Science.gov

Sample records for pressure pulse amplitude

  1. PULSE AMPLITUDE ANALYSERS

    DOEpatents

    Lewis, I.A.D.

    1956-05-15

    This patent pentains to an electrical pulse amplitude analyzer, capable of accepting input pulses having a separation between adjacent pulses in the order of one microsecond while providing a large number of channels of classification. In its broad aspect the described pulse amplitude analyzer utilizes a storage cathode ray tube und control circuitry whereby the amplitude of the analyzed pulses controls both the intensity and vertical defiection of the beam to charge particular spots in horizontal sectors of the tube face as the beam is moved horizontally across the tube face. As soon as the beam has swept the length of the tube the information stored therein is read out by scanning individually each horizontal sector corresponding to a certain range of pulse amplitudes and applying the output signal from each scan to separate indicating means.

  2. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Greenblatt, M.H.

    1958-03-25

    This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.

  3. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of intraocular pressure.

    PubMed

    Dastiridou, Anna I; Ginis, Harilaos S; De Brouwere, Dirk; Tsilimbaris, Miltiadis K; Pallikaris, Ioannis G

    2009-12-01

    The purpose of this study was to characterize the pressure-volume relation in the living human eye, measure the ocular pulse amplitude (OPA), and calculate the corresponding pulsatile ocular blood flow (POBF) in a range of clinically relevant IOP levels. Fifty patients with cataract (50 eyes) were enrolled in the study. After cannulation of the anterior chamber, a computer-controlled device for the intraoperative measurement and control of IOP was used to artificially increase the IOP in a stepping procedure from 15 to 40 mm Hg. The IOP was continuously recorded for 2 seconds after each infusion step. The pressure-volume relation was approximated with an exponential fit, and the ocular rigidity coefficient was computed. OPA, pulse volume (PV), and POBF were measured from the continuous IOP recordings. The average rigidity coefficient was 0.0224 microL(-1) (SD 0.0049). OPA increased by 91% and PV and POBF decreased by 29% and 30%, respectively, when increasing the IOP from 15 to 40 mm Hg. The OPA is positively correlated with the coefficient of ocular rigidity (r = 0.65, P < 0.01). The present results suggest a nonlinear pressure-volume relation in the living human eye characterized by an increase in rigidity at higher IOP levels. The increased OPA and decreased pulse volume relate to the decreased POBF and the increased mechanical resistance of the ocular wall at high IOP levels.

  4. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Gray, G.W.; Jensen, A.S.

    1957-10-22

    A pulse-height analyzer system of improved design for sorting and counting a series of pulses, such as provided by a scintillation detector in nuclear radiation measurements, is described. The analyzer comprises a main transmission line, a cathode-ray tube for each section of the line with its deflection plates acting as the line capacitance; means to bias the respective cathode ray tubes so that the beam strikes a target only when a prearranged pulse amplitude is applied, with each tube progressively biased to respond to smaller amplitudes; pulse generating and counting means associated with each tube to respond when the beam is deflected; a control transmission line having the same time constant as the first line per section with pulse generating means for each tube for initiating a pulse on the second transmission line when a pulse triggers the tube of corresponding amplitude response, the former pulse acting to prevent successive tubes from responding to the pulse under test. This arrangement permits greater deflection sensitivity in the cathode ray tube and overcomes many of the disadvantages of prior art pulse-height analyzer circuits.

  5. PULSE AMPLITUDE DISTRIBUTION RECORDER

    DOEpatents

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  6. Effects of caffeinated coffee consumption on intraocular pressure, ocular perfusion pressure, and ocular pulse amplitude: a randomized controlled trial

    PubMed Central

    Jiwani, A Z; Rhee, D J; Brauner, S C; Gardiner, M F; Chen, T C; Shen, L Q; Chen, S H; Grosskreutz, C L; Chang, K K; Kloek, C E; Greenstein, S H; Borboli-Gerogiannis, S; Pasquale, D L; Chaudhry, S; Loomis, S; Wiggs, J L; Pasquale, L R; Turalba, A V

    2012-01-01

    Purpose To examine the effects of caffeinated coffee consumption on intraocular pressure (IOP), ocular perfusion pressure (OPP), and ocular pulse amplitude (OPA) in those with or at risk for primary open-angle glaucoma (POAG). Methods We conducted a prospective, double-masked, crossover, randomized controlled trial with 106 subjects: 22 with high tension POAG, 18 with normal tension POAG, 20 with ocular hypertension, 21 POAG suspects, and 25 healthy participants. Subjects ingested either 237 ml of caffeinated (182 mg caffeine) or decaffeinated (4 mg caffeine) coffee for the first visit and the alternate beverage for the second visit. Blood pressure (BP) and pascal dynamic contour tonometer measurements of IOP, OPA, and heart rate were measured before and at 60 and 90 min after coffee ingestion per visit. OPP was calculated from BP and IOP measurements. Results were analysed using paired t-tests. Multivariable models assessed determinants of IOP, OPP, and OPA changes. Results There were no significant differences in baseline IOP, OPP, and OPA between the caffeinated and decaffeinated visits. After caffeinated as compared with decaffeinated coffee ingestion, mean mm Hg changes (±SD) in IOP, OPP, and OPA were as follows: 0.99 (±1.52, P<0.0001), 1.57 (±6.40, P=0.0129), and 0.23 (±0.52, P<0.0001) at 60 min, respectively; and 1.06 (±1.67, P<0.0001), 1.26 (±6.23, P=0.0398), and 0.18 (±0.52, P=0.0006) at 90 min, respectively. Regression analyses revealed sporadic and inconsistent associations with IOP, OPP, and OPA changes. Conclusion Consuming one cup of caffeinated coffee (182 mg caffeine) statistically increases, but likely does not clinically impact, IOP and OPP in those with or at risk for POAG. PMID:22678051

  7. Usefulness of Pulse Amplitude Changes During the Valsalva Maneuver Measured Using Finger Photoplethysmography to Identify Elevated Pulmonary Capillary Wedge Pressure in Patients With Heart Failure.

    PubMed

    Gilotra, Nisha A; Tedford, Ryan J; Wittstein, Ilan S; Yenokyan, Gayane; Sharma, Kavita; Russell, Stuart D; Silber, Harry A

    2017-09-15

    The pulse amplitude ratio, the ratio of pulse pressure at the end of a Valsalva maneuver to before the onset of Valsalva, correlates with filling pressure. This study aimed to noninvasively estimate cardiac filling pressure in patients with heart failure. We developed a noninvasive handheld device to measure pulse amplitude ratio using finger photoplethysmography. In 69 patients who underwent right heart catheterization, photoplethysmography waveforms were recorded during a standardized Valsalva maneuver, and in 60 of these patients, pulse amplitude ratio was able to be calculated. Pulse amplitude ratio correlated with pulmonary capillary wedge pressure (PCWP) (r = 0.58, p <0.0001), particularly among those subjects with reduced ejection fraction (r = 0.60, p = 0.002, n = 25). A multivariable linear regression model for PCWP including pulse amplitude ratio, age, body mass index, systolic blood pressure, diastolic blood pressure, and heart rate yielded an R(2) of 0.54. Difference in mean pulse amplitude ratio for subjects with a PCWP ≤15 mm Hg versus >15 mm Hg was statistically significant (p <0.0001, area under receiver operating characteristics curve 0.79 [0.66, 0.92]). Pulse amplitude ratio ≥0.55 predicted PCWP >15 mm Hg with 73% sensitivity and 77% specificity. Pulse amplitude ratio also increased by an average of 0.03 with a leg raise maneuver (p = 0.05, n = 36). In conclusion, we demonstrate that noninvasively measured response to the Valsalva maneuver in patients with HF can estimate PCWP and also detect changes within a single patient. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The amplitude of pulse-synchronous oscillations varies with the level of intramuscular pressure in simulated compartment syndrome.

    PubMed

    Nilsson, Andreas; Zhang, Qiuxia; Styf, Jorma

    2015-12-01

    Patients with compartment syndromes have elevated intramuscular pressure (IMP) due to increased volume in the affected muscle. However, the accuracy of IMP as a parameter in diagnosing chronic compartment syndrome has been questioned. It has been observed that arterial pulsations create oscillations in the IMP in patients with abnormally elevated IMP. The amplitude of the IMP oscillations appears to be related to a pathogenic mechanism of elevated IMP. Therefore, the purpose of the present study was to investigate the relation between the amplitude of pulse-synchronous IMP oscillations and the absolute level of IMP with a high-end fiber-optic system in a human experimental model of abnormally elevated IMP (simulated compartment syndrome) of the leg. The hypothesis that the amplitude of the IMP oscillations is correlated to the absolute level of IMP was tested. IMP was measured at rest in the anterior tibial muscle in 12 legs of 7 healthy subjects (4 females and 3 males) with a mean age of 28 (range 23-38) years. The subject lay supine with his/her heel placed in a footrest. The foot was kept in a neutral position to avoid biased IMP readings. Measurements were performed at baseline and during 10 minutes with a model of abnormally elevated IMP (simulated compartment syndrome) applied. The abnormally elevated IMP was created by venous obstruction induced by a thigh tourniquet (65 mmHg) of a casted leg. Placement of the pressure-recording catheter was verified by sonography. The IMP increased from 4.7 (SD = 1.8) mmHg at baseline to 48.6 (SD = 7.1) mmHg when the model of elevated IMP was applied. The amplitude of the pulse-synchronous oscillations was undetectable at baseline. It increased to 3.9 (SD = 1.4) mmHg with increasing IMP when the model was applied. The amplitude of the oscillations showed a positive correlation (r = 0.59) with the absolute level of IMP. The amplitude of the pulse-synchronous IMP oscillations is correlated with the absolute

  9. Pulse amplitude modulated chlorophyll fluorometer

    DOEpatents

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  10. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter

    NASA Astrophysics Data System (ADS)

    Huber, Peter; Jöchle, Knut; Debus, Jürgen

    1998-10-01

    Monitoring the generation of cavitation is of great interest for diagnostic and therapeutic use of ultrasound in medicine, since cavitation is considered to play a major role in nonthermal ultrasound interactions with tissue. Important parameters are the number of cavitation events and the energy released during the bubble collapse. This energy is correlated to the maximum bubble radius which is related to the cavitation lifespan. The aim of this study was therefore to investigate the influence of the acoustic pressure amplitude and the pulse repetition frequency (PRF) in the field of a lithotripter (Lithostar, Siemens) on the number, size and lifespan of transient cavitation bubbles in water. We used scattered laser light recorded by a photodiode and stroboscopic photographs to monitor the cavitation activity. We found that PRF (range 0.5-5 Hz) had no influence on the cavitation bubble lifespan and size, whereas lifespan and size increased with the acoustic pressure amplitude. In contrast, the number of cavitation events strongly increased with PRF, whereas the pressure amplitude had no significant influence on the number of cavitation events. Thus, by varying the pressure amplitude and PRF, it might be possible to deliver a defined relative number of cavitations at a defined relative energy level in a defined volume. This seems to be relevant to further studies that address the biological effects of transient cavitation occurring in the fields of lithotripters.

  11. The best marker for guiding the clinical management of patients with raised intracranial pressure-the RAP index or the mean pulse amplitude?

    PubMed

    Hall, Allan; O'Kane, Roddy

    2016-10-01

    Raised intracranial pressure is a common problem in a variety of neurosurgical conditions including traumatic brain injury, hydrocephalus and intracranial haemorrhage. The clinical management of these patients is guided by a variety of haemodynamic, biochemical and clinical factors. However to date there is no single parameter that is used to guide clinical management of patients with raised intracranial pressure (ICP). However, the role of ICP indices, specifically the mean pulse amplitude (AMP) and RAP index [correlation coefficient (R) between AMP amplitude (A) and mean ICP pressure (P); index of compensatory reserve], as an indicator of true ICP has been investigated. Whilst the RAP index has been used both as a descriptor of neurological deterioration in TBI patients and as a way of characterising the compensatory reserve in hydrocephalus, more recent studies have highlighted the limitation of the RAP index due to the influence that baseline effect errors have on the mean ICP, which is used in the calculation of the RAP index. These studies have suggested that the ICP mean pulse amplitude may be a more accurate marker of true intracranial pressure due to the fact that it is uninfluenced by the mean ICP and, therefore, the AMP may be a more reliable marker than the RAP index for guiding the clinical management of patients with raised ICP. Although further investigation needs to be undertaken in order to fully assess the role of ICP indices in guiding the clinical management of patients with raised ICP, the studies undertaken to date provide an insight into the potential role of ICP indices to treat raised ICP proactively rather than reactively and therefore help prevent or minimise secondary brain injury.

  12. Dependence of macrophage superoxide release on the pulse amplitude of an applied pressure regime: a potential factor at the soft tissue-implant interface.

    PubMed

    Shin, Hainsworth Y; Frechette, Danielle M; Rohner, Nathan; Zhang, Xiaoyan; Puleo, David A; Bjursten, Lars M

    2016-03-01

    Failure of soft tissue implants has been largely attributed to the influence of biomaterial surface properties on the foreign body response, but some implant complications, e.g. macrophage accumulation and necrosis, are still not effectively addressed with surface treatments to minimize deleterious biomaterial effects. We explored an alternative explanation for implant failure, linking biocompatibility with implant micromotion-induced pressure fluctuations at the tissue-biomaterial interface. For this purpose, we used a custom in vitro system to characterize the effects of pressure fluctuations on the activity of macrophages, the predominant cells at a healing implant site. Initially, we quantified superoxide production by HL60-derived macrophage-like cells under several different pressure regimes with means of 5-40 mmHg, amplitudes of 0-15 mmHg and frequencies of 0-1.5 Hz. All pressure regimes tested elicited significantly (p < 0.05) reduced superoxide production by macrophage-like cells relative to parallel controls. Notably, pressure-sensitive reductions in superoxide release correlated (r(2)  = 0.74; p < 0.01) only with pulse pressures. Based on the connection between superoxide production and cell viability, we also explored the influence of cyclic pressure on macrophage numbers and death. Compared to controls, adherent macrophage-like cells exposed to 7.5/2.5 mmHg cyclic pressures for 6 h exhibited significantly (p < 0.01) reduced cell numbers, independent of cell death. A similar effect was observed for cells treated with 10 U/ml superoxide dismutase. Collectively, our results suggest that pressure pulses are a putative regulator of macrophage adhesion via a superoxide-related effect. Pressure fluctuations, e.g. due to implant micromotion, may, therefore, potentially modulate macrophage-dependent wound healing.

  13. Dual amplitude pulse generator for radiation detectors

    DOEpatents

    Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.

    2001-01-01

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  14. The pulsed amplitude unit for the SLC

    SciTech Connect

    Rolfe, J.; Browne, M.J.; Jobe, R.K.

    1987-02-01

    There is a recurring requirement in the SLC for the control of devices such as magnets, phase shifters, and attenuators on a beam-by-beam basis. The Pulsed Amplitude Unit (PAU) is a single width CAMAC module developed for this purpose. It provides digitally programmed analog output voltages on a beam-by-beam basis. Up to 32 preprogrammed values of output voltage are available from the single analog output of the module, and any of these values can be associated with any of the 256 possible SLC beam definitions. A 12-bit Analog-to-Digital Converter (ADC) digitizes an analog input signal at the appropriate beam time and stores it in a buffer memory. This feature is normally used to monitor the response of the device being controlled by the PAU at each beam time. Initial application of the PAU is a part of the system that controls the output of Klystrons in the SLC. The PAU combines several different functions in a single module. In order to accommodate these functions in a single width CAMAC module, field programmed logic is used extensively. Field Programmable Logic Arrays, Programmed Array Logic, and a Field Programmable Logic Sequencer are employed.

  15. Ocular pulse amplitude measurement using pascal dynamic contour tonometer in glaucoma patients.

    PubMed

    Katsimpris, J M; Theoulakis, P E; Papadopoulos, G E; Katsimpris, A; Lepidas, J; Petropoulos, I K

    2014-04-01

    This study aims to measure and compare the ocular pulse amplitude using Pascal dynamic contour tonometry in normal persons and in glaucoma patients. 20 patients (40 eyes) with primary open angle glaucoma (Group A), 8 patients (16 eyes) with normal tension glaucoma (Group B), and 12 patients (24 eyes) with ocular hypertension (Group C) were included in the study. Control group (Group D) comprised 25 normal volunteers (50 eyes). Intraocular pressure was measured using both Goldmann applanation tonometry in the slit-lamp and Pascal dynamic contour tonometry. Ocular pulse amplitude was evaluated with Pascal dynamic contour tonometry. Statistical evaluation of the differences in ocular pulse amplitude and intraocular pressure among the different groups was performed using Student's t-test. Mean ocular pulse amplitude values expressed in mmHg were 3.66 ± 1.00, 2.46 ± 0.60, 4.04 ± 1.47, and 2.52 ± 0.52, for Groups A, B, C, and D, respectively. The ocular pulse amplitude was significantly higher in Group A (primary open angle glaucoma) and Group C (ocular hypertension) when compared with Group D (control group) and Group B (normal tension glaucoma). No statistically significant difference was detected between Group D (control group) and Group B (normal tension glaucoma). Although we can measure the intraocular pressure with Goldmann applanation tonometry, no information can be derived regarding the ocular pulse amplitude. The use of Pascal dynamic contour tonometry in intraocular pressure estimation provides useful clinical information also about the magnitude of the ocular pulse amplitude in different types of glaucoma. Pascal dynamic contour tonometry discloses an elevation of ocular pulse amplitude in primary open angle glaucoma and ocular hypertension patients. On the contrary, the ocular pulse amplitude is within normal limits in normal tension glaucoma patients. Georg Thieme Verlag KG Stuttgart · New York.

  16. Adjusting pulse amplitude during transcutaneous electrical nerve stimulation (TENS) application produces greater hypoalgesia.

