressure-induced transformations between low-density (LDA) and high-density amorphous ice (HDA), (ii) the pressure-induced amorphization (PIA) of hexagonal ice (Ih), (iii) the heating-induced LDA-to-HDA transformation at high pressures, (iv) the heating-induced HDA-to-LDA transformation at low and negative pressures, (v) the glass transition temperatures of LDA and HDA as a function of pressure, and (vi) the limit of stability of LDA upon isobaric heating and isothermal decompression (at negative pressures). These transformations are studied systematically, over a wide range of temperatures and pressures, allowing us to construct a P-T phase diagram for glassy TIP4P/2005 water. Our results are in qualitative agreement with experimental observations and with the P-T phase diagram obtained for glassy ST2 water that exhibits a liquid-liquid phase transition and critical point. We also discuss the mechanism for PIA of ice Ih and show that this is a two-step process where first, the hydrogen-bond network (HBN) is distorted and then the HBN abruptly collapses. Remarkably, the collapse of the HB in ice Ih occurs when the average molecular orientations order, a measure of the tetrahedrality of the HBN, is of the same order as in LDA, suggesting a common mechanism for the LDA-to-HDA and Ih-to-HDA transformations.

  11. Heating- and pressure-induced transformations in amorphous and hexagonal ice: A computer simulation study using the TIP4P/2005 model.

    PubMed

    Engstler, Justin; Giovambattista, Nicolas

    2017-08-21

    We characterize the phase behavior of glassy water by performing extensive out-of-equilibrium molecular dynamics simulations using the TIP4P/2005 water model. Specifically, we study (i) the pressure-induced transformations between low-density (LDA) and high-density amorphous ice (HDA), (ii) the pressure-induced amorphization (PIA) of hexagonal ice (I h ), (iii) the heating-induced LDA-to-HDA transformation at high pressures, (iv) the heating-induced HDA-to-LDA transformation at low and negative pressures, (v) the glass transition temperatures of LDA and HDA as a function of pressure, and (vi) the limit of stability of LDA upon isobaric heating and isothermal decompression (at negative pressures). These transformations are studied systematically, over a wide range of temperatures and pressures, allowing us to construct a P-T phase diagram for glassy TIP4P/2005 water. Our results are in qualitative agreement with experimental observations and with the P-T phase diagram obtained for glassy ST2 water that exhibits a liquid-liquid phase transition and critical point. We also discuss the mechanism for PIA of ice I h and show that this is a two-step process where first, the hydrogen-bond network (HBN) is distorted and then the HBN abruptly collapses. Remarkably, the collapse of the HB in ice I h occurs when the average molecular orientations order, a measure of the tetrahedrality of the HBN, is of the same order as in LDA, suggesting a common mechanism for the LDA-to-HDA and I h -to-HDA transformations.

  12. Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms.

    PubMed

    Levitas, Valery I; Javanbakht, Mahdi

    2014-01-07

    There are two main challenges in the discovery of new high pressure phases (HPPs) and transforming this discovery into technologies: finding conditions to synthesize new HPPs and finding ways to reduce the phase transformation (PT) pressure to an economically reasonable level. Based on the results of pressure-shear experiments in the rotational diamond anvil cell (RDAC), superposition of plastic shear on high pressure is a promising way to resolve these problems. However, physical mechanisms behind these phenomena are not yet understood. Here, we elucidate generic mechanisms of coupled nucleation and evolution of dislocation and HPP structures in the nanograin material under pressure and shear utilizing the developed advanced phase field approach (PFA). Dislocations are generated at the grain boundaries and are densely piled up near them, creating a strong concentrator of the stress tensor. Averaged shear stress is essentially larger in the nanograin material due to grain boundary strengthening. This leads to the increase in the local thermodynamic driving force for PT, which allows one to significantly reduce the applied pressure. For all cases, the applied pressure is 3-20 times lower than the PT pressure and 2-12.5 times smaller than the phase equilibrium pressure. Interaction between nuclei leads sometimes to their coalescence and growth of the HPP away from stress concentrators. Plasticity plays a dual role: in addition to creating stress concentrators, it may relax stresses at other concentrators, thus competing with PT. Some ways to optimize the loading parameters have been found that lead to methods for controlling PT. Since such a local stress tensor with high shear stress component cannot be created without plastic deformations, this may lead to new transformation paths and phases, which are hidden during pressure induced PTs.

  13. Shock-induced transformations in the system NaAlSiO4-SiO2 - A new interpretation

    NASA Technical Reports Server (NTRS)

    Sekine, Toshimori; Ahrens, Thomas J.

    1992-01-01

    New internally consistent interpretations of the phases represented by the high pressure phase shock wave data for an albite-rich rock, jadeite, and nepheline in the system NaAlSiO4-SiO2, are obtained using the results of static high pressure investigations, and the recent discovery of the hollandite phase in a shocked meteorite. We conclude that nepheline transforms directly to the calcium ferrite structure, whereas albite transforms possibly to the hollandite structure. Shock Hugoniots for the other plagioclase and alkali feldspars also indicate that these transform to hollandite structures. The pressure-volume data at high pressure could alternatively represent the compression of an amorphous phase. Moreover, the shock Hugoniot data are expected to reflect the properties of the melt above shock stresses of 60-80 GPa. The third order Birch-Murnaghan equation of state parameters are given for the calcium ferrite type NaAlSiO4 and for albite-rich, orthoclase-rich, and anorthite-rich hollandites.

  14. High-pressure phase transitions, amorphization, and crystallization behaviors in Bi2Se3.

    PubMed

    Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Gu, Genda

    2013-03-27

    The phase transition, amorphization, and crystallization behaviors of the topological insulator bismuth selenide (Bi2Se3) were discovered by performing in situ high-pressure angle-dispersive x-ray diffraction experiments during an increasing, decreasing, and recycling pressure process. In the compression process, Bi2Se3 transforms from the original rhombohedral structure (phase I(A)) to a monoclinic structure (phase II) at about 10.4 GPa, and further to a body-centered tetragonal structure (phase III) at about 24.5 GPa. When releasing pressure to ambient conditions after the complete transformation from phase II to III, Bi2Se3 becomes an amorphous solid (AM). In the relaxation process from this amorphous state, Bi2Se3 starts crystallizing into an orthorhombic structure (phase I(B)) about five hours after releasing the pressure to ambient. A review of the pressure-induced phase transition behaviors of A2B3-type materials composed from the V and VI group elements is presented.

  15. Phase transformations in amorphous fullerite C60 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Borisova, P. A.; Blanter, M. S.; Brazhkin, V. V.; Somenkov, V. A.; Filonenko, V. P.

    2015-08-01

    First phase transformations of amorphous fullerite C60 at high temperatures (up to 1800 K) and high pressures (up to 8 GPa) have been investigated and compared with the previous studies on the crystalline fullerite. The study was conducted using neutron diffraction and Raman spectroscopy. The amorphous fullerite was obtained by ball-milling. We have shown that under thermobaric treatment no crystallization of amorphous fullerite into С60 molecular modification is observed, and it transforms into amorphous-like or crystalline graphite. A kinetic diagram of phase transformation of amorphous fullerite in temperature-pressure coordinates was constructed for the first time. Unlike in crystalline fullerite, no crystalline polymerized phases were formed under thermobaric treatment on amorphous fullerite. We found that amorphous fullerite turned out to be less resistant to thermobaric treatment, and amorphous-like or crystalline graphite were formed at lower temperatures than in crystalline fullerite.

  16. Exploration of phase transition in ThS under pressure: An ab-initio investigation

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.

    2018-04-01

    The ab-initio total energy calculations have been performed in thorium sulphide (ThS) to explore its high pressure phase stability. Our calculations predict a phase transformation from ambient rocksalt type structure (B1 phase) to a rhombohedral structure (R-3m phase) at ˜ 15 GPa and subsequently R-3m phase transforms to CsCl type structure (B2 phase) at ˜ 45 GPa. The first phase transition has been identified as second order type; whereas, the second transition is of first order type with volume discontinuity of 6.5%. The predicted high pressure R-3m phase is analogous to the experimentally observed hexagonal (distorted fcc) phase (Benedict et al., J. Less-Common Met., 1984) above 20 GPa. Further, using these calculations we have derived the equation of state which has been utilized to determine various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus at ambient conditions.

  17. Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study

    NASA Astrophysics Data System (ADS)

    Kürkçü, Cihan; Merdan, Ziya; Öztürk, Hülya

    2016-12-01

    We have studied the structural properties of the antiferromagnetic NiF2 tetragonal structure with P42/ mnm symmetry using density functional theory (DFT) under rapid hydrostatic pressure up to 400 GPa. For the exchange correlation energy we used the local density approximation (LDA) of Ceperley and Alder (CA). Two phase transformations are successfully observed through the simulations. The structures of XF2-type compounds crystallize in rutile-type structure. NiF2 undergoes phase transformations from the tetragonal rutile-type structure with space group P42/ mnm to orthorhombic CaCl2-type structure with space group Pnnm and from this orthorhombic phase to monoclinic structure with space group C2/ m at 152 GPa and 360 GPa, respectively. These phase changes are also studied by total energy and enthalpy calculations. According to these calculations, we perdict these phase transformations at about 1.85 and 30 GPa.

  18. On the Stability of c-BN-Reinforcing Particles in Ceramic Matrix Materials

    PubMed Central

    Wolfrum, Anne-Kathrin; Michaelis, Alexander; Herrmann, Mathias

    2018-01-01

    Cubic boron nitride (c-BN) composites produced at high pressures and temperatures are widely used as cutting tool materials. The advent of new, effective pressure-assisted densification methods, such as spark plasma sintering (SPS), has stimulated attempts to produce these composites at low pressures. Under low-pressure conditions, however, transformation of c-BN to the soft hexagonal BN (h-BN) phase can occur, with a strong deterioration in hardness and wear. In the present work, the influence of secondary phases (B2O3, Si3N4, and oxide glasses) on the transformation of c-BN was studied in the temperature range between 1100 °C and 1575 °C. The different heat treated c-BN particles and c-BN composites were analyzed by SEM, X-ray diffraction, and Raman spectroscopy. The transformation mechanism was found to be kinetically controlled solution–diffusion–precipitation. Given a sufficiently low liquid phase viscosity, the transformation could be observed at temperatures as low as 1200 °C for the c-BN–glass composites. In contrast, no transformation was found at temperatures up to 1575 °C when no liquid oxide phase is present in the composite. The results were compared with previous studies concerning the c-BN stability and the c-BN phase diagram. PMID:29414847

  19. Nanoindentation hardness and atomic force microscope imaging studies of pressure-quenched zirconium metal

    NASA Astrophysics Data System (ADS)

    Catledge, Shane A.; Spencer, Philemon T.; Vohra, Yogesh K.

    2000-11-01

    We have carried out mechanical property measurements on zirconium metal compressed in a diamond anvil cell to 19 GPa at room temperature with subsequent quenching to room pressure. The irreversible transformation from the ambient hexagonal-close-packed phase to the simple hexagonal ω phase (AlB2 structure) is confirmed by synchrotron energy dispersive x-ray diffraction followed by nanoindentation of the pressure-quenched sample. We document an 80% increase in hardness as a consequence of the pressure-induced transformation to the ω phase at room temperature. This is a large increase for a metallic phase transformation and can be attributed to the presence of sp2-hybrid bonds forming graphite-like nets in the (0001) plane of the AlB2 structure. Atomic force microscopy of the indents shows that a plastic deformation of 2 μm in depth was achieved with a force of 200 mN.

  20. High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Nakano, S.; Nakayama, A.; Kikegawa, T.

    2008-07-01

    Lithium borohydride (LiBH4) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P42/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH4.

  1. Diffraction studies of the high pressure phases of GaAs and GaP

    NASA Technical Reports Server (NTRS)

    Baublitz, M., Jr.; Ruoff, A. L.

    1982-01-01

    High pressure structural phase transitions of GaAs and GaP have been studied by energy dispersive X-ray diffraction with the radiation from the Cornell High Energy Synchrotron Source. GaAs began to transform at 172 + or - 7 kbar to an orthorhombic structure possibly belonging to space group Fmmm. GaP transformed to a tetragonal beta-Sn type phase at 215 + or - 8 kbar. Although pressure transmitting media were used to minimize shear stresses in the specimens, the high pressure diffraction results were interpreted as showing evidence for planar defects in the specimens.

  2. Exploring the coordination change of vanadium and structure transformation of metavanadate MgV2O6 under high pressure

    PubMed Central

    Tang, Ruilian; Li, Yan; Xie, Shengyi; Li, Nana; Chen, Jiuhua; Gao, Chunxiao; Zhu, Pinwen; Wang, Xin

    2016-01-01

    Raman spectroscopy, synchrotron angle-dispersive X-ray diffraction (ADXRD), first-principles calculations, and electrical resistivity measurements were carried out under high pressure to investigate the structural stability and electrical transport properties of metavanadate MgV2O6. The results have revealed the coordination change of vanadium ions (from 5+1 to 6) at around 4 GPa. In addition, a pressure-induced structure transformation from the C2/m phase to the C2 phase in MgV2O6 was detected above 20 GPa, and both phases coexisted up to the highest pressure. This structural phase transition was induced by the enhanced distortions of MgO6 octahedra and VO6 octahedra under high pressure. Furthermore, the electrical resistivity decreased with pressure but exhibited different slope for these two phases, indicating that the pressure-induced structural phase transitions of MgV2O6 was also accompanied by the obvious changes in its electrical transport behavior. PMID:27924843

  3. A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Li, J. L.; Liu, P.; Yang, G. W.

    2014-11-01

    The investigation of carbon allotropes such as graphite, diamond, fullerenes, nanotubes and carbon onions and mechanisms that underlie their mutual phase transformation is a long-standing problem of great fundamental importance. New diamond (n-diamond) is a novel metastable phase of carbon with a face-centered cubic structure; it is called ``new diamond'' because many reflections in its electron diffraction pattern are similar to those of diamond. However, producing n-diamond from raw carbon materials has so far been challenging due to n-diamond's higher formation energy than that of diamond. Here, we, for the first time, demonstrate a new phase transformation path from nanodiamond to n-diamond via an intermediate carbon onion in the unique process of laser ablation in water, and establish that water plays a crucial role in the formation of n-diamond. When a laser irradiates colloidal suspensions of nanodiamonds at ambient pressure and room temperature, nanodiamonds are first transformed into carbon onions serving as an intermediate phase, and sequentially carbon onions are transformed into n-diamonds driven by the laser-induced high temperature and high pressure from the carbon onion as a nanoscaled temperature and pressure cell upon the process of laser irradiation in a liquid. This phase transformation not only provides new insight into the physical mechanism involved, but also offers one suitable opportunity for breaking controllable pathways between n-diamond and carbon allotropes such as diamond and carbon onions.The investigation of carbon allotropes such as graphite, diamond, fullerenes, nanotubes and carbon onions and mechanisms that underlie their mutual phase transformation is a long-standing problem of great fundamental importance. New diamond (n-diamond) is a novel metastable phase of carbon with a face-centered cubic structure; it is called ``new diamond'' because many reflections in its electron diffraction pattern are similar to those of diamond. However, producing n-diamond from raw carbon materials has so far been challenging due to n-diamond's higher formation energy than that of diamond. Here, we, for the first time, demonstrate a new phase transformation path from nanodiamond to n-diamond via an intermediate carbon onion in the unique process of laser ablation in water, and establish that water plays a crucial role in the formation of n-diamond. When a laser irradiates colloidal suspensions of nanodiamonds at ambient pressure and room temperature, nanodiamonds are first transformed into carbon onions serving as an intermediate phase, and sequentially carbon onions are transformed into n-diamonds driven by the laser-induced high temperature and high pressure from the carbon onion as a nanoscaled temperature and pressure cell upon the process of laser irradiation in a liquid. This phase transformation not only provides new insight into the physical mechanism involved, but also offers one suitable opportunity for breaking controllable pathways between n-diamond and carbon allotropes such as diamond and carbon onions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05246c

  4. Stresses and pressures at the quartz-to-coesite phase transformation in shear deformation experiments

    NASA Astrophysics Data System (ADS)

    Richter, B.; Stünitz, H.; Heilbronner, R.

    2016-11-01

    Coesite was found in quartz aggregates, experimentally deformed at confining pressures of 1.0-1.5 GPa and temperatures between 600°C and 900°C. The confining pressure (Pc) and, in most cases, the mean stress (σm) of the experiments were below those of the quartz-to-coesite phase transformation. Yet coesite formed when the maximum principal stress (σ1) was within the P-T range of the coesite stability field. In one sample, the euhedral coesite grains were corroded indicating that coesite started to transform back to quartz. It is inferred that this sample started to deform with σ1 above the quartz-to-coesite phase transformation and, with ongoing deformation, σ1 decreased to values in the quartz stability field due to strain weakening. In all cases, σ1 triggered the quartz-to-coesite reaction as well as the reverse reaction, suggesting that σ1 is the critical parameter for the quartz-to-coesite transformation—not Pc or σm. With progressive deformation, the coesite laths rotated toward the shear plane as more rigid particles with the sense of shear. In case of back reaction, new quartz grains exhibit no systematic crystallographic relationship with respect to old coesite. The experiments cover different degrees of pressure "overstepping," different temperatures, and different experimental durations at P and T, and deformation always enhances the reaction kinetics. The observation that σ1 is critical for a pressure-dependent phase transformation (also for reversals) poses questions for the thermodynamic treatment of such phase transformations.

  5. Pressure-induced structural phase transformation and superconducting properties of titanium mononitride

    NASA Astrophysics Data System (ADS)

    Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei

    2018-03-01

    In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.

    High pressure x-ray diffraction measurements reveal that the face-centered cubic (fcc) high-entropy alloy CrMnFeCoNi transforms martensitically to a hexagonal close-packed (hcp) phase at ~14 GPa. We attribute this to suppression of the local magnetic moments, destabilizing the fcc phase. Similar to fcc-to-hcp transformations in Al and the noble gases, this transformation is sluggish, occurring over a range of >40 GPa. But, the behavior of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures.

  7. Effects of Phase Transformations and Dynamic Material Strength on Hydrodynamic Instability Evolution in Metals

    NASA Astrophysics Data System (ADS)

    Opie, Saul

    Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic strain rates and pressures. In particular, little stress-strain constitutive information at large strain rates and pressures is available for transient material phases formed at high pressures, and the continuum effect the phase transformation process has on the instability evolution. In this work, a phase-aware isotropic strength model is developed and partially validated with a novel RM-based instability experiment in addition to existing data from the literature. With the validated material model additional simulations are performed to provide insight into to the role that robust material constitutive behavior (e.g., pressure, temperature, rate dependence) has on RM instability and how RM instability experiments can be used to characterize and validated expected material behavior. For phase aware materials, particularly iron in this work, the simulations predict a strong dependence on the Atwood number that single phase materials do not have. At Atwood numbers close to unity, and pressures in the high pressure stability region, the high pressure phase dominates the RM evolution. However, at Atwood numbers close to negative one, the RM evolution is only weakly affected by the high-pressure phase even for shocks well above the phase transformation threshold. In addition to RM evolution this work looks at the closely related shock front perturbation evolution. Existing analytical models for isentropic processes in gases and liquids are modified for metal equation of states and plastic behavior for the first time. It is found that the presence of a volume collapsing phase transformation with increased pressure causes shock front perturbations to decay sooner, while plastic strength has the opposite effect which is significantly different from the effect viscosity has. These results suggest additional experimental setups to validate material models, or relevant material parameters that can be optimized for system design objectives, e.g., minimize feed through perturbations in inertial confinement fusion capsules.

  8. Crystal grain growth at the α -uranium phase transformation in praseodymium

    NASA Astrophysics Data System (ADS)

    Cunningham, Nicholas C.; Velisavljevic, Nenad; Vohra, Yogesh K.

    2005-01-01

    Structural phase transformations under pressure are examined in praseodymium metal for the range 0-40GPa at ambient temperature. Pressure was generated with a diamond-anvil cell, and data were collected using high-resolution synchrotron x-ray diffraction and the image plate technique. The structural sequence double hexagonal close packed (dhcp)→face centered cubic (fcc)→distorted-fcc (d-fcc)→ α -uranium (α-U) is observed with increasing pressure. Rietveld refinement of all crystallographic phases provided confirmation of the hR24 structure for the d-fcc phase while the previously reported monoclinic phase between the d-fcc and the α-U phase was not confirmed. We observe dramatic crystal grain growth during the volume collapse concurrent with the symmetry-lowering transition to the α-U structure. No preferred orientation axis is observed, and the formation process for these large grains is expected to be via a nucleation and growth mechanism. An analogous effect in rare earth metal cerium suggests that the grain growth during transformation to the α-U structure is a common occurrence in f -electron metals at high pressures.

  9. High pressure–low temperature phase diagram of barium: Simplicity versus complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desgreniers, Serge; Tse, John S., E-mail: John.Tse@usask.ca; State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun

    2015-11-30

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that ofmore » complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.« less

  10. Pressure-induced Structural Transformations in LanthanideTitanates: La2TiO5 and Nd2TiO5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F Zhang; J Wang; M Lang

    The structure of orthorhombic rare earth titanates of La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5}, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (a x b x 2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO{sub 5} polyhedramore » remain during the formation of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations.« less

  11. Pressure-induced transformations in amorphous silicon: A computational study

    NASA Astrophysics Data System (ADS)

    Garcez, K. M. S.; Antonelli, A.

    2014-02-01

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  12. Pressure-induced structural transformations of the Zintl phase sodium silicide

    NASA Astrophysics Data System (ADS)

    Cabrera, Raúl Quesada; Salamat, Ashkan; Barkalov, Oleg I.; Leynaud, Olivier; Hutchins, Peter; Daisenberger, Dominik; Machon, Denis; Sella, Andrea; Lewis, Dewi W.; McMillan, Paul F.

    2009-09-01

    The high-pressure behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction to observe the onset of structural phase transformations and potential oligomerisation into anionic Si nanoclusters with extended dimensionality. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation above 15 GPa, suggesting the formation of Si-Si bonds with oxidation of the Si - species and reduction of Na + to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure.

  13. Thermal and structural alternations in CuAlMnNi shape memory alloy by the effect of different pressure applications

    NASA Astrophysics Data System (ADS)

    Canbay, Canan Aksu; Polat, Tercan

    2017-09-01

    In this work the effects of the applied pressure on the characteristic transformation temperatures, the high temperature order-disorder phase transitions, the variation in diffraction peaks and the surface morphology of the CuAlMnNi shape memory alloy was investigated. The evolution of the transformation temperatures was studied by differential scanning calorimetry (DSC) with different heating and cooling rates. The differential thermal analysis measurements were performed to obtain the ordered-disordered phase transformations from room temperature to 900 °C. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the applied pressure and also the applied pressure affected the thermodynamic parameters. The activation energy of the sample according to applied pressure values calculated by Kissinger method. The structural changes of the samples were studied by X-ray diffraction (XRD) measurements and by optical microscope observations at room temperature.

  14. Shock Condition Forensics and Cryptic Phase Transformations from Crystallographic Orientation Relationships in Zircon

    NASA Astrophysics Data System (ADS)

    Timms, N. E.; Erickson, T. M.; Cavosie, A. J.; Pearce, M. A.; Reddy, S. M.; Zanetti, M.; Tohver, E.; Schmieder, M.; Nemchin, A. A.; Wittmann, A.

    2016-08-01

    We present an approach to constrain pressure and temperature conditions during impact events involving identification of cryptic histories of phase transformations from orientation relationships in shocked zircon, linked to new P-T phase diagrams.

  15. Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC)

    NASA Astrophysics Data System (ADS)

    Halevy, Itzhak; Haroush, Shlomo; Eisen, Yosef; Silberman, Ido; Moreno, Dany; Hen, Amir; Winterrose, Mike L.; Ghose, Sanjit; Chen, Zhiqiang

    2010-04-01

    Annealed (H1) and cold-rolled (H2) HAVAR has been studied using high-pressure synchrotron X-ray diffraction. A structural phase transformation was discovered at ˜13 GPa at ambient temperature, transforming from m - 3 m (S.G. 225) to P 63/m m c (S.G. 194) symmetry. The transition was not reversible on pressure release. The low-pressure cubic phase was found to be more compressible than the high-pressure hexagonal phase. Conventional Mössbauer and NFS shows that the HAVAR is not magnetic at room temperature and no splitting is observed. The SQUID indicates a huge difference in the temperature dependence of the magnetic susceptibility between the cold Rolled HAVAR compared to the annealed HAVAR.

  16. Deformation of olivine during phase transformation to wadsleyite

    NASA Astrophysics Data System (ADS)

    Mohiuddin, A.; Girard, J.; Karato, S. I.

    2017-12-01

    The strength of subducting slabs in the transition zone is critical in controlling the style of mantle convection. However, rheological properties of a subducted slab are elusive: low temperatures of a slab would make slabs strong, but in many regions there is evidence of intense deformation of slabs in the transition zone. One potential cause of intense deformation of subducting slabs is grain size reduction and accompanied microstructural changes during phase transformation of olivine to its higher-pressure polymorphs. There have been no experimental studies to quantify the influence of grain-size evolution. In addition to grain size reduction, distribution of small grains during phase transformation governs the degree of weakening during phase transformation (for e.g. load bearing framework vs. inter-connected layered framework). We conducted laboratory studies on the size and spatial distribution of new grains of wadsleyite after the transformation from olivine. Our results under static conditions show that an interconnected microstructure develops during the initial stage of phase transformation and that the grain size of the interconnected phase (wadsleyite) depends on the temperature at which the phase transformation occurs (smaller grains at lower temperatures). Development of an interconnected microstructure may lead to strain localization in the weaker phase, i.e. the fine-grained interconnected network accommodates most of the strain and therefore weakening of the entire composite. We will test this model through a series of two synchrotron in-situ deformation experiments: (i) Olivine aggregate will be deformed during slow pressure increase from deep upper mantle pressure ( 10 GPa) to transition zone pressure ( 15 GPa) at a given temperature simulating the deformation of a slab penetrating into the transition zone (ii) olivine is partially transformed to wadsleyite in a multi anvil apparatus at Yale and will be deformed within the stability field where olivine and wadsleyite coexist. We will use the Rotational Drickamer Apparatus (RDA) at a synchrotron facility (Argonne National Lab, 6-BM-B beamline, white beam and x-ray radiography) and characterize the stresses acting on olivine and wadsleyite during such simulations. We plan to present our preliminary results.

  17. Phase transitions in samarium at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, W.Y.; Lin, T.H.; Dunn, K.J.

    1987-01-15

    The electrical behavior of Sm was studied for pressures up to 43 GPa and temperatures from 430 down to 2 K. The two Neel temperatures at ambient pressure are found to move toward each other as the pressure increases and finally merge into one at the dhcp phase. At room temperature, we found that Sm transforms to a new phase, presumably fcc, at about 12 GPa. The phase line between the dhcp and the new phase appears to tie with the cusp of the bcc phase line.

  18. Radiation-induced disorder in compressed lanthanide zirconates.

    PubMed

    Park, Sulgiye; Tracy, Cameron L; Zhang, Fuxiang; Park, Changyong; Trautmann, Christina; Tkachev, Sergey N; Lang, Maik; Mao, Wendy L; Ewing, Rodney C

    2018-02-28

    The effects of swift heavy ion irradiation-induced disordering on the behavior of lanthanide zirconate compounds (Ln 2 Zr 2 O 7 where Ln = Sm, Er, or Nd) at high pressures are investigated. After irradiation with 2.2 GeV 197 Au ions, the initial ordered pyrochlore structure (Fd3[combining macron]m) transformed to a defect-fluorite structure (Fm3[combining macron]m) in Sm 2 Zr 2 O 7 and Nd 2 Zr 2 O 7 . For irradiated Er 2 Zr 2 O 7 , which has a defect-fluorite structure, ion irradiation induces local disordering by introducing Frenkel defects despite retention of the initial structure. When subjected to high pressures (>29 GPa) in the absence of irradiation, all of these compounds transform to a cotunnite-like (Pnma) phase, followed by sluggish amorphization with further compression. However, if these compounds are irradiated prior to compression, the high pressure cotunnite-like phase is not formed. Rather, they transform directly from their post-irradiation defect-fluorite structure to an amorphous structure upon compression (>25 GPa). Defects and disordering induced by swift heavy ion irradiation alter the transformation pathways by raising the energetic barriers for the transformation to the high pressure cotunnite-like phase, rendering it inaccessible. As a result, the high pressure stability field of the amorphous phase is expanded to lower pressures when irradiation is coupled with compression. The responses of materials in the lanthanide zirconate system to irradiation and compression, both individually and in tandem, are strongly influenced by the specific lanthanide composition, which governs the defect energetics at extreme conditions.

  19. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    DOE PAGES

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; ...

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can bemore » attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.« less

  20. Enhanced densification under shock compression in porous silicon

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Thompson, Aidan P.; Vogler, Tracy J.

    2014-10-01

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.

  1. Phase transformations and equation of state of praseodymium metal to 103 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesnut, Gary N.; Vohra, Yogesh K.

    2000-08-01

    Pressure-induced structural phase transformations in a trivalent rare-earth metal praseodymium (Pr) were studied at room temperature in a diamond anvil cell to 103 GPa by energy dispersive x-ray diffraction using a synchrotron source. Our x-ray diffraction studies document the following crystal structure sequence: dhcp{yields}fcc{yields}distorted fcc(hR24 type){yields}monoclinic(C2/m){yields}{alpha}-uranium with increasing pressure. We measure a 16.7% volume collapse at the transition to the {alpha}-uranium phase at 20 GPa. The high-pressure {alpha}-uranium phase in Pr was found to be stable to the highest pressure of 103 GPa, which corresponds to a volume compression V/V{sub 0}=0.407. (c) 2000 The American Physical Society.

  2. Measurement of Body-Centered-Cubic Aluminum at 475 GPa [Observation of Body-Centered-Cubic Aluminum at 475 GPa

    DOE PAGES

    Polsin, D. N.; Fratanduono, D. E.; Rygg, J. R.; ...

    2017-10-27

    Nanosecond in situ x-ray diffraction and simultaneous velocimetry measurements were used to determine the crystal structure and pressure, respectively, of ramp compressed aluminum at stress states between 111 and 475 GPa. The solid-solid Al phase transformations, fcc-hcp and hcp-bcc, are observed at 216 ± 9 GPa and 321 ± 12 GPa, respectively, with the bcc phase persisting to 475 GPa. Here, this is the first in situ observation of the high-pressure bcc phase of Al. High-pressure texture of the hcp and bcc phases suggests close-packed or nearly close-packed lattice planes remain parallel through both transformations.

  3. Measurement of Body-Centered-Cubic Aluminum at 475 GPa [Observation of Body-Centered-Cubic Aluminum at 475 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsin, D. N.; Fratanduono, D. E.; Rygg, J. R.

    Nanosecond in situ x-ray diffraction and simultaneous velocimetry measurements were used to determine the crystal structure and pressure, respectively, of ramp compressed aluminum at stress states between 111 and 475 GPa. The solid-solid Al phase transformations, fcc-hcp and hcp-bcc, are observed at 216 ± 9 GPa and 321 ± 12 GPa, respectively, with the bcc phase persisting to 475 GPa. Here, this is the first in situ observation of the high-pressure bcc phase of Al. High-pressure texture of the hcp and bcc phases suggests close-packed or nearly close-packed lattice planes remain parallel through both transformations.

  4. Hydrogen storage and phase transformations in Mg-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Callini, E.; Pasquini, L.; Rude, L. H.; Nielsen, T. K.; Jensen, T. R.; Bonetti, E.

    2010-10-01

    Microstructure refinement and synergic coupling among different phases are currently explored strategies to improve the hydrogen storage properties of traditional materials. In this work, we apply a combination of these methods and synthesize Mg-Pd composite nanoparticles by inert gas condensation of Mg vapors followed by vacuum evaporation of Pd clusters. Irreversible formation of the Mg6Pd intermetallic phase takes place upon vacuum annealing, resulting in Mg/Mg6Pd composite nanoparticles. Their hydrogen storage properties are investigated and connected to the undergoing phase transformations by gas-volumetric techniques and in situ synchrotron radiation powder x-ray diffraction. Mg6Pd transforms reversibly into different Mg-Pd intermetallic compounds upon hydrogen absorption, depending on temperature and pressure. In particular, at 573 K and 1 MPa hydrogen pressure, the metal-hydride transition leads to the formation of Mg3Pd and Mg5Pd2 phases. By increasing the pressure to 5 MPa, the Pd-richer MgPd intermetallic is obtained. Upon hydrogen desorption, the Mg6Pd phase is reversibly recovered. These phase transformations result in a specific hydrogen storage capacity associated with Mg-Pd intermetallics, which attain the maximum value of 3.96 wt % for MgPd and influence both the thermodynamics and kinetics of hydrogen sorption in the composite nanoparticles.

  5. High pressure study of acetophenone azine

    NASA Astrophysics Data System (ADS)

    Tang, X. D.; Ding, Z. J.; Zhang, Z. M.

    2009-02-01

    High pressure Raman spectra of acetophenone azine (APA) have been measured up to 17.7 GPa with a diamond anvil cell. Two crystalline-to-crystalline phase transformations are found at pressures about 3.6 and 5.8 GPa. A disappearance of external modes and the C-H vibration at pressures higher than 8.7 GPa suggests that the sample undergoes a phase transition to amorphous or orientationally disordered (plastic) state, and the amorphization was completed at about 12.1 GPa. The disordered state is unstable and, then, a polymerization transformation reaction occurs with a further pressure increase. After the pressure has been released, the polymerization state can remain at the ambient condition, indicating that the virgin crystalline state is not recovered. The results show that the phenomenon underlying the pressure induced phase transition of APA may involve profound changes in the coordination environments of the symmetric aromatic azine.

  6. Hydrostatic, uniaxial, and triaxial compression tests on unpoled "Chem-prep" PZT 95/5-2Nb ceramic within temperature range of -55 to 75 degrees C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeuch, David Henry; Montgomery, Stephen Tedford; Lee, Moo Yul

    Sandia is currently developing a lead-zirconate-titanate ceramic 95/5-2Nb (or PNZT) from chemically prepared ('chem-prep') precursor powders. Previous PNZT ceramic was fabricated from the powders prepared using a 'mixed-oxide' process. The specimens of unpoled PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions within the temperature range of -55 to 75 C and pressures to 500 MPa. The objective of this experimental study was to obtain mechanical properties and phase relationships so that the grain-scale modeling effort can develop and test its models and codes using realistic parameters. The stress-strain behavior of 'chem-prep' PNZTmore » under different loading paths was found to be similar to that of 'mixed-oxide' PNZT. The phase transformation from ferroelectric to antiferroelectric occurs in unpoled ceramic with abrupt increase in volumetric strain of about 0.7 % when the maximum compressive stress, regardless of loading paths, equals the hydrostatic pressure at which the transformation otherwise takes place. The stress-volumetric strain relationship of the ceramic undergoing a phase transformation was analyzed quantitatively using a linear regression analysis. The pressure (P{sub T1}{sup H}) required for the onset of phase transformation with respect to temperature is represented by the best-fit line, P{sub T1}{sup H} (MPa) = 227 + 0.76 T (C). We also confirmed that increasing shear stress lowers the mean stress and the volumetric strain required to trigger phase transformation. At the lower bound (-55 C) of the tested temperature range, the phase transformation is permanent and irreversible. However, at the upper bound (75 C), the phase transformation is completely reversible as the stress causing phase transformation is removed.« less

  7. Kinetic boundaries and phase transformations of ice i at high pressure.

    PubMed

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F

    2018-01-28

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H 2 O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  8. Kinetic boundaries and phase transformations of ice i at high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.

    2018-01-01

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  9. Fresnel transform phase retrieval from magnitude.

    PubMed

    Pitts, Todd A; Greenleaf, James F

    2003-08-01

    This report presents a generalized projection method for recovering the phase of a finite support, two-dimensional signal from knowledge of its magnitude in the spatial position and Fresnel transform domains. We establish the uniqueness of sampled monochromatic scalar field phase given Fresnel transform magnitude and finite region of support constraints for complex signals. We derive an optimally relaxed version of the algorithm resulting in a significant reduction in the number of iterations needed to obtain useful results. An advantage of using the Fresnel transform (as opposed to Fourier) for measurement is that the shift-invariance of the transform operator implies retention of object location information in the transformed image magnitude. As a practical application in the context of ultrasound beam measurement we discuss the determination of small optical phase shifts from near field optical intensity distributions. Experimental data are used to reconstruct the phase shape of an optical field immediately after propagating through a wide bandwidth ultrasonic pulse. The phase of each point on the optical wavefront is proportional to the ray sum of pressure through the ultrasound pulse (assuming low ultrasonic intensity). An entire pressure field was reconstructed in three dimensions and compared with a calibrated hydrophone measurement. The comparison is excellent, demonstrating that the phase retrieval is quantitative.

  10. Mechanically Induced Graphite-Nanodiamonds-Phase Transformations During High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    El-Eskandarany, M. Sherif

    2017-05-01

    Due to their unusual mechanical, chemical, physical, optical, and biological properties, nearly spherical-like nanodiamonds have received much attention as desirable advanced nanomaterials for use in a wide spectrum of applications. Although, nanodiamonds can be successfully synthesized by several approaches, applications of high temperature and/or high pressure may restrict the real applications of such strategic nanomaterials. Distinct from the current preparation approaches used for nanodiamonds preparation, here we show a new process for preparing ultrafine nanodiamonds (3-5 nm) embedded in a homogeneous amorphous-carbon matrix. Our process started from high-energy ball milling of commercial graphite powders at ambient temperature under normal atmospheric helium gas pressure. The results have demonstrated graphite-single wall carbon nanotubes-amorphous-carbon-nanodiamonds phase transformations carried out through three subsequent stages of ball milling. Based on XRD and RAMAN analyses, the percentage of nanodiamond phase + C60 (crystalline phase) produced by ball milling was approximately 81%, while the amorphous phase amount was 19%. The pressure generated on the powder together the with temperature increase upon the ball-powder-ball collision is responsible for the phase transformations occurring in graphite powders.

  11. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water.

    PubMed

    Chiu, Janet; Starr, Francis W; Giovambattista, Nicolas

    2014-03-21

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA).

  12. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    NASA Astrophysics Data System (ADS)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2014-03-01

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA).

  13. Negative pressure driven phase transformation in Sr doped SmCoO₃.

    PubMed

    Arshad Farhan, M; Javed Akhtar, M

    2010-02-24

    Atomistic computer simulation techniques based on energy minimization procedures are utilized for the structural investigation of perovskite-type SmCoO(3). A reliable potential model is derived which reproduces both cubic as well as orthorhombic phases of SmCoO(3). We observe a negative chemical pressure induced structural phase transformation from distorted perovskite (orthorhombic) to perfect perovskite (cubic) due to the substitution of Sr(2 + ) at the Sm(3 + ) sites. However, external hydrostatic pressure shows isotropic compression and no pressure-induced structural transformation is observed up to 100 GPa. To maintain the electroneutrality of the system, charge compensation is through oxygen vacancies which results in the brownmillerite-type structure. A defect model is proposed, which is consistent with experimental results. The solution energies for divalent and trivalent cations are also calculated. These results show that the cations having ionic radii less than 0.75 Å will occupy the Co sites and those with ionic radii larger than 0.75 Å will substitute at the Sm sites.

  14. High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.

    2015-02-01

    Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.

  15. Metastable high-pressure transformations of orthoferrosilite Fs82

    NASA Astrophysics Data System (ADS)

    Dera, Przemyslaw; Finkelstein, Gregory J.; Duffy, Thomas S.; Downs, Robert T.; Meng, Yue; Prakapenka, Vitali; Tkachev, Sergey

    2013-08-01

    High-pressure single-crystal X-ray diffraction experiments with natural ferrosilite Fs82 (Fe2+0.82Mg0.16Al0.01Ca0.01)(Si0.99Al0.01)O3 orthopyroxene (opx) reveal that at ambient temperature the sample does not transform to the clinopyroxene (cpx) structure, as reported earlier for a synthetic Fs100 end-member (Hugh-Jones et al., 1996), but instead undergoes a series of two polymorphic transitions, first above 10.1(1) GPa, to the monoclinic P21/c phase β-opx (distinctly different from both P21/c and C2/c cpx), also observed in natural enstatite (Zhang et al., 2012), and then, above 12.3(1) GPa to a high-pressure orthorhombic Pbca phase γ-opx, predicted for MgSiO3 by atomistic simulations (Jahn, 2008). The structures of phases α, β and γ have been determined from the single-crystal data at pressures of 2.3(1), 11.1(1), and 14.6(1) GPa, respectively. The two new high-pressure transitions, very similar in their character to the P21/c-C2/c transformation of cpx, make opx approximately as dense as cpx above 12.3(1) GPa and significantly change the elastic anisotropy of the crystal, with the [1 0 0] direction becoming almost twice as stiff as in the ambient α-opx phase. Both transformations involve mainly tetrahedral rotation, are reversible and are not expected to leave microstructural evidence that could be used as a geobarometric proxy. The high Fe2+ content in Fs82 shifts the α-β transition to slightly lower pressure, compared to MgSiO3, and has a very dramatic effect on reducing the (meta) stability range of the β-phase.

  16. Instability induced by orthopyroxene phase transformation and implications for deep earthquakes below 300 km depth

    NASA Astrophysics Data System (ADS)

    Shi, F.; Wang, Y.; Zhang, J.; Yu, T.; Zhu, L.

    2017-12-01

    Global earthquake occurrence rate falls exponentially from the surface to 300 km depth, and then peaks again near 500 km depth. Unassisted frictional sliding will not function at depth below the brittle-ductile transition depth (10-15 km) because increasing pressure trends to inhibit frictional sliding and increasing temperature promotes ductile flow. Two main hypotheses have been proposed and demonstrated in the laboratory for the generation of earthquakes at depth, including dehydration embrittlement (e.g., Rayleigh and Paterson, 1965) for intermediate-depth (70-300 km) earthquakes, metastable olivine phase transformation induced anticrack faulting (e.g., Green and Burnley, 1989) for deep-focus (410-660 km) earthquakes. However, the possibility of earthquake generation by pyroxene phase transformation, another important constituent mineral in the upper mantle and transition zone has never been explored in the laboratory. Here we report axial deformation experiments on hypersthene [(Mg,Fe)SiO3], which has the same structure as enstatite, with the phase transformation to high-pressure monoclinic phase (same structure as the high-pressure clinoenstatite) occurring at lower pressures, in a deformation-DIA (D-DIA) apparatus interfaced with an acoustic emission (AE) monitoring system. Our results show that hypersthene deformed within its stability field (<2GPa and 1000 oC) behaves in a ductile manner without any AE activity. In contrast, numerous AE events were observed during the deformation of metastable hyposthene in its high pressure monoclinic phase field (>5GPa, 1000-1300 oC). This finding provides an additional viable mechanism for earthquakes at depths >300km and moonquakes at 700 - 1200 km depths. Reference: Barcheck, C. Grace, et al. EPSL,349 (2012): 153-160;van Keken, Peter E., et al.JGR,116.B1 (2011);Green II, H. W., and P. C. Burnley. Nature 341.6244 (1989): 733-737.

  17. Phase diagram calculations and high pressure Raman spectroscopy studies of organic "plastic crystal" thermal energy storage materials

    NASA Astrophysics Data System (ADS)

    Chellappa, Raja S.

    This dissertation presents the phase diagram calculations and high pressure Raman spectroscopy studies on organic "plastic crystal" thermal storage materials. The organic "plastic crystals" that were studied include pentaerythritol [PE:C(CH 2OH)4], neopentylglycol [NPG:(CH3)2C(CH 2OH)2], tris(hydroxymethyl)-aminomethane [TRIS:(NH2 )C(CH2OH)3], and 2-amino-2-methyl-1,3-propanediol [AMPL: (NH2)(CH3)C(CH2OH)2]. Thermodynamic optimization of the experimental data of AMPL-NPG and PE-AMPL binary system was performed and the calculated phase diagrams are presented. A preliminary calculated phase diagram of the TRIS-NPG binary system is also presented. A thorough reevaluation of the existing calorimetric and x-ray diffraction data of the PE-AMPL binary system is also presented. This analysis resulted in the correct interpretation of the phase boundaries and a revised phase diagram has been drawn. The results of high pressure Raman spectroscopy experiments on neopentylglycol and pentaerythritol presented. The phase transformation pressures were determined by analyzing the frequency shifts as a function of pressure as well as the changes in the internal modes of vibration for these compounds. A simplified assignment of the vibrational modes for NPG at ambient pressure is presented. The results indicate experiments were carried out using Diamond Anvil Cell (DAC) and the pressure induced transformations were studied by Raman spectroscopy. In NPG, a phase transition occurs at ˜3.6 GPa from Phase I (Monoclinic) to Phase II (unknown structure). In PE, the proposed phase transformation pressures are ˜4.8 GPa (Phase I to Phase II), ˜6.9 GPa (Phase II to Phase III), ˜9.5 GPa (Phase III to Phase IV), and ˜15 GPa (Phase IV to Amorphous). The results of a critical assessment of the vapor pressure data of solid metal carbonyls. The vapor pressure data of Chromium Carbonyl (Cr(CO)6), Tungsten Carbonyl (W(CO)6 ), Osmium Carbonyl (Os3(CO)12), Molybdenum Carbonyl (MO(CO)6). Rhenium Carbonyl (Re2(CO)10), and Manganese Carbonyl (Mn(CO)5) were assessed using the "Oonk Methodology". The sublimation properties using the assessed data (Delta subGo,DeltasubH o and Deltasub Cop,m ) of these compounds have been evaluated and a discussion on the mutual consistency of various data sets for each compound over a wide range of temperature is also presented.

  18. Enhanced densification under shock compression in porous silicon

    DOE PAGES

    Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy

    2014-10-27

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less

  19. High pressure study of Pu(0.92)Am(0.08) binary alloy.

    PubMed

    Klosek, V; Griveau, J C; Faure, P; Genestier, C; Baclet, N; Wastin, F

    2008-07-09

    The phase transitions (by means of x-ray diffraction) and electrical resistivity of a Pu(0.92)Am(0.08) binary alloy were determined under pressure (up to 2 GPa). The evolution of atomic volume with pressure gives detailed information concerning the degree of localization of 5f electronic states and their delocalization process. A quasi-linear V = f(P) dependence reflects subtle modifications of the electronic structure when P increases. The electrical resistivity measurements reveal the very high stability of the δ phase for pressures less than 0.7 GPa, since no martensitic-like transformation occurs at low temperature. Remarkable electronic behaviours have also been observed. Finally, resistivity curves have shown the temperature dependence of the phase transformations together with unexpected kinetic effects.

  20. Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation

    NASA Astrophysics Data System (ADS)

    Ulvestad, A.; Welland, M. J.; Cha, W.; Liu, Y.; Kim, J. W.; Harder, R.; Maxey, E.; Clark, J. N.; Highland, M. J.; You, H.; Zapol, P.; Hruszkewycz, S. O.; Stephenson, G. B.

    2017-05-01

    Crystallographic imperfections significantly alter material properties and their response to external stimuli, including solute-induced phase transformations. Despite recent progress in imaging defects using electron and X-ray techniques, in situ three-dimensional imaging of defect dynamics remains challenging. Here, we use Bragg coherent diffractive imaging to image defects during the hydriding phase transformation of palladium nanocrystals. During constant-pressure experiments we observe that the phase transformation begins after dislocation nucleation close to the phase boundary in particles larger than 300 nm. The three-dimensional phase morphology suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than to the core-shell model commonly assumed. We substantiate this using three-dimensional phase field modelling, demonstrating how phase morphology affects the critical size for dislocation nucleation. Our results reveal how particle size and phase morphology affects transformations in the PdH system.

  1. Adiabatic Shear - An Annotated Bibliography

    DTIC Science & Technology

    1974-07-01

    A. Deformation Hardening/Softening B. Cryogenic Deformation C. Ductaity D. Plasticity !•-. Fracture F, Structure and Phase Transformation ...Structural changes and phase transformations are also noted. The Hiidden release of elastic stored energy, the high hydrostatic pressure, and the...crackintr increased with increasing pellet velocity. Slip without transformation was oliservcd in both the aluminum alloy and stainless steel plates

  2. Theoretical analysis of the structural phase transformation from B3 to B1 in BeO under high pressure

    NASA Astrophysics Data System (ADS)

    Jain, Arvind; Verma, Saligram; Nagarch, R. K.; Shah, S.; Kaurav, Netram

    2018-05-01

    We have performed the phase transformation and elastic properties of BeO at high pressure by formulating effective interionic interaction potential. The elastic constants, including the long-range Coulomb and van der Waals (vdW) interactions and the short-range repulsive interaction of up to second-neighbor ions within the Hafemeister and Flygare approach, are derived. Assuming that both the ions are polarizable, we employed the Slater-Kirkwood variational method to estimate the vdW coefficients, a structural phase transition (Pt) from ZnS structure (B3) to NaCl structure (B1) at 108 GPa has been predicted for BeO. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the theoretical data. The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of ZnS type structure family.

  3. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    PubMed

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  4. New transformations between crystalline and amorphous ice

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Chen, L. C.; Mao, H. K.

    1989-01-01

    High-pressure optical and spectroscopic techniques were used to obtain directly the ice I(h) - hda-ice transformation in a diamond-anvil cell, and the stability of the amorphous form is examined as functions of pressure and temperature. It is demonstrated that hda-ice transforms abruptly at 4 GPa and 77 K to a crystalline phase close in structure to orientationally disordered ice-VII and to a more highly ordered, ice-VIII-like structure at higher temperatures. This is the first time that an amorphous solid is observed to convert to a crystalline solid at low temperatures by compression alone. Phase transitions of this type may be relevant on icy planetary satellites, and there may also be implications for the high-pressure behavior of silica.

  5. Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS

    DOE PAGES

    Lai, Xiaofang; Liu, Ying; Lu, Xujie; ...

    2016-08-08

    Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change ofmore » anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Lastly, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.« less

  6. Volume Change During Intermartensitic Transformations in Ni-Mn-Ga Alloy

    NASA Astrophysics Data System (ADS)

    Polyakov, P. I.; Slyusarev, V. V.; Kokorin, V. V.; Konoplyuk, S. M.; Semenova, Yu. S.; Khovaylo, V. V.

    2014-09-01

    Characteristics of phase transitions in Ni54Mn24Ga22 alloy were studied at different hydrostatic pressures to shed light on the nature and mechanisms of intermartensitic transformations. The temperature dependence of resistivity of the alloy was used to find characteristic temperatures of martensitic and intermartensitic transformations as a function of hydrostatic pressure. The latent heat of these transformations was determined by differential scanning calorimetry. The transformation volume effects were calculated using Clausius-Clapeyron equation. They make up 0.082% for martensitic and 0.024% for intermartensitic transformations.

  7. X-ray diffraction and spectroscopy study of nano-Eu 2O 3 structural transformation under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhenhai; Wang, Qinglin; Ma, Yanzhang

    Nanoscale materials exhibit properties that are quite distinct from those of bulk materials because of their size restricted nature. Here, we investigated the high-pressure structural stability of cubic (C-type) nano-Eu2O3 using in situ synchrotron X-ray diffraction (XRD), Raman and luminescence spectroscopy, and impedance spectra techniques. Our high-pressure XRD experimental results revealed a pressure-induced structural phase transition in nano-Eu2O3 from the C-type phase (space group: Ia-3) to a hexagonal phase (A-type, space group: P-3m1). Our reported transition pressure (9.3 GPa) in nano-Eu2O3 is higher than that of the corresponding bulk-Eu2O3 (5.0 GPa), which is contrary to the preceding reported experimental result.more » After pressure release, the A-type phase of Eu2O3 transforms into a new monoclinic phase (B-type, space group: C2/m). Compared with bulk-Eu2O3, C-type and A-type nano-Eu2O3 exhibits a larger bulk modulus. Our Raman and luminescence findings and XRD data provide consistent evidence of a pressure-induced structural phase transition in nano-Eu2O3. To our knowledge, we have performed the first high-pressure impedance spectra investigation on nano-Eu2O3 to examine the effect of the structural phase transition on its transport properties. We propose that the resistance inflection exhibited at ~12 GPa results from the phase boundary between the C-type and A-type phases. Besides, we summarized and discussed the structural evolution process by the phase diagram of lanthanide sesquioxides (Ln2O3) under high pressure.« less

  8. Ion-beam-induced magnetic and structural phase transformation of Ni-stabilized face-centered-cubic Fe films on Cu(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloss, Jonas; Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno; Shah Zaman, Sameena

    2013-12-23

    Metastable face-centered cubic (fcc) Fe/Cu(100) thin films are good candidates for ion-beam magnetic patterning due to their magnetic transformation upon ion-beam irradiation. However, pure fcc Fe films undergo spontaneous transformation when their thickness exceeds 10 ML. This limit can be extended to approximately 22 ML by deposition of Fe at increased CO background pressures. We show that much thicker films can be grown by alloying with Ni for stabilizing the fcc γ phase. The amount of Ni necessary to stabilize nonmagnetic, transformable fcc Fe films in dependence on the residual background pressure during the deposition is determined and a phasemore » diagram revealing the transformable region is presented.« less

  9. Anomalous behavior of cristobalite in helium under high pressure

    NASA Astrophysics Data System (ADS)

    Sato, Tomoko; Takada, Hiroto; Yagi, Takehiko; Gotou, Hirotada; Okada, Taku; Wakabayashi, Daisuke; Funamori, Nobumasa

    2013-01-01

    We have investigated the high-pressure behavior of cristobalite in helium by powder X-ray diffraction. Cristobalite transformed to a new phase at about 8 GPa. This phase is supposed to have a molar volume of about 30 % larger than cristobalite, suggesting the dissolution of helium atoms in its interstitial voids. On further compression, the new phase transformed to a different phase which showed an X-ray diffraction pattern similar to cristobalite X-I at about 21 GPa. On the other hand, when the new phase was decompressed, it transformed to another new phase at about 7 GPa, which is also supposed to have a molar volume of about 25 % larger than cristobalite. On further decompression, the second new phase transformed to cristobalite II at about 2 GPa. In contrast to cristobalite, quartz did not show anomalous behavior in helium. The behavior of cristobalite in helium was also consistent with that in other mediums up to about 8 GPa, where the volume of cristobalite became close to that of quartz. These results suggest that dissolution of helium may be controlled not only by the density (amount of voids) but also by the network structure of SiO4 tetrahedra (topology of voids).

  10. Influence of supercritical CO(2) pressurization on the phase behavior of mixed cholesteryl esters.

    PubMed

    Huang, Zhen; Feng, Mei; Su, Junfeng; Guo, Yuhua; Liu, Tie-Yan; Chiew, Yee C

    2010-09-15

    Evidences indicating the presence of phase transformations in the mixed cholesteryl benzoate (CBE) and cholesteryl butyrate (CBU) under the supercritical CO(2) pressurization, by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD), are presented in this work. These include (1) the DSC heating curve of pure CBU; (2) the DSC heating curves of CBU/CBE mixtures; (3) the XRD spectra of pure CBU; (4) the XRD spectra of CBU/CBE mixtures; (5) CBU and CBE are miscible in either solid phase or liquid phase over the whole composition range. As a result of the presence of these phase transformations induced by pressurization, it could be deduced that a solid solution of the CBU/CBE mixture might have formed at the interfaces under supercritical conditions, subsequently influencing their dissolving behaviors in supercritical CO(2). Copyright 2010 Elsevier B.V. All rights reserved.

  11. Influence of Pressure on Physical Property of Ammonia Borane and its Re-hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiuhua

    The project systematically studied the high pressure behavior of ammonia borane and its derivative lithium amidoborane. Phase transitions in these materials are investigated in the pressure range up to 20 GPa and temperature range from 80 K to 400K. A number of new phase transitions are discovered in this pressure and temperature range including a second order transformation at 5 GPa and a first order transformation at 12 GPa at room temperature, and four new transitions at high pressure and low temperatures. The Clapeyron slopes for both pressure-induce tetragonal (I4mm) phase to orthorhombic (Cmc21) phase and temperature-induce tetragonal (I4mm) phasemore » to orthorhombic (Pmn21) phase are determined to be positive, indicating these phase transitions are exothermic. This result demonstrates that the high pressure orthorhombic phase of ammonia borane has lower enthalpy than that of tetragonal phase at ambient conditions. If we assume decomposition from the orthorhombic phase yields the same products as that from the tetragonal phase, the decomposition of the orthorhombic phase will be less exothermic. Therefore rehydrogenation from the decomposed product into the orthorhombic phase at high pressure may become easier. The project also studied the influences of nanoconfinement on the phase transitions. Comparative study using Raman spectroscopy indicates that the temperature induced I4mm to Pmn21 transition is suppressed from 217 K to 195 K when the sample is confined in SBA15 (7-9 nm pore size). When the pore size is reduced from 7-9 nm to 3-4 nm, this transition is totally suppressed in the temperature down to 80 K. A similar influence of the nanoconfiement on pressure induced phase transitions is also observed using Raman spectroscopy. The phase boundary between the I4mm phase and high pressure Cmc21 phase at ambient temperature shifts from 0.9 GPa to 0.5 GPa; and that between the Cmc21 phase and higher pressure P21 phase shifts from 10.2 GPa to 9.7 GPa.« less

  12. A High-Rate, Single-Crystal Model for Cyclotrimethylene Trinitramine including Phase Transformations and Plastic Slip

    DOE PAGES

    Addessio, Francis L.; Luscher, Darby Jon; Cawkwell, Marc Jon; ...

    2017-05-14

    A continuum model for the high-rate, thermo-mechanical deformation of single-crystal cyclotrimethylene trinitramine (RDX) is developed. The model includes the effects of anisotropy, large deformations, nonlinear thermo-elasticity, phase transformations, and plastic slip. A multiplicative decomposition of the deformation gradient is used. The volumetric elastic component of the deformation is accounted for through a free-energy based equation of state for the low- (α) and high-pressure (γ) polymorphs of RDX. Crystal plasticity is addressed using a phenomenological thermal activation model. The deformation gradient for the phase transformation is based on an approach that has been applied to martensitic transformations. Simulations were conducted andmore » compared to high-rate, impact loading of oriented RDX single crystals. The simulations considered multiple orientations of the crystal relative to the direction of shock loading and multiple sample thicknesses. Thirteen slip systems, which were inferred from indentation and x-ray topography, were used to model the α-polymorph. It is shown that by increasing the number of slip systems from the previously considered number of six (6) to thirteen (13) in the α-polymorph, better comparisons with data may be obtained. Simulations of impact conditions in the vicinity of the α- to γ-polymorph transformation (3.8 GPa) are considered. Eleven of the simulations, which were at pressures below the transformation value (3.0 GPa), were compared to experimental data. Comparison of the model was also made with available data for one experiment above the transformation pressure (4.4 GPa). Also, simulations are provided for a nominal pressure of 7.5 GPa to demonstrate the effect of the transformation kinetics on the deformation of a high-rate plate impact problem.« less

  13. A High-Rate, Single-Crystal Model for Cyclotrimethylene Trinitramine including Phase Transformations and Plastic Slip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addessio, Francis L.; Luscher, Darby Jon; Cawkwell, Marc Jon

    A continuum model for the high-rate, thermo-mechanical deformation of single-crystal cyclotrimethylene trinitramine (RDX) is developed. The model includes the effects of anisotropy, large deformations, nonlinear thermo-elasticity, phase transformations, and plastic slip. A multiplicative decomposition of the deformation gradient is used. The volumetric elastic component of the deformation is accounted for through a free-energy based equation of state for the low- (α) and high-pressure (γ) polymorphs of RDX. Crystal plasticity is addressed using a phenomenological thermal activation model. The deformation gradient for the phase transformation is based on an approach that has been applied to martensitic transformations. Simulations were conducted andmore » compared to high-rate, impact loading of oriented RDX single crystals. The simulations considered multiple orientations of the crystal relative to the direction of shock loading and multiple sample thicknesses. Thirteen slip systems, which were inferred from indentation and x-ray topography, were used to model the α-polymorph. It is shown that by increasing the number of slip systems from the previously considered number of six (6) to thirteen (13) in the α-polymorph, better comparisons with data may be obtained. Simulations of impact conditions in the vicinity of the α- to γ-polymorph transformation (3.8 GPa) are considered. Eleven of the simulations, which were at pressures below the transformation value (3.0 GPa), were compared to experimental data. Comparison of the model was also made with available data for one experiment above the transformation pressure (4.4 GPa). Also, simulations are provided for a nominal pressure of 7.5 GPa to demonstrate the effect of the transformation kinetics on the deformation of a high-rate plate impact problem.« less

  14. Structure and bulk modulus of Ln-doped UO2 (Ln = La, Nd) at high pressure

    NASA Astrophysics Data System (ADS)

    Rittman, Dylan R.; Park, Sulgiye; Tracy, Cameron L.; Zhang, Lei; Palomares, Raul I.; Lang, Maik; Navrotsky, Alexandra; Mao, Wendy L.; Ewing, Rodney C.