    PubMed

    Pantaleão, Manuela A; Laurino, Marjorie F; Gallego, Natalie L G; Cabral, Cristina M N; Rakel, Barbara; Vance, Carol; Sluka, Kathleen A; Walsh, Deirdre M; Liebano, Richard E

    2011-05-01

    Transcutaneous electrical nerve stimulation (TENS) is a noninvasive technique used for pain modulation. During application of TENS there is a fading of current sensation. Textbooks of electrophysical agents recommend that pulse amplitude should be constantly adjusted. This seems to be accepted clinically despite the fact that there is no direct experimental evidence. The aim of the current study was to investigate the hypoalgesic effect of adjusting TENS pulse amplitude on pressure pain thresholds (PPTs) in healthy humans. Fifty-six healthy TENS naïve participants were recruited and randomly assigned to 1 of 4 groups (n = 14 per group): control, placebo TENS, fixed pulse amplitude TENS, and adjusted pulse amplitude TENS. Both active and placebo TENS were applied to the dominant forearm. PPTs were recorded from 2 points on the dominant forearm and hand before, during, and after 40 minutes of TENS. TENS increased the PPTs on the forearm (P = .003) and hand (P = .003) in the group that received the adjusted pulse amplitude when compared to all other groups. The mean final pulse amplitude for the adjusted pulse amplitude TENS group was 35.51 mA when compared to the fixed pulse amplitude TENS group, which averaged 31.37 mA (P = .0318). These results suggest that it is important to adjust the pulse amplitude during TENS application to get the maximal analgesic effect. We propose that the fading of current sensation allows the use of higher pulse amplitudes, which would activate a greater number of and deeper tissue afferents to produce greater analgesia. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  17. Simple, one transistor circuit boosts pulse amplitude

    NASA Technical Reports Server (NTRS)

    Keon, T.; Matchett, M. W.

    1966-01-01

    Simple circuit that uses a single transistor to accomplish capacitor storage followed by common-base switching supplies a pulse voltage, higher than that normally available from emitter-follower circuits, to drive a 100-watt transmitter.

  18. Simultaneous phase, amplitude, and polarization control of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lindinger, A.; Weber, S. M.; Plewicki, M.; Weise, F.

    2012-12-01

    We present a serial pulse shaper design which allows us to shape the phase, amplitude, and polarization of fs laser pulses independently and simultaneously. The capabilities of this setup are demonstrated by implementing a method for generating parametrically tailored laser pulses. This method is applied on the ionization of NaK molecules by feedback loop optimization, employing a temporal sub pulse encoding. Moreover, we introduce and characterize a further development of this common path pulse shaper scheme for full control of all light field parameters.

  19. Arterial pulse wave pressure transducer

    NASA Technical Reports Server (NTRS)

    Kim, C.; Gorelick, D.; Chen, W. (Inventor)

    1974-01-01

    An arterial pulse wave pressure transducer is introduced. The transducer is comprised of a fluid filled cavity having a flexible membrane disposed over the cavity and adapted to be placed on the skin over an artery. An arterial pulse wave creates pressure pulses in the fluid which are transduced, by a pressure sensitive transistor in direct contact with the fluid, into an electric signal. The electrical signal is representative of the pulse waves and can be recorded so as to monitor changes in the elasticity of the arterial walls.

  20. Respiratory variations in the photoplethysmographic waveform amplitude depend on type of pulse oximetry device.

    PubMed

    Høiseth, Lars Øivind; Hoff, Ingrid Elise; Hagen, Ove Andreas; Kirkebøen, Knut Arvid; Landsverk, Svein Aslak

    2016-06-01

    Respiratory variations in the photoplethysmographic waveform amplitude predict fluid responsiveness under certain conditions. Processing of the photoplethysmographic signal may vary between different devices, and may affect respiratory amplitude variations calculated by the standard formula. The aim of the present analysis was to explore agreement between respiratory amplitude variations calculated using photoplethysmographic waveforms available from two different pulse oximeters. Analysis of registrations before and after fluid loads performed before and after open-heart surgery (aortic valve replacement and/or coronary artery bypass grafting) with patients on controlled mechanical ventilation. Photoplethysmographic (Nellcor and Masimo pulse oximeters) and arterial pressure waveforms were recorded. Amplitude variations induced by ventilation were calculated and averaged over ten respiratory cycles. Agreements for absolute values are presented in scatterplots (with least median square regression through the origin, LMSO) and Bland-Altman plots. Agreement for trending presented in a four-quadrant plot. Agreement between respiratory photoplethysmographic amplitude variations from the two pulse oximeters was poor with LMSO ΔPOPNellc = 1.5 × ΔPOPMas and bias ± limits of agreement 7.4 ± 23 %. Concordance rate with a fluid load was 91 %. Agreement between respiratory variations in the photoplethysmographic waveform amplitude calculated from the available signals output by two different pulse oximeters was poor, both evaluated by LMSO and Bland-Altman plot. Respiratory amplitude variations from the available signals output by these two pulse oximeters are not interchangeable.

  1. High pressure pulsed capillary viscometry

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Walowitt, J. A.; Pan, C. H. T.

    1972-01-01

    An analytical and test program was conducted in order to establish the feasibility of a multichamber pulsed-capillary viscometer. The initial design incorporated a piston, ram, and seals which produced measured pulses up to 30,000 psi in the closed chamber system. Pressure pulses from one to ten milliseconds were investigated in a system volume of 1 cuin. Four test fluids: a MIL-L-7808, a 5P4E polyphenyl ether, a MIL-L-23699A, and a synthetic hydrocarbon were examined in the test pressure assembly. The pressure-viscosity coefficient and viscosity delay time were determined for the MIL-L-7808 lubricant tested.

  2. SPECTRAL AMPLITUDE AND PHASE EVOLUTION IN PETAWATT LASER PULSES

    SciTech Connect

    Filip, C V

    2010-11-22

    The influence of the active gain medium on the spectral amplitude and phase of amplified pulses in a CPA system is studied. Results from a 10-PW example based on Nd-doped mixed glasses are presented. In conclusion, this study shows that, by using spectral shaping and gain saturation in a mixed-glass amplifier, it is possible to produce 124 fs, 1.4 kJ laser pulses. One detrimental effect, the pulse distortion due to resonant amplification medium, has been investigated and its magnitude as well as its compensation calculated.

  3. Does Fundus Fluorescein Angiography Procedure Affect Ocular Pulse Amplitude?

    PubMed Central

    Pekel, Gökhan; Yagci, Ramazan; Cetin, Ebru Nevin; Hiraali, Mehmet Can; Kaya, Hüseyin

    2013-01-01

    Purpose. This study examines the effects of fundus fluorescein angiography (FFA) procedure on ocular pulse amplitude (OPA) and intraocular pressure (IOP). Materials and Methods. Sixty eyes of 30 nonproliferative diabetic retinopathy patients (15 males, 15 females) were included in this cross-sectional case series. IOP and OPA were measured with the Pascal dynamic contour tonometer before and after 5 minutes of intravenous fluorescein dye injection. Results. Pre-FFA mean OPA value was 3.05 ± 1.36 mmHg and post-FFA mean OPA value was 2.93 ± 1.28 mmHg (P = 0.071). Pre-FFA mean IOP value was 17.97 ± 1.99 mmHg and post-FFA mean IOP value was 17.81 ± 2.22 mmHg (P = 0.407). Conclusion. Although both mean OPA and IOP values were decreased after FFA procedure, the difference was not statistically significant. This clinical trial is registered with Australian New Zealand Clinical Trials Registry number ACTRN12613000433707. PMID:23984045

  4. Pump pulse duration dependence of coherent phonon amplitudes in antimony

    SciTech Connect

    Misochko, O. V.

    2016-08-15

    Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separation between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.

  5. Nonlinear amplitude frequency characteristics of attenuation in rock under pressure

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2006-12-01

    Laboratory experiments have been carried out to investigate the influence of change in strain amplitude on the frequency dependence of attenuation in samples of sandstone, smoky quartz and duralumin. The measurements were performed using the reflection method on pulse frequency of 1 MHz in the strain range ~(0.3-2.0) × 10-6 under a confining pressure of 20 MPa. The attenuation in rocks is nonlinearly dependent on frequency and strain amplitude. In sandstone for P-waves and in smoky quartz for P- and S-waves, the dependences Q-1p(f) and Q-1s(f) have the attenuation peak. With increasing amplitude, the peak frequency can shift towards both the lower and the higher frequencies. It depends on the location of the frequency of an incident (input) pulse with respect to the peak frequency on the frequency axis. For sandstone the peak frequency of P-waves shifts towards the higher frequencies. For smoky quartz the shift of peak frequency is absent in P-waves, and S-waves shift towards the lower frequencies. The attenuation at the incident frequency always monotonically decreases with amplitude, and the other frequency components have complex or monotonic characters depending on the location of the incident frequency in the relaxation spectrum. Q-1p(f) in duralumin has monotonic character, i.e. a relaxation peak in the measurement frequency band is absent. Attenuation strongly decreases with increasing frequency and weakly depends on strain amplitude. The curve Q-1s(f) has an attenuation peak, and its character essentially depends on strain amplitude. With increasing amplitude, the peak frequency shifts towards the lower frequencies. The unusual increase of peak frequency of the P-wave spectrum in the bottom reflection in comparison with peak frequency in spectrum of the initial reflection is detected. The unusual behaviour of attenuation is explained by features of the joint action of viscoelastic and microplastic mechanisms. These results can be used for improving methods

  6. Superposed pulse amplitude modulation for visible light communication.

    PubMed

    Li, J F; Huang, Z T; Zhang, R Q; Zeng, F X; Jiang, M; Ji, Y F

    2013-12-16

    We propose and experimentally demonstrate a novel modulation scheme called superposed pulse amplitude modulation (SPAM) which is low-cost, insensitive to non-linearity of light emitting diode (LED). Multiple optical pulses transmit parallelly from different spatial position in the LED array and overlap linearly in free space to realize SPAM. With LED arrangement, the experimental results show that using the modulation we proposed the data rate of 120 Mbit/s with BER 1 × 10(-3) can be achieved with an optical blue filter and RC post-equalization.

  7. Pressure Pulse Measurements Using Optical Hydrophone Principles

    NASA Astrophysics Data System (ADS)

    Ueberle, Friedrich; Jamshidi-Rad, Abtin

    2011-02-01

    Pressure pulses are used in extracorporeal lithotripsy, pain therapy and other medical applications. Typical lithotripter pulses reach positive pressure amplitudes of ca. 20 to more than 100 MPa and negative pressures of -5 to more than -20 MPa, depending on the focusing properties and energy settings of the source. The IEC standard 61846, which defines the acoustic parameters of pressure pulse fields, describes the properties of "Focus-" and "Field-" type hydrophones, which were originally specified as PVDF sensors. During recent years, two types of optical sensors were developed, which are based on the principle of measuring reflection changes of a laser beam at a glass-water surface: The fiber optic sensor using bare optical fibers and the "light spot" sensor using a thick glass block. Measurements with both hydrophone types were made with a low pressure transducer (p+max=3 MPa), and two electromagnetic lithotripter sources with the same total acoustic energy (E5MPa=90mJ), one with a wide focus (FWHM = 11 mm, p+max = 30 MPa) and the other with a small focus (FWHM = 3,5 mm, p+max = 83 MPa). The results show that both optical sensor types provide high pressure-time signal fidelity comparable to PVDF membrane sensors. Both optical hydrophones can serve as "Focus-" and "Field-" hydrophones as defined in the lithotripsy measurement standard IEC 61846.

  8. Choroid thickness and ocular pulse amplitude in migraine during attack.

    PubMed

    Dervisogullari, M S; Totan, Y; Gençler, O S

    2015-03-01

    To compare the choroidal thickness and ocular pulse amplitude (OPA) measurements obtained during the attack period in migraine patients and age and gender matched control group participants using high definition optical coherence tomography (OCT). Thirty eyes at the side of the headache of 30 subjects with a diagnosis of migraine with or without aura and unilateral migraine and 29 age and gender matched healthy participants were enrolled in this observational, cross-sectional study. OCT scans were performed to all participants. Choroidal thicknesses were measured at the fovea, 1500 μm nasal and 1500 μm temporal to the fovea. Intraocular pressure (IOP) and OPA were also measured. The choroidal thickness measurements obtained during the attack period in migraine patients were (mean±SD) 279.82±35.87, 250.05±29.49, and 239.58±27.92 and in control group were 308.20±44.97, 276.95±41.39, and 281.60±41.38 at foveal, nasal, and temporal measurement points, respectively. Choroidal thickness significantly decreased according to the control group (P<0.05) at all measured points in migraine patients during attack. IOP (mean±SD) values were 16.71±3.26 and17.40±3.19 and OPA (mean±SD) values were 2.26±0.81 and 2.64±1.03 in migraine and control groups, respectively, and did not seem to be changed (P>0.05). Choroidal thickness was found to be significantly decreased in unilateral migraine patients during the attack period when compared with the control group, whereas OPA did not change. The possible implications of these findings on the association between migraine and glaucoma are discussed.

  9. Pulse Pressure: An Indicator of Heart Health?

    MedlinePlus

    ... resting blood pressure is 120/80 millimeters of mercury (mm Hg), your pulse pressure is 40. For ... the same pulse pressure: 160/120 millimeters of mercury (mm Hg) indicates a higher risk than 110/ ...

  10. Measurement of pulse width and amplitude jitter noises of gigahertz optical pulse trains by time-domain demodulation.

    PubMed

    Pottiez, O; Deparis, O; Kiyan, R; Mégret, P; Blondel, M

    2001-11-15

    We propose a technique for measuring both pulse width and amplitude jitter noises of high-repetition-rate optical pulse trains and the cross correlation between these noises as well. The technique is based on time-domain amplitude demodulation of three harmonic components of the detected pulse train. We applied this technique to characterize noises of a gigahertz optical pulse train generated by an actively mode-locked Er-doped fiber laser. Correlation between pulse width jitter and pulse amplitude jitter was observed at low frequencies in this laser. Unlike relaxation oscillation noise, low-frequency noise is free from pulse energy jitter. Owing to its ability to measure pulse width jitter in addition to amplitude and phase jitters, this technique is of great interest for characterizing noises of a wide variety of optical pulse train sources.

  11. Shuttle extravehicular activity signal processor pulse amplitude modulation decommutator

    NASA Technical Reports Server (NTRS)

    Noble, D. E.; Conrad, W. M.

    1974-01-01

    To provide data with long-term stability and accuracy, the pulse amplitude modulation (PAM) decommutator was synchronized to the PAM-return to zero wavetrain, and each channel was sampled with a common sample and hold circuit and digitized sequentially. The digital value of each channel was then scaled by the digital value of the calibration channels. The corrected digital value of each channel was stored for one complete frame and then transferred to the multiplexer-demultiplexer at a high rate in one block of serial digital data. A test model was built to demonstrate this design approach taken for the PAM decom and performance data was provided. The accuracies obtained with various signal to noise ratios are shown.

  12. Population transfer by an amplitude-modulated pulse

    SciTech Connect

    Vitanov, N.V.; Yatsenko, L.P.; Bergmann, K.

    2003-10-01

    We propose a technique for coherent population inversion of a two-state system, which uses an amplitude-modulated pulse. In the modulation-free adiabatic basis, the modulation introduces oscillating interaction between the adiabatic states. In a second rotating-wave approximation picture, this oscillating interaction induces a pair of level crossings between the energies of the adiabatic states if the modulation frequency is chosen appropriately. By suitably offsetting the modulation with respect to the center of the pulse, one can make the modulation act only in the vicinity of one of these crossings. In a higher-order adiabatic basis, this crossing shows up as an avoided crossing between the energies of the higher-order adiabatic states. As a result robust and efficient population transfer can be achieved between the adiabatic states, and hence, between the original bare states. We derive analytically the conditions on the interaction parameters for this technique and verify them with numerical simulations. Possible experimental implementations are discussed.

  13. Streaming Induced by High-Amplitude Acoustic Pulses and its Implications.

    NASA Astrophysics Data System (ADS)

    Starritt, Hazel Catherine

    Available from UMI in association with The British Library. This thesis investigates some aspects of the nonlinear propagation of high amplitude ultrasound in the context of medical diagnostic applications. Nonlinear propagation occurring in focused diagnostic fields is shown to enhance acoustic streaming in water due to the increased absorption of the high frequency components in the distorted wave. The results of an extensive experimental investigation of streaming in water are presented. The streaming velocities were measured using the technique of hot film anemometry and were found to vary with total acoustic power, pulse repetition frequency, pulse duration and pulse pressure amplitude. The velocity in a high amplitude beam was shown to be enhanced typically by a factor of 5 compared with that in a low amplitude beam of the same acoustic power. Measurements of acoustic parameters were made for comparison. The results showed that in a nonlinear field absorption is enhanced in the region immediately on the transducer side of the focus and this region is shown to act as the "source pump" for the stream. The maximum streaming velocities generated by commercial ultrasonic equipment were measured in the fields of pulsed Doppler units, with maximum velocities generated in the fields of scanned imaging beams being an order of magnitude lower. Streams in stationary beams were observed to become established in time periods which are short compared with the "dwell time" of the transducer at a single location in clinical use. The implications of acoustic streaming and the forces associated with it are discussed in the context of the current diagnostic usage of ultrasound. In particular, obstetric applications are considered where the fetus is scanned through a low loss fluid path in which nonlinear propagation and acoustic streaming may occur.

  14. Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shifta)

    NASA Astrophysics Data System (ADS)

    Flandro, Gary A.; Fischbach, Sean R.; Majdalani, Joseph

    2007-09-01

    High-amplitude pressure oscillations in solid propellant rocket motor combustion chambers display nonlinear effects including: (1) limit cycle behavior in which the fluctuations may dwell for a considerable period of time near their peak amplitude, (2) elevated mean chamber pressure (DC shift), and (3) a triggering amplitude above which pulsing will cause an apparently stable system to transition to violent oscillations. Along with the obvious undesirable vibrations, these features constitute the most damaging impact of combustion instability on system reliability and structural integrity. The physical mechanisms behind these phenomena and their relationship to motor geometry and physical parameters must, therefore, be fully understood if instability is to be avoided in the design process, or if effective corrective measures must be devised during system development. Predictive algorithms now in use have limited ability to characterize the actual time evolution of the oscillations, and they do not supply the motor designer with information regarding peak amplitudes or the associated critical triggering amplitudes. A pivotal missing element is the ability to predict the mean pressure shift; clearly, the designer requires information regarding the maximum chamber pressure that might be experienced during motor operation. In this paper, a comprehensive nonlinear combustion instability model is described that supplies vital information. The central role played by steep-fronted waves is emphasized. The resulting algorithm provides both detailed physical models of nonlinear instability phenomena and the critically needed predictive capability. In particular, the origin of the DC shift is revealed.

  15. Cavitation selectively reduces the negative-pressure phase of lithotripter shock pulses

    PubMed Central

    Pishchalnikov, Yuri A.; Sapozhnikov, Oleg A.; Bailey, Michael R.; Pishchalnikova, Irina V.; Williams, James C.; McAteer, James A.

    2009-01-01

    Measurements using a fiber-optic probe hydrophone, high-speed camera, and B-mode ultrasound showed attenuation of the trailing negative-pressure phase of a lithotripter shock pulse under conditions that favor generation of cavitation bubbles, such as in water with a high content of dissolved gas or at high pulse repetition rate where more cavitation nuclei persisted between pulses. This cavitation-mediated attenuation of the acoustic pulse was also observed to increase with increasing amplitude of source discharge potential, such that the negative-pressure phase of the pulse can remain fixed in amplitude even with increasing source discharge potential. PMID:19756170

  16. Influential factors for pressure pulse waveform in healthy young adults.

    PubMed

    Du, Yi; Wang, Ling; Li, Shuyu; Zhi, Guang; Li, Deyu; Zhang, Chi

    2015-01-01

    The effects of gender and other contributory factors on pulse waveform are still under arguments. In view of different results caused by few considerations of possible influential factors and general agreement of gender relating to pulse waveform, this study aims to address the confounding factors interfering with the association between gender and pulse waveform characteristics. A novel method was proposed to noninvasively detect pressure pulse wave and assess the morphology of pulse wave. Forty healthy young subjects were included in the present research. Height, weight, systolic blood pressure (SBP), and diastolic blood pressure (DBP) were measured manually and body mass index (BMI), pulse blood pressure (PP) and heart rate (HR) were calculated automatically. Student's t test was used to analyze the gender difference and analysis of variance (ANOVA) to examine the effects of intrinsic factors. Univariate regression analysis was performed to assess the main factors on the waveform characteristics. Waveform features were found significantly different between genders. However this study indicates that the main factors for time-related and amplitude-related parameters are HR and SBP respectively. In conclusion, the impact of HR and SBP on pulse waveform features should not be underestimated, especially when analyzing the gender difference.

  17. Improvement of a large-amplitude sinusoidal pressure generator for dynamic calibration of pressure transducers

    NASA Technical Reports Server (NTRS)

    Robinson, R. E.

    1972-01-01

    Results of research on the improvement of a sinusoidal pressure generator are presented. The generator is an inlet-area-modulated, gas-flow-through device (siren type) which was developed to dynamically calibrate pressure transducers and pressure probes. Tests were performed over a frequency range of 100 Hz to 20 kHz at average chamber pressures (bias pressure) between 30 and 50 psia (21 and 35 N/sq cm abs) and between 150 and 300 psia (104 and 207 N/sq cm abs). Significant improvements in oscillation pressure waveform were obtained but with reduction in available generator oscillation pressure amplitude range. Oscillation pressure amplitude, waveform, and waveform spectral content are given as functions of frequency for the two bias pressure conditions. The generator and instrumentation for frequency, amplitude, and spectrum measurements are described.

  18. Broadband RF-Amplitude-Dependent Flip Angle Pulses with Linear Phase Slope.

    PubMed

    Koos, Martin R M; Feyrer, Hannes; Luy, Burkhard

    2017-03-20

    Pulse sequences in NMR spectroscopy sometimes require the application of pulses with effective flip angles different from 90˚ and 180˚ Previously (Magn. Reson. Chem.), offset-compensated broadband excitation pulses with rf-amplitude-dependent effective flip angles (RADFA) were introduced that are applicable in such cases. However, especially rf-amplitude-restricted RADFA pulses turned out to perform not as good as desired in terms of achievable bandwidths. Here, a class of rf-amplitude-restricted RADFA pulses with linear phase slope is introduced that allows excitation over much larger bandwidths with better performance. In this theoretical work, the basic principle of the pulse class is explained, their physical limits explored, and their properties, also compared to other pulse classes, discussed in detail.

  19. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of axial length.

    PubMed

    Dastiridou, Anna I; Ginis, Harilaos; Tsilimbaris, Miltiadis; Karyotakis, Nikos; Detorakis, Efstathios; Siganos, Charalambos; Cholevas, Pierros; Tsironi, Evangelia E; Pallikaris, Ioannis G

    2013-03-01

    Previous studies have shown a negative correlation between axial length (AL) and pulsatile ocular blood flow (POBF). This relation has been questioned because of the possible confounding effect of ocular volume on ocular rigidity (OR). The purpose of this study was to investigate the relation between AL, as a surrogate parameter for ocular volume, and OR, ocular pulse amplitude (OPA), and POBF. Eighty-eight cataract patients were enrolled in this study. A computer-controlled device comprising a microdosimetric pump and a pressure sensor was used intraoperatively. The system was connected to the anterior chamber and used to raise the intraocular pressure (IOP) from 15 to 40 mm Hg, by infusing the eye with a saline solution. After each infusion step, the IOP was continuously recorded for 2 seconds. Blood pressure and pulse rate were measured during the procedure. The OR coefficient was calculated from the pressure volume data. OPA and POBF were measured from pressure recordings. Median AL was 23.69 (interquartile range 3.53) mm. OR coefficient was 0.0218 (0.0053) μL(-1). A negative correlation between the OR coefficient and AL (ρ = -0.641, P < 0.001) was documented. Increasing AL was associated with decreased OPA (ρ = -0.637, P < 0.001 and ρ = -0.690, P < 0.001) and POBF (ρ = -0.207, P = 0.053 and ρ = -0.238, P = 0.028) at baseline and elevated IOP, respectively. Based on manometric data, increasing AL is associated with decreased OR, OPA, and POBF. These results suggest decreased pulsatility in high myopia and may have implications on ocular pulse studies and the pathophysiology of myopia.

  20. Imbalance of group velocities for amplitude and phase pulses propagating in a resonant atomic medium

    NASA Astrophysics Data System (ADS)

    Basalaev, M. Yu.; Taichenachev, A. V.; Yudin, V. I.

    2016-11-01

    The dynamics of light pulses with amplitude and phase modulations is investigated for a medium of resonant two-level atoms. It is shown that the pulse-like variations of the phase can be also described in terms of group velocity. It is found that in the nonlinear regime of atom-field interaction, the group velocities of amplitude and phase pulses can have a large imbalance. Namely, amplitude pulses travel at a velocity less than c , whereas the group velocity of phase pulses is greater than the velocity of light in free space or it is even negative. The predicted imbalance of the group velocities can be important in the case of chirped pulses propagating in a resonant medium.

  1. Reducing the duration of broadband excitation pulses using optimal control with limited RF amplitude.

    PubMed

    Skinner, Thomas E; Reiss, Timo O; Luy, Burkhard; Khaneja, Navin; Glaser, Steffen J

    2004-03-01

    Combining optimal control theory with a new RF limiting step produces pulses with significantly reduced duration and improved performance for a given maximum RF amplitude compared to previous broadband excitation by optimized pulses (BEBOP). The resulting pulses tolerate variations in RF homogeneity relevant for standard high-resolution NMR probes. Design criteria were transformation of Iz-->Ix over resonance offsets of +/-20kHz and RF variability of +/-5%, with a pulse length of 500 micros and peak RF amplitude equal to 17.5 kHz. Simulations transform Iz to greater than 0.995 Ix, with phase deviations of the final magnetization less than 2 degrees, over ranges of resonance offset and RF variability that exceed the design targets. Experimental performance of the pulse is in excellent agreement with the simulations. Performance tradeoffs for yet shorter pulses or pulses with decreased digitization are also investigated.

  2. Modeling of Pulses Having Arbitrary Amplitude and Frequency Modulation.

    DTIC Science & Technology

    1980-03-01

    function, fi(t), has been discussed in great detail in Section II. The linearized amplitude modulation, 1(t), is given by: (IV-6) vo A +h( -) TO’ # where "A...10. LCDR Francis Martin Lunney, USN 6143 Gatsby Green Columbia, Maryland 21045 149

  3. Nyquist 4-ary pulse amplitude modulation scheme based on electrical Nyquist pulse shaping and fiber Bragg grating filter

    NASA Astrophysics Data System (ADS)

    Liu, Na; Chen, Xue; Ju, Cheng; Zhang, Qi; Wang, Huitao

    2015-04-01

    Intensity modulation and direct detection signal are sensitive to power fading and nonlinear intersymbol interference (ISI) induced by modulator chirp, fiber dispersion, and square-law photo-detection. We propose and experimentally demonstrate a Nyquist 4-ary pulse amplitude modulation and direct detection scheme relying on pulse-shaping with an electrical filter and optical equalization with a vestigial-sideband (VSB) filter in the transmitter. The power fading could be eliminated by using the VSB filter. Compared with conventional 4-ary pulse amplitude modulation, the Nyquist signal has a stronger resistance to nonlinear ISI.

  4. Large amplitude fluxional behaviour of elemental calcium under high pressure

    PubMed Central

    Tse, J. S.; Desgreniers, S.; Ohishi, Y.; Matsuoka, T.

    2012-01-01

    Experimental evidences are presented showing unusually large and highly anisotropic vibrations in the “simple cubic” (SC) unit cell adopted by calcium over a broad pressure ranging from 30–90 GPa and at temperature as low as 40 K. X-ray diffraction patterns show a preferential broadening of the (110) Bragg reflection indicating that the atomic displacements are not isotropic but restricted to the [110] plane. The unusual observation can be rationalized invoking a simple chemical perspective. As the result of pressure-induced s → d transition, Ca atoms situated in the octahedral environment of the simple cubic structure are subjected to Jahn-Teller distortions. First-principles molecular dynamics calculations confirm this suggestion and show that the distortion is of dynamical nature as the cubic unit cell undergoes large amplitude tetragonal fluctuations. The present results show that, even under extreme compression, the atomic configuration is highly fluxional as it constantly changes. PMID:22523635

  5. [Biopotential amplifier with nonlinear volt-ampere characteristics for recording low-amplitude pulses].

    PubMed

    Golubtsov, K V; Serova, O N; Zefirov, T L

    1985-07-01

    An amplifier with non-linear volt-ampere characteristics for recording low-amplitude nerve pulse activity is offered. It permits recording impulses with an amplitude exceeding the noise by 3-5 microV and afferent impulse activity of rat taste nerves.

  6. Nature of short, high-amplitude compressive stress pulses in a periodic dissipative laminate

    NASA Astrophysics Data System (ADS)

    Franco Navarro, Pedro; Benson, David J.; Nesterenko, Vitali F.

    2015-12-01

    We study the evolution of high-amplitude stress pulses in periodic dissipative laminates taking into account the nonlinear constitutive equations of the components and their dissipative behavior. Aluminum-tungsten laminate was selected due to the large difference in acoustic impedances of components, the significant nonlinearity of the aluminum constitutive equation at the investigated range of stresses, and its possible practical applications. Laminates with different cell size, which controls the internal time scale, impacted by plates with different thicknesses that determine the incoming pulse duration, were investigated. It has been observed that the ratio of the duration of the incoming pulse to the internal characteristic time determines the nature of the high-amplitude dissipative propagating waves—a triangular oscillatory shock-like profile, a train of localized pulses, or a single localized pulse. These localized quasistationary waves resemble solitary waves even in the presence of dissipation: The similar pulses emerged from different initial conditions, indicating that they are inherent properties of the corresponding laminates; their characteristic length scale is determined by the scale of mesostructure, nonlinear properties of materials, and the stress amplitude; and a linear relationship exists between their speed and amplitude. They mostly recover their shapes after collision with phase shift. A theoretical description approximating the shape, length scale, and speed of these high-amplitude dissipative pulses was proposed based on the Korteweg-de Vries equation with a dispersive term determined by the mesostructure and a nonlinear term derived using Hugoniot curves of components.

  7. Nature of short, high-amplitude compressive stress pulses in a periodic dissipative laminate.

    PubMed

    Franco Navarro, Pedro; Benson, David J; Nesterenko, Vitali F

    2015-12-01

    We study the evolution of high-amplitude stress pulses in periodic dissipative laminates taking into account the nonlinear constitutive equations of the components and their dissipative behavior. Aluminum-tungsten laminate was selected due to the large difference in acoustic impedances of components, the significant nonlinearity of the aluminum constitutive equation at the investigated range of stresses, and its possible practical applications. Laminates with different cell size, which controls the internal time scale, impacted by plates with different thicknesses that determine the incoming pulse duration, were investigated. It has been observed that the ratio of the duration of the incoming pulse to the internal characteristic time determines the nature of the high-amplitude dissipative propagating waves-a triangular oscillatory shock-like profile, a train of localized pulses, or a single localized pulse. These localized quasistationary waves resemble solitary waves even in the presence of dissipation: The similar pulses emerged from different initial conditions, indicating that they are inherent properties of the corresponding laminates; their characteristic length scale is determined by the scale of mesostructure, nonlinear properties of materials, and the stress amplitude; and a linear relationship exists between their speed and amplitude. They mostly recover their shapes after collision with phase shift. A theoretical description approximating the shape, length scale, and speed of these high-amplitude dissipative pulses was proposed based on the Korteweg-de Vries equation with a dispersive term determined by the mesostructure and a nonlinear term derived using Hugoniot curves of components.

  8. Linear hydraulic pressure-pulse actuator (LHPA): a versatile instrument that produces a simulated blood pressure pulse wave for small sized vessels.

    PubMed

    Field, S; Drzewiecki, G

    1996-06-01

    An instrument is presented which produces a simulated circulatory pulsatile pressure wave for small sized vessels. The linear hydraulic pressure-pulse actuator (LHPA) is designed to be extremely versatile, that is, a blood pressure wave source of any shape, amplitude, offset and frequency can be simulated. In addition, the LHPA can reproduce accurately a real pulse pressure wave by simply imputting an actual data record of a circulatory pressure pulse. The design is accomplished by incorporating the use of a linear force solenoid driven with a voltage-to-current source power amplifier. Testing of the device is presented here, as well as pressure pulse results from a recorded pulsatile pressure input to the LHPA. The device is simple to implement in that its response is linear, for volume changes upto +/- 5 mL, without the need for feedback compensation.

  9. Modified fiber Bragg grating pulse pressure sensor

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Tomasz; Kaczmarek, Zdzisław

    2007-04-01

    A new fiber optic, pulse pressure sensor with a Bragg grating, in the structure of which the operating principle of the Hopkinson bar is applied, is presented in the paper. The delivery of the measured pressure to the sensor is realized by means of a measuring head with truncated cone, made of silica glass and fusion-spliced to the grating's fiber. The optical and the electronic setup of the sensor is given. The sensor was employed to measure pulse pressure generated by an electric discharge in water. The obtained measurement results and the conclusions arising from them are presented.

  10. Vibrotactile Sensory Substitution for Object Manipulation: Amplitude versus Pulse Train Frequency Modulation

    PubMed Central

    Stepp, Cara E.; Matsuoka, Yoky

    2012-01-01

    Incorporating sensory feedback with prosthetic devices is now possible, but the optimal methods of providing such feedback are still unknown. The relative utility of amplitude and pulse train frequency modulated stimulation paradigms for providing vibrotactile feedback for object manipulation was assessed in 10 participants. The two approaches were studied during virtual object manipulation using a robotic interface as a function of presentation order and a simultaneous cognitive load. Despite the potential pragmatic benefits associated with pulse train frequency modulated vibrotactile stimulation, comparison of the approach with amplitude modulation indicates that amplitude modulation vibrotactile stimulation provides superior feedback for object manipulation. PMID:21997322

  11. Direct generation of all-optical random numbers from optical pulse amplitude chaos.

    PubMed

    Li, Pu; Wang, Yun-Cai; Wang, An-Bang; Yang, Ling-Zhen; Zhang, Ming-Jiang; Zhang, Jian-Zhong

    2012-02-13

    We propose and theoretically demonstrate an all-optical method for directly generating all-optical random numbers from pulse amplitude chaos produced by a mode-locked fiber ring laser. Under an appropriate pump intensity, the mode-locked laser can experience a quasi-periodic route to chaos. Such a chaos consists of a stream of pulses with a fixed repetition frequency but random intensities. In this method, we do not require sampling procedure and external triggered clocks but directly quantize the chaotic pulses stream into random number sequence via an all-optical flip-flop. Moreover, our simulation results show that the pulse amplitude chaos has no periodicity and possesses a highly symmetric distribution of amplitude. Thus, in theory, the obtained random number sequence without post-processing has a high-quality randomness verified by industry-standard statistical tests.

  12. Critically ill patients in emergency department may be characterized by low amplitude and high variability of amplitude of pulse photoplethysmography

    PubMed Central

    2013-01-01

    Background The aim of the present pilot study was to determine if pulse photoplethysmography amplitude (PPGA) could be used as an indicator of critical illness and as a predictor of higher need of care in emergency department patients. Methods This was a prospective observational study. We collected vital signs and one minute of pulse photoplethysmograph signal from 251 consecutive patients admitted to a university hospital emergency department. The patients were divided in two groups regarding to the modified Early Warning Score (mEWS): > 3 (critically ill) and ≤ 3 (non-critically ill). Photoplethysmography characteristics were compared between the groups. Results Sufficient data for analysis was acquired from 212 patients (84.5%). Patients in critically ill group more frequently required intubation and invasive hemodynamic monitoring in the ED and received more intravenous fluids. Mean pulse photoplethysmography amplitude (PPGA) was significantly lower in critically ill patients (median 1.105 [95% CI of mean 0.9946-2.302] vs. 2.476 [95% CI of mean 2.239-2.714], P = 0.0257). Higher variability of PPGA significantly correlated with higher amount of fluids received in the ED (r = 0.1501, p = 0.0296). Conclusions This pilot study revealed differences in PPGA characteristics between critically ill and non-critically ill patients. Further studies are needed to determine if these easily available parameters could help increase accuracy in triage when used in addition to routine monitoring of vital signs. PMID:23799988

  13. Dependence of Two-Photon eGFP Bleaching on Femtosecond Pulse Spectral Amplitude and Phase

    PubMed Central

    Tseng, Shu-Fen; Hsieh, Jer-Tsong; Chen, David J.; Alexandrakis, George

    2015-01-01

    Photobleaching is a key limitation in two-photon imaging of fluorescent proteins with femtosecond pulsed excitation. We present measurements of the dependence of eGFP photobleaching on the spectral amplitude and phase of the pulses used. A strong dependence on the excitation wavelength was confirmed and measured over a 800–950 nm range. A fiber continuum light source and pulse shaping techniques were used to investigate photobleaching with broadband, 15 fs transform limited, pulses with differing spectral amplitude and phase. Narrow band pulses, >150 fs transform limited, typical of femtosecond laser sources used in two-photon imaging applications, were also investigated for their photobleaching dependence on pulse dispersion and bandwidth. The bleach rate for broadband pulses was found to be primarily determined by the second harmonic spectrum of the excitation light. On the other hand, for narrow band excitation pulses with similar center wavelengths improvement in bleach rate was found to be mostly dependent on reducing the pulse length. A simple model to predict the relative bleach rates for broadband pulses is presented and compared to the experimental data. PMID:26411799

  14. Control of broadband optically generated ultrasound pulses using binary amplitude holograms.

    PubMed

    Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E

    2016-04-01

    In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.