    2017-07-01

    The structure of lanthanide-doped uranium dioxide, LnxU1-xO2-0.5x+y (Ln = La, Nd), was investigated at pressures up to ∼50-55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ∼ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ∼ 0.25-0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both the ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. This trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO2, such as Young's modulus.

  15. Pressure-induced structural change in liquid GaIn eutectic alloy.

    PubMed

    Yu, Q; Ahmad, A S; Ståhl, K; Wang, X D; Su, Y; Glazyrin, K; Liermann, H P; Franz, H; Cao, Q P; Zhang, D X; Jiang, J Z

    2017-04-25

    Synchrotron x-ray diffraction reveals a pressure induced crystallization at about 3.4 GPa and a polymorphic transition near 10.3 GPa when compressed a liquid GaIn eutectic alloy up to ~13 GPa at room temperature in a diamond anvil cell. Upon decompression, the high pressure crystalline phase remains almost unchanged until it transforms to the liquid state at around 2.3 GPa. The ab initio molecular dynamics calculations can reproduce the low pressure crystallization and give some hints on the understanding of the transition between the liquid and the crystalline phase on the atomic level. The calculated pair correlation function g(r) shows a non-uniform contraction reflected by the different compressibility between the short (1st shell) and the intermediate (2nd to 4th shells). It is concluded that the pressure-induced liquid-crystalline phase transformation likely arises from the changes in local atomic packing of the nearest neighbors as well as electronic structures at the transition pressure.

  16. Structure and bulk modulus of Ln-doped UO 2 (Ln = La, Nd) at high pressure

    DOE PAGES

    Rittman, Dylan R.; Park, Sulgiye; Tracy, Cameron L.; ...

    2017-04-10

    The structure of lanthanide-doped uranium dioxide, Ln xU 1-xO 2-0.5x+y (Ln = La, Nd), was investigated at pressures up to ~50–55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ~ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ~ 0.25–0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both themore » ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. As a result, this trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO 2, such as Young's modulus.« less

  17. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-01

    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

  18. Kinetics and mechanism of the pressure-induced lamellar order/disorder transition in phosphatidylethanolamine: a time-resolved X-ray diffraction study.

    PubMed

    Mencke, A P; Caffrey, M

    1991-03-05

    By using synchrotron radiation, a movie was made of the X-ray scattering pattern from a biological liquid crystal undergoing a phase transition induced by a pressure jump. The system studied includes the fully hydrated phospholipid dihexadecylphosphatidylethanolamine in the lamellar gel (L beta') phase at a temperature of 68 degrees C and a pressure of 9.7 MPa (1400 psig). Following the rapid release of pressure to atmospheric the L beta' phase transforms slowly into the lamellar liquid crystal (L alpha) phase. The pressure perturbation is applied with the intention of producing a sudden phase disequilibrium followed by monitoring the system as it relaxes to its new equilibrium condition. Remarkably, the proportion of sample in the L alpha phase grows linearly with time, taking 37 s to totally consume the L beta' phase. The time dependencies of radius, peak intensity, and width of the powder diffraction ring of the low-angle (001) lamellar reflections were obtained from the movie by image processing. The concept of an "effective pressure" is introduced to account for the temperature variations that accompany the phase transition and to establish that the observed large transit time is indeed intrinsic to the sample and not due to heat exchange with the environment. The reverse transformation, L alpha to L beta', induced by a sudden jump from atmospheric pressure to 9.7 MPa, is complete in less than 13 s. These measurements represent a new approach for studying the kinetics of lipid phase transitions and for gaining insights into the mechanism of the lamellar order/disorder transition.

  19. Pyroxenes and olivines: Structural implications of shock-wave data for high pressure phases

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Ahrens, T. J.

    1975-01-01

    The nature of the shock-induced, high-pressure phases of olivine and pyroxene rocks is examined in the light of data for the densities of a new class of perovskite-related silicate structures. Also examined are some new Hugoniot and release adiabat data for bronzite. Reexamining available shock data for magnesian pyroxenes and olivines leads to the conclusion that they define a mixed phase (or disequilibrium) region to about the 100 GPa range, related to the kinetics of phase transformation in these silicates. By recognizing this point, certain discrepancies in previous interpretations of shock data can be explained. A set of theoretical Hugonoits for pyroxene and olivine stoichiometry, perovskite-bearing assemblages was constructed based on their properties deduced from high-pressure work, showing that the shock data is compatible with transformations to perovskites in the 45-7GPa region. Finally, the shock data indicate very similar properties for olivine and pyroxene at high pressures making them both equally likely candidates for the lower mantle.

  20. Pressure induced para-antiferromagnetic switching in BiFeO3-PbTiO3 as determined using in-situ neutron diffraction

    NASA Astrophysics Data System (ADS)

    Comyn, Tim P.; Stevenson, Tim; Al-Jawad, Maisoon; Marshall, William G.; Smith, Ronald I.; Herrero-Albillos, Julia; Cywinski, Robert; Bell, Andrew J.

    2013-05-01

    BiFeO3-PbTiO3 exhibits both ferroelectric and antiferromagnetic order, depending on the composition. Moderate hydrostatic pressures have been used at room temperature to transform the crystallographic phase from P4mm to R3c for the compositions 0.7BiFeO3-0.3PbTiO3 and 0.65BiFeO3-0.35PbTiO3, as determined using in-situ neutron diffraction. Using Rietveld refinements, the resultant data showed that, for both compositions, a transformation from para- to G-type antiferromagnetic order accompanied the structural transition. The transformation occurred over the range 0.4-0.77 and 0.67-0.88 GPa for 0.7BiFeO3-0.3PbTiO3 and 0.65BiFeO3-0.35PbTiO3, respectively; at intermediate pressures, a mixture of P4mm and R3c phases were evident. These pressures are far lower than required to induce a phase transition in either the BiFeO3 or PbTiO3 end members. The driving force for this pressure induced first order phase transition is a significant difference in volume between the two phases, P4mm > R3c of 4%-5%, at ambient pressure. Upon removal of the pressure, 0.65BiFeO3-0.35PbTiO3 returned to the paramagnetic tetragonal state, whereas in 0.7BiFeO3-0.3PbTiO3 antiferromagnetic ordering persisted, and the structural phase remained rhombohedral. Using conventional laboratory x-ray diffraction with a hot-stage, the phase readily reverted back to a tetragonal phase, at temperatures between 100 and 310 °C for 0.7BiFeO3-0.3PbTiO3, far lower than the ferroelectric Curie point for this composition of 632 °C. To our knowledge, the reported pressure induced para- to antiferromagnetic transition is unique in the literature.

  1. Pressure-Induced Amorphization and a New High Density Amorphous Metallic Phase in Matrix-Free Ge Nanoparticles.

    PubMed

    Corsini, Niccolo R C; Zhang, Yuanpeng; Little, William R; Karatutlu, Ali; Ersoy, Osman; Haynes, Peter D; Molteni, Carla; Hine, Nicholas D M; Hernandez, Ignacio; Gonzalez, Jesus; Rodriguez, Fernando; Brazhkin, Vadim V; Sapelkin, Andrei

    2015-11-11

    Over the last two decades, it has been demonstrated that size effects have significant consequences for the atomic arrangements and phase behavior of matter under extreme pressure. Furthermore, it has been shown that an understanding of how size affects critical pressure-temperature conditions provides vital guidance in the search for materials with novel properties. Here, we report on the remarkable behavior of small (under ~5 nm) matrix-free Ge nanoparticles under hydrostatic compression that is drastically different from both larger nanoparticles and bulk Ge. We discover that the application of pressure drives surface-induced amorphization leading to Ge-Ge bond overcompression and eventually to a polyamorphic semiconductor-to-metal transformation. A combination of spectroscopic techniques together with ab initio simulations were employed to reveal the details of the transformation mechanism into a new high density phase-amorphous metallic Ge.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Cun; Ren, Yang; Cui, Lishan

    Under high pressure, materials usually shrink during compression as described by an equation of state. Here, we present the anomalous volume expansion behavior of a one-dimensional Nb nanowire embedded in a NiTi transforming matrix, while the matrix undergoes a pressure-induced martensitic transformation. The Nb volume expansion depends on the NiTi transition pressure range from the matrix, which is controlled by the shear strain induced by different pressure transmitting media. The transformation-induced interfacial stresses between Nb and NiTi may play a major role in this anomaly. In conclusion, our discovery sheds new light on the nano-interfacial effect on mechanical anomalies inmore » heterogeneous systems during a pressure-induced phase transition.« less

  3. Anomalous expansion of Nb nanowires in a NiTi matrix under high pressure

    DOE PAGES

    Yu, Cun; Ren, Yang; Cui, Lishan; ...

    2016-10-17

    Under high pressure, materials usually shrink during compression as described by an equation of state. Here, we present the anomalous volume expansion behavior of a one-dimensional Nb nanowire embedded in a NiTi transforming matrix, while the matrix undergoes a pressure-induced martensitic transformation. The Nb volume expansion depends on the NiTi transition pressure range from the matrix, which is controlled by the shear strain induced by different pressure transmitting media. The transformation-induced interfacial stresses between Nb and NiTi may play a major role in this anomaly. In conclusion, our discovery sheds new light on the nano-interfacial effect on mechanical anomalies inmore » heterogeneous systems during a pressure-induced phase transition.« less

  4. High Pressure Phase Transformations in Heavy Rare Earth Metals and Connections to Actinide Crystal Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh K.; Sangala, Bagvanth Reddy; Stemshorn, Andrew K.

    2008-07-01

    High-pressure studies have been performed on heavy rare earth metals Terbium (Tb) to 155 GPa and Holmium (Ho) to 134 GPa in a diamond anvil cell at room temperature. The following crystal structure sequence was observed in both metals hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc (hR-24) {yields} monoclinic (C2/m) with increasing pressure. The last transformation to a low symmetry monoclinic phase is accompanied by a volume collapse of 5 % for Tb at 51 GPa and a volume collapse of 3 % for Ho at 103 GPa. This volume collapse under high pressure is reminiscent of f-shell delocalizationmore » in light rare earth metal Cerium (Ce), Praseodymium (Pr), and heavy actinide metals Americium (Am) and Curium (Cm). The orthorhombic Pnma phase that has been reported in Am and Cm after f-shell delocalization is not observed in heavy rare earth metals under high pressures. (authors)« less

  5. Comparison between thermochemical and phase stability data for the quartz-coesite-stishovite transformations

    NASA Technical Reports Server (NTRS)

    Weaver, J. S.; Chipman, D. W.; Takahashi, T.

    1979-01-01

    Phase stability and elasticity data have been used to calculate the Gibbs free energy, enthalpy, and entropy changes at 298 K and 1 bar associated with the quartz-coesite and coesite-stishovite transformations in the system SiO2. For the quartz-coesite transformation, these changes disagree by a factor of two or three with those obtained by calorimetric techniques. The phase boundary for this transformation appears to be well determined by experiment; the discrepancy, therefore, suggests that the calorimetric data for coesite are in error. Although the calorimetric and phase stability data for the coesite-stishovite transformation yield the same transition pressure at 298 K, the phase-boundary slopes disagree by a factor of two. At present, it is not possible to determine which of the data are in error. Thus serious inconsistencies exist in the thermodynamic data for the polymorphic transformations of silica.

  6. Pressure-Induced Phase Transitions of n-Tridecane

    NASA Astrophysics Data System (ADS)

    Yamashita, Motoi

    Pressure-induced phase transition behavior of n-tridecane from the ordered phase through the rotator phase into the liquid phase has been investigated by using Fourier transform infrared spectroscopy at 25 °C. The transition between the ordered and rotator phases has been observed in the pressure range of 270-220 MPa and the transition between the rotator and liquid phases has been observed in the pressure range of 171-112 MPa, within the experimental error of ±50 MPa. The populations of the -gtg- + -gtg'-, -gg- and gt- defects determined from the methylene wagging mode are smaller in the rotator phase than in the liquid phase and are smaller under higher pressure in both of the rotator and liquid phases. A relationship has been found between the conformation and the intensity of the 890 cm-1 band, which has been assigned as the methyl rocking mode and has been considered as insensitive to conformation.

  7. P-T phase diagram and structural transformations of molten P2O5 under pressure

    NASA Astrophysics Data System (ADS)

    Brazhkin, V. V.; Katayama, Y.; Lyapin, A. G.; Saitoh, H.

    2014-03-01

    The P2O5 compound is an archetypical glass-forming oxide with a record high hygroscopicity, which makes its study extremely difficult. We present the in situ x-ray diffraction study of the pressure-temperature phase diagram of P2O5 and, particularly, of the liquid P2O5 structure under high pressure up to 10 GPa. Additionally, quenching from the melt has been used to extend the melting curve up to 15 GPa. We found that structural transformation in the liquid P2O5 under pressure is unique and includes three stages: first, the disappearance of the intermediate range order of the melt together with a slow increase in the average first-coordination number (P-O and O-P neighbors) up to 4 GPa; second, the "normal" compression almost without structural modification at higher pressures up to 8-9 GPa; and, finally, the abrupt change of the short-range order structure of the liquid with the jumplike increase at 9-10 GPa. The last stage correlates with the melting curve maximum (≈1250 °C) at ≈10 GPa and can be interpreted as a transformation to the liquid phase with entirely fivefold-coordinated phosphorus and twofold-coordinated oxygen atoms.

  8. High pressure phase transitions and compressibilities of Er2Zr2O7 and Ho2Zr2O7

    NASA Astrophysics Data System (ADS)

    Zhang, F. X.; Lang, M.; Becker, U.; Ewing, R. C.; Lian, J.

    2008-01-01

    Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of ˜22 and ˜30GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.

  9. Equation of state, phase stability, and phase transformations of uranium-6 wt. % niobium under high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Vogel, Sven; Brown, Donald; Clausen, Bjorn; Hackenberg, Robert

    2018-05-01

    In-situ time-of-flight neutron diffraction experiments were conducted on the uranium-niobium alloy with 6 wt. % Nb (U-6Nb) at pressures up to 4.7 GPa and temperatures up to 1073 K. Upon static compression at room temperature, the monoclinic structure of U-6Nb (α″ U-6Nb) remains stable up to the highest experimental pressure. Based on the pressure-volume measurements at room temperature, the least-squares fit using the finite-strain equation of state (EOS) yields an isothermal bulk modulus of B0 = 127 ± 2 GPa for the α″-phase of U-6Nb. The calculated zero-pressure bulk sound speed from this EOS is 2.706 ± 0.022 km/s, which is in good agreement with the linear extrapolation of the previous Hugoniot data above 12 GPa for α″ U-6Nb, indicating that the dynamic response under those shock-loading conditions is consistent with the stabilization of the initial monoclinic phase of U-6Nb. Upon heating at ambient and high pressures, the metastable α″ U-6Nb exhibits complex transformation paths leading to the diffusional phase decomposition, which are sensitive to applied pressure, stress state, and temperature-time path. These findings provide new insight into the behavior of atypical systems such as U-Nb and suggest that the different U-Nb phases are separated by rather small energies and hence highly sensitive to compositional, thermal, and mechanical perturbations.

  10. Potential energy landscape of the apparent first-order phase transition between low-density and high-density amorphous ice.

    PubMed

    Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W; Poole, Peter H

    2016-12-14

    The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.

  11. Potential energy landscape of the apparent first-order phase transition between low-density and high-density amorphous ice

    NASA Astrophysics Data System (ADS)

    Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W.; Poole, Peter H.

    2016-12-01

    The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.

  12. High-pressure polymorphism of Pb F 2 to 75 GPa

    DOE PAGES

    Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.; ...

    2016-07-06

    Lead fluoride, PbF 2, was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c. Theoretical calculations of valence electron densities at 22 GPa showed that α-PbFmore » 2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite Co 2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a/c and (a+c)/b, which are used to distinguish among cotunnite-, Co 2Si-, and Ni 2In-type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K 0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V 0, of 182(2)Å 3, and K 0=81(4)GPa for the Co 2Si-type phase when fixing the pressure derivative of the bulk modulus, K 0'=4. Upon heating above 1200 K at pressures at or above 25.9 GPa, PbF 2 partially transformed to the hexagonal Ni 2In-type phase but wholly or partially reverted back to Co 2Si-type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the Ni 2In-type PbF 2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of PbF 2 is distinct from that of the alkaline earth fluorides with similar ionic radii. These results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.« less

  13. High-pressure polymorphism of Pb F2 to 75 GPa

    NASA Astrophysics Data System (ADS)

    Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.; Prakapenka, Vitali; Duffy, Thomas S.

    2016-07-01

    Lead fluoride, Pb F2 , was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c . Theoretical calculations of valence electron densities at 22 GPa showed that α -Pb F2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite C o2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a /c and (a +c )/b , which are used to distinguish among cotunnite-, C o2Si -, and N i2In -type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V0, of 182 (2 ) Å3 , and K0=81 (4 ) GPa for the C o2Si -type phase when fixing the pressure derivative of the bulk modulus, K0 '=4 . Upon heating above 1200 K at pressures at or above 25.9 GPa, Pb F2 partially transformed to the hexagonal N i2In -type phase but wholly or partially reverted back to C o2Si -type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the N i2In -type Pb F2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of Pb F2 is distinct from that of the alkaline earth fluorides with similar ionic radii. Our results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.

  14. Self-Organization of Amorphous Carbon Nanocapsules into Diamond Nanocrystals Driven by Self-Nanoscopic Excessive Pressure under Moderate Electron Irradiation without External Heating.

    PubMed

    Wang, Chengbing; Ling, San; Yang, Jin; Rao, Dewei; Guo, Zhiguang

    2018-01-01

    Phase transformation between carbon allotropes usually requires high pressures and high temperatures. Thus, the development of low-temperature phase transition approaches between carbon allotropes is highly desired. Herein, novel amorphous carbon nanocapsules are successfully synthesized by pulsed plasma glow discharge. These nanocapsules are comprised of highly strained carbon clusters encapsulated in a fullerene-like carbon matrix, with the formers serving as nucleation sites. These nucleation sites favored the formation of a diamond unit cell driven by the self-nanoscopic local excessive pressure, thereby significantly decreasing the temperature required for its transformation into a diamond nanocrystal. Under moderate electron beam irradiation (10-20 A cm -2 ) without external heating, self-organization of the energetic carbon clusters into diamond nanocrystals is achieved, whereas the surrounding fullerene-like carbon matrix remains nearly unchanged. Molecular dynamics simulations demonstrate that the defective rings as the active sites dominate the phase transition of amorphous carbon to diamond nanocrystal. The findings may open a promising route to realize phase transformation between carbon allotropes at a lower temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Behaviour of rippled shocks from ablatively-driven Richtmyer-Meshkov in metals accounting for strength

    DOE PAGES

    Opie, S.; Gautam, S.; Fortin, E.; ...

    2016-05-26

    While numerous continuum material strength and phase transformation models have been proposed to capture their complex dependences on intensive properties and deformation history, few experimental methods are available to validate these models particularly in the large pressure and strain rate regime typical of strong shock and ramp dynamic loading. In the experiments and simulations we present, a rippled shock is created by laser-ablation of a periodic surface perturbation on a metal target. The strength of the shock can be tuned to access phase transitions in metals such as iron or simply to study high-pressure strength in isomorphic materials such asmore » copper. Simulations, with models calibrated and validated to the experiments, show that the evolution of the amplitude of imprinted perturbations on the back surface by the rippled shock is strongly affected by strength and phase transformation kinetics. Increased strength has a smoothing effect on the perturbed shock front profile resulting in smaller perturbations on the free surface. Lastly, in iron, faster phase transformations kinetics had a similar effect as increased strength, leading to smoother pressure contours inside the samples and smaller amplitudes of free surface perturbations in our simulations.« less

  16. Transformation of multiwall carbon nanotubes to onions with layers cross-linked by sp3 bonds under high pressure and shear deformation

    NASA Astrophysics Data System (ADS)

    Pankov, A. M.; Bredikhina, A. S.; Kulnitskiy, B. A.; Perezhogin, I. A.; Skryleva, E. A.; Parkhomenko, Yu. N.; Popov, M. Yu.; Blank, V. D.

    2017-08-01

    A pressure-induced phase transition of multiwall carbon nanotubes (MWNT) to a new structure at room temperature is studied using a shear diamond anvil cell, X-ray photoelectron spectra (XPS), transmission electron microscope (TEM) and Raman procedures. We observe a cardinal pressure-induced change in the nanoparticles shape from multi-shell tubes to multi-shell spheres. MWNT transforms to onions with layers cross-linked by sp3 bonds under the 45-65 GPa compressive stress combined with shear deformation at room temperature. TEM and XPS results show that about 40% of the carbon atoms in the new phase are sp3-bounded.

  17. In situ observation of quasimelting of diamond and reversible graphite-diamond phase transformations.

    PubMed

    Huang, J Y

    2007-08-01

    Because of technique difficulties in achieving the extreme high-pressure and high-temperature (HPHT) simultaneously, direct observation of the structures of carbon at extreme HPHT conditions has not been possible. Banhart and Ajayan discovered remarkably that carbon onions can act as nanoscopic pressure cells to generate high pressures. By heating carbon onions to approximately 700 degrees C and under electron beam irradiation, the graphite-to-diamond transformation was observed in situ by transmission electron microscopy (TEM). However, the highest achievable temperature in a TEM heating holder is less than 1000 degrees C. Here we report that, by using carbon nanotubes as heaters and carbon onions as high-pressure cells, temperatures higher than 2000 degrees C and pressures higher than 40 GPa were achieved simultaneously in carbon onions. At such HPHT conditions and facilitated by electron beam irradiation, the diamond formed in the carbon onion cores frequently changed its shape, size, orientation, and internal structure and moved like a fluid, implying that it was in a quasimelting state. The fluctuation between the solid phase of diamond and the fluid/amorphous phase of diamond-like carbon, and the changes of the shape, size, and orientation of the solid diamond, were attributed to the dynamic crystallization of diamond crystal from the quasimolten state and the dynamic graphite-diamond phase transformations. Our discovery offers unprecedented opportunities to studying the nanostructures of carbon at extreme conditions in situ and at an atomic scale.

  18. High-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tracy, S. J.; Smith, R. F.; Wicks, J. K.; Fratanduono, D. E.; Gleason, A. E.; Bolme, C.; Speziale, S.; Appel, K.; Prakapenka, V. B.; Fernandez Panella, A.; Lee, H. J.; MacKinnon, A.; Eggert, J.; Duffy, T. S.

    2017-12-01

    The behavior of silicon carbide (SiC) under shock loading was investigated through a series of time-resolved pump-probe x-ray diffraction (XRD) measurements. SiC is found at impact sites and has been put forward as a possible constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but crystal structure information was not obtained. We have carried out an in situ XRD study of shock-compressed SiC using the Matter in Extreme Conditions instrument of the Linac Coherent Light Source. The femtosecond time resolution of the x-ray free electron laser allows for the determination of time-dependent atomic arrangements during shock loading and release. Two high-powered lasers were used to generate ablation-driven compression waves in the samples. Time scans were performed using the same drive conditions and nominally identical targets. For each shot in a scan, XRD data was collected at a different probe time after the shock had entered the SiC. Probe times extended up to 40 ns after release. Scans were carried out for peak pressures of 120 and 185 GPa. Our results demonstrate that SiC transforms directly from the ambient tetrahedrally-coordinated phase to the octahedral B1 structure on the nanosecond timescale of laser-drive experiments and reverts to the tetrahedrally coordinated ambient phase within nanoseconds of release. The data collected at 120 GPa exhibit diffraction peaks from both compressed ambient phase and transformed B1 phase, while the data at 185 GPa show a complete transformation to the B1 phase. Densities determined from XRD peaks are in agreement with an extrapolation of previous continuum data as well as theoretical predictions. Additionally, a high degree of texture was retained in both the high-pressure phase as well as on back transformation. Two-dimensional fits to the XRD data reveal details of the orientational relationships between the low- and high-pressure phases that can be interpreted to provide information about transformation pathways between tetrahedral and octahedral coordination structures. We acknowledge support for this work from SLAC National Accelerator Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory.

  19. The influence of hold time on the onset of plastic deformation in silicon

    DOE PAGES

    Wong, Sherman; Haberl, Bianca; Bradby, Jodie E.; ...

    2015-12-24

    Here, the formation of silicon (Si) in its -Sn form is known to be nucleation limited, with an undetermined period of time between when critical pressure for the trans- formation is reached and when the transformation actually occurs. In this letter, we use nanoindentation to apply critical pressure to diamond cubic Si and hold the sample under pressure to promote deformation via phase transformation and crystalline defects. We report that the number of indents in which phase transformation is observed increases with increasing hold time. Interestingly, the number of indents in which crystalline defects are observed also increase with increasingmore » hold time, suggesting crystalline defects are also nucleation limited. Raman spectroscopy and cross-sectional transmission electron microscopy is used to show that these two deformation mechanisms are mutually exclusive under the indentation conditions used within this letter.« less

  20. High-Pressure Behavior of Difluorides: The Case of SrF2

    NASA Astrophysics Data System (ADS)

    Swadba, K. E.; Stan, C. V.; Dutta, R.; Prakapenka, V.; Duffy, T. S.

    2016-12-01

    The high-pressure behavior of compounds in the AX2 family has attracted much attention due to their extensive polymorphism, highly coordinated structures, and diverse transformation pathways. The canonical transformation sequence for alkaline earth difluorides is from the fluorite-type structure (8 coordinated) to cotunnite (9 coordinated) to Ni2In (11 coordinated). Lead Fluoride, on the other hand, undergoes an unusual isosymmetric transition from cotunnite to a Co2Si-type structure (10 coordinated) at high pressures, during which it exhibits highly anisotropic lattice parameter trends (Haines et al, 1998; Stan et al 2016). Sr has a similar ionic radius as Pb, and is thus a good candidate for further exploring the compressional anisotropy in alkaline earth fluorides. In this study, we report a detailed examination of the compressional behavior of SrF2 to identify whether an intermediate phase occurs in this system prior to transformation to the Ni2In structure. Raman spectroscopy and x-ray diffraction experiments, performed at Princeton University and the Advanced Photon Source GSECARS beamline, respectively, were carried out on SrF2 up to 63 GPa using a diamond anvil cell. From Raman spectroscopy, we observed evidence for a high-pressure phase transition between 38.9 and 51.0 GPa. The x-ray diffraction data in this region show evidence for highly anisotropic compression, most notably a strong negative compressibility in the b direction, in the pressure region from 45.2 to 51.6 GPa. Comparison of our data with lattice parameter systematics for AX2 phases indicates that our results are consistent with the formation of the Co2Si phase in this region, along with a sluggish transformation to the Ni2In-type structure. Our findings contribute to a broader understanding of AX2 compounds and their phase transition pathways.

  1. Observation of a re-entrant phase transition in the molecular complex tris(μ 2-3,5-diisopropyl-1,2,4-triazolato-κ 2 N 1: N 2)trigold(I) under high pressure

    DOE PAGES

    Woodall, Christopher H.; Christensen, Jeppe; Skelton, Jonathan M.; ...

    2016-08-18

    We report a molecular crystal that exhibits four successive phase transitions under hydro­static pressure, driven by aurophilic interactions, with the ground-state structure re-emerging at high pressure. The effect of pressure on two polytypes of tris(μ 2-3,5-diiso­propyl-1,2,4-triazolato-κ 2 N 1: N 2)trigold(I) (denoted Form-I and Form-II) has been analysed using luminescence spectroscopy, single-crystal X-ray diffraction and first-principles computation. A unique phase behaviour was observed in Form-I, with a complex sequence of phase transitions between 1 and 3.5 GPa. The ambient C2/c mother cell transforms to a P2 1/n phase above 1 GPa, followed by a P2 1/a phase above 2 GPamore » and a large-volume C2/c supercell at 2.70 GPa, with the previously observed P2 1/n phase then reappearing at higher pressure. The observation of crystallographically identical low- and high-pressure P2 1/n phases makes this a rare example of a re-entrant phase transformation. The phase behaviour has been characterized using detailed crystallographic theory and modelling, and rationalized in terms of molecular structural distortions. The dramatic changes in conformation are correlated with shifts of the luminescence maxima, from a band maximum at 14040 cm –1 at 2.40 GPa, decreasing steeply to 13550 cm –1 at 3 GPa. A similar study of Form-II displays more conventional crystallographic behaviour, indicating that the complex behaviour observed in Form-I is likely to be a direct consequence of the differences in crystal packing between the two polytypes.« less

  2. Observation of a re-entrant phase transition in the molecular complex tris(μ 2-3,5-diisopropyl-1,2,4-triazolato-κ 2 N 1: N 2)trigold(I) under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodall, Christopher H.; Christensen, Jeppe; Skelton, Jonathan M.

    We report a molecular crystal that exhibits four successive phase transitions under hydro­static pressure, driven by aurophilic interactions, with the ground-state structure re-emerging at high pressure. The effect of pressure on two polytypes of tris(μ 2-3,5-diiso­propyl-1,2,4-triazolato-κ 2 N 1: N 2)trigold(I) (denoted Form-I and Form-II) has been analysed using luminescence spectroscopy, single-crystal X-ray diffraction and first-principles computation. A unique phase behaviour was observed in Form-I, with a complex sequence of phase transitions between 1 and 3.5 GPa. The ambient C2/c mother cell transforms to a P2 1/n phase above 1 GPa, followed by a P2 1/a phase above 2 GPamore » and a large-volume C2/c supercell at 2.70 GPa, with the previously observed P2 1/n phase then reappearing at higher pressure. The observation of crystallographically identical low- and high-pressure P2 1/n phases makes this a rare example of a re-entrant phase transformation. The phase behaviour has been characterized using detailed crystallographic theory and modelling, and rationalized in terms of molecular structural distortions. The dramatic changes in conformation are correlated with shifts of the luminescence maxima, from a band maximum at 14040 cm –1 at 2.40 GPa, decreasing steeply to 13550 cm –1 at 3 GPa. A similar study of Form-II displays more conventional crystallographic behaviour, indicating that the complex behaviour observed in Form-I is likely to be a direct consequence of the differences in crystal packing between the two polytypes.« less

  3. Pressure-induced structural transformations of the Zintl phase sodium silicide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabrera, Raul Quesada; Salamat, Ashkan; Barkalov, Oleg I.

    The high-pressure behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction to observe the onset of structural phase transformations and potential oligomerisation into anionic Si nanoclusters with extended dimensionality. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation above 15 GPa, suggesting the formation of Si-Si bonds with oxidation of the Si{sup -} species and reduction of Na{sup +} to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure. - Abstract: The high-pressuremore » behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation, suggesting the formation of Si-Si bonds with oxidation of the Si{sup -} species and reduction of Na{sup +} to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure. Display Omitted« less

  4. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    2017-01-24

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A = Eu, Dy; B = Ti, Zr) up to ~50 GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B = Ti and ~16 GPa B = Zr. But, the A-site cation affected the kinetics of the phase transformation,more » with the transformation for compositions with the smaller ionic radii, i.e., A = Dy, proceeding faster than those with a larger ionic radii, i.e., A = Eu. Our results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B = Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A = Eu than A = Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less

  5. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    2017-01-28

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionicmore » radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.

    Lead fluoride, PbF 2, was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c. Theoretical calculations of valence electron densities at 22 GPa showed that α-PbFmore » 2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite Co 2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a/c and (a+c)/b, which are used to distinguish among cotunnite-, Co 2Si-, and Ni 2In-type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K 0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V 0, of 182(2)Å 3, and K 0=81(4)GPa for the Co 2Si-type phase when fixing the pressure derivative of the bulk modulus, K 0'=4. Upon heating above 1200 K at pressures at or above 25.9 GPa, PbF 2 partially transformed to the hexagonal Ni 2In-type phase but wholly or partially reverted back to Co 2Si-type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the Ni 2In-type PbF 2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of PbF 2 is distinct from that of the alkaline earth fluorides with similar ionic radii. These results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.« less

  7. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2017-10-01

    In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.

  8. Phenomenology of Polymorphism, III: p, TDiagram and Stability of Piracetam Polymorphs

    NASA Astrophysics Data System (ADS)

    Céolin, R.; Agafonov, V.; Louër, D.; Dzyabchenko, V. A.; Toscani, S.; Cense, J. M.

    1996-02-01

    The nootropic drug Piracetam is known to crystallize in three phases. In order to obtain their stability hierarchy from sublimation pressure inequalities, the drawing of a topologicalp,Tdiagram was attempted. For such a purpose and also for quality control, crystallographic and thermodynamic data were required. Powder X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) were used. Molecular energy calculations were performed. Phase I melts at 426 K (ΔfusH(I) = +180 J·g-1). Phase II transforms into Phase I at 399 K (Δ(II→I)H= +24 J·g-1). Phase III transforms into phase I at 392 K (Δ(III→I)H= +28 J·g-1) or melts at 412 K (ΔfusH(III) = +210 J·g-1). Thep,Tdiagram shows that phase I is stable at higher temperature and phase II at lower temperature, like phase III, which is stable under high pressure. At room temperature, phase II is the more stable form, and phase I the less stable one. This agrees with the spontaneous I → II transformation observed at 298 K within a few hours, and with lattice energies, calculated previously. Molecular energy calculations and crystal structure comparison show how intermolecular hydrogen bonds and H-bonded dimers, in phases II and III, may stabilize conformations higher in energy than those of the isolated molecule and of phase I.

  9. A new phase of ThC at high pressure predicted from a first-principles study

    NASA Astrophysics Data System (ADS)

    Guo, Yongliang; Qiu, Wujie; Ke, Xuezhi; Huai, Ping; Cheng, Cheng; Han, Han; Ren, Cuilan; Zhu, Zhiyuan

    2015-08-01

    The phase transition of thorium monocarbide (ThC) at high pressure has been studied by means of density functional theory. Through structure search, a new phase with space group P 4 / nmm has been predicted. The calculated phonons demonstrate that this new phase and the previous B2 phase are dynamically stable as the external pressure is greater than 60 GPa and 120 GPa, respectively. The transformation from B1 to P 4 / nmm is predicted to be a first-order transition, while that from P 4 / nmm to B2 is found to be a second-order transition.

  10. Atomic structure and pressure-induced phase transformations in a phase-change alloy

    NASA Astrophysics Data System (ADS)

    Xu, Ming

    Phase-change materials exist in at least two phases under the ambient condition. One is the amorphous state and another is crystalline phase. These two phases have vastly different physical properties, such as electrical conductivity, optical reflectivity, mass density, thermal conductivity, etc. The distinct physical properties and the fast transformation between amorphous and crystalline phases render these materials the ability to store information. For example, the DVD and the Blue-ray discs take advantage of the optical reflectivity contrast, and the newly developed solid-state memories make use of the large conductivity difference. In addition, both the amorphous and crystalline phases in phase-change memories (PCMs) are very stable at room temperature, and they are easy to be scaled up in the production of devices with large storage density. All these features make phase-change materials the ideal candidates for the next-generation memories. Despite of the fast development of these new memory materials in industry, many fundamental physics problems underlying these interesting materials are still not fully resolved. This thesis is aiming at solving some of the key issues in phase-change materials. Most of phase-change materials are composed of Ge-Sb-Te constituents. Among all these Ge-Sb-Te based materials, Ge2Sb2Te5 (GST) has the best performance and has been frequently studied as a prototypical phase-change material. The first and foremost issue is the structure of the two functioning phases. In this thesis, we investigate the unique atomic structure and bonding nature of amorphous GST (a-GST) and crystalline GST ( c-GST), using ab initio tools and X-ray diffraction (XRD) methods. Their local structures and bonding scenarios are then analyzed using electronic structure calculations. In order to gain insight into the fast phase transformation mechanism, we also carried out a series of high-pressure experiments on GST. Several new polymorphs and their transformations have been revealed under high pressure via in situ XRD and in situ electrical resistivity measurements. The mechanisms of the structural and property changes have been uncovered via ab initio molecular dynamics simulations.

  11. Thermal properties and phase transition in the fluoride, (NH{sub 4}){sub 3}SnF{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartashev, A.V.; Astafijev Krasnoyarsk State Pedagogical University, 660049 Krasnoyarsk; Gorev, M.V.

    2016-05-15

    Calorimetric, dilatometric and differential thermal analysis studies were performed on (NH{sub 4}){sub 3}SnF{sub 7} for a wide range of temperatures and pressures. Large entropy (δS{sub 0}=22 J/mol K) and elastic deformation (δ(ΔV/V){sub 0}=0.89%) jumps have proven that the Pa-3↔Pm-3m phase transition is a strong first order structural transformation. A total entropy change of ΔS{sub 0}=32.5 J/mol K is characteristic for the order–disorder phase transition, and is equal to the sum of entropy changes in the related material, (NH{sub 4}){sub 3}TiF{sub 7}, undergoing transformation between the two cubic phases through the intermediate phases. Hydrostatic pressure decreases the stability of the highmore » temperature Pm-3m phase in (NH{sub 4}){sub 3}SnF{sub 7}, contrary to (NH{sub 4}){sub 3}TiF{sub 7}, characterised by a negative baric coefficient. The effect of experimental conditions on the chemical stability of (NH{sub 4}){sub 3}SnF{sub 7} was observed. - Graphical abstract: Strong first order structural transformation Pa-3↔Pm-3m in (NH{sub 4}){sub 3}SnF{sub 7} is associated with very large total entropy change of ΔS{sub 0}=32.5 J/mol K characteristic for the ordering processes and equal to the sum of entropy changes in the related (NH{sub 4}){sub 3}TiF{sub 7} undergoing transformation between the same two cubic phases through the intermediate phases. - Highlights: • (NH{sub 4}){sub 3}SnF{sub 7} undergoes strong first order Pa-3↔Pm-3m phase transition. • Anomalous behaviour of ΔC{sub p} and ΔV/V exists far below phase transition temperature. • Structural distortions are accompanied by huge total entropy change ΔS≈Rln50. • High pressure strongly increases the stability of Pa-3 phase in (NH{sub 4}){sub 3}SnF{sub 7}. • Entropy of the Pa-3↔Pm-3m phase transition does not depend on pressure.« less

  12. Rotator Phases of n-Heptane under High Pressure: Raman Scattering and X-ray Diffraction Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C Ma; Q Zhou; F Li

    2011-12-31

    We performed high-pressure Raman scattering and angle-dispersive synchrotron X-ray diffraction measurements on n-heptane at room temperature. It has been found that n-heptane undergoes a liquid to rotator phase III (R{sub III}) transition at 1.2 GPa and then transforms into another rotator phase R{sub IV} at about 3 GPa. As the pressure reaches 7.5 GPa, a transition from an orientationally disordered R{sub IV} phase to an ordered crystalline state starts and is completed around 14.5 GPa. Our results clearly present the high-pressure phase transition sequence (liquid-R{sub III}-R{sub IV}-crystal) of n-heptane, similar to that of normal alkanes.

  13. T-p phase diagrams and the barocaloric effect in materials with successive phase transitions

    NASA Astrophysics Data System (ADS)

    Gorev, M. V.; Bogdanov, E. V.; Flerov, I. N.

    2017-09-01

    An analysis of the extensive and intensive barocaloric effect (BCE) at successive structural phase transitions in some complex fluorides and oxyfluorides was performed. The high sensitivity of these compounds to a change in the chemical pressure allows one to vary the succession and parameters of the transformations (temperature, entropy, baric coefficient) over a wide range and obtain optimal values of the BCE. A comparison of different types of schematic T-p phase diagrams with the complicated T( p) dependences observed experimentally shows that in some ranges of temperature and pressure the BCE in compounds undergoing successive transformations can be increased due to a summation of caloric effects associated with distinct phase transitions. The maximum values of the extensive and intensive BCE in complex fluorides and oxyfluorides can be realized at rather low pressure (0.1-0.3 GPa). In a narrow temperature range around the triple points conversion from conventional BCE to inverse BCE is observed, which is followed by a gigantic change of both \\vertΔ S_BCE\\vert and \\vertΔ T_AD\\vert .

  14. Equation of state and phase transformations study of Nd at ultra-high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akella, J.; Smith, G.S.; Weir, S.

    1991-10-01

    Neodymium was investigated to 96.0 GPa pressure in a diamond-anvil ell at room temperature. The observed structural sequence as a function of pressure is dhcp-fcc- six layered'' structure. In the diffraction pattern hexagonal doublets; notably 102, 006 and 100, 108; appear as single reflection when the c/a ratio is 4.899. However, when cc/a approaches 4.7, the splitting is clear. So far in this study, no monoclinic phase or tetragonal phase were observed. 1 fig., 18 refs.

  15. Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum

    NASA Astrophysics Data System (ADS)

    Polsin, D. N.

    2017-10-01

    Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  16. Exploration of phase transition in Th2C under pressure: An Ab-initio investigation

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.

    2018-05-01

    With the motivation of searching for new compounds in the Th-C system, we have performed ab initio evolutionary searches for all the stable compounds in this binary system in the pressure range of 0-100 GPa. We have found previously unknown, thermodynamically stable, composition Th2C along with experimentally known ThC, ThC2 and Th2C3 phases at 0 GPa. Interestingly at pressure of 13 GPa the predicted ground state orthorhombic (SG no. 59, Pmmn) phase of Th2C transforms to trigonal (SG no. 164, P-3m1) phase. We also find the mechanical and dynamical stability of both the phases. Further, the theoretically determined equation of state has been utilized to derive various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus of Pmmn phase at ambient conditions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Pei; Fang, Z. Zak; Koopman, Mark

    Hydrogen has been investigated for decades as a temporary alloying element to refine the microstructure of Ti-6Al-4V, and is now being used in a novel powder metallurgy method known as "hydrogen sintering and phase transformation". Pseudo-binary phase diagrams of (Ti-6Al-4V)-xH have been studied and developed, but are not well established due to methodological limitations. In this paper, in situ studies of phase transformations during hydrogenation and dehydrogenation of (Ti-6Al-4V)-xH alloys were conducted using high-energy synchrotron X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The eutectoid phase transformation of β ↔ α + δ was observed in themore » (Ti-6Al-4V)-xH alloy via in situ synchrotron XRD at 211 °C with a hydrogen concentration of 37.5 at.% (measured using TGA-DSC). The relationships of hydrogen composition to partial pressure and temperature were investigated in the temperature range 450-900°C. Based on these results, a partial pseudo-binary phase diagram of (Ti-6Al-4V)-xH is proposed for hydrogen compositions up to 60 at.% in the temperature range 100-900°C. Using the data collected in real time under controlled parameters of temperature, composition and hydrogen partial pressure, this work characterizes relevant phase transformations and microstructural evolution for practical titanium-hydrogen technologies of Ti-6Al-4V.« less

  18. Phase Transformation of Droplets into Particles and Nucleation in Atmospheric Pressure Discharges

    NASA Astrophysics Data System (ADS)

    Iqbal, M. M.; Stallard, C. P.; Dowling, D. P.; Turner, M. M.

    2013-09-01

    We investigate the mechanism of phase transformation of liquid precursor droplets into nano-particulates in an atmospheric pressure discharge (APD). This phase transformation is possible when the solid to a liquid mass ratio of slurry droplet reaches a threshold value. The behaviour of phase transformation of a single slurry droplet of HMDSO is described by developing a numerical model under the saturation condition of evaporation. It is observed from the temporal evolution of inner radius (Ri) of a single slurry droplet that its value approaches zero before the entire shifting of a liquid phase and which explains with an expansion in the crust thickness (Ro - Ri) . The solid traces of nano-particles are observed experimentally on the surface coating depositions because the time for transferring the slurry droplet of HMDSO into solid state is amplified with an increment in the radii of droplets and the entire phase transition occurs within residence time for the nano-sized liquid droplets. The GDE coupled with discharge plasma is numerically solved to describe the mechanism of nucleation of nano-sized particles in APD plasma under similar conditions of the experiment. The growth of nucleation in APD plasma depends on the type of liquid precursor, such as HMDSO, TEOS and water, which is verified with a sharp peak in the nucleation rate and saturation ratio. Science Foundation Ireland under Grant No. 08/SRC/I1411.

  19. Effect of grain boundaries on shock-induced phase transformation in iron bicrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyang; Wang, Kun; Zhu, Wenjun; Chen, Jun; Cai, Mengqiu; Xiao, Shifang; Deng, Huiqiu; Hu, Wangyu

    2018-01-01

    Non-equilibrium molecular-dynamic simulations with a modified analytic embedded-atom model potential have been performed to investigate the effect of three kinds of grain boundaries (GBs) on the martensitic transformation in iron bicrystals with three different GBs under shock loadings. Our results show that the phase transition was influenced by the GBs. All three GBs provide a nucleation site for the α → ɛ transformation in samples shock-loaded with up = 0.5 km/s, and in particular, the elastic wave can induce the phase transformation at Σ3 ⟨110⟩ twist GB, which indicates that the phase transformation can occur at Σ3 ⟨110⟩ twist GB with a much lower pressure. The effect of GBs on the stress assisted transformation (SAT) mechanisms is discussed. All variants nucleating at the vicinity of these GBs meet the maximum strain work (MSW) criterion. Moreover, all of the variants with the MSW nucleate at Σ5 ⟨001⟩ twist GB and Σ3 ⟨110⟩ tilt GB, but only part of them nucleate at Σ3 ⟨110⟩ twist GB. This is because the coincident planes between both sides of the GB would affect the slip process, which is the second stage of the martensitic transformation and influences the selection of variant. We also find that the martensitic transformation at the front end of the bicrystals would give rise to stress attenuation in samples shock-loaded with up = 0.6 km/s, which makes the GBs seem to be unfavorable to the martensitic transformation. Our findings have the potential to affect the interface engineering and material design under high pressure conditions.

  20. Phase boundary of hot dense fluid hydrogen

    PubMed Central

    Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo

    2015-01-01

    We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations. PMID:26548442

  1. The Pressure-Induced Polymorphic Transformations in Fluconazole.

    PubMed

    Gorkovenko, Ekaterina A; Kichanov, Sergey E; Kozlenko, Denis P; Belushkin, Alexandr V; Wąsicki, Jan; Nawrocik, Wojciech; Mielcarek, Jadwiga; Dubrovinsky, Leonid S; Lathe, Christian; Savenko, Boris N

    2015-12-01

    The structural properties and Raman spectra of fluconazole have been studied by means of X-ray diffraction and Raman spectroscopy at pressures up to 2.5 and 5.5 GPa, respectively. At a pressure of 0.8 GPa, a polymorphic phase transition from the initial form I to a new triclinic form VIII has been observed. At higher pressure of P = 3.2 GPa, possible transformation into another new polymorphic form IX has been detected. The unit cell parameters and volumes, and vibration modes as functions of pressure have been obtained for the different forms of fluconazole. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    NASA Astrophysics Data System (ADS)

    Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.

    2013-08-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  3. Pressure-induced kinetics of the α to ω transition in zirconium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, M. K.; Velisavljevic, N., E-mail: nenad@lanl.gov; Sinogeikin, S. V.

    Diamond anvil cells (DAC) coupled with x-ray diffraction (XRD) measurements are one of the primary techniques for investigating structural stability of materials at high pressure-temperature (P-T) conditions. DAC-XRD has been predominantly used to resolve structural information at set P-T conditions and, consequently, provides P-T phase diagram information on a broad range of materials. With advances in large scale synchrotron x-ray facilities and corresponding x-ray diagnostic capabilities, it is now becoming possible to perform sub-second time resolved measurements on micron sized DAC samples. As a result, there is an opportunity to gain valuable information about the kinetics of structural phase transformationsmore » and extend our understanding of material behavior at high P-T conditions. Using DAC-XRD time resolved measurements, we have investigated the kinetics of the α to ω transformation in zirconium. We observe a clear time and pressure dependence in the martensitic α-ω transition as a function of pressure-jump, i.e., drive pressure. The resulting data are fit using available kinetics models, which can provide further insight into transformation mechanism that influence transformation kinetics. Our results help shed light on the discrepancies observed in previous measurements of the α-ω transition pressure in zirconium.« less

  4. Pressure-induced kinetics of the α to ω transition in zirconium

    DOE PAGES

    Jacobsen, M. K.; Velisavljevic, N.; Sinogeikin, S. V.

    2015-07-13

    Diamond anvil cells (DAC) coupled with x-ray diffraction (XRD) measurements are one of the primary techniques for investigating structural stability of materials at high pressure-temperature (P-T) conditions. DAC-XRD has been predominantly used to resolve structural information at set P-T conditions and, consequently, provides P-T phase diagram information on a broad range of materials. With advances in large scale synchrotron x-ray facilities and corresponding x-ray diagnostic capabilities, it is now becoming possible to perform sub-second time resolved measurements on micron sized DAC samples. As a result, there is an opportunity to gain valuable information about the kinetics of structural phase transformationsmore » and extend our understanding of material behavior at high P-T conditions. Using DAC-XRD time resolved measurements, we have investigated the kinetics of the α to ω transformation in zirconium. We observe a clear time and pressure dependence in the martensitic α-ω transition as a function of pressure-jump, i.e., drive pressure. The resulting data are fit using available kinetics models, which can provide further insight into transformation mechanism that influence transformation kinetics. Our results help shed light on the discrepancies observed in previous measurements of the α-ω transition pressure in zirconium.« less

  5. High-pressure behaviour of serpentine and elasticity systematics of hydrous and nominally anhydrous phases

    NASA Astrophysics Data System (ADS)

    Fumagalli, P.; Mookherjee, M.; Stixrude, L. P.

    2006-12-01

    Serpentine, talc and brucite occur in oceanic crust as alteration products of ultramafic rocks. As mineral phases occurring in the subduction zone setting, both along the slab and within the mantle wedge, they are possible candidates for carrying and tranfer of water to the deep earth. This is manifested by serpentine mud volcanoes, high electrical conductivities, magnetic and seismic anomalies. At high pressure talc transforms to the 10 Å phase. Both the 10 Å phase and serpentine eventually transfer their water content to other dense hydrous magnesium silicates stable at depth greater than 200 km. Most of the mantle's water budget may be contained in nominally anhydrous phases in which hydrogen occurs as non-stoichiometric defects. In order to evaluate the potential for remote detection of mantle water via seismology, we have investigated the elasticity systematics of hydrous phases, supplementing literature data with a new ab initio theoretical study of serpentine. Serpentine shows unusual high-pressure behavior. We predict a symmetry preserving phase transformation involving a proton flip near 25 GPa, and elastic instability at somewhat higher pressures that may be related with experimentally observed amorphization. Results of compression for the low-pressure phase is well represented by a fourth order Birch-Murnaghan finite strain expression with Ko= 81 GPa, Ko'= 9.12 and KoKo"= -142, where K is the bulk modulus, prime indicates pressure derivatives, and O refers to zero pressure. The elastic constant tensor reveals large acoustic anisotropy (41 % in VP) and seismic wave velocities that are significantly higher than those inferred from experiments on serpentinites. We find that serpentine and many other hydrous and nominally anhydrous phases conform closely to generalized Birch's laws in VP, VS, and VB versus density space. Coherent patterns emerge only if hydroxyls are treated as single "atomic" units in the computation of mean atomic weight, suggesting important implications for the understanding of the influence of hydrogen on mineral elasticity.

  6. The effects of Na on high pressure phases of CuIn(0.5)Ga(0.5)Se(2) from ab initio calculation.

    PubMed

    Pluengphon, P; Bovornratanaraks, T; Vannarat, S; Pinsook, U

    2012-03-07

    The effects of Na atoms on high pressure structural phase transitions of CuIn(0.5)Ga(0.5)Se(2) (CIGS) were studied by an ab initio method using density functional theory. At ambient pressure, CIGS is known to have chalcopyrite (I42d) structure. The high pressure phase transitions of CIGS were proposed to be the same as the order in the CuInSe(2) phase transitions which are I42d → Fm3m → Cmcm structures. By using the mixture atoms method, the Na concentration in CIGS was studied at 0.1, 1.0 and 6.25%. The positive mixing enthalpy of Na at In/Ga sites (Na(InGa)) is higher than that of Na at Cu sites (Na(Cu)). It confirmed previous studies that Na preferably substitutes on the Cu sites more than the (In, Ga) sites. From the energy-volume curves, we found that the effect of the Na substitutes is to reduce the hardness of CIGS under high pressure. The most significant effects occur at 6.25% Na. We also found that the electronic density of states of CIGS near the valence band maximum is increased noticeably in the chalcopyrite phase. The band gap is close in the cubic and orthorhombic phases. Also, the Na(Cu)-Se bond length in the chalcopyrite phase is significantly reduced at 6.25% Na, compared with the pure Cu-Se bond length. Consequently, the energy band gap in this phase is wider than in pure CIGS, and the gap increased at the rate of 31 meV GPa(-1) under pressure. The Na has a small effect on the transition pressure. The path of transformation from the cubic to orthorhombic phase was derived. The Cu-Se plane in the cubic phase displaced relatively parallel to the (In, Ga)-Se plane by 18% in order to transform to the Cmcm phase. The enthalpy barrier is 0.020 eV/atom, which is equivalent to a thermal energy of 248 K. We predicted that Fm3m and Cmcm can coexist in some pressure range.

  7. Crystallographic phases in heavy rare earth metals under megabar pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, G. K.; Vohra, Y. K.

    2012-07-01

    Experiments aimed at understanding the crystallographic phases of heavy rare earth metals were carried out in a diamond anvil cell at the Advanced Photon Source, Argonne National Laboratory. Heavy rare earth metals dysprosium (Dy), holmium (Ho), erbium (Er) and thulium (Tm) were compressed to multi-megabar pressures. The rare earth crystal sequence hcp→Sm-type→dhcp→distorted-fcc (dfcc) is observed in all four elements. Upon further compression, a structural transformation to a monoclinic C2/m phase has been observed. We summarize the results from these experiments and present Rietveld structural refinements on high pressure phases for the specific case of dysprosium.

  8. Phase transition induced strain in ZnO under high pressure

    DOE PAGES

    Yan, Xiaozhi; Dong, Haini; Li, Yanchun; ...

    2016-05-13

    Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strengthmore » decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. Ultimately, these findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.« less

  9. High-pressure phase of brucite stable at Earth's mantle transition zone and lower mantle conditions.

    PubMed

    Hermann, Andreas; Mookherjee, Mainak

    2016-12-06

    We investigate the high-pressure phase diagram of the hydrous mineral brucite, Mg(OH) 2 , using structure search algorithms and ab initio simulations. We predict a high-pressure phase stable at pressure and temperature conditions found in cold subducting slabs in Earth's mantle transition zone and lower mantle. This prediction implies that brucite can play a much more important role in water transport and storage in Earth's interior than hitherto thought. The predicted high-pressure phase, stable in calculations between 20 and 35 GPa and up to 800 K, features MgO 6 octahedral units arranged in the anatase-TiO 2 structure. Our findings suggest that brucite will transform from a layered to a compact 3D network structure before eventual decomposition into periclase and ice. We show that the high-pressure phase has unique spectroscopic fingerprints that should allow for straightforward detection in experiments. The phase also has distinct elastic properties that might make its direct detection in the deep Earth possible with geophysical methods.

  10. Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge2Sb2Te5 phase-change memory material

    PubMed Central

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-01-01

    Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST. PMID:21670255

  11. Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge₂Sb₂Te₅ phase-change memory material.

    PubMed

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-06-28

    Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te-Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.

  12. High pressure-high temperature phase diagram of an energetic crystal: Dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50)

    DOE PAGES

    Dreger, Z. A.; Breshike, C. J.; Gupta, Y. M.

    2017-05-08

    Raman spectroscopy was used to examine the high pressure-high temperature structural and chemical stability of an insensitive, high-performance energetic crystal – dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50). The phase diagram was determined over 8 GPa and (293-760) K. Under isobaric heating, the melting/decomposition of TKX-50 is preceded by a transformation to two consecutive high-temperature intermediates; a lower-temperature intermediate – diammonium 5,5’-bistetrazole-1,1'-diolate, and a higher-temperature intermediate – dihydroxylammonium 5,5'-bistetrazolate and/or diammonium 5,5'-bistetrazolate. Pressure strongly increases the transition temperatures for these transformations and subsequent decomposition. As a result, significant increase in the chemical stability of TKX-50 and intermediates with pressure was attributed to a suppressionmore » of hydrogen-transfer.« less

  13. Stability limits and transformation pathways of α-quartz under high pressure

    NASA Astrophysics Data System (ADS)

    Hu, Q. Y.; Shu, J.-F.; Yang, W. G.; Park, C.; Chen, M. W.; Fujita, T.; Mao, H.-K.; Sheng, H. W.

    2017-03-01

    Ubiquitous on Earth, α-quartz plays an important role in modern science and technology. However, despite extensive research in the past, the mechanism of the polymorphic transitions of α-quartz at high pressures remains poorly understood. Here, combining in situ single-crystal x-ray diffraction experiment and advanced ab initio modeling, we report two stability limits and competing transition pathways of α-quartz under high pressure. Under near-equilibrium compression conditions at room temperature, α-quartz transits to a new P 2 /c silica phase via a structural intermediate. If the thermally activated transition is kinetically suppressed, the ultimate stability of α-quartz is controlled by its phonon instability and α-quartz collapses into a different crystalline phase. Our studies reveal that pressure-induced solid-state transformation of α-quartz undergoes a succession of structural stability limits, due to thermodynamic and mechanical catastrophes, and exhibits a hierarchy of transition pathways contingent upon kinetic conditions.

  14. Shock temperatures in silica glass - Implications for modes of shock-induced deformation, phase transformation, and melting with pressure

    NASA Technical Reports Server (NTRS)

    Schmitt, Douglas R.; Ahrens, Thomas J.

    1989-01-01

    Observations of shock-induced radiative thermal emissions are used to determine the gray body temperatures and emittances of silica glass under shock compression between 10 and 30 GPa. The results suggest that fused quartz deforms heterogeneously in this shock pressure range. It is shown that the 10-16 GPa range coincides with the permanent densification region, while the 16-30 GPa range coincides with the inferred mixed phase region along the silica glass Hugoniot. Low emittances in the mixed phase region are thought to represent the melting temperature of the high-pressure phase, stishovite. Also, consideration is given to the effects of pressure on melting relations for the system SiO2-Mg2SiO4.

  15. Deviatoric stress-induced phase transitions in diamantane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Lin, Yu; Dahl, Jeremy E. P.

    2014-10-21

    The high-pressure behavior of diamantane was investigated using angle-dispersive synchrotron x-ray diffraction (XRD) and Raman spectroscopy in diamond anvil cells. Our experiments revealed that the structural transitions in diamantane were extremely sensitive to deviatoric stress. Under non-hydrostatic conditions, diamantane underwent a cubic (space group Pa3) to a monoclinic phase transition at below 0.15 GPa, the lowest pressure we were able to measure. Upon further compression to 3.5 GPa, this monoclinic phase transformed into another high-pressure monoclinic phase which persisted to 32 GPa, the highest pressure studied in our experiments. However, under more hydrostatic conditions using silicone oil as a pressuremore » medium, the transition pressure to the first high-pressure monoclinic phase was elevated to 7–10 GPa, which coincided with the hydrostatic limit of silicone oil. In another experiment using helium as a pressure medium, no phase transitions were observed to the highest pressure we reached (13 GPa). In addition, large hysteresis and sluggish transition kinetics were observed upon decompression. Over the pressure range where phase transitions were confirmed by XRD, only continuous changes in the Raman spectra were observed. This suggests that these phase transitions are associated with unit cell distortions and modifications in molecular packing rather than the formation of new carbon-carbon bonds under pressure.« less

  16. Pressure-induced silica quartz amorphization studied by iterative stochastic surface walking reaction sampling.

    PubMed

    Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan

    2017-02-08

    The crystal to amorphous transformation is a common phenomenon in Nature and has important impacts on material properties. Our current knowledge on such complex solid transformation processes is, however, limited because of their slow kinetics and the lack of long-range ordering in amorphous structures. To reveal the kinetics in the amorphization of solids, this work, by developing iterative reaction sampling based on the stochastic surface walking global optimization method, investigates the well-known crystal to amorphous transformation of silica (SiO 2 ) under external pressures, the mechanism of which has long been debated for its non-equilibrium, pressure-sensitive kinetics and complex product components. Here we report for the first time the global potential energy surface (PES) and the lowest energy pathways for α-quartz amorphization from first principles. We show that the pressurization at 15 GPa, the reaction condition, can lift the quartz phase energetically close to the amorphous zone, which thermodynamically initializes the amorphization. More importantly, the large flexibility of Si cation coordination (including four, five and six coordination) results in many kinetically competing routes to more stable dense forms, including the known MI, stishovite, newly-identified MII and TI phases. All these pathways have high barriers due to the local Si-O bond breaking and are mediated by amorphous structures with five-fold Si. This causes simultaneous crystal-to-crystal and crystal-to-amorphous transitions. The high barrier and the reconstructive nature of the phase transition are the key kinetics origin for silica amorphization under pressures.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.