  15. Morphological changes of intracranial pressure pulses are correlated with acute dilatation of ventricles.

    PubMed

    Hu, Xiao; Xu, Peng; Lee, Darrin J; Paul, Vespa; Bergsneider, Marvin

    2008-01-01

    Potentially useful information may exist in the morphological changes in intracranial pressure pulse therefore their extraction by automated methods is highly desirable. Long-term continuous recordings of intracranial pressure and electrocardiogram (ECG) signals were analyzed for four patients undergoing intracranial pressure (ICP) monitoring with their implanted shunts externalized and clamped. A novel clustering algorithm was invented to process hours of continuous ICP recordings such that a dominant ICP pulse was extracted every 5 min. Morphological characteristics of dominant ICP pulses were then extracted after detecting characteristics points of a dominant ICP pulse that include the locations of ICP pulse onset, the first (P1), the second (P2), and the third peaks (P3) (or inflection points in the absence of peaks). It was found that ratios of P2 amplitude to P1 amplitude and P3 amplitude to P1 amplitude showed a strong increasing trend for a patient whose lateral ventricles were significantly enlarged (bi-frontal distance was 33 cm on day 0 and 37 cm on day 2) while there were no consistent trends in these morphological features of ICP pulse for the three patients whose ventricles size was not altered during the monitoring period. The present work demonstrates the usefulness of this novel ICP pulse analysis algorithm in terms of its potential capabilities of extracting predictive pulse morphological features from long-term continuous ICP recordings that correlate with the development of ventriculomegaly.

  16. Pressure wave charged repetitively pulsed gas laser

    DOEpatents

    Kulkarny, Vijay A.

    1982-01-01

    A repetitively pulsed gas laser in which a system of mechanical shutters bracketing the laser cavity manipulate pressure waves resulting from residual energy in the cavity gas following a lasing event so as to draw fresh gas into the cavity and effectively pump spent gas in a dynamic closed loop.

  17. Decreased Ocular Pulse Amplitude and Retinal Nerve Fibre Layer in Multiple Sclerosis

    PubMed Central

    Cetin, Ebru N.; Erdogan, Cagdas; Acer, Semra; Sarac, Gülden; Yıldırım, Cem; Bir, Levent S.

    2013-01-01

    Abstract This study was conducted to assess ocular pulse amplitude and retinal nerve fibre layer in patients with multiple sclerosis and their correlation with disease duration and with severity. Retinal nerve fibre layer thickness was measured by Heidelberg Retinal Tomography II (HRT-II; Heidelberg Engineering, Dossenheim, Germany) and ocular pulse amplitude was measured by dynamic contour tonometry (Ziemer Ophthalmic Systems, Port, Switzerland) in 37 multiple sclerosis patients and 72 age- and gender-matched controls. Ocular pulse amplitude was significantly reduced and retinal nerve fibre layer was significantly thinner in temporal, superotemporal, and nasal sectors in patients with multiple sclerosis regardless of having an optic neuritis attack. The retinal nerve fibre layer was thinner in eyes with a previous optic neuritis attack compared with the eyes without an attack, but the difference was not significant. Ocular pulse amplitude showed a positive correlation with visual evoked potential amplitude and a negative correlation with visual evoked potential latency. Retinal nerve fibre layer thickness showed a significant negative correlation with the disease duration but not with visually evoked potential, disease severity, nor previous optic neuritis. These findings indicate that the process of degeneration starts in the early period of the disease, as our study group is composed of early–middle-stage multiple sclerosis patients, and is independent of relapses. PMID:28163762

  18. Effect of amplitude and duration of impulsive pressure on endothelial permeability in in vitro fluid percussion trauma

    PubMed Central

    2014-01-01

    Background Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Methods Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (−72 kPa/41 ms, −67 kPa/104 ms, and −91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. Results The pressure loading device could produce positive pressure pulses with amplitudes of 53–1348 kPa and durations of 9–29.1 ms and negative pressure pulses with amplitudes of −52–−93 kPa and durations of 42.9–179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. Conclusions The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the

  19. Cognitive-Behavioral Therapy versus Temporal Pulse Amplitude Biofeedback Training for Recurrent Headache

    ERIC Educational Resources Information Center

    Martin, Paul R.; Forsyth, Michael R.; Reece, John

    2007-01-01

    Sixty-four headache sufferers were allocated randomly to cognitive-behavioral therapy (CBT), temporal pulse amplitude (TPA) biofeedback training, or waiting-list control. Fifty-one participants (14M/37F) completed the study, 30 with migraine and 21 with tension-type headache. Treatment consisted of 8, 1-hour sessions. CBT was highly effective,…

  20. Cognitive-Behavioral Therapy versus Temporal Pulse Amplitude Biofeedback Training for Recurrent Headache

    ERIC Educational Resources Information Center

    Martin, Paul R.; Forsyth, Michael R.; Reece, John

    2007-01-01

    Sixty-four headache sufferers were allocated randomly to cognitive-behavioral therapy (CBT), temporal pulse amplitude (TPA) biofeedback training, or waiting-list control. Fifty-one participants (14M/37F) completed the study, 30 with migraine and 21 with tension-type headache. Treatment consisted of 8, 1-hour sessions. CBT was highly effective,…

  1. The neuronal response to electrical constant-amplitude pulse train stimulation: additive Gaussian noise.

    PubMed

    Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A

    2000-11-01

    Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.

  2. Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses.

    PubMed

    Shim, Sang-Hee; Strasfeld, David B; Zanni, Martin T

    2006-12-25

    A germanium acousto-optic modulator was recently reported (Shim et al., Optics Letters, 31, 838, 2006) that is capable of generating phase and amplitude shaped femtosecond pulses directly in the mid-infrared. In this paper, the design, implementation and performance of this novel mid-IR shaper is described in detail as is the sub-50 fs optical parametric amplifier that provides large bandwidth for generation of complex pulse shapes. These details include the acoustic power and wavelength dependence of the deflection efficiency, the phase stability of the shaper, the synchronization of electronics, and a study on how the mid-IR bandwidth of the optical parametric amplifier depends on its optical configuration. With these details quantified, the accuracy of the device is tested by creating a series of shaped pulses that are characterized by cross-correlation with well-known mid-IR reference pulses and by simulations. Test waveforms include optimally compressed, phase-chirped and amplitude-modulated mid-IR pulses. The shaped pulses are of sufficient quality that they will enable new experiments in 2D IR spectroscopy and in the coherent control of vibrations in ground electronic states.

  3. Influence of air pressure on the detailed characteristics of corona current pulse due to positive corona discharge

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Cui, Xiang; Lu, Tiebing; Li, Dayong; Chen, Bo; Fu, Yuke

    2016-12-01

    Air pressure is one of the main factors affecting the corona discharge and influence of air pressure should be carefully investigated. In order to obtain the influence of air pressure on the detailed characteristics of corona current pulse, such as pulse amplitude, rise time, pulse width, duration time, and pulse repetition frequency, a systematic investigation is carried out though a coaxial conductor-cylinder electrode structure with a corona point on the conductor. The electrodes are put into a pressure chamber for adjusting the air pressure. The results show that pulse amplitude increases with the increase of air pressure, while rise time, pulse width, duration time, and pulse repetition frequency decrease significantly at the same ratio between applied voltage and onset voltage (U/U0). Empirical formulas for the pulse amplitude, rise time, pulse width, and duration time varying with air pressure are first established. On the basis of the development of positive corona discharge, the influence of air pressure on the typical time intervals and experimental results are qualitatively explained.

  4. Neural Network Burst Pressure Prediction in Graphite/Epoxy Pressure Vessels from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Walker, James L., II; Rowell, Ginger H.

    1995-01-01

    Acoustic emission (AE) data were taken during hydroproof for three sets of ASTM standard 5.75 inch diameter filament wound graphite/epoxy bottles. All three sets of bottles had the same design and were wound from the same graphite fiber; the only difference was in the epoxies used. Two of the epoxies had similar mechanical properties, and because the acoustic properties of materials are a function of their stiffnesses, it was thought that the AE data from the two sets might also be similar; however, this was not the case. Therefore, the three resin types were categorized using dummy variables, which allowed the prediction of burst pressures all three sets of bottles using a single neural network. Three bottles from each set were used to train the network. The resin category, the AE amplitude distribution data taken up to 25 % of the expected burst pressure, and the actual burst pressures were used as inputs. Architecturally, the network consisted of a forty-three neuron input layer (a single categorical variable defining the resin type plus forty-two continuous variables for the AE amplitude frequencies), a fifteen neuron hidden layer for mapping, and a single output neuron for burst pressure prediction. The network trained on all three bottle sets was able to predict burst pressures in the remaining bottles with a worst case error of + 6.59%, slightly greater than the desired goal of + 5%. This larger than desired error was due to poor resolution in the amplitude data for the third bottle set. When the third set of bottles was eliminated from consideration, only four hidden layer neurons were necessary to generate a worst case prediction error of - 3.43%, well within the desired goal.

  5. Pulsed laser manipulation of an optically trapped bead: averaging thermal noise and measuring the pulsed force amplitude.

    PubMed

    Lindballe, Thue B; Kristensen, Martin V G; Berg-Sørensen, Kirstine; Keiding, Søren R; Stapelfeldt, Henrik

    2013-01-28

    An experimental strategy for post-eliminating thermal noise on position measurements of optically trapped particles is presented. Using a nanosecond pulsed laser, synchronized to the detection system, to exert a periodic driving force on an optically trapped 10 μm polystyrene bead, the laser pulse-bead interaction is repeated hundreds of times. Traces with the bead position following the prompt displacement from equilibrium, induced by each laser pulse, are averaged and reveal the underlying deterministic motion of the bead, which is not visible in a single trace due to thermal noise. The motion of the bead is analyzed from the direct time-dependent position measurements and from the power spectrum. The results show that the bead is on average displaced 208 nm from the trap center and exposed to a force amplitude of 71 nanoNewton, more than five orders of magnitude larger than the trapping forces. Our experimental method may have implications for microrheology.

  6. A simple method of calculating pulse amplitudes and shapes arising from reflection from linear segments

    SciTech Connect

    Erickson, S.A. Jr.

    1988-01-02

    A new formulation for the amplitude and pulse shape from reflections from a linear segment for a bistatic planar geometry is presented. The formulation is useful in calculating reverberation from high intensity signals in an deep ocean basin where long range propagation can occur. This reverberation is important in calculating the acoustic interference to sonar arising from the detonation of nuclear or large chemical explosives, and for modeling long range active sonar. The reflections computed with the new formulation are significantly different from those of earlier versions of the reverberation model, with pulses generally shorter and more intense, leading to predictions of louder but more sporadic reverberation than previously estimated. 9 refs

  7. Width and amplitude tunable square-wave pulse in dual-pump passively mode-locked fiber laser.

    PubMed

    Mei, Li; Chen, Guoliang; Xu, Lixin; Zhang, Xianming; Gu, Chun; Sun, Biao; Wang, Anting

    2014-06-01

    We have proposed and demonstrated a figure-8 dual-pump passively mode-locked fiber laser to generate square-wave pulse tunable by both width and amplitude. Just by simply adjusting the power of the pumps, both the amplitude and width of the output square-wave pulse can be tuned independently and continuously. One pump is used to tune the output pulsewidth while the other is used to tune amplitude.

  8. The relationship between programmed pacemaker pulse amplitude and the surface electrocardiogram recorded amplitude: application of a new high-bandwidth electrocardiogram system.

    PubMed

    Ricke, Anthony D; Swiryn, Steven; Sahakian, Alan V; Petrutiu, Simona; Young, Brian; Rowlandson, Gordan I

    2008-01-01

    Recording and displaying outputs from electronic pacemakers with electrocardiogram (ECG) recorders typically used in clinical practice have presented a number of technical limitations. We have recently reported on a new high-bandwidth ECG system and have shown that it is capable of reproducing accurate pulse amplitudes and durations from the body surface. In the present work, we have used our data to calculate a transform function between the programmed pacemaker output voltage and the amplitude on the body surface. We recorded 3 high-bandwidth (75,000 samples per second) ECGs from each of 100 pacemaker patients at 3 different programmed outputs. Each pacemaker pulse was isolated using the criterion standard annotations, and the pulses were transformed from the 8 independent leads to an XYZ vector using the Dower transform. The magnitude of the vector was calculated. Linear regression techniques were used to learn a transfer function over the records of the first 50 patients. These results were tested against the second 50 patients. The measured pacemaker pulse vector magnitude has a linear relationship to the programmed pacemaker amplitude on a per-patient basis for most of the patients in the training database. The linear transform models were tested against the testing set with an R(2) metric of 0.38 for the atrial pulses and 0.54 for the right ventricular pulses. Understanding the relationship between the generated pacemaker pulses and the measurements at the body surface will help drive specifications for pacemaker pulse detection among the various device manufactures.

  9. Trellis-coded pulse amplitude modulation for indoor visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Yang, Aiying; Wu, Yongsheng; Feng, Lihui; Sun, Yu-nan; Li, Yankun

    2013-12-01

    Trellis-coded pulse-amplitude modulation (TC-PAM) is applied in visible light communication (VLC) system using RGB-LED. Based on natural modulation, we propose a modified modulation to yield performance enhancement. Further, a decoding method of combing soft-decision Viterbi algorithm with most significant bit (MSB) decoding is developed. Finally, the results of Monte-Carlo simulation are presented to verify the best modulation and decoding method among the mentioned modulation and decoding techniques.

  10. Estimation of ocular rigidity in glaucoma using ocular pulse amplitude and pulsatile choroidal blood flow.

    PubMed

    Wang, Jing; Freeman, Ellen E; Descovich, Denise; Harasymowycz, Paul J; Kamdeu Fansi, Alvine; Li, Gisele; Lesk, Mark R

    2013-03-07

    Theoretical models and animal studies have suggested that scleral rigidity plays an important role in the pathogenesis of glaucoma. The aim of this study was to present a noninvasive technique for estimating ocular rigidity (E) in vivo, and to compare the estimated rigidity between patients with open-angle glaucoma (OAG); ocular hypertension (OHT); suspect glaucomatous disc (GS); and normal subjects (N). We hypothesized that OHT patients would have higher rigidity. All patients underwent measurements of ocular pulse amplitude (OPA) using dynamic contour tonometry, pulsatile choroidal blood flow (ChBFP) using laser Doppler flowmetry; axial length (AL); and assessment of automated visual field mean deviation (MD). The ratio between OPA and ChBFP was calculated according to the Friedenwald's equation of ocular rigidity. The calculated ratio is denoted as (ER). The average ER values of the four diagnostic groups were compared using nonparametric tests. The relationship between ER and other ocular and systemic factors was examined using correlation and regression analysis. A total of 257 subjects were included in the study (56 N, 108 OAG, 48 GS, and 45 OHT). ER correlated negatively with AL and positively with MD, signifying that a lower rigidity was associated with a longer eye and a worse (more negative) MD. ER was also found to be highest in OHT (0.235 ± 0.16) and lowest in OAG (0.188 ± 0.14; P = 0.01). Estimated coefficient of ocular rigidity by OPA and ChBFP suggested that glaucoma patients had the lowest rigidity and OHT the highest. It supports the idea that a more compliant ocular shell may predispose the optic nerve head to intraocular pressure (IOP)-related damage.

  11. Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism.

    PubMed

    Ahmed, Zaghloul; Wieraszko, Andrzej

    2015-07-01

    This paper investigates the influence of pulsed magnetic fields (PMFs) on amplitude of evoked, compound action potential (CAP) recorded from the segments of sciatic nerve in vitro. PMFs were applied for 30 min at frequency of 0.16 Hz and intensity of 15 mT. In confirmation of our previous reports, PMF exposure enhanced amplitude of CAPs. The effect persisted beyond PMF activation period. As expected, CAP amplitude was attenuated by antagonists of sodium channel, lidocaine, and tetrodotoxin. Depression of the potential by sodium channels antagonists was reversed by subsequent exposure to PMFs. The effect of elevated potassium concentration and veratridine on the action potential was modified by exposure to PMFs as well. Neither inhibitors of protein kinase C and protein kinase A, nor known free radicals scavengers had any effects on PMF action. Possible mechanisms of PMF action are discussed.

  12. Solitary Water Waves of Large Amplitude Generated by Surface Pressure

    NASA Astrophysics Data System (ADS)

    Wheeler, Miles H.

    2015-11-01

    We consider exact nonlinear solitary water waves on a shear flow with an arbitrary distribution of vorticity. Ignoring surface tension, we impose a non-constant pressure on the free surface. Starting from a uniform shear flow with a flat free surface and a supercritical wave speed, we vary the surface pressure and use a continuation argument to construct a global connected set of symmetric solitary waves. This set includes waves of depression whose profiles increase monotonically from a central trough where the surface pressure is at its lowest, as well as waves of elevation whose profiles decrease monotonically from a central crest where the surface pressure is at its highest. There may also be two waves in this connected set with identical surface pressure, only one of which is a wave of depression.

  13. Psychosocial stress inhibits amplitude of gonadotropin-releasing hormone pulses independent of cortisol action on the type II glucocorticoid receptor.

    PubMed

    Wagenmaker, Elizabeth R; Breen, Kellie M; Oakley, Amy E; Tilbrook, Alan J; Karsch, Fred J

    2009-02-01

    Our laboratory has developed a paradigm of psychosocial stress (sequential layering of isolation, blindfold, and predator cues) that robustly elevates cortisol secretion and decreases LH pulse amplitude in ovariectomized ewes. This decrease in LH pulse amplitude is due, at least in part, to a reduction in pituitary responsiveness to GnRH, caused by cortisol acting via the type II glucocorticoid receptor (GR). The first experiment of the current study aimed to determine whether this layered psychosocial stress also inhibits pulsatile GnRH release into pituitary portal blood. The stress paradigm significantly reduced GnRH pulse amplitude compared with nonstressed ovariectomized ewes. The second experiment tested if this stress-induced decrease in GnRH pulse amplitude is mediated by cortisol action on the type II GR. Ovariectomized ewes were allocated to three groups: nonstress control, stress, and stress plus the type II GR antagonist RU486. The layered psychosocial stress paradigm decreased GnRH and LH pulse amplitude compared with nonstress controls. Importantly, the stress also lowered GnRH pulse amplitude to a comparable extent in ewes in which cortisol action via the type II GR was antagonized. Therefore, we conclude that psychosocial stress reduces the amplitude of GnRH pulses independent of cortisol action on the type II GR. The present findings, combined with our recent observations, suggest that the mechanisms by which psychosocial stress inhibits reproductive neuroendocrine activity at the hypothalamic and pituitary levels are fundamentally different.

  14. Effect of strain amplitude on relaxation spectra of attenuation in dry and saturated sandstone under pressure

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2007-06-01

    Laboratory experiments have been carried out to investigate the amplitude-frequency dependence of compressional- and shear-wave attenuation in samples of dry and saturated sandstone. The measurements were performed using the reflection method on a pulse frequency of 1 MHz in the strain range ~(0.3-2.0) × 10-6 under a confining pressure of 20 MPa. In general, the attenuation decreases monotonically with increasing strain amplitude as Q^{-1} \\propto \\varepsilon ^{-n_{\\sim} }, where n~ = 0.003-0.045. The decrease in P-wave attenuation, Q-1p, for dry sandstone is 5%, but for saturated sandstone there is no change. The analogous decrease for Q-1s in the dry and the saturated sandstone is 8% and 4%, respectively. The P-wave relaxation spectra, Q-1p(f), in the dry and saturated sandstone are slightly different from each other but the S-wave relaxation spectra, Q-1s(f), are very different. The amplitude variation causes the change in the value of the relaxation strength Δ that leads to the displacement of the curve Q-1(f) in the Y-direction. The value of Δs in the saturated rock is four times more than the value Δp in the dry rock, and the curves Q-1s(f) are shifted relative to Q-1p(f) towards higher frequencies. The upward-downward amplitude dependence Δp(ɛ1-6-1) both in the dry and the saturated rock is represented by the descending curve. The Δs(ɛ1-6-1) curve for the saturated rock shows hysteresis, but for the dry rock hysteresis is absent. The increase in the strain amplitude gives rise to a small change in peak frequency, but stimulates considerable (up to 40%) decrease in the S-wave relaxation peak width. The unusual behaviour of attenuation is explained by a feature of the joint action of viscoelastic and microplastic mechanisms. These results can be used to improve methods of geological interpretation of acoustical and seismic data.

  15. Prenatal exposure to androgen excess increases LH pulse amplitude during postnatal life in male sheep.

    PubMed

    Recabarren, S E; Recabarren, M; Rojas-Garcia, P P; Cordero, M; Reyes, C; Sir-Petermann, T

    2012-09-01

    Prenatal exposure to excess testosterone has a profound impact on reproductive and metabolic functions in young and adult female sheep. Nevertheless, few studies have addressed the impact of prenatal exposure to an excess of androgens on reproductive and metabolic functions in males. The aim of the present study was to assess the impact of prenatal exposure to an excess of testosterone or dihydrotestosterone on the luteinizing hormone (LH) pulse characteristics during sexual development in male sheep. Control male sheep (C-males) and males born to mothers exposed to twice weekly injections of 30 mg testosterone or dihydrotestosterone from day 30-90 and 40 mg from day 90-120 of gestation (T-males, DHT-males) were studied at 5, 10, and 20 weeks of age, ages that represent infancy, early prepubertal, and late prepubertal stages of sexual development in this species, respectively. Patterns of LH pulsatility showed that T- and DHT-males exhibited a higher secretion of LH during the 6-h study and a higher amplitude of the LH pulses compared with C-males. Moreover, nadir of the pulses was higher in T- and DHT-males compared with C-males. Frequency of LH pulses, however, was not different within ages or between groups. These results show that males can be responsive to prenatal androgenization and suggest that treatment transiently alters the amplitude of LH pulses probably as the result of defects in the pituitary responsiveness pattern or in the gonadotropin-releasing hormone (GnRH) release pattern.

  16. Dual temporal pitch percepts from acoustic and electric amplitude-modulated pulse trains.

    PubMed

    McKay, C M; Carlyon, R P

    1999-01-01

    Two experiments examined the perception of unmodulated and amplitude-modulated pulse trains by normally hearing listeners and cochlear implantees. Four normally hearing subjects listened to acoustic pulse trains, which were band-pass filtered between 3.9 and 5.3 kHz. Four cochlear implantees, all postlinguistically deaf users of the Mini System 22 implant, listened to current pulse trains produced at a single electrode position. In the first experiment, a set of nine loudness-balanced unmodulated stimuli with rates between 60 and 300 Hz were presented in a multidimensional scaling task. The resultant stimulus spaces for both subject groups showed a single dimension associated with the rate of the stimuli. In the second experiment, a set of ten loudness-balanced modulated stimuli was constructed, with carrier rates between 140 and 300 Hz, and modulation rates between 60 and 150 Hz. The modulation rates were integer submultiples of the carrier rates, and each modulation period consisted of one higher-intensity pulse and one or more identical lower-intensity pulses. The modulation depth of each stimulus was adjusted so that its pitch was judged to be higher or lower 50% of the time than that of an unmodulated pulse train having a rate equal to the geometric mean of the carrier and modulation rates. A multidimensional scaling task with these ten stimuli resulted in two-dimensional stimulus spaces, with dimensions corresponding to carrier and modulation rates. A further investigation with one normally hearing subject showed that the perceptual weighting of the two dimensions varied systematically with modulation depth. It was concluded that, when filtered appropriately, acoustic pulse trains can be used to produce percepts in normal listeners that share common features with those experienced by subjects listening through one channel of a cochlear implant, and that the central auditory system can extract two temporal patterns arising from the same cochlear location.

  17. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.

    2016-08-01

    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.

  18. Wideband pulse reconstruction from sparse spectral-amplitude data. Final report

    SciTech Connect

    Casey, K.F.; Baertlein, B.A.

    1993-01-01

    Methods are investigated for reconstructing a wideband time-domain pulse waveform from a sparse set of samples of its frequency-domain amplitude spectrum. Approaches are outlined which comprise various means of spectrum interpolation followed by phase retrieval. Methods for phase retrieval are reviewed, and it is concluded that useful results can only be obtained by assuming a minimum-phase solution. Two reconstruction algorithms` are proposed. The first is based upon the use of Cauchy`s technique for estimating the amplitude spectrum in the form of a ratio of polynomials. The second uses B-spline interpolation among the sampled values to reconstruct this spectrum. Reconstruction of the time-domain waveform via inverse Fourier transformation follows, based on the assumption of minimum phase. Representative numerical results are given.

  19. Acute effects of caffeine on choroidal thickness and ocular pulse amplitude.

    PubMed

    Dervişoğulları, Mehmet Serdar; Totan, Yüksel; Yüce, Aslıhan; Kulak, Ali Ender

    2016-12-01

    To explore ocular changes in healthy people after caffeine consumption. This prospective observational study was carried out with students of the Turgut Özal University Medical Faculty from May 15 to 15 December 2014. Enrolled in the study were 17 healthy subjects (n = 17 eyes), with a median age of 24 (IQR 1), ranging between 21 and 26 years. The control group (6 females, 11 males) aged between 23 and 28 (median 25 years [IQR 4.75]). For study, one eye from each participant was randomly selected. To obviate the effect of diurnal variations, tests were performed at the same time of the day (10:00 a.m.-12:00 p.m.). Each subject was given an ophthalmologic examination before the study to exclude those with undiagnosed ocular disease. Version 6.0 Cirrus high-definition optical coherence tomography (HD-OCT) (Carl Zeiss Meditec, Dublin, CA) was used to measure CT at the fovea, and 1500 μm nasal and 1500 μm temporal to the fovea. After baseline OCT measurements, participants were asked to have 200 mg oral caffeine intake or a placebo capsule (200 mg lactose powder). Two further OCT measurements were applied at the first and fourth hours of caffeine intake. All participants also had intraocular pressure (IOP) and ocular pulse amplitude (OPA) measurements recorded before, first and fourth hours of caffeine intake. IOP and OPA were measured using the dynamic contour tonometry (DCT) (Swiss Micro Technology AG, Port, Switzerland). The groups showed no significant difference by means of age, gender, spherical refraction and axial length (p > 0.05). Baseline choroidal thickness measurements of the study and control group showed no significant difference. Oral caffeine intake caused a significant reduction in choroidal thickness compared with baseline, at all three measurement points, (p < 0.05). There were no significant changes in IOP and OPA measurements compared with the baseline values (p > 0.05). The choroidal thickness still continued to

  20. The pulse-train auditory aftereffect and the perception of rapid amplitude modulations.

    PubMed

    Gutschalk, Alexander; Micheyl, Christophe; Oxenham, Andrew J

    2008-02-01

    Prolonged listening to a pulse train with repetition rates around 100 Hz induces a striking aftereffect, whereby subsequently presented sounds are heard with an unusually "metallic" timbre [Rosenblith et al., Science 106, 333-335 (1947)]. The mechanisms responsible for this auditory aftereffect are currently unknown. Whether the aftereffect is related to an alteration of the perception of temporal envelope fluctuations was evaluated. Detection thresholds for sinusoidal amplitude modulation (AM) imposed onto noise-burst carriers were measured for different AM frequencies (50-500 Hz), following the continuous presentation of a periodic pulse train, a temporally jittered pulse train, or an unmodulated noise. AM detection thresholds for AM frequencies of 100 Hz and above were significantly elevated compared to thresholds in quiet, following the presentation of the pulse-train inducers, and both induced a subjective auditory aftereffect. Unmodulated noise, which produced no audible aftereffect, left AM detection thresholds unchanged. Additional experiments revealed that, like the Rosenblith et al. aftereffect, the effect on AM thresholds does not transfer across ears, is not eliminated by protracted training, and can last several tens of seconds. The results suggest that the Rosenblith et al. aftereffect is related to a temporary alteration in the perception of fast temporal envelope fluctuations in sounds.

  1. Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask.

    PubMed

    Wilson, Jesse W; Schlup, Philip; Bartels, Randy A

    2007-07-09

    An ultrafast pulse shaper, capable of both phase and amplitude shaping, is constructed using a single high-resolution liquid crystal phase mask. The shaper is calibrated with an inline spectral interferometry technique. Amplitude shaping is accomplished by writing to the mask a phase grating, whose period is smaller than the spectral focus, diffracting away selected frequencies in a controllable manner.

  2. Basis of monitoring central blood pressure and hemodynamic parameters by peripheral arterial pulse waveform analyses.

    PubMed

    Miyashita, Hiroshi; Katsuda, Shin-ichiro

    2013-01-01

    In hypertension clinics, central blood pressure (CBP) should be estimated, instead of directly measured, by the "signal processing" of a noninvasive peripheral pressure waveform. This paper deals with the data obtained in our three separate studies focusing on a major estimation method, i.e., radial artery late systolic shoulder pressure (rSBP2)-based CBP estimation. Study 1: Using a wave separation analysis of precise animal data of pressure wave transmission along the upper-limb arteries, we first demonstrate that pulse pressure amplification is largely attributable to local wave reflection alone. Study 2: A frequency component analysis of simultaneously recorded human central and radial artery pressure waveforms showed a predominance of lower (1st+2nd) harmonic components in determining the central augmentation peak amplitude. The features of a central pressure waveform, including its phase property, may contribute to the less-altered transmission of augmentation peak pressure to rSBP2. Study 3: Comparisons of noninvasive rSBP2 with direct or estimated central systolic blood pressure (cSBP) revealed broad agreement but also augmentation-dependent biases. Based on the features of the biases as well as the counterbalanced relationship between pulse pressure amplification and the transmission-induced alterations of augmentation peak amplitude observed in Study 2, we propose an improved cSBP estimate, SBPm, the simple arithmetic mean of rSBP2 and peripheral systolic blood pressure.

  3. Large amplitude ship motions and bow flare slamming pressures in regular head seas

    SciTech Connect

    Tao, Z.; Incecik, A.

    1996-12-31

    In this paper, the motion equations incorporating nonlinear terms due to large amplitude motions and bow flare slamming pressures are described in regular head seas. Numerical predictions of ship motions based on a small amplitude linear theory and large amplitude nonlinear method and experimental data are compared with each other in the frequency and time domain. The nonlinear restoring force, nonlinear damping force and nonlinear fluid momentum force are considered in predicting ship motions. The frequency dependent added mass and damping coefficient are computed at the instantaneous submerged sections of the ship. The momentum slamming theory and Wagner theory are used to predict the bow flare slamming pressure. The total impact pressure is expressed as the sum of water immersion impact pressure and wave striking impact pressure. There is a satisfactory agreement between theoretical predictions and model test measurements.

  4. Envelope pulsed ultrasonic distance measurement system based upon amplitude modulation and phase modulation.

    PubMed

    Huang, Y P; Wang, J S; Huang, K N; Ho, C T; Huang, J D; Young, M S

    2007-06-01

    A novel microcomputer-based ultrasonic distance measurement system is presented. This study proposes an efficient algorithm which combines both the amplitude modulation (AM) and the phase modulation (PM) of the pulse-echo technique. The proposed system can reduce error caused by inertia delay and amplitude attenuation effect when using the AM and PM envelope square wave form (APESW). The APESW ultrasonic driving wave form causes a phase inversion phenomenon in the relative wave form of the receiver. The phase inversion phenomenon sufficiently identifies the "measurement pulse" in the received wave forms, which can be used for accurate time-of-flight (TOF) measurement. In addition, combining a countertechnique to compute the phase shifts of the last cycle for TOF, the presented system can obtain distance resolution of 0.1% of the wavelength corresponding to the 40 kHz frequency of the ultrasonic wave. The standard uncertainty of the proposed distance measurement system is found to be 0.2 mm at a range of 50-500 mm. The APESW signal generator and phase detector of this measuring system are designed on a complex programmable logic device, which is used to govern the TOF measurement and send the data to a personal computer for distance calibration and examination. The main advantages of this APESW system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  5. Envelope pulsed ultrasonic distance measurement system based upon amplitude modulation and phase modulation

    SciTech Connect

    Huang, Y. P.; Wang, J. S.; Huang, K. N.; Ho, C. T.; Huang, J. D.; Young, M. S.

    2007-06-15

    A novel microcomputer-based ultrasonic distance measurement system is presented. This study proposes an efficient algorithm which combines both the amplitude modulation (AM) and the phase modulation (PM) of the pulse-echo technique. The proposed system can reduce error caused by inertia delay and amplitude attenuation effect when using the AM and PM envelope square wave form (APESW). The APESW ultrasonic driving wave form causes a phase inversion phenomenon in the relative wave form of the receiver. The phase inversion phenomenon sufficiently identifies the ''measurement pulse'' in the received wave forms, which can be used for accurate time-of-flight (TOF) measurement. In addition, combining a countertechnique to compute the phase shifts of the last cycle for TOF, the presented system can obtain distance resolution of 0.1% of the wavelength corresponding to the 40 kHz frequency of the ultrasonic wave. The standard uncertainty of the proposed distance measurement system is found to be 0.2 mm at a range of 50-500 mm. The APESW signal generator and phase detector of this measuring system are designed on a complex programmable logic device, which is used to govern the TOF measurement and send the data to a personal computer for distance calibration and examination. The main advantages of this APESW system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  6. Period and amplitude of bedload pulses in a macro-rough channel

    NASA Astrophysics Data System (ADS)

    Ghilardi, Tamara; Franca, Mário J.; Schleiss, Anton J.

    2014-09-01

    It is known that bedload fluctuates over time in steep rivers with wide grain size distributions, even under conditions of constant sediment feed and water discharge. Bedload fluctuations, which are a consequence of grain sorting, are periodic and are related to fluctuations in the flow velocity and channel-bed morphology. The presence of large relatively immobile boulders, such as erratic blocks that are often present in mountain streams, has a strong impact on flow conditions and sediment transport. However, their influence on bedload fluctuations has not been studied. Sediment transport fluctuations were investigated in this study in a set of 38 laboratory experiments carried out on a steep tilting flume under several conditions of constant sediment and water discharge for three different slopes (S = 6.7%, 9.9%, and 13%). Sediment transport, bulk mean flow velocities, and variables describing the channel-bed morphology were measured regularly during the experiments. Periodic bedload pulses were clearly visible in all of the experiments, along with flow velocity and channel-bed morphology fluctuations. Correlation analysis showed that the durations of these cycles were similar, although they were not necessarily in phase. The pulses were characterized by their amplitude and period as a function of various boulder spatial densities and diameters. We could show that for higher stream power the fluctuations decrease in cycle duration and in amplitude. The presence of boulders increases the stream power needed to transport a given amount of sediment, thus decreasing the bedload fluctuations.

  7. Spectral and amplitude-time characteristics of radiation of plasma of a repetitively pulsed discharge initiated by runaway electrons

    NASA Astrophysics Data System (ADS)

    Lomaev, M. I.; Beloplotov, D. V.; Sorokin, D. A.; Tarasenko, V. F.

    2016-02-01

    Spectral and amplitude-time characteristics of radiation of plasma of a repetitively pulsed discharge initiated by runaway electrons were studied experimentally in nitrogen. Intense emission lines of copper atoms, nitrogen atoms, and ions, as well as the first and the second positive systems of nitrogen, NO, and CN, were observed in the regime of repetitively pulsed excitation.

  8. High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping.

    PubMed

    Prawiharjo, Jerry; Daga, Nikita K; Geng, Rui; Price, Jonathan H; Hanna, David C; Richardson, David J; Shepherd, David P

    2008-09-15

    The generation of high-fidelity femtosecond pulses is experimentally demonstrated in a fiber based chirped-pulse amplification (CPA) system through an adaptive amplitude and phase pre-shaping technique. A pulse shaper, based on a dual-layer liquid crystal spatial light modulator (LC-SLM), was implemented in the fiber CPA system for amplitude and phase shaping prior to amplification. The LC-SLM was controlled using a differential evolution algorithm, to maximize a two-photon absorption detector signal from the compressed fiber CPA output pulses. It is shown that this approach compensates for both accumulated phase from material dispersion and nonlinear phase modulation. A train of pulses was produced with an average power of 12.6W at a 50MHz repetition rate from our fiber CPA system, which were compressible to high fidelity pulses with a duration of 170 fs.

  9. 18 W pulse-bursts 532 nm picosecond laser system with four equal amplitude and spacing pulses at 1 kHz

    NASA Astrophysics Data System (ADS)

    Long, Ming Liang; Chen, Meng; Li, Gang

    2017-05-01

    An average power of 18 W pulse-burst 532 nm picosecond laser was obtained with four pulses in a burst at 1 kHz. A mode-locked laser and beam splitter mirrors were used to obtain seed pulse-bursts, that one single pulse was divided into four pulses and each pulse in bursts can be controlled. The pulses were broadened from 23.5 to 135 ps by single-pass volume Bragg gratings. After Nd:YAG regenerative amplifier and single-pass two Nd:YAG modules amplifier, 31.2 W in 1064 nm was got. The four pulses had equal amplitude and pulse spacing of 800 ps. Then, 18 W in 532 nm was obtained with nonlinear optical materials of LiB3O5 frequency doubling, the beam quality of the M2 factor was 1.24, and the pulse width was 50 ps. It is a very nice way to obtain high-power pulse-burst picosecond laser with equal pulse spacing and amplitude.