    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring overmore » a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.« less

  18. Relaxation dynamics and transformation kinetics of deeply supercooled water: Temperature, pressure, doping, and proton/deuteron isotope effects.

    PubMed

    Lemke, Sonja; Handle, Philip H; Plaga, Lucie J; Stern, Josef N; Seidl, Markus; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Köster, Karsten W; Gainaru, Catalin; Loerting, Thomas; Böhmer, Roland

    2017-07-21

    Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping. The kinetics of the HDA to LDA transformation lacks a proton/deuteron isotope effect, revealing that this process is dominated by the restructuring of the oxygen network. The x-ray diffraction experiments performed on samples at intermediate transition stages reflect a linear combination of the LDA and HDA patterns implying a macroscopic phase separation, instead of a local intermixing of the two amorphous states.

  19. Relaxation dynamics and transformation kinetics of deeply supercooled water: Temperature, pressure, doping, and proton/deuteron isotope effects

    NASA Astrophysics Data System (ADS)

    Lemke, Sonja; Handle, Philip H.; Plaga, Lucie J.; Stern, Josef N.; Seidl, Markus; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Köster, Karsten W.; Gainaru, Catalin; Loerting, Thomas; Böhmer, Roland

    2017-07-01

    Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping. The kinetics of the HDA to LDA transformation lacks a proton/deuteron isotope effect, revealing that this process is dominated by the restructuring of the oxygen network. The x-ray diffraction experiments performed on samples at intermediate transition stages reflect a linear combination of the LDA and HDA patterns implying a macroscopic phase separation, instead of a local intermixing of the two amorphous states.

  20. In situ observation of stishovite formation in shock-compressed fused silica

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June; Turneaure, Stefan; Duffy, Thomas

    2017-06-01

    Silica, SiO2, has widespread applications ranging from optical components to refractory materials and is of geological importance as one of the major oxide components of the Earth's crust and mantle. The response of silica phases to dynamic loading has long been of interest for understanding the structural evolution of this fundamental oxide. Under shock compression both crystalline quartz and fused silica are characterized by the occurrence of a broad `mixed-phase region' (15-40 GPa) and a dense, high-pressure phase with much lower compressibility. Despite decades of study, the nature of this transformation and the identity of the high-pressure phase(s) remain poorly understood. In situ x-ray diffraction experiments on shock-compressed fused silica were conducted at the Dynamic Compression Sector of the Advanced Photon Source. The lattice-level structure was investigated through time-resolved x-ray diffraction measurements on samples reaching peak stress ranging from 12 to 47 GPa. Our results demonstrate that SiO2 adopts a dense amorphous structure in the `mixed-phase region' and abruptly transforms to stishovite above 34 GPa. These results provide clear evidence that high-pressure crystalline silicate phases can form from amorphous starting materials on the time-scale of laboratory shock experiments.

  1. Experimental studies of transplutonium metals and compounds under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J.R.; Haire, R.G.; Benedict, U.

    1986-01-01

    The structural behavior of the first four transplutonium metals and two Bk-Cf alloys as a function of pressure has been studied in diamond anvil cells via x-ray diffraction. The sequence of structures exhibited as pressure is increased is dhcp ..-->.. ccp ..-->.. orthorhombic. In addition a distorted ccp phase is observed in Am, Bk/sub 0.40/Cf/sub 0.60/, and Cf between the ccp and orthorhombic phases. Diamond anvil cells have also been used to contain AmI/sub 3/, CfBr/sub 3/, and CfCl/sub 3/ under pressure for investigation by absorption spectrophotometry. Both AmI/sub 3/ and CfBr/sub 3/ exhibit pressure-induced, irreversible phase transformations to themore » PuBr/sub 3/-type orthorhombic structure, a more dense form of these compounds. Thus the driving force for these transformations is more efficient crystal packing. Both hexagonal (to 22 GPa) and orthorhombic (to 35 GPa) CfCl/sub 3/ exhibit only reversible spectral changes with pressure. This probably reflects their nearly identical RTP unit cell volumes. In both cases the spectra obtained are consistent with a continuous alteration of the RTP structure with pressure; physical compression seems to make a given f-f transition easier. Additional data are being sought to elucidate more completely the behavior of CfCl/sub 3/ under pressure. 23 refs., 4 figs.« less

  2. Theoretical analysis of the structural phase transformation in the ZnO under high pressure

    NASA Astrophysics Data System (ADS)

    Verma, Saligram; Jain, Arvind; Nagarch, R. K.; Shah, S.; Kaurav, Netram

    2018-05-01

    We report a phenomenological model based calculation of pressure-induced structural phase transition and elastic properties of ZnO compound. Gibb's free energy is obtained as a function of pressure by applying an effective inter ionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. From the present study, we predict a structural phase transition from ZnS structure (B3) to NaCl structure (B1) at 8.5 GPa. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data. The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of ZnS type structure family.

  3. Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durandurdu, Murat, E-mail: murat.durandurdu@agu.edu.tr

    2015-10-15

    The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia atmore » high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.« less

  4. Coexistence pressure for a martensitic transformation from theory and experiment: Revisiting the bcc-hcp transition of iron under pressure

    DOE PAGES

    Zarkevich, N. A.; Johnson, D. D.

    2015-05-12

    We revisit results from decades of pressure experiments on the bcc ↔ hcp transformations in iron, which are sensitive to non-hydrostatic conditions and sample size. We emphasize the role of martensitic stress in the observed pressure hysteresis and address the large spread in values for onset pressures of the nucleating phase. From electronic-structure calculations, we find a bcc ↔ hcp equilibrium coexistence pressure of 8.4 GPa. Accounting for non-hydrostatic martensitic stress and a stress-dependent transition barrier, we suggest a pressure inequality for better comparison to experiment and observed hysteresis. We construct the equation of state for bcc and hcp phasesmore » under hydrostatic pressure, and compare to experiments and previous calculations.« less

  5. Pressure-induced transformations in computer simulations of glassy water.

    PubMed

    Chiu, Janet; Starr, Francis W; Giovambattista, Nicolas

    2013-11-14

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.

  6. Pressure-induced transformations in computer simulations of glassy water

    NASA Astrophysics Data System (ADS)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2013-11-01

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.

  7. Pressure-induced phase transition and fracture in α-MoO3 nanoribbons

    NASA Astrophysics Data System (ADS)

    Silveira, Jose V.; Vieira, Luciana L.; Aguiar, Acrisio L.; Freire, Paulo T. C.; Mendes Filho, Josue; Alves, Oswaldo L.; Souza Filho, Antonio G.

    2018-03-01

    MoO3 nanoribbons were studied under different pressure conditions ranging from 0 to 21 GPa at room temperature. The effect of the applied pressure on the spectroscopic and morphologic properties of the MoO3 nanoribbons was investigated by means of Raman spectroscopy and scanning electron microscopy techniques. The pressure dependent Raman spectra of the MoO3 nanoribbons indicate that a structural phase transition occurs at 5 GPa from the orthorhombic α-MoO3 phase (Pbnm) to the monoclinic MoO3-II phase (P21/m), which remains stable up to 21 GPa. Such phase transformation occurs at considerably lower pressure than the critical pressure for α-MoO3 microcrystals (12 GPa). We suggested that the applanate morphology combined with the presence of crystalline defects in the sample play an important role in the phase transition of the MoO3 nanoribbons. Frequencies and linewidths of the Raman bands as a function of pressure also suggest a pressure-induced morphological change and the decreasing of the nanocrystal size. The observed spectroscopic changes are supported by electron microscopy images, which clearly show a pressure-induced morphologic change in MoO3 nanoribbons.

  8. Phase transitions in orthopyroxene (En 90) to 49GPa from single-crystal X-ray diffraction

    DOE PAGES

    Finkelstein, Gregory J.; Dera, Przemyslaw K.; Duffy, Thomas S.

    2014-10-29

    Synchrotron-based high-pressure single-crystal X-ray diffraction experiments were conducted on ~Mg 0.9Fe 0.1SiO 3 (En 90) orthopyroxene crystals at room temperature to a maximum pressure of 48.5 GPa. The sample was compressed in a diamond anvil cell with a neon pressure medium and a gold pressure calibrant. In addition to the previously described orthopyroxene to β-opx transition (designated HPCEN2 in previous studies), we observe two further phase transitions at 29.9 GPa and 40.3 GPa. However, we do not observe the γ-opx phase recently described in an Fe-rich orthopyroxene composition. The structures of both of the new phases were solved in spacemore » group Pca21. While their Mg-O layers remain pyroxene-like, their Si-O layers transform in a stepwise fashion to akimotoite-like sheets, with sites in 4-, 5-, or 6-fold coordination, depending on the specific structure and layer. Due to the increased Si-O coordination number, we designate the new structures α- and β-post-orthopyroxene (α-popx and β-popx). α-popx has one Si-O layer that is entirely tetrahedral, and one layer that contains both tetrahedra and 5-coordinated Si in distorted square pyramids. β-popx retains the mixed 4- and 5-coordinated Si layer found in α-popx, while the other Si layer adopts fully octahedral coordination. The α- and β-popx structures show a progressive transformation towards the arrangement of Si layers found in akimotoite, a potentially important phase in the earth’s transition zone. Metastable transformations in pyroxenes are of interest for understanding possible metastability in geological environments such as subducting slabs and meteorite impacts« less

  9. Phase transitions in orthopyroxene (En 90) to 49GPa from single-crystal X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finkelstein, Gregory J.; Dera, Przemyslaw K.; Duffy, Thomas S.

    Synchrotron-based high-pressure single-crystal X-ray diffraction experiments were conducted on ~Mg 0.9Fe 0.1SiO 3 (En 90) orthopyroxene crystals at room temperature to a maximum pressure of 48.5 GPa. The sample was compressed in a diamond anvil cell with a neon pressure medium and a gold pressure calibrant. In addition to the previously described orthopyroxene to β-opx transition (designated HPCEN2 in previous studies), we observe two further phase transitions at 29.9 GPa and 40.3 GPa. However, we do not observe the γ-opx phase recently described in an Fe-rich orthopyroxene composition. The structures of both of the new phases were solved in spacemore » group Pca21. While their Mg-O layers remain pyroxene-like, their Si-O layers transform in a stepwise fashion to akimotoite-like sheets, with sites in 4-, 5-, or 6-fold coordination, depending on the specific structure and layer. Due to the increased Si-O coordination number, we designate the new structures α- and β-post-orthopyroxene (α-popx and β-popx). α-popx has one Si-O layer that is entirely tetrahedral, and one layer that contains both tetrahedra and 5-coordinated Si in distorted square pyramids. β-popx retains the mixed 4- and 5-coordinated Si layer found in α-popx, while the other Si layer adopts fully octahedral coordination. The α- and β-popx structures show a progressive transformation towards the arrangement of Si layers found in akimotoite, a potentially important phase in the earth’s transition zone. Metastable transformations in pyroxenes are of interest for understanding possible metastability in geological environments such as subducting slabs and meteorite impacts« less

  10. Pressure-induced effects and phase relations in Mg2NiH4

    NASA Astrophysics Data System (ADS)

    Gavra, Z.; Kimmel, G.; Gefen, Y.; Mintz, Moshe H.

    1985-05-01

    The low-temperature (<210 °C) crystallographic structure, electrical conductivity, and thermal stability of Mg2NiH4 powders compacted under isostatic pressures of up to 10 kbar were studied. A comparison is made with the corresponding properties of the noncompressed material. It has been concluded that under stress-free hydriding conditions performed below 210 °C, a two-phase hydride mixture is formed. Each of the hydride particles consists of an inner core composed of an hydrogen-deficient monoclinic phase coated by a layer of a stoichiometric orthorhombic phase. The monoclinic phase has a metalliclike electrical conductivity while the orthorhombic phase is insulating. High compaction pressures cause the transformation of the orthorhombic structure into the monoclinic one, thereby resulting in a pressure-induced insulator-to-conductor transition. Reduced decomposition temperatures are obtained for the compressed hydrides. This reduction is attributed to kinetic factors rather than to a reduced thermodynamic stability.

  11. New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials

    NASA Astrophysics Data System (ADS)

    Kocher, Gabriel; Provatas, Nikolas

    2015-04-01

    A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.

  12. Phase diagram and high-pressure boundary of hydrate formation in the ethane-water system.

    PubMed

    Kurnosov, Alexander V; Ogienko, Andrey G; Goryainov, Sergei V; Larionov, Eduard G; Manakov, Andrey Y; Lihacheva, Anna Y; Aladko, Eugeny Y; Zhurko, Fridrikh V; Voronin, Vladimir I; Berger, Ivan F; Ancharov, Aleksei I

    2006-11-02

    Dissociation temperatures of gas hydrate formed in the ethane-water system were studied at pressures up to 1500 MPa. In situ neutron diffraction analysis and X-ray diffraction analysis in a diamond anvil cell showed that the gas hydrate formed in the ethane-water system at 340, 700, and 1840 MPa and room temperature belongs to the cubic structure I (CS-I). Raman spectra of C-C vibrations of ethane molecules in the hydrate phase, as well as the spectra of solid and liquid ethane under high-pressure conditions were studied at pressures up to 6900 MPa. Within 170-3600 MPa Raman shift of the C-C vibration mode of ethane in the hydrate phase did not show any discontinuities, which could be evidence of possible phase transformations. The upper pressure boundary of high-pressure hydrate existence was discovered at the pressure of 3600 MPa. This boundary corresponds to decomposition of the hydrate to solid ethane and ice VII. The type of phase diagram of ethane-water system was proposed in the pressure range of hydrate formation (0-3600 MPa).

  13. Studies on the structural stability of Co2P2O7 under pressure

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Pang, H.; Jin, M. L.; Shen, X.; Yao, Y.; Wang, Y. G.; Li, Y. C.; Li, X. D.; Jin, C. Q.; Yu, R. C.

    2018-05-01

    The crystal structural evolution of Co2P2O7 was studied by using in situ high pressure angle dispersive x-ray diffraction with synchrotron radiation. The results demonstrate that the α phase of Co2P2O7 goes through a partially irreversible structural transformation to β phase under pressure. The pressure is conductive to reduce the longest Cosbnd O bond length of the α phase, and then more uniform Cosbnd O bonds and regular hexagonal arrangement of CoO6 octahedra of the β phase are favored. According to the Birch-Murnaghan equation, the fitted bulk modulus B0 is 158.1(±5.6) GPa for α phase and 276.5(±6.5) GPa for β phase. Furthermore, the first-principles calculations show that these two phases of Co2P2O7 have almost equal total energies, and also have similar band structures and spin-polarized density of states at their ground states. This may be the reason why these two phases of Co2P2O7 can coexist in the pressure released state. It is found that the band gap energies decrease with increasing pressure for both phases.

  14. Pressure-induced amorphization of YVO₄:Eu³⁺ nanoboxes.

    PubMed

    Ruiz-Fuertes, J; Gomis, O; León-Luis, S F; Schrodt, N; Manjón, F J; Ray, S; Santamaría-Pérez, D; Sans, J A; Ortiz, H M; Errandonea, D; Ferrer-Roca, C; Segura, A; Martínez-García, D; Lavín, V; Rodríguez-Mendoza, U R; Muñoz, A

    2016-01-15

    A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu(3+) nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu(3+) photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two (5)D0-->(7)F0 photoluminescence peaks confirms the existence of two local environments for Eu(3+), at least for the low-pressure phase. One environment is the expected for substituting Y(3+) and the other is likely a disordered environment possibly found at the surface of the nanoboxes.

  15. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a functionmore » of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.« less

  16. Size-dependent pressure-induced amorphization: a thermodynamic panorama.

    PubMed

    Machon, Denis; Mélinon, Patrice

    2015-01-14

    Below a critical particle size, some pressurized compounds (e.g. TiO2, Y2O3, PbTe) undergo a crystal-to-amorphous transformation instead of a polymorphic transition. This effect reflects the greater propensity of nanomaterials for amorphization. In this work, a panorama of thermodynamic interpretations is given: first, a descriptive analysis based on the energy landscape concept gives a general comprehension of the balance between thermodynamics and kinetics to obtain an amorphous state. Then, a formal approach based on Gibbs energy to describe the thermodynamics and phase transitions in nanoparticles gives a basic explanation of size-dependent pressure-induced amorphization. The features of this transformation (amorphization occurs at pressures lower than the polymorphic transition pressure!) and the nanostructuration can be explained in an elaborated model based on the Ginzburg-Landau theory of phase transition and on percolation theory. It is shown that the crossover between polymorphic transition and amorphization is highly dependent on the defect density and interfacial energy, i.e., on the synthesis process. Their behavior at high pressure is a quality control test for the nanoparticles.

  17. Combined Determination of Elastic Properties and Structure of Coesite under Simulated Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Schilling, F. R.; Lauterjung, J.; Lathe, C.

    2001-12-01

    The high pressure SiO2-polymorph coesite seems to be an important mineral in the subduction process including crustal material (Chopin, 1984; Schreyer, 1995). The quartz to coesite transition is thus of fundamental importance to understand the processes within a subducting crust. Furthermore, the nature of the quartz to coesite transition is discussed controversially, because high pressure XRD-studies suggest an intermediate phase during the transformation process (Zinn et al., 1997). For the combined determination of elastic properties and structure a cubic multi-anvil high pressure apparatus (MAX80) was used. For the maximum sample volume of 20 mm3 the pressure limit is about 7GPa. The pressure is measured by use of NaCl as an internal pressure marker with calibrated PVT-data. The maximum temperature of about 2,000K is generated by an internal graphite heater and controlled by a thermocouple. The synchrotron beam (100x100 microns) is guided by a collimator through the sample between the anvils. For energy-dispersive X-ray diffraction, a Ge-solid state detector analyses the diffracted white beam at a fixed angle. The compressional and shear wave velocities were determined simultaneously by ultrasonic interferometry inside MAX80. Two of the six anvils are equipped with overtone polished lithium niobate transducers at their rear side, outside the volume under pressure, for generation and detection of ultrasonic waves between 10 and 60 MHz. Different buffer - reflector combinations and transducer arrangements were used to optimize the critical interference between both sample echoes. Therefore MAX80 is equipped for asymmetrical and symmetrical interferometric set-ups, i.e. compressional and shear waves are generated from the same or from two anvils, opposite to each other. We used for our transient measurements 3 natural fine-grained quartzites from Turkey and Germany. As a first step the pressure was increased gradually up to 4GPa at ambient temperature. At each pressure Vp and Vs was measured by ultrasonic interferometry. After reaching a given pressure, temperature was increased. At 4.5GPa and 800\\deg C the phase transition to coesite took place in less than 2 minutes. The fast kinetic of transformation was observed by synchrotron radiation. The compressional wave velocity increased by 30% and the shear wave velocity by 10% during the phase transition. The kinetic of the transition was varied by choosing different pressure and temperature conditions. The transformation with lower kinetic was studied in detail by XRD and ultrasonic interferometry. At 4.2 GPa the transformation could not be observed even above 950\\deg C. At 4.5 GPa and 750\\deg C the transition stopped at about 50% transformation, but transforms complete while increasing temperature to 800\\deg C. After the phase transition monitored by X-ray scattering the sample was quenched and Vp and Vs of coesite was measured at ambient temperatures up to the maximum pressure. Small differences in grain size, shape and in minor graphite contents did not change systematically the PT-conditions and kinetics. In addition to the kinetic and change of elastic properties the pressure and temperature derivatives of elastic properties of coesite will be presented.\\Chopin, C., Contr. Min. Petrol., 86 (1984), 107-118\\Schreyer, W., J. Geophys. Res., 100 (1995), 8,353-8,366\\Zinn P., Lauterjung J., Wirth R. & Hinze E. Zeitschrift für Kristallographie, 212 (1997), 691-698.

  18. Phase Transformations and Metallization of Magnesium Oxide at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    McWilliams, R. Stewart; Spaulding, Dylan K.; Eggert, Jon H.; Celliers, Peter M.; Hicks, Damien G.; Smith, Raymond F.; Collins, Gilbert W.; Jeanloz, Raymond

    2012-12-01

    Magnesium oxide (MgO) is representative of the rocky materials comprising the mantles of terrestrial planets, such that its properties at high temperatures and pressures reflect the nature of planetary interiors. Shock-compression experiments on MgO to pressures of 1.4 terapascals (TPa) reveal a sequence of two phase transformations: from B1 (sodium chloride) to B2 (cesium chloride) crystal structures above 0.36 TPa, and from electrically insulating solid to metallic liquid above 0.60 TPa. The transitions exhibit large latent heats that are likely to affect the structure and evolution of super-Earths. Together with data on other oxide liquids, we conclude that magmas deep inside terrestrial planets can be electrically conductive, enabling magnetic field-producing dynamo action within oxide-rich regions and blurring the distinction between planetary mantles and cores.

  19. In situ X-Ray Diffraction of Shock-Compressed Fused Silica

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June; Turneaure, Stefan J.; Duffy, Thomas S.

    2018-03-01

    Because of its widespread applications in materials science and geophysics, SiO2 has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the nature of this phase has been a subject of debate. Proposed structures include crystalline stishovite, another high-pressure crystalline phase, or a dense amorphous phase. Here we use plate-impact experiments and pulsed synchrotron x-ray diffraction to examine the structure of fused silica shock compressed to 63 GPa. In contrast to recent laser-driven compression experiments, we find that fused silica adopts a dense amorphous structure at 34 GPa and below. When compressed above 34 GPa, fused silica transforms to untextured polycrystalline stishovite. Our results can explain previously ambiguous features of the shock-compression behavior of fused silica and are consistent with recent molecular dynamics simulations. Stishovite grain sizes are estimated to be ˜5 - 30 nm for compression over a few hundred nanosecond time scale.

  20. High-pressure crystal structures of an insensitive energetic crystal: 1,1-diamino-2,2-dinitroethene

    DOE PAGES

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang; ...

    2015-12-03

    Understanding the insensitivity/stability of insensitive high explosive crystals requires detailed structural information at high pressures and high temperatures of interest. Synchrotron single crystal x-ray diffraction experiments were used to determine the high-pressure structures of 1,1-diamino-2,2-dinitroethene (FOX-7), a prototypical insensitive high explosive. The phase transition around 4.5 GPa was investigated and the structures were determined at 4.27 GPa (α’-phase) and 5.9 GPa (ε-phase). The α’-phase (monoclinic, P2 1/ n), structurally indistinguishable from the ambient α-phase, transforms to the new ε-phase (triclinic, P1). The most notable features of the ε-phase, compared to the α’-phase, are: formation of planar layers and flattening ofmore » molecules. Density functional theory (DFT-D2) calculations complemented the experimental results. Furthermore, the results presented here are important for understanding the molecular and crystalline attributes governing the high-pressure insensitivity/stability of insensitive high explosive crystals.« less

  1. High-pressure crystal structures of an insensitive energetic crystal: 1,1-diamino-2,2-dinitroethene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang

    Understanding the insensitivity/stability of insensitive high explosive crystals requires detailed structural information at high pressures and high temperatures of interest. Synchrotron single crystal x-ray diffraction experiments were used to determine the high-pressure structures of 1,1-diamino-2,2-dinitroethene (FOX-7), a prototypical insensitive high explosive. The phase transition around 4.5 GPa was investigated and the structures were determined at 4.27 GPa (α’-phase) and 5.9 GPa (ε-phase). The α’-phase (monoclinic, P2 1/ n), structurally indistinguishable from the ambient α-phase, transforms to the new ε-phase (triclinic, P1). The most notable features of the ε-phase, compared to the α’-phase, are: formation of planar layers and flattening ofmore » molecules. Density functional theory (DFT-D2) calculations complemented the experimental results. Furthermore, the results presented here are important for understanding the molecular and crystalline attributes governing the high-pressure insensitivity/stability of insensitive high explosive crystals.« less

  2. Dolomite III: A new candidate lower mantle carbonate

    NASA Astrophysics Data System (ADS)

    Mao, Zhu; Armentrout, Matt; Rainey, Emma; Manning, Craig E.; Dera, Przemyslaw; Prakapenka, Vitali B.; Kavner, Abby

    2011-11-01

    Dolomite is a major constituent of subducted carbonates; therefore evaluation of its phase stability and equation of state at high pressures and temperatures is important for understanding the deep Earth carbon cycle. X-ray diffraction experiments in the diamond anvil cell show that Ca0.988Mg0.918Fe0.078Mn0.016(CO3)2 dolomite transforms to dolomite-II at ∼17 GPa and 300 K and then upon laser-heating transforms to a new monoclinic phase (dolomite-III), that is observed between 36 and 83 GPa. Both high-pressure polymorphs are stable up to 1500 K, indicating that addition of minor Fe stabilizes dolomite to Earth's deep-mantle conditions.

  3. Equation of state and high-pressure/high-temperature phase diagram of magnesium

    NASA Astrophysics Data System (ADS)

    Stinton, G. W.; MacLeod, S. G.; Cynn, H.; Errandonea, D.; Evans, W. J.; Proctor, J. E.; Meng, Y.; McMahon, M. I.

    2014-10-01

    The phase diagram of magnesium has been investigated to 211 GPa at 300 K, and to 105 GPa at 4500 K, by using a combination of x-ray diffraction and resistive and laser heating. The ambient pressure hcp structure is found to start transforming to the bcc structure at ˜45 GPa, with a large region of phase-coexistence that becomes smaller at higher temperatures. The bcc phase is stable to the highest pressures reached. The hcp-bcc phase boundary has been studied on both compression and decompression, and its slope is found to be negative and steeper than calculations have previously predicted. The laser-heating studies extend the melting curve of magnesium to 105 GPa and suggest that, at the highest pressures, the melting temperature increases more rapidly with pressure than previously reported. Finally, we observe some evidence of a new phase in the region of 10 GPa and 1200 K, where previous studies have reported a double-hexagonal-close-packed (dhcp) phase. However, the additional diffraction peaks we observe cannot be accounted for by the dhcp phase alone.

  4. Hierarchical coarse-graining transform.

    PubMed

    Pancaldi, Vera; King, Peter R; Christensen, Kim

    2009-03-01

    We present a hierarchical transform that can be applied to Laplace-like differential equations such as Darcy's equation for single-phase flow in a porous medium. A finite-difference discretization scheme is used to set the equation in the form of an eigenvalue problem. Within the formalism suggested, the pressure field is decomposed into an average value and fluctuations of different kinds and at different scales. The application of the transform to the equation allows us to calculate the unknown pressure with a varying level of detail. A procedure is suggested to localize important features in the pressure field based only on the fine-scale permeability, and hence we develop a form of adaptive coarse graining. The formalism and method are described and demonstrated using two synthetic toy problems.

  5. Simulation studies of GST phase change alloys

    NASA Astrophysics Data System (ADS)

    Martyna, Glenn

    2008-03-01

    In order to help drive post-Moore's Law technology development, switching processes involving novel materials, in particular, GeSbTe (GST) alloys are being investigated for use in memory and eFuse applications. An anneal/quench thermal process crystallizes/amorphosizes a GST alloy which then has a low/high resistance and thereby forms a readable/writeable bit; for example, a ``one'' might be the low resistance, conducting crystalline state and a ``zero'' might be the high resistance, glassy state. There are many open questions about the precise nature of the structural transitions and the coupling to electronic structure changes. Computational and experimental studies of the effect of pressure on the GST materials were initiated in order to probe the physics behind the thermal switching process. A new pathway to reversible phase change involving pressure-induced structural metal insulator transitions was discovered. In a binary GS system, a room-temperature, direct, pressure-induced transformation from the high resistance amorphous phase to the low resistance crystalline phase was observed experimentally while the reverse process under tensile load was demonstrated via ab initio MD simulations performed on IBM's Blue Gene/L enabled by massively parallel software. Pressure induced transformations of the ternary material GST-225 (Ge2Sb2Te5) were, also, examined In the talk, the behavior of the two systems will be compared and insight into the nature of the phase change given.

  6. Phase transformation of GaAs at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Shigeaki; Kikegawa, Takumi

    2018-02-01

    The high-pressure behavior of gallium arsenide, GaAs, has been investigated using an in-situ X-ray powder diffraction technique in a diamond anvil cell combined with a resistance heating method, at pressures and temperatures up to 25 GPa and 1000 K respectively. The pressure-induced phase transition from a zincblende to an orthorhombic (Cmcm) structure was observed. This transition occurred at 17.3 GPa and at room temperature, where a negative temperature dependence for this transition was confirmed. The transition boundary was determined to be P (GPa) = 18.0 - 0.0025 × T (K).

  7. Thermoelectric Properties of a Ferromagnetic Semiconductor Based on a Dirac Semimetal (Cd3As2) under High Pressure

    NASA Astrophysics Data System (ADS)

    Melnikova, N. V.; Tebenkov, A. V.; Sukhanova, G. V.; Babushkin, A. N.; Saipulaeva, L. A.; Zakhvalinskii, V. S.; Gabibov, S. F.; Alibekov, A. G.; Mollaev, A. Yu.

    2018-03-01

    The pressure dependences of thermal emf (a parameter that ranks among the most sensitive to phase transformations) are studied for the purpose of identifying baric phase transitions in the 10-50 GPa interval in the Cd3As2 + MnAs (44.7% MnAs) structure formed by ferromagnetic MnAs granules in a semiconductor Cd3As2 matrix.

  8. Pressure induced Ag 2Te polymorphs in conjunction with topological non trivial to metal transition

    DOE PAGES

    Zhu, J.; Oganov, A. R.; Feng, W. X.; ...

    2016-08-01

    Silver telluride (Ag 2Te) is well known as superionic conductor and topologica insulator with polymorphs. Pressure induced three phase transitions in Ag 2Te hav been reported in previous. Here, we experimentally identified high pressure phas above 13 GPa of Ag 2Te by using high pressure synchrotron x ray diffraction metho in combination with evolutionary crystal structure prediction, showing it crystallize into a monoclinic structure of space group C2/m with lattice parameters a = 6.081Å b = 5.744Å, c = 6.797 Å, β = 105.53°. The electronic properties measurements of Ag 2Te reveal that the topologically non-trivial semiconducting phase I andmore » semimetalli phase II previously predicated by theory transformed into bulk metals fo high pressure phases in consistent with the first principles calculations« less

  9. First-principles study of the phonon, mechanical and thermodynamic properties of B2-phase AlY under high pressures

    NASA Astrophysics Data System (ADS)

    Wang, Leini; Jian, Zhang; Ning, Wei

    2017-12-01

    We have investigated the phonon, mechanical and thermodynamic properties of B2-phase AlY under high pressure by performing density functional theory (DFT). The result of phonon band structure shows B2-phase AlY exhibits dynamical stability. Then, the elastic properties of AlY under high pressure have been discussed. The elastic constants of AlY increase monotonically with the increase of the pressure and all the elastic constants meet the mechanical stability standard under high pressure. By analyzing the Poisson’s ratio ν and the value of B/G of AlY, we first predicted that AlY undergoes transformation from brittleness to ductility at 30 GPa and high pressure can improve the ductility. To obtain the thermodynamic properties of B2-phase AlY, the quasi-harmonic Debye model has been employed. Debye temperature ΘD, thermal expansion coefficient α, heat capacity Cp and Grüneisen parameter γ of B2-phase AlY are systematically explored at pressure of 0-75 GPa and temperature of 0-700 K.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, A. S.; Rovani, P. R.; Lima, J. C. de, E-mail: joao.cardoso.lima@ufsc.br

    A nanostructured Ti{sub 50}Ni{sub 25}Fe{sub 25} phase (B2) was formed by mechanical alloying and its structural stability was studied as a function of pressure. The changes were followed by X-ray diffraction. The B2 phase was observed up to 7 GPa; for larger pressures, the B2 phase transformed into a trigonal/hexagonal phase (B19) that was observed up to the highest pressure used (18 GPa). Besides B2 and B19, elemental Ni or a SS-(Fe,Ni) and FeNi{sub 3} were observed. With decompression, the B2 phase was recovered. Using in situ angle-dispersive X-ray diffraction patterns, the single line method was applied to obtain the apparent crystallitemore » size and the microstrain for both the B2 and the B19 phases as a function of the applied pressure. Values of the bulk modulus for the B2, B19, elemental Ni or SS-(Fe,Ni) and FeNi{sub 3} phases were obtained by fitting the pressure dependence of the volume to a Birch–Murnaghan equation of state (BMEOS)« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy 2Ti 2O 7 and Dy 2Zr 2O 7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defectsmore » in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy 2Ti 2O 7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy 2Zr 2O 7. Lastly, these improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy 2Ti 2O 7 and Dy 2Zr 2O 7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defectsmore » in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy 2Zr 2O 7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy 2Zr 2O 7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.« less

  13. Phase transition studies of germanium to 1. 25 Mbar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Y.K.; Brister, K.E.; Desgreniers, S.

    1986-05-05

    New phase transitions in Ge were observed by energy-dispersive x-ray diffraction techniques for pressures up to 125 GPa (1.25 Mbar) as follows: the ..beta..-Sn structure to the simple hexagonal (sh) phase at 75 +- 3 GPa and to the double hexagonal close-packed structure (dhcp) at 102 +- 5 GPa. These are the highest pressures for which a crystalline structure change has been directly observed in any material by x-ray diffraction. Total-energy pseudopotential calculations predict 84 +- 10 GPa for the ..beta..-Sn to sh phase transition and 105 +- 21 GPa for sh to hcp (not dhcp) transition. The role ofmore » 3d core electrons in increasing the transformation pressures in Ge, as compared to Si, is emphasized.« less

  14. Mechanisms of the Wurtzite to Rocksalt Transformation in CdSe Nanocrystals

    NASA Astrophysics Data System (ADS)

    Grünwald, Michael; Rabani, Eran; Dellago, Christoph

    2006-06-01

    We study the pressure-driven phase transition from the four-coordinate wurtzite to the six-coordinate rocksalt structure in CdSe nanocrystals with molecular dynamics computer simulations. With an ideal gas as the pressure medium, we apply hydrostatic pressure to spherical and faceted nanocrystals ranging in diameter from 25 to 62 Å. In spherical crystals, the main mechanism of the transformation involves the sliding of (100) planes, but depending on the specific surface structure we also observe a second mechanism proceeding through the flattening of (100) planes. In faceted crystals, the transition proceeds via a five-coordinated hexagonal structure, which is stabilized at intermediate pressures due to dominant surface energetics.

  15. Fabrication and characterization of Si3N4 ceramics without additives by high pressure hot pressing

    NASA Technical Reports Server (NTRS)

    Shimada, M.; Tanaka, A.; Yamada, T.; Koizumi, M.

    1984-01-01

    High pressure hot-pressing of Si3N4 without additives was performed using various kinds of Si3N4 powder as starting materials, and the relation between densification and alpha-beta phase transformation was studied. The temperature dependences of Vickers microhardness and fracture toughness were also examined. Densification of Si3N4 was divided into three stages, and it was found that densification and phase transformation of Si3N4 under pressure were closely associated. The results of the temperature dependence of Vickers microhardness indicated that the high-temperature hardness was strongly influenced not only by the density and microstructure of sintered body but also by the purity of starting powder. The fracture toughness values of Si3N4 bodies without additives were 3.29-4.39 MN/m to the 3/2 power and independent of temperature up to 1400 C.

  16. Strain engineered pyrochlore at high pressure

    DOE PAGES

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; ...

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy 2Ti 2O 7 and Dy 2Zr 2O 7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defectsmore » in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy 2Ti 2O 7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy 2Zr 2O 7. Lastly, these improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.« less

  17. Synthesis, characterization and thermodynamic study of carbon dioxide adsorption on akaganéite

    DOE PAGES

    Roque-Malherbe, R.; Lugo, F.; Rivera-Maldonado, C.; ...

    2015-04-01

    A mixture of akaganeite nanoparticles and sodium salts was synthesized and modi fied, first by washing, and then by Li exchange. The structural characterization of the produced materials was performed with: powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, thermogravimetric analysis, diffuse reflectance infrared Fourier transform spectrometry, Mossbauer spectros- € copy and magnetization measurements. Additionally low pressure nitrogen and high pressure carbon dioxide adsorption experiments were performed. The sum of the characterization information made possible to conclude that the produced akaganeite phases crystallized in a structure exhibiting the symmetry of the I2/m space group, where the measured equivalentmore » spherical diameter of the akaganeite crystallites yielded 9 nm, as well, the tested phases exhibited a standard behaviour under heating and displayed a superparamagnetic behaviour. Finally the high pressure carbon dioxide adsorption experiments demonstrated a pressure-responsive framework opening event due to a structural transformation of the adsorbent framework induced by the guest molecules. This fact opens new applications for akaganeite as a high pressure adsorbent.« less

  18. Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures

    DOE PAGES

    Coppari, F.; Smith, R. F.; Eggert, J. H.; ...

    2013-09-22

    Here, magnesium oxide, an important component of the Earth’s mantle, has been extensively studied in the pressure and temperature range found within the Earth. However,much less is known about its behavior under conditions appropriate for newly-discovered super-Earth planets, where pressures can exceed 1000 GPa (10 Mbar). It is widely believed that MgO will follow the rocksalt (B1) to cesium chloride (B2) transformation pathway commonly found for many alkali halides, alkaline earth oxides and various other ionic compounds. Static compression experiments have determined the structure of MgO to 250 GPa but have been unable to reach pressures necessary to induce themore » predicted transformation, resulting in large uncertainties regarding its properties under conditions relevant to super-Earths and other large planets. Here we report new dynamic x-ray diffraction measurements of ramp-compressed MgO to 900 GPa.We report evidence for the B2 phase beginning near 600 GPa, remaining stable on further compression to 900 GPa, the highest pressure diffraction data ever collected.« less

  19. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice.

    PubMed

    Lin, Chuanlong; Yong, Xue; Tse, John S; Smith, Jesse S; Sinogeikin, Stanislav V; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-29

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ∼1  Pa, to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  20. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    NASA Astrophysics Data System (ADS)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  1. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chuanlong; Yong, Xue; Tse, John S.

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transitionmore » to low-density amorphous ice at 96 K and ~ 1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.« less

  2. Effect of a core-softened O-O interatomic interaction on the shock compression of fused silica

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Weingarten, N. Scott; Byrd, Edward F. C.

    2018-03-01

    Isotropic soft-core potentials have attracted considerable attention due to their ability to reproduce thermodynamic, dynamic, and structural anomalies observed in tetrahedral network-forming compounds such as water and silica. The aim of the present work is to assess the relevance of effective core-softening pertinent to the oxygen-oxygen interaction in silica to the thermodynamics and phase change mechanisms that occur in shock compressed fused silica. We utilize the MD simulation method with a recently published numerical interatomic potential derived from an ab initio MD simulation of liquid silica via force-matching. The resulting potential indicates an effective shoulder-like core-softening of the oxygen-oxygen repulsion. To better understand the role of the core-softening we analyze two derivative force-matching potentials in which the soft-core is replaced with a repulsive core either in the three-body potential term or in all the potential terms. Our analysis is further augmented by a comparison with several popular empirical models for silica that lack an explicit core-softening. The first outstanding feature of shock compressed glass reproduced with the soft-core models but not with the other models is that the shock compression values at pressures above 20 GPa are larger than those observed under hydrostatic compression (an anomalous shock Hugoniot densification). Our calculations indicate the occurrence of a phase transformation along the shock Hugoniot that we link to the O-O repulsion core-softening. The phase transformation is associated with a Hugoniot temperature reversal similar to that observed experimentally. With the soft-core models, the phase change is an isostructural transformation between amorphous polymorphs with no associated melting event. We further examine the nature of the structural transformation by comparing it to the Hugoniot calculations for stishovite. For stishovite, the Hugoniot exhibits temperature reversal and associated phase transformation, which is a transition to a disordered phase (liquid or dense amorphous), regardless of whether or not the model accounts for core-softening. The onset pressures of the transformation predicted by different models show a wide scatter within 60-110 GPa; for potentials without core-softening, the onset pressure is much higher than 110 GPa. Our results show that the core-softening of the interaction in the oxygen subsystem of silica is the key mechanism for the structural transformation and thermodynamics in shock compressed silica. These results may provide an important contribution to a unified picture of anomalous response to shock compression observed in other network-forming oxides and single-component systems with core-softening of effective interactions.

  3. In Situ Observation of High-Pressure Phase Transitions in SiO2 Under Shock Loading Using Time Resolved X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Tracy, S. J.; Turneaure, S.; Duffy, T. S.

    2016-12-01

    Quartz is one of the most abundant minerals in Earth's crust and serves as an archetype for silicate minerals generally. The shock metamorphism of silica is important for understanding and interpreting meteorite impact events. Shock compression of quartz is characterized by a phase transition occurring over a broad mixed-phase region ( 10-40 GPa). Despite decades of study, the nature of this transformation and the structure of the high-pressure phase remain poorly understood. In situ x-ray diffraction data on shock-compressed SiO2 was collected at the Dynamic Compression Sector at the Advanced Photon Source. The behavior both single crystal alpha-quartz and fused silica was investigated under dynamic loading through a series real-time synchrotron x-ray diffraction measurements during peak stresses up to 65 GPa. A two-stage light gas gun was used to accelerate LiF flyer plates that impacted the SiO2 samples resulting in a propagating step-like increase in pressure and temperature behind the shock front. Four consecutive x-ray frames, separated by 153 ns, were collected during the transient loading and unloading. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that both amorphous silica as well as crystalline alpha-quartz transform to stishovite above 36 GPa. These measurements reveal important information about the role of kinetics as well texture development and potential defect structures in the transformed material.

  4. Structural phase transition of gold under uniaxial, tensile, and triaxial stresses: An ab initio study

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2007-07-01

    The behavior of gold crystal under uniaxial, tensile, and three different triaxial stresses is studied using an ab initio constant pressure technique within a generalized gradient approximation. Gold undergoes a phase transformation from the face-centered-cubic structure (fcc) to a body-centered-tetragonal (bct) structure having the space group of I4/mmm with the application of uniaxial stress, while it transforms to a face-centered-tetragonal (fct) phase within I4/mmm symmetry under uniaxial tensile loading. Further uniaxial compression of the bct phase results in a symmetry change from I4/mmm to P1 at high stresses and ultimately structural failure around 200.0GPa . For the case of triaxial stresses, gold also converts into a bct state. The critical stress for the fcc-to-bct transformation increases as the ratio of the triaxial stress increases. Both fct and bct phases are elastically unstable.

  5. Pressure-induced transformations of nitrogen implanted into silicon

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. D.; Misiuk, A.; Barcz, A.; Richter, H.

    2006-03-01

    Czochralski (CZ) Si samples implanted with nitrogen, with doses 1017 ion/cm2 and 1018 ion/cm2, at 140 keV, were studied by means of Fourier transform infrared spectroscopy after annealing at 1130 °C/5 h under different hydrostatic pressures, from 1 bar to 10.7 kbar. It has been found for each pressure applied, that the increased nitrogen dose leads to transformation of the broadband spectra to the fine structure ones, corresponding to crystalline silicon nitride. The spectral position of observed sharp peaks in the investigated pressure region is red shifted in comparison to that for the peaks of crystalline silicon oxynitride found recently by other investigators in nitrogen-containing poly-Si as well as in a residual melt of nitrogen-doped CZ-Si. The application of the pressure during annealing results in further red shift of the nitrogen-related bands. The observed decrease of frequency of vibrational bands is explained in terms of the pressure induced lowered incorporation of oxygen into growing oxynitride phase. Secondary ion mass spectrometry data reveal the decrease of oxygen content in implanted layer with increasing pressure during annealing.

  6. Pressure-induced magneto-structural transition in iron via a modified solid-state nudged elastic band method

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2015-03-01

    Materials under pressure may exhibit critical electronic and structural transitions that affect equation of states, as known for superconductors and the magneto-structural transformations of iron with both geophysical and planetary implications. While experiments often use constant-pressure (diamond-anvil cell, DAC) measurements, many theoretical results address a constant-volume transitions, which avoid issues with magnetic collapse but cannot be directly compared to experiment. We establish a modified solid-state nudge elastic band (MSS-NEB) method to handle magnetic systems that may exhibit moment (and volume) collapse during transformation. We apply it to the pressure-induced transformation in iron between the low-pressure body-centered cubic (bcc) and the high-pressure hexagonal close-packed (hcp) phases, find the bcc-hcp equilibrium coexistence pressure and a transitional pathway, and compare to shock and DAC experiments. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under contract DE-AC02-07CH11358.

  7. Electrical resistance of single-crystal magnetite (Fe 3 O 4 ) under quasi-hydrostatic pressures up to 100 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Takaki; Gasparov, Lev V.; Berger, Helmuth

    2016-04-07

    We measured the pressure dependence of electrical resistance of single-crystal magnetite (Fe 3O 4) under quasi-hydrostatic conditions to 100 GPa using low-temperature, megabar diamond-anvil cell techniques in order to gain insight into the anomalous behavior of this material that has been reported over the years in different high-pressure experiments. The measurements under nearly hydrostatic pressure conditions allowed us to detect the clear Verwey transition and the high-pressure structural phase. Furthermore, the appearance of a metallic ground state after the suppression of the Verwey transition around 20 GPa and the concomitant enhancement of electrical resistance caused by the structural transformation tomore » the high-pressure phase form reentrant semiconducting-metallic-semiconducting behavior, though the appearance of the metallic phase is highly sensitive to stress conditions and details of the measurement technique.« less

  8. High pressure structural behavior of YGa2: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Sekar, M.; Shekar, N. V. Chandra; Babu, R.; Sahu, P. Ch.; Sinha, A. K.; Upadhyay, Anuj; Singh, M. N.; Babu, K. Ramesh; Appalakondaiah, S.; Vaitheeswaran, G.; Kanchana, V.

    2015-03-01

    High pressure structural stability studies were carried out on YGa2 (AlB2 type structure at NTP, space group P6/mmm) up to a pressure of 35 GPa using both laboratory based rotating anode and synchrotron X-ray sources. An isostructural transition with reduced c/a ratio, was observed at 6 GPa and above 17.5 GPa, the compound transformed to orthorhombic structure. Bulk modulus B0 for the parent and high pressure phases were estimated using Birch-Murnaghan and modified Birch-Murnaghan equation of state. Electronic structure calculations based on projector augmented wave method confirms the experimentally observed two high pressure structural transitions. The calculations also reveal that the 'Ga' networks remains as two dimensional in the high pressure isostructural phase, whereas the orthorhombic phase involves three dimensional networks of 'Ga' atoms interconnected by strong covalent bonds.

  9. Pressure dependence of the refractive index in wurtzite and rocksalt indium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliva, R.; MALTA-Consolider Team, Departament de Física Aplicada, ICMUV, Universitat de València, c/Dr. Moliner 50, 46100 Burjassot, València; Segura, A.

    2014-12-08

    We have performed high-pressure Fourier transform infrared reflectance measurements on a freestanding InN thin film to determine the refractive index of wurtzite InN and its high-pressure rocksalt phase as a function of hydrostatic pressure. From a fit to the experimental refractive-index curves including the effect of the high-energy optical gaps, phonons, free carriers, and the direct (fundamental) band-gap in the case of wurtzite InN, we obtain pressure coefficients for the low-frequency (electronic) dielectric constant ε{sub ∞}. Negative pressure coefficients of −8.8 × 10{sup −2 }GPa{sup −1} and −14.8 × 10{sup −2 }GPa{sup −1} are obtained for the wurtzite and rocksalt phases, respectively. The results are discussedmore » in terms of the electronic band structure and the compressibility of both phases.« less

  10. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yonggang; Lu, Xujie; Yang, Wenge

    Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH 3NH 3PbBr 3 (MAPbBr 3), under hydrostatic pressure up to 34 GPa at room temperature: Two phase transformations below 2 GPa (from Pm3¯m to Im3¯, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr 6 octahedra and destroying of long-rangemore » ordering of MA cations, respectively. The visible light response of MAPbBr 3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Lastly, our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.« less

  11. Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite.

    PubMed

    Wang, Yonggang; Lü, Xujie; Yang, Wenge; Wen, Ting; Yang, Liuxiang; Ren, Xiangting; Wang, Lin; Lin, Zheshuai; Zhao, Yusheng

    2015-09-02

    Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH3NH3PbBr3 (MAPbBr3), under hydrostatic pressure up to 34 GPa at room temperature. Two phase transformations below 2 GPa (from Pm3̅m to Im3̅, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr6 octahedra and destroying of long-range ordering of MA cations, respectively. The visible light response of MAPbBr3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.

  12. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite

    DOE PAGES

    Wang, Yonggang; Lu, Xujie; Yang, Wenge; ...

    2015-08-18

    Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH 3NH 3PbBr 3 (MAPbBr 3), under hydrostatic pressure up to 34 GPa at room temperature: Two phase transformations below 2 GPa (from Pm3¯m to Im3¯, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr 6 octahedra and destroying of long-rangemore » ordering of MA cations, respectively. The visible light response of MAPbBr 3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Lastly, our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.« less

  13. High-pressure phase transitions in rare earth metal thulium to 195 GPa.

    PubMed

    Montgomery, Jeffrey M; Samudrala, Gopi K; Tsoi, Georgiy M; Vohra, Yogesh K

    2011-04-20

    We have performed image plate x-ray diffraction studies on a heavy rare earth metal, thulium (Tm), in a diamond anvil cell to a pressure of 195 GPa and volume compression V/V₀ = 0.38 at room temperature. The rare earth crystal structure sequence, hcp →Sm-type→ dhcp →fcc → distorted fcc, is observed in Tm below 70 GPa with the exception of a pure fcc phase. The focus of our study is on the ultrahigh-pressure phase transition and Rietveld refinement of crystal structures in the pressure range between 70 and 195 GPa. The hexagonal hR-24 phase is seen to describe the distorted fcc phase between 70 and 124 GPa. Above 124 ± 4 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of -1.5%. The equation of state data shows rapid stiffening above the phase transition at 124 GPa and is indicative of participation of f-electrons in bonding. We compare the behavior of Tm to other heavy rare-earths and heavy actinide metals under extreme conditions of pressure.

  14. High-pressure phase transitions in rare earth metal thulium to 195 GPa

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeffrey M.; Samudrala, Gopi K.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2011-04-01

    We have performed image plate x-ray diffraction studies on a heavy rare earth metal, thulium (Tm), in a diamond anvil cell to a pressure of 195 GPa and volume compression V/Vo = 0.38 at room temperature. The rare earth crystal structure sequence, {hcp}\\to {Sm {-}type} \\to {dhcp} \\to {fcc} \\to distorted fcc, is observed in Tm below 70 GPa with the exception of a pure fcc phase. The focus of our study is on the ultrahigh-pressure phase transition and Rietveld refinement of crystal structures in the pressure range between 70 and 195 GPa. The hexagonal hR- 24 phase is seen to describe the distorted fcc phase between 70 and 124 GPa. Above 124 ± 4 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.5%. The equation of state data shows rapid stiffening above the phase transition at 124 GPa and is indicative of participation of f-electrons in bonding. We compare the behavior of Tm to other heavy rare-earths and heavy actinide metals under extreme conditions of pressure.

  15. First-principles study of the α-ω phase transformation in Ti and Zr coupled to slip modes

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Bronkhorst, Curt A.; Lookman, Turab

    2018-01-01

    We present first-principles density functional theory calculations to study the α-ω phase transformation in Ti and Zr and its coupling to slip modes of the two phases. We first investigate the relative energetics of all possible slip systems in the α and ω phases to predict the dominant slip system that is activated during a plastic deformation under an arbitrary load. Using this and the crystallographic orientation relationships between α and ω phases, we construct low energy α/ω interfaces and study the energetics of the slip system at the interface between α and ω to compare to the slip systems in the bulk phases. We find that for a particular crystallographic orientation relationship, where (basal) α∥(prismatic-II)ω , and [a] α∥[c] ω , the slip at the interface is preferred compared to its bulk counterparts. This implies that the plastically deformed α/ω phase with this orientation relationship prefers to retain the interface (or coexisting phases) than transforming back to the pure phase after unloading. This is consistent with the observation that the ω-phase is retained in samples loaded in flyer plate experiments or under high-pressure torsion. Furthermore, calculation of the energy barrier for α to ω phase transformation as a function of glide at the α/ω interface shows significant coupling between the α-ω phase transformation and slip modes in Ti and Zr.

  16. Transition of dislocation glide to shear transformation in shocked tantalum

    DOE PAGES

    Hsiung, Luke L.; Campbell, Geoffrey H.

    2017-02-28

    A TEM study of pure tantalum and tantalum-tungsten alloys explosively shocked at a peak pressure of 30 GPa (strain rate: ~1 x 10 4 sec -1) is presented. While no ω (hexagonal) phase was found in shock-recovered pure Ta and Ta-5W that contain mainly a low-energy cellular dislocation structure, shock-induced ω phase was found to form in Ta-10W that contains evenly distributed dislocations with a stored dislocation density higher than 1 x 10 12 cm -2. The TEM results clearly reveal that shock-induced α (bcc) → ω (hexagonal) shear transformation occurs when dynamic recovery reactions which lead the formation low-energymore » cellular dislocation structure become largely suppressed in Ta-10W shocked under dynamic (i.e., high strain-rate and high-pressure) conditions. A novel dislocation-based mechanism is proposed to rationalize the transition of dislocation glide to twinning and/or shear transformation in shock-deformed tantalum. Lastly, twinning and/or shear transformation take place as an alternative deformation mechanism to accommodate high-strain-rate straining when the shear stress required for dislocation multiplication exceeds the threshold shear stresses for twinning and/or shear transformation.« less

  17. Photoluminescence and time-resolved carrier dynamics in thiol-capped CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng; Chou, Wu-Ching; Susha, Andrei S.; Kershaw, Stephen V.; Rogach, Andrey L.

    2013-03-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NC powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  18. Water-soluble CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng

    2015-02-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NCs powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  19. The compressibility of cubic white and orthorhombic, rhombohedral, and simple cubic black phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Simon M; Zaug, Joseph

    2010-03-10

    The effect of pressure on the crystal structure of white phosphorus has been studied up to 22.4 GPa. The ?alpha phase was found to transform into the alpha' phase at 0.87 +- 0.04 GPa with a volume change of 0.1 +- 0.3 cc/mol. A fit of a second order Birch- Murnaghan equation to the data gave Vo = 16.94 ? 0.08 cc/mol and Ko = 6.7 +- 0.5 GPa for the alpha phase and Vo = 16.4 +- 0.1 cc/mol and Ko = 9.1 +- 0.3 GPa for the alpha' phase. The alpha' phase was found to transform to themore » A17 phase of black phosphorus at 2.68 +- 0.34 GPa and then with increasing pressure to the A7 and then simple cubic phase of black phosphorus. A fit of a second order Birch-Murnaghan equation to our data combined with previous measurements gave Vo = 11.43 +- 0.05 cc/mol and Ko = 34.7 +- 0.5 GPa for the A17 phase, Vo = 9.62 +- 0.01 cc/mol and Ko = 65.0 +- 0.6 GPa for the A7 phase and , Vo = 9.23 +- 0.01 cc/mol and Ko = 72.5 +- 0.3 GPa for the simple cubic phase.« less

  20. Kinetic effects on the morphology and stability of the pressure-induced extended-solid of carbon monoxide

    NASA Astrophysics Data System (ADS)

    Dang, Nhan C.; Ciezak-Jenkins, Jennifer A.

    2018-04-01

    In this work, the dependence of the morphology and stability of the extended solid of carbon monoxide (CO) is correlated to the rate of transformation from the molecular CO to extended solid of CO using optical imaging, photoluminescence, Raman spectroscopy, and X-ray diffraction. The analyses show the rate and pressure of the transformation to be strongly controlled by catalytic effects, both chemical and optical. In a larger volume per reaction area, the transformation was found to require either a longer time at an elevated pressure or a higher pressure compared to a sample synthesized in a smaller volume per reaction area, leading to the conclusion that the transformation rate is slower for a sample in a larger volume per reaction area. A faster rate of transformation was also noted when the reaction area of a CO sample was catalyzed with H2SO4. Through variation of the volume per reaction area, pressure or the addition of catalysts, it was possible to control the rate of the phase transition and therefore the morphology. In general, the extended solid of CO synthesized with a faster rate showed a more ordered structure and increased metastability relative to the material formed with a slower compression rate.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimanis, Ivar; Cioabanu, Cristian

    The study of materials with unusual properties offers new insight into structure-property relations as well as promise for the design of novel composites. In this spirit, the PIs seek to (1) understand fundamental mechanical phenomena in ceramics that exhibit pressure-induced phase transitions, negative coefficient of thermal expansion (CTE), and negative compressibility, and (2) explore the effect of these phenomena on the mechanical behavior of composites designed with such ceramics. The broad and long-term goal is to learn how to utilize these unusual behaviors to obtain desired mechanical responses. While the results are expected to be widely applicable to many ceramics,more » most of the present focus is on silicates, as they exhibit remarkable diversity in structure and properties. Eucryptite, a lithium aluminum silicate (LiAlSiO 4), is specifically targeted because it exhibits a pressure-induced phase transition at a sufficiently low pressure to be accessible during conventional materials processing. Thus, composites with eucryptite may be designed to exhibit a novel type of transformation toughening. The PIs have performed a combination of activities that encompass synthesis and processing to control structures, atomistic modeling to predict and understand structures, and characterization to study mechanical behavior. Several materials behavior discoveries were made. It was discovered that small amounts of Zn (as small as 0.1 percent by mol) reverse the sign of the coefficient of thermal expansion of beta-eucryptite from negative to slightly positive. The presence of Zn also significantly mitigates microcracking that occurs during thermal cycling of eucryptite. It is hypothesized that Zn disrupts the Li ordering in beta-eucryptite, thereby altering the thermal expansion behavior. A nanoindentation technique developed to characterize incipient plasticity was applied to examine the initial stages of the pressure induced phase transformation from beta to epsilon-eucryptite and show that the transformation nucleation is related to the motion of the tetrahedral units making up the structure. It was revealed that the conduction of Li ions through the structure is also dictated by the tetrahedral unit arrangement and how their positions change with temperature. The critical pressure to obtain the high pressure phase of eucryptite was shown to depend on the grain size. The structure of the high pressure phase was determined with a combination of atomistic modeling and in situ x-ray diffraction experiments.« less

  2. Young Investigator Program: Tribology of Nanostructured Silicon Carbide for MEMS and NEMS Applications in Extreme Environments

    DTIC Science & Technology

    2011-02-01

    was calculated as the difference between the lowest point of the rigid indenter and the initial position of the sample’s free surface. The total...SiC A high pressure structural phase transformation (HPPT) was previously reported for silicon, gallium arsenide, and silicon nitride and indirect...molecular dynamics (MD) simulations with thermodynamic analysis to settle this debate whether silicon carbide (SiC) can undergo a high pressure phase

  3. Shock-Induced Phase Transitions in the Martian Meteorite Tissint: Mechanisms and Constraints on Shock Pressure

    NASA Astrophysics Data System (ADS)

    Sharp, T. G.; Hu, J.; Walton, E. L.

    2013-12-01

    Martian meteorites are important samples for understanding the origin and age of the Martian crust. All of these samples have been shocked to some degree during their ejection from Mars or earlier. Tissint, a picritic shergottite, has many high-pressure phases that have been used to constrain shock conditions and suggest a deep crustal origin [1] and to argue for multiple impact events [2]. Here we investigate the products and mechanisms of various olivine transformation reactions. Olivine in and adjacent to shock-melt veins and pockets is transformed into high-pressure minerals. In the hottest parts of the sample, olivine dissociated into 50-nm crystals of magnesiowüstite intergrown with either a pyroxene-composition glass or with low-Ca clinopyroxene. In both cases, the olivine is inferred to have transformed to silicate perovskite + magnesiowüstite during shock with subsequent breakdown of the perovskite after pressure release. Olivine along the margins of shock veins transformed into ringwoodite. Polycrystalline ringwoodite formed at the olivine-melt interface wheras coherent ringwoodite lamellae formed farther from the melt. These ringwoodite lamellae have the same topotaxial relationship to olivine as seen in static high-pressure experiments [3] and shocked meteorites [4]: (100)Ol || {111}Rw and [011]Ol || <110>Rw. The various olivine reactions can be explained by a single shock to above 24 GPa where only the highest temperatures allowed the dissociation of olivine to silicate-perovskite plus magnesiowüstite. The silicate perovskite in the melt pocket transformed to pyroxene because the melt pocket remained very hot after pressure release. At lower temperatures, the kinetically easier polymorphic transformation of olivine to metastable ringwoodite occurred. At the lowest temperatures, this reaction was facilitated by nucleation of ringwoodite lamellae on stacking faults in olivine. The variation in assemblages that we see are consistent with a single shock and a relatively short shock pulse. References: [1] Baziotis1, I. P. et. al 2013 Nature Communications 4:1404, [2] El Goresey, A. et. al 2013 #1037. 44th LPSC. [3] Kerschhofer, L. et. al 1996 Science 274, 79-81. [4] Miyahara et. al, 2010 EPSL. 295, 321-327.

  4. Phase transformation pathways of Ln2O3 irradiated by ultrafast laser

    NASA Astrophysics Data System (ADS)

    Rittman, Dylan; Solomon, Jonathan; Chen, Curtis; Tracy, Cameron; Yalisove, Steven; Asta, Mark; Mao, Wendy; Ewing, Rodney

    Ultrafast laser irradiation induces highly non-equilibrium conditions in materials through intense electronic excitation over very short timescales. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln2O3 (Ln = Er-Lu). A combination of grazing incidence X-ray diffraction and transmission electron microscopy is used to characterize the amount and depth-dependence of the phase transformation. Results indicate that-although all materials experience the same transformation-it is achieved through different damage mechanisms (pressure vs. thermal), and the short timescales associated with damage provides non-equilibrium routes of material modification. Ab initio molecular dynamics are used to isolate the effects of electronic excitations, and results are shown to be consistent with the trend in radiation resistance observed experimentally. Overall, this study provides a path to gain insight into the relationship between a material's equilibrium phase diagram and its behavior under highly non-equilibrium conditions. DOE/BES.

  5. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets.

    PubMed

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-07-18

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure-structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.

  6. Pressure induced phase transformations in NaZr{sub 2}(PO{sub 4}){sub 3} studied by X-ray diffraction and Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamali, K.; Ravindran, T.R., E-mail: trr@igcar.gov.in; Chandra Shekar, N.V.

    2015-01-15

    Raman spectroscopic and x-ray diffraction measurements on NaZr{sub 2}(PO{sub 4}){sub 3} were carried out up to 30 GPa at close intervals of pressure, revealing two structural phase transformations around 5 and 6.6 GPa. The second phase at 5.4 GPa is indexed to R3 space group similar to that of RbTi{sub 2}(PO{sub 4}){sub 3}. Bulk modulus decreases abruptly from 53 GPa (B′=4) to 36 GPa (B′=4) in the second phase above 5 GPa. The structure of the phase III at 8.2 GPa is indexed as orthorhombic similar to the case of high temperature phase of monoclinic LiZr{sub 2}(PO{sub 4}){sub 3}. Bulkmore » modulus of this phase III is found to be 65 GPa (B′=4), which is higher than that of the ambient phase. In high pressure Raman studies, modes corresponding to 72 and 112 cm{sup −1} soften in the ambient phase whereas around 5 GPa, the ones at 60, 105, 125 and 190 cm{sup −1} soften with pressure contributing negatively to overall thermal expansion. - Graphical abstract: High pressure study of NaZr{sub 2}(PO{sub 4}){sub 3} shows a reversible phase transition from R-3c to R3 structure at 5 GPa accompanied by an increase in compressibility signaling a polyhedral tilt transition. - Highlights: • NaZr{sub 2}(PO{sub 4}){sub 3} undergoes two reversible phase transitions at 5 and 6.7 GPa. • The transition at 5 is from rhombohedral R-3c to R3 structure. • Bulk modulus of NaZr{sub 2}(PO{sub 4}){sub 3} is lower than that for the isostructural RbTi{sub 2}(PO{sub 4}){sub 3.} • Compressibility increases with substitution of a smaller cation (Na). • Zr-translational and PO{sub 4} librational modes contribute to phase transition.« less

  7. Phase Transition and Physical Properties of InS

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Yan; Li, Xiao-Feng; Xu, Lei; Li, Xu-Sheng; Hu, Qian-Ku

    2018-02-01

    Using the crystal structure prediction method based on particle swarm optimization algorithm, three phases (Pnnm, C2/m and Pm-3m) for InS are predicted. The new phase Pm-3m of InS under high pressure is firstly reported in the work. The structural features and electronic structure under high pressure of InS are fully investigated. We predicted the stable ground-state structure of InS was the Pnnm phase and phase transformation of InS from Pnnm phase to Pm-3m phase is firstly found at the pressure of about 29.5 GPa. According to the calculated enthalpies of InS with four structures in the pressure range from 20 GPa to 45 GPa, we find the C2/m phase is a metastable phase. The calculated band gap value of about 2.08 eV for InS with Pnnm structure at 0 GPa agrees well with the experimental value. Moreover, the electronic structure suggests that the C2/m and Pm-3m phase are metallic phases. Supported by the National Natural Science Foundation of China under Grant Nos. 11404099, 11304140, 11147167 and Funds of Outstanding Youth of Henan Polytechnic University, China under Grant No. J2014-05

  8. Effect of pressure gradient and new phases for 1,3,5-trinitrohexahydro-s-triazine (RDX) under high pressures.

    PubMed

    Gao, Chan; Zhang, Xueyong; Zhang, Chuanchao; Sui, Zhilei; Hou, Meng; Dai, Rucheng; Wang, Zhongping; Zheng, Xianxu; Zhang, Zengming

    2018-05-17

    Herein, pressure-induced phase transitions of RDX up to 50 GPa were systematically studied under different compression conditions. Precise phase transition points were obtained based on high-quality Raman spectra with small pressure intervals. This favors the correctness of the theoretical formula for detonation and the design of a precision weapon. The experimental results indicated that α-RDX immediately transformed to γ-RDX at 3.5 GPa due to hydrostatic conditions and possible interaction between the penetrating helium and RDX, with helium gas as the pressure-transmitting medium (PTM). Mapping of pressure distribution in samples demonstrates that the pressure gradient is generated in the chamber and independent of other PTMs. The gradient induced the first phase transition starts at 2.3 GPa and completed at 4.1 GPa. The larger pressure gradient promoted phase transition in advance under higher pressures. Experimental results supported that there existed two conformers of AAI and AAE for γ-RDX, as proposed by another group. δ-RDX was considered to only occur in a hydrostatic environment around 18 GPa using helium as the PTM. This study confirms that δ-RDX is independent of PTM and exists under non-hydrostatic conditions. Evidence for a new phase (ζ) was found at about 28 GPa. These 4 phases have also been verified via XRD under high pressures. In addition to this, another new phase (η) may exist above 38 GPa, and it needs to be further confirmed in the future. Moreover, all the phase transitions were reversible after the pressure was released, and original α-RDX was always obtained at ambient pressure.

  9. Characterization of Titan III-D Acoustic Pressure Spectra by Least-Squares Fit to Theoretical Model

    DTIC Science & Technology

    1980-01-01

    P(f) for a set value of P0 and f0" Mhe inverse transform was taken and the result multiplied by a decaying exponential which modelled the envelope of...0 FORWARD TRANSFORM C IF=1 INVERSE TRANSFORM c C M 0 XREAL AND XIMAG RETURNED AS REAL AND IMAG. FOR FORWARD Xr"RM9; C M= " " " MAGNITUDE AND PHASE...34 .. .. C (PHASE IN DEGREE9) C M=2 XREAL RETURNED AS ’PSD’ XIMAG =0. C HERE ’DSD’ MEANS SUM OF N VALUES OF XREAL = MEAN SQU\\Riz OF INPUT C C FOR INVERSE

  10. Phase transformations in the hematite-metal system during mechanical alloying

    NASA Astrophysics Data System (ADS)

    Kozlov, K. A.; Shabashov, V. A.; Litvinov, A. V.; Sagaradze, V. V.

    2009-04-01

    Mössbauer spectroscopy and X-ray diffraction are used to show that the phase transformations in hematite α-Fe2O3-metal ( M = Fe, Ni, Ti, Zr) powder mixtures induced by severe cold plastic deformation in ball mills occur via the formation of M-Fe-O solid solutions, redox reactions with the reduction of metallic iron, and the formation of secondary M x O y oxides and M x Fe y intermetallics. Mechanical activation in a ball mill is compared to that under high-pressure shear in Bridgman anvils. The transformations that take place in a ball mill are found to have several stages and to be accelerated.

  11. Phase transformations in a Cu−Cr alloy induced by high pressure torsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korneva, Anna, E-mail: a.korniewa@imim.pl; Straumal, Boris; Institut für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen

    2016-04-15

    Phase transformations induced by high pressure torsion (HPT) at room temperature in two samples of the Cu-0.86 at.% Cr alloy, pre-annealed at 550 °C and 1000 °C, were studied in order to obtain two different initial states for the HPT procedure. Observation of microstructure of the samples before HPT revealed that the sample annealed at 550 °C contained two types of Cr precipitates in the Cu matrix: large particles (size about 500 nm) and small ones (size about 70 nm). The sample annealed at 1000 °C showed only a little fraction of Cr precipitates (size about 2 μm). The subsequentmore » HPT process resulted in the partial dissolution of Cr precipitates in the first sample and dissolution of Cr precipitates with simultaneous decomposition of the supersaturated solid solution in another. However, the resulting microstructure of the samples after HPT was very similar from the standpoint of grain size, phase composition, texture analysis and hardness measurements. - Highlights: • Cu−Cr alloy with two different initial states was deformed by HPT. • Phase transformations in the deformed materials were studied. • SEM, TEM and X-ray diffraction techniques were used for microstructure analysis. • HPT leads to formation the same microstructure independent of the initial state.« less

  12. Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yau, Allison; Harder, Ross J.; Kanan, Matthew W.

    Defects such as dislocations and grain boundaries often control the properties of polycrystalline materials. In nanocrystalline materials, investigating this structure-function relationship while preserving the sample remains challenging because of the short length scales and buried interfaces involved. Here we use Bragg coherent diffractive imaging to investigate the role of structural inhomogeneity on the hydriding phase transformation dynamics of individual Pd grains in polycrystalline films in three-dimensional detail. In contrast to previous reports on single- and polycrystalline nanoparticles, we observe no evidence of a hydrogen-rich surface layer and consequently no size dependence in the hydriding phase transformation pressure over a 125-325more » nm size range. We do observe interesting grain boundary dynamics, including reversible rotations of grain lattices while the material remains in the hydrogen-poor phase. The mobility of the grain boundaries, combined with the lack of a hydrogen-rich surface layer, suggests that the grain boundaries are acting as fast diffusion sites for the hydrogen atoms. Such hydrogen-enhanced plasticity in the hydrogen poor phase provides insight into the switch from the size-dependent behavior of single-crystal nanoparticles to the lower transformation pressures of polycrystalline materials and may play a role in hydrogen embrittlement.« less

  13. High-pressure phase relations in the composition of albite NaAlSi3O8 constrained by an ab initio and quasi-harmonic Debye model, and their implications

    NASA Astrophysics Data System (ADS)

    Deng, L.; Liu, X.; Liu, H.; Dong, J.

    2010-12-01

    The high pressure physical-chemical behaviors of feldspar in subducted slab are very important to the geodynamic process in the deep interior of the Earth. Albite (NaAlSi3O8;Ab) is one of the few end members in the feldspar family, and its high-P behavior is obviously a prerequisite to the full understanding of the physical-chemical properties of feldspar at high pressures. So far it has been well accepted that Ab breaks down to the phase assemblage of Jadeite+Stishovite(NaAlSi2O6; Jd, SiO2; St,JS hereafter) at ~9-10 GPa. The JS phase assemblage might be stable up to ~23 GPa, and eventually directly change into the phase assemblage of calcium-ferrite type NaAlSiO4 (Cf) +2St (CS hereafter). However, some independent researches suggest there is an intermediate phase Na-hollandite (Na-Hall; a phase with the composition of NaAlSi3O8 and the structure of hollandite) between JS phase assemblage transition into CS phase assemblage (Liu 1978; Tutti 2007; Sekine and Ahrens, 1992; Beck et al., 2004). Whether Na-Hall is a thermodynamic stable phase under high P-T conditions remains unknown. In this work, phase relations in the composition of albite NaAlSi3O8 at pressures up to 40 GPa were constrained by a theoretical method that combines the ab initio calculation and quasi-harmonic Debyemodel. First, the P-T dependence of the thermodynamic potentials of the individual phase, St, Cf, Jd and the hypothetical Na-Holl were derived. Our results are generally in consistent agreement with available experimental data and previous theoretical predictions. Second, the Gibbs free energy of the hypothetical Na-Holl phase was compared with that of the phase assemblages JS and CS. Our results show that the Na-Holl phase is not a thermodynamically stable phase over the studied P-T conditions of 0-40 GPa and 100-600 K, which rules it out as a possible intermediate phase along the transition path from the JS phase assemblage to CS phase assemblage. Our calculations have predicted that the JS phase assemblage transforms into the CS phase assemblage at about 33.6 GPa at 0 K, and the Clayperon slope of this phase transition is about 0.014 GPa/K. This study implies that lingunite (Na-Holl), found in somemeteorites, is not possibly a thermodynamically stable high-P phase, and the Cf phase probably plays an important role in maintaining the sodium budget and hosting the large-ion lithophile elements in the deep interior of the Earth. References: Beck, P., Gillet, P., Gautron, L., Daniel, I., El Goresy, A., 2004. A new natural high-pressure (Na, Ca)-hexaluminosilicate [(CaxNa1-x)Al3+xSi3-xO11] in shocked Martian meteorites. Earth Planet. Sci. Lett. 219, 1-12. Liu, L., 1978. High-pressure phase transformations of albite, jadeite and nepheline. Earth Planet. Sci. Lett. 37, 438-444. Sekine, T., Ahrens, T.J., 1992. Shock-induced transformations in the system NaAlSi3O8-SiO2: a new interpretation. Phys. Chem. Mineral. 18, 359-364. Tutti, F., 2007. Formation of end-member NaAlSi3O8 hollandite-type structure (lingunite) in diamond anvil cell. Phys. Earth Planet. Inter. 161, 143-149.

  14. Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2016-08-07

    Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates that the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the "buckling failure" of the square-ice-nanotube columns, which is dominated by the lateral pressure.

  15. Anomalous behaviour of thermodynamic properties at successive phase transitions in (NH4)3GeF7

    NASA Astrophysics Data System (ADS)

    Bogdanov, Evgeniy V.; Kartashev, Andrey V.; Pogoreltsev, Evgeniy I.; Gorev, Mikhail V.; Laptash, Natalia M.; Flerov, Igor N.

    2017-12-01

    Heat capacity, thermal dilatation, susceptibility to hydrostatic pressure and dielectric properties associated with succession of three phase transitions below room temperature in double fluoride salt (NH4)3GeF7 were studied. A possible transformation into the parent Pm-3m cubic phase was not observed up to the decomposition of compound. Nonferroelectric nature of structural distortions was confirmed. The DTA under pressure studies revealed a high temperature stability of two phases: P4/mbm and Pbam. The entropies of the phase transitions agree well with the model of structural distortions. Analysis of the thermal properties associated with the individual phase transitions in the framework of thermodynamic equations has shown a high reliability of the data obtained.

  16. Pressure-Induced Phase Transitions in the Cd-Yb Periodic Approximant to a Quasicrystal

    NASA Astrophysics Data System (ADS)

    Watanuki, Tetsu; Machida, Akihiko; Ikeda, Tomohiro; Aoki, Katsutoshi; Kaneko, Hiroshi; Shobu, Takahisa; Sato, Taku J.; Tsai, An Pang

    2006-03-01

    The phase study of a Cd-Yb 1/1 approximant crystal over a wide pressure and temperature range is crucial for the comparison study between periodic and quasiperiodic crystals. The Cd4 tetrahedra, the most inner part of the atomic clusters, exhibited various structural ordering in the orientation sensitive to pressure and temperature. Five ordered phases appeared in a P-T span up to 5.2 GPa and down to 10 K. The propagation direction of ordering alternated from [110] to ⟨111⟩ at about 1.0 GPa and again to [110] at 3.5 4.3 GPa. The primarily ordered phases that appeared by cooling to 210 250 K between 1.0 5.2 GPa further transformed to finely ordered ones at 120 155 K. Besides the original short-range type interaction, a long-range type interaction was likely developed under pressure to lead to the primary ordering of Cd4 tetrahedra. Coexistence of these interactions is responsible for the complicated phase behavior.

  17. New structure of high-pressure body-centered orthorhombic Fe 2SiO 4

    DOE PAGES

    Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki; ...

    2015-08-01

    Here, a structural change in Fe 2SiO 4 spinel and the structure of a new high pressure phase are determined by Rietveld 26 profile fitting of x-ray diffraction data up to 64 GPa at ambient temperature. The compression curve of the spinel is discontinuous at approximately 20 GPa. Fe Kβ x-ray emission measurements at high pressure show that the transition from a high spin (HS) to an intermediate spin (IS) state begins at 17 GPa in the spinel phase. The IS electronic state is gradually enhanced with pressure, which results in an isostructural phase transition. A transition from the cubic spinel structure to a body centered orthorhombic phase (I-Fe 2SiO 4) with space group Imma and Z=4 was observed at approximately 34 GPa. The structure of I-Fe 2SiO 4 has two crystallographically distinct FeO 6 octahedra, which are arranged in layers parallel to (101) and (011) and are very similar to the layers of FeO 6 octahedra that constitute the spinel structure. Silicon also exists in six-fold coordination in I-Fe 2SiO 4. The transformation to the new high-pressure phase is reversible under decompression at ambient temperature. A Martensitic transformation of each slab of the spinel structure with translation vector [more » $$\\vec{1/8}$$ $$\\vec{1/8}$$ $$\\vec{1/8}$$] generates the I-Fe 2SiO 4 structure. Laser heating of I-Fe 2SiO 4 at 1500 K results in a decomposition of the material to rhombohedral FeO and SiO 2 stishovite.« less

  18. Structural phase diagram for ultra-thin epitaxial Fe 3O 4 / MgO(0 01) films: thickness and oxygen pressure dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alraddadi, S.; Hines, W.; Yilmaz, T.

    2016-02-19

    A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe 3O 4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ≤10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (001) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10 -7 torr to 1 × 10 -5 torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED)more » and x-ray photoemission spectroscopy (XPS), respectively. Moreover, the quality of the epitaxial Fe 3O 4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. We observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe 3O 4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ≤20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe 3O 4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.« less

  19. Evolution of ferromagnetism in charge ordered manganite: An effect of external pressure

    NASA Astrophysics Data System (ADS)

    Dash, S.; Pradhan, M. K.; Rao, T. Lakshmana

    2018-05-01

    Detailed magnetic measurements of the Pr0.75Na0.25MnO3 polycrystalline sample have been carried out under external hydrostatic pressure upto 10kbar. Pressure strongly suppresses the first order magnetic transition, while thermal hysteresis narrows down progressively and then disappears with increase in pressure. The significant enhancement of the field cooled magnetization value at different pressures is due to the antiferromagnetic to ferromagnetic transformation, while ruling out any contribution from the domain alignment within the ferromagnetic phase.

  20. New High Pressure Phase of CaCO3: Implication for the Deep Diamond Formation

    NASA Astrophysics Data System (ADS)

    Mao, Z.; Li, X.; Zhang, Z.; Lin, J. F.; Ni, H.; Prakapenka, V.

    2017-12-01

    Surface carbon can be transported to the Earth's deep interior through sinking subduction slabs. Carbonates, including CaCO3, MgCO3 and MgCa(CO3)2, are important carbon carriers for the deep carbon cycle. Experimental studies on the phase stability of carbonates with coexisting mantle minerals at relevant pressure and temperature conditions are thus important for understanding the deep carbon cycle. In particular, recent petrological studies have revealed the evidence for the transportation of CaCO3 to the depth at least of the top lower mantle by analyzing the diamond inclusions. Yet the phase stability of CaCO3 at relevant pressure and temperature conditions of the top lower mantle is still unclear. Previous single-crystal study has shown that CaCO3 transforms from the CaCO3-III structure to CaCO3-VI at 15 GPa and 300 K. The CaCO3-VI is stable at least up to 40 GPa at 300 K. At high temperatures, CaCO3 in the aragonite structure will directly transform into the post-aragonite structure at 40 GPa. However, a recent theoretical study predicted a new phase of CaCO3 with a space group of P21/c between 32 and 48 GPa which is different from previous experimental results. In this study, we have investigated the phase stability of CaCO3 at high pressure-temperature conditions using synchrotron X-ray diffraction in laser-heated diamond anvil cells. We report the discovery of a new phase of CaCO3 at relevant pressure-temperature conditions of the top lower mantle which is consistent with previous theoretical predictions. This new phase is an important carrier for the transportation of carbon to the Earth's lower mantle and crucial for growing deep diamonds in the region.

  1. The Principal Hugoniot of Forsterite to 950 GPa

    NASA Astrophysics Data System (ADS)

    Root, Seth; Townsend, Joshua P.; Davies, Erik; Lemke, Raymond W.; Bliss, David E.; Fratanduono, Dayne E.; Kraus, Richard G.; Millot, Marius; Spaulding, Dylan K.; Shulenburger, Luke; Stewart, Sarah T.; Jacobsen, Stein B.

    2018-05-01

    Forsterite (Mg2SiO4) single crystals were shock compressed to pressures between 200 and 950 GPa using independent plate-impact steady shocks and laser-driven decaying shock compression experiments. Additionally, we performed density functional theory-based molecular dynamics to aid interpretation of the experimental data and to investigate possible phase transformations and phase separations along the Hugoniot. We show that the experimentally obtained Hugoniot cannot distinguish between a pure liquid Mg2SiO4 and an assemblage of solid MgO plus liquid magnesium silicate. The measured reflectivity is nonzero and increases with pressure, which implies that the liquid is a poor electrical conductor at low pressures and that the conductivity increases with pressure.

  2. Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L.; Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305

    2014-01-13

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1})more » phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.« less

  3. Characterization of the Dynamic Pressure Response of Fuels in Microchannels

    NASA Astrophysics Data System (ADS)

    Haendler, Brenda; Pisano, Albert; Liepmann, Dorian

    2004-11-01

    In order to create a self-pumping fuel vaporization and delivery systems for a MEMS rotary engine power system, the dynamic pressure response due to phase eruption of fuels in micro channels must be characterized. Testing is done using micro channels with diameters the same order of magnitude as the critical bubble radius, a constant mass flow rate syringe pump, and a steady heat source. Pressure changes in the micro channel due to the periodic movement of the phase change meniscus are measured for a variety of flow conditions. A discrete Fourier transform is performed on the data to determine the dominant frequencies in the signal. Critical trends are discussed comparing both the frequency and the amplitude of the pressure spikes for a variety of temperatures and flow rates. The results presented on the trends in the pressure signature due to phase eruption for fuels are then related back to the fuel delivery system, which is using a nozzle-diffuser design to accomplish positive flow rectification given the periodic pressure condition at the phase eruption interface.

  4. Creation and formation mechanism of new carbon phases constructed by amorphous carbon

    NASA Astrophysics Data System (ADS)

    Yao, Mingguang; Cui, Wen; Liu, Bingbing

    Our recent effort is focusing on the creation of new hard/superhard carbon phases constructed by disordered carbons or amorphous carbon clusters under high pressure. We showed that the pressure-induced amorphous hard carbon clusters from collapsed fullerenes can be used as building blocks (BBs) for constructing novel carbon structures. This new strategy has been verified by compressing a series of intercalated fullerides, pre-designed by selecting various dopants with special features. We demonstrate that the boundaries of the amorphous BBs are mediated by intercalated dopants and several new superhard materials have been prepared. We also found that the dopant-mediated BBs can be arranged in either ordered or disordered structures, both of which can be hard enough to indent the diamond anvils. The hardening mechanisms of the new phases have also been discussed. For the glassy carbon (GC) constructructed by disordered fullerene-like nanosized fragments, we also found that these disordered fragments can bond and the compressed GC transformed into a transparent superhard phase. Such pressure-induced transformation has been discovered to be driven by a novel mechanism (unpublished). By understanding the mechanisms we can clarify the controversial results on glassy carbon reported recently. The authors would like to thank the financial support from the National Natural Science Foundation of China (No. 11474121, 51320105007).

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.

    When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that inmore » some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.« less

  6. Phase transitions, mechanical properties and electronic structures of novel boron phases under high-pressure: A first-principles study

    PubMed Central

    Fan, Changzeng; Li, Jian; Wang, Limin

    2014-01-01

    We have explored the mechanical properties, electronic structures and phase transition behaviors of three designed new phases for element boron from ambient condition to high-pressure of 120 GPa including (1) a C2/c symmetric structure (m-B16); (2) a symmetric structure (c-B56) and (3) a Pmna symmetric structure (o-B24). The calculation of the elastic constants and phonon dispersions shows that the phases are of mechanical and dynamic stability. The m-B16 phase is found to transform into another new phase (the o-B16 phase) when pressure exceeds 68 GPa. This might offer a new synthesis strategy for o-B16 from the metastable m-B16 at low temperature under high pressure, bypassing the thermodynamically stable γ-B28. The enthalpies of the c-B56 and o-B24 phases are observed to increase with pressure. The hardness of m-B16 and o-B16 is calculated to be about 56 GPa and 61 GPa, approaching to the highest value of 61 GPa recorded for α-Ga-B among all available Boron phases. The electronic structures and bonding characters are analyzed according to the difference charge-density and crystal orbital Hamilton population (COHP), revealing the metallic nature of the three phases. PMID:25345910

  7. First-principle study of pressure-induced phase transitions and electronic properties of electride Y2C

    NASA Astrophysics Data System (ADS)

    Feng, Caihui; Shan, Jingfeng; Xu, Aoshu; Xu, Yang; Zhang, Meiguang; Lin, Tingting

    2017-10-01

    Trigonal yttrium hypocarbide (Y2C), crystallizing in a layered hR3 structure, is an intriguing quasi-two-dimensional electride metal with potential application for the next generation of electronics. By using an efficient structure search method in combination with first-principles calculations, we have extensively explored the phase transitions and electronic properties of Y2C in a wide pressure range of 0-200 GPa. Three structural transformations were predicted, as hR3 → oP12 → tI12 → mC12. Calculated pressures of phase transition are 20, 118, and 126 GPa, respectively. The high-pressure oP12 phase exhibits a three-dimensional extended C-Y network built up from face- and edge-sharing CY8 hendecahedrons, whereas both the tI12 and mC12 phases are featured by the presence of C2 units. No anionic electrons confined to interstitial spaces have been found in the three predicted high-pressure phases, indicating that they are not electrides. Moreover, Y2C is dynamically stable and also energetically stable relative to the decomposition into its elemental solids.

  8. Thermal evolution of the metastable r8 and bc8 polymorphs of silicon

    DOE PAGES

    Haberl, Bianca; Guthrie, Malcolm; Sinogeikin, Stanislav V.; ...

    2015-01-28

    The kinetics of two metastable polymorphs of silicon under thermal annealing was investigated. These phases with body-centered cubic bc8 and rhombohedral r8 structures can be formed upon pressure release from metallic silicon.We study these metastable polymorphs were formed by two different methods, via point loading and in a diamond anvil cell (DAC). Upon thermal annealing different transition pathways were detected. In the point loading case, the previously reported Si-XIII formed and was confirmed as a new phase with an as-yet-unidentified structure. In the DAC case, bc8-Si transformed to the hexagonal-diamond structure at elevated pressure, consistent with previous studies at ambientmore » pressure. In contrast, r8-Si transformed directly to diamond-cubic Si at a temperature of 255⁰C. In conclusion, these data were used to construct diagrams of the metastability regimes of the polymorphs formed in a DAC and may prove useful for potential technological applications of these metastable polymorphs.« less

  9. Thermal evolution of the metastable r8 and bc8 polymorphs of silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haberl, Bianca; Guthrie, Malcolm; Sinogeikin, Stanislav V.

    The kinetics of two metastable polymorphs of silicon under thermal annealing was investigated. These phases with body-centered cubic bc8 and rhombohedral r8 structures can be formed upon pressure release from metallic silicon.We study these metastable polymorphs were formed by two different methods, via point loading and in a diamond anvil cell (DAC). Upon thermal annealing different transition pathways were detected. In the point loading case, the previously reported Si-XIII formed and was confirmed as a new phase with an as-yet-unidentified structure. In the DAC case, bc8-Si transformed to the hexagonal-diamond structure at elevated pressure, consistent with previous studies at ambientmore » pressure. In contrast, r8-Si transformed directly to diamond-cubic Si at a temperature of 255⁰C. In conclusion, these data were used to construct diagrams of the metastability regimes of the polymorphs formed in a DAC and may prove useful for potential technological applications of these metastable polymorphs.« less

  10. Magnetic properties of solid oxygen under pressure (Review Article)

    NASA Astrophysics Data System (ADS)

    Freiman, Yu. A.

    2015-11-01

    Solid oxygen is a unique crystal combining properties of a simple molecular solid and a magnet. Unlike ordinary magnets, the exchange interaction in solid oxygen acts on a background of weak Van der Waals forces, providing a significant part of the total lattice energy. Therefore, the magnetic and lattice properties of solid oxygen are very closely related. This manifests itself in a very rich phase diagram and numerous anomalies of thermal, magnetic and optical properties. Low-temperature low-pressure α-O2 is a two-sublattice collinear Neel antiferromagnet. At a pressure of ˜6 GPa, α-O2 is transformed into δ-O2, in which three different magnetic structures are realized upon increasing temperature. At ˜8 GPa δ-O2 is transformed into ɛ-O2. In this transition, O2 molecules combine into four-molecule clusters (O2)4. This transformation is accompanied by a magnetic collapse. This review describes the evolution of the magnetic structure with increasing pressure, and analyzes the causes behind this behavior.

  11. High pressure phase transitions in the rare earth metal erbium to 151 GPa.

    PubMed

    Samudrala, Gopi K; Thomas, Sarah A; Montgomery, Jeffrey M; Vohra, Yogesh K

    2011-08-10

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence hcp → Sm type → dhcp → distorted fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  12. High pressure phase transitions in the rare earth metal erbium to 151 GPa

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Thomas, Sarah A.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2011-08-01

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence {hcp} \\to {Sm}~ {type} \\to {dhcp} \\to {distorted} fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  13. Dense Carbon Monoxide to 160 GPa: Stepwise Polymerization to Two-Dimensional Layered Solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Young-Jay; Kim, Minseob; Lim, Jinhyuk

    Carbon monoxide (CO) is the first molecular system found to transform into a nonmolecular “polymeric” solid above 5.5 GPa, yet been studied beyond 10 GPa. Here, we show a series of pressure-induced phase transformations in CO to 160 GPa: from a molecular solid to a highly colored, low-density polymeric phase I to translucent, high-density phase II to transparent, layered phase III. The properties of these phases are consistent with those expected from recently predicted 1D P2 1/m, 3D I2 12 12 1, and 2D Cmcm structures, respectively. Thus, the present results advocate a stepwise polymerization of CO triple bonds tomore » ultimately a 2D singly bonded layer structure with an enhanced ionic character.« less

  14. Synthesis and characterization of β-Sialon powders from Si, halloysite clay and AlN powders

    NASA Astrophysics Data System (ADS)

    Yin, Li; Jones, Mark Ian

    2017-07-01

    Two β-Sialons, with z-values of 1 and 4, respectively, were successfully synthesized by silicothermal reduction and nitridation method under 0.4 MPa nitrogen pressure. The effect of firing temperatures on the phase transformations and morphologies of β-Sialons were analyzed by XRD and SEM. For β-Sialons (z = 1), the product was finally composed of targeted β-Sialon (z = 1) and secondary phase α-Si3N4; for z = 4, β-Sialon (z = 4) was the main phase, and 15R-Sialon and α-Al2O3 co-existed as secondary phases. A higher firing temperature is more beneficial for the phase transformations and crystal growth of β-Sialons, however, the most suitable firing temperature was 1400∘C.

  15. Thermal stability of simple tetragonal and hexagonal diamond germanium

    DOE PAGES

    Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca; ...

    2017-11-07

    Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less

  16. Thermal stability of simple tetragonal and hexagonal diamond germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca

    Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less

  17. Comparing Sliding-Wear Characteristics of the Electro-Pressure Sintered and Wrought Cobalt

    NASA Astrophysics Data System (ADS)

    Lee, J. E.; Kim, Y. S.; Kim, T. W.

    Dry sliding wear tests of hot-pressure sintered and wrought cobalt were carried out to compare their wear characteristics. Cobalt powders with average size of 1.5µm were electro-pressure sintered to make sintered-cobalt disk wear specimens. A vacuum-induction melted cobalt ingot was hot-rolled at 800°C to a plate, from which wrought-cobalt disk specimens were machined. The specimens were heat treated at various temperatures to vary grain size and phase fraction. Wear tests of the cobalt specimens were carried out using a pin-on-disk wear tester against a glass (83% SiO2) bead at 100N with the constant sliding speed and distance of 0.36m/s and 600m, respectively. Worn surfaces, their cross sections, and wear debris were examined by an SEM. The wear of the cobalt was found to be strongly influenced by the strain-induced phase transformation of ɛ-Co (hcp) to α-Co (fcc). The sintered cobalt had smaller uniform grain size and showed higher wear rate than the wrought cobalt. The higher wear rate of the sintered cobalt was explained by the more active deformation-induced phase transformation than in the wrought cobalt with larger irregular grains.

  18. High-pressure phase transitions and subduction behavior of continental crust at pressure-temperature conditions up to the upper part of the lower mantle

    NASA Astrophysics Data System (ADS)

    Ishii, Takayuki; Kojitani, Hiroshi; Akaogi, Masaki

    2012-12-01

    We precisely determined detailed phase relations of upper continental crust (UCC) at 20-28 GPa and 1200-1800 °C across the 660-km discontinuity conditions with a high-pressure multi-anvil apparatus. We used multi-sample chambers packed with both of UCC and pressure marker, and they were kept simultaneously at the same high-pressure and high-temperature conditions in each run. The high-pressure experiments were carried out in pressure and temperature intervals of about 1 GPa and 200 °C, respectively. At 22-25 GPa and 1600-1800 °C, UCC transformed from the assemblage of CaAl4Si2O11-rich phase (CAS)+clinopyroxene+garnet+hollandite+stishovite to that of calcium ferrite+calcium perovskite+hollandite+stishovite via the assemblage of CAS+calcium ferrite+calcium perovskite+garnet+hollandite+stishovite. No CAS was observed at 1200 °C. The textures and grain sizes in the run products suggested that hollandite (II) (monoclinic symmetry) was stable above 24-25 GPa and transformed to hollandite (I) (tetragonal symmetry) during decompression. We calculated the density of UCC at high pressure and high temperature from the mineral proportions which were calculated from the mineral compositions. UCC has a higher density than PREM up to 23.5 GPa in the range of 1200-1800 °C. Above 24 GPa, the density of UCC is lower than that of PREM at 1600-1800 °C, but is almost equal to that at 1400 °C and higher than PREM at temperature below 1400 °C. Therefore, we suggest that the subducted UCC may penetrate the 660-km discontinuity into the lower mantle, when its temperature is lower than 1400 °C at around 660 km depth.

  19. Ultra-fine grained microstructure of metastable beta Ti-15Mo alloy and its effects on the phase transformations

    NASA Astrophysics Data System (ADS)

    Václavová, K.; Stráský, J.; Zháňal, P.; Veselý, J.; Polyakova, V.; Semenova, I.; Janeček, M.

    2017-05-01

    Processing of metastable titanium alloys by severe plastic deformation provides an opportunity to achieve exceptional grain refinement, to enhance the strength and to affect phase transformations occurring during thermal treatment. The main aim of this study is to investigate the microstructure of ultra-fine grained (UFG) material and effect of microstructural changes on phase transformations in metastable β-Ti alloy Ti-15Mo. Metastable β-Ti alloys are currently the most studied Ti-based materials with prospective use in medicine. Ti-15Mo alloy after solution treatment contains metastable β-phase. Metastable ω-phase and stable α-phase particles are formed upon annealing,. Solution treated Ti-15Mo alloy was deformed by high pressure torsion (HPT) at room temperature. Severely deformed structure after HPT with grain size of ~200 nm was studied by transmission electron microscopy. In-situ electrical resistance measurements showed significant changes in undergoing phase transformations when compared to coarse-grained (CG) material. Scanning electron microscopy revealed heterogeneous precipitation of α-particles at grain boundaries (GB). Due to the high density of GBs in UFG structure, these precipitates are very fine and equiaxed. The study demonstrates that SPD is capable of enhancing mechanical properties due to grain refinement and via affecting precipitation processes in metastable β-Ti alloys.

  20. Stable and Metastable InGaAs/GaAs Island Shapes and Surfactant-like Suppression of the Wetting Transformation

    NASA Technical Reports Server (NTRS)

    Leon, R.; Lobo, C.; Zou, J.; Romeo, T.; Cockayne, D. J. H.

    1998-01-01

    Diverging behaviors are observed in the InGaAs/GaAs Stranski-Krastanow (S-K) island formation during vapor phase epitaxy: varying group V partial pressures gives different critical thicknesses for the onset of the S-K transformation, island surface coverages, ratios between coherent and incoherent islands, and dissimilar morphologies upon annealing.

  1. The high-pressure phase transitions of hydroxides

    NASA Astrophysics Data System (ADS)

    Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T.; Irifune, T.

    2017-12-01

    The discovery of new high-pressure hydrous minerals has important implications for understanding the structure, dynamics, and evolution of the Earth, since hydrogen significantly affects the physical properties and stabilities of Earth's constituent minerals. Whereas hydrous minerals commonly dehydrate under pressures of around a few tens of gigapascals (GPa) and at temperature around 1,500 K, those with CaCl2-type crystal structure, MgSiO4H2 phase H, δ-AlOOH and ɛ-FeOOH, are known to be stable at pressures corresponding to the lower mantle. However, although the CaCl2-type hydroxides were suggested to form a solid solution owing to their similar crystal structure, there are few experimental studies on the stability of the hydroxide in such multicomponent. Moreover, ab initio calculations have predicted that some CaCl2-type hydroxides transform to pyrite-type structure at higher pressures. Here, we conducted high pressure-temperature experiments on pure AlOOH, FeOOH, and their solid solutions, with the aid of these first-principles predictions. We use in situ X-ray measurements in conjunction with a multi-anvil apparatus to study the high-pressure behaviour of hydroxides in the multicomponent system under middle lower mantle conditions. Solid solutions in wide compositional ranges between CaCl2-type δ-AlOOH and ɛ-FeOOH were recognized from X-ray diffraction patterns. Also, unit cell volume of FeOOH and (Al,Fe)OOH significantly decreased accompanied with the spin transition of iron at 50 GPa. Thus, the wide compositional ranges in CaCl2-type hydroxide are maintained beyond the depth of the middle lower mantle, where the spin transition of iron occurs. We used a laser-heated diamond anvil cell in order to study the stability of AlOOH and FeOOH at higher pressures above 70 GPa. We observed that ɛ-FeOOH transforms to the pyrite-type structure at above 80 GPa, which is consistent with the theoretical prediction. At conditions above 190 GPa and 2,500 K, we observed the phase transition of δ-AlOOH to its higher pressure phase at above 170 GPa although further experimental study should be required to determine the precise structure. Based on these experimental and theoretical results, the stability and phase transitions of hydrous phases in the lower mantle will be discussed.

  2. Ground state structure of high-energy-density polymeric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Xia, Kang; Sun, Jian; Pickard, Chris J.; Klug, Dennis D.; Needs, Richard J.

    2017-04-01

    Crystal structure prediction methods and first-principles calculations have been used to explore low-energy structures of carbon monoxide (CO). Contrary to the standard wisdom, the most stable structure of CO at ambient pressure was found to be a polymeric structure of P n a 21 symmetry rather than a molecular solid. This phase is formed from six-membered (four carbon + two oxygen) rings connected by C=C double bonds with two double-bonded oxygen atoms attached to each ring. Interestingly, the polymeric P n a 21 phase of CO has a much higher energy density than trinitrotoluene (TNT). On compression to about 7 GPa, P n a 21 is found to transform into another chainlike phase of C c symmetry which has similar ring units to P n a 21 . On compression to 12 GPa, it is energetically favorable for CO to polymerize into a purely single bonded C m c a phase, which is stable over a wide pressure range and transforms into the previously known C m c m phase at around 100 GPa. Thermodynamic stability of these structures was verified using calculations with different density functionals, including hybrid and van der Waals corrected functionals.

  3. Structural transformations in Ge{sub 2}Sb{sub 2}Te{sub 5} under high pressure and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mio, A. M.; Privitera, S., E-mail: stefania.privitera@imm.cnr.it; D'Arrigo, G.

    2015-08-14

    The structural transformations occurring in Ge{sub 2}Sb{sub 2}Te{sub 5} films heated at temperature up to 400 °C, and under hydrostatic pressure up to 12 GPa, have been investigated through in-situ X ray diffraction measurements. The adopted experimental conditions are close to those experienced by the phase change material during the SET (crystallization)/RESET (amorphization) processes in a nonvolatile memory device. The compression enhances the thermal stability of the amorphous phase, which remains stable up to 180 °C at 8 GPa and to 230 °C at 12 GPa. The structure of the crystalline phases is also modified, with the formation of a CsCl-type structure instead of rock-salt andmore » of a GeS-type structure at the temperature at which usually the trigonal stable phase is formed. Overall, the stability of the stable phase appears to be more affected by the compression. We argue that the presence of weak bonds associated to the van der Waals gaps is a determining factor for the observed reduced stability.« less

  4. A Study of the Development of Steady and Periodic Unsteady Turbulent Wakes Through Curved Channels at Positive, Zero, and Negative Streamwise Pressure Gradients, Part 1

    NASA Technical Reports Server (NTRS)

    Schobeiri, M. T.; John, J.

    1996-01-01

    The turbomachinery wake flow development is largely influenced by streamline curvature and streamwise pressure gradient. The objective of this investigation is to study the development of the wake under the influence of streamline curvature and streamwise pressure gradient. The experimental investigation is carried out in two phases. The first phase involves the study of the wake behind a stationary circular cylinder (steady wake) in curved channels at positive, zero, and negative streamwise pressure gradients. The mean velocity and Reynolds stress components are measured using a X-hot-film probe. The measured quantities obtained in probe coordinates are transformed to a curvilinear coordinate system along the wake centerline and are presented in similarity coordinates. The results of the steady wakes suggest strong asymmetry in velocity and Reynolds stress components. However, the velocity defect profiles in similarity coordinates are almost symmetrical and follow the same distribution as the zero pressure gradient straight wake. The results of Reynolds stress distributions show higher values on the inner side of the wake than the outer side. Other quantities, including the decay of maximum velocity defect, growth of wake width, and wake integral parameters, are also presented for the three different pressure gradient cases of steady wake. The decay rate of velocity defect is fastest for the negative streamwise pressure gradient case and slowest for the positive pressure gradient case. Conversely, the growth of the wake width is fastest for the positive streamwise pressure gradient case and slowest for the negative streamwise pressure gradient. The second phase studies the development of periodic unsteady wakes generated by the circular cylinders of the rotating wake generator in a curved channel at zero streamwise pressure gradient. Instantaneous velocity components of the periodic unsteady wakes, measured with a stationary X-hot-film probe, are analyzed by the phase averaging techniques. The temporal distribution of velocity and Reynolds stress components obtained in a stationary frame of reference are transformed to a spatial distribution in a relative frame of reference. Profiles of phase-averaged velocity and Reynolds stress distributions in the relative frame of reference and similarity coordinates are presented. The velocity defect and Reynolds stress distributions agree with the results of the wake development behind a stationary cylinder in the curved channel at zero streamwise pressure gradient. The phase-averaged third-order correlations, presented in the relative frame of reference and similarity coordinates, show pronounced asymmetric features.

  5. Structural properties of pressure-induced structural phase transition of Si-doped GaAs by angular-dispersive X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Lin, Kung-Liang; Lin, Chih-Ming; Lin, Yu-Sheng; Jian, Sheng-Rui; Liao, Yen-Fa; Chuang, Yu-Chun; Wang, Chuan-Sheng; Juang, Jenh-Yih

    2016-02-01

    Pressure-induced phase transitions in n-type silicon-doped gallium arsenide (GaAs:Si ) at ambient temperature were investigated by using angular-dispersive X-ray diffraction (ADXRD) under high pressure up to around 18.6 (1) GPa, with a 4:1 (in volume ratio) methanol-ethanol mixture as the pressure-transmitting medium. In situ ADXRD measurements revealed that n-type GaAs:Si starts to transform from zinc- blende structure to an orthorhombic structure [GaAs-II phase], space group Pmm2, at 16.4 (1) GPa. In contrast to previous studies of pure GaAs under pressure, our results show no evidence of structural transition to Fmmm or Cmcm phase. The fitting of volume compression data to the third-order Birch-Murnaghan equation of state yielded that the zero-pressure isothermal bulk moduli and the first-pressure derivatives were 75 (3) GPa and 6.4 (9) for the B3 phase, respectively. After decompressing to the ambient pressure, the GaAs:Si appears to revert to the B3 phase completely. By fitting to the empirical relations, the Knoop microhardness numbers are between H PK = 6.21 and H A = 5.85, respectively, which are substantially smaller than the values of 7-7.5 for pure GaAs reported previously. A discontinuous drop in the pressure-dependent lattice parameter, N- N distances, and V/ V 0 was observed at a pressure of 11.5 (1) GPa, which was tentatively attributed to the pressure-induced dislocation activities in the crystal grown by vertical gradient freeze method.

  6. Pressure-induced phase transitions and correlation between structure and superconductivity in iron-based superconductor Ce(O(0.84)F(0.16))FeAs.

    PubMed

    Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing

    2013-07-15

    High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.

  7. Ab initio molecular dynamics study of high-pressure melting of beryllium oxide

    PubMed Central

    Li, Dafang; Zhang, Ping; Yan, Jun

    2014-01-01

    We investigate, through first-principles molecular dynamics simulations, the high-pressure melting of BeO in the range 0 ≤ p ≤ 100 GPa. The wurtzite (WZ), zinc blend (ZB), and rocksalt (RS) phases of BeO are considered. It is shown that below 40 GPa, the melting temperature for the WZ phase is higher than that for the ZB and RS phases. When the pressure is beyond 66 GPa, the melting temperature for the RS phase is the highest one, in consistent with the previously reported phase diagram calculated within the quasiharmonic approximation. We find that in the medium pressure range between 40 to 66 GPa, the ZB melting data are very close to those of RS, which results from the fact that the ZB structure first transforms to RS phase before melting. The ZB-RS-liquid phase transitions have been observed directly during the molecular dynamics runs and confirmed using the pair correlation functions analysis. In addition, we propose the melting curve of BeO in the form Tm = 2696.05 (1 + P/24.67)0.42, the zero-pressure value of 2696.05 K falling into the experimental data range of 2693 ~ 2853 K. PMID:24759594

  8. Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, YinBo; Wang, FengChao, E-mail: wangfc@ustc.edu.cn; Wu, HengAn

    Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates thatmore » the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the “buckling failure” of the square-ice-nanotube columns, which is dominated by the lateral pressure.« less

  9. High Pressure Strength Study on NaCl

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Shieh, S. R.; High Pressure Mineral Physics Group

    2010-12-01

    Yield strength is regarded as one important property related to rheological characteristics of minerals in the Earth’s interior. The strength study of NaCl, a popular pressure medium in static high pressure experiments, has been carried out under non-hydrostatic conditions in a diamond anvil cell up to 43 GPa at room temperature using radial energy dispersive X-ray diffraction technique. Phase transformation from B1 (rock salt structure) to B2 (CsCl structure) starts at 29.4 GPa, and is complete at 32.1 GPa. Bulk modulus obtained by third order Birch-Manurgham equation of state is 25.5 GPa with pressure derivative 4.6 for B1 phase, and 30.78 GPa with pressure derivative 4.32 GPa for B2 phase, which are in a good agreement with previous studies. The differential stress of NaCl B1 phase shows very gentle increase with pressure, which indicates that NaCl is a very good pressure-transmitting medium at pressure below 30 GPa. However, the differential stress increases more abruptly for B2 phase and this may imply that NaCl can no longer be regarded as a “soft” pressure medium at very high pressures. For B1 phase, (111) is the strongest plane and (200) is the weakest plane, while (200) becomes the strongest plane in B2 phase. Pure NaCl is weaker than mixture MgO and NaCl, which indicates that soft material become stronger when mixed with hard material. The yield strength of B2 obtained through energy dispersive X-ray diffraction technique increase linearly, while the value derived by pressure gradient method shows jagged trend.

  10. Anisotropy of the ferromagnetic L10 phase in the Mn-Al-C alloys induced by high-pressure spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Tyrman, Muriel; Ahmim, Smail; Pasko, Alexandre; Etgens, Victor; Mazaleyrat, Frédéric; Quetel-Weben, Simon; Perrière, Loïc; Guillot, Ivan

    2018-05-01

    The metastable τ-phase of MnAl equi-atomic compound belongs to a family of ferromagnetic alloys with L10 crystal structure. Stabilization of the phase by adding 2 at. % using manganese carbide (Mn23C6) enhances the magnetization in relation with the increase in lattice volume. It is thus a promising candidate for rare-earth-free permanent magnets. Coercivity of Mn-Al-C alloys being still weak, there is an interest to see to which extend sintering/transformation of the ɛ-phase by Spark Plasma Sintering (SPS) can increase the coercivity and the anisotropy. The structural and the magnetic properties were studied for samples sintered at 550 °C under uniaxial pressure of 100, 200, 300 and 400 MPa. Coercivity, remanence and anistotropy appears with the sintering pressure. The high pressure applied while sintering produces preferential orientation of the flake-shaped grains which influences the remanence.

  11. Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice

    PubMed Central

    Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin

    2013-01-01

    The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures. PMID:24253589

  12. First-principles study of high-pressure structural phase transitions of magnesium

    NASA Astrophysics Data System (ADS)

    Liu, Qiuxiang; Fan, Changzeng; Zhang, Ruijun

    2009-06-01

    The structural phase transitions for the hcp, bcc, dhcp, and fcc of magnesium at hydrostatic pressures larger than about 200 GPa at zero temperature are studied by first-principles total energy calculations. The plane-wave basis pseudopotential method has been adopted, in which the generalized gradient approximation implanted in the CASTEP code is employed. By comparing the enthalpy differences of the hcp structure with other three structures under different pressures, it can be seen that when the pressure becomes higher than about 65, 130, and 190 GPa, the bcc, dhcp, and fcc structures become more stable relative to the hcp structure, respectively. Due to the lowest enthalpy value of the bcc structure above 65 GPa, it can be deduced that magnesium may transform to the bcc structure from the ground state hcp structure around 65 GPa, but no further phase transitions occur without additionally applying high temperature. In addition, the equation of state of magnesium is calculated, indicating that bcc structure is the softest phase.

  13. Order parameter free enhanced sampling of the vapor-liquid transition using the generalized replica exchange method.

    PubMed

    Lu, Qing; Kim, Jaegil; Straub, John E

    2013-03-14

    The generalized Replica Exchange Method (gREM) is extended into the isobaric-isothermal ensemble, and applied to simulate a vapor-liquid phase transition in Lennard-Jones fluids. Merging an optimally designed generalized ensemble sampling with replica exchange, gREM is particularly well suited for the effective simulation of first-order phase transitions characterized by "backbending" in the statistical temperature. While the metastable and unstable states in the vicinity of the first-order phase transition are masked by the enthalpy gap in temperature replica exchange method simulations, they are transformed into stable states through the parameterized effective sampling weights in gREM simulations, and join vapor and liquid phases with a succession of unimodal enthalpy distributions. The enhanced sampling across metastable and unstable states is achieved without the need to identify a "good" order parameter for biased sampling. We performed gREM simulations at various pressures below and near the critical pressure to examine the change in behavior of the vapor-liquid phase transition at different pressures. We observed a crossover from the first-order phase transition at low pressure, characterized by the backbending in the statistical temperature and the "kink" in the Gibbs free energy, to a continuous second-order phase transition near the critical pressure. The controlling mechanisms of nucleation and continuous phase transition are evident and the coexistence properties and phase diagram are found in agreement with literature results.

  14. Pressure-induced amorphization and reactivity of solid dimethyl acetylene probed by in situ FTIR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Guan, Jiwen; Daljeet, Roshan; Kieran, Arielle; Song, Yang

    2018-06-01

    Conjugated polymers are prominent semiconductors that have unique electric conductivity and photoluminescence. Synthesis of conjugated polymers under high pressure is extremely appealing because it does not require a catalyst or solvent used in conventional chemical methods. Transformation of acetylene and many of its derivatives to conjugated polymers using high pressure has been successfully achieved, but not with dimethyl acetylene (DMA). In this work, we present a high-pressure study on solid DMA using a diamond anvil cell up to 24.4 GPa at room temperature characterized by in situ Fourier transform infrared and Raman spectroscopy. Our results show that solid DMA exists in a phase II crystal structure and is stable up to 12 GPa. Above this pressure, amorphization was initiated and the process was completed at 24.4 GPa. The expected polymeric transformation was not evident upon compression, but only observed upon decompression from a threshold compression pressure (e.g. 14.4 GPa). In situ florescence measurements suggest excimer formation via crystal defects, which induces the chemical reactions. The vibrational spectral analysis suggests the products contain the amorphous poly(DMA) and possibly additional amorphous hydrogenated carbon material.

  15. Pressure-induced amorphization and reactivity of solid dimethyl acetylene probed by in situ FTIR and Raman spectroscopy.

    PubMed

    Guan, Jiwen; Daljeet, Roshan; Kieran, Arielle; Song, Yang

    2018-06-06

    Conjugated polymers are prominent semiconductors that have unique electric conductivity and photoluminescence. Synthesis of conjugated polymers under high pressure is extremely appealing because it does not require a catalyst or solvent used in conventional chemical methods. Transformation of acetylene and many of its derivatives to conjugated polymers using high pressure has been successfully achieved, but not with dimethyl acetylene (DMA). In this work, we present a high-pressure study on solid DMA using a diamond anvil cell up to 24.4 GPa at room temperature characterized by in situ Fourier transform infrared and Raman spectroscopy. Our results show that solid DMA exists in a phase II crystal structure and is stable up to 12 GPa. Above this pressure, amorphization was initiated and the process was completed at 24.4 GPa. The expected polymeric transformation was not evident upon compression, but only observed upon decompression from a threshold compression pressure (e.g. 14.4 GPa). In situ florescence measurements suggest excimer formation via crystal defects, which induces the chemical reactions. The vibrational spectral analysis suggests the products contain the amorphous poly(DMA) and possibly additional amorphous hydrogenated carbon material.

  16. A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency.

    PubMed

    Jiang, Junfeng; Wang, Shaohua; Liu, Tiegen; Liu, Kun; Yin, Jinde; Meng, Xiange; Zhang, Yimo; Wang, Shuang; Qin, Zunqi; Wu, Fan; Li, Dingjie

    2012-07-30

    A demodulation algorithm based on absolute phase recovery of a selected monochromatic frequency is proposed for optical fiber Fabry-Perot pressure sensing system. The algorithm uses Fourier transform to get the relative phase and intercept of the unwrapped phase-frequency linear fit curve to identify its interference-order, which are then used to recover the absolute phase. A simplified mathematical model of the polarized low-coherence interference fringes was established to illustrate the principle of the proposed algorithm. Phase unwrapping and the selection of monochromatic frequency were discussed in detail. Pressure measurement experiment was carried out to verify the effectiveness of the proposed algorithm. Results showed that the demodulation precision by our algorithm could reach up to 0.15kPa, which has been improved by 13 times comparing with phase slope based algorithm.

  17. The pressure-induced structural response of rare earth hafnate and stannate pyrochlore from 0.1-50 GPa

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2017-12-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa). Stannate and hafnate pyrochlore compositions taken to high pressure show structural transformations consistent with irradiated pyrochlore, and compositionally disordered pyrochlore: a long-range structure best described by defect-fluorite, and a short-range structure best described by weberite.

  18. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.; Tse, J. S., E-mail: john.tse@usask.ca; Hu, M. Y.

    2015-10-28

    The pressure-induced amorphization and subsequent recrystallization of SnI{sub 4} have been investigated using first principles molecular dynamics calculations together with high-pressure {sup 119}Sn nuclear resonant inelastic x-ray scattering measurements. Above ∼8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ∼64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI{sub 4} under ambient conditions. Although high pressure structures of SnI{sub 4} were thought to be determined by randommore » packing of equal-sized spheres, we detected electron charge transfer in each phase. This charge transfer results in a crystal structure packing determined by larger than expected iodine atoms.« less

  19. Boron monosulfide: Equation of state and pressure-induced phase transition

    NASA Astrophysics Data System (ADS)

    Cherednichenko, K. A.; Kruglov, I. A.; Oganov, A. R.; Le Godec, Y.; Mezouar, M.; Solozhenko, V. L.

    2018-04-01

    Quasi-hydrostatic compression of rhombohedral boron monosulfide (r-BS) has been studied up to 50 GPa at room temperature using diamond-anvil cells and angle-dispersive synchrotron X-ray diffraction. A fit of the experimental P-V data to the Vinet equation of state yields the bulk modulus B0 of 42.2(1.4) GPa and its first pressure derivative B0' of 7.6(2) that are in excellent agreement with our ab initio calculations. Formation of a new high-pressure phase of boron monosulfide (hp-BS) has been observed above 35 GPa. According to ab initio evolutionary crystal structure predictions combined with Rietveld refinement of high-pressure X-ray diffraction data, the structure of hp-BS has trigonal symmetry and belongs to the space group P-3m1. As it follows from the electron density of state calculations, the phase transformation is accompanied by an insulator-metal transition.

  20. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of Snl 4

    DOE PAGES

    Liu, Hanyu; Tse, John S.; Hu, Michael Y.; ...

    2015-10-27

    The pressure-induced amorphization and subsequent recrystallization of SnI 4 have been investigated using first principles molecular dynamics calculations together with high-pressure 119Sn nuclear resonant inelastic x-ray scattering measurements. Above ~8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ~64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI 4 under ambient conditions. Although high pressure structures of SnI 4 were thought to be determined by random packingmore » of equal-sized spheres, we detected electron charge transfer in each phase. As a result, this charge transfer results in a crystal structure packing determined by larger than expected iodine atoms. (C) 2015 AIP Publishing LLC.« less

  1. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI4.

    PubMed

    Liu, H; Tse, J S; Hu, M Y; Bi, W; Zhao, J; Alp, E E; Pasternak, M; Taylor, R D; Lashley, J C

    2015-10-28

    The pressure-induced amorphization and subsequent recrystallization of SnI4 have been investigated using first principles molecular dynamics calculations together with high-pressure (119)Sn nuclear resonant inelastic x-ray scattering measurements. Above ∼8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ∼64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI4 under ambient conditions. Although high pressure structures of SnI4 were thought to be determined by random packing of equal-sized spheres, we detected electron charge transfer in each phase. This charge transfer results in a crystal structure packing determined by larger than expected iodine atoms.

  2. Ab initio study of phase stability of NaZr{sub 2}(PO{sub 4}){sub 3} under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinnappan, Ravi; Kaur, Gurpreet; Panigrahi, B. K.

    2016-05-23

    The elastic constants of NaZr{sub 2}(PO{sub 4}){sub 3} were computed as a function of pressure through Density Functional Theory calculations. The behavior of elastic constants show that the rhombohedral (R-3c) NaZr{sub 2}(PO{sub 4}){sub 3} becomes unstable above 8 GPa and is driven by softening of C{sub 44} through one of the Born stability criteria. High pressure equation of state and enthalpy show further that the ambient rhombohedral (R-3c)) NaZr{sub 2}(PO{sub 4}){sub 3} transforms first to another rhombohedral (R3) phase and subsequently to LiZr{sub 2}(PO{sub 4}){sub 3}-type orthorhombic phase at pressures above 6 and 8 GPa respectively which are in agreement with recentmore » X-ray diffraction study.« less

  3. Shock-induced decomposition of a high density glass (ZF6)

    NASA Astrophysics Data System (ADS)

    Zhou, Xianming; Liu, Xun; Li, Jiabo; Li, Jun; Cao, Xiuxia

    2011-07-01

    The dynamic high-pressure behavior of a high density glass (ZF6) was investigated in this study. The Hugoniot data, shock temperature (TH) and release sound velocity (C) of ZF6 were measured by a time-resolved multi-channel pyrometer in the shock pressure (PH) range of 50-170 GPa. The Hugoniot data is in accord with the Los Alamos Scientific Laboratory (LASL) shock Hugoniot data and shows a good linearity over 21 GPa. Polymorphic phase transitions were identified by the kinks in the measured TH-PH and C-PH relationships. The onset pressures of the transformations are ˜75 and ˜128 GPa, respectively. A thermodynamic calculation suggests that the phase transition at 75 GPa is its disproportionation to massicot (high pressure phase of PbO) and melted silica while the transition at 128 GPa is from the melting of massicot.

  4. The Principal Hugoniot of Forsterite to 950 GPa

    DOE PAGES

    Root, Seth; Townsend, Joshua P.; Davies, Erik; ...