  10. Concept of left atrial pressure estimation using its pulsatile amplitude in the helical flow total artificial heart.

    PubMed

    Wu, Sheng-Yuan; Saito, Itsuro; Isoyama, Takashi; Inoue, Yusuke; Sato, Masami; Hara, Shintaro; Li, Xin-Yang; Yurimoto, Terumi; Murakami, Haruka; Kawase, Yukino; Ono, Toshiya; Abe, Yusuke

    2014-12-01

    The total artificial heart (TAH) requires physiological control to respond to the metabolic demand of the body. To date, 1/R control is a single physiological control method that can control venous pressure. To realize an implantable 1/R control system, we are developing a new pressure measuring method using absolute pressure sensor. To find a method for absolute pressure sensor, which went well without calibration, concept of left atrial pressure (LAP) estimation using its pulsatile amplitude was proposed. Its possibility was investigated with two long-term survived goats whose hearts were replaced with the helical flow TAHs. In manual control condition, there existed a positive relation between mean LAP (mLAP) and normalized pulsatile amplitude (NPA). Percent systole revealed not to affect the relationship between mLAP and NPA. Dispersion was observed between different pulse rates. As for cardiac output difference (QLD) that is the difference of flow rate between systolic and diastolic phases, similar results were obtained except in low QLDs. In the 1/R control condition, relatively high correlation between mLAP and NPA could be obtained. In estimation of mLAP using the correlating function of individual goat, fairly good correlation was obtained between measured mLAP and estimated mLAP. Despite that further studies are necessary, it was demonstrated that the concept of the LAP estimation could be possible.

  11. [Arterial mean pressure and pulse pressure in young hypertensive patients].

    PubMed

    Carmona Puerta, Raimundo; Acosta de Armas, Francisco; Pérez de Armas, Alina; Morales Salinas, Alberto; González Paz, Héctor; Guirado Blanco, Otmara

    2006-09-02

    Evidence shows that pulse pressure (PP) is very useful when assessing the hypertensive patient and this has led to a lower use of mean arterial pressure (MAP). We intended to demonstrate that MAP should be better than PP in young hypertensive patients. Cross-sectional study in 70 white males with ages among 16-40 years, distributed in two groups of 35 individuals labelled as control group or hypertensive patients, who were assessed by echocardiography. PP was similar (36.37 +/- 7.90 mmHg vs. 36.67 +/- 9.41 mmHg, p = 0.8851) in both control and hypertensive groups, as well as the arterial compliance (2.22 +/- 0.62 ml/mmHg vs. 2.41 +/- 0.77 ml/mmHg, p = .2555) and the aortic stiffness index (0.88 +/- 0.23 vs. 0.91 +/- 0.33, P = .6591). MAP (94.85 +/- 8.68 mmHg vs. 115.11 +/- 10.01 mmHg, P < .001) and total peripheral resistance index (TPRI) [2681.42 +/- 602.31 dinas.s.cm-5/m2 vs. 3120.68 +/- 741.74 dinas.s.cm-5/m2, p = .0066] were higher in hypertensive patients. In our cross-sectional assessment in young hypertensive patients, MAP and its determiner (TPRI) were modified, with no important changes in the PP or its determiners.

  12. Pulse Wave Amplitude Drops during Sleep are Reliable Surrogate Markers of Changes in Cortical Activity

    PubMed Central

    Delessert, Alexandre; Espa, Fabrice; Rossetti, Andrea; Lavigne, Gilles; Tafti, Mehdi; Heinzer, Raphael

    2010-01-01

    Background: During sleep, sudden drops in pulse wave amplitude (PWA) measured by pulse oximetry are commonly associated with simultaneous arousals and are thought to result from autonomic vasoconstriction. In the present study, we determine whether PWA drops were associated with changes in cortical activity as determined by EEG spectral analysis. Methods: A 20% decrease in PWA was chosen as a minimum for a drop. A total of 1085 PWA drops from 10 consecutive sleep recordings were analyzed. EEG spectral analysis was performed over 5 consecutive epochs of 5 seconds: 2 before, 1 during, and 2 after the PWA drop. EEG spectral analysis was performed over delta, theta, alpha, sigma, and beta frequency bands. Within each frequency band, power density was compared across the five 5-sec epochs. Presence or absence of visually scored EEG arousals were adjudicated by an investigator blinded to the PWA signal and considered associated with PWA drop if concomitant. Results: A significant increase in EEG power density in all EEG frequency bands was found during PWA drops (P < 0.001) compared to before and after drop. Even in the absence of visually scored arousals, PWA drops were associated with a significant increase in EEG power density (P < 0.001) in most frequency bands. Conclusions: Drops in PWA are associated with a significant increase in EEG power density, suggesting that these events can be used as a surrogate for changes in cortical activity during sleep. This approach may prove of value in scoring respiratory events on limited-channel (type III) portable monitors. Citation: Delessert A; Espa F; Rossetti A; Lavigne G; Tafti M; Heinzer R. Pulse wave amplitude drops during sleep are reliable surrogate markers of changes in cortical activity. SLEEP 2010;33(12):1687-1692. PMID:21120131

  13. Two-Step Pseudomaximum Amplitude-Based Confidence Interval Estimation for Oscillometric Blood Pressure Measurements.

    PubMed

    Lee, Soojeong; Jeon, Gwanggil; Kang, Seokhoon

    2015-01-01

    Blood pressure (BP) is an important vital sign to determine the health of an individual. Although the estimation of average arterial blood pressure using oscillometric methods is possible, there are no established methods for obtaining confidence intervals (CIs) for systolic blood pressure (SBP) and diastolic blood pressure (DBP). In this paper, we propose a two-step pseudomaximum amplitude (TSPMA) as a novel approach to obtain improved CIs of SBP and DBP using a double bootstrap approach. The weighted median (WM) filter is employed to reduce impulsive and Gaussian noises in the step of preprocessing. Application of the proposed method provides tighter CIs and smaller standard deviation of CIs than the pseudomaximum amplitude-envelope and maximum amplitude algorithms with Student's t-method.

  14. Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges

    SciTech Connect

    Huo, W. G.; Jian, S. J.; Yao, J.; Ding, Z. F.

    2014-05-15

    In pulsed RF atmospheric pressure glow discharges, the gas breakdown judged by the rapid drop in the amplitude of the pulsed RF voltage is no longer universally true. The steep increment of the plasma-absorbed RF power is proposed to determine the gas breakdown. The averaged plasma-absorbed RF power over a pulse period is used to evaluate effects of the preceding pulsed RF discharge on the breakdown voltage of the following one, finding that the breakdown voltage decreases with the increment in the averaged plasma-absorbed RF power under constant pulse duty ratio. Effects of the pulse off-time on the breakdown voltage and the breakdown delay time are also studied. The obtained dependence of the breakdown voltage on the pulse off-time is indicative of the transitional plasma diffusion processes in the afterglow. The breakdown voltage varies rapidly as the plasma diffuses fast in the region of moderate pulse off-time. The contribution of nitrogen atom recombination at the alumina surface is demonstrated in the prolonged memory effect on the breakdown delay time vs. the pulse off-time and experimentally validated by introducing a trace amount of nitrogen into argon at short and long pulse off-times.

  15. Thermal Non-Equilibrium Revealed by Periodic Pulses of Random Amplitudes in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Auchère, Frédéric

    2016-10-01

    We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods of several hours. Models of loops including stratified and quasi-steady heating predict the development of a state of thermal non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed by falling condensations at the apex. Based on Fourier and wavelet analysis, we demonstrate that the observed periodic signals are indeed not signatures of vibrational modes. Instead, superimposed on the power law expected from the stochastic background emission, the power spectra of the time series exhibit the discrete harmonics and continua expected from periodic trains of pulses of random amplitudes. These characteristics reinforce our earlier interpretation of these pulsations as being aborted TNE cycles.

  16. Thermal Non-equilibrium Revealed by Periodic Pulses of Random Amplitudes in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.

    2016-08-01

    We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods of several hours. Models of loops including stratified and quasi-steady heating predict the development of a state of thermal non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed by falling condensations at the apex. Based on Fourier and wavelet analysis, we demonstrate that the observed periodic signals are indeed not signatures of vibrational modes. Instead, superimposed on the power law expected from the stochastic background emission, the power spectra of the time series exhibit the discrete harmonics and continua expected from periodic trains of pulses of random amplitudes. These characteristics reinforce our earlier interpretation of these pulsations as being aborted TNE cycles.

  17. Influence of pulse sequence, polarity and amplitude on magnetic stimulation of human and porcine peripheral nerve

    PubMed Central

    Maccabee, P J; Nagarajan, S S; Amassian, V E; Durand, D M; Szabo, A Z; Ahad, A B; Cracco, R Q; Lai, K S; Eberle, L P

    1998-01-01

    Mammalian phrenic nerve, in a trough filled with saline, was excited by magnetic coil (MC)-induced stimuli at defined stimulation sites, including the negative-going first spatial derivative of the induced electric field along a straight nerve, at a bend in the nerve, and at a cut nerve ending. At all such sites, the largest amplitude response for a given stimulator output setting was elicited by an induced damped polyphasic pulse consisting of an initial quarter-cycle hyperpolarization followed by a half-cycle depolarization compared with a predominantly ‘monophasic’ quarter-cycle depolarization.Simulation studies demonstrated that the increased efficacy of the induced quarter-cycle hyperpolarizing-half-cycle depolarizing polyphasic pulse was mainly attributed to the greater duration of the outward membrane current phase, resulting in a greater outward charge transfer afforded by the half-cycle (i.e. quarter-cycles 2 and 3). The advantage of a fast rising initial quarter-cycle depolarization was more than offset by the slower rising, but longer duration depolarizing half-cycle.Simulation further revealed that the quarter-cycle hyperpolarization-half-cycle depolarization showed only a 2.6 % lowering of peak outward current and a 3.5 % lowering of outward charge transfer at threshold, compared with a half-cycle depolarization alone. Presumably, this slight increase in efficacy reflects modest reversal of Na+ inactivation by the very brief initial hyperpolarization.In vitro, at low bath temperature, the nerve response to an initial quarter-cycle depolarization declined in amplitude as the second hyperpolarizing phase progressively increased in amplitude and duration. This ‘pull-down’ phenomenon nearly disappeared as the bath temperature approached 37 °C. Possibly, at the reduced temperature, delay in generation of the action potential permitted the hyperpolarization phase to reduce excitation.Pull-down was not observed in the thenar muscle responses to

  18. Application of pulsed photoacoustics in water at high pressure.

    PubMed

    Freeborn, S S; Hannigan, J; MacKenzie, H A

    1999-08-20

    The application of pulsed photoacoustics to the study of liquids at pressures of up to 350 bars is discussed. The design and development of an in-line sensor for the subsea monitoring of crude oil concentrations in water is reported. Crude oil detection sensitivities at parts per million concentrations were achieved with prototype instrumentation. A comparison of experimental results and a theoretical prediction of the pressure dependence of the pulsed photoacoustic response from water is outlined. The results demonstrate that existing models that describe pulsed photoacoustic generation in liquids are applicable to high-pressure conditions.

  19. Application of Pulsed Photoacoustics in Water at High Pressure

    NASA Astrophysics Data System (ADS)

    Freeborn, Scott S.; Hannigan, John; MacKenzie, Hugh A.

    1999-08-01

    The application of pulsed photoacoustics to the study of liquids at pressures of up to 350 bars is discussed. The design and development of an in-line sensor for the subsea monitoring of crude oil concentrations in water is reported. Crude oil detection sensitivities at parts per million concentrations were achieved with prototype instrumentation. A comparison of experimental results and a theoretical prediction of the pressure dependence of the pulsed photoacoustic response from water is outlined. The results demonstrate that existing models that describe pulsed photoacoustic generation in liquids are applicable to high-pressure conditions.

  20. Rapid B1 mapping using orthogonal, equal-amplitude radio-frequency pulses.

    PubMed

    Chang, Yulin V

    2012-03-01

    We present a new phase-based method for mapping the amplitude of the radio-frequency field (B(1) ) of a transmitter coil in three-dimension. This method exploits the noncommutation relation between rotations about orthogonal axes. Our implementation of this principle in the current work results in a simple relation between the phase of the final magnetization and the flip angle (FA). In this study, we focus on FAs less than 90°. Our method is rapid and easy to implement compared with the existing B(1) mapping schemes. The mapping sequence can be simply obtained by adding to a regular three-dimensional gradient-echo sequence a magnetization preparation radio-frequency pulse of the same FA but orthogonal in phase to the excitation radio-frequency pulse. This method is demonstrated capable of generating reliable maps of the B(1) field within 1 min using FAs no larger than 60°. We show that it is robust against T(1), small chemical shift, and mild background inhomogeneity. This method may especially be suitable for B(1) mapping in situations (e.g., long-T(1) and hyperpolarized-gas imaging) where magnitude-based methods are not readily applicable. A noise calculation of the FA map using this method is also presented. Copyright © 2011 Wiley Periodicals, Inc.

  1. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Pressure and vacuum pulse test... (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.111 Pressure and... installed must be subjected to 50 fillings of water at a pressure head of 7 feet or the maximum...

  2. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pressure and vacuum pulse test... (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.111 Pressure and... installed must be subjected to 50 fillings of water at a pressure head of 7 feet or the maximum...

  3. Investigation on the generation characteristic of pressure pulse wave signal during the measurement-while-drilling process

    NASA Astrophysics Data System (ADS)

    Changqing, Zhao; Kai, Liu; Tong, Zhao; Takei, Masahiro; Weian, Ren

    2014-04-01

    The mud-pulse logging instrument is an advanced measurement-while-drilling (MWD) tool and widely used by the industry in the world. In order to improve the signal transmission rate, ensure the accurate transmission of information and address the issue of the weak signal on the ground of oil and gas wells, the signal generator should send out the strong mud-pulse signals with the maximum amplitude. With the rotary valve pulse generator as the study object, the three-dimensional Reynolds NS equations and standard k - ɛ turbulent model were used as a mathematical model. The speed and pressure coupling calculation was done by simple algorithms to get the amplitudes of different rates of flow and axial clearances. Tests were done to verify the characteristics of the pressure signals. The pressure signal was captured by the standpiece pressure monitoring system. The study showed that the axial clearances grew bigger as the pressure wave amplitude value decreased and caused the weakening of the pulse signal. As the rate of flow got larger, the pressure wave amplitude would increase and the signal would be enhanced.

  4. A new minimum fluorescence parameter, as generated using pulse frequency modulation, compared with pulse amplitude modulation: Falpha versus Fo.

    PubMed

    Wright, A Harrison; DeLong, John M; Franklin, Jeffrey L; Lada, Rajasekaran R; Prange, Robert K

    2008-09-01

    The minimum fluorescence parameter (Falpha), generated using the new pulse frequency modulation (PFM) technology, was compared with the minimum fluorescence parameter (Fo), generated by pulse amplitude modulation (PAM), in response to a reversible low-oxygen stress in 'Honeycrisp'trade mark (HC) apples (Malus domestica) and an irreversible osmotic stress induced by water loss in two grape (Vitis spp.) cultivars ('L'Acadie' (LAc) and 'Thompson Seedless' (TS)). The minimum fluorescence values produced by both fluorometer types in response to a reversible low-oxygen stress in apples were indistinguishable: both Fo and Falpha increased when O2 levels were lowered below the anaerobic compensation point (ACP); when gas levels returned to normoxia both parameters dipped below, then returned to, the original fluorescence baseline. The two parameters also responded similarly to the irreversible osmotic stress in grapes: in both cultivars, Falpha and Fo first decreased before reaching an inflection point at approximately 20% mass loss and then increased towards a second inflection point. However, the two parameters were not analogous under the irreversible osmotic stress; most notably, the relative Falpha values appeared to be lower than Fo during the later stages of dehydration. This was likely due to the influence of the Fm parameter and an overestimation of Falpha when measuring the fluorescence from healthy and responsive chloroplasts as found in grapes experiencing minimal water loss, but not in grapes undergoing moderate to severe dehydration. An examination of the data during a typical PFM scan reveals this fluorometer system may yield new fluorescence information with interesting biological applications.

  5. Ion Acceleration in a Solitary Wave by Laser Pulse with Ramping-up Amplitude

    NASA Astrophysics Data System (ADS)

    He, Min-Qing; Tripathi, Vipin; Liu, Chuan-Sheng; Shao, Xi; Liu, Tung-Chang; Su, Jao-Jang; Sheng, Zheng-Ming

    2012-10-01

    Recent work by Jung et al. demonstrated experimentally the acceleration of mono-energetic ion beam by solitary waves generated and maintained by laser light with ramping-up amplitude.footnotetextD. Jung, L. Yin, B.J. Albright, D.C. Gautier, R. H"orlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X.Q. Yan, K.J. Bowers, T. Tajima, J.C. Fern'andez, D. Habs, and B.M. Hegelich, Phys. Rev. Lett. 107,115002(2011). Theoretical model is developed in this work to study the formation of the solitary wave and effects of the radiation pressure force on a soliton in the accelerating plasma. 2D Particle-In-Cell (PIC) simulations are performed to compare and validate the theory. Differences in generating and maintaining solitary wave for laser with and without ramping-up amplitude are also investigated. We will also investigate effects of radiation pressure acceleration of plasma with near critical density.

  6. Experimental study of pulsed corona discharge in air at high pressures

    NASA Astrophysics Data System (ADS)

    Lin, Yunghsu; Singleton, Dan; Sanders, Jason; Kuthi, Andras; Gundersen, Martin A.

    2012-10-01

    Understanding of the dynamics of nanosecond scale pulse discharges in air at multiatmospheric pressure is essential for the development of transient plasma enhanced combustion in internal combustion engines. Here we report the result of our experimental investigation of cathode-directed streamer discharges in synthetic air at pressures ranging from 1 to 20 bar. Two pulse generators with maximum pulse amplitudes of 50 kV and 65 kV, pulse width of approximately 12 ns and 85 ns and pulse rise times of 5 ns and 50 ns are used to generate streamers. The electrodes are coaxial with various radial gaps up to 11.75 mm. The discharge chamber is evacuated and backfilled with synthetic dry air at room temperature. Optical data is obtained from PI-MAX 3 ICCD camera with 3 ns gate width. The streamer propagation velocity variation with applied voltage, different pressures and reduced electric field, E/P, will be shown. Preliminary results indicate that the (pd) similarity law is violated at high pressures in agreement with other recent experiments [1].[4pt] [1] ``Nanosecond Scale Discharge Dynamics in High Pressure Air,'' Pierre Tardiveau, Nicolas Moreau, Francois Jorand, Christian Postel, St'ephane Pasquiers, and Pierre Vervisch, IEEE Trans. on Plasma Sci., Vol. 36, No. 4, 2008.