    2018-04-27

    Forsterite (Mg 2SiO 4) single crystals were shock compressed to pressures between 200 and 950 GPa using independent plate–impact steady shocks and laser–driven decaying shock compression experiments. Additionally, we performed density functional theory–based molecular dynamics to aid interpretation of the experimental data and to investigate possible phase transformations and phase separations along the Hugoniot. We show that the experimentally obtained Hugoniot cannot distinguish between a pure liquid Mg 2SiO 4 and an assemblage of solid MgO plus liquid magnesium silicate. In conclusion, the measured reflectivity is nonzero and increases with pressure, which implies that the liquid is a poor electricalmore » conductor at low pressures and that the conductivity increases with pressure.« less

  5. The Principal Hugoniot of Forsterite to 950 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Root, Seth; Townsend, Joshua P.; Davies, Erik

    Forsterite (Mg 2SiO 4) single crystals were shock compressed to pressures between 200 and 950 GPa using independent plate–impact steady shocks and laser–driven decaying shock compression experiments. Additionally, we performed density functional theory–based molecular dynamics to aid interpretation of the experimental data and to investigate possible phase transformations and phase separations along the Hugoniot. We show that the experimentally obtained Hugoniot cannot distinguish between a pure liquid Mg 2SiO 4 and an assemblage of solid MgO plus liquid magnesium silicate. In conclusion, the measured reflectivity is nonzero and increases with pressure, which implies that the liquid is a poor electricalmore » conductor at low pressures and that the conductivity increases with pressure.« less

  6. Cristobalite X-I: A bridge between low and high density silica polymorphs

    NASA Astrophysics Data System (ADS)

    Shelton, H.; Tiange, B.; Zurek, E.; Smith, J.; Dera, P.

    2017-12-01

    SiO2 is one of the most common compounds found on Earth. Despite its chemical simplicity, and because of its crystal chemical characteristics, SiO2 exhibits a complex phase diagram. SiO2 has a wide variety of thermodynamically stable crystalline phases, as well as numerous metastable crystalline and amorphous polymorphs. Many of the phase transition sequences that produce metastable phases of SiO2 are strongly path-dependent, where the rate of change controls the transition just as much as the final conditions. The elusive metastable polymorphs of SiO2 may provide a better understanding of the factors controlling its densification. On compression of α-cristobalite (the high temperature tetrahedral phase of SiO2) to pressures above 12 GPa, a new polymorph known as cristobalite X-I forms. Existence of cristobalite X-I has been known for several decades, however, consensus regarding the exact atomic arrangement has not yet been reached. The X-I phase constitutes an important step in the silica densification process, separating low-density tetrahedral framework structures from high-density octahedral polymorphs. It is unique in being the only non-quenchable high-density SiO2 phase, which reverts back to the tetrahedral low-density form on decompression at ambient temperature. Our new single crystal synchrotron X-ray diffraction experiments, with quasihydrostatic neon as the pressure medium, revealed the structure of this enigmatic phase to consist of octahedral silicate chains with 4-60°-2 zigzag chain geometry. This geometry has not been considered before, but is closely related to post-quartz, stishovite and seifertite. Density functional theory calculations support this observation, confirming the dynamic stability of the X-I arrangement and reasonably reproducing the pressure at which the transformation takes place. The enthalpy of cristobalite X-I is higher than stishovite and seifertite, but it is favored as a high-pressure successor of cristobalite due to a unique transformation pathway.

  7. Phase transitions in mixed gas hydrates: experimental observations versus calculated data.

    PubMed

    Schicks, Judith M; Naumann, Rudolf; Erzinger, Jörg; Hester, Keith C; Koh, Carolyn A; Sloan, E Dendy

    2006-06-15

    This paper presents the phase behavior of multicomponent gas hydrate systems formed from primarily methane with small amounts of ethane and propane. Experimental conditions were typically in a pressure range between 1 and 6 MPa, and the temperature range was between 260 and 290 K. These multicomponent systems have been investigated using a variety of techniques including microscopic observations, Raman spectroscopy, and X-ray diffraction. These techniques, used in combination, allowed for measurement of the hydrate structure and composition, while observing the morphology of the hydrate crystals measured. The hydrate formed immediately below the three-phase line (V-L --> V-L-H) and contained crystals that were both light and dark in appearance. The light crystals, which visually were a single solid phase, showed a spectroscopic indication for the presence of occluded free gas in the hydrate. In contrast, the dark crystals were measured to be structure II (sII) without the presence of these occluded phases. Along with hydrate measurements near the decomposition line, an unexpected transformation process was visually observed at P-T-conditions in the stability field of the hydrates. Larger crystallites transformed into a foamy solid upon cooling over this transition line (between 5 and 10 K below the decomposition temperature). Below the transition line, a mixture of sI and sII was detected. This is the first time that these multicomponent systems have been investigated at these pressure and temperature conditions using both visual and spectroscopic techniques. These techniques enabled us to observe and measure the unexpected transformation process showing coexistence of different gas hydrate phases.

  8. Petalite under pressure: Elastic behavior and phase stability

    DOE PAGES

    Ross, Nancy L.; Zhao, Jing; Slebodnick, Carla; ...

    2015-04-01

    The lithium aluminosilicate mineral petalite (LiAlSi 4O 10) has been studied using high-pressure single-crystal X-ray diffraction (HP-XRD) up to 5 GPa. Petalite undergoes two pressure-induced first-order phase transitions, never reported in the literature, at ca. 1.5 and 2.5 GPa. The first of these transforms the low-pressure α-phase of petalite (P2/c) to an intermediate β-phase that then fully converts to the high-pressure β-phase at ca. 2.5 GPa. The α→β transition is isomorphic and is associated with a commensurate modulation that triples the unit cell volume. Analysis of the HP-XRD data show that although the fundamental features of the petalite structure aremore » retained through this transition, there are subtle alterations in the internal structure of the silicate double-layers in the β-phase relative to the α-phase. Measurement of the unit cell parameters of petalite as a function of pressure, and fitting of the data with 3rd order Birch-Murnaghan equations of state, has provided revised elastic constants for petalite. The bulk moduli of the α and β-phases are 49(1) and 35(3) GPa, respectively. These values indicate that the compressibility of the- phase of petalite lies between the alkali feldpsars and alkali feldspathoids, whereas the β-phase has a compressibility more comparable with layered silicates. Structure analysis has shown that the compression of the -phase is facilitated by the rigid body movement of the Si 2O 7 units from which the silicate double-layers are constructed.« less

  9. High pressure synthesis of amorphous TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Quanjun; Liu, Ran; Wang, Tianyi; Xu, Ke; Dong, Qing; Liu, Bo; Liu, Jing; Liu, Bingbing

    2015-09-01

    Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD) method. The starting anatase structure is stable up to ˜20GPa, and transforms into a high-density amorphous (HDA) form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM) study. In addition, the bulk modulus (B0 = 158 GPa) of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa). We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  10. Shock wave compression of iron-silicate garnet.

    NASA Technical Reports Server (NTRS)

    Graham, E. K.; Ahrens, T. J.

    1973-01-01

    Shock wave compression data to over 650 kb are presented for single-crystal almandine garnet. The data indicate the initiation of a phase transformation near 200 kb. Total transition to the high-pressure polymorph occurs at approximately 300 kb. The elastic properties of the high-pressure phase are calculated from the metastable Hugoniot data by using the linear shock velocity-particle velocity relationships. The overall results obtained strongly suggest that upper mantle minerals are likely to occur in the ilmenite structure over a substantial part of the lower mantle.

  11. Shock induced polymorphic transition in quartz, carbon, and boron nitride

    NASA Technical Reports Server (NTRS)

    Tan, Hua; Ahrens, Thomas J.

    1990-01-01

    The model proposed by Ahrens (1988) to explain the mechanism of the polymorphism in silicates is revised, and the revised model is applied to the quartz/stishovite, graphite/diamond, and graphite-boron nitride (g-BN) phase transformations. In this model, a key assumption is that transformation to a high-density amorphous or possibly liquid phase which rapidly crystallized to the high-pressure phase is triggered by the high temperatures in the shear band and upon crossing the metastable extension of a melting curve. Good agreement between the calcualted results and published data is obtained. The present theory predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.

  12. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    PubMed Central

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-01-01

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials. PMID:27426219

  13. Synthesis of Hf 8O 7, a new binary hafnium oxide, at high pressures and high temperatures

    DOE PAGES

    Bayarjargal, L.; Morgenroth, W.; Schrodt, N.; ...

    2017-01-23

    In this paper, two binary phases in the system Hf-O have been synthesized at pressures between 12 and 34 GPa and at temperatures up to 3000 K by reacting Hf with HfO 2 using a laser-heated diamond anvil cell. In situ X-ray diffraction in conjunction with density functional theory calculations has been employed to characterize a previously unreported tetragonal Hf 8O 7 phase. This phase has a structure which is based on an fcc Hf packing with oxygen atoms occupying octahedral interstitial positions. Its predicted bulk modulus is 223(1) GPa. The second phase has a composition close to Hf 6O,more » where oxygen atoms occupy octahedral interstitial sites in an hcp Hf packing. Its experimentally determined bulk modulus is 128(30) GPa. Finally, the phase diagram of Hf metal was further constrained at high pressures and temperatures, where we show that α-Hf transforms to β-Hf around 2160(150) K and 18.2 GPa and β-Hf remains stable up to at least 2800 K at this pressure.« less

  14. Structural phase transition of BeTe: an ab initio molecular dynamics study.

    PubMed

    Alptekin, Sebahaddin

    2017-08-11

    Beryllium telluride (BeTe) with cubic zinc-blende (ZB) structure was studied using ab initio constant pressure method under high pressure. The ab initio molecular dynamics (MD) approach for constant pressure was studied and it was found that the first order phase transition occurs from the ZB structure to the nickel arsenide (NiAs) structure. It has been shown that the MD simulation predicts the transition pressure P T more than the value obtained by the static enthalpy and experimental data. The structural pathway reveals MD simulation such as cubic → tetragonal → orthorhombic → monoclinic → orthorhombic → hexagonal, leading the ZB to NiAs phase. The phase transformation is accompanied by a 10% volume drop and at 80 GPa is likely to be around 35 GPa in the experiment. In the present study, our obtained values can be compared with the experimental and theoretical results. Graphical abstract The energy-volume relation and ZB phase for the BeTe.

  15. Pressure-induced phase transitions of β-type pyrochlore CsTaWO 6

    DOE PAGES

    Zhang, F. X.; Tracy, C. L.; Shamblin, J.; ...

    2016-09-30

    The β-type pyrochlore CsTaWO 6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P2 1/c) at ~18 GPa. The structural evolution in CsTaWO 6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that themore » pressure-induced phase transitions in CsTaWO 6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os 2O 6 at high pressure conditions.« less

  16. Pressure-induced phase transitions of β-type pyrochlore CsTaWO 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, F. X.; Tracy, C. L.; Shamblin, J.

    The β-type pyrochlore CsTaWO 6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P2 1/c) at ~18 GPa. The structural evolution in CsTaWO 6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that themore » pressure-induced phase transitions in CsTaWO 6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os 2O 6 at high pressure conditions.« less

  17. Quasi-dynamic pressure and temperature initiated β<-->δ solid phase transitions in HMX

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph M.; Farber, Daniel L.; Craig, Ian M.; Blosch, Laura L.; Shuh, David K.; Hansen, Donald W.; Aracne-Ruddle, Chantel M.

    2000-04-01

    The phase transformation of β-HMX (>0.5% RDX) to δ phase has been studied for over twenty years and more recently with an high-contrast optical second harmonic generation technique. Shock studies of the plastic binder composites of HMX have indicated that the transition is perhaps irreversible, a result that concurs with the static pressure results published by F. Goetz et al. [1] in 1978. However, the stability field favors the β polymorph over δ as pressure is increased (up to 5.4 GPa) along any thermodynamically reasonable isotherm. In this experiment, strict control of pressure and temperature is maintained while x-ray and optical diagnostics are applied to monitor the conformational dynamics of HMX. Unlike the temperature induced β→δ transition, the pressure induced is heterogeneous in nature. The 1 bar 25 °C δ→β transition is not immediate, occuring over tens of hours. Transition points and kinetics are path dependent and consequently this paper describes our work in progress.

  18. Microstructural fingerprints of phase transitions in shock-loaded iron

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Sui, M. L.; Chen, Y. T.; Lu, Q. H.; Ma, E.; Pei, X. Y.; Li, Q. Z.; Hu, H. B.

    2013-01-01

    The complex structural transformation in crystals under static pressure or shock loading has been a subject of long-standing interest to materials scientists and physicists. The polymorphic transformation is of particular importance for iron (Fe), due to its technological and sociological significance in the development of human civilization, as well as its prominent presence in the earth's core. The martensitic transformation α-->ɛ (bcc-->hcp) in iron under shock-loading, due to its reversible and transient nature, requires non-trivial detective work to uncover its occurrence. Here we reveal refined microstructural fingerprints, needle-like colonies and three sets of {112}<111> twins with a threefold symmetry, with tell-tale features that are indicative of two sequential martensitic transformations in the reversible α-->ɛ phase transition, even though no ɛ is retained in the post-shock samples. The signature orientation relationships are consistent with previously-proposed transformation mechanisms, and the unique microstructural fingerprints enable a quantitative assessment of the volume fraction transformed.

  19. Structural phase transitions in Bi2Se3 under high pressure

    PubMed Central

    Yu, Zhenhai; Wang, Lin; Hu, Qingyang; Zhao, Jinggeng; Yan, Shuai; Yang, Ke; Sinogeikin, Stanislav; Gu, Genda; Mao, Ho-kwang

    2015-01-01

    Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi2Se3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi2Se3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculations favor the viewpoint that the I4/mmm phase Bi2Se3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi2Se3 from this work (two independent runs) are still Raman active up to ~35 GPa. It is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi2Se3 may explain why Bi2Se3 shows different structural behavior than isocompounds Bi2Te3 and Sb2Te3. PMID:26522818

  20. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier

    DOE PAGES

    Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.

    2015-01-06

    In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO 3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO 3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO 2, the occurrence of the tetrahedrally-coordinated carbonates based on CO 4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO 3 carbonates upmore » to relevant lower-mantle conditions of approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO 3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.« less

  1. Structural phase transitions in Bi 2Se 3 under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhenhai; Gu, Genda; Wang, Lin

    2015-11-02

    Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi 2Se 3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi 2Se 3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculationsmore » favor the viewpoint that the I4/mmm phase Bi 2Se 3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi 2Se 3 from this work (two independent runs) are still Raman active up to ~35 GPa. Furthermore, it is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi 2Se 3 may explain why Bi 2Se 3 shows different structural behavior than isocompounds Bi 2Te 3 and Sb 2Te 3.« less

  2. Consolidation of cubic and hexagonal boron nitride composites

    DOE PAGES

    Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; ...

    2015-12-08

    When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that inmore » some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.« less

  3. Determination of Carbon Dioxide, Carbon Monoxide, and Methane Concentrations in Cigarette Smoke by Fourier Transform Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Tan, T. L.; Lebron, G. B.

    2012-01-01

    The integrated absorbance areas of vibrational bands of CO[subscript 2], CO, and CH[subscript 4] gases in cigarette smoke were measured from Fourier transform infrared (FTIR) spectra to derive the partial pressures of these gases at different smoke times. The quantity of the three gas-phase components of cigarette smoke at different smoke times…

  4. Thermally induced phase transformation in multi-phase iron oxide nanoparticles on vacuum annealing

    NASA Astrophysics Data System (ADS)

    Anupama, A. V.; Keune, W.; Sahoo, B.

    2017-10-01

    The evolution of magnetic phases in multi-phase iron oxide nanoparticles, synthesized via the transferred arc plasma induced gas phase condensation method, was investigated by X-ray diffraction, vibrating sample magnetometry and 57Fe Mössbauer spectroscopy. The particles are proposed to be consisting of three different iron oxide phases: α-Fe2O3, γ-Fe2O3 and Fe3O4. These nanoparticles were exposed to high temperature (∼935 K) under vacuum (10-3 mbar He pressure), and the thermally induced phase transformations were investigated. The Rietveld refinement of the X-ray diffraction data corroborates the least-squares fitting of the transmission Mössbauer spectra in confirming the presence of Fe3O4, γ-Fe2O3 and α-Fe2O3 phases before the thermal treatment, while only Fe3O4 and α-Fe2O3 phases exist after thermal treatment. On thermal annealing in vacuum, conversion from γ-Fe2O3 to Fe3O4 and α-Fe2O3 was observed. Interestingly, we have observed a phase transformation occurring in the temperature range ∼498 K-538 K, which is strikingly lower than the phase transformation temperature of γ-Fe2O3 to α-Fe2O3 (573-623 K) in air. Combining the results of Rietveld refinement of X-ray diffraction patterns and Mössbauer spectroscopy, we have attributed this phase transformation to the phase conversion of a metastable "defected and strained" d-Fe3O4 phase, present in the as-prepared sample, to the α-Fe2O3 phase. Stabilization of the phases by controlling the phase transformations during the use of different iron-oxide nanoparticles is the key factor to select them for a particular application. Our investigation provides insight into the effect of temperature and chemical nature of the environment, which are the primary factors governing the phase stability, suitability and longevity of the iron oxide nanomaterials prepared by the gas-phase condensation method for various applications.

  5. Vacancies in MgO at ultrahigh pressure: About mantle rheology of super-Earths

    NASA Astrophysics Data System (ADS)

    Ritterbex, Sebastian; Harada, Takafumi; Tsuchiya, Taku

    2018-05-01

    First-principles calculations are performed to investigate vacancy formation and migration in the B2 phase of MgO. Defect energetics suggest the importance of intrinsic non-interacting vacancy pairs, even though the extrinsic vacancy concentration might govern atomic diffusion in the B2 phase of MgO. The enthalpies of ionic vacancy migration are generally found to decrease across the B1-B2 phase transition around a pressure of 500 GPa. It is shown that this enthalpy change induces a substantial increase in the rate of vacancy diffusion in MgO of almost four orders of magnitude (∼104) when the B1 phase transforms into the B2 phase with increasing pressure. If plastic deformation is controlled by vacancy diffusion, mantle viscosity is expected to decrease in relation to this enhanced diffusion rate in MgO across the B1-B2 transition in the interior of Earth-like large exoplanets. Our results of atomic relaxations near the defects suggest that diffusion controlled creep viscosity may generally decrease across high-pressure phase transitions with increasing coordination number. Plastic flow and resulting mantle convection in the interior of these super-Earths may be therefore less sluggish than previously thought.

  6. Degradation resistance of 3Y-TZP ceramics sintered using spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Chintapalli, R.; Marro, F. G.; Valle, J. A.; Yan, H.; Reece, M. J.; Anglada, M.

    2009-09-01

    Commercially available tetragonal zirconia powder doped with 3 mol% of yttria has been sintered using spark plasma sintering (SPS) and has been investigated for its resistance to hydrothermal degradation. Samples were sintered at 1100, 1150, 1175 and 1600 °C at constant pressure of 100 MPa and soaking for 5 minutes, and the grain sizes obtained were 65, 90, 120 and 800 nm, respectively. Samples sintered conventionally with a grain size of 300 nm were also compared with samples sintered using SPS. Finely polished samples were subjected to artificial degradation at 131 °C for 60 hours in vapour in auto clave under a pressure of 2 bars. The XRD studies show no phase transformation in samples with low density and small grain size (<200 nm), but significant phase transformation is seen in dense samples with larger grain size (>300 nm). Results are discussed in terms of present theories of hydrothermal degradation.

  7. Guest-Induced Switchable Breathing Behavior in a Flexible Metal-Organic Framework with Pronounced Negative Gas Pressure.

    PubMed

    Shi, Yi-Xiang; Li, Wu-Xiang; Zhang, Wen-Hua; Lang, Jian-Ping

    2018-06-29

    Flexible metal-organic frameworks (MOFs) have attracted great interest for their dynamically structural transformability in response to external stimuli. Herein, we report a switchable "breathing" or "gate-opening" behavior associated with the phase transformation between a narrow pore (np) and a large pore (lp) in a flexible pillared-layered MOF, denoted as MOF-1 as, which is also confirmed by SCXRD and PXRD. The desolvated phase (MOF-1 des) features a unique stepwise adsorption isotherm for N 2 coupled with a pronounced negative gas adsorption pressure. For comparison, however, no appreciable CO 2 adsorption and gate-opening phenomenon with stepwise sorption can be observed. Furthermore, the polar micropore walls decorated with thiophene groups in MOF-1 des reveals the selective sorption of toluene over benzene and p-xylene associated with self-structural adjustment in spite of the markedly similar physicochemical properties of these vapor molecules.

  8. Pressure-temperature gelatinization phase diagram of starch: An in situ Fourier transform infrared study.

    PubMed

    Rubens, P; Heremans, K

    2000-12-01

    The gelatinization of rice starch is reported as a function of temperature and pressure from the changes in the ir spectrum. The diagram that is observed is reminiscent of those obtained for the denaturation of proteins and the phase separation observed from the cloud point for several water soluble synthetic polymers. It is proposed that the reentrant shape of the diagram for starch is not only due to hydrogen bonding but also to the imperfect packing of amylose and amylopectin chains in the starch granule. The influence of pressure and temperature on thermodynamic parameters leading to this diagram is discussed. Copyright 2000 John Wiley & Sons, Inc.

  9. Multiphase Equations of State for Polymer Materials at High Dynamic Pressures

    NASA Astrophysics Data System (ADS)

    Khishchenko, Konstantin V.

    2015-06-01

    Equations of state for materials over a wide range of pressures and temperatures are necessary for numerical simulations of shock-wave processes in condensed matter. Accuracy of calculation results is determined mainly by adequacy of equation of state of a medium. In this work, a new multiphase equation-of-state model is proposed with taking into account the polymorphic phase transformations, melting and evaporation. Thermodynamic calculations are carried out for 2 polymer materials (polymethylmethacrylate and polytetrafluoroethylene) in a broad region of the phase diagram. Obtained results are presented in comparison with available data of experiments at high dynamic pressures in shock and release waves. This work is supported by RSF, Grant 14-50-00124.

  10. Tuning and synthesis of metallic nanostructures by mechanical compression

    DOEpatents

    Fan, Hongyou; Li, Binsong

    2015-11-17

    The present invention provides a pressure-induced phase transformation process to engineer metal nanoparticle architectures and to fabricate new nanostructured materials. The reversible changes of the nanoparticle unit cell dimension under pressure allow precise control over interparticle separation in 2D or 3D nanoparticle assemblies, offering unique robustness for interrogation of both quantum and classic coupling interactions. Irreversible changes above a threshold pressure of about 8 GPa enables new nanostructures, such as nanorods, nanowires, or nanosheets.

  11. Pressure-Driven Spin Crossover Involving Polyhedral Transformation in Layered Perovskite Cobalt Oxyfluoride

    PubMed Central

    Tsujimoto, Yoshihiro; Nakano, Satoshi; Ishimatsu, Naoki; Mizumaki, Masaichiro; Kawamura, Naomi; Kawakami, Takateru; Matsushita, Yoshitaka; Yamaura, Kazunari

    2016-01-01

    We report a novel pressure-driven spin crossover in layered cobalt oxyfluoride Sr2CoO3F with a distorted CoO5 square pyramid loosely bound with a fluoride ion. Upon increasing pressure, the spin state of the Co(III) cation gradually changes from a high spin state (S = 2) to a low spin state (S = 0) accompanied by a anomalously large volume contraction (bulk modulus, 76.8(5) GPa). The spin state change occurs on the CoO5 pyramid in a wide pressure range, but the concomitant gradual shrinkage of the Co–F bond length with pressure gives rise to a polyhedral transformation to the CoO5F octahedron without a structural phase transition, leading to the full conversion to the LS state at 12 GPa. The present results provide new effective strategy to fine-tune electronic properties of mixed anion systems by controlling the covalency in metal-ligand bonds under pressure. PMID:27805031

  12. New structural phase obtained by exerting high pressure on (Br2)n@AFI composite material

    NASA Astrophysics Data System (ADS)

    Yao, Zhen; Lv, Jia-Yin; Liu, Bo; Liu, Bing-Bing; Yang, Bai

    2018-06-01

    In this paper, we present a theoretical study on the high-pressure behaviors of a (Br2)n@AlPO4-5 (AFI) peapod structure. The influence of the encapsulated Br2 molecule on the structural deformation of AFI crystal is analyzed using the volume-pressure function. The bonding process of the linearly arrayed Br2 molecule transferring to the bromine atomic chain is analyzed by the electron density distribution. A new high-pressure phase with P2 point group symmetry is obtained as the pressure increases to 34 GPa. In addition, electron density difference calculations are used to study the systematic charge transformation. Further analysis indicates that the encapsulated Br2 molecules can significantly modify the electronic structure of the AFI crystal. The band gap of the (Br2)n@AFI decreases with pressure and closes at 9 GPa. Moreover, the calculated bulk modulus and electronic properties indicate that the new structural phase is metallic with a high hardness, providing a new strategy for exploring novel nanomaterials.

  13. Potential Energy Landscape of the Liquid-Liquid Phase Transition in Water and the transformation between Low-Density and High-Density Amorphous Ice

    NASA Astrophysics Data System (ADS)

    Giovambattista, N.; Sciortino, F.; Starr, F. W.; Poole, P. H.

    The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics for describing supercooled liquids and glasses. We use the PEL formalism and computer simulations to study the transformation between low-density (LDL) and high-density liquid (HDL) water, and between low-density (LDA) and high-density amorphous ice (HDA). We employ the ST2 water model that exhibits a LDL-HDL first-order phase transition and a sharp LDA-HDA transformation, as observed in experiments. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that LDL configurations are located in the same megabasin as LDA, and that HDL configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid and the amorphous ice differ. We also study the liquid-to-ice-VII first-order phase transition. The PEL properties across this transition are qualitatively similar to the changes found during the LDA-HDA transformation, supporting the interpretation that the LDA-HDA transformation is a first-order-like phase transition between out-of-equilibrium states.

  14. AsS melt under pressure: one substance, three liquids.

    PubMed

    Brazhkin, V V; Katayama, Y; Kondrin, M V; Hattori, T; Lyapin, A G; Saitoh, H

    2008-04-11

    An in situ high-temperature--high-pressure study of liquid chalcogenide AsS by x-ray diffraction, resistivity measurements, and quenching from melt is presented. The obtained data provide direct evidence for the existence in the melt under compression of two transformations: one is from a moderate-viscosity molecular liquid to a high-viscosity nonmetallic polymerized liquid at P approximately 1.6-2.2 GPa; the other is from the latter to a low-viscosity metallic liquid at P approximately 4.6-4.8 GPa. Upon rapid cooling, molecular and metallic liquids crystallize to normal and high-pressure phases, respectively, while a polymerized liquid is easily quenched to a new AsS glass. General aspects of multiple phase transitions in liquid AsS, including relations to the phase diagram of the respective crystalline, are discussed.

  15. Reversible pressure-induced crystal-amorphous structural transformation in ice Ih

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Tse, John S.

    2014-08-01

    Molecular dynamics (MD) simulation of depressurised high-density amorphous ice (HDA) at 80 K and at negative pressures has been performed. Over several attempts, HDA recrystallised to a form close to hexagonal ice Ih, albeit with some defects. The results support the hypothesis that compression of ice-Ih to HDA is a reversible first-order phase transition, with a large hysteresis. Therefore, it would appear that LDA is not truly amorphous. The elastic energy estimated from the area of the hysteresis loop is ca. 4.5 kJ/mol, in some way consistent with experimentally-determined accumulated successive heats of transformations from recovered HDA → ice Ih.

  16. Making Diamond in the Laboratory

    ERIC Educational Resources Information Center

    Strong, Herbert

    1975-01-01

    Discusses the graphite to diamond transformation and a phase diagram for carbon. Describes high temperature-higher pressure experimental apparatus and growth of diamonds from seed crystals. Reviews properties of the diamond which suggest uses for the synthetic product. Illustrations with text. (GH)

  17. Bubbles are responsive materials interesting for nonequilibrium physics

    NASA Astrophysics Data System (ADS)

    Andreeva, Daria; Granick, Steve

    Understanding of nature and conditions of non-equilibrium transformations of bubbles, droplets, polysomes and vesicles in a gradient filed is a breath-taking question that dissipative systems raise. We ask: how to establish a dynamic control of useful characteristics, for example dynamic control of morphology and composition modulation in soft matter. A possible answer is to develop a new generation of dynamic impactors that can trigger spatiotemporal oscillations of structures and functions. We aim to apply acoustic filed for development of temperature and pressure oscillations at a microscale area. We demonstrate amazing dynamic behavior of gas-filled bubbles in pressure gradient field using a unique technique combining optical imaging, high intensity ultrasound and high speed camera. We find that pressure oscillations trigger continuous phase transformations that are considered to be impossible in physical systems.

  18. A New Multiphase Equation of State for SiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maerzke, Katie A.; Gammel, J. Tinka

    SiO 2 is found as α-quartz at ambient conditions. Under shock compression, it transforms into a much higher density stishovite-like phase around 20 GPa, then into a liquid phase above 100 GPa. The SESAME library contains older equations of state for α-quartz, polycrystalline quartz, and fused quartz. These equations of state model the material as a single phase; i.e., there is no high pressure phase transition. Somewhat more recently (in 1992), Jon Boettger published equations of state for α-quartz, coesite, and stishovite, along with a phase transition model to mix them. However, we do not have a multiphase EOS thatmore » captures the phase transitions in this material. Others are working on a high-accuracy model for very high pressure SiO 2, since liquid quartz is used as an impedance matching standard above 100 GPa; however, we are focused on the 10-50 GPa range. This intermediate pressure range is most relevant for modeling the decomposition products of silicone polymers such as Sylgard 184 and SX358.« less

  19. Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions

    NASA Astrophysics Data System (ADS)

    Pippinger, T.; Miletich, R.; Merlini, M.; Lotti, P.; Schouwink, P.; Yagi, T.; Crichton, W. A.; Hanfland, M.

    2015-01-01

    High-pressure phase transformations between the polymorphic forms I, II, III, and IIIb of CaCO3 were investigated by analytical in situ high-pressure high-temperature experiments on oriented single-crystal samples. All experiments at non-ambient conditions were carried out by means of Raman scattering, X-ray, and synchrotron diffraction techniques using diamond-anvil cells in the pressure range up to 6.5 GPa. The composite-gasket resistive heating technique was applied for all high-pressure investigations at temperatures up to 550 K. High-pressure Raman spectra reveal distinguishable characteristic spectral differences located in the wave number range of external modes with the occurrence of band splitting and shoulders due to subtle symmetry changes. Constraints from in situ observations suggest a stability field of CaCO3-IIIb at relatively low temperatures adjacent to the calcite-II field. Isothermal compression of calcite provides the sequence from I to II, IIIb, and finally, III, with all transformations showing volume discontinuities. Re-transformation at decreasing pressure from III oversteps the stability field of IIIb and demonstrates the pathway of pressure changes to determine the transition sequence. Clausius-Clapeyron slopes of the phase boundary lines were determined as: Δ P/Δ T = -2.79 ± 0.28 × 10-3 GPa K-1 (I-II); +1.87 ± 0.31 × 10-3 GPa K-1 (II/III); +4.01 ± 0.5 × 10-3 GPa K-1 (II/IIIb); -33.9 ± 0.4 × 10-3 GPa K-1 (IIIb/III). The triple point between phases II, IIIb, and III was determined by intersection and is located at 2.01(7) GPa/338(5) K. The pathway of transition from I over II to IIIb can be interpreted by displacement with small shear involved (by 2.9° on I/II and by 8.2° on II/IIIb). The former triad of calcite-I corresponds to the [20-1] direction in the P21/ c unit cell of phase II and to [101] in the pseudomonoclinic C setting of phase IIIb. Crystal structure investigations of triclinic CaCO3-III at non-ambient pressure-temperature conditions confirm the reported structure, and the small changes associated with the variation in P and T explain the broad stability of this structure with respect to variations in P and T. PVT equation of state parameters was determined from experimental data points in the range of 2.20-6.50 GPa at 298-405 K providing = 87.5(5.1) GPa, ( δK T/ δT) P = -0.21(0.23) GPa K-1, α 0 = 0.8(21.4) × 10-5 K-1, and α 1 = 1.0(3.7) × 10-7 K-1 using a second-order Birch-Murnaghan equation of state formalism.

  20. High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi 2O 6, CaSiO 3 and CaSi 2O 5-CaTiSiO 5 system

    NASA Astrophysics Data System (ADS)

    Akaogi, M.; Yano, M.; Tejima, Y.; Iijima, M.; Kojitani, H.

    2004-06-01

    Phase transitions of CaMgSi 2O 6 diopside and CaSiO 3 wollastonite were examined at pressures to 23 GPa and temperatures to 2000 °C, using a Kawai-type multiavil apparatus. Enthalpies of high-pressure phases in CaSiO 3 and in the CaSi 2O 5-CaTiSiO 5 system were also measured by high-temperature calorimetry. At 17-18 GPa, diopside dissociates to CaSiO 3-rich perovskite + Mg-rich (Mg,Ca)SiO 3 tetragonal garnet (Gt) above about 1400 °C. The solubilities of CaSiO 3 in garnet and MgSiO 3 in perovskite increase with temperature. At 17-18 GPa below about 1400 °C, diopside dissociates to Ca-perovskite + β-Mg 2SiO 4 + stishovite. The Mg, Si-phases coexisting with Ca-perovskite change to γ-Mg 2SiO 4 + stishovite, to ilmenite, and finally to Mg-perovskite with increasing pressure. CaSiO 3 wollastonite transforms to the walstromite structure, and further dissociates to Ca 2SiO 4 larnite + CaSi 2O 5 titanite. The latter transition occurs at 9-11 GPa with a positive Clapeyron slope. At 1600 °C, larnite + titanite transform to CaSiO 3 perovskite at 14.6±0.6 GPa, calibrated against the α-β transition pressure of Mg 2SiO 4. The enthalpies of formation of CaSiO 3 walstromite and CaSi 2O 5 titanite from the mixture of CaO and SiO 2 quartz at 298 K have been determined as -76.1±2.8, and -27.8±2.1 kJ/mol, respectively. The latter was estimated from enthalpy measurements of titanite solid solutions in the system CaSi 2O 5-CaTiSiO 5, because CaSi 2O 5 titanite transforms to a triclinic phase upon decompression. The enthalpy difference between titanite and the triclinic phase is only 1.5±4.8 kJ/mol. Using these enthalpies of formation and those of larnite and CaSiO 3 perovskite, the transition boundaries in CaSiO 3 have been calculated. The calculated boundaries for the wollastonite-walstromite-larnite + titanite transitions are consistent with the experimental determinations within the errors. The calculated boundary between larnite + titanite and Ca-perovskite has a slope of 1.3-1.8(±0.4) MPa/K, and is located at a pressure about 2 GPa higher than that determined by [Am. Mineral. 79 (1994) 1219].

  1. Interplay between structural and magnetic-electronic responses of FeA l2O4 to a megabar: Site inversion and spin crossover

    NASA Astrophysics Data System (ADS)

    Xu, W. M.; Hearne, G. R.; Layek, S.; Levy, D.; Pasternak, M. P.; Rozenberg, G. Kh.; Greenberg, E.

    2018-02-01

    X-ray diffraction pressure studies at room temperature demonstrate that the spinel FeA l2O4 transforms to a tetragonal phase at ˜18 GPa. This tetragonal phase has a highly irregular unit-cell volume versus pressure dependence up to ˜45 GPa, after which a transformation to a Cmcm postspinel phase is onset. This is attributable to pressure driven Fe↔Al site inversion at room temperature, corroborated by signatures in the 57Fe Mössbauer spectroscopy pressure data. At the tetragonal→postspinel transition, onset in the range 45-50 GPa, there is a concurrent emergence of a nonmagnetic spectral component in the Mössbauer data at variable cryogenic temperatures. This is interpreted as spin crossover at sixfold coordinated Fe locations emanated from site inversion. Spin crossover commences at the end of the pressure range of the tetragonal phase and progresses in the postspinel structure. There is also a much steeper volume change ΔV /V ˜ 10% in the range 45-50 GPa compared to the preceding pressure regime, from the combined effects of the structural transition and spin crossover electronic change. At the highest pressure attained, ˜106 GPa, the Mössbauer data evidence a diamagnetic Fe low-spin abundance of ˜50%. The rest of the high-spin Fe in eightfold coordinated sites continue to experience a relatively small internal magnetic field of ˜33 T. This is indicative of a magnetic ground state associated with strong covalency, as well as substantive disorder from site inversion and the mixed spin-state configuration. Intriguingly, magnetism survives in such a spin-diluted postspinel lattice at high densities. The R (300 K) data decrease by only two orders of magnitude from ambient pressure to the vicinity of ˜100 GPa. Despite a ˜26% unit-cell volume densification from the lattice compressibility, structural transitions, and spin crossover, FeA l2O4 is definitively nonmetallic with an estimated gap of ˜400 meV at ˜100 GPa. At such high densification appreciable bandwidth broadening and gap closure would be anticipated. Reasons for the resilient nonmetallic behavior are briefly discussed.

  2. FP-LAPW calculations of equation of state and elastic properties of α and β phases of tungsten carbide at high pressure

    NASA Astrophysics Data System (ADS)

    Mishra, Vinayak; Chaturvedi, Shashank

    2013-03-01

    Tungsten carbide is used in high pressure devices therefore knowledge of its elastic properties and their pressure dependence is of utmost practical importance. In this paper we present first principles results of equation of state and elastic properties of α and β phases of tungsten carbide and compare our results with the available reported experimental results. These calculations have been performed using the FPLAPW method within the framework of density functional theory. Enthalpies of α and β phases of WC have been compared up to 350 GPa to investigate possibility of structural transformation. Density-dependent Grüneisen parameter has been deduced from P-V isotherm using the well-known Slater's formula. High pressure elastic constants of α and β phases of WC have been calculated by applying various distortions to the original crystal structure. The elastic properties such as bulk, shear and Young's moduli have been derived from the calculated elastic constants. Pressure-dependent longitudinal velocity, shear velocity, Debye temperature and melting temperature have been deduced from the elastic properties. These calculated properties are in good agreement with the available experimental results.

  3. Pressure-induced structural modifications of rare-earth hafnate pyrochlore

    NASA Astrophysics Data System (ADS)

    Turner, Katlyn M.; Rittman, Dylan R.; Heymach, Rachel A.; Tracy, Cameron L.; Turner, Madison L.; Fuentes, Antonio F.; Mao, Wendy L.; Ewing, Rodney C.

    2017-06-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A2Hf2O7) form the pyrochlore structure for A  =  La-Tb and the defect-fluorite structure for A  =  Dy-Lu. High-pressure transformations in A2Hf2O7 pyrochlore (A  =  Sm, Eu, Gd) and defect-fluorite (A  =  Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs.  <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy2Hf2O7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr4+ and Hf4+, rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.

  4. Pressure-induced structural modifications of rare-earth hafnate pyrochlore.

    PubMed

    Turner, Katlyn M; Rittman, Dylan R; Heymach, Rachel A; Tracy, Cameron L; Turner, Madison L; Fuentes, Antonio F; Mao, Wendy L; Ewing, Rodney C

    2017-06-28

    Complex oxides with the pyrochlore (A 2 B 2 O 7 ) and defect-fluorite ((A,B) 4 O 7 ) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A 2 Hf 2 O 7 ) form the pyrochlore structure for A  =  La-Tb and the defect-fluorite structure for A  =  Dy-Lu. High-pressure transformations in A 2 Hf 2 O 7 pyrochlore (A  =  Sm, Eu, Gd) and defect-fluorite (A  =  Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs.  <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy 2 Hf 2 O 7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr 4+ and Hf 4+ , rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.

  5. Wavelet phase extracting demodulation algorithm based on scale factor for optical fiber Fabry-Perot sensing.

    PubMed

    Zhang, Baolin; Tong, Xinglin; Hu, Pan; Guo, Qian; Zheng, Zhiyuan; Zhou, Chaoran

    2016-12-26

    Optical fiber Fabry-Perot (F-P) sensors have been used in various on-line monitoring of physical parameters such as acoustics, temperature and pressure. In this paper, a wavelet phase extracting demodulation algorithm for optical fiber F-P sensing is first proposed. In application of this demodulation algorithm, search range of scale factor is determined by estimated cavity length which is obtained by fast Fourier transform (FFT) algorithm. Phase information of each point on the optical interference spectrum can be directly extracted through the continuous complex wavelet transform without de-noising. And the cavity length of the optical fiber F-P sensor is calculated by the slope of fitting curve of the phase. Theorical analysis and experiment results show that this algorithm can greatly reduce the amount of computation and improve demodulation speed and accuracy.

  6. Stability of fluorite-type La 2Ce 2O 7 under extreme conditions

    DOE PAGES

    Zhang, F. X.; Tracy, C. L.; Lang, M.; ...

    2016-03-03

    Here, the structural stability of fluorite-type La 2Ce 2O 7 was studied at pressure up to ~40 GPa and under hydrothermal conditions (~1 GPa, 350 °C), respectively, using synchrotron x-ray diffraction (XRD) and Raman scattering measurements. XRD measurements indicated that fluorite-type La 2Ce 2O 7 is not stable at pressures greater than 22.6 GPa and slowly transforms to a high-pressure phase. The high-pressure phase is not stable and changes back to the fluorite-type structure when pressure is released. The La 2Ce 2O 7 fluorite is also not stable under hydrothermal conditions and begins to react with water at 200~250 °C.more » Both Raman and XRD results suggest that lanthanum hydroxide La(OH) 3 and La 3+-doped CeO 2 fluorite are the dominant products after hydrothermal treatment.« less

  7. Unsteady aerodynamics of an oscillating cascade in a compressible flow field

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Boldman, Donald R.; Fleeter, Sanford

    1987-01-01

    Fundamental experiments were performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate and quantify the unsteady aerodynamics of a cascade of biconvex airfoils executing torsion-mode oscillations at realistic reduced frequencies. Flush-mounted, high-response miniature pressure transducers were used to measure the unsteady airfoil surface pressures. The pressures were measured for three interblade phase angles at two inlet Mach numbers, 0.65 and 0.80, and two incidence angles, 0 and 7 deg. The time-variant pressures were analyzed by means of discrete Fourier transform techniques, and these unique data were then compared with predictions from a linearized unsteady cascade model. The experimental results indicate that the interblade phase angle had a major effect on the chordwise distributions of the airfoil surface unsteady pressure, and that reduced frequency, incidence angle, and Mach number had a somewhat less significant effect.

  8. Pressure jump relaxation setup with IR detection and millisecond time resolution

    NASA Astrophysics Data System (ADS)

    Schiewek, Martin; Krumova, Marina; Hempel, Günter; Blume, Alfred

    2007-04-01

    An instrument is described that allows the use of Fourier transform infrared (FTIR) spectroscopy as a detection system for kinetic processes after a pressure jump of up to 100bars. The pressure is generated using a high performance liquid chromatography (HPLC) pump and water as a pressure transducing medium. A flexible membrane separates the liquid sample in the IR cell from the pressure transducing medium. Two electromagnetic switching valves in the setup enable pressure jumps with a decay time of 4ms. The FTIR spectrometer is configured to measure time resolved spectra in the millisecond time regime using the rapid scan mode. All components are computer controlled. For a demonstration of the capability of the method first results on the kinetics of a phase transition between two lamellar phases of an aqueous phospholipid dispersion are presented. This combination of FTIR spectroscopy with the pressure jump relaxation technique can also be used for other systems which display cooperative transitions with concomitant volume changes.

  9. Thermal, dielectric and barocaloric properties of NH4HSO4 crystallized from an aqueous solution and the melt

    NASA Astrophysics Data System (ADS)

    Mikhaleva, E. A.; Flerov, I. N.; Kartashev, A. V.; Gorev, M. V.; Bogdanov, E. V.; Bondarev, V. S.

    2017-05-01

    A study of heat capacity, thermal dilatation, permittivity, dielectric loops and susceptibility to hydrostatic pressure was carried out on quasi-ceramic samples of NH4HSO4 obtained from an aqueous solution as well as the melt. The main parameters of the successive P21/c (T1) ↔ Pc (T2) ↔ P1 phase transitions did not depend on the method of preparation of the samples, and were close to those determined in previous studies of single crystal and powder, except for the sign and magnitude of the baric coefficient for T2. Direct measurements of the pressure effect on the permittivity and thermal properties showed dT2/dp = -123 K·GPa-1, which is consistent in terms of magnitude and sign with the baric coefficient evaluated using dilatometric and calorimetric data in the framework of the Clausius-Clapeyron equation. Thus, the temperature region of the ferroelectric Pc phase existence is extended under pressure. A strong decrease in the entropy jump at the Pc ↔ P1 transformation with an increase in pressure, and the linear dependence of T2 on pressure, indicate that an increase in pressure shifts this phase transition towards the tricritical point on the T-p phase diagram. A significant barocaloric effect was found in the region of the Pc ↔ P1 phase transition.

  10. Evaluation of Contact Heat Transfer Coefficient and Phase Transformation during Hot Stamping of a Hat-Type Part

    PubMed Central

    Kim, Heung-Kyu; Lee, Seong Hyeon; Choi, Hyunjoo

    2015-01-01

    Using an inverse analysis technique, the heat transfer coefficient on the die-workpiece contact surface of a hot stamping process was evaluated as a power law function of contact pressure. This evaluation was to determine whether the heat transfer coefficient on the contact surface could be used for finite element analysis of the entire hot stamping process. By comparing results of the finite element analysis and experimental measurements of the phase transformation, an evaluation was performed to determine whether the obtained heat transfer coefficient function could provide reasonable finite element prediction for workpiece properties affected by the hot stamping process. PMID:28788046

  11. Temperature- and pressure-dependent structural transformation of methane hydrates in salt environments

    NASA Astrophysics Data System (ADS)

    Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho

    2017-03-01

    Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane hydrates in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane hydrate forms a mixture of type I clathrate hydrate, ice, and hydrated salts. Under a low-pressure condition, however, the methane hydrates are decomposed through a rapid sublimation of water molecules from the surface of hydrate crystals, while NaCl · 2H2O undergoes a phase transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane hydrate is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.

  12. Combined Theoretical and in Situ Scattering Strategies for Optimized Discovery and Recovery of High-Pressure Phases: A Case Study of the GaN–Nb 2 O 5 System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woerner, William R.; Qian, Guang-Rui; Oganov, Artem R.

    2016-04-04

    The application of pressure in solid-state synthesis provides a route for the creation of new and exciting materials. However, the onerous nature of high-pressure techniques limits their utility in materials discovery. The systematic search for novel oxynitrides—semiconductors for photocatalytic overall water splitting—is a representative case where quench high-pressure synthesis is useful and necessary in order to obtain target compounds. We utilize state of the art crystal structure prediction theory (USPEX) and in situ synchrotron-based X-ray scattering to speed up the discovery and optimization of novel compounds using high-pressure synthesis. Using this approach, two novel oxynitride phases were discovered in themore » GaN–Nb2O5 system. The (Nb2O5)0.84:(NbO2)0.32:(GaN)0.82 rutile structured phase was formed at 1 GPa and 900 °C and gradually transformed to a α-PbO2-related structure above 2.8 GPa and 1000 °C. The low-pressure rutile type phase was found to have a direct optical band gap of 0.84 eV and an indirect gap of 0.51 eV.« less

  13. Combined Theoretical and in Situ Scattering Strategies for Optimized Discovery and Recovery of High-Pressure Phases: A Case Study of the GaN–Nb 2O 5 System

    DOE PAGES

    Woerner, William R.; Qian, Guang-Rui; Oganov, Artem R.; ...

    2016-03-22

    The application of pressure in solid-state synthesis provides a route for the creation of new and exciting materials. However, the onerous nature of high-pressure techniques limits their utility in materials discovery. The systematic search for novel oxynitrides—semiconductors for photocatalytic overall water splitting—is a representative case where quench high-pressure synthesis is useful and necessary in order to obtain target compounds. In this paper, we utilize state of the art crystal structure prediction theory (USPEX) and in situ synchrotron-based X-ray scattering to speed up the discovery and optimization of novel compounds using high-pressure synthesis. Using this approach, two novel oxynitride phases weremore » discovered in the GaN–Nb 2O 5 system. The (Nb 2O 5) 0.84:(NbO 2) 0.32:(GaN) 0.82 rutile structured phase was formed at 1 GPa and 900°C and gradually transformed to a α-PbO 2-related structure above 2.8 GPa and 1000°C. The low-pressure rutile type phase was found to have a direct optical band gap of 0.84 eV and an indirect gap of 0.51 eV.« less

  14. Structure evolution upon chemical and physical pressure in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiittanen, T.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    Here we demonstrate the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure upon the isovalent larger-for-smaller A-site cation substitution in the B-site ordered double-perovskite system (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}. This is the same transformation sequence previously observed up to Fm-3m upon heating the parent Sr{sub 2}FeSbO{sub 6} phase to high temperatures. High-pressure treatment, on the other hand, transforms the hexagonal P6{sub 3}/mmc structure of the other end member Ba{sub 2}FeSbO{sub 6} back to the cubic Fm-3m structure. Hence we may conclude that chemical pressure, physical pressure and decreasing temperature allmore » work towards the same direction in the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} system. Also shown is that with increasing Ba-for-Sr substitution level, i.e. with decreasing chemical pressure effect, the degree-of-order among the B-site cations, Fe and Sb, decreases. - Graphical abstract: In the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} double-perovskite system the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure is seen upon the isovalent larger-for-smaller A-site cation substitution. High-pressure treatment under 4 GPa extends stability of the cubic Fm-3m structure within a wider substitution range of x. - Highlights: • Gradual structural transitions upon A-cation substitution in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6.} • With increasing x structure changes from I2/m to I4/m, Fm-3m and P6{sub 3}/mmc. • Degree of B-site order decreases with increasing x and A-site cation radius. • High-pressure treatment extends cubic Fm-3m phase stability for wider x range. • High-pressure treatment affects bond lengths mostly around the A-cation.« less

  15. Crystal structure of simple metals at high pressures

    NASA Astrophysics Data System (ADS)

    Degtyareva, Olga

    2010-09-01

    The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structures found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.

  16. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    DOE PAGES

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; ...

    2016-07-18

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO 2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexiblemore » VO x polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.« less

  17. Temperatures of shock-induced shear instabilities and their relationship to fusion curves. [emission from glass

    NASA Technical Reports Server (NTRS)

    Schmitt, D. R.; Ahrens, T. J.

    1983-01-01

    New emission spectra for MgO and CaAl2Si2O8 (glass) are observed from 430 to 820 nm. Taken with previous data, it is suggested that transparent solids display three regimes of light emission upon shock compression to successively higher pressures: (1) characteristic radiation such as observed in MgO and previously in other minerals, (2) heterogeneous hot spot (greybody) radiation observed in CaAl2Si2O8 and previously in all transparent solids undergoing shock-induced phase transformations, and (3) blackbody emission observed in the high pressure phase regime in NaCl, SiO2, CaO, CaAl2Si2O8, and Mg2SiO4. The onset of the second regime may delineate the onset of shock-induced polymorphism whereas the onset of the third regime delineates the Hugoniot pressure required to achieve local thermal equilibrium in the shocked solid. It is also proposed that the hot spot temperatures and corresponding shock pressures determined in the second regime delineate points on the fusion curves of the high pressure phase.

  18. Analysis and Modeling of a Two-Phase Jet Pump of a Thermal Management System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.

    1998-01-01

    Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.

  19. Revisiting pressure-induced phase transition in silicon clathrates using Ge substitution

    DOE PAGES

    Blancon, Jean-Christophe Robert; Machon, Denis; Pischedda, Vittoria; ...

    2016-04-11

    Ba 8Si 39Ge 7 and Ba 8Si 29Ge 17 have been studied at high pressure using x-ray diffraction and x-ray absorption spectroscopy (XAS) at the Ge K edge. In Ba 8Si 39Ge 7, a transition is observed similar to the one in Ba 8Si 46, apparently isostructural. However, the XAS data analysis shows that the transformation is related to the off-centering of the Ba atoms. A theoretical model based on a Landau potential suggests that this transition is second order, with a symmetry-breaking mechanism related to the Ba displacement probably initiated by the vacancy creation or local distortion predicted theoretically.more » Lastly, this analysis gives a coherent picture of the phase transition mechanism. In the case of Ba 8Si 29Ge 17, such phase transition is not observed as the Ba atoms appear already off-center at ambient pressure.« less

  20. Revisiting pressure-induced phase transition in silicon clathrates using Ge substitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blancon, Jean-Christophe Robert; Machon, Denis; Pischedda, Vittoria

    Ba 8Si 39Ge 7 and Ba 8Si 29Ge 17 have been studied at high pressure using x-ray diffraction and x-ray absorption spectroscopy (XAS) at the Ge K edge. In Ba 8Si 39Ge 7, a transition is observed similar to the one in Ba 8Si 46, apparently isostructural. However, the XAS data analysis shows that the transformation is related to the off-centering of the Ba atoms. A theoretical model based on a Landau potential suggests that this transition is second order, with a symmetry-breaking mechanism related to the Ba displacement probably initiated by the vacancy creation or local distortion predicted theoretically.more » Lastly, this analysis gives a coherent picture of the phase transition mechanism. In the case of Ba 8Si 29Ge 17, such phase transition is not observed as the Ba atoms appear already off-center at ambient pressure.« less

  1. Ab initio study on structural stability of uranium carbide

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.

    2013-06-01

    First principles calculations have been performed using plane wave pseudopotential and full potential linearized augmented plane wave (FP-LAPW) methods to analyze structural, elastic and dynamic stability of UC under hydrostatic compression. Our calculations within pseudopotential method suggest that the rocksalt (B1) structure will transform to body centered orthorhombic (bco) structure at ˜21.5 GPa. The FP-LAPW calculations put this transition at 23 GPa. The transition pressures determined from our calculations though agree reasonably with the experimental value of 27 GPa, the high pressure bco structure suggested by theory differs slightly from the experimentally reported pseudo bco phase. The elastic stability analysis of B1 phase suggests that the B1 to bco transition is driven by the failure of C44 modulus. This finding is further substantiated by the lattice dynamic calculations which demonstrate that the B1 phase becomes dynamically unstable around the transition pressure and the instability is of long wavelength nature.

  2. Effect of pressure-assisted thermal annealing on the optical properties of ZnO thin films.

    PubMed

    Berger, Danielle; Kubaski, Evaldo Toniolo; Sequinel, Thiago; da Silva, Renata Martins; Tebcherani, Sergio Mazurek; Varela, José Arana

    2013-01-01

    ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330 °C for 32 h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575 nm) and orange (645 nm) photoluminescence. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Pressure-induced magnetic collapse and metallization of TlF e1.6S e2

    NASA Astrophysics Data System (ADS)

    Naumov, P. G.; Filsinger, K.; Shylin, S. I.; Barkalov, O. I.; Ksenofontov, V.; Qi, Y.; Palasyuk, T.; Schnelle, W.; Medvedev, S. A.; Greenblatt, M.; Felser, C.

    2017-08-01

    The crystal structure, magnetic ordering, and electrical resistivity of TlF e1.6S e2 were studied at high pressures. Below ˜7 GPa , TlF e1.6S e2 is an antiferromagnetically ordered semiconductor with a ThC r2S i2 -type structure. The insulator-to-metal transformation observed at a pressure of ˜7 GPa is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range ˜7.5 -11 GPa a remarkable downturn in resistivity, which resembles a superconducting transition, is observed below 15 K. We discuss this feature as the possible onset of superconductivity originating from a phase separation in a small fraction of the sample in the vicinity of the magnetic transition.

  4. Novel Hydrogen Hydrate Structures under Pressure

    PubMed Central

    Qian, Guang-Rui; Lyakhov, Andriy O.; Zhu, Qiang; Oganov, Artem R.; Dong, Xiao

    2014-01-01

    Gas hydrates are systems of prime importance. In particular, hydrogen hydrates are potential materials of icy satellites and comets, and may be used for hydrogen storage. We explore the H2O–H2 system at pressures in the range 0–100 GPa with ab initio variable-composition evolutionary simulations. According to our calculation and previous experiments, the H2O–H2 system undergoes a series of transformations with pressure, and adopts the known open-network clathrate structures (sII, C0), dense “filled ice” structures (C1, C2) and two novel hydrate phases. One of these is based on the hexagonal ice framework and has the same H2O:H2 ratio (2:1) as the C0 phase at low pressures and similar enthalpy (we name this phase Ih-C0). The other newly predicted hydrate phase has a 1:2 H2O:H2 ratio and structure based on cubic ice. This phase (which we name C3) is predicted to be thermodynamically stable above 38 GPa when including van der Waals interactions and zero-point vibrational energy, and explains previously mysterious experimental X-ray diffraction and Raman measurements. This is the hydrogen-richest hydrate and this phase has a remarkable gravimetric density (18 wt.%) of easily extractable hydrogen. PMID:25001502

  5. Crystal structure, equation of state, and elasticity of phase H (MgSiO4H2) at Earth's lower mantle pressures.

    PubMed

    Tsuchiya, Jun; Mookherjee, Mainak

    2015-10-23

    Dense hydrous magnesium silicate (DHMS) phases play a crucial role in transporting water in to the Earth's interior. A newly discovered DHMS, phase H (MgSiO4H2), is stable at Earth's lower mantle, i.e., at pressures greater than 30 GPa. Here we report the crystal structure and elasticity of phase H and its evolution upon compression. Using first principles simulations, we have explored the relative energetics of the candidate crystal structures with ordered and disordered configurations of magnesium and silicon atoms in the octahedral sites. At conditions relevant to Earth's lower mantle, it is likely that phase H is able to incorporate a significant amount of aluminum, which may enhance the thermodynamic stability of phase H. The sound wave velocities of phase H are ~2-4% smaller than those of isostructural δ-AlOOH. The shear wave impedance contrast due to the transformation of phase D to a mixture of phase H and stishovite at pressures relevant to the upper part of the lower mantle could partly explain the geophysical observations. The calculated elastic wave velocities and anisotropies indicate that phase H can be a source of significant seismic anisotropy in the lower mantle.

  6. First principles investigation of high pressure behavior of FeOOH-AlOOH-phase H (MgSiO4H2) system.

    NASA Astrophysics Data System (ADS)

    Tsuchiya, J.; Thompson, E. C.; Tsuchiya, T.; Nishi, M.; Kuwayama, Y.

    2017-12-01

    It has been believed that water is carried into the deep Earth's interior by hydrous minerals such as the dense hydrous magnesium silicates (DHMSs) in the descending cold plate. A numbers of researches have been conducted so far about the high pressure behaviors of DHMSs. In recent years, we found new DHMS, phase H, at lower mantle pressure condition and the solid solution between phase H and d-AlOOH has been proposed as the most important carrier of water in the deepest part of Earth's mantle (Tsuchiya 2013 GRL, Nishi et al. 2014 Nature Geo., Ohira et al. 2014 EPSL). However, those hydrous minerals are actually not denser than surrounding (dry) mantle minerals (Tsuchiya and Mookherjee 2015 Scientific Reports) and the gravitational stability in deeper part of the Earth is questionable. Therefore, the effects of denser element such as Fe on the stability of DHMS are intimately connected to the ability of transportation of water into Earth's deep interiors. In order to assess the effect of Fe on the phase relation of phase H and d-AlOOH, we first investigated the high pressure behavior of the end-member composition of this system, the e-FeOOH. We have found the new high pressure transformation of FeOOH in the lower mantle conditions both theoretically and experimentally(Nishi et al. 2017 Nature). Here we show high pressure structures and the physical properties of FeOOH-AlOOH-phase H system using first principles calculation and discuss the possible geophysical implications of these phases.

  7. Effects of high pressure on microstructure evolution and crystallization mechanisms during solidification of nickel

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Tao; Mo, Yun-Fei; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Liang, Yong-Chao; Peng, Ping

    2018-03-01

    To deeply understand the effects of high pressure on microstructural evolutions and crystallization mechanisms of liquid metal Ni during solidification process, MD simulation studies have been performed under 7 pressures of 0 ˜ 30 GPa, at cooling rate of 1.0 × 1011 K s-1. Adopting several microstructural analyzing methods, especially the cluster-type index method (CTIM-2) to analyze the local microstructures in the system. It is found that the pressure has important influence on the formation and evolution of microstructures, especially of the main basic clusters in the system. All the simulation systems are directly solidified into crystal structures, and the 1421, 1422, 1441 and 1661 bond-types, as well the FCC (12 0 0 0 12 0), HCP (12 0 0 0 6 6) and BCC (14 6 0 8 0 0) clusters play a key role in the microstructure transitions from liquid to crystal structures. The crystallization temperature T c is enhanced almost linearly with the increase of pressure. Highly interesting, it is found for the first time that there is an important phase transformation point from FCC to BCC structures between 20 ˜ 22.5 GPa during the solidification processes from the same initial liquid system at the same cooling rate. And the effect of increasing pressure is similar to that of decreasing cooling rate for the phase transformation of microstructures during solidification process of liquid metal Ni system, though they have different concrete effecting mechanisms.

  8. Phase Transition and Structure of Silver Azide at High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Hou; F Zhang; C Ji

    2011-12-31

    Silver azide (AgN{sub 3}) was compressed up to 51.3 GPa. The results reveal a reversible second-order orthorhombic-to-tetragonal phase transformation starting from ambient pressure and completing at 2.7 GPa. The phase transition is accompanied by a proximity of cell parameters a and b, a 3{sup o} rotation of azide anions, and a change of coordination number from 4-4 (four short, four long) to eight fold. The crystal structure of the high pressure phase is determined to be in I4/mcm space group, with Ag at 4a, N{sub 1} at 4d, and N{sub 2} at 8h Wyckoff positions. Both of the two phasesmore » have anisotropic compressibility: the orthorhombic phase exhibits an anomalous expansion under compression along a-axis and is more compressive along b-axis than c-axis; the tetragonal phase is more compressive along the interlayer direction than the intralayer directions. The bulk moduli of the orthorhombic and tetragonal phases are determined to be K{sub OT} = 39{+-}5 GPa with K{sub OT'} = 10{+-}7 and K{sub OT} = 57 {+-}2 GPa with K{sub OT'} = 6.6{+-}0.2, respectively.« less

  9. Novel phases and superconductivity of tin sulfide compounds

    NASA Astrophysics Data System (ADS)

    Gonzalez, Joseph M.; Nguyen-Cong, Kien; Steele, Brad A.; Oleynik, Ivan I.

    2018-05-01

    Tin sulfides, SnxSy, are an important class of materials that are actively investigated as novel photovoltaic and water splitting materials. A first-principles evolutionary crystal structure search is performed with the goal of constructing the complete phase diagram of SnxSy and discovering new phases as well as new compounds of varying stoichiometry at ambient conditions and pressures up to 100 GPa. The ambient phase of SnS2 with P 3 ¯ m 1 symmetry remains stable up to 28 GPa. Another ambient phase, SnS, experiences a series of phase transformations including α-SnS to β-SnS at 9 GPa, followed by β-SnS to γ-SnS at 40 GPa. γ-SnS is a new high-pressure metallic phase with P m 3 ¯ m space group symmetry stable up to 100 GPa, which becomes a superconductor with a maximum Tc = 9.74 K at 40 GPa. Another new metallic compound, Sn3S4 with I 4 ¯ 3 d space group symmetry, is predicted to be stable at pressures above 15 GPa, which also becomes a superconductor with relatively high Tc = 21.9 K at 30 GPa.

  10. Phase transitions and photoinduced transformations at high pressure in the molecular donor-acceptor fullerene complex (Cd(dedtc){sub 2}){sub 2} · C{sub 60}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meletov, K. P., E-mail: mele@issp.ac.ru; Konarev, D. V.; Tolstikova, A. O.

    2015-06-15

    The Raman spectra of crystals of C{sub 60} fullerene-cadmium diethyldithiocarbamate molecular donor-acceptor complexes (Cd(dedtc){sub 2}){sub 2} · C{sub 60} were measured at pressures of up to 17 GPa, and the crystal lattice parameters of these complexes were determined at pressures of up to 6 GPa. An increase in pressure up to ∼2 GPa leads to changes in the Raman spectra, which are manifested by splitting of the intramolecular H{sub g}(1)-H{sub g}(8) phonon modes and by softening of the A{sub g}(2) mode of the C{sub 60} molecule. A further increase in pressure up to 17 GPa does not induce significant newmore » changes to the Raman spectra, while a decrease is accompanied by the reverse transformation at a pressure of about 2 GPa. The pressure dependence of the lattice parameters also exhibits a reversible feature at 2 GPa related to a jumplike decrease in compressibility. All these data are indicative of a phase transition in the vicinity of 2 GPa related to the formation of covalent bonds between C{sub 60} molecules and, probably, the appearance of C{sub 120} dimers in fullerene layers. It was also found that, in the pressure interval from 2 to 6.3 GPa, the Raman spectra of complexes exhibit photoinduced transformations under prolonged exposure to laser radiation with a wavelength of λ = 532 nm and power density up to 5000 W/cm{sup 2}. These changes are manifested by splitting and softening of the A{sub g}(2) mode and resemble analogous changes accompanying the photopolymerization of C{sub 60} fullerene. The intensity of new bands exhibits exponential growth with increasing exposure time. The photopolymer yield depends on both the laser radiation power and external pressure. The A{sub g}(2) mode splitting under irradiation can be related to the formation of photo-oligomers with various numbers of intermolecular covalent bonds per C{sub 60} molecule.« less

  11. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  12. Thermodynamic properties and p-T phase diagrams of (NH4)3M3+F6 cryolites (M3+: Ga, Sc)

    NASA Astrophysics Data System (ADS)

    Gorev, M. V.; Flerov, I. N.; Tressaud, A.

    1999-10-01

    Calorimetric and high pressure experiments are used to establish thermodynamic features of (NH4)3M3+F6 cryolites with M3+: Ga, Sc as they undergo one and three structural phase transitions, respectively. The heat capacity measurements performed between 80 K and 370 K, using an adiabatic calorimeter, have shown that all phase transitions under study are first order with different closeness to the tricritical point. The total entropy change in the Sc compound connected with the successive transformations is almost equal to the entropy change in the Ga cryolite. The effect of hydrostatic pressure has been studied up to 0.6 GPa, using differential thermographic analysis. The p-T phase diagrams of both cryolites were found to be rather complicated, including triple points. The experimental results are considered as connected with order-disorder phase transitions.

  13. An occurrence of metastable cristobalite in high-pressure garnet Granulite

    USGS Publications Warehouse

    Darling, R.S.; Chou, I.-Ming; Bodnar, R.J.

    1997-01-01

    High-pressure (0.8 gigapascals) granulite facies garnet from Gore Mountain, New York, hosts multiple solid inclusions containing the low- pressure silica polymorph cristobalite along with albite and minor ilmenite. Identification of cristobalite is based on Raman spectra, electron microprobe analysis, and microthermometric measurements on the ??/?? phase transformation. The cristobalite plus albite inclusions may have originated as small, trapped samples of hydrous sodium-aluminum-siliceous melt. Diffusive loss of water from these inclusions under isothermal, isochoric conditions may have resulted in a large enough internal pressure decrease to promote the metastable crystallization of cristobalite.

  14. Modeling normal shock velocity curvature relations for heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Yoo, Choong-Shik; Tomasino, Dane; Smith, Jesse; Kim, Minseob

    2017-01-01

    Many simple molecules such as N2 and CO2 have the potential to form extended "polymeric" solids under extreme conditions, which can store a large sum of chemical energy in its three-dimensional network structures made of strong covalent bonds. Diatomic nitrogen is particularly of interest because of the uniquely large energy difference between the single (160 kJ/mol) and triple (950 kJ/mol) bonds. As such, the transformation of singly bonded polymeric nitrogen back to triply bonded diatomic nitrogen molecules can release large energy ( 33 kJ/cm3 - three times that of HMX) without any negative environmental impact. Therefore, the goal of the present study has been to investigate the transformation of nitrogen and nitrogen-rich compounds to new singly bonded nitrogen-rich solids at high pressures and temperatures, using heated diamond anvil cells, Raman spectroscopy, and third-generation synchrotron x-ray diffraction. Recently, we have found a new form of singly bonded layered polymeric nitrogen (LP-N), synthesized in the stability pressure-temperature field higher than that of cg-N. This new phase is characterized by a 2D layered structure similar to the predicted Pba2 and two colossal Raman bands, arising from two groups of highly polarized nitrogen atoms. This result also provides a new constraint for the nitrogen phase diagram, highlighting an unusual symmetry lowering 3D cg- to 2D LP-N transition and thereby the enhanced electrostatic contribution to the stabilization of this densely packed LP-N. In this paper, we will review this finding of LP-N, update the phase diagram of nitrogen, and offer a chemistry view of pressure-induced transformations in dense molecular solids.

  15. Infrared Study of 1,3,5-triamino-2,4,6-trinitrobenzene Under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pravica,M.; Yulga, B.; Liu, Z.

    We report synchrotron Fourier transform infrared measurements of 1,3,5-triamino-2,4,6-trinitrobenzene in the mid-IR and far-IR spectral regions up to {approx}10GPa , using KBr or petroleum jelly to compress the samples. During the far-IR experiment, we cycled the pressure, measuring IR spectra at various pressures, to determine whether the sample survived. In both experiments, no phase transition was observed. In the high frequency region ({approx}3000cm{sup -1}) , the peak frequencies of the NH{sub 2} symmetric and antisymmetric vibrational modes decrease with increasing pressure, indicating strengthening of intermolecular hydrogen bonding with pressure.

  16. Structural phase transitions of (Bi 1$-$xSb x ) 2(Te 1$-$y Se y) 3 compounds under high pressure and the influence of the atomic radius on the compression processes of tetradymites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jinggeng; Yu, Zhenhai; Hu, Qingyang

    Recently, A 2B 3-type tetradymites have developed into a hot topic in physical and material research fields, where the A and B atoms represent V and VI group elements, respectively. In this study, in situ angle-dispersive X-ray diffraction measurements were performed on Bi 2Te 2Se, BiSbTeSe 2, and Sb 2Te 2Se tetradymites under high pressure. Bi 2Te 2Se transforms from a layered rhombohedral structure (phase I) into 7-fold monoclinic (phase II) and body-centered tetragonal (phase IV) structures at about 8.0 and 14.3 GPa, respectively, without an 8-fold monoclinic structure (phase III) similar to that in Bi 2Te 3. Thus, themore » compression behavior of Bi 2Te 2Se is the same as that of Bi 2Se 3, which could also be obtained from first-principles calculations and in situ high-pressure electrical resistance measurements. Under high pressure, BiSbTeSe 2 and Sb 2Te 2Se undergo similar structural phase transitions to Bi 2Te 2Se, which indicates that the compression process of tellurides can be modulated by doping Se in Te sites. According to these high-pressure investigations of A 2B 3-type tetradymites, the decrease of the B-site atomic radius shrinks the stable pressure range of phase III and expands that of phase II, whereas the decrease of the A-site atomic radius induces a different effect, i.e. expanding the stable pressure range of phase III and shrinking that of phase II. Lastly, the influence of the atomic radius on the compression process of tetradymites is closely related to the chemical composition and the atom arrangement in the quintuple layer.« less

  17. Structural phase transitions of (Bi 1$-$xSb x ) 2(Te 1$-$y Se y) 3 compounds under high pressure and the influence of the atomic radius on the compression processes of tetradymites

    DOE PAGES

    Zhao, Jinggeng; Yu, Zhenhai; Hu, Qingyang; ...

    2016-12-14

    Recently, A 2B 3-type tetradymites have developed into a hot topic in physical and material research fields, where the A and B atoms represent V and VI group elements, respectively. In this study, in situ angle-dispersive X-ray diffraction measurements were performed on Bi 2Te 2Se, BiSbTeSe 2, and Sb 2Te 2Se tetradymites under high pressure. Bi 2Te 2Se transforms from a layered rhombohedral structure (phase I) into 7-fold monoclinic (phase II) and body-centered tetragonal (phase IV) structures at about 8.0 and 14.3 GPa, respectively, without an 8-fold monoclinic structure (phase III) similar to that in Bi 2Te 3. Thus, themore » compression behavior of Bi 2Te 2Se is the same as that of Bi 2Se 3, which could also be obtained from first-principles calculations and in situ high-pressure electrical resistance measurements. Under high pressure, BiSbTeSe 2 and Sb 2Te 2Se undergo similar structural phase transitions to Bi 2Te 2Se, which indicates that the compression process of tellurides can be modulated by doping Se in Te sites. According to these high-pressure investigations of A 2B 3-type tetradymites, the decrease of the B-site atomic radius shrinks the stable pressure range of phase III and expands that of phase II, whereas the decrease of the A-site atomic radius induces a different effect, i.e. expanding the stable pressure range of phase III and shrinking that of phase II. Lastly, the influence of the atomic radius on the compression process of tetradymites is closely related to the chemical composition and the atom arrangement in the quintuple layer.« less

  18. [A simple model for describing pressure-volume curves in free balloon dilatation with reference the dynamics of inflation hydraulic aspects].

    PubMed

    Bloss, P; Werner, C

    2000-06-01

    We propose a simple model to describe pressure-time and pressure-volume curves for the free balloon (balloon in air) of balloon catheters, taking into account the dynamics of the inflation device. On the basis of our investigations of the flow rate-dependence of characteristic parameters of the pressure-time curves, the appropriateness of this simple model is demonstrated using a representative example. Basic considerations lead to the following assumptions: (1) the flow within the shaft of the catheter is laminar, and (ii) the volume decrease of the liquid used for inflation due to pressurization can be neglected if the liquid is carefully degassed prior to inflation, and if the total volume of the liquid in the system is less than 2 ml. Taking into account the dynamics of the inflation device used for pumping the liquid into the proximal end of the shaft during inflation, the inflation process can be subdivided into the following three phases: initial phase, filling phase and dilatation phase. For these three phases, the transformation of the time into the volume coordinates is given. On the basis of our model, the following parameters of the balloon catheter can be determined from a measured pressure-time curve: (1) the resistance to flow of the liquid through the shaft of the catheter and the resulting pressure drop across the shaft, (2) the residual volume and residual pressure of the balloon, and (3) the volume compliance of the balloon catheter with and without the inflation device.

  19. Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPa

    NASA Astrophysics Data System (ADS)

    Rosa, A. D.; Garbarino, G.; Briggs, R.; Svitlyk, V.; Morard, G.; Bouhifd, M. A.; Jacobs, J.; Irifune, T.; Mathon, O.; Pascarelli, S.

    2018-03-01

    Solid krypton (Kr) undergoes a pressure-induced martensitic phase transition from a face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. These two phases coexist in a very wide pressure domain inducing important modifications of the bulk properties of the resulting mixed phase system. Here, we report a detailed in situ x-ray diffraction and absorption study of the influence of the fcc-hcp phase transition on the compression behavior of solid krypton in an extended pressure domain up to 140 GPa. The onset of the hcp-fcc transformation was observed in this study at around 2.7 GPa and the coexistence of these two phases up to 140 GPa, the maximum investigated pressure. The appearance of the hcp phase is also evidenced by the pressure-induced broadening and splitting of the first peak in the XANES spectra. We demonstrate that the transition is driven by a continuous nucleation and intergrowth of nanometric hcp stacking faults that evolve in the fcc phase. These hcp stacking faults are unaffected by high-temperature annealing, suggesting that plastic deformation is not at their origin. The apparent small Gibbs free-energy differences between the two structures that decrease upon compression may explain the nucleation of hcp stacking faults and the large coexistence domain of fcc and hcp krypton. We observe a clear anomaly in the equation of state of the fcc solid at ˜20 GPa when the proportion of the hcp form reaches ˜20 % . We demonstrate that this anomaly is related to the difference in stiffness between the fcc and hcp phases and propose two distinct equation of states for the low and high-pressure regimes.

  20. Effect of phase transformations on microstructures in deep mantle materials

    NASA Astrophysics Data System (ADS)

    Merkel, Sébastien; Langrand, Christopher; Rosa, Angelika; Hilairet, Nadège

    2017-04-01

    Phase transformations induce microstructural changes in deep Earth materials, including changes in grain size and orientation distribution. The effect of phase transformations on mineral microstructures is usually studied using electron microscopy on quench products from high P/T experiments. The method allows for a precise evaluation of the microscopic mechanisms involved. It is limited, however, to samples that can be quenched to ambient conditions and allows for investigations at a single P/T point for each experiment. In recent years, we extended the use of multigrain crystallography to samples inside diamond anvil cells under mantle P/T conditions. The method allows for monitoring the orientations of hundreds of grains and grain size variations during various physical processes, such as plastic deformation and successions of phase transformations (Rosa et al 2015, Langrand et al 2017). Here, we will show results concerning hydrous Mg2SiO4 during the series of α-β-γ phase transformations up to 40 GPa and 850 °C. Such results are important to understand the descending behaviour of subducted slabs, observations of seismic anisotropy, and polarity changes for seismic waves reflected of deep Earth interfaces. The data is used to asses the effect of the transformation on grain orientation and grain sizes. In particular, we do not observe orientation relationships between the parent α-phase and the daughter β-phase phase, suggesting an incoherent growth. We also observe significant grain size reductions and only little grain growth within the newly formed phases (Rosa et al 2016). These new results are important for understanding the mechanical behavior of subducting slabs, seismic anisotropy in the Earth's mantle, and phase transformation mechanisms in olivine. Now that it is validated, the method can also be applied to other phases that can not be studied using electron microscopy, such as perovskite and post-perovskite. Langrand, Hilairet, Nisr, Roskosz, Ribárik, Vaughan, Merkel, Reliability of Multigrain Indexing for Orthorhombic Polycrystals above 1 Mbar: Application to MgSiO3-Post-Perovskite, J Appl Cryst 50, in press (2017) Rosa, Hilairet, Ghosh, Garbarino, Jacobs, Perrillat, Vaughan, Merkel, In situ monitoring of phase transformation microstructures at Earth's mantle pressure and temperature using multi-grain XRD, J Appl Cryst 48, 1346-1354 (2015) Rosa, Hilairet, Ghosh, Perrillat, Garbarino, Merkel, Evolution of grain sizes and orientations during phase transitions in hydrous Mg2SiO4, J Geophys Res 121, 7161-7176 (2016)

  1. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Ido; Aluma, Yaniv; Ilan, Micha

    2015-03-15

    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown thatmore » natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties.« less

  2. Structure and Stability of High-Pressure Dolomite with Implications for the Earth's Deep Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Solomatova, N. V.; Asimow, P. D.

    2014-12-01

    Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze. The fate of these carbonates in subduction zones is not well understood. End-member CaMg(CO3)2 dolomite typically breaks down into two carbonates at 2-7 GPa, which may further decompose to oxides and CO2-bearing fluid. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize dolomite I to high pressures, allowing the transformation to dolomite II at 17 GPa and subsequently to dolomite III at 35 GPa [1][2]. Such phases may be a principal host for deeply subducted carbon. The structure and equation of state of these high-pressure phases is debated and the effect of varying concentrations of iron is unknown, creating a need for theoretical calculations. Here we compare calculated dolomite structures to experimentally observed phases. Using the Vienna ab-initio simulation package (VASP) interfaced with a genetic algorithm that predicts crystal structures (USPEX), a monoclinic phase with space group 5 ("dolomite sg5") was found for pure end-member dolomite. Dolomite sg5 has a lower energy than reported dolomite structures and an equation of state that resembles that of dolomite III. It is possible that dolomite sg5 is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. Due to the complex energy landscape for candidate high-pressure dolomite structures, it is likely that several competing polymorphs exist. Determining the behavior of high-pressure Ca-Mg-Fe(-Mn) dolomite phases in subduction environments is critical for our understanding of the Earth's deep carbon cycle and supercell calculations with Fe substitution are in progress. [1] Mao, Z., Armentrout, M., Rainey, E., Manning, C. E., Dera, P., Prakapenka, V. B., and Kavner, A. (2011). Dolomite III: A new candidate lower mantle carbonate. Geophy. Res. Lett., 38(22). [2] Merlini, M., Crichton, W. A., Hanfland, M., Gemmi, M., Müller, H., Kupenko, I., and Dubrovinsky, L. (2012). Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc. Nat. Acad. Sci., 109(34), 13509-13514.

  3. High-pressure behavior of iron-nickel-cobalt phosphides and its implications for meteorites and planetary cores

    NASA Astrophysics Data System (ADS)

    Dera, P.; Lavina, B.; Borkowski, L. A.; Downs, R. T.; Prewitt, C. T.; Prakapenka, V.; Rivers, M. L.; Sutton, S.; Boctor, N.

    2008-12-01

    Minerals with composition (Fe,Ni)xP, are rare, but important accessory phases present in iron and chondrite meteorites. The occurrence of these minerals in meteoritic samples is believed to originate either from the equilibrium condensation of protoplanetary materials taking place in solar nebulae or from crystallization processes in the cores of parent bodies. Fe-Ni phosphides are considered an important candidate for a minor phase present in Earth's core, and at least partially responsible for the observed core density deficit with respect to pure Fe. We report results of high-pressure high-temperature single-crystal X- ray diffraction experiments with end-members belonging to the (Fe,Ni,Co)2P family, including Fe2P, Ni2P and Co2P. A new phase transition to the Co2Si-type structure (allabogdanite) has been found in Fe2P barringerite at 8.0 GPa, upon heating. The high-pressure phase can be quenched metastably to ambient conditions and then, if heated again, it transforms back to barringerite. Ni2P barringerite does not undergo transformation to allabogdanite structure up to 50 GPa, but instead exhibits incongruent melting with formation of pyrite-type NiP2 and Ni-P glass. Our results indicate that the presence of allabogdanite in meteoritic samples places two important constraints on the thermodynamic history of the meteorite. First, it imposes a minimum pressure and temperature for the formation of the Fe2P, and additionally rules out any higher temperature low pressure alterations. If present in the Earth's core, Fe2P will have the allabogdanite rather than the barringerite structure. Crystal chemical trends in the compressibility of (Fe,Ni,Co)2P minerals, as well as polymorphic transition paths are analyzed in the context of Earth and planetary core composition and properties.

  4. Melting in feldspar-bearing systems to high pressures and the structures of aluminosilicate liquids

    NASA Astrophysics Data System (ADS)

    Boettcher, Art; Guo, Qiti; Bohlen, Steve; Hanson, Brooks

    1984-04-01

    To test the possibility that aluminosilicate liquids exhibit pressure-induced transformations, particularly involving changes in the coordination of aluminum, we determined melting relationships for the feldspar-bearing systems NaAlSi3O8-SiO2, KAlSi3O8-SiO2, and CaAl2Si2O8-SiO2 from 1 atm to 25 kbar. Albite and anorthite behave similarly in that they, and presumably liquids of these compositions, transform at high pressures to jadeite, kyanite, corundum, and other structures with aluminum in six-fold coordination, releasing SiO2 component. This results in a large increase in the activity of SiO2 component in the liquid (alqz), which is manifested by a significant decrease in the melting-point depression of albite and of anorthite by the addition of quartz at pressures above ˜15 kbar. In contrast, sanidine does not transform to denser phases at pressures below at least 100 kbar, but it melts incongruently to leucite + SiO2-rich liquid up to ˜ 15 kbar. This produces a relatively large alqz and a small freezing-point depression by quartz below this pressure; the opposite holds above ˜15 kbar. These results support the concept that significant structural changes, including coordination changes in aluminum, occur in magmas in the upper mantle.

  5. Friction and the development of hard alloy surface microstructures during wear

    NASA Astrophysics Data System (ADS)

    Gnyusov, S. F.; Tarassov, S. Yu.

    1997-12-01

    Investigations of wear in sliding friction of WC-Hadfield steel hard alloy against cast tool steel have been carried out in a broad range of velocities and pressure values. Structural and phase composition variations have been revealed. Friction-affected zone was found to be 450 µm in depth. Structural γ → α, γ → transformation regions are located within 100 μm of the surface. These transformations contributed to the total solid solution deformation hardening.

  6. B1-B2 phase transition mechanism and pathway of PbS under pressure

    NASA Astrophysics Data System (ADS)

    Adeleke, Adebayo A.; Yao, Yansun

    2018-03-01

    Experimental studies at finite Pressure-Temperature (P-T) conditions and a theoretical study at 0 K of the phase transition in lead sulphide (PbS) have been inconclusive. Many studies that have been done to understand structural transformation in PbS can broadly be classified into two main ideological streams—one with Pnma and another with Cmcm orthorhombic intermediate phase. To foster better understanding of this phenomenon, we present the result of the first-principles study of phase transition in PbS at finite temperature. We employed the particle swarm-intelligence optimization algorithm for the 0 K structure search and first-principles metadynamics simulations to study the phase transition pathway of PbS from the ambient pressure, 0 K Fm-3m structure to the high-pressure Pm-3m phase under experimentally achievable P-T conditions. Significantly, our calculation shows that both streams are achievable under specific P-T conditions. We further uncover new tetragonal and monoclinic structures of PbS with space group P21/c and I41/amd, respectively. We propose the P21/c and I41/amd as a precursor phase to the Pnma and Cmcm phases, respectively. We investigated the stability of the new structures and found them to be dynamically stable at their stability pressure range. Electronic structure calculations reveal that both P21/c and I41/amd phases are semiconducting with direct and indirect bandgap energies of 0.69(5) eV and 0.97(3) eV, respectively. In general, both P21/c and I41/amd phases were found to be energetically competitive with their respective orthorhombic successors.

  7. Elasticity of Unquenchable High-Pressure Clinopyroxene at High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Kung, J.; Li, B.; Uchida, T.; Wang, Y.

    2003-12-01

    A phase transformation in (Mg,Fe)SiO3, one of the common constituent of the Earth's crust and upper mantle, from orthorhombic (OEN) to monoclinic symmetry is likely to occur in the deeper portions of the upper mantle (Pacalo and Gasparik, 1990; Kanzaki, 1991). Angel et al. (1992) confirmed that the clinoenstatite phase above 8 GPa is an unquenchable high pressure monoclinic phase (HP-CEN), space group C2/c. Due to its unquenchable nature, this high pressure clinoenstatite has to be synthesized within its stability field in order to study its elasticity. The elasticity measurements were carried out using the ultrasonic technique in the large volume apparatus in conjunction with in-situ X-radiation techniques (X-ray diffraction and X-radiography). The experimental setup has made possible to monitor the length change of sample during experiment, as well as the measurements of travel times and density of the sample simultaneously. The starting material for the acoustic experiment was a well-sintered OEN polycrystalline specimen, which was hot-pressed at conditions of 5 GPa, 1000 degree C for an hour prior the experiment. After the OEN fully transformed to the HP-CEN at pressure of 13 GPa, 1000 degree C during the acoustic experiment, elasticity and X-ray data have been collected along a series of heating/cooling cycles at different pressures during the decompression. The data collection was stopped at 6.5 GPa because of the phase transition from HP-CEN to LP-CEN at lower pressure. The resulting bulk and shear moduli at different P-T conditions were treated as linear functions of both pressure and temperature with adjustable parameters: moduli at 6.5 GPa, room temperature, the pressure derivatives at constant temperatures, and the temperature derivatives at constant pressures. Compared with OEN (Flesch et al., 1998), our results show that the pressure derivatives of the bulk and shear moduli of HP-CEN are similar to those of OEN when the conditions of 6.5 GPa, room temperature. We also compared the elasticity of HP-CEN to those of olivine at high pressure and temperature (Li et al., 2003). Reference: Pacalo and Gasparik, J. Geophys. Res., 95, 15853-15858, 1990.Kanzaki, M.,Phys.Chem. Min., 17, 726-730, 1991. Angel et al., Nature, 358, 322-324, 1992. Flesch et al., Am. Miner. 83, 444-450, 1998. Li et al., submitted Phys. Earth, Plant. Inter., 2003.

  8. Crystal structure of simple metals at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degtyareva, Olga

    2010-10-22

    The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structuresmore » found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.« less

  9. High pressure low temperature studies on 1-2-2 iron-based superconductors using designer diamond cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhoya, Walter O.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    In this study, high pressure low temperature electrical resistance measurements were carried out on a series of 122 iron-based superconductors using a designer diamond anvil cell. These studies were complemented by image plate x-ray diffraction measurements under high pressures and low temperatures at beamline 16-BM-D, HPCAT, Advanced Photon Source. A common feature of the 1-2-2 iron-based materials is the observation of anomalous compressibility effects under pressure and a Tetragonal (T) to Collapsed Tetragonal (CT) phase transition under high pressures. Specific studies on antiferromagnetic spin-density-wave Ba 0.5Sr 0.5Fe 2As 2 and Ba(Fe 0.9Ru 0.1) 2As 2 samples are presented to 10more » K and 41 GPa. The collapsed tetragonal phase was observed at a pressure of 14 GPa in Ba 0.5Sr 0.5Fe 2As 2 at ambient temperature. The highest superconducting transition temperature in Ba 0.5Sr 0.5Fe 2As 2 was observed to be at 32 K at a pressure of 4.7 GPa. The superconductivity was observed to be suppressed on transformation to the CT phase in 122 materials.« less

  10. Structural stability of methane hydrate at high pressures

    USGS Publications Warehouse

    Shu, J.; Chen, X.; Chou, I-Ming; Yang, W.; Hu, Jiawen; Hemley, R.J.; Mao, Ho-kwang

    2011-01-01

    The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P63/mmc, respectively. Upon compression, sI methane hydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH4)-host (H2O) interactions in the stabilization of the hydrate structures under pressure.

  11. Volume collapse phase transitions in cerium-praseodymium alloys under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perreault, Christopher S.; Velisavljevic, Nenad; Samudrala, Gopi K.

    Cerium-12at%Praseodymium(Ce 0.88Pr 0.12) and Ce-50at%Praseodymium(Ce 0.50Pr 0.50) alloy samples that contain a random solid-solution of Ce (4f1 (J=5/2)) and Pr (4f2 (J=4)) localized f-states have been studied by angle dispersive x-ray diffraction in a diamond anvil cell to a pressure of 65 GPa and 150 GPa respectively using a synchrotron source. Ce 0.88Pr 0.12 alloy crystallizes in a face-centered cubic (γ-phase) structure at ambient conditions, while Ce 0.50Pr 0.50 alloy crystallizes in the double hexagonal close packed (dhcp) structure at ambient conditions. Two distinct volume collapse transitions are observed in Ce 0.88Pr 0.12 alloy at 1.5 GPa and 18 GPamore » with volume change of 8.5% and 3% respectively. In contrast, Ce 0.50Pr 0.50 alloy shows only a single volume collapse of 5.6% at 20 GPa on phase transformation to α-Uranium structure under high pressure. Electrical transport measurements under high pressure show anomalies in electrical resistance at phase transitions for both compositions of this alloy.« less

  12. Volume collapse phase transitions in cerium-praseodymium alloys under high pressure

    DOE PAGES

    Perreault, Christopher S.; Velisavljevic, Nenad; Samudrala, Gopi K.; ...

    2018-06-08

    Cerium-12at%Praseodymium(Ce 0.88Pr 0.12) and Ce-50at%Praseodymium(Ce 0.50Pr 0.50) alloy samples that contain a random solid-solution of Ce (4f1 (J=5/2)) and Pr (4f2 (J=4)) localized f-states have been studied by angle dispersive x-ray diffraction in a diamond anvil cell to a pressure of 65 GPa and 150 GPa respectively using a synchrotron source. Ce 0.88Pr 0.12 alloy crystallizes in a face-centered cubic (γ-phase) structure at ambient conditions, while Ce 0.50Pr 0.50 alloy crystallizes in the double hexagonal close packed (dhcp) structure at ambient conditions. Two distinct volume collapse transitions are observed in Ce 0.88Pr 0.12 alloy at 1.5 GPa and 18 GPamore » with volume change of 8.5% and 3% respectively. In contrast, Ce 0.50Pr 0.50 alloy shows only a single volume collapse of 5.6% at 20 GPa on phase transformation to α-Uranium structure under high pressure. Electrical transport measurements under high pressure show anomalies in electrical resistance at phase transitions for both compositions of this alloy.« less

  13. Laser-driven formation of a high-pressure phase in amorphous silica.

    PubMed

    Salleo, Alberto; Taylor, Seth T; Martin, Michael C; Panero, Wendy R; Jeanloz, Raymond; Sands, Timothy; Génin, François Y

    2003-12-01

    Because of its simple composition, vast availability in pure form and ease of processing, vitreous silica is often used as a model to study the physics of amorphous solids. Research in amorphous silica is also motivated by its ubiquity in modern technology, a prominent example being as bulk material in transmissive and diffractive optics for high-power laser applications such as inertial confinement fusion (ICF). In these applications, stability under high-fluence laser irradiation is a key requirement, with optical breakdown occurring when the fluence of the beam is higher than the laser-induced damage threshold (LIDT) of the material. The optical strength of polished fused silica transmissive optics is limited by their surface LIDT. Surface optical breakdown is accompanied by densification, formation of point defects, cratering, material ejection, melting and cracking. Through a combination of electron diffraction and infrared reflectance measurements we show here that synthetic vitreous silica transforms partially into a defective form of the high-pressure stishovite phase under high-intensity (GW cm(-2)) laser irradiation. This phase transformation offers one suitable mechanism by which laser-induced damage grows catastrophically once initiated, thereby dramatically shortening the service lifetime of optics used for high-power photonics.

  14. Study of the phase transformations and equation of state of magnesium by synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Errandonea, Daniel; Meng, Yue; Häusermann, Daniel; Uchida, Takeyuki

    2003-03-01

    We studied the phase behaviour and the P - V - T equation of state of Mg by in situ energy-dispersive x-ray diffraction in a multi-anvil apparatus in the pressure-temperature range up to 18.6 GPa and 1527 K. At high temperatures, an hcp to dhcp transition was found above 9.6 GPa, which differs from the hcp to bcc transformation predicted by theoretical calculations. At room temperature, the hcp phase remains stable within the pressure range of this study with an axial ratio, c/a, close to the ideal. The melting of Mg was determined at 2.2, 10 and 12 GPa; the detected melting temperatures are in good agreement with previous diamond anvil cell results. The P - V - T equation of state determined based on the data of this study gives B0 = (36.8 ± 3) GPa, B0 ' = 4.3 ± 0.4, alpha0 = 25 × 10-6 K-1, partialalpha/partialT = (2.3 ± 0.2) × 10-7 K-2 and partialB0,T /partialT = (-2.08 ± 0.09) × 10-2 GPa K-1.

  15. Phase stability of iron germanate, FeGeO3, to 127 GPa

    NASA Astrophysics Data System (ADS)

    Dutta, R.; Tracy, S. J.; Stan, C. V.; Prakapenka, V. B.; Cava, R. J.; Duffy, T. S.

    2018-04-01

    The high-pressure behavior of germanates is of interest as these compounds serve as analogs for silicates of the deep Earth. Current theoretical and experimental studies of iron germanate, FeGeO3, are limited. Here, we have examined the behavior of FeGeO3 to 127 GPa using the laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. Upon compression at room temperature, the ambient-pressure clinopyroxene phase transforms to a disordered triclinic phase [FeGeO3 (II)] at 18 GPa in agreement with earlier studies. An additional phase transition to FeGeO3 (III) occurs above 54 GPa at room temperature. Laser-heating experiments ( 1200-2200 K) were conducted at three pressures (33, 54, and 123 GPa) chosen to cover the stability regions of different GeO2 polymorphs. In all cases, we observe that FeGeO3 dissociates into GeO2 + FeO at high pressure and temperature conditions. Neither the perovskite nor the post-perovskite phase was observed up to 127 GPa at ambient or high temperatures. The results are consistent with the behavior of FeSiO3, which also dissociates into a mixture of the oxides (FeO + SiO2) at least up to 149 GPa.

  16. Electrical Resistivity of natural Marcasite at High-pressures

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Gopalakrishnarao

    2013-06-01

    Marcasite is considered to be a common iron sulfide in reducing Martian sediments and may enclose microbial remains during growth and hence study of marcasite may have significance in the search for fossil life on Mars. The high-pressure phase stability investigations of marcasite are useful in understanding the sulfide mineralogy of Martian surface, affected by meteorite impacts. The sulfides were characterized by electron microprobe micro analyses (EPMA), powder X-ray diffraction, DTA, and FTIR spectroscopic measurements. The samples were powdered using a porcelain mortar and pestle. The chemical composition of the sample was determined by an electron probe micro-analyzer (EPMA). High-pressure electrical resistivity measurements were carried out on natural marcasite, and marcasite rich samples (Marcasite 95 mol % pyrite 5 mol %) up to 7 GPa. Marcasite sample shows a discontinuous decrease in the electrical resistivity at 5. 2 (+/- 0.5) GPa indicating a first order phase transition. The Differential thermal analyses and the Fourier transform infrared spectroscopic measurements on the pressure quenched sample shows the characteristics of pyrite, indicating the pressure induced marcasite-to -pyrite transition of the natural marcasite at 5. 2 (+/- 0.5) GPa. The observation of marcasite to pyrite phase transition may be useful in estimating the pressure experienced by shock events on the Martian surface as well as the meteorites where marcasite- pyrite phases coexist. Financial support from CSIR-SHORE-PSC0205.

  17. Study Of The Perovskite to Post-Perovskite Transformation Using Multigrain Crystallography

    NASA Astrophysics Data System (ADS)

    Merkel, Sébastien; Langrand, Christopher; Hilairet, Nadège; Rosa, Angelika; Svitlyk, Volodymyr; Dobson, David

    2017-04-01

    At P/T conditions of the D'' layer, Bridgmanite transforms into its high-pressure phase of (Mg,Fe)SiO3 post-perovskite(pPv). Observations of seismic anisotropy in D'' are inferred to arise from textures and microstructures within pPv. Specifically, mantle flow is though to cause pPv to deform, creating lattice-preferred orientations (Merkel et al, 2006, 2007; Miyagi et al, 2010; Nisr et al, 2012). However, debates emerged in the literature whether experimentally observed textures were induced by plastic deformation of the sample or by phase transformation from a previous phase (Walte et al 2009, Okada et al, 2010, Miyagi et al, 2011) and whether this could explain the observed patterns of anisotropy in the lowermost mantle (Dobson et al, 2013). Here, we use multigrain crystallography (Sørensen et al, 2012) to characterize hundreds of crystals in a polycrystalline material in-situ as it is transforming. This technique has been recently adapted for Diamond Anvil Cell (DAC) high pressure experiments (Ice et al, 2005; Nisr et al, 2012, 2014; Barton et al, 2012; Zhang et al, 2013, 2016; Rosa et al, 2015, 2016). Potentially, DAC multigrain crystallography is useful for the determination of the orientation and position of individual grains with an average resolution in grain orientation and position below 0.2° and 5 μm, respectively (Langrand et al, in press). We will presents results on the potential resolution of the method with tests on (Mg,Fe)SiO3 itself and on how the method is now being used for tracking individual grains during the Pv/pPv transition in NaCoF3 up to 25 GPa and at T between 600-900 K. At 600 K, the sample transforms to powder rings and looses the grain microstructure. At 900 K, large grains are preserved as the sample fully transforms to pPv and back to Pv. At the end, the results of such experiments will be used to understand transformation mechanisms between Pv and pPv and the development of microstructures and anisotropy in the Earth's D'' layer.

  18. Phase diagram and transformations of iron pentacarbonyl to nm layered hematite and carbon-oxygen polymer under pressure

    DOE PAGES

    Ryu, Young Jay; Kim, Minseob; Yoo, Choong -Shik

    2015-10-12

    In this study, we present the phase diagram of Fe(CO) 5, consisting of three molecular polymorphs (phase I, II and III) and an extended polymeric phase that can be recovered at ambient condition. The phase diagram indicates a limited stability of Fe(CO) 5 within a pressure-temperature dome formed below the liquid- phase II- polymer triple point at 4.2 GPa and 580 K. The limited stability, in turn, signifies the temperature-induced weakening of Fe-CO back bonds, which eventually leads to the dissociation of Fe-CO at the onset of the polymerization of CO. The recovered polymer is a composite of novel nm-lamellarmore » layers of crystalline hematite Fe 2O 3 and amorphous carbon-oxygen polymers. These results, therefore, demonstrate the synthesis of carbon-oxygen polymer by compressing Fe(CO) 5, which advocates a novel synthetic route to develop atomistic composite materials by compressing organometallic compounds.« less

  19. Thermal, optical, and dielectric properties of fluoride Rb2TaF7

    NASA Astrophysics Data System (ADS)

    Pogorel'tsev, E. I.; Mel'nikova, S. V.; Kartashev, A. V.; Gorev, M. V.; Flerov, I. N.; Laptash, N. M.

    2017-05-01

    The thermal, optical, and dielectric properties of fluoride Rb2TaF7 were investigated. It was observed that the variation in chemical pressure in fluorides A 2 +TaF7 caused by the cation substitution of rubidium for ammonium does not affect the ferroelastic nature of structural distortions, but leads to stabilization of the high- and low-temperature phases and enhancement of birefringence. The entropy of the phase transition P4/nmm ↔ Cmma is typical of the shift transformations, which is consistent with a model of the initial and distorted phase structures. The anisotropy of chemical pressure causes the change of signs of the anomalous strain and baric coefficient dT/ dp of Rb2TaF7 as compared with the values for its ammonium analog.

  20. Study of bulk Hafnium oxide (HfO2) under compression

    NASA Astrophysics Data System (ADS)

    Pathak, Santanu; Mandal, Guruprasad; Das, Parnika

    2018-04-01

    Hafnium oxide (HfO2) is a technologically important material. This material has K-value of 25 and band gap 5.8 eV. A k value of 25-30 is preferred for a gate dielectric [1]. As it shows good insulating and capacitive properties, HfO2 is being considered as a replacement to SiO2 in microelectronic devices as gate dielectrics. On the other hand because of toughening mechanism due to phase transformation induced by stress field observed in these oxides, HFO2 has been a material of investigations in various configurations for a very long time. However the controversies about phase transition of HfO2 under pressure still exists. High quality synchrotron radiation has been used to study the structural phase transition of HfO2 under pressure.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo

    Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6- are identified with gas chromatography-mass spectrometry and severalmore » other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 107 fold enhancement of the electrical conductivity. The polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.« less

  2. High pressure phase transformation in uranium carbide: A first principle study

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.

    2013-02-01

    First principles calculations have been carried out to analyze structural, elastic and dynamic stability, of UC under hydrostatic compression. The comparison of enthalpies of rocksalt type (B1) and body centered orthorhombic (bco) structures as a function of pressure suggests the B1 →bco transition at ˜ 23 GPa, in good agreement with experimental value of 27 GPa. From the lattice dynamic calculations we have determined the phonon dispersion relations for B1 phase at various compressions. It is found that TA phonon branch along Γ-X direction becomes imaginary around the transition pressure. Further, the phonon instability so caused is of long wavelength nature as it occurs near the Brillouin zone centre. This long wavelength phonon instability at the transition point indicates that the B1 →bco transition is driven by elastic failure (the vanishing of C44 modulus). Various physical quantities such as equilibrium volume, bulk modulus, pressure derivative of bulk modulus and elastic constants have been determined at zero pressure and compared with data available in literature.

  3. Shock-induced fine-grained recrystallization of olivine - Evidence against subsolidus reduction of Fe/2+/

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Tsay, F.-D.; Live, D. H.

    1976-01-01

    Electron spin resonance (ESR) studies have been carried out on three single grains of terrestrial olivine (Fo90) shock loaded along the 010 line to peak pressures of 280, 330, and 440 kbar. The results indicate that neither metallic Fe similar to that observed in returned lunar soils nor paramagnetic Fe(3+) caused by oxidation of Fe(2+) has been produced in these shock experiments. Trace amounts of Mn (2+) have been detected in both shocked and unshocked olivine. The ESR signals of Mn(2+) show spectral features which are found to correlate with the degree of shock-induced recrystallization observed petrographically. The increasing mass fraction of recrystallized olivine correlates with increasing shock pressures. This phenomenon is modelled assuming it results from the progressive effect of the shock-induced transformation of the olivine to a yet unknown high-pressure phase and its subsequent reversion to the low-pressure olivine phase. The mass fraction of recrystallized material is predicted to be nearly linear with shock pressure.

  4. In-situ x-ray diffraction of a shock-induced phase transition in fluorite, CaF2

    NASA Astrophysics Data System (ADS)

    Glam, Benny; June Tracy, Sally; Turneaure, Stefan; Duffy, Thomas

    2017-06-01

    The difluorides are an important class of ionic compounds that show extensive polymorphism under both static and dynamic loading. In this study, the shock-induced phase transitions in CaF2 were investigated by in situ x-ray diffraction measurements in plate impact experiments carried out with the two-stage gas gun at the Dynamic Compression Sector of Argonne National Laboratory. Single-crystal samples in (100) and (111) orientations were shock loaded to pressures between 32 GPa to 70 GPa. The particle velocities at the interface between the sample and a LiF window were measured by VISAR and PDV. Synchrotron x-ray diffraction data were recorded at 153.4 ns intervals using a four-frame detector. The measured diffraction patterns show a high degree of sample texturing at all pressures. We observe evidence for a transition to a high-pressure phase followed by reverse transformation at late times during release. This study provides the first direct constraints on the high-pressure lattice structure of fluorite under shock compression.

  5. Phase relations in the system diopside-jadeite at high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Lin-Gun

    1980-05-01

    Phase behaviour in the system diopside-jadeite (CaMgSi 2O 6sbnd NaAlSi 2O 6) have been investigated in the pressure region 100-300 kbar at about 1000°C in a diamond-anvil press coupled with laser heating. The omphacite solid solution extends from 30 to at least 200 kbar for the entire system. Omphacites, ranging in composition from pure diopside to more than 40 mole % jadeite, transform to diopside (II) at pressures greater than 230 kbar. Diopside (II), which probably possesses a perovskite-type structure, cannot be preserved when experiments are quenched to ambient conditions. Jadeite-rich omphacites were found to decompose into an assemblage of NaAlSiO 4(CaFe 2O 4-type structure) + stishovite + diopside (II) (?) at pressures greater than about 260 kbar. These results suggest that an eclogitic model mantle would not display the 400-km seismic discontinuity. Moreover, sodium in the transition zone and lower mantle would most likely be accommodated in phases of omphacite and diopside (II).

  6. Transformation of the Surface Structure of Marble under the Action of a Shock Wave

    NASA Astrophysics Data System (ADS)

    Shcherbakov, I. P.; Vettegren, V. I.; Bashkarev, A. Ya.; Mamalimov, R. I.

    2018-01-01

    The structure of marble fracture fragments formed after the destruction under the action of a shock wave have been analyzed by Raman, infrared, and luminescence spectroscopic techniques. It has been found that calcite I in the surface layer of fragments with thicknesses of about 2 μm is transformed into high-pressure phase calcite III. At the same time, concentrations of Mn2+, Eu3+, and other ions decrease to about onefourth of their initial values.

  7. Static high-pressure structural studies on Dy to 119 GPa

    NASA Astrophysics Data System (ADS)

    Patterson, Reed; Saw, Cheng K.; Akella, Jagannadham

    2004-05-01

    Structural phase transitions in the rare-earth metal dysprosium have been studied in a diamond anvil cell to 119 GPa by x-ray diffraction. Four transformations following the sequence hcp→Sm-type→dhcp→hR24 (hexagonal)→bcm (monoclinic) are observed at 6, 15, 43, and 73 GPa, respectively. The hexagonal to monoclinic transformation is accompanied by a 6% reduction in volume, which is attributed to delocalization of the 4f electrons, similar to that seen in Ce, Pr, and Gd.

  8. High-pressure melting of MgSiO3.

    PubMed

    Belonoshko, A B; Skorodumova, N V; Rosengren, A; Ahuja, R; Johansson, B; Burakovsky, L; Preston, D L

    2005-05-20

    The melting curve of MgSiO(3) perovskite has been determined by means of ab initio molecular dynamics complemented by effective pair potentials, and a new phenomenological model of melting. Using first principles ground state calculations, we find that the MgSiO(3) perovskite phase transforms into post perovskite at pressures above 100 GPa, in agreement with recent theoretical and experimental studies. We find that the melting curve of MgSiO(3), being very steep at pressures below 60 GPa, rapidly flattens on increasing pressure. The experimental controversy on the melting of the MgSiO(3) perovskite at high pressures is resolved, confirming the data by Zerr and Boehler.

  9. Dramatic Changes in Thermoelectric Power of Germanium under Pressure: Printing n–p Junctions by Applied Stress

    PubMed Central

    Korobeinikov, Igor V.; Morozova, Natalia V.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.

    2017-01-01

    Controlled tuning the electrical, optical, magnetic, mechanical and other characteristics of the leading semiconducting materials is one of the primary technological challenges. Here, we demonstrate that the electronic transport properties of conventional single-crystalline wafers of germanium may be dramatically tuned by application of moderate pressures. We investigated the thermoelectric power (Seebeck coefficient) of p– and n–type germanium under high pressure to 20 GPa. We established that an applied pressure of several GPa drastically shifts the electrical conduction to p–type. The p–type conduction is conserved across the semiconductor-metal phase transition at near 10 GPa. Upon pressure releasing, germanium transformed to a metastable st12 phase (Ge-III) with n–type semiconducting conductivity. We proposed that the unusual electronic properties of germanium in the original cubic-diamond-structured phase could result from a splitting of the “heavy” and “light” holes bands, and a related charge transfer between them. We suggested new innovative applications of germanium, e.g., in technologies of printing of n–p and n–p–n junctions by applied stress. Thus, our work has uncovered a new face of germanium as a ‘smart’ material. PMID:28290495

  10. Temperature controlled evolution of monoclinic to super-tetragonal phase of epitaxial BiFeO3 thin films on La0.67Sr0.33MnO3 buffered SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Singh, Anar; Kaifeng, Dong; Chen, Jing-Sheng

    2018-03-01

    Epitaxial BiFeO3 thin films of 130nm were deposited by pulsed laser deposition (PLD) technique on La0.67Sr0.33MnO3 buffered SrTiO3 (001) substrate at various temperatures under different ambient oxygen pressures. Reciprocal space mapping reveals that, with decreasing temperature and oxygen pressure, the broadly reported monoclinic phase (MA) of BiFeO3 thin film initially transforms to a tetragonal phase (T1) with c/a =1.05 (1) in a narrow girth of deposition condition and then to a super-tetragonal phase (T2) with giant c/a = 1.24 (1), as confirmed by reciprocal space mapping using high resolution x-ray diffraction. The surface morphology of the films reveals the island growth of the BiFeO3 films deposited at low temperatures. We propose that the transformation from monoclinic to the super-tetragonal phase is essentially due to the manifestation of excess local strain as a result of the island growth. This study offers a recipe to grow the super-tetragonal phase of BiFeO3, with giant c/a =1.24 (1) which exhibits exceptionally large ferroelectric polarization, on ferromagnetic layer La0.67Sr0.33MnO3. This phase of BiFeO3 can be utilized for the ferroelectric control of magnetism at the interface of BiFeO3 and La0.67Sr0.33MnO3.

  11. Pressure-induced Ge coordination change in SiO2-GeO2 glasses

    NASA Astrophysics Data System (ADS)

    Majérus, O.; Cormier, L.; Itié, J.-P.; Calas, G.

    2003-04-01

    Among the parameters controlling igneous processes in Earth, the density and transport properties of silicate melts are playing a major role. These properties are strongly dependent upon pressure, in a way that can significantly differ from the crystalline phases. The study of the pressure-induced structural changes can give a further understanding of the peculiar microscopic origins of these properties in molten phases. As in silicate minerals, the coordination change IVSi towards VISi is expected to be the major transformation occurring in melts at mantle conditions, yielding amorphous phases with properties distinct to those corresponding to a tetrahedral framework. This change is predicted by molecular dynamics simulations, but experimental evidences are scarce because of difficult technical constraints. The binary SiO_2-GeO_2 system allows a further insight into the compression mechanism of a tetrahedral framework glass structure. The Ge coordination change and its composition dependence can be assessed by using XAS spectroscopy at Ge K-edge with a diamond anvil cell. In this study, we report an in situ investigation carried out on well characterized glasses of the SiO_2-GeO_2 system. Experiments were preformed on the D11 beamline which is a unique dispersive experimental setup developed at the Laboratoire pour l’Utilisation du Rayonnement Magnétique (LURE, Orsay, France). Pressures up to 25 GPa have been obtained. With increasing SiO_2 content, both Ge-O distances extracted from EXAFS data and XANES features indicate the regular increase of the pressure threshold for the Ge coordination change (from 4 in pure GeO_2 to 12 Gpa in 80 mol% SiO_2-bearing glass), which corresponds to the end of the elastic compression regime, and the achievement of the transformation on a broader pressure range as predicted in pure SiO_2. These data are compared to results on slightly depolymerised glasses of Na_2O-GeO_2 composition, where a greater variety of compression mechanisms takes place.

  12. Shear-Induced Isostructural Phase Transition and Metallization of Layered Tungsten Disulfide under Nonhydrostatic Compression

    DOE PAGES

    Duwal, Sakun; Yoo, Choong-Shik

    2016-02-16

    Pressure-induced structural and electronic transformations of tungsten disulfide (WS 2) have been studied to 60 GPa, in both hydrostatic and non-hydrostatic conditions, using four-probe electrical resistance measurements, micro-Raman spectroscopy and synchrotron x-ray diffraction. Our results show the evidence for an isostructural phase transition from hexagonal 2H c phase to hexagonal 2H a phase, which accompanies the metallization at ~37 GPa. This isostructural transition occurs displacively over a large pressure range between 15 and 45 GPa and is driven by the presence of strong shear stress developed in the layer structure of WS 2 under non-hydrostatic compression. Interestingly, this transition ismore » absent in hydrostatic conditions using He pressure medium, underscoring its strong dependence on the state of stress. We also attribute the absence to the incorporation of He atoms between the layers, mitigating the development of shear stress. We also conjecture a possibility of magnetic ordering in WS 2 that may occur at low temperature near the metallization.« less

  13. High-pressure phases of Mg2Si from first principles

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Tuoc, Vu Ngoc; Le, Nam Ba; Minh, Nguyen Viet; Woods, Lilia M.

    2016-03-01

    First-principles calculations are presented to resolve the possible pressure-dependent phases of Mg2Si . Although previous reports show that Mg2Si is characterized by the cubic antifluorite F m 3 ¯m structure at low pressures, the situation at higher pressures is less clear with many contradicting results. Here we utilize several methods to examine the stability, electron, phonon, and transport properties of this material as a function of pressure and temperature. We find that Mg2Si is thermodynamically stable at low and high pressures. Between 6 and 24 GPa, Mg2Si can transform into Mg9Si5 , a defected compound, and vice versa, without energy cost. Perhaps this result is related to the aforementioned inconsistency in the structures reported for Mg2Si within this pressure range. Focusing solely on Mg2Si , we find a new monoclinic C 2 /m structure of Mg2Si , which is stable at high pressures within thermodynamical considerations. The calculated electrical conductivity and Seebeck coefficient taking into account results from the electronic structure calculations help us understand better how transport can be affected in this material by modulating pressure and temperature.

  14. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP{sub 2}O{sub 7} family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} exhibited a very strong dependence on pressure (∼700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV{sub 2}O{sub 7} was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively). - Graphical abstract: The temperature at which ZrV{sub 2}O{sub 7} transforms to a phase displaying negative thermal expansion is strongly pressure dependent. The high temperature form of ZrV{sub 2}O{sub 7} is elastically stiffer than the low temperature form. - Highlights: • The order-disorder phase transition temperatures in ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} are strongly pressure dependent (∼700 K.GPa). • The high temperature (disordered) phase of ZrV{sub 2}O{sub 7} is much stiffer than the ambient temperature (ordered) phase. • Compression reduces the magnitude of the negative thermal expansion in the high temperature phase of ZrV{sub 2}O{sub 7}.« less

  15. ROLE OF PRESSURE IN SMECTITE DEHYDRATION - EFFECTS ON GEOPRESSURE AND SMECTITE-TO-ILLITE TRANSFORMATION.

    USGS Publications Warehouse

    Colten-Bradley, Virginia

    1987-01-01

    Evaluation of the effects of pressure on the temperature of interlayer water loss (dehydration) by smectites under diagenetic conditions indicates that smectites are stable as hydrated phases in the deep subsurface. Hydraulic and differential pressure conditions affect dehydration differently. The temperature of dehydration increase with pore fluid pressure and interlayer water density. The temperatures of dehydration increase with pore fluid pressure and interlayer water density. The temperatures of dehydration under differential-presssure conditions are inversely related to pressure and interlayer water density. The model presented assumes the effects of pore fluid composition and 2:1 layer reactivity to be negligible. Agreement between theoretical and experimental results validate this assumption. Additional aspects of the subject are discussed.

  16. Experimental and Theoretical Investigations on d and f Electron Systems under High Pressure

    NASA Astrophysics Data System (ADS)

    Gupta, Satish C.; Joshi, K. D.; Banerjee, S.

    2008-07-01

    The pressure-induced electron transfer from sp to d band in transition elements, and spd to f band in the light actinides significantly influences the stability of crystal structures in these metals. Although α → ω → β phase transition with increasing pressure in group IV transition elements is well documented, the β → ω transition under pressure has not been reported until recently. Our experimental study on the β-stabilized Zr-20Nb alloy reveals that it transforms to ω phase on shock compression, whereas this transition is not seen in a hydrostatic pressure condition. The platelike morphology of ω formed under shock compression is in contrast to the fine particle morphology seen in this system under thermal treatment, which clearly indicates that the mechanism of the β → ω transformation under shock treatment involves a large shear component. In this article, we have analyzed why the ω → β transition pressures in Ti, Zr, and Hf do not follow the trend implied by the principle of corresponding states. Our analysis shows that the ω → β transition depends on how the increased d population caused by the sp → d transfer of electron is distributed among various d substates. In Th, we have analyzed the role of 5f electrons in determining the mechanical stability of fcc and bct structures under hydrostatic compressions. Our analysis shows that the fcc to bct transition in this metal, which has been reported by high-pressure experiments, occurs because of softening of the tetragonal shear modulus C' = ( C 11 - C 12)/2 under compression. From the total energy calculated as a function of specific volume, we have determined the 0 K isotherm, which is then used to deduce the shock Hugoniot. The theoretical Hugoniot compares well with the experimental data.

  17. Uncovering the Connection Between Low-Frequency Dynamics and Phase Transformation Phenomena in Molecular Solids

    NASA Astrophysics Data System (ADS)

    Ruggiero, Michael T.; Zhang, Wei; Bond, Andrew D.; Mittleman, Daniel M.; Zeitler, J. Axel

    2018-05-01

    The low-frequency motions of molecules in the condensed phase have been shown to be vital to a large number of physical properties and processes. However, in the case of disordered systems, it is often difficult to elucidate the atomic-level details surrounding these phenomena. In this work, we have performed an extensive experimental and computational study on the molecular solid camphor, which exhibits a rich and complex structure-dynamics relationship, and undergoes an order-disorder transition near ambient conditions. The combination of x-ray diffraction, variable temperature and pressure terahertz time-domain spectroscopy, ab initio molecular dynamics, and periodic density functional theory calculations enables a complete picture of the phase transition to be obtained, inclusive of mechanistic, structural, and thermodynamic phenomena. Additionally, the low-frequency vibrations of a disordered solid are characterized for the first time with atomic-level precision, uncovering a clear link between such motions and the phase transformation. Overall, this combination of methods allows for significant details to be obtained for disordered solids and the associated transformations, providing a framework that can be directly applied for a wide range of similar systems.

  18. Uncovering the Connection Between Low-Frequency Dynamics and Phase Transformation Phenomena in Molecular Solids.

    PubMed

    Ruggiero, Michael T; Zhang, Wei; Bond, Andrew D; Mittleman, Daniel M; Zeitler, J Axel

    2018-05-11

    The low-frequency motions of molecules in the condensed phase have been shown to be vital to a large number of physical properties and processes. However, in the case of disordered systems, it is often difficult to elucidate the atomic-level details surrounding these phenomena. In this work, we have performed an extensive experimental and computational study on the molecular solid camphor, which exhibits a rich and complex structure-dynamics relationship, and undergoes an order-disorder transition near ambient conditions. The combination of x-ray diffraction, variable temperature and pressure terahertz time-domain spectroscopy, ab initio molecular dynamics, and periodic density functional theory calculations enables a complete picture of the phase transition to be obtained, inclusive of mechanistic, structural, and thermodynamic phenomena. Additionally, the low-frequency vibrations of a disordered solid are characterized for the first time with atomic-level precision, uncovering a clear link between such motions and the phase transformation. Overall, this combination of methods allows for significant details to be obtained for disordered solids and the associated transformations, providing a framework that can be directly applied for a wide range of similar systems.

  19. Transformation of atmospheric components near a spark discharge at the anode polarization of a metallic electrode hanging over a solution

    NASA Astrophysics Data System (ADS)

    Orlov, A. M.; Yavtushenko, I. O.; Bodnarskii, D. S.

    2013-03-01

    The variation of the pressure of a gas phase activated by spark discharges between an aqueous electrolyte solution (liquid cathode) and a metallic electrode (anode) hanging over the solution is studied. A mathematical model of the proceeding reaction kinetics is constructed, and the variation of the partial pressures of all initial and produced components in the gas phase is calculated. Both the Faraday and non-Faraday mechanisms of gas component production from water are confirmed. It is found that a large overhanging drop responsible for additional supply of simultaneously produced H2 and O2 molecules forms rapidly at the end face of the anodically polarized electrode.