  7. The pulse amplitude variation with QPO frequency in SAX J1808.4-3658: Resonances with the accretion disk

    NASA Astrophysics Data System (ADS)

    Caliskan, Sirin; Alpar, Mehmet Ali; Sasmaz Mus, Sinem

    2016-07-01

    SAX J1808.4-3658 is an accreting millisecond pulsar with a spin period of 401 Hz. The pulsed amplitudes of this source vary with its kHz QPO frequencies (Bult & van der Klis 2015). The pulsed amplitude peaks at certain upper kHz QPO frequencies which we associate with boundary layer modes of the viscous accretion disk (Erkut et al. 2008). We model this as peaks in the energy dissipation rate at the accretion caps due to resonances between the accretion column and the driving modes of the boundary layer.

  8. Analysis of Sterilization Effect of Atmospheric Pressure Pulsed Plasma

    SciTech Connect

    Ekem, N.; Akan, T.; Pat, S.; Akgun, Y.; Kiremitci, A.; Musa, G.

    2007-04-23

    We have developed a new technology, the High Voltage Atmospheric Pressure Pulsed Plasma (HVAPPP), for bacteria killing. The aim of this paper is to present a simple device to generate plasma able to kill efficiently bacteria.

  9. Simultaneously propagating voltage and pressure pulses in lipid monolayers of pork brain and synthetic lipids

    NASA Astrophysics Data System (ADS)

    Griesbauer, J.; Bössinger, S.; Wixforth, A.; Schneider, M. F.

    2012-12-01

    Hydrated interfaces are ubiquitous in biology and appear on all length scales from ions and individual molecules to membranes and cellular networks. In vivo, they comprise a high degree of self-organization and complex entanglement, which limits their experimental accessibility by smearing out the individual phenomenology. The Langmuir technique, however, allows the examination of defined interfaces, the controllable thermodynamic state of which enables one to explore the proper state diagrams. Here we demonstrate that voltage and pressure pulses simultaneously propagate along monolayers comprised of either native pork brain or synthetic lipids. The excitation of pulses is conducted by the application of small droplets of acetic acid and monitored subsequently employing time-resolved Wilhelmy plate and Kelvin probe measurements. The isothermal state diagrams of the monolayers for both lateral pressure and surface potential are experimentally recorded, enabling us to predict dynamic voltage pulse amplitudes of 0.1-3 mV based on the assumption of static mechanoelectrical coupling. We show that the underlying physics for such propagating pulses is the same for synthetic and natural extracted (pork brain) lipids and that the measured propagation velocities and pulse amplitudes depend on the compressibility of the interface. Given the ubiquitous presence of hydrated interfaces in biology, our experimental findings seem to support a fundamentally new mechanism for the propagation of signals and communication pathways in biology (signaling), which is based neither on protein-protein or receptor-ligand interaction nor diffusion.

  10. Pulse plasma carburizing and high pressure gas quenching -- Industrial applications

    SciTech Connect

    Preisser, F.; Schnatbaum, F.

    1995-12-31

    Pulse plasma carburizing with high pressure gas quenching up to 20 bar is the newly developed case hardening process now available in production size equipment. The first part of results demonstrates the tremendous potential of high pressure gas quenching for successful hardening of case hardening steels. The second part opens a window to glance at the pulse plasma carburizing of complex shaped parts. Both processes improve economical data and performance of carburizing processes.

  11. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    NASA Astrophysics Data System (ADS)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  12. Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals.

    PubMed

    Acuña, Alonso M; Snellenburg, Joris J; Gwizdala, Michal; Kirilovsky, Diana; van Grondelle, Rienk; van Stokkum, Ivo H M

    2016-01-01

    Pulse-amplitude modulated (PAM) fluorometry is extensively used to characterize photosynthetic organisms on the slow time-scale (1-1000 s). The saturation pulse method allows determination of the quantum yields of maximal (F(M)) and minimal fluorescence (F(0)), parameters related to the activity of the photosynthetic apparatus. Also, when the sample undergoes a certain light treatment during the measurement, the fluorescence quantum yields of the unquenched and the quenched states can be determined. In the case of cyanobacteria, however, the recorded fluorescence does not exclusively stem from the chlorophyll a in photosystem II (PSII). The phycobilins, the pigments of the cyanobacterial light-harvesting complexes, the phycobilisomes (PB), also contribute to the PAM signal, and therefore, F(0) and F(M) are no longer related to PSII only. We present a functional model that takes into account the presence of several fluorescent species whose concentrations can be resolved provided their fluorescence quantum yields are known. Data analysis of PAM measurements on in vivo cells of our model organism Synechocystis PCC6803 is discussed. Three different components are found necessary to fit the data: uncoupled PB (PB(free)), PB-PSII complexes, and free PSI. The free PSII contribution was negligible. The PB(free) contribution substantially increased in the mutants that lack the core terminal emitter subunits allophycocyanin D or allophycocyanin F. A positive correlation was found between the amount of PB(free) and the rate constants describing the binding of the activated orange carotenoid protein to PB, responsible for non-photochemical quenching.

  13. Single-cycle Terahertz Pulses with >0.2 V/A Field Amplitudes via Coherent Transition Radiation

    SciTech Connect

    Daranciang, Dan; Goodfellow, John; Fuchs, Matthias; Wen, Haidan; Ghimire, Shambhu; Reis, David A.; Loos, Henrik; Fisher, Alan S.; Lindenberg, Aaron M.; /Stanford U. Materials Sci. Dept. /SIMES, Stanford /SLAC, PULSE

    2012-02-15

    We demonstrate terahertz pulses with field amplitudes exceeding 0.2 V/{angstrom} generated by coherent transition radiation. Femtosecond, relativistic electron bunches generated at the Linac Coherent Light Source are passed through a beryllium foil, and the emitted radiation is characterized as a function of the bunch duration and charge. Broadband pulses centered at a frequency of 10 THz with energies of 140 {mu}J are measured. These far-below-bandgap pulses drive a nonlinear optical response in a silicon photodiode, with which we perform nonlinear autocorrelations that yield information regarding the terahertz temporal profile. Simulations of the spatiotemporal profile agree well with experimental results.

  14. Systolic hypertension mechanisms: effect of global and local proximal aorta stiffening on pulse pressure.

    PubMed

    Reymond, Philippe; Westerhof, Nico; Stergiopulos, Nikos

    2012-03-01

    Decrease in arterial compliance leads to an increased pulse pressure, as explained by the Windkessel effect. Pressure waveform is the sum of a forward running and a backward running or reflected pressure wave. When the arterial system stiffens, as a result of aging or disease, both the forward and reflected waves are altered and contribute to a greater or lesser degree to the increase in aortic pulse pressure. Two mechanisms have been proposed in the literature to explain systolic hypertension upon arterial stiffening. The most popular one is based on the augmentation and earlier arrival of reflected waves. The second mechanism is based on the augmentation of the forward wave, as a result of an increase of the characteristic impedance of the proximal aorta. The aim of this study is to analyze the two aforementioned mechanisms using a 1-D model of the entire systemic arterial tree. A validated 1-D model of the systemic circulation, representative of a young healthy adult was used to simulate arterial pressure and flow under control conditions and in presence of arterial stiffening. To help elucidate the differences in the two mechanisms contributing to systolic hypertension, the arterial tree was stiffened either locally with compliance being reduced only in the region of the aortic arch, or globally, with a uniform decrease in compliance in all arterial segments. The pulse pressure increased by 58% when proximal aorta was stiffened and the compliance decreased by 43%. Same pulse pressure increase was achieved when compliance of the globally stiffened arterial tree decreased by 47%. In presence of local stiffening in the aortic arch, characteristic impedance increased to 0.10 mmHg s/mL vs. 0.034 mmHg s/mL in control and this led to a substantial increase (91%) in the amplitude of the forward wave, which attained 42 mmHg vs. 22 mmHg in control. Under global stiffening, the pulse pressure of the forward wave increased by 41% and the amplitude of the reflected wave by

  15. Noninvasive Measurement of Central Vascular Pressures With Arterial Tonometry: Clinical Revival of the Pulse Pressure Waveform?

    PubMed Central

    Nelson, Matthew R.; Stepanek, Jan; Cevette, Michael; Covalciuc, Michael; Hurst, R. Todd; Tajik, A. Jamil

    2010-01-01

    The arterial pulse has historically been an essential source of information in the clinical assessment of health. With current sphygmomanometric and oscillometric devices, only the peak and trough of the peripheral arterial pulse waveform are clinically used. Several limitations exist with peripheral blood pressure. First, central aortic pressure is a better predictor of cardiovascular outcome than peripheral pressure. Second, peripherally obtained blood pressure does not accurately reflect central pressure because of pressure amplification. Lastly, antihypertensive medications have differing effects on central pressures despite similar reductions in brachial blood pressure. Applanation tonometry can overcome the limitations of peripheral pressure by determining the shape of the aortic waveform from the radial artery. Waveform analysis not only indicates central systolic and diastolic pressure but also determines the influence of pulse wave reflection on the central pressure waveform. It can serve as a useful adjunct to brachial blood pressure measurements in initiating and monitoring hypertensive treatment, in observing the hemodynamic effects of atherosclerotic risk factors, and in predicting cardiovascular outcomes and events. Radial artery applanation tonometry is a noninvasive, reproducible, and affordable technology that can be used in conjunction with peripherally obtained blood pressure to guide patient management. Keywords for the PubMed search were applanation tonometry, radial artery, central pressure, cardiovascular risk, blood pressure, and arterial pulse. Articles published from January 1, 1995, to July 1, 2009, were included in the review if they measured central pressure using radial artery applanation tonometry. PMID:20435839

  16. Pulse pressure amplification in relation to body fatness

    PubMed Central

    Wykretowicz, Andrzej; Rutkowska, Agnieszka; Krauze, Tomasz; Przymuszala, Dagmara; Guzik, Przemyslaw; Marciniak, Ryszard; Wysocki, Henryk

    2012-01-01

    AIMS Arterial pressure transfer to the periphery is accompanied by pulse pressure amplification (PPA). Pulse pressure is influence by body fat. The purpose of the present study was to evaluate any possible inter-relation between body fatness and PPA in healthy subjects. METHODS Haemodynamic and wave reflection indices were estimated by pulse wave analysis. Body fat was measured by bio-impedance. RESULTS A total of 367 healthy volunteers (136 men and 231 women) was studied. Pulse pressure amplification correlated significantly with percentage of body fat (r = −0.53, P < 0.0001), age (r = −0.62, P < 0.0001), height (r = 0.43, P < 0.0001), heart rate (r = 0.28, P < 0.0001) and mean blood pressure (r = −0.29, P < 0.0001). The association of PPA with body fat was also significant in a multiple linear regression model. Age was an independent predictor of PPA and analysis of study subjects subdivided into two groups, those <50 years and those >50 years showed that body fatness correlated inversely and significantly with PPA in individuals both younger and older than 50 years (r = −0.44, P < 0.0001, r = −0.37, P < 0.0001 respectively). Augmentation pressure was also associated significantly with percentage of body fat in both subgroups (r = 0.48, P < 0.0001 and r = 0.49, P < 0.0001 respectively). CONCLUSIONS This study performed on healthy subjects showed that pulse pressure amplification is related to body fatness over a wide age range. Percentage body fat is significantly associated with augmentation pressure, a component of central pulse pressure. PMID:22008022

  17. Wavelet analysis of pulse-amplitude-modulated chlorophyll fluorescence for differentiation of plant samples.

    PubMed

    Guo, Ya; Zhou, Yesen; Tan, Jinglu

    2015-04-07

    Pulse-amplitude-modulated (PAM) chlorophyll fluorescence (ChlF) from photosystem II (PSII) of plants has been routinely measured for the analysis of photosynthesis and environmental changes. PAM ChlF from PSII is non-stationary and has time-varying frequency characteristics; however, existing analysis of PAM ChlF has been limited to selected characteristic values in the time domain. Wavelet transform is recognized as an efficient tool for analyzing non-stationary signals. In this research, an attempt was made to analyze PAM ChlF through wavelet transform. Features of PAM ChlF signals were computed from wavelet decomposition to classify two tree species and to detect chilling and detachment stresses. The wavelet-based features were compared with the commonly-used maximal PSII efficiency Fv/Fm. Both the wavelet-based features and Fv/Fm could effectively classify two tree species, but the former showed superiority than the latter in detecting the stresses. Wavelet transform revealed chilling stress earlier than Fv/Fm and detected detachment stress Fv/Fm failed to show. The results show that wavelet transform is a useful technique for analysis of PAM ChlF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Photosynthesis assessment in microphytobenthos using conventional and imaging pulse amplitude modulation fluorometry.

    PubMed

    Vieira, Sónia; Ribeiro, Lourenço; Jesus, Bruno; Cartaxana, Paulo; da Silva, Jorge Marques

    2013-01-01

    Imaging pulse amplitude modulated (Imaging-PAM) fluorometry is a breakthrough in the study of spatial heterogeneity of photosynthetic assemblages. However, Imaging and conventional PAM uses a different technology, making comparisons between these techniques doubtful. Thereby, photosynthetic processes were comparatively assessed using conventional (Junior PAM and PAM 101) and Imaging-PAM on intertidal microphytobenthos (MPB; mud and sand) and on cork oak leaves. Lower values of α (initial slope of the rETR, relative photosynthetic electron transport rate) vs E (incident photosynthetic active radiation) curve), ETR(max) (maximum relative ETR), E(k) (light saturation parameter) and F(v)/F(m) (maximum quantum efficiency of photosystem II of dark-adapted samples) were obtained using the Imaging-PAM. The level of discrepancy between conventional and Imaging-PAM systems was dependent on the type of sample, being more pronounced for MPB muddy sediments. This may be explained by differences in the depth integration of the fluorescence signal related to the thickness of the photosynthetic layer and in the light attenuation coefficients of downwelling irradiance. An additional relevant parameter is the taxonomic composition of the MPB, as cyanobacteria present in sandy sediments rendered different results with red and blue excitation light fluorometers. These findings emphasize the caution needed when interpreting chlorophyll fluorescence data of MPB communities. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  19. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control.

    PubMed

    Lin, C-C K; Liu, W-C; Chan, C-C; Ju, M-S

    2012-04-01

    The main goal of this study was to study the performance of fuzzy logic controllers combined with simplified hybrid amplitude/pulse-width (AM/PW) modulation to regulate muscle force via nerve electrical stimulation. The recruitment curves with AM/PW and AM modulations were constructed for the calf muscles of rabbits. Integrated with the modulation methods, a proportional-integral-derivative (PID) and three fuzzy logic controllers were designed and applied for the electrical stimulation of tibial nerves to control the ankle torque under isometric conditions. The performance of the two modulation methods combined with the four controllers was compared when the ankle was fixed at three positions for both in vivo experiments and model simulations using a nonlinear muscle model. For the animal experiments, AM/PW modulation performed better than AM modulation alone. The fuzzy PI controller performed marginally better and was resistant to external noises, though it tended to have a larger overshoot. The performance of the controllers had a similar trend in the three different joint positions, and the simulation results with the nonlinear model matched the experimental results well. In conclusion, AM/PW modulation improved controller performance, while the contribution of fuzzy logic was only marginal.

  20. fs-lentotomie: changing the accommodation amplitude of presbyopic human lenses by fs laser pulses

    NASA Astrophysics Data System (ADS)

    Schumacher, S.; Oberheide, U.; Theuer, H.; Fromm, M.; Ripken, T.; Gerten, G.; Ertmer, W.; Lubatschowski, H.

    2007-07-01

    According to Helmholtz' theory of accommodation one of the mayor reasons for the development of presbyopia is the increasing sclerosis of the lens. One concept to overcome this hardening of the lens is to regain its flexibility by inducing gliding planes inside the lens. Femtosecond laser pulses are a suitable tool for this treatment. Showing in former work that we could increase the flexibility of enucleated porcine (ex vivo) lenses up to 25%, we focused our recent work on human autopsy lenses. The age of the human donors ranged between 20 and 70 years. For an evaluation of the gain in flexibility the lens' thickness was measured undertaking the Fisher's spinning test before and after laser treatment. Depending on the age and the quality of applied cutting pattern the lens thickness increased after treatment up to 0.4 mm leading to an theoretical increase of several dioptres of optical power. The flexibility could be increased up to 70 % compared to the measurements before treatment. Since the age of the human donors had a broad range, leading to different degrees of lens hardening, the variance of the measured flexibility changes was up to 30%. An addition the influence of the laser treatment onto the lens on the accommodation amplitude will be shown in a three dimensional finite-element simulation.

  1. System for rapidly tuning a low pressure pulsed laser

    SciTech Connect

    Fox, J.A.; Ahl, J.L.

    1989-09-19

    This patent describes a system for rapidly tuning a low pressure pulsed laser over multiple wavelengths. The system comprising: a low pressure one electrode pair discharge region in a laser cavity having a laser trigger means connected to the electrode pair for initiating low pressure discharge within the discharge region; a quarterwave plate and a Q-switch in optical alignment with the one electrode pair discharge region along the laser optical axis; a fixed laser output coupler at the discharge region end of the laser cavity; and a rotatable grating means for wavelength switching the at least two high gain Q-switched pulses.

  2. Changes in Auditory Nerve Responses Across the Duration of Sinusoidally Amplitude-Modulated Electric Pulse-Train Stimuli

    PubMed Central

    Miller, Charles A.; Abbas, Paul J.; Robinson, Barbara K.; Woo, Jihwan

    2010-01-01

    Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F0 amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F0 amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F0 amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F0 measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures. PMID:20632064

  3. Method for Estimating the Acoustic Pressure in Tissues Using Low-Amplitude Measurements in Water.

    PubMed

    Keravnou, Christina P; Izamis, Maria-Louisa; Averkiou, Michalakis A

    2015-11-01

    The aim of this study was to evaluate a simple, reliable and reproducible method for accuracy in estimating the acoustic pressure delivered in tissue exposed to ultrasound. Such a method would be useful for therapeutic applications of ultrasound with microbubbles, for example, sonoporation. The method is based on (i) low-amplitude water measurements that are easily made and do not suffer from non-linear propagation effects, and (ii) the attenuation coefficient of the tissue of interest. The range of validity of the extrapolation method for different attenuation and pressure values was evaluated with a non-linear propagation theoretical model. Depending on the specific tissue attenuation, the method produces good estimates of pressures in excess of 10 MPa. Ex vivo machine-perfused pig liver tissue was used to validate the method for source pressures up to 3.5 MPa. The method can be used to estimate the delivered pressure in vivo in diagnostic and therapeutic applications of ultrasound.