  20. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  1. High- T c Superconductivity in FeSe at High Pressure: Dominant Hole Carriers and Enhanced Spin Fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J. P.; Ye, G. Z.; Shahi, P.

    The importance of electron-hole interband interactions is widely acknowledged for iron-pnictide superconductors with high transition temperatures (T c). However, high-T c superconductivity without hole carriers has been suggested in FeSe single-layer films and intercalated iron-selenides, raising a fundamental question whether iron pnictides and chalcogenides have different pairing mechanisms. Here, we study the properties of electronic structure in another high-T c phase induced by pressure in bulk FeSe from magneto-transport measurements and first-principles calculations. With increasing pressure, the low-T c superconducting phase transforms into high-T c phase, where we find the normal-state Hall resistivity changes sign from negative to positive, demonstratingmore » dominant hole carriers in striking contrast to other FeSe-derived high-T c systems. Moreover, the Hall coefficient is remarkably enlarged and the magnetoresistance exhibits anomalous scaling behaviours, evidencing strongly enhanced interband spin fluctuations in the high-T c phase. These results in FeSe highlight similarities with high-T c phases of iron pnictides, constituting a step toward a unified understanding of iron-based superconductivity.« less

  2. High- T c Superconductivity in FeSe at High Pressure: Dominant Hole Carriers and Enhanced Spin Fluctuations

    DOE PAGES

    Sun, J. P.; Ye, G. Z.; Shahi, P.; ...

    2017-04-07

    The importance of electron-hole interband interactions is widely acknowledged for iron-pnictide superconductors with high transition temperatures (T c). However, high-T c superconductivity without hole carriers has been suggested in FeSe single-layer films and intercalated iron-selenides, raising a fundamental question whether iron pnictides and chalcogenides have different pairing mechanisms. Here, we study the properties of electronic structure in another high-T c phase induced by pressure in bulk FeSe from magneto-transport measurements and first-principles calculations. With increasing pressure, the low-T c superconducting phase transforms into high-T c phase, where we find the normal-state Hall resistivity changes sign from negative to positive, demonstratingmore » dominant hole carriers in striking contrast to other FeSe-derived high-T c systems. Moreover, the Hall coefficient is remarkably enlarged and the magnetoresistance exhibits anomalous scaling behaviours, evidencing strongly enhanced interband spin fluctuations in the high-T c phase. These results in FeSe highlight similarities with high-T c phases of iron pnictides, constituting a step toward a unified understanding of iron-based superconductivity.« less

  3. Distribution trends and influence of 4d transition metal elements (Ru, Rh and Pd) doping on mechanical properties and martensitic transformation temperature of B2-ZrCu phase

    NASA Astrophysics Data System (ADS)

    Guo, Fuda; Zhan, Yongzhong

    2017-12-01

    The prediction for distribution trends and effect of three 4d transition metal elements (Ru, Rh and Pd) on mechanical properties and martensitic transformation temperature of B2-ZrCu phase were investigated by first-principles calculations. The convex surface of formation energy suggests that the alloying elements prefer to occupy the Cu sites in B2-ZrCu phase and the dopants studied in present are able to strengthen the phase stability. The calculated results of substitutional formation energy suggest that the distribution trend of dopants in B2-ZrCu phase is Ru > Rh > Pd below the dopant concentration 9 at. %, and the distribution trend is Rh > Pd > Ru from 9 at. % to 12.5 at. %. The elastic constants and mechanical properties including bulk modulus and shear modulus were calculated and discussed. The brittleness/ductility characteristic was investigated using the B/G ratio, Poisson's ratio v and Cauchy pressure Cp. The martensitic transformation temperature (Ms) and melting point (Tm) were predicted by using two cubic elastic moduli (C‧ and C44). The prediction results suggest that only the Ms of Zr8Cu7Pd is higher than the parent. The martensitic transformation temperatures of other compounds decrease with the addition of 4d transition metal dopants. Finally, the electronic structures and electron density different were discussed to reveal the bonding characteristics.

  4. Pressure induced polymerization of acetylide anions in CaC2 and 107 fold enhancement of electrical conductivity.

    PubMed

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo; Yang, Youyou; Wang, Yajie; Wu, Jiajia; Dong, Xiao; Wang, Chun-Hai; Tulk, Christopher A; Molaison, Jamie J; Ivanov, Ilia N; Feygenson, Mikhail; Yang, Wenge; Guthrie, Malcolm; Zhao, Yusheng; Mao, Ho-Kwang; Jin, Changqing

    2017-01-01

    Transformation between different types of carbon-carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC 2 ) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC 2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6- are identified with gas chromatography-mass spectrometry and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 10 7 fold enhancement of the electrical conductivity. The polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.

  5. High-pressure stability, transformations, and vibrational dynamics of nitrosonium nitrate from synchrotron infrared and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Yang; Hemley, Russell J.; Liu, Zhenxian; Somayazulu, Maddury; Mao, Ho-kwang; Herschbach, Dudley R.

    2003-07-01

    The properties of nitrosonium nitrate (NO+NO3-) were investigated following synthesis by laser heating of N2O and N2O4 under high pressures in a diamond anvil cell. Synchrotron infrared absorption spectra of NO+NO3- were measured at pressures up to 32 GPa at room temperature. Raman spectra were obtained at pressures up to 40 GPa at room temperature and up to 14 GPa at temperatures down to 80 K. For both lattice and intramolecular vibrational modes, a smooth evolution of spectral bands with pressure indicates that NO+NO3- forms a single phase over a broad range above 10 GPa, whereas marked changes, particularly evident in the Raman spectra at low temperature, indicate a phase transition occurs near 5 GPa. NO+NO3- could be recovered at atmospheric pressure and low temperature, persisting to 180 K. The Raman and IR spectroscopic data suggest that the NO+NO3- produced by laser heating of N2O followed by decompression may differ in structure or orientational order-disorder from that produced by autoionization of N2O4.

  6. Pressure-Induced Phase Transitions in GeTe-Rich Ge-Sb-Te Alloys across the Rhombohedral-to-Cubic Transitions.

    PubMed

    Krbal, Milos; Bartak, Jaroslav; Kolar, Jakub; Prytuliak, Anastasiia; Kolobov, Alexander V; Fons, Paul; Bezacier, Lucile; Hanfland, Michael; Tominaga, Junji

    2017-07-17

    We demonstrate that pressure-induced amorphization in Ge-Sb-Te alloys across the ferroelectric-paraelectric transition can be represented as a mixture of coherently distorted rhombohedral Ge 8 Sb 2 Te 11 and randomly distorted cubic Ge 4 Sb 2 Te 7 and high-temperature Ge 8 Sb 2 Te 11 phases. While coherent distortion in Ge 8 Sb 2 Te 11 does not prevent the crystalline state from collapsing into its amorphous counterpart in a similar manner to pure GeTe, the pressure-amorphized Ge 8 Sb 2 Te 11 phase begins to revert to the crystalline cubic phase at ∼9 GPa in contrast to Ge 4 Sb 2 Te 7 , which remains amorphous under ambient conditions when gradually decompressed from 40 GPa. Moreover, experimentally, it was observed that pressure-induced amorphization in Ge 8 Sb 2 Te 11 is a temperature-dependent process. Ge 8 Sb 2 Te 11 transforms into the amorphous phase at ∼27.5 and 25.2 GPa at room temperature and 408 K, respectively, and completely amorphizes at 32 GPa at 408 K, while some crystalline texture could be seen until 38 GPa (the last measurement point) at room temperature. To understand the origins of the temperature dependence of the pressure-induced amorphization process, density functional theory calculations were performed for compositions along the (GeTe) x - (Sb 2 Te 3 ) 1-x tie line under large hydrostatic pressures. The calculated results agreed well with the experimental data.

  7. Rapid calculation of acoustic fields from arbitrary continuous-wave sources.

    PubMed

    Treeby, Bradley E; Budisky, Jakub; Wise, Elliott S; Jaros, Jiri; Cox, B T

    2018-01-01

    A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions to be calculated in a single step using two fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically focused bowl transducers, and multi-element linear and hemispherical arrays.

  8. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addessio, Francis L.; Bronkhorst, Curt Allan; Bolme, Cynthia Anne

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientationsmore » relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.« less

  9. Clinical effects of Angelica dahurica dressing on patients with I-II phase pressure sores.

    PubMed

    Gong, Fen; Niu, Junzhi; Pei, Xing

    2016-11-02

    Angelica dahurica is a well-known traditional Chinese Medicine (TCM), while little information is available about its effects on pressure sores. We aimed to investigate the clinical effect of Angelica dahurica on patients with I-II phase pressure sores, as well as the underlying mechanism. Patients (n = 98) with phase I and phase II pressure sores were enrolled and randomly assigned to control and treated groups. In addition to holistic nursing, patients in the control group received compound clotrimazole cream, while patients in the treated group received continuous 4 weeks of external application of Angelica dahurica dressing. Therapeutic effect was recorded, along with the levels of interleukin-8 (IL-8), epidermal growth factor (EGF), transforming growth factor (TGF)-β, and vascular endothelial growth factor (VEGF). Besides, HaCaT cells were cultured with different concentrations of Angelica dahurica, and then cell viability, clone formation numbers, cell cycle, and levels of cyclin D1 and cyclin-dependent kinase (CDK) 2 were determined. The total effective rate in the treated group was significantly higher than in the control group. Levels of IL-8, EGF, TGF-β, and VEGF were statistically increased by Angelica dahurica. In addition, the cell viability and clone formation numbers were significantly upregulated by Angelica dahurica in a dose-dependent manner. Also, the percentage of cells in G0/G1 phase, and levels of cyclin D1 and CDK2 were significantly elevated. Our results suggest that Angelica dahurica may provide an effective clinical treatment for I-II phase pressure sores.

  10. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  11. Desorption and Transformation of Nitroaromatic (TNT) and Nitramine (RDX and HMX) Explosive Residues on Detonated Pure Mineral Phases

    DTIC Science & Technology

    2011-11-01

    surface area measurements were used to compare the pristine and detonated mineral surfaces and to determine if the extreme heat and/or pressures of...gas (N2) in a liquid nitrogen atmosphere (−194.8°C). Results from six relative pressure points were reduced to surface area values applying BET theory...include the minerals quartz, calcite, and dolomite . However, in some detonated Ottawa sand samples the highest intensity peak for calcite at 29° 2Θ

  12. Very high-pressure orogenic garnet peridotites

    PubMed Central

    Liou, J. G.; Zhang, R. Y.; Ernst, W. G.

    2007-01-01

    Mantle-derived garnet peridotites are a minor component in many very high-pressure metamorphic terranes that formed during continental subduction and collision. Some of these mantle rocks contain trace amounts of zircon and micrometer-sized inclusions. The constituent minerals exhibit pre- and postsubduction microstructures, including polymorphic transformation and mineral exsolution. Experimental, mineralogical, petrochemical, and geochronological characterizations using novel techniques with high spatial, temporal, and energy resolutions are resulting in unexpected discoveries of new phases, providing better constraints on deep mantle processes. PMID:17519341

  13. Processing - microstructure relationships of chemically vapor deposited zirconia fiber coating for environmentally durable silicon carbide/silicon carbide composites

    NASA Astrophysics Data System (ADS)

    Lee, Jinil

    In SiC/SiC ceramic matrix composites, toughness is obtained by adding a fiber coating which provides a weak interface for crack deflection and debonding between the fiber and the matrix. However, the most commonly used fiber coatings, carbon and boron nitride, are unstable in oxidative environments. In the present study, the feasibility of using a chemically vapor deposited zirconia (CVD-ZrO 2) fiber coating as an oxidation-resistant interphase for SiC/SiC composites was investigated. The feasibility of the CVD-ZrO2 coating as a useful interphase for SiC/SiC composites was investigated with emphasis on developing critical processing-microstructure relationships. A study of morphological evolution in the CVD-ZrO2 coating suggested that a size-controlled displacive phase transformation from tetragonal ZrO2 (t-ZrO2) to monoclinic ZrO2 (m-ZrO2) was the key mechanism responsible for the weak interface behavior exhibited by the ZrO2 coating. The pre-delamination occurred as a result of (i) continuous formation of t-ZrO2 nuclei on the deposition surface; (ii) martensitic transformation of the tetragonal phase to a monoclinic phase upon reaching a critical grain size; and (iii) development of significant compressive hoop stresses due to the volume dilation associated with the transformation. We also discovered that low oxygen partial pressure in the CVD reactor was required for the nucleation of t-ZrO2 and was ultimately responsible for the delamination behavior. The effects of oxygen partial pressure on the nucleation behavior of the CVD-ZrO2 coating was systematically studied by intentionally adding the controlled amount of O2 into the CVD chamber. Characterization results suggested that the number density of t-ZrO2 nuclei apparently decreased with increasing the oxygen partial pressure from 0.004 to 1.6 Pa. Also, the coating layer became more columnar and contained larger m-ZrO2 grains. The observed relationships between the oxygen partial pressure and the morphological characteristics of the ZrO 2 coating were explained in the context of the grain size and oxygen deficiency effects which have been previously reported to cause the stabilization of the t-ZrO2 phase in bulk ZrO2 specimens.

  14. High-pressure phase transitions of α-quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III

    NASA Astrophysics Data System (ADS)

    Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter; Danilewsky, Andreas; Langenhorst, Falko; Ehm, Lars; Trullenque, Ghislain; Kenkmann, Thomas

    2017-07-01

    Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. Here, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions of α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s-1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO6 octahedra rather than the rearrangement of the SiO4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.

  15. Multimodal Pressure-Flow Analysis: Application of Hilbert Huang Transform in Cerebral Blood Flow Regulation

    NASA Astrophysics Data System (ADS)

    Lo, Men-Tzung; Hu, Kun; Liu, Yanhui; Peng, C.-K.; Novak, Vera

    2008-12-01

    Quantification of nonlinear interactions between two nonstationary signals presents a computational challenge in different research fields, especially for assessments of physiological systems. Traditional approaches that are based on theories of stationary signals cannot resolve nonstationarity-related issues and, thus, cannot reliably assess nonlinear interactions in physiological systems. In this review we discuss a new technique called multimodal pressure flow (MMPF) method that utilizes Hilbert-Huang transformation to quantify interaction between nonstationary cerebral blood flow velocity (BFV) and blood pressure (BP) for the assessment of dynamic cerebral autoregulation (CA). CA is an important mechanism responsible for controlling cerebral blood flow in responses to fluctuations in systemic BP within a few heart-beats. The MMPF analysis decomposes BP and BFV signals into multiple empirical modes adaptively so that the fluctuations caused by a specific physiologic process can be represented in a corresponding empirical mode. Using this technique, we showed that dynamic CA can be characterized by specific phase delays between the decomposed BP and BFV oscillations, and that the phase shifts are significantly reduced in hypertensive, diabetics and stroke subjects with impaired CA. Additionally, the new technique can reliably assess CA using both induced BP/BFV oscillations during clinical tests and spontaneous BP/BFV fluctuations during resting conditions.

  16. Transformations of fluxes and forces describing the simultaneous transport of water and heat in unsaturated porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raats, P.A.C.

    1975-12-01

    Balances of mass for the water in N distinct phases and a balance of heat for the medium as a whole were formulated. Following Philip and de Vries, it was assumed that the flux of water in each phase is proportional to the gradient of the pressure in that phase and that the diffusive component of the flux of heat is proportional to the gradient of the temperature. Clapeyron equations were used to express the gradient of the pressure in any phase in terms of the gradient of the pressure in a reference state and of the temperature. The referencemore » state may be the water in one of the phases or the water in some measuring device such as a tensiometer or a psychrometer. Expressions for the total flux of water and for the diffusive flux of heat plus the convective flux of heat associated with the conversion from any phase to the reference state were shown to satisfy the onsager reciprocal relations. A theorem due to Meixner was used to delineate the class of fluxes and forces that preserves these relations. In particular, it was shown that if the gradients of water content and temperature are used as the driving forces, the onsager relations are no longer satisfied.« less

  17. Phase transformations and indications for acoustic mode softening in Tb-Gd orthophosphate

    DOE PAGES

    Tschauner, Oliver; Ushakov, Sergey V.; Navrotsky, Alexandra; ...

    2016-01-06

    At ambient conditions the anhydrous rare-earth orthophosphates assume either the xenotime (zircon) or the monazite structure, with the latter favored for the heavier rare earths. Tb 0.5Gd 0.5PO 4 assumes the xenotime structure at ambient conditions but is at the border between the xenotime and monazite structures. Here we show that, at high pressure, Tb 0.5Gd 0.5PO 4 does not transform directly to monazite but through an intermediate anhydrite-type structure. We show softening of (c 1133 + c 1313) combined elastic moduli close to the transition from the anhydrite to the monazite structure. Stress response of rare-earth orthophosphate ceramics canmore » be affected by both formation of the anhydrite-type phase and the elastic softening in the vicinity of the monazite-phase. In conclusion, we report the first structural data for an anhydrite-type rare earth orthophosphate.« less

  18. Two-dimensional Coupled Petrological-tectonic Modelling of Extensional Basins

    NASA Astrophysics Data System (ADS)

    Kaus, B. J. P.; Podladchikov, Y. Y.; Connolly, J. A. D.

    Most numerical codes that simulate the deformation of a lithosphere assume the den- sity of the lithosphere to be either constant or depend only on temperature and pres- sure. It is, however, well known that rocks undergo phase transformations in response to changes in pressure and temperature. Such phase transformations may substantially alter the bulk properties of the rock (i.e., density, thermal conductivity, thermal ex- pansivity and elastic moduli). Several previous studies demonstrated that the density effects due to phase transitions are indeed large enough to have an impact on the litho- sphere dynamics. These studies were however oversimplified in that they accounted for only one or two schematic discontinuous phase transitions. The current study there- fore takes into account all the reactions that occur for a realistic lithospheric composi- tion. Calculation of the phase diagram and bulk physical properties of the stable phase assemblages for the crust and mantle within the continental lithosphere was done ac- counting for mineral solution behaviour using a free energy minimization program for natural rock compositions. The results of these calculations provide maps of the varia- tions in rock properties as a function of pressure and temperature that are easily incor- porated in any dynamic model computations. In this contribution we implemented a density map in the two-dimensional basin code TECMOD2D. We compare the results of the model with metamorphic reactions with a model without reactions and define some effective parameters that allow the use of a simpler model that still mimics most of the density effects of the metamorphic reactions.

  19. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model

    NASA Astrophysics Data System (ADS)

    Wong, Jessina; Jahn, David A.; Giovambattista, Nicolas

    2015-08-01

    We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - TMCT)-γ as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, TMCT = 209 K and γ = 2.14, very close to the corresponding experimental values TMCT = 221 K and γ = 2.2.

  20. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model.

    PubMed

    Wong, Jessina; Jahn, David A; Giovambattista, Nicolas

    2015-08-21

    We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - T(MCT))(-γ) as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, T(MCT) = 209 K and γ = 2.14, very close to the corresponding experimental values T(MCT) = 221 K and γ = 2.2.

  1. Swift heavy ion induced modifications in optical and electrical properties of cadmium selenide thin films

    NASA Astrophysics Data System (ADS)

    Choudhary, Ritika; Chauhan, Rishi Pal

    2017-07-01

    The modification in various properties of thin films using high energetic ion beam is an exciting area of basic and applied research in semiconductors. In the present investigations, cadmium selenide (CdSe) thin films were deposited on ITO substrate using electrodeposition technique. To study the swift heavy ion (SHI) induced effects, the deposited thin films were irradiated with 120 MeV heavy Ag9+ ions using pelletron accelerator facility at IUAC, New Delhi, India. Structural phase transformation in CdSe thin film from metastable cubic phase to stable hexagonal phase was observed after irradiation leading to decrease in the band gap from 2.47 eV to 2.12 eV. The phase transformation was analyzed through X-ray diffraction patterns. During SHI irradiation, Generation of high temperature and pressure by thermal spike along the trajectory of incident ions in the thin films might be responsible for modification in the properties of thin films.[Figure not available: see fulltext.

  2. Hydrogen-induced morphotropic phase transformation of single-crystalline vanadium dioxide nanobeams.

    PubMed

    Hong, Woong-Ki; Park, Jong Bae; Yoon, Jongwon; Kim, Bong-Joong; Sohn, Jung Inn; Lee, Young Boo; Bae, Tae-Sung; Chang, Sung-Jin; Huh, Yun Suk; Son, Byoungchul; Stach, Eric A; Lee, Takhee; Welland, Mark E

    2013-04-10

    We report a morphotropic phase transformation in vanadium dioxide (VO2) nanobeams annealed in a high-pressure hydrogen gas, which leads to the stabilization of metallic phases. Structural analyses show that the annealed VO2 nanobeams are hexagonal-close-packed structures with roughened surfaces at room temperature, unlike as-grown VO2 nanobeams with the monoclinic structure and with clean surfaces. Quantitative chemical examination reveals that the hydrogen significantly reduces oxygen in the nanobeams with characteristic nonlinear reduction kinetics which depend on the annealing time. Surprisingly, the work function and the electrical resistance of the reduced nanobeams follow a similar trend to the compositional variation due mainly to the oxygen-deficiency-related defects formed at the roughened surfaces. The electronic transport characteristics indicate that the reduced nanobeams are metallic over a large range of temperatures (room temperature to 383 K). Our results demonstrate the interplay between oxygen deficiency and structural/electronic phase transitions, with implications for engineering electronic properties in vanadium oxide systems.

  3. Model for the formation of the earth's core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammon, C.A.; Ringwood, A.E.; Jackson, I.

    1983-02-15

    The recent discovery of a phase transformation in Fe/sub 0.94/O by Jeanloz and Ahrens has allowed a more detailed development of a model for core formation involving oxygen as the principal light alloying element in the core. It is predicted, based on calculations, that an increasing pressure in the system FeO-MgO will result in a gradual exsolution of an almost pure high-pressure phase FeO(hpp), leaving an iron-depleted (Fe,Mg)O rocksalt (B1) phase. We also predict that FeO(hhp) will form a low-melting point alloy with Fe at high temperature and high pressure. On the basis of our interpretations, we have constructed amore » model for core segregation. Assuming the earth to have accreted from the primordial solar nebula as a relatively homogeneous mixture of metallic iron and silicate-oxide phases, core segregation involving oxygen would commence at a depth where pressure is sufficiently high to cause exsolution of FeO(hpp) from the rocksalt phase, and temperature is sufficiently high to allow formation of an Fe-FeO(hpp) melt. A gravitational instability arises, leading to vertical differentiation of the earth as molten blobs of the metal sink downwards to form the core and the residual depleted silicate material coalesces to form large bodies which rise diapirically upwards to form the mantle.« less

  4. Phase stability of iron germanate, FeGeO 3, to 127 GPa

    DOE PAGES

    Dutta, R.; Tracy, S. J.; Stan, C. V.; ...

    2017-11-15

    The high-pressure behavior of germanates is of interest as these compounds serve as analogs for silicates of the deep Earth. Current theoretical and experimental studies of iron germanate, FeGeO 3, are limited. Here in this paper, we have examined the behavior of FeGeO 3 to 127 GPa using the laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. Upon compression at room temperature, the ambient-pressure clinopyroxene phase transforms to a disordered triclinic phase [FeGeO 3 (II)] at ~ 18 GPa in agreement with earlier studies. An additional phase transition to FeGeO 3 (III) occurs above 54 GPa atmore » room temperature. Laser-heating experiments (~ 1200–2200 K) were conducted at three pressures (33, 54, and 123 GPa) chosen to cover the stability regions of different GeO 2 polymorphs. In all cases, we observe that FeGeO 3 dissociates into GeO 2 + FeO at high pressure and temperature conditions. Neither the perovskite nor the post-perovskite phase was observed up to 127 GPa at ambient or high temperatures. The results are consistent with the behavior of FeSiO 3, which also dissociates into a mixture of the oxides (FeO + SiO 2) at least up to 149 GPa.« less

  5. On the P 21/m and Pmmn pathways of the B1 B2 phase transition in NaCl: a quantum-mechanical study

    NASA Astrophysics Data System (ADS)

    Catti, Michele

    2004-06-01

    The monoclinic P 21/m and orthorhombic Pmmn (Watanabe et al' s-type) mechanisms of the high-pressure phase transition of NaCl between the B1 (rocksalt, Fm\\overline 3 m ) and B2 (CsCl-like, Pm\\overline 3 m ) cubic phases were investigated by ab initio DFT techniques with all-electron localized basis sets. Enthalpy profiles versus the order parameter were computed at constant pressures of 15, 26.3 (equilibrium) and 35 GPa for each pathway. The monoclinic path shows a lower activation enthalpy at the equilibrium pressure, but at different p values (hysteresis effects) the other mechanism becomes competitive. In the P 21/m case, sharp jumps of structural parameters are observed along the transformation coordinate, which can be explained by a mechanism based on discontinuous sliding of alternating pairs of (100) atomic layers. This accounts also for the predicted formation of a metastable intermediate Cmcm phase with TlI-like structure, similar to that observed experimentally at high pressure in AgCl, and the relations with the KOH structure are discussed, too. On the other hand, along the Pmmn pathway the structural parameters vary quite smoothly, indicating a continuous motion of neighbouring atomic planes within the constraint of the additional mirror symmetry.

  6. Predicting kinetics of polymorphic transformations from structure mapping and coordination analysis

    NASA Astrophysics Data System (ADS)

    Stevanović, Vladan; Trottier, Ryan; Musgrave, Charles; Therrien, Félix; Holder, Aaron; Graf, Peter

    2018-03-01

    To extend materials design and discovery into the space of metastable polymorphs, rapid and reliable assessment of transformation kinetics to lower energy structures is essential. Herein we focus on diffusionless polymorphic transformations and investigate routes to assess their kinetics using solely crystallographic arguments. As part of this investigation we developed a general algorithm to map crystal structures onto each other, and ascertain the low-energy (fast-kinetics) transformation pathways between them. Pathways with minimal dissociation of chemical bonds, along which the number of bonds (in ionic systems the first-shell coordination) does not decrease below that in the end structures, are shown to always be the fast-kinetics pathways. These findings enable the rapid assessment of the kinetics of polymorphic transformation and the identification of long-lived metastable structures. The utility is demonstrated on a number of transformations including those between high-pressure SnO2 phases, which lack a detailed atomic-level understanding.

  7. Modeling of wave-coherent pressures in the turbulent boundary layer above water waves

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Yiannis ALEX.

    1988-01-01

    The behavior of air pressure fluctuations induced by progressive water waves generated mechanically in a laboratory tank was simulated by solving a modified Orr-Sommerfeld equation in a transformed Eulerian wave-following frame of reference. Solution is obtained by modeling the mean and wave-coherent turbulent Reynolds stresses, the behavior of which in the turbulent boundary layer above the waves was simulated using a turbulent kinetic energy-dissipation model, properly modified to account for free-surface proximity and favorable pressure gradient effects. The distribution of both the wave-coherent turbulent Reynolds stress and pressure amplitudes and their corresponding phase lags was found to agree reasonably well with available laboratory data.

  8. Theoretical prediction of the structural properties of uranium chalcogenides under high pressure

    NASA Astrophysics Data System (ADS)

    Kapoor, Shilpa; Yaduvanshi, Namrata; Singh, Sadhna

    2018-05-01

    Uranium chalcogenides crystallize in rock salt structure at normal condition and transform to Cesium Chloride structure at high pressure. We have investigated the transition pressure and volume drop of USe and UTe using three body potential model (TBIP). Present model includes long range Columbic, three body interaction forces and short range overlap forces operative up to next nearest neighbors. We have reported the phase transition pressure, relative volume collapses, the thermo physical properties such as molecular force constant (f), infrared absorption frequency (v0), Debye temperature (θD) and Gruneisen parameter (γ) of present chalcogenides and found that our results in general good agreement with experimental and other theoretical data.

  9. High Pressure X-Ray Diffraction Studies of Bi2-xSbxTe3 (x = 0,1,2)

    NASA Astrophysics Data System (ADS)

    Jacobsen, M. K.; Kumar, R. S.; Cornelius, A. L.; Sinogeiken, S. V.; Nico, M. F.

    2007-12-01

    Recently, pressure tuning of the thermoelectric figure of merit has been reported for several materials Bi2Te3 based thermoelectric materials [2],[10],[12]. In order to investigate the bulk properties of Bi2Te3, Sb2Te3, and their solid solution in detail, we have performed structural studies up to 20 GPa. Our diffraction results show that all three compounds transform from the ambient pressure structure to a high pressure phase between 7 and 10 GPa. In addition, these diffraction results have been converted to Vinet and Holzapfel equations of state to test the claim of electronic topological transitions in these structures [3].

  10. Exploring the high-pressure behavior of the three known polymorphs of BiPO{sub 4}: Discovery of a new polymorph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Errandonea, D., E-mail: daniel.errandonea@uv.es; García-Domene, B.; Gomis, O.

    We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2–0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous applicationmore » of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO{sub 4}. Room-temperature pressure-volume equations of state are reported. BiPO{sub 4} was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO{sub 4}. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO{sub 4}. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (0 1 0) plane at approximately 15° (21°) to the a axis for the case of our experimental (theoretical) study.« less

  11. High-Pressure Study of Perovskites and Postperovskites in the (Mg,Fe)GeO 3 System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Camelia V.; Dutta, Rajkrishna; Cava, Robert J.

    2017-06-22

    The effect of incorporation of Fe 2+ on the perovskite (Pbnm) and postperovskite (Cmcm) structures was investigated in the (Mg,Fe)GeO 3 system at high pressures and temperatures using laser-heated diamond anvil cell and synchrotron X-ray diffraction. Samples with compositions of Mg# ≥ 48 were shown to transform to the perovskite (~30 GPa and ~1500 K) and postperovskite (>55 GPa, ~1600–1800 K) structures. Compositions with Mg# ≥ 78 formed single-phase perovskite and postperovskite, whereas those with Mg# < 78 showed evidence for partial decomposition. The incorporation of Fe into the perovskite structure causes a decrease in octahedral distortion as well asmore » a modest decrease in bulk modulus (K 0) and a modest increase in zero-pressure volume (V 0). It also leads to a decrease in the perovskite-to-postperovskite phase transition pressure by ~9.5 GPa over compositions from Mg#78 to Mg#100.« less

  12. Structural transition and amorphization in compressed α - Sb 2 O 3

    DOE PAGES

    Zhao, Zhao; Zeng, Qiaoshi; Zhang, Haijun; ...

    2015-05-27

    Sb₂O₃-based materials are of broad interest in materials science and industry. High-pressure study using diamond anvil cells shows promise in obtaining new crystal and electronic structures different from their pristine states. Here, we conducted in situ angle dispersive synchrotron x-ray-diffraction and Raman spectroscopy experiments on α-Sb₂O₃ up to 50 GPa with neon as the pressure transmitting medium. A first-order structural transition was observed in between 15 and 20 GPa, where the cubic phase I gradually transformed into a layered tetragonal phase II through structural distortion and symmetry breaking. To explain the dramatic changes in sample color and transparency, we performedmore » first-principles calculations to track the evolution of its density of states and electronic structure under pressure. At higher pressure, a sluggish amorphization was observed. Our results highlight the structural connections among the sesquioxides, where the lone electron pair plays an important role in determining the local structures.« less

  13. Micro-stress dominant displacive reconstructive transition in lithium aluminate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Qiwei; Yan, Xiaozhi; Zhang, Leilei

    It is supposed that diffusive reconstructive transitions usually take place under hydrostatic pressure or low stresses, and displacive reconstructive phase transitions easily occur at nonhydrostatic pressure. Here, by in-situ high pressure synchrotron X-ray diffraction and single-crystal Raman scattering studies on lithium aluminate at room temperature, we show that the reconstructive transition mechanism is dependent on the internal microscopic stresses rather than the macroscopic stresses. In this case, even hydrostatic pressure can favor the displacive transition if the compressibility of crystal is anisotropic. During hydrostatic compression, γ-LiAlO{sub 2} transforms to δ-LiAlO{sub 2} at about 4 GPa, which is much lower than thatmore » in previous nonhydrostatic experiments (above 9 GPa). In the region where both phases coexist, there are enormous microscopic stresses stemming from the lattice mismatch, suggesting that this transition is displacive. Furthermore, the atomic picture is drawn with the help of the shear Raman modes.« less

  14. Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb) 2 (Se,Te) 3

    DOE PAGES

    Jeffries, J. R.; Butch, N. P.; Vohra, Y. K.; ...

    2015-03-18

    The group V-VI compounds|like Bi 2Se 3, Sb 2Te 3, or Bi 2Te 3|have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and crystal structure of a pseudobinary (Bi,Sb) 2(Te,Se) 3 compound. Similar to some ofmore » its sister compounds, the (Bi,Sb) 2(Te,Se) 3 pseudobinary compound undergoes multiple, pressure-induced phase transformations that result in metallization, the onset of a close-packed crystal structure, and the development of distinct superconducting phases.« less

  15. Static High Pressure Structural studies on Dy to 119 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, J R; Saw, C K; Akella, J

    2003-11-12

    Structural phase transitions in the rare-earth metal Dysprosium have been studied in a Diamond Anvil Cell (DAC) to 119 GPa by x-ray diffraction. Four transformations following the sequence hcp {yields} Sm-type {yields} dhcp {yields} hR24 (hexagonal) {yields} bcm (monoclinic) are observed at 6, 15, 43, and 73 GPa respectively. The hexagonal to monoclinic transformation is accompanied by a 6% reduction in volume, which is attributed to delocalization of the 4f electrons, similar to that seen in Ce, Pr, and Gd.

  16. Structural transformation of Si-rich SiNx film on Si via swift heavy ions irradiation

    NASA Astrophysics Data System (ADS)

    Murzalinov, D.; Akilbekov, A.; Dauletbekova, A.; Vlasukova, L.; Makhavikov, M.; Zdorovets, M.

    2018-03-01

    The effects of 200 MeV-Xe+ irradiation with fluencies of (109–1014) cm‑2 on the phase-structural transformation of Si-rich SiNx film deposited on Si substrate by low-pressure chemical vapor deposition have been reported. It has been shown from Raman scattering data that the swift heavy ions irradiation results in the dissolution of amorphous Si nanoclusters in nitride matrix. It has been shown, too, that the swift heavy ion irradiation leads to quenching a visual photoluminescence from nitride films.

  17. New structure of high-pressure body-centered orthorhombic Fe 2 SiO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki

    2015-08-01

    A structural change in Fe2SiO4 spinel (ringwoodite) has been found by synchrotron powder diffraction study and the structure of a new high-pressure phase was determined by Monte-Carlo simulation method and Rietveld profile fitting of X-ray diffraction data up to 64 GPa at ambient temperature. A transition from the cubic spinel structure to a body centered orthorhombic phase (I-Fe2SiO4) with space group Imma and Z = 4 was observed at approximately 34 GPa. The structure of I-Fe2SiO4 has two crystallographically independent FeO6 octahedra. Iron resides in two different sites of sixfold coordination: Fe1 and Fe2, which are arranged in layers parallelmore » to (101) and (011) and are very similar to the layers of FeO6 octahedra in the spinel structure. Silicon is located in the sixfold coordination in I-Fe2SiO4. The transformation to the new high-pressure phase is reversible under decompression at ambient temperature. A martensitic transformation of each slab of the spinel structure with translation vector Embedded Image generates the I-Fe2SiO4 structure. Laser heating of I-Fe2SiO4 at 1500 K results in a decomposition of the material to rhombohedral FeO and SiO2 stishovite. FeKβ X-ray emission measurements at high pressure up to 65 GPa show that the transition from a high spin (HS) to an intermediate spin (IS) state begins at 17 GPa in the spinel phase. The IS electron spin state is gradually enhanced with pressure. The Fe2+ ion at the octahedral site changes the ion radius under compression at the low spin, which results in the changes of the lattice parameter and the deformation of the octahedra of the spinel structure. The compression curve of the lattice parameter of the spinel is discontinuous at ~20 GPa. The spin transition induces an isostructural change.« less

  18. Experimental shock deformation in zircon: a transmission electron microscopic study

    NASA Astrophysics Data System (ADS)

    Leroux, H.; Reimold, W. U.; Koeberl, C.; Hornemann, U.; Doukhan, J.-C.

    1999-06-01

    In recent years, apparently shock-induced and, thus, impact-characteristic microdeformations, in the form of planar microdeformation features and so-called strawberry (granular) texture, have been observed in zircons in rocks from confirmed impact structures and from the K/ T boundary. The nature of the planar microdeformations in this mineral is, however, still unknown, and critical information is needed regarding the shock pressure range in which these deformation effects are produced. We experimentally shock deformed two series of thin zircon (ZrSiO 4) target plates, cut perpendicular to the c-axis, at shock pressures of 20, 40, and 60 GPa. The recovered samples were characterized by optical and scanning electron microscopy. In addition, one sample series was studied by transmission electron microscopy (TEM). Microdeformation effects observed at 20 GPa include pervasive micro-cleavage and dislocation patterns. Plastic deformation is indicated by a high density of straight dislocations in glide configuration. The dominant glide systems are <100>{010}. Micro-cleavages, induced by shear stresses during the compression stage, occur mostly in the {100} planes. The large density of dislocations at crack tips shows that plastic deformation was initiated by the micro-cracking processs. At 40 GPa, the sample was partly transformed from the zircon (z) to a scheelite (CaWO 4)-type (s) structure. Planar deformation features (PDFs) containing an amorphous phase of zircon composition are present in the not yet transformed zircon relics. The phase with scheelite structure, initiated in the {100} planes of zircon, consists of thin (0.1 to several μm) bands that crosscut the zircon matrix. The phase transformation is displacive (martensitic) and can be related by {100} z // {112} s and [001] z // <110> s. The scheelite structure phase is densely twinned, with twins in the (112) plane. The 60-GPa sample consists completely of the scheelite structure phase. Crosscutting and displacing relationships between twins and PDFs demonstrate that PDFs are formed in the zircon structure, i.e., before the phase transformation to the scheelite structure occurred, most likely at the shock front. Crystallographic orientations of optically visible planar features in zircon, in comparison with orientations of planar defects at the TEM scale, suggest that the optically visible features are more likely planar microfractures than PDFs.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, E A; Zaug, J M; Burnham, A K

    The effect of pressure on the thermal decomposition rate of the energetic material HMX was studied. HMX was precompressed in a diamond anvil cell (DAC) and heated at various rates. The parent species population was monitored as a function of time and temperature using Fourier transform infrared (FTIR) spectroscopy. Decomposition rates were determined by fitting the fraction reacted to the extended-Prout-Tompkins nucleation-growth model and the Friedman isoconversional method. The results of these experiments and analysis indicate that pressure accelerates the decomposition at low to moderate pressures (i.e. between ambient pressure and 1 GPa) and decelerates the decomposition at higher pressures.more » The decomposition acceleration is attributed to pressure enhanced autocatalysis whereas the deceleration at high pressures is attributed pressure inhibiting bond homolysis step(s), which would result in an increase in volume. These results indicate that both {beta} and {delta} phase HMX are sensitive to pressure in the thermally induced decomposition kinetics.« less

  20. Ferroelastic phase transitions in (NH4)2TaF7

    NASA Astrophysics Data System (ADS)

    Pogorel'tsev, E. I.; Mel'nikova, S. V.; Kartashev, A. V.; Molokeev, M. S.; Gorev, M. V.; Flerov, I. N.; Laptash, N. M.

    2013-03-01

    The heat capacity, unit cell parameters, permittivity, optical properties, and thermal expansion of the (NH4)2TaF7 compound with a seven-coordinated anion polyhedron have been measured. It has been found that the compound undergoes two successive phase transitions with the symmetry change: tetragonal → ( T 1 = 174 K) orthorhombic → ( T 2 = 156 K) tetragonal. The ferroelastic nature of structural transformations has been established, and their entropy and susceptibility to hydrostatic pressure have been determined.

  1. REPLY: Reply to Comment on 'Study of the phase transformations and equation of state of magnesium by synchrotron x-ray diffraction'

    NASA Astrophysics Data System (ADS)

    Errandonea, Daniel

    2004-12-01

    This reply aims to clarify some of the arguments presented in a previous publication (Errandonea et al 2003 J. Phys.: Condens. Matter 15 1277), which have been criticized in the preceding comment by Olijnyk. The article in question reported the existence of a new high-pressure and high-temperature dhcp phase in magnesium and presented strong evidence that invites one to re-study the up-to-now-established room temperature structural sequence of magnesium.

  2. Structural complexity of simple Fe 2O 3 at high pressures and temperatures

    DOE PAGES

    Bykova, Elena; Dubrovinsky, L.; Dubrovinskaia, N.; ...

    2016-02-11

    Although chemically very simple, Fe 2O 3 is known to undergo a series of enigmatic structural, electronic and magnetic transformations at high pressures and high temperatures. So far, these transformations have neither been correctly described nor understood because of the lack of structural data. Here we report a systematic investigation of the behaviour of Fe 2O 3 at pressures over 100 GPa and temperatures above 2,500 K employing single crystal X-ray diffraction and synchrotron Mössbauer source spectroscopy. Crystal chemical analysis of structures presented here and known Fe(II, III) oxides shows their fundamental relationships and that they can be described bymore » the homologous series nFeO·mFe 2O 3. Decomposition of Fe 2O 3 and Fe 3O 4 observed at pressures above 60 GPa and temperatures of 2,000 K leads to crystallization of unusual Fe 5O 7 and Fe 25O 32 phases with release of oxygen. Lastly, our findings suggest that mixed-valence iron oxides may play a significant role in oxygen cycling between earth reservoirs.« less

  3. Polymorphism in Strontium Tungstate SrWO4 under Quasi-Hydrostatic Compression.

    PubMed

    Santamaria-Perez, David; Errandonea, Daniel; Rodriguez-Hernandez, Placida; Muñoz, Alfonso; Lacomba-Perales, Raul; Polian, Alain; Meng, Yue

    2016-10-03

    The structural and vibrational properties of SrWO 4 have been studied experimentally up to 27 and 46 GPa, respectively, by angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy measurements as well as using ab initio calculations. The existence of four polymorphs upon quasi-hydrostatic compression is reported. The three phase transitions were found at 11.5, 19.0, and 39.5 GPa. The ambient-pressure SrWO 4 tetragonal scheelite-type structure (S.G. I4 1 /a) undergoes a transition to a monoclinic fergusonite-type structure (S.G. I2/a) at 11.5 GPa with a 1.5% volume decrease. Subsequently, at 19.0 GPa, another structural transformation takes place. Our calculations indicate two possible post-fergusonite phases, one monoclinic and the other orthorhombic. In the diffraction experiments, we observed the theoretically predicted monoclinic LaTaO 4 -type phase coexisting with the fergusonite-type phase up to 27 GPa. The coexistence of the two phases and the large volume collapse at the transition confirm a kinetic hindrance typical of first-order phase transitions. Significant changes in Raman spectra suggest a third pressure-induced transition at 39.5 GPa. The conclusions extracted from the experiments are complemented and supported by ab initio calculations. Our data provides insight into the structural mechanism of the first transition, with the formation of two additional W-O contacts. The fergusonite-type phase can be therefore considered as a structural bridge between the scheelite structure, composed of [WO 4 ] tetrahedra, and the new higher pressure phases, which contain [WO 6 ] octahedra. All the observed phases are compatible with the high-pressure structural systematics predicted for ABO 4 compounds using crystal-chemistry arguments such as the diagram proposed by Bastide.

  4. Saving water in showers

    NASA Astrophysics Data System (ADS)

    Alkhaddar, R. A.; Phipps, D.; Morgan, R.; Karci, B.; Hordesseux, J.

    2007-07-01

    This project is part of a programme aimed at reducing water consumption. Power showers are water inefficient, but in order to persuade the user to accept a lower water use it will be necessary to sustain the "shower experience" to maintain user satisfaction. Previous work has indicated that users' requirements include temperature stability, adequate water volume and distribution, and skin pressure, all of which are substantially controlled by the showerhead. In the present phase of the project several commercially available domestic showerheads have been examined to determine pressure-volume characteristics, radial spray distributions at different flow rates, direct and indirect measures of "skin pressure" and measurements of vertical temperature profiles. Part of the practical work at LJMU has supported extensive theoretical studies by CFD carried out by staff at Arup (consulting engineers) for the Market Transformation Programme. A future phase will study user satisfaction in their own homes where user satisfaction will be surveyed and linked to the physical performance of the shower.

  5. Pressure-induced polymerization of P(CN) 3

    DOE PAGES

    Gou, Huiyang; Yonke, Brendan L.; Epshteyn, Albert; ...

    2015-05-21

    Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN) 3, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder Xray diffraction (PXRD) measurements taken during compression show that molecular P(CN) 3 is highly compressible with a bulk modulus of 10.0±0.3 GPa and polymerizes into an amorphous solid above ~10.0 GPa. Raman and infrared (IR) spectra, togethermore » with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp 2 character, similar to known carbon nitrides, resulting in a novel PCN polymeric phase, which is recoverable to ambient pressure.« less

  6. Wavelet assessment of cerebrospinal compensatory reserve and cerebrovascular pressure reactivity

    NASA Astrophysics Data System (ADS)

    Latka, M.; Turalska, M.; Kolodziej, W.; Latka, D.; West, B.

    2006-03-01

    We employ complex continuous wavelet transforms to develop a consistent mathematical framework capable of quantifying both cerebrospinal compensatory reserve and cerebrovascular pressure--reactivity. The wavelet gain, defined as the frequency dependent ratio of time averaged wavelet coefficients of intracranial (ICP) and arterial blood pressure (ABP) fluctuations, characterizes the dampening of spontaneous arterial blood oscillations. This gain is introduced as a novel measure of cerebrospinal compensatory reserve. For a group of 10 patients who died as a result of head trauma (Glasgow Outcome Scale GOS =1) the average gain is 0.45 calculated at 0.05 Hz significantly exceeds that of 16 patients with favorable outcome (GOS=2): with gain of 0.24 with p=4x10-5. We also study the dynamics of instantaneous phase difference between the fluctuations of the ABP and ICP time series. The time-averaged synchronization index, which depends upon frequency, yields the information about the stability of the phase difference and is used as a cerebrovascular pressure--reactivity index. The average phase difference for GOS=1 is close to zero in sharp contrast to the mean value of 30^o for patients with GOS=2. We hypothesize that in patients who died the impairment of cerebral autoregulation is followed by the break down of residual pressure reactivity.

  7. Structural phase transitions in GaAs to 108 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, S.T.; Vohra, Y.K.; Vanderborgh, C.A.

    1989-01-15

    The III-V compound GaAs was studied using energy-dispersive x-ray diffraction with a synchro- tron source up to a pressure of 108 GPa. When the pressure was increased to 16.6 GPa, the GaAs sample transformed from the zinc-blende structure to an orthorhombic structure (GaAs(II)), space group Pmm2, consisting of a primitive orthorhombic lattice with a basis of (0,0,0) and (0,(1/2,..cap alpha..), where ..cap alpha.. = 0.35. Upon a further increase of pressure to 24 +- 1 GPa, GaAs(II) transformed to another orthorhombic structure (GaAs(III)), space group Imm2, consisting of a body-centered orthorhombic lattice with a basis of (0,0,0) and (0, (1/2,..delta..),more » where ..delta.. is 0.425 at 28.1 GPa. With increasing pressure, ..delta.. approached (1/2 and the GaAs(III) structure gradually assumed the symmetry of the simple hexagonal structure. The transition to the simple hexagonal structure (GaAs(IV)) was completed in the vicinity of 60--80 GPa. The structure remains simple hexagonal up to at least 108 GPa, the highest pressure reached in this study.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo

    Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC 2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC 2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6– are identified with gas chromatography-mass spectrometrymore » and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 10 7 fold enhancement of the electrical conductivity. As a result, the polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.« less

  9. Phase Stability and Transformations in Vanadium Oxide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Bergerud, Amy Jo

    Vanadium oxides are both fascinating and complex, due in part to the many compounds and phases that can be stabilized as well as the phase transformations which occur between them. The metal to insulator transitions (MITs) that take place in vanadium oxides are particularly interesting for both fundamental and applied study as they can be induced by a variety of stimuli ( i.e., temperature, pressure, doping) and utilized in many applications (i.e., smart windows, sensors, phase change memory). Nanocrystals also tend to demonstrate interesting phase behavior, due in part to the enhanced influence of surface energy on material thermodynamics. Vanadium oxide nanocrystals are thus expected to demonstrate very interesting properties in regard to phase stability and phase transformations, although synthesizing vanadium oxides in nanocrystal form remains a challenge. Vanadium sesquioxide (V2O3) is an example of a material that undergoes a MIT. For decades, the low temperature monoclinic phase and high temperature corundum phase were the only known crystal structures of V2O3. However, in 2011, a new metastable polymorph of V2O3 was reported with a cubic, bixbyite crystal structure. In Chapter 2, a colloidal route to bixbyite V2O 3 nanocrystals is presented. In addition to being one of the first reported observations of the bixbyite phase in V2O3, it is also one of the first successful colloidal syntheses of any of the vanadium oxides. The nanocrystals possess a flower-like morphology, the size and shape of which are dependent on synthesis time and temperature, respectively. An aminolysis reaction mechanism is determined from Fourier transform infrared spectroscopy data and the bixbyite crystal structure is confirmed by Rietveld refinement of X-ray diffraction (XRD) data. Phase stability is assessed in both air and inert environments, confirming the metastable nature of the material. Upon heating in an inert atmosphere above 700°C, the nanocrystals irreversibly transform to the bulk stable corundum phase of V2O3 with concurrent particle coarsening. This, in combination with the enhanced stability of the nanocrystals over bulk, suggests that the bixbyite phase may be stabilized due to surface energy effects, a well-known phenomenon in nanocrystal research. In Chapter 3, the reversible incorporation of oxygen in bixbyite V 2O3 is reported, which can be controlled by varying temperature and oxygen partial pressure. Based on XRD and thermogravimetric analysis, it is found that oxygen occupies interstitial sites in the bixbyite lattice. Two oxygen atoms per unit cell can be incorporated rapidly and with minimal changes to the structure while the addition of three or more oxygen atoms destabilizes the structure, resulting in a phase change that can be reversed upon oxygen removal. Density functional theory (DFT) supports the reversible occupation of interstitial sites in bixbyite by oxygen and the 1.1 eV barrier to oxygen diffusion predicted by DFT matches the activation energy of the oxidation process derived from observations by in situ XRD. The observed rapid oxidation kinetics are thus facilitated by short diffusion paths through the bixbyite nanocrystals. Due to the exceptionally low temperatures of oxidation and reduction, this material, made from earth-abundant atoms, is proposed for use in oxygen storage applications, where oxygen is reversibly stored and released. Further oxidation of bixbyite V2O3 under controlled oxygen partial pressure can lead to the formation of nanocrystalline vanadium dioxide (VO2), a material that is studied for its MIT that occurs at 68 C in the bulk. This transformation is accompanied by a change in crystal structure, from monoclinic to rutile phase, and a change in optical properties, from infrared transparent to infrared blocking. Because of this, VO2 is promising for thermochromic smart window applications, where optical properties vary with temperature. Recently, alternative stimuli have been utilized to trigger MITs in VO2, including electrochemical gating. Rather than inducing the expected monoclinic to rutile phase transition as originally proposed, electrochemical gating of the insulating phase was recently shown to induce oxygen vacancy formation in VO2, thereby inducing metallization, while the characteristic V-V dimerization of the monoclinic phase was retained. In Chapter 4, the preparation and electrochemical reduction of VO2 nanocrystal films is presented. The nanocrystalline morphology allows for the study of transformations under conditions that enhance the gating effect by creating a large VO2-electrolyte interfacial area and by reducing the path length for diffusion. The resulting transitions are observed optically, from insulator to metal to insulator and back, with in situ visible-near infrared spectroelectrochemistry and correlated with structural changes monitored by Raman and X-ray absorption spectroscopies. The never-before-seen transition to an insulating phase under progressive electrochemical reduction is attributed to an oxygen defect induced phase transition to a new phase. This is likely enabled by the nanocrystalline nature of the sample, which may enhance the kinetics of oxygen diffusion, support a higher degree of lattice expansion-induced strain, or simply alter the thermodynamics of the system.

  10. Carbon nanohorns under cold compression to 40 GPa: Raman scattering and X-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Li, Bo; Nan, Yanli; Zhao, Xiang; Song, Xiaolong; Li, Haining; Wu, Jie; Su, Lei

    2017-11-01

    We report a high-pressure behavior of carbon nanohorns (CNHs) to 40 GPa at ambient temperature by in situ Raman spectroscopy and synchrotron radiation x-ray diffraction (XRD) in a diamond anvil cell. In Raman measurement, multiple structural transitions are observed. In particular, an additional band at ˜1540 cm-1 indicative of sp3 bonding is shown above 35 GPa, but it reverses upon releasing pressure, implying the formation of a metastable carbon phase having both sp2 and sp3 bonds. Raman frequencies of all bands (G, 2D, D + G, and 2D') are dependent upon pressure with respective pressure coefficients, among which the value for the G band is as small as ˜2.65 cm-1 GPa-1 above 10 GPa, showing a superior high-pressure structural stability. Analysis based on mode Grüneisen parameter demonstrates the similarity of high-pressure behavior between CNHs and single-walled carbon nanotubes. Furthermore, the bulk modulus and Grüneisen parameter for the G band of CNHs are calculated to be ˜33.3 GPa and 0.1, respectively. In addition, XRD data demonstrate that the structure of post-graphite phase derives from surface nanohorns. Based on topological defects within conical graphene lattice, a reasonable transformation route from nanohorns to the post-graphite phase is proposed.

  11. Stability and superconducting properties of GaH5 at high pressure

    NASA Astrophysics Data System (ADS)

    Ning, Yan-Li; Yang, Wen-Hua; Zang, Qing-Jun; Lu, Wen-Cai

    2017-11-01

    Using genetic algorithm (GA) method combined with first-principles calculations, the structures, dynamical and thermodynamic stabilities of GaH5 were studied. The calculated results suggested that at the pressure range 150-400 GPa, the P21/m phase of GaH5 is the most favorable phase and dynamically stable, but thermodynamically it is unstable and can decompose into GaH3 and H2. The superconducting property of GaH5 was further calculated, and the predicted superconducting transformation temperature Tc of GaH5 P21/m phase is about 35.63 K at 250 GPa. Besides, we compared the GaH5 and GaH3 superconducting properties, and found that GaH3-Pm-3n structure has a larger DOS near Fermi level than GaH5-P21/m structure, which may be the main reason causing higher Tc of GaH3 than GaH5.

  12. Time-dependence of the alpha to epsilon phase transformation in iron

    DOE PAGES

    Smith, R. F.; Eggert, J. H.; Swift, D. C.; ...

    2013-12-11

    Here, iron was ramp-compressed over timescales of 3 ≤ t(ns) ≤ 300 to study the time-dependence of the α→ε (bcc→hcp) phase transformation. Onset stresses (σ α→ε) for the transformation ~14.8-38.4 GPa were determined through laser and magnetic ramp-compression techniques where the transition strain-rate was varied between 10 6 ≤more » $$\\dot{μ}$$ α→ε(s ₋1) ≤ 5×10 8. We find σ α→ε= 10.8 + 0.55 ln($$\\dot{μ}$$ α→ε) for $$\\dot{μ}$$ α→ε < 10 6/s and σ α→ε= 1.15($$\\dot{μ}$$ α→ε) 0.18 for $$\\dot{μ}$$ α→ε > 10 6/s. This $$\\dot{μ}$$ response is quite similar to recent results on incipient plasticity in Fe suggesting that under high rate ramp compression the α→ε phase transition and plastic deformation occur through similar mechanisms, e.g., the rate limiting step for $$\\dot{μ}$$ > 10 6/s is due to phonon scattering from defects moving to relieve strain. We show that over-pressurization of equilibrium phase boundaries is a common feature exhibited under high strain-rate compression of many materials encompassing many orders of magnitude of strain-rate.« less

  13. Pressure-induced phase transitions in the CdC r2S e4 spinel

    NASA Astrophysics Data System (ADS)

    Efthimiopoulos, I.; Liu, Z. T. Y.; Kucway, M.; Khare, S. V.; Sarin, P.; Tsurkan, V.; Loidl, A.; Wang, Y.

    2016-11-01

    We have conducted high-pressure x-ray diffraction and Raman spectroscopic studies on the CdC r2S e4 spinel at room temperature up to 42 GPa. We have resolved three structural transitions up to 42 GPa, i.e., the starting F d 3 ¯m phase transforms at ˜11 GPa into a tetragonal I 41/a m d structure, an orthorhombic distortion was observed at ˜15 GPa , whereas structural disorder initiates beyond 25 GPa. Our ab initio density functional theory studies successfully reproduced the observed crystalline-to-crystalline structural transitions. In addition, our calculations propose an antiferromagnetic ordering as a potential magnetic ground state for the high-pressure tetragonal and orthorhombic modifications, compared with the starting ferromagnetic phase. Furthermore, the computational results indicate that all phases remain insulating in their stability pressure range, with a direct-to-indirect band gap transition for the F d 3 ¯m phase taking place at 5 GPa. We attempted also to offer an explanation behind the peculiar first-order character of the F d 3 ¯m (cubic ) →I 41/a m d (tetragonal) transition observed for several relevant Cr spinels, i.e., the sizeable volume change at the transition point, which is not expected from space group symmetry considerations. We detected a clear correlation between the cubic-tetragonal transition pressures and the next-nearest-neighbor magnetic exchange interactions for the Cr-bearing sulfide and selenide members, a strong indication that the cubic-tetragonal transitions in these systems are principally governed by magnetic effects.

  14. Neutron scattering study on the magnetic and superconducting phases of MnP

    NASA Astrophysics Data System (ADS)

    Yano, Shinichiro; Lancon, Diane; Ronnow, Henrik; Hansen, Thomas; Gardner, Jason

    We have performed series of neutron scattering experiments on MnP. MnP has been investigated for decades because of its rich magnetic phase diagram. The magnetic structure of MnP is ferromagnetic (FM) below TC = 291 K. It transforms into a helimagnetic structure at TS = 47 K with a propagation vector q = 0 . 117a* . Superconductivity was found in MnP under pressures of 8 GPa with a TSC around 1 K by J.-G. Cheng. Since Mn-based superconductors are rare, and the superconducting phase occurs in the vicinity of FM, new magnetic and helimagnetic phases, there is a need to understand how the magnetism evolves as one approach the superconducting state. MnP is believed to be a double helix magnetic structure at TS = 47 K. We observed new 2 δ and 3 δ satellite peaks whose intensity are 200 ~ 1000 times smaller than these of 1 δ satellite peaks on the cold triple axis spectrometer SIKA under zero magnetic fields. We also found the periods of helimagnetic structure changes as a function of temperature. If time permits, we will discuss recent experiments under pressure. However, we have complete picture of magnetic structure of this system with and without applied pressure, revealing the interplay between the magnetic and superconducting phases.

  15. Synthesis and Characterization of A2Mo3O 12 Materials

    NASA Astrophysics Data System (ADS)

    Young, Lindsay Kay

    Negative thermal expansion (NTE) materials have attracted considerable research interest in recent decades. These unique materials shrink when heated, offering a potential means to control the overall thermal expansion of composites. Several families of materials display this behavior, the largest of which is the A2Mo3O12 family (also called the scandium tungstate family), in which A is a trivalent cation and M is molybdenum or tungsten. These materials show NTE in an orthorhombic structure, but many members transform to a monoclinic structure with positive expansion at low temperatures. Many properties of these materials are dependent on their elemental composition, especially the identity of the A3+ cation. This includes the magnitude of NTE, as well as the phase transition behavior as a function of temperature and pressure. It is also possible to create "mixed site" cation A2Mo3O12 materials, in which the A site is occupied by two different cations. These are described as AxA'2-xM3O12 materials, as the composition A:A' can vary. Creating these new compositions may result in different phase transition properties or the ability to tune the NTE properties of these materials. In this work, the focus was on synthesis and characterization of indium gallium molybdate (InxGa2-xM3O12). The non-hydrolytic sol-gel (NHSG) method was used to synthesize indium gallium molybdate while exploring a variety of reaction parameters. While the goal was to create stoichiometric, homogenous materials, it was found that this could not be accomplished using easily accessible parameters during NHSG reactions. However, it was discovered that certain conditions allowed unusually low temperature (230 °C) crystallization of these materials. Similar conditions were explored for single cation A2Mo3O12 materials, and it was determined that crystallization of indium molybdate, iron molybdate, and scandium molybdate was possible at temperatures of 230 or 300 °C. This extremely low temperature crystallization may provide the opportunity for exploring the in situ synthesis of polymer composites containing these materials, as the crystallization temperatures are compatible with many polymer systems. In the second part of this thesis, the high pressure behavior of a number of A2Mo3O12 and AA'Mo3O12 materials was studied. The open frameworks of NTE compounds are generally prone to pressure induced phase transitions. NTE materials may have to withstand high pressures during production or regular use of composites, thus understanding the high pressure behavior of these materials is necessary for effective application. Irreversible transitions to new phases or amorphization at high pressures could lead to failure of composites, as these phases are not expected to exhibit any NTE properties. Studies were carried out at the Advanced Photon Source at Argonne National Laboratory at pressures up to 5-7 GPa using a diamond anvil cell. The materials investigated could be divided into three groups based on distinct types of high pressure behavior. The room temperature monoclinic Group1 compounds (A2 = Al2, Fe2, FeAl, AlGa) underwent a similar sequence of reversible subtle phase transitions before undergoing a major structural transition to a common high pressure structure. The unit cell of this high pressure phase was successfully indexed, and the transition was found to be reversible upon decompression. Phase transition pressures increased with decreasing A-site cation radius. In contrast, Group2 materials (A = Cr, Y) retained their low temperature monoclinic structures up to the highest pressures investigated. The remaining materials (A2 = In2, InGa) underwent a different sequence of subtle transitions followed by an irreversible transition at higher pressures. The patterns belonging to these high pressure phases are unlike those of the first group. No patterns similar to InGaMo3O12 were found in the literature, while In2Mo3O12 may transform to the same high pressure polymorph as In2W3O12. The classification of A2Mo3O12 materials into several groups with distinct high pressure behavior adds pertinent knowledge to the field that may help elucidate the structures of previously studied materials, and ultimately may help predict the behavior of compositions that have not yet been explored.

  16. Reversible, on-demand generation of aqueous two-phase microdroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton

    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phasemore » transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.« less

  17. Nanoscale heterogeneity as remnant hexagonal-type local structures in shocked Cu-Pb and Zr

    NASA Astrophysics Data System (ADS)

    Tayal, Akhil; Conradson, Steven D.; Batuk, Olga N.; Fensin, Saryu; Cerreta, Ellen; Gray, George T.; Saxena, Avadh

    2017-09-01

    Extended X-ray absorption fine structure spectroscopy was used to determine the local structure in: (1) Zr that had undergone quasistatic elongation; (2) Zr that had undergone plastic deformation by shock at pressures above and below the ω-phase transformation; and (3) shocked Cu that contained a few percent of insoluble Pb. Below the transition pressure, Zr samples showed only general disorder as increases in the widths of the Zr-Zr pair distributions. Above this pressure, Zr that was a mixture of the original hcp and the high pressure ω-phase when measured by diffraction showed two sets of peaks in its distribution corresponding to these two phases. Some of the ones from the ω-phase were at distances substantially different from those calculated from the diffraction pattern, although they are still consistent with small domains exhibiting stacking faults associated with hexagonal-type structural components exhibiting variability in the [0001] basal plane spacing. A similar result, new pairs at just over 3 and 4 Å consistent with hexagonal-type stacking faults in addition to the original fcc structure, is found in shocked Cu despite the absence of a second diffraction pattern and peak pressures being far below those expected to induce an fcc to hcp transition. This result, therefore, demonstrates that the correlation between high strain rates and reduced stacking fault energy continues down to the length scale of atom pairs. These findings are significant as: (1) a microscopic description of the behavior of systems far from equilibrium; (2) a demonstration of the importance of strain rate at short length scales; and (3) a bridge between the abruptness of macroscopic pressure-induced phase transitions and the continuity of martensitic ones over their fluctuation region in terms of the inverse relationship between the length scale of the martensitic texture, manifested here as ordered lattice distortions and the lower pressure at which such texture first appears relative to the bulk transition pressure.

  18. Identification and measurement of combustion noise from a turbofan engine using correlation and coherence techniques. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1977-01-01

    Fluctuating pressure measurements within the combustor and tailpipe of a turbofan engine are made simultaneously with far field acoustic measurements. The pressure measurements within the engine are accomplished with cooled semi-infinite waveguide probes utilizing conventional condenser microphones as the transducers. The measurements are taken over a broad range of engine operating conditions and for 16 far field microphone positions between 10 deg and 160 deg relative to the engine inlet axis. Correlation and coherence techniques are used to determine the relative phase and amplitude relationships between the internal pressures and far field acoustic pressures. The results indicate that the combustor is a low frequency source region for acoustic propagation through the tailpipe and out to the far field. Specifically, it is found that the relation between source pressure and the resulting sound pressure involves a 180 deg phase shift. The latter result is obtained by Fourier transforming the cross correlation function between the source pressure and acoustic pressure after removing the propagation delay time. Further, it is found that the transfer function between the source pressure and acoustic pressure has a magnitude approximately proportional to frequency squared. These results are shown to be consistent with a model using a modified source term in Lighthill's turbulence stress tensor, wherein the fluctuating Reynolds stresses are replaced with the pressure fluctuations due to fluctuating entropy.

  19. X-ray Emission Spectroscopy in Magnetic 3d-Transition Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iota, V; Park, J; Baer, B

    2003-11-18

    The application of high pressure affects the band structure and magnetic interactions in solids by modifying nearest-neighbor distances and interatomic potentials. While all materials experience electronic changes with increasing pressure, spin polarized, strongly electron correlated materials are expected to undergo the most dramatic transformations. In such materials, (d and f-electron metals and compounds), applied pressure reduces the strength of on-site correlations, leading to increased electron delocalization and, eventually, to loss of its magnetism. In this ongoing project, we study the electronic and magnetic properties of Group VIII, 3d (Fe, Co and Ni) magnetic transition metals and their compounds at highmore » pressures. The high-pressure properties of magnetic 3d-transition metals and compounds have been studied extensively over the years, because of iron being a major constituent of the Earth's core and its relevance to the planetary modeling to understand the chemical composition, internal structure, and geomagnetism. However, the fundamental scientific interest in the high-pressure properties of magnetic 3d-electron systems extends well beyond the geophysical applications to include the electron correlation-driven physics. The role of magnetic interactions in the stabilization of the ''non-standard'' ambient pressure structures of Fe, Co and Ni is still incompletely understood. Theoretical studies have predicted (and high pressure experiments are beginning to show) strong correlations between the electronic structure and phase stability in these materials. The phase diagrams of magnetic 3d systems reflect a delicate balance between spin interactions and structural configuration. At ambient conditions, the crystal structures of {alpha}-Fe(bcc) and {var_epsilon}-Co(hcp) phases depart from the standard sequence (hcp {yields} bcc{yields} hcp {yields} fcc), as observed in all other non-magnetic transition metals with increasing the d-band occupancy, and are different from those of their 4d- and 5d-counter parts. This anomalous behavior has been interpreted in terms of the spin-polarized d-band altering the d-band occupancy [1]. At high pressures, however, the d-valence band is expected to broaden resulting in a suppression or even a complete loss of magnetism. Experimentally, ferromagnetic {alpha}(bcc)-Fe has been confirmed to transform to non-magnetic {var_epsilon}-Fe (hcp) at 10 GPa [2,3]. Recently, we have also observed a similar transition in Co from ferromagnetic {alpha}(hcp)-Co to likely nonmagnetic {beta}(fcc)-Co at 105 GPa[4]. A similar structural phase transition is expected in Ni, probably in the second-order fcc-fcc transition. However, there has been no directly measured change in magnetism associated with the structural phase transition in Co, nor has yet been confirmed such an iso-structural phase transition in Ni. Similar electronic transitions have been proposed in these 3d-transition metal oxides (FeO, CoO and NiO) from high spin (magnetic) to low spin (nonmagnetic) states [5]. In each of these systems, the magnetic transition is accompanied by a first-order structural transition involving large volume collapse (10% in FeO, for example). So far, there have been no electronic measurements under pressure confirming these significant theoretical predictions, although the predicted pressures for the volume collapse transitions are within the experimental pressure range (80-200GPa).« less

  20. High-Pressure Design of Advanced BN-Based Materials.

    PubMed

    Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2016-10-20

    The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B 13 N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.

  1. Isochoric Burn, an Internally Consistent Method for the Reactant to Product Transformation in Reactive Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, J E; Lee, E L

    2002-07-01

    Mixture rules for partially reacted explosives differ amongst various models. For instance, JWL++ uses a partial pressure addition to compute an average zonal pressure, Ignition and Growth requires pressure equilibration and thermal equilibration of temperature dependent JWL EOSs, CHEETAH In Line RF also assumes temperature and pressure equilibration. It has been suggested in the past that a more realistic equilibration scheme should comprise isentropic pressure equilibration of the separate reacted and unreacted phases. This turns out not to be a proper path for equilibration. Rather, we find that the only internally consistent method is the evaluation of the equilibrium pressuremore » that satisfies the particular conditions of reactant and product resulting from deflagration in a fixed volume.« less

  2. High-pressure phase transitions of α-quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter

    Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. In this paper, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions ofmore » α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s -1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO 6 octahedra rather than the rearrangement of the SiO 4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.« less

  3. High-pressure phase transitions of α-quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III

    DOE PAGES

    Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter; ...

    2017-03-27

    Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. In this paper, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions ofmore » α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s -1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO 6 octahedra rather than the rearrangement of the SiO 4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.« less

  4. Pressure effect on the Raman and photoluminescence spectra of Eu3+-doped Na2Ti6O13 nanorods

    NASA Astrophysics Data System (ADS)

    Zeng, Q. G.; Yang, G. T.; Chen, F.; Luo, J. Y.; Zhang, Z. M.; Leung, C. W.; Ding, Z. J.; Sheng, Y. Q.

    2013-12-01

    Eu3+-doped Na2Ti6O13 (Na2Ti6O13:Eu) nanorods with diameters of 30 nm and lengths 400 nm were synthesized by hydrothermal and heat treatment methods. Raman spectra at ambient conditions indicated a pure monoclinic phase (space group C2/m) of the nanorods. The relations between structural and optical properties of Na2Ti6O13:Eu nanorods under high pressures were obtained by photoluminescence and Raman spectra. Two structural transition points at 1.39 and 15.48 GPa were observed when the samples were pressurized. The first transition point was attributed to the crystalline structural distortion. The later transition point was the result of pressure-induced amorphization, and the high-density amorphous (HDA) phase formed after 15.48 GPa was structurally related to the monoclinic baddeleyite structured TiO2 (P21/c). However, the site symmetry of the local environment around the Eu3+ ions in Na2Ti6O13 increased with the rising pressure. These above results indicate the occurrence of short-range order for the local asymmetry around the Eu3+ ions and long-range disorder for the crystalline structure of Na2Ti6O13:Eu nanorods by applying pressure. After releasing the pressure from 22.74 GPa, the HDA phase is transformed to low-density amorphous form, which is attributed to be structurally related to the α-PbO2-type TiO2.

  5. Pressure induced polymerization of acetylide anions in CaC 2 and 10 7 fold enhancement of electrical conductivity

    DOE PAGES

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo; ...

    2016-08-17

    Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC 2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC 2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6– are identified with gas chromatography-mass spectrometrymore » and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 10 7 fold enhancement of the electrical conductivity. As a result, the polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.« less

  6. Post-irradiation examinations of a Zr2.5Nb pressure tube of the Karachi nuclear power plant (KANUPP)

    NASA Astrophysics Data System (ADS)

    Zaheer, Mohammed Sajjad; Akhtar, Javed Iqbal; Ahmad, Ejaz; Saleem, Muhammad; Hussain, Syed Mukarrum; Qureshi, Masroor Ahmad; Khan, Azmatullah; Ali, Rafaqat; Zafarullah, Muhammad

    1996-09-01

    The results of post-irradiation examinations of a pressure tube of fuel channel No. G-12 of KANUPP have been described. A detailed study was made in Canada by AECL. A parallel investigation on its seven rings of about 50 mm length each was also carried out at PINSTECH. Visual inspection showed normal oxidation effects. Gamma spectrometry showed the presence of 95Zr and 95Nb. Microstructural study revealed the characteristic alpha plus a transformed beta phase structure.

  7. Theoretical and Experimental Investigations of (I) Reaction Kinetics. (II) Theory of Liquids, and (III) Optical Rotation

    DTIC Science & Technology

    1975-02-14

    The "region of indifference" to a phase change with pressure in camphor has been found to decrease markedly with purification. Mini (continued on...for High Pressure Transitions in d- Camphor (TI-III) and Phosphorus (I-II)", by A. F. Gabrysh, A. Vanhook and H. Eyring, J. Phys. Chem. Solids, 25, 129...on the transformation in d- camphor and phosphorus. The so-called "region of ind;ffer’e,-e" rennrted as approximately .38 kilobars in phosphorus, was

  8. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.

    PubMed

    Levitas, Valery I; Henson, Bryan F; Smilowitz, Laura B; Asay, Blaine W

    2006-05-25

    We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta --> delta PT and from 520 to 400 K for the beta phase during the delta --> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not change the PT thermodynamics or kinetics appreciably for the first and the second PT beta <--> delta cycles, as predicted by theory; (f) beta <--> delta PTs start at a very small driving force (in contrast to all known solid-solid transformations with large transformation strain), that is, elastic energy and athermal interface friction must be negligible; (g) beta --> alpha and alpha --> beta PTs, which are thermodynamically possible in the temperature range 382.4 < theta < 430 K and below 382.4 K, respectively, do not occur.

  9. Experimental study of planetary gases with applications to planetary interior models

    NASA Technical Reports Server (NTRS)

    Bell, Peter M.; Mao, Ho-Kwang

    1988-01-01

    High-pressure experimental data on planetary materials are critical in developing planetary models and in addressing otherwise insoluble problems of the internal structure of the major planets. Progress in the last five years has been particularly marked. Maximum static pressure of 550 GPa was achieved. For the first time, X-ray diffraction of solidified gases (Ne, Xe) and ices (H2O) were obtained at pressures above one megabar, single-crystal diffraction of ultralight elements (H2, He) were detected up to 25 GPa, pressures over 200 GPa at 77 K were reached in solid hydrogen, including the discovery of a phase transformation in the molecular solid. Advances in instrumentation and new measurements performed during 1983 to 1988 are summarized.

  10. The structure of CO 2 hydrate between 0.7 and 1.0 GPa

    DOE PAGES

    Tulk, Chris A.; Machida, Shinichi; Klug, Dennis D.; ...

    2014-11-05

    A deuterated sample of CO 2 structure I (sI) clathrate hydrate (CO 2 ∙ 8.3 D 2O) has been formed and neutron diffraction experiments up to 1.0 GPa at 240 K were performed. The sI CO 2 hydrate transformed at 0.7 GPa into the high pressure phase that had been observed previously by Hirai, et al. (J. Phys. Chem. 133, 124511 (2010)) and O. Bollengier et al. (Geochim. Cosmochim. AC. 119, 322 (2013)), but which had not been structurally identified. The current neutron diffraction data were successfully fitted to a filled ice structure with CO 2 molecules filling the watermore » channels. This CO 2+water system has also been investigated using classical molecular dynamics and density functional ab initio methods to provide additional characterization of the high pressure structure. Both models indicate the water network adapts an MH-III ‘like’ filled ice structure with considerable disorder of the orientations of the CO 2molecule. Furthermore, the disorder appears be a direct result of the level of proton disorder in the water network. In contrast to the conclusions of Bollengier et al. our neutron diffraction data shows that the filled ice phase can be recovered to ambient pressure (0.1 MPa) at 96 K, and recrystallization to sI hydrate occurs upon subsequent heating to 150 K, possibly by first forming low density amorphous ice. Unlike other clathrate hydrate systems, which transform from the sI or sII structure to the hexagonal structure (sH) then to the filled ice structure, CO 2 hydrate transforms directly from the sI form to the filled ice structure.« less

  11. The structure of CO 2 hydrate between 0.7 and 1.0 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tulk, C. A.; Machida, S.; Klug, D. D.

    A deuterated sample of CO2 structure I (sI) clathrate hydrate (CO2·8.3 D2O) has been formed and neutron diffraction experiments up to 1.0 GPa at 240 K were performed. The sI CO2 hydrate transformed at 0.7 GPa into the high pressure phase that had been observed previously by Hirai et al. [J. Phys. Chem. 133, 124511 (2010)] and Bollengier et al. [Geochim. Cosmochim. Acta 119, 322 (2013)], but which had not been structurally identified. The current neutron diffraction data were successfully fitted to a filled ice structure with CO2 molecules filling the water channels. This CO2+water system has also been investigatedmore » using classical molecular dynamics and density functional ab initio methods to provide additional characterization of the high pressure structure. Both models indicate the water network adapts a MH-III “like” filled ice structure with considerable disorder of the orientations of the CO2 molecule. Furthermore, the disorder appears to be a direct result of the level of proton disorder in the water network. In contrast to the conclusions of Bollengier et al., our neutron diffraction data show that the filled ice phase can be recovered to ambient pressure (0.1 MPa) at 96 K, and recrystallization to sI hydrate occurs upon subsequent heating to 150 K, possibly by first forming low density amorphous ice. Unlike other clathrate hydrate systems, which transform from the sI or sII structure to the hexagonal structure (sH) then to the filled ice structure, CO2 hydrate transforms directly from the sI form to the filled ice structure.« less

  12. The structure of CO{sub 2} hydrate between 0.7 and 1.0 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tulk, C. A.; Molaison, J. J.; Machida, S.

    A deuterated sample of CO{sub 2} structure I (sI) clathrate hydrate (CO{sub 2}·8.3 D{sub 2}O) has been formed and neutron diffraction experiments up to 1.0 GPa at 240 K were performed. The sI CO{sub 2} hydrate transformed at 0.7 GPa into the high pressure phase that had been observed previously by Hirai et al. [J. Phys. Chem. 133, 124511 (2010)] and Bollengier et al. [Geochim. Cosmochim. Acta 119, 322 (2013)], but which had not been structurally identified. The current neutron diffraction data were successfully fitted to a filled ice structure with CO{sub 2} molecules filling the water channels. This CO{submore » 2}+water system has also been investigated using classical molecular dynamics and density functional ab initio methods to provide additional characterization of the high pressure structure. Both models indicate the water network adapts a MH-III “like” filled ice structure with considerable disorder of the orientations of the CO{sub 2} molecule. Furthermore, the disorder appears to be a direct result of the level of proton disorder in the water network. In contrast to the conclusions of Bollengier et al., our neutron diffraction data show that the filled ice phase can be recovered to ambient pressure (0.1 MPa) at 96 K, and recrystallization to sI hydrate occurs upon subsequent heating to 150 K, possibly by first forming low density amorphous ice. Unlike other clathrate hydrate systems, which transform from the sI or sII structure to the hexagonal structure (sH) then to the filled ice structure, CO{sub 2} hydrate transforms directly from the sI form to the filled ice structure.« less

  13. The structure of CO 2 hydrate between 0.7 and 1.0 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tulk, Chris A.; Machida, Shinichi; Klug, Dennis D.

    A deuterated sample of CO 2 structure I (sI) clathrate hydrate (CO 2 ∙ 8.3 D 2O) has been formed and neutron diffraction experiments up to 1.0 GPa at 240 K were performed. The sI CO 2 hydrate transformed at 0.7 GPa into the high pressure phase that had been observed previously by Hirai, et al. (J. Phys. Chem. 133, 124511 (2010)) and O. Bollengier et al. (Geochim. Cosmochim. AC. 119, 322 (2013)), but which had not been structurally identified. The current neutron diffraction data were successfully fitted to a filled ice structure with CO 2 molecules filling the watermore » channels. This CO 2+water system has also been investigated using classical molecular dynamics and density functional ab initio methods to provide additional characterization of the high pressure structure. Both models indicate the water network adapts an MH-III ‘like’ filled ice structure with considerable disorder of the orientations of the CO 2molecule. Furthermore, the disorder appears be a direct result of the level of proton disorder in the water network. In contrast to the conclusions of Bollengier et al. our neutron diffraction data shows that the filled ice phase can be recovered to ambient pressure (0.1 MPa) at 96 K, and recrystallization to sI hydrate occurs upon subsequent heating to 150 K, possibly by first forming low density amorphous ice. Unlike other clathrate hydrate systems, which transform from the sI or sII structure to the hexagonal structure (sH) then to the filled ice structure, CO 2 hydrate transforms directly from the sI form to the filled ice structure.« less

  14. Dynamic compression of minerals in the magnesium oxide-iron oxide-silicon dioxide system

    NASA Astrophysics Data System (ADS)

    Akins, Joseph A.

    The first shock wave experiments performed on silicate materials were reported for quartz in 1962. The intervening forty years have allowed for extensive investigation of SiO2 by dynamic, static and theoretical means. Previous studies have concluded that quartz transforms completely to stishovite at ˜40 GPa and melts at ˜115 GPa along its Hugoniot. Recent discoveries that SiO2 transforms to phases slightly more dense than stishovite have led to a reexamination of the dynamic compression of SiO2 in this thesis. Based on comparing calculated Hugoniots to data for multiple initial SiO2 phases, it is proposed that, in addition to the stishovite and melt transitions, quartz is completely transformed to the CaCl2 structure at ˜70 GPa. Coesite shows evidence of complete transformation to stishovite at ˜50 GPa, and to the CaCl 2 structure at ˜65 GPa. Due to the higher temperature achieved in the quartz samples the slope of the stishovite-CaCl2 phase boundary is constrained to be ˜180 K/GPa. From a similar analysis of Hugoniot data collected for high quality MgSiO 3 natural crystal and synthetic glass in this study, and existing data, it is concluded that along the crystal Hugoniot akimotoite is attained at ˜70 GPa, perovskite structure at ˜110 GPa and melt at ˜170 GPa. It is found that the melt is 2--3% denser than the solid at pressures greater than 100 GPa, after correcting for thermal differences in the two regimes. An important implication is a negative Clapeyron slope, leading to a decreasing melting temperature with increasing pressure, above ˜100 GPa. These observations increase the possibility of the existence of a significant amount of partial melt in the lowermost mantle, e.g., the ultra low velocity zone.

  15. Trivial topological phase of CaAgP and the topological nodal-line transition in CaAg (P1 -xA sx)

    NASA Astrophysics Data System (ADS)

    Xu, N.; Qian, Y. T.; Wu, Q. S.; Autès, G.; Matt, C. E.; Lv, B. Q.; Yao, M. Y.; Strocov, V. N.; Pomjakushina, E.; Conder, K.; Plumb, N. C.; Radovic, M.; Yazyev, O. V.; Qian, T.; Ding, H.; Mesot, J.; Shi, M.

    2018-04-01

    By performing angle-resolved photoemission spectroscopy and first-principles calculations, we address the topological phase of CaAgP and investigate the topological phase transition in CaAg (P1 -xA sx) . We reveal that in CaAgP, the bulk band gap and surface states with a large bandwidth are topologically trivial, in agreement with hybrid density functional theory calculations. The calculations also indicate that application of "negative" hydrostatic pressure can transform trivial semiconducting CaAgP into an ideal topological nodal-line semimetal phase. The topological transition can be realized by partial isovalent P/As substitution at x =0.38 .

  16. First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.

    2018-04-01

    Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.

  17. Phase transitions in MgSiO3 post-perovskite in super-Earth mantles

    NASA Astrophysics Data System (ADS)

    Umemoto, Koichiro; Wentzcovitch, Renata M.; Wu, Shunqing; Ji, Min; Wang, Cai-Zhuang; Ho, Kai-Ming

    2017-11-01

    The highest pressure form of the major Earth-forming mantle silicate is MgSiO3 post-perovskite (PPv). Understanding the fate of PPv at TPa pressures is the first step for understanding the mineralogy of super-Earths-type exoplanets, arguably the most interesting for their similarities with Earth. Modeling their internal structure requires knowledge of stable mineral phases, their properties under compression, and major element abundances. Several studies of PPv under extreme pressures support the notion that a sequence of pressure induced dissociation transitions produce the elementary oxides SiO2 and MgO as the ultimate aggregation form at ∼3 TPa. However, none of these studies have addressed the problem of mantle composition, particularly major element abundances usually expressed in terms of three main variables, the Mg/Si and Fe/Si ratios and the Mg#, as in the Earth. Here we show that the critical compositional parameter, the Mg/Si ratio, whose value in the Earth's mantle is still debated, is a vital ingredient for modeling phase transitions and internal structure of super-Earth mantles. Specifically, we have identified new sequences of phase transformations, including new recombination reactions that depend decisively on this ratio. This is a new level of complexity that has not been previously addressed, but proves essential for modeling the nature and number of internal layers in these rocky mantles.

  18. Effect of Grinding and Multi-Stimuli Aging on the Fatigue Strength of a Y-TZP Ceramic.

    PubMed

    Silvestri, Tais; Pereira, Gabriel Kalil Rocha; Guilardi, Luis Felipe; Rippe, Marilia Pivetta; Valandro, Luiz Felipe

    2018-01-01

    This study aimed to investigate the effect of grinding and multi-stimuli aging on the fatigue strength, surface topography and the phase transformation of Y-TZP ceramic. Discs were manufactured according to ISO-6872:2008 for biaxial flexure testing (diameter: 15 mm; thickness: 1.2 mm) and randomly assigned considering two factors "grinding" and "aging": C- control (as-sintered); CA- control + aging; G- ground; GA- ground + aging. Grinding was carried out with coarse diamond burs under water-cooling. Aging protocols consisted of: autoclave (134°C, 2 bars pressure, 20 hours), followed by storage for 365 days (samples were kept untouched at room temperature), and by mechanical cycling (106 cycles by 20 Hz under a load of 50% from the biaxial flexure monotonic tests). Flexural fatigue strengths (20,000 cycles; 6 Hz) were determined under sinusoidal cyclic loading using staircase approach. Additionally, surface topography analysis by FE-SEM and phase transformation analysis by X-ray Diffractometry were performed. Dixon and Mood methodology was used to analyze the fatigue strength data. Grinding promotes alterations of topographical pattern, while aging apparently did not alter it. Grinding triggered t-m phase transformation without impacting the fatigue strength of the Y-TZP ceramic; and aging promoted an intense t-m transformation that resulted in a toughening mechanism leading to higher fatigue strength for as-sintered condition, and a tendency of increase for ground condition (C < CA; G = GA). It concludes that grinding and aging procedures did not affect deleteriously the fatigue strength of the evaluated Y-TZP ceramic, although, it promotes surface topography alterations, except to aging, and t-m phase transformation.

  19. Microstructural characterization and mechanical properties of Excel alloy pressure tube material

    NASA Astrophysics Data System (ADS)

    Sattari, Mohammad

    Microstructural characterization and mechanical properties of Excel (Zr-3.5%Sn-0.8%Mo-0.8%Nb), a dual phase alphaZr -hcp and betaZr-bcc pressure tube material, is discussed in the current study which is presented in manuscript format. Chapter 3 discusses phase transformation temperatures using different techniques such as quantitative metallography, differential scanning calorimetry (DSC), and electrical resistivity. It was found that the alphaZr → alphaZr+beta Zr and alphaZr+betaZr → betaZr transformation temperatures are in the range of 600-690°C and 960-970°C respectively. Also it was observed that upon quenching from temperatures below ˜860°C the martensitic transformation of betaZr to alpha'--hcp is halted and instead the microstructure transforms into retained Zr with o hexagonal precipitates inside betaZr grains. Chapter 4 deals with aging response of Excel alloy. Precipitation hardening was observed in samples water-quenched from high in the alphaZr+beta Zr or betaZr regions followed by aging. The optimum aging conditions were found to be 450°C for 1 hour. Transmission electron microscopy (TEM) showed dispersion of fine precipitates (˜10nm) inside the martensitic phase. Energy dispersive X-ray spectroscopy (EDS) showed the chemical composition of precipitates to be Zr-30wt%Mo-25wt%Nb-2wt%Fe. Electron crystallography using whole pattern symmetry of the convergent beam electron diffraction (CBED) patterns together with selected area diffraction (SAD) polycrystalline ring patterns, suggests the -6m2 point group for the precipitates belonging to hexagonal crystal structure, with a= 2.936 A and c=4.481 A, i.e. c/a =1.526. Crystallographic texture and high temperature tensile properties as well as creep-rupture properties of different microstructures are discussed in Chapter 5. Texture analysis showed that solution treatment high in the alpha Zr+betaZr or betaZr regions followed by water quenching or air cooling results in a more random texture compared to typical pressure tube texture. Variant selection was observed upon water quenching while partial memory effect and some transformation texture with variant selection was observed in the air-cooled sample. The results of creep-rupture tests suggest that fully martensitic and aged microstructure has better creep properties at high stress levels (>700 MPa) while the microstructure from air cooling from high in the alphaZr+betaZr region is less sensitive to stress and shows better creep properties compared to the as-received annealed microstructure at lower stresses (<560 MPa).

  20. Partial discharge detection and analysis in low pressure environments

    NASA Astrophysics Data System (ADS)

    Liu, Xin

    Typical aerospace vehicles (aircraft and spacecraft) experience a wide range of operating pressures during ascending and returning to earth. Compared to the sea-level atmospheric pressure (760 Torr), the pressure at about 60 km altitude is 2 Torr. The performance of the electric power system components of the aerospace vehicles must remain reliable even under such sub-atmospheric operating conditions. It is well known that the dielectric strength of gaseous insulators, while the electrode arrangement remains unchanged, is pressure dependent. Therefore, characterization of the performance and behavior of the electrical insulation in flight vehicles in low-pressure environments is extremely important. Partial discharge testing is one of the practical methods for evaluating the integrity of electrical insulation in aerospace vehicles. This dissertation describes partial discharge (PD) measurements performed mainly with 60 Hz ac energization in air, argon and helium, for pressures between 2 and 760 Torr. Two main electrode arrangements were used. One was a needle-plane electrode arrangement with a Teflon insulating barrier. The other one was a twisted pair of insulated conductors taken from a standard aircraft wiring harness. The measurement results are presented in terms of typical PD current pulse waveforms and waveform analysis for both main electrode arrangements. The evaluation criteria are the waveform polarity, magnitude, shape, rise time, and phase angle (temporal location) relative to the source voltage. Two-variable histograms and statistical averages of the PD parameters are presented. The PD physical mechanisms are analyzed. For PD pattern recognition, both statistical methods (such as discharge parameter dot pattern representation, discharge parameter phase distribution, statistical operator calculations, and PD fingerprint development) and wavelet transform applications are investigated. The main conclusions of the dissertation include: (1) The PD current pulse waveforms are dependent on the pressure. (2) The rise time of the waveform is another effective PD current pulse characteristic indicator. (3) PD fingerprint patterns that are already available for atmospheric pressure (760 Torr) conditions are inadequate for the evaluation of PD pulses at low pressures. (4) Various wavelet transform techniques can be used effectively for PD pulse signal denoising purposes, and for PD pulse waveform transient feature recognition.

  1. Zero-fringe demodulation method based on location-dependent birefringence dispersion in polarized low-coherence interferometry.

    PubMed

    Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Qin, Zunqi; Zou, Shengliang

    2014-04-01

    We present a high precision and fast speed demodulation method for a polarized low-coherence interferometer with location-dependent birefringence dispersion. Based on the characteristics of location-dependent birefringence dispersion and five-step phase-shifting technology, the method accurately retrieves the peak position of zero-fringe at the central wavelength, which avoids the fringe order ambiguity. The method processes data only in the spatial domain and reduces the computational load greatly. We successfully demonstrated the effectiveness of the proposed method in an optical fiber Fabry-Perot barometric pressure sensing experiment system. Measurement precision of 0.091 kPa was realized in the pressure range of 160 kPa, and computation time was improved by 10 times compared to the traditional phase-based method that requires Fourier transform operation.

  2. Transformations in methane hydrates

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Shu, J.; Mao, Ho-kwang; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2000-01-01

    Detailed study of pure methane hydrate in a diamond cell with in situ optical, Raman, and x-ray microprobe techniques reveals two previously unknown structures, structure II and structure H, at high pressures. The structure II methane hydrate at 250 MPa has a cubic unit cell of a = 17.158(2) A?? and volume V = 5051.3(13) A??3; structure H at 600 MPa has a hexagonal unit cell of a = 11.980(2) A??, c = 9.992(3) A??, and V = 1241.9(5) A??3. The compositions of these two investigated phases are still not known. With the effects of pressure and the presence of other gases in the structure, the structure II phase is likely to dominate over the known structure I methane hydrate within deep hydrate-bearing sediments underlying continental margins.

  3. Transient porosity pulses and microfracturing during a stress-generating retrograde metamorphic reaction

    NASA Astrophysics Data System (ADS)

    Renard, F.; Zheng, X.; Cordonnier, B.; Zhu, W.; Jamtveit, B.

    2017-12-01

    Several geological processes involve mineral transformations where nominally dry rocks transform into hydrated ones when left in contact with water (i.e. eclogitization, serpentinization). In these systems, the transformation induces stress if the rock is confined, and the new minerals create a so-called force of crystallization. Here, we study a model retrograde metamorphic reaction, the hydration of periclase, MgO, into brucite, Mg(OH)2, to quantify the coupling between reaction, stress generation, porosity evolution and fracturing. This hydration reaction generates a volume increase of 110%, and a density decrease of 33.8% of the solid. Samples of a microporous MgO ceramics were reacted at 170-211°C, 5-80 MPa confining pressure, 6-95 MPa differential stress and 5 MPa pore fluid pressure. They were installed into an X-ray transparent triaxial deformation rig, called Hades, and mounted on a synchrotron microtomography stage. Each experiment lasted between 2 and 5 hours, during which between 35 and 130 three-dimensional images were acquired, allowing to follow the chemical transformation and the deformation of the sample. Below 30 MPa mean pressure, the hydration reaction was coupled to fracturing of the MgO ceramics, and the transformation rate followed a sigmoidal kinetics curve with a slow initiation, a fast reaction coupled to fracturing and the generation of a transient porosity pulse, and a slow-down until an almost complete transformation of periclase into brucite.. Conversely, above 30 MPa, the reaction kinetics was very slow, without fracturing over the time scale of the experiment. When considering the driving force of the hydration reaction, stress generation should be several hundreds MPa, whereas the present experiments show that fracturing occurred only below 30 MPa. This indicates that the potential energy due to phase transformation generates much lower stress than what is estimated from non-equilibrium thermodynamics. A possible interpretation of this observation is that the stress created by the reaction may overcome the disjoining pressure at the grain-grain interface, expelling the water film trapped there and reducing the kinetics of reaction. As a consequence, only a fraction of the available potential driving force was used to accelerate the reaction by microfracturing.

  4. Cuffed endotracheal tubes in children: the effect of the size of the cuffed endotracheal tube on intracuff pressure.

    PubMed

    Krishna, Senthil G; Hakim, Mumin; Sebastian, Roby; Dellinger, Heather L; Tumin, Dmitry; Tobias, Joseph D

    2017-05-01

    In children, the size of the cuffed endotracheal tube is based on various age-based formulas. However, such formulas may over or underestimate the size of the cuffed endotracheal tube. There are no data on the impact of different-sized cuffed endotracheal tubes (ETT) on the intracuff pressure in children. The current study measures intracuff pressure with different-sized cuffed ETT. The study was conducted in an in vitro and in vivo phase. For the in vitro phase, 10 cuffed ETT of size 4.0, 4.5, and 5 mm internal diameter (ID) each were randomly placed inside a 1.0 cm ID plastic tube (mimicking the trachea), which was in turn connected to a 1 l test lung. After inflation of the cuff using the air leak test at a continuous positive airway pressure of 20 cmH 2 O, the intracuff pressure was measured. The in vivo phase was conducted in 100 children (4-8 years) and were randomly divided into two groups to receive either a cuffed endotracheal tube based on the Khine formula (Group R) or a cuffed endotracheal tube that was a half-size (0.5 mm ID) smaller (Group S). Following the inflation of the cuff to seal the trachea, the intracuff pressure was measured. In the in vitro phase, the intracuff pressure was 45 ± 6, 23 ± 1, and 14 ± 6 cmH 2 O with size 4.0, 4.5, and 5 mm ID cuffed ETT, respectively (F-test P < 0.001 for difference among three groups). In the in vivo phase, the mean intracuff pressure in Group R was 25 ± 19 cmH 2 O vs 37 ± 35 cmH 2 O in Group S (95% CI of difference: 1, 23; P = 0.039). If the cuffed endotracheal tube is too small, the trachea can still be sealed by inflating the cuff with additional air. However, this transforms the cuff from the intended high-volume, low-pressure cuff to an undesirable high-volume, high-pressure cuff. © 2017 John Wiley & Sons Ltd.

  5. High-pressure phase transitions of Fe 3-xTi xO 4 solid solution up to 60 GPa correlated with electronic spin transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki

    2013-06-12

    The structural phase transition of the titanomagnetite (Fe 3–xTi xO 4) solid solution under pressures up to 60 GPa has been clarified by single-crystal and powder diffraction studies using synchrotron radiation and a diamond-anvil cell. Present Rietveld structure refinements of the solid solution prove that the prefered cation distribution is based on the crystal field preference rather than the magnetic spin ordering in the solid solution. The Ti-rich phases in 0.734 ≤ x ≤1.0 undergo a phase transformation from the cubic spinel of Fd3m to the tetragonal spinel structure of I4 1/amd with c/a < 1.0. The transition is drivenmore » by a Jahn-Teller effect of IVFe 2+ (3d 6) on the tetrahedral site. The c/a < 1 ratio is induced by lifting of the degeneracy of the e orbitals by raising the d x2-y2 orbital below the energy of the d z2 orbital. The distortion characterized by c/a < 1 is more pronounced with increasing Ti content in the Fe 3–xTi xO 4 solid solutions and with increasing pressure. An X-ray emission experiment of Fe 2TiO 4 at high pressures confirms the spin transition of FeKβ from high spin to intermediate spin (IS) state. The high spin (HS)-to-low spin (LS) transition starts at 14 GPa and the IS state gradually increases with compression. The VIFe 2+ in the octahedral site is more prone for the HS-to-LS transition, compared with Fe 2+ in the fourfold- or eightfold-coordinated site. The transition to the orthorhombic post-spinel structure with space group Cmcm has been confirmed in the whole compositional range of Fe 3–xTi xO 4. The transition pressure decreases from 25 GPa (x = 0.0) to 15 GPa (x = 1.0) with increasing Ti content. There are two cation sites in the orthorhombic phase: M1 and M2 sites of eightfold and sixfold coordination, respectively. Fe 2+ and Ti 4+ are disordered on the M2 site. This structural change is accelerated at higher pressures due to the spin transition of Fe 2+ in the octahedral site. This is because the ionic radius of VIFe 2+ becomes 20% shortened by the spin transition. At 53 GPa, the structure transforms to another high-pressure polymorph with Pmma symmetry with the ordered structure of Ti and Fe atoms in the octahedral site. This structure change results from the order-disorder transition.« less

  6. High-pressure phase relation of KREEP basalts: A clue for finding the lost Hadean crust?

    NASA Astrophysics Data System (ADS)

    Gréaux, Steeve; Nishi, Masayuki; Tateno, Shigehiko; Kuwayama, Yasuhiro; Hirao, Naohisa; Kawai, Kenji; Maruyama, Shigenori; Irifune, Tetsuo

    2018-01-01

    The phase relations, mineral chemistry and density of KREEP basalt were investigated at pressures of 12-125 GPa and temperatures up to 2810 K by a combination of large volume multi-anvil press experiments and in situ synchrotron X-ray diffraction measurements in a laser-heated diamond anvil cell. Our results showed that grossular-rich majorite garnet, liebermannite and Al-bearing stishovite are dominant in the upper-to-middle part of the upper mantle while in the lowermost transition zone a dense Ti-rich CaSiO3 perovskite exsoluted from the garnet, which becomes more pyropic with increasing pressure. At lower mantle conditions, these minerals transform into an assemblage of bridgmanite, Ca-perovskite, Al-stishovite, the new aluminium-rich (NAL) phase and the calcium-ferrite type (CF) phase. At pressures higher than 50 GPa, NAL phase completely dissolved into the CF phase, which becomes the main deposit of alkali metals in the lower mantle. The density of KREEP estimated from phase compositions obtained by energy dispersive X-ray spectroscopy (EDS) in scanning (SEM) and transmission (TEM) electron microscopes, was found substantially denser than pyrolite suggesting that the Earth primordial crust likely subducted deep into the Earth's mantle after or slightly before the final solidification of magma ocean at 4.53 Ga. Radiogenic elements U, Th and 40K which were abundant in the final residue of magma ocean were brought down along the subduction of the primordial crust and generate heat by decay after the settlement of the primordial crust on top of the CMB, suggesting the non-homogeneous distribution of radiogenic elements in the Hadean mantle with implications for the thermal history of the Earth.

  7. Expanded Analysis of Hot Isostatic Pressed Iodine-Loaded Silver-Exchanged Mordenite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R. T.; Bruffey, S. H.; Patton, K. K.

    2014-09-30

    Reduced silver-exchanged mordenite (Ag0Z) is being evaluated as a potential material to control the release of radioactive iodine that is released during the reprocessing of used nuclear fuel into the plant off-gas streams. The purpose of this study was to determine if hot pressing could directly convert this iodine loaded sorbent into a waste form suitable for long-term disposition. The minimal pretreatment required for production of pressed pellets makes hot pressing a technically and economically desirable process. Initial scoping studies utilized hot uniaxial pressing (HUPing) to prepare samples of non-iodine-loaded reduced silver exchanged mordenite (Ag0Z). The resulting samples were verymore » fragile due to the low pressure (~ 28 MPa) used. It was recommended that hot isostatic pressing (HIPing), performed at higher temperatures and pressures, be investigated. HIPing was carried out in two phases, with a third and final phase currently underway. Phase I evaluated the effects of pressure and temperature conditions on the manufacture of a pressed sample. The base material was an engineered form of silver zeolite. Six samples of Ag0Z and two samples of I-Ag0Z were pressed. It was found that HIPing produced a pressed pellet of high density. Analysis of each pressed pellet by scanning electron microscopy-energy dispersive spectrophotometry (SEM-EDS) and X-ray diffraction (XRD) demonstrated that under the conditions used for pressing, the majority of the material transforms into an amorphous structure. The only crystalline phase observed in the pressed Ag0Z material was SiO2. For the samples loaded with iodine (I-Ag0Z) iodine was present as AgI clusters at low temperatures, and transformed into AgIO4 at high temperatures. Surface mapping and EDS demonstrate segregation between silver iodide phases and silicon dioxide phases. Based on the results of the Phase I study, an expanded test matrix was developed to examine the effects of multiple source materials, compositional variations, and an expanded temperature range. Each sample was analyzed with the approach used in Phase I. In all cases, there is nothing in the SEM or XRD analyses that indicates creation of any AgI-containing silicon phase, with the samples being found to be largely amorphous. Phase III of this study has been initiated and is the final phase of scoping tests. It will expand upon the test matrix completed in Phase II and will examine the durability of the pressed pellets through product consistency testing (PCT) studies. Transformation of the component material into a well-characterized iodine-containing mineral phase would be desirable. This would limit the additional experimental testing and modeling required to determine the long-term stability of the pressed pellet, as much of that information has already been learned for several common iodine-containing minerals. However, this is not an absolute requirement, especially if pellets produced by hot isostatic pressing can be demonstrated through initial PCT studies to retain iodine well despite their amorphous composition.« less

  8. Hugoniot equation of state and dynamic strength of boron carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grady, Dennis E.

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Losmore » Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic difference in the processes of shock compression between the LANL data and that of the other studies is the markedly larger inelastic deformation and dissipation experienced in the shock event brought about by compaction of the substantially larger porosity LANL test ceramics. High-pressure diamond anvil cell experiments reveal extensive amorphization, reasoned to be a reversion product of a higher-pressure crystallographic phase, which is a consequence of application of both high pressure and shear deformation to the boron carbide crystal structure. A dependence of shock-induced high-pressure phase transformation in boron carbide on the extent of shear deformation experienced in the shock process offers a plausible explanation for the differences observed in the LANL Hugoniot data on porous ceramic and that of other shock data on near-full-density boron carbide.« less

  9. Correlation between ionic size and valence state of tetra, penta and hexavalent B-site substitution with solubility limit, phase transformation and multiferroic properties of Bi0.875Eu0.125FeO3

    NASA Astrophysics Data System (ADS)

    Mumtaz, Fiza; Jaffari, G. Hassnain; Hassan, Qadeer ul; Shah, S. Ismat

    2018-06-01

    We present detailed comparative study of effect of isovalent i.e. Eu+3 substitution at A-site and tetra (Ti+4, Zr+4), penta (V+5) and hexavalent (W+6) substitutions at B-site in BiFeO3. Eu+3 substitution led to phase transformation and exhibited mixed phases i.e. rhombohedral and orthorhombic, while tetravalent substituents (Ti+4 and Zr+4) led to stabilization of cubic phase. In higher valent (i.e. V+5 and W+6) cases solubility limit was significantly reduced where orthorhombic phase was observed as in the case of parent compound. Phase transformation as a consequence of increase in microstrain and chemical pressure induced by the substituent has been discussed. Solubility limit of different B-site dopants i.e. Zr, W and V was extracted to 5%, 2% and 2%, respectively. Extra phases in various cases were Bi2Fe4O9, Bi25FeO40, Bi14W2O27, and Bi23V4O44.5 and their fractional amount have been quantified. Ti was substituted up to 15% and has been observed to be completely soluble in the parent compound. Solubility limits depends on ionic radii mismatch and valance difference of Fe+3 and dopant, in which valance difference plays more dominant role. Solubility limit and phase transformation has been explained in terms of change in bond strength and tolerance factor induced by incorporation of dopant which depend on its size and valence state. Detail optical, dielectric, ferroelectric, magnetic and transport properties of Eu and Ti co-doped samples and selected low concentration B-site doped compositions (i.e. 2%) have presented and discussed. Two d-d transitions and three charge transfer transitions were observed within UV-VIS range. Both change in cell volume for the same phase and transformation in crystal structure affects the band gap. Increase in room temperature dielectric constant and saturation polarization was also found to increase in case of Eu-Ti co-doped samples with increasing concentration of Ti. Substitution of Eu at A-site and Ti at B-site led to observation of weak ferromagnetism. Effect of extra phases on ferroelectricity and transport properties have also been discussed.

  10. Fourier transform-infrared studies of thin H2SO4/H2O films: Formation, water uptake, and solid-liquid phase changes

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Iraci, Laura T.; Mcneill, Laurie S.; Koehler, Birgit G.; Wilson, Margaret A.; Saastad, Ole W.; Tolbert, Margaret A.; Hanson, David R.

    1993-01-01

    Fourier transform-infrared (FTIR) spectroscopy was used to examine films representative of stratospheric sulfuric acid aerosols. Thin films of sulfuric acid were formed in situ by the condensed phase reaction of SO3 with H2O. FTIR spectra show that the sulfuric acid films absorb water while cooling in the presence of water vapor. Using stratospheric water pressures, the most dilute solutions observed were greater than 40 wt % before simultaneous ice formation and sulfuric acid freezing occurred. FTIR spectra also revealed that the sulfuric acid films crystallized mainly as sulfuric acid tetrahydrate (SAT). Crystallization occurred either when the composition was about 60 wt% H2SO4 or after ice formed on the films at temperatures 1-4 K below the ice frost point. Finally, we determined that the melting point for SAT depended on the background water pressure and was 216-219 K in the presence of 4 x 10(exp -4) Torr H2O. Our results suggest that once frozen, sulfuric acid aerosols in the stratosphere are likely to melt at these temperatures, 30 K colder than previously thought.

  11. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    PubMed

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  12. Automated flaw detection scheme for cast austenitic stainless steel weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita

    2012-05-17

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major stepsmore » of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.« less

  13. Vapour pressure and standard enthalpy of sublimation of KBF 4 by a TG based transpiration technique

    NASA Astrophysics Data System (ADS)

    Pankajavalli, R.; Ananthasivan, K.; Anthonysamy, S.; Vasudeva Rao, P. R.

    2005-10-01

    A horizontal thermobalance was adapted as a transpiration apparatus for the measurement of the vapour pressure of KBF4 (s). Attainment of equilibrium was ascertained by the invariance of the measured values of the vapour pressures over a range of flows under isothermal conditions. Measured values of the vapour pressures could be represented by the least-squares expressions: log (p/Pa) = 8.16(±0.01) - 4892(±248)/T(K)(538-560 K), log (p/Pa) = 6.85(±0.06) - 4158(±240)/T(K) (576-660 K), which correspond to the equilibria of orthorhombic and cubic KBF4 vapours, respectively. From these expressions the temperature of transformation of the orthorhombic to the cubic phase was identified to be 561 K. From the slopes of the above equations, the enthalpies of sublimation of the orthorhombic and cubic phases were found to be (93.7 ± 4.7) and (79.6 ± 4.6) kJ mol-1, respectively. These values differ by 14.1 kJ mol-1 which could be ascribed to the enthalpy of the orthorhombic to cubic phase transition of KBF4. Third-law analysis of the vapour pressure data yielded a value of (104.6 ± 1.0) kJ mol-1 for Δ Hsubo of KBF4 (s) at 298.15 K.

  14. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle

    PubMed Central

    Merlini, Marco; Crichton, Wilson A.; Hanfland, Michael; Gemmi, Mauro; Müller, Harald; Kupenko, Ilya; Dubrovinsky, Leonid

    2012-01-01

    Carbon-bearing solids, fluids, and melts in the Earth's deep interior may play an important role in the long-term carbon cycle. Here we apply synchrotron X-ray single crystal micro-diffraction techniques to identify and characterize the high-pressure polymorphs of dolomite. Dolomite-II, observed above 17 GPa, is triclinic, and its structure is topologically related to CaCO3-II. It transforms above 35 GPa to dolomite-III, also triclinic, which features carbon in [3 + 1] coordination at the highest pressures investigated (60 GPa). The structure is therefore representative of an intermediate between the low-pressure carbonates and the predicted ultra-high pressure carbonates, with carbon in tetrahedral coordination. Dolomite-III does not decompose up to the melting point (2,600 K at 43 GPa) and its thermodynamic stability demonstrates that this complex phase can transport carbon to depths of at least up to 1,700 km. Dolomite-III, therefore, is a likely occurring phase in areas containing recycled crustal slabs, which are more oxidized and Ca-enriched than the primitive lower mantle. Indeed, these phases may play an important role as carbon carriers in the whole mantle carbon cycling. As such, they are expected to participate in the fundamental petrological processes which, through carbon-bearing fluids and carbonate melts, will return carbon back to the Earth’s surface. PMID:22869705

  15. A high-temperature shape memory alloy sensor for combustion monitoring and control

    NASA Astrophysics Data System (ADS)

    Shaw, Greg S.; Snyder, Joseph T.; Prince, Troy S.; Willett, Michael C.

    2005-05-01

    Innovations in the use of thin film SMA materials have enabled the development of a harsh environment pressure sensor useful for combustion monitoring and control. Development of such active combustion control has been driven by rising fuel costs and environmental pressures. Active combustion control, whether in diesel, spark ignited or turbine engines requires feedback to the engine control system in order to adjust the quantity, timing, and placement of fuel charges. To be fully effective, sensors must be integrated into each engine in a manner that will allow continuous combustion monitoring (turbine engines) or monitoring of each discrete combustion event (diesel and SI engines). To date, the sensors available for detection of combustion events and processes have suffered from one or more of three problems: 1) Low sensitivity: The sensors are unable to provide and adequate signal-to-noise ratio in the high temperature and electrically noisy environment of the engine compartment. Attempts to overcome this difficulty have focused on heat removal and/or temperature compensation or more challenging high temperature electronics. 2) Low reliability: Sensors and/or sensor packages have been unable to withstand the engine environment for extended periods of time. Issues have included gross degradation and more subtle issues such as migration of dopants in semiconductor sensor materials. 3) High cost: The materials that have been used, the package concepts employed, and the required support electronics have all contributed to the high cost of the few sensor systems available. Prices have remained high due to the limited demand associated with the poor reliability and the high price itself. Ternary titanium nickel alloys, with platinum group metal substitution for the nickel, are deposited as thin films on MEMS-based diaphragms and patterned to form strain gages of a standard metal film configuration. The strain induced phase transformation of the SMA is used as a natural signal enhancement. These sensors are maintained at a temperature just in excess of the austenite finish temperature (Af). When the diaphragm is deformed by an applied pressure, the film undergoes the reversible martensite phase transformation. The fraction of the austenite transformed to martensite is a fraction of the applied pressure. The large difference in the resistivity of the two phases results in a very sensitive strain gage, and hence a pressure sensor with a very high gage factor. The combination of the thin film and the fact that the transformation is strain induced (rather than thermally induced) results in a sensor with very high response rate. In fact, the response rate of the sensor has been shown to be strictly a function of the mechanical response of the diaphragm. Unlike other sensor systems, the temperature of the SMA sensor is controlled above the temperature of the local environment. By controlling above the temperature of the environment, the sensor is largely immune to temperature fluctuations that can affect the response of other sensors. This technology has been demonstrated for a variety of target temperature regimes and a variety of pressure regimes. Sensor design and testing to date has ranged from 180C to >500C and design pressures of 50 to 3500 psi, with higher pressures achievable. Characterization has included analysis of the response rate, the temperature sensitivity, reliability, and the effect of gross alloy changes. Sensor performance has also been evaluated in a diesel engine test cell. Ongoing work includes the sensitivity to minor composition changes, sensitivity to film thickness, and extended reliability and engine testing.

  16. Volumetric and x-ray investigations of the crystalline and columnar phases of copper (II) soaps under pressure

    NASA Astrophysics Data System (ADS)

    Ibn-Elhaj, M.; Guillon, D.; Skoulios, A.

    1992-12-01

    Binuclear copper (II) carboxylates, Cu2(CnH2n+1O2)4, crystallize at room temperature in layered systems in which planes of polar cores are separated by a double layer of alkyl chains. These compounds are mesomorphic in nature above ca. 100 °C. Pseudopolymeric chains of regularly stacked binuclear cores are located at the nodes of a two-dimensional hexagonal lattice and are surrounded by disordered aliphatic chains. The transition from the crystal to the columnar mesophase is characterized by a change in the repeat distance of the binuclear cores along the pseudopolymeric axis. In the crystalline phase, these cores are all oriented in the same direction with a repeat distance of 5.2 Å in the columnar mesophase, the polar cores are perpendicular to the columnar axis and superposed in a fourfold helicoidal fashion, at least on a local scale, with a repeat distance of 4.7 Å. We present here the effect of pressure on these anisotropic systems in a direction parallel to the columnar axis, and in the plane of the two-dimensional lattice. In a first part, we report the pressure-volume-temperature (P-V-T) relationship of these compounds (n=12, 18, and 24) in the temperature range from 30 to 200 °C, and in the pressure range from 1 to 2000 bars. Isothermal compressibility and isobaric expansion are determined in the crystalline and mesomorphic phases. In the mesophase, pressure-volume isotherms can be described by the Tait equation, as in most liquids or molten polymers. In a second part, we discuss the x-ray-diffraction experiments performed under pressure. In the mesophase, the area of the two-dimensional lattice decreases with increasing pressure and, at sufficiently high pressure, the columnar mesophase transforms into a crystalline lamellar phase. By combining P-V-T and x-ray results, we deduce an increase of the stacking period of the binuclear cores as a function of increasing pressure.

  17. Phase transition and chemical decomposition of hydrogen peroxide and its water mixtures under high pressures.

    PubMed

    Chen, Jing-Yin; Kim, Minseob; Yoo, Choong-Shik; Dattelbaum, Dana M; Sheffield, Stephen

    2010-06-07

    We have studied the pressure-induced phase transition and chemical decomposition of hydrogen peroxide and its mixtures with water to 50 GPa, using confocal micro-Raman and synchrotron x-ray diffractions. The x-ray results indicate that pure hydrogen peroxide crystallizes into a tetragonal structure (P4(1)2(1)2), the same structure previously found in 82.7% H(2)O(2) at high pressures and in pure H(2)O(2) at low temperatures. The tetragonal phase (H(2)O(2)-I) is stable to 15 GPa, above which transforms into an orthorhombic structure (H(2)O(2)-II) over a relatively large pressure range between 13 and 18 GPa. Inferring from the splitting of the nu(s)(O-O) stretching mode, the phase I-to-II transition pressure decreases in diluted H(2)O(2) to around 7 GPa for the 41.7% H(2)O(2) and 3 GPa for the 9.5%. Above 18 GPa H(2)O(2)-II gradually decomposes to a mixture of H(2)O and O(2), which completes at around 40 GPa for pure and 45 GPa for the 9.5% H(2)O(2). Upon pressure unloading, H(2)O(2) also decomposes to H(2)O and O(2) mixtures across the melts, occurring at 2.5 GPa for pure and 1.5 GPa for the 9.5% mixture. At H(2)O(2) concentrations below 20%, decomposed mixtures form oxygen hydrate clathrates at around 0.8 GPa--just after H(2)O melts. The compression data of pure H(2)O(2) and the stability data of the mixtures seem to indicate that the high-pressure decomposition is likely due to the pressure-induced densification, whereas the low-pressure decomposition is related to the heterogeneous nucleation process associated with H(2)O(2) melting.

  18. Structural, vibrational, and electrical properties of 1 T -TiT e2 under hydrostatic pressure: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Rajaji, V.; Dutta, Utpal; Sreeparvathy, P. C.; Sarma, Saurav Ch.; Sorb, Y. A.; Joseph, B.; Sahoo, Subodha; Peter, Sebastian C.; Kanchana, V.; Narayana, Chandrabhas

    2018-02-01

    We report the structural, vibrational, and electrical transport properties up to ˜16 GPa of 1 T -TiT e2 , a prominent layered 2D system. We clearly show signatures of two isostructural transitions at ˜2 GPa and ˜4 GPa obtained from the minima in c /a ratio concomitant with the phonon linewidth anomalies of Eg and A1 g modes around the same pressures, providing a strong indication of unusual electron-phonon coupling associated with these transitions. Resistance measurements present nonlinear behavior over similar pressure ranges shedding light on the electronic origin of these pressure-driven isostructural transitions. These multiple indirect signatures of an electronic transition at ˜2 GPa and ˜4 GPa are discussed in connection with the recent theoretical proposal for 1 T -TiT e2 and also the possibility of an electronic topological transition from our electronic Fermi surface calculations. Between 4 GPa and ˜8 GPa , the c /a ratio shows a plateau suggesting a transformation from an anisotropic 2D layer to a quasi-3D crystal network. First-principles calculations suggest that the 2D to quasi-3D evolution without any structural phase transitions is mainly due to the increased interlayer Te-Te interactions (bridging) via the charge density overlap. In addition, we observed a first-order structural phase transition from the trigonal (P 3 ¯m 1 ) to monoclinic (C 2 /m ) phase at higher pressure regions. We estimate the start of this structural phase transition to be ˜8 GPa and also the coexistence of two phases [trigonal (P 3 ¯m 1 ) and monoclinic (C 2 /m )] was observed from ˜8 GPa to ˜16 GPa .

  19. Thermodynamic Changes in the Coal Matrix - Gas - Moisture System Under Pressure Release and Phase Transformations of Gas Hydrates

    NASA Astrophysics Data System (ADS)

    Dyrdin, V. V.; Smirnov, V. G.; Kim, T. L.; Manakov, A. Yu.; Fofanov, A. A.; Kartopolova, I. S.

    2017-06-01

    The physical processes occurring in the coal - natural gas system under the gas pressure release were studied experimentally. The possibility of gas hydrates presence in the inner space of natural coal was shown, which decomposition leads to an increase in the amount of gas passing into the free state. The decomposition of gas hydrates can be caused either by the seam temperature increase or the pressure decrease to lower than the gas hydrates equilibrium curve. The contribution of methane released during gas hydrates decomposition should be taken into account in the design of safe mining technologies for coal seams prone to gas dynamic phenomena.

  20. Semiconductor Clathrates: In Situ Studies of Their High Pressure, Variable Temperature and Synthesis Behavior

    NASA Astrophysics Data System (ADS)

    Machon, D.; McMillan, P. F.; San-Miguel, A.; Barnes, P.; Hutchins, P. T.

    In situ studies have provided valuable new information on the synthesis mechanisms, low temperature properties and high pressure behavior of semiconductor clathrates. Here we review work using synchrotron and laboratory X-ray diffraction and Raman scattering used to study mainly Si-based clathrates under a variety of conditions. During synthesis of the Type I clathrate Na8Si46 by metastable thermal decomposition from NaSi in vacuum, we observe an unusual quasi-epitaxial process where the clathrate structure appears to nucleate and grow directly from the Na-deficient Zintl phase surface. Low temperature X-ray studies of the guest-free Type II clathrate framework Si136 reveal a region of negative thermal expansion behavior as predicted theoretically and analogous to that observed for diamond-structured Si. High pressure studies of Si136 lead to metastable production of the β-Sn structured Si-II phase as well as perhaps other metastable crystalline materials. High pressure investigations of Type I clathrates show evidence for a new class of apparently isostructural densification transformations followed by amorphization in certain cases.

Top