  4. Interrelation between external oscillatory muscle coupling amplitude and in vivo intramedullary pressure related bone adaptation.

    PubMed

    Hu, Minyi; Cheng, Jiqi; Bethel, Neville; Serra-Hsu, Frederick; Ferreri, Suzanne; Lin, Liangjun; Qin, Yi-Xian

    2014-09-01

    Interstitial bone fluid flow (IBFF) is suggested as a communication medium that bridges external physical signals and internal cellular activities in the bone, which thus regulates bone remodeling. Intramedullary pressure (ImP) is one main regulatory factor of IBFF and bone adaptation related mechanotransduction. Our group has recently observed that dynamic hydraulic stimulation (DHS), as an external oscillatory muscle coupling, was able to induce local ImP with minimal bone strain as well as to mitigate disuse bone loss. The current study aimed to evaluate the dose dependent relationship between DHS's amplitude, i.e., 15 and 30mmHg, and in vivo ImP induction, as well as this correlation on bone's phenotypic change. Simultaneous measurements of ImP and DHS cuff pressures were obtained from rats under DHS with various magnitudes and a constant frequency of 2Hz. ImP inductions and cuff pressures upon DHS loading showed a positively proportional response over the amplitude sweep. The relationship between ImP and DHS cuff pressure was evaluated and shown to be proportional, in which ImP was raised with increases of DHS cuff pressure amplitudes (R(2)=0.98). A 4-week in vivo experiment using a rat hindlimb suspension model demonstrated that the mitigation effect of DHS on disuse trabecular bone was highly dose dependent and related to DHS's amplitude, where a higher ImP led to a higher bone volume. This study suggested that sufficient physiological DHS is needed to generate ImP. Oscillatory DHS, potentially induces local fluid flow, has shown dose dependence in attenuation of disuse osteopenia.

  5. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2007-08-01

    Two approaches have been proposed to reduce the synchrony of the neural response to electrical stimuli in cochlear implants. One approach involves adding noise to the pulse-train stimulus, and the other is based on using a high-rate pulse-train carrier. Hypotheses regarding the efficacy of the two approaches can be tested using computational models of neural responsiveness prior to time-intensive psychophysical studies. In our previous work, we have used such models to examine the effects of noise on several psychophysical measures important to speech recognition. However, to date there has been no parallel analytic solution investigating the neural response to the high-rate pulse-train stimuli and their effect on psychophysical measures. This work investigates the properties of the neural response to high-rate pulse-train stimuli with amplitude modulated envelopes using a stochastic auditory nerve model. The statistics governing the neural response to each pulse are derived using a recursive method. The agreement between the theoretical predictions and model simulations is demonstrated for sinusoidal amplitude modulated (SAM) high rate pulse-train stimuli. With our approach, predicting the neural response in modern implant devices becomes tractable. Psychophysical measurements are also predicted using the stochastic auditory nerve model for SAM high-rate pulse-train stimuli. Changes in dynamic range (DR) and intensity discrimination are compared with that observed for noise-modulated pulse-train stimuli. Modulation frequency discrimination is also studied as a function of stimulus level and pulse rate. Results suggest that high rate carriers may positively impact such psychophysical measures.

  6. Alternative Approaches to Conventional Pressure-Pulse-Decay Permeametry

    NASA Astrophysics Data System (ADS)

    Hannon, M. J., Jr.

    2015-12-01

    Although pressure-pulse-decay permeametry has been in wide use for the past 50 years, its standard configuration and design have remained largely intact, with performance optimizations based largely on sample geometry and reservoir volumes. This study concentrates on new unidirectional flow scenarios which can be reduced to analytical models. It begins by describing slight modifications to the classical pulse-decay techniques involving flow along the axial direction of cylindrical core samples, followed by models for flow in the radial direction in cylindrical and spherical coordinate systems. Such strategies enable noticeably, in some cases dramatically, faster experimental measurements within lower permeability regimes than conventional pressure-pulse-decay techniques. These approaches could form baseline alternatives to the industry-standard pulse-decay variants in wide use for ultra-low permeability materials like shales and caprocks.

  7. Pulse pressure amplification in relation to body fatness.

    PubMed

    Wykretowicz, Andrzej; Rutkowska, Agnieszka; Krauze, Tomasz; Przymuszala, Dagmara; Guzik, Przemyslaw; Marciniak, Ryszard; Wysocki, Henryk

    2012-04-01

    Aortic-brachial pulse pressure amplification (PPA) is a measure of arterial elasticity and it is also an independent cardiovascular risk factor. The PPA is mainly determined by age, height, central and peripheral pressure waveforms characteristics, including measures of arterial stiffness and wave reflection. In this study, however, we demonstrate that PPA is also significantly associated with indirect indices of body fatness. As the body fatness is treatable, our findings might be used as a reference for future studies on the effects of body fat reduction on PPA and the PPA-related cardiovascular risk. AIMS Arterial pressure transfer to the periphery is accompanied by pulse pressure amplification (PPA). Pulse pressure is influence by body fat. The purpose of the present study was to evaluate any possible inter-relation between body fatness and PPA in healthy subjects. Haemodynamic and wave reflection indices were estimated by pulse wave analysis. Body fat was measured by bio-impedance. A total of 367 healthy volunteers (136 men and 231 women) was studied. Pulse pressure amplification correlated significantly with percentage of body fat (r=-0.53, P < 0.0001), age (r=-0.62, P < 0.0001), height (r= 0.43, P < 0.0001), heart rate (r= 0.28, P < 0.0001) and mean blood pressure (r=-0.29, P < 0.0001). The association of PPA with body fat was also significant in a multiple linear regression model. Age was an independent predictor of PPA and analysis of study subjects subdivided into two groups, those <50 years and those >50 years showed that body fatness correlated inversely and significantly with PPA in individuals both younger and older than 50 years (r=-0.44, P < 0.0001, r=-0.37, P < 0.0001 respectively). Augmentation pressure was also associated significantly with percentage of body fat in both subgroups (r= 0.48, P < 0.0001 and r= 0.49, P < 0.0001 respectively). This study performed on healthy subjects showed that pulse pressure amplification is related to body fatness

  8. Spatio-temporal characteristics of Trichel pulse at low pressure

    SciTech Connect

    He, Shoujie; Jing, Ha

    2014-01-15

    Trichel pulses are investigated using a needle-to-plane electrode geometry at low pressure. The evolution of current and voltage, the spatio-temporal discharge images of Trichel pulse are measured. The rising time and duration time in a pulse are about 10 μs and several tens of microseconds, respectively. One period of pulse can be divided into three stages: the stage preceding cathode breakdown, cathode glow formation, and discharge decaying process. Besides a cathode glow and a dark space, an anode glow is also observed. The emission spectra mainly originate from the C{sup 3}Π{sub u} → B{sup 3}Π{sub g} transition for nitrogen. In addition, the capacitances in parallel connected with the discharge cell have important influence on the pulsing frequency.

  9. Ocular pulse amplitude as a diagnostic adjunct in giant cell arteritis

    PubMed Central

    Knecht, P B; Bachmann, L M; Thiel, M A; Landau, K; Kaufmann, C

    2015-01-01

    Background To develop an algorithm based on the ocular pulse amplitude (OPA) to predict the probability of a positive temporal artery biopsy (TAB) result in the acute phase of suspected giant cell arteritis (GCA). Methods Unilateral TAB was performed and ipsilateral OPA measurements were taken by Dynamic Contour Tonometry. Among the clinical signs and laboratory findings tested in univariate analyses, OPA, Erythrocyte Sedimentation Rate (ESR) and thrombocyte count showed a strong association with a positive TAB result. Algorithm parameters were categorized into three groups (OPA >3.5, 2.5–3.5, and <2.5 mm Hg; ESR <25, 25–60, and >60 mm/h; thrombocyte count <250'000, 250'000–500'000, and >500'000/μl). Score values (0, 1, and 2) were attributed to each group, resulting in a total score range from 0 to 6. A univariate logistic regression analysis using the GCA diagnosis as the dependent and the total score as the independent variate was fitted and probability estimates were calculated. Results Thirty-one patients with suspected GCA undergoing TAB during an eighteen-month observation period were enrolled. Twenty patients showed histologically proven GCA. Four patients had score values ≤2, fourteen between 3 and 4, and thirteen of ≥5. The corresponding estimated probabilities of GCA were<7, 52.6, and >95%. Conclusion The present study confirms previous findings of reduced OPA levels, elevated ESR, and elevated thrombocyte counts in GCA. It indicates that a sum score based on OPA, ESR, and thrombocyte count can be helpful in predicting TAB results, especially at the upper and the lower end of the sum score range. PMID:26088675

  10. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry.

    PubMed

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-09-15

    Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae.

  11. Ozone formation in pulsed SDBD in a wide pressure range

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  12. Subnanosecond pulsed X-ray source based on nanosecond discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.

    2009-06-01

    We have studied the characteristics of an X-ray source based on a gas diode filled with air at atmospheric pressure. Driven by a SLEP-150 pulser with a maximum voltage amplitude of ˜140 kV, a pulse full width at half maximum (FWHM) of ˜1 ns, and a leading front width of ˜0.3 ns, a soft X-ray source produces subnanosecond pulses with an FWHM not exceeding 600 ps and an exposure dose of ˜3 mR per pulse. It is shown that the main contribution to the measured exposure dose is due to X-ray quanta with an effective energy of ˜7.5 keV.

  13. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    SciTech Connect

    Kepa, M. W. Huxley, A. D.; Ridley, C. J.; Kamenev, K. V.

    2016-08-15

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe{sub 2}.

  14. Piston cylinder cell for high pressure ultrasonic pulse echo measurements.

    PubMed

    Kepa, M W; Ridley, C J; Kamenev, K V; Huxley, A D

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  15. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    NASA Astrophysics Data System (ADS)

    Kepa, M. W.; Ridley, C. J.; Kamenev, K. V.; Huxley, A. D.

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  16. Response of the dipole magnetosphere to pressure pulses

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Lee, Dong-Hun

    1992-01-01

    The response of the magnetosphere to pressure pulses at the magnetopause has been studied using a three-dimensional model of ULF waves in a dipole geometry. Pressure pulses at the magnetosphere directly excite compressional waves, which then convert to shear mode Alfven waves due to inhomogeneity. The behavior of the system depends on the frequency of the source at the magnetopause, with vortex structure tending to form on field lines resonant with the source frequency. The perturbations between the vortices are skewed toward noon, in agreement with observations.

  17. Abnormal Central Pulsatile Hemodynamics in Adolescents With Obesity: Higher Aortic Forward Pressure Wave Amplitude Is Independently Associated With Greater Left Ventricular Mass.

    PubMed

    Pierce, Gary L; Pajaniappan, Mohanasundari; DiPietro, Amy; Darracott-Woei-A-Sack, Kathryn; Kapuku, Gaston K

    2016-11-01

    We hypothesized that increased aortic forward pressure wave amplitude (Pf), which is determined by characteristic impedance (Zc) in the proximal aorta, is the primary hemodynamic determinant of obesity-associated higher left ventricular (LV) mass in adolescents. Aortic pulsatile hemodynamics were measured noninvasively in 60 healthy adolescents (age 14-19 years; 42% male; 50% black) by sequential recordings of pulse waveforms via tonometry, brachial blood pressure, and pulsed Doppler and diameter of the LV outflow tract using 2-dimensional echocardiography. Adolescents who were overweight/obese (n=23; age 16.0±0.3 years; body mass index ≥85th percentile) had higher LV mass index, brachial and carotid systolic blood pressure and pulse pressure, normalized Zc and Pf compared with adolescents with healthy weight (n=37; 16.7±0.3 years; body mass index <85th percentile, all P<0.01). In contrast, there was no difference in mean or diastolic blood pressure, carotid-femoral pulse wave velocity, carotid augmentation index, or aortic backward wave amplitude (all P>0.05). Stepwise multiple linear regression analysis that included age, sex, race, normalized Zc, and brachial systolic blood pressure revealed that body mass index (B±SE; 0.49±0.20, P=0.02, R(2)=0.26), aortic Pf (0.22±0.07; P<0.02, R(2) change=0.11), and cardiac output (2.82±1.02, P<0.01; R(2) change=0.08) were significant correlates of LV mass index (total R(2)=0.44, P<0.01). These findings suggest that higher aortic Pf is a major hemodynamic determinant of increased LV mass in adolescents with elevated adiposity. Improper matching between aortic diameter and pulsatile flow during early systole potentially contributes to the early development of LV hypertrophy in childhood obesity.

  18. Subharmonic scattering of phospholipid-shell microbubbles at low acoustic pressure amplitudes.

    PubMed

    Frinking, Peter J A; Brochot, Jean; Arditi, Marcel

    2010-08-01

    Subharmonic scattering of phospholipid-shell microbubbles excited at relatively low acoustic pressure amplitudes (<30 kPa) has been associated with echo responses from compression-only bubbles having initial surface tension values close to zero. In this work, the relation between sbharmonics and compression-only behavior of phospholipid-shell microbubbles was investigated, experimentally and by simulation, as a function of the initial surface tension by applying ambient overpressures of 0 and 180 mmHg. The microbubbles were excited using a 64-cycle transmit burst with a center frequency of 4 MHz and peak-negative pressure amplitudes ranging from 20 of 150 kPa. In these conditions, an increase in subharmonic response of 28.9 dB (P < 0.05) was measured at 50 kPa after applying an overpressure of 180 mmHg. Simulations using the Marmottant model, taking into account the effect of ambient overpressure on bubble size and initial surface tension, confirmed the relation between subharmonics observed in the pressure-time curves and compression-only behavior observed in the radius-time curves. The trend of an increase in subharmonic response as a function of ambient overpressure, i.e., as a function of the initial surface tension, was predicted by the model. Subharmonics present in the echo responses of phospholipid-shell microbubbles excited at low acoustic pressure amplitudes are indeed related to the echo responses from compression-only bubbles. The increase in subharmonics as a function of ambient overpressure may be exploited for improving methods for noninvasive pressure measurement in heart cavities or big vessels in the human body.

  19. Measurement of pulse pressure in plasma by crusher gauge

    SciTech Connect

    Kalachnikov, E.V.; Rogovtsev, P.N.

    1988-06-01

    Results are presented of pressure measurements in the plasma of a stabilized pinched discharge with axial blow through of the current channel by plasma using static and dynamic methods for crusher gauge calibration. Accuracies for maximum pressure measurements for both calibration methods are evaluated. The dynamic properties of the crusher gauge are taken into account experimentally in studying pulse forces and pressures in the 1-100 MPa range for times of 10/sup /minus/5/ to 10/sup /minus/3/ seconds. A piezoelectric method and device for dynamic calibration of the pressure gauges is described.

  20. An experimental study of the interaction between a pulsed electron beam and a large-amplitude electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Kalinin, Yu. A.; Starodubov, A. V.; Fokin, A. S.

    2015-01-01

    We experimentally investigate the interaction between an electron beam with a periodically varying diameter and a large-amplitude electromagnetic wave. The effect of different factors on the pulsed beam formation and current density in bunches is established. Compared with the electron beam deceleration circuits (low-voltage vircator systems), the generators based on pulsed turbulent beams have a broader band due to the formation of a large number of space charge bunches and an integral power efficiency that is higher by a factor of 2-2.5.

  1. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    SciTech Connect

    TROYER, G.L.

    2000-08-25

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% {at} 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency.

  2. Single pulse analysis of intracranial pressure for a hydrocephalus implant.

    PubMed

    Elixmann, I M; Hansinger, J; Goffin, C; Antes, S; Radermacher, K; Leonhardt, S

    2012-01-01

    The intracranial pressure (ICP) waveform contains important diagnostic information. Changes in ICP are associated with changes of the pulse waveform. This change has explicitly been observed in 13 infusion tests by analyzing 100 Hz ICP data. An algorithm is proposed which automatically extracts the pulse waves and categorizes them into predefined patterns. A developed algorithm determined 88 %±8 % (mean ±SD) of all classified pulse waves correctly on predefined patterns. This algorithm has low computational cost and is independent of a pressure drift in the sensor by using only the relationship between special waveform characteristics. Hence, it could be implemented on a microcontroller of a future electromechanic hydrocephalus shunt system to control the drainage of cerebrospinal fluid (CSF).

  3. Modeling the pressure pulse shape of piezoelectric lithotripters

    NASA Astrophysics Data System (ADS)

    Dreyer, Thomas; Riedlinger, Rainer

    2002-11-01

    Piezoelectric focusing transducers are widely used in extracorporeal lithotripsy. To optimize the therapeutically relevant focal pressure pulse it is necessary to affect the generated pulse shape at the transducer surface. Therefore a modeling approach is required containing the acousto-mechanical properties of the transducer structure as well as the influence of the electrical drive. The procedure presented here uses three dimensional transient finite element simulations to calculate an electro-acoustical impulse response of the transducer structure and linear systems theory to model the influence of the driving circuit on the emitted acoustical signal. Applying a short electrical pulse an acoustical impulse response can be simulated under plane wave conditions, which is valid at sufficiently large distances from the transducer. Focal pressures are estimated rapidly by linear calculations or accurately by a nonlinear propagation model. The influence of electrical drive conditions on the emitted acoustical signal is investigated very efficiently by a convolution with the desired electrical input, avoiding FEM simulations for each case. Reverting this process the required driving voltage course for a given pressure signal is determined. Alterations of the pressure signal in terms of pulse width and tensile components are demonstrated theoretically, varying the design parameters of the transducer.

  4. Insertion of the force applied to handles into centre of pressure calculation modifies the amplitude of centre of pressure shifts.

    PubMed

    Noé, Frédéric; Quaine, Franck

    2006-11-01

    This study examined situations where handles were used as additional postural supports. It aimed at determining the amplitude of centre of pressure (COP) shifts when considering or not the vertical handles reaction force. Eight healthy male subjects (24+/-6 years, body mass 65+/-5kg and height 175+/-7cm) voluntarily took part in the experiment. Subjects had to voluntarily rock on their heels or rise on their toe-tips while using handles. The vertical component of the handles forces and ground reaction force was measured and the shifts of the COP were calculated while inserting or not the handles forces. Significant differences were observed when comparing the amplitude of COP shifts calculated with or without the insertion of the handles forces. This study shows that the measurement of the handles forces should not be omitted, for a rigorous analysis of postural tasks performed in conditions including additional postural supports like handles. 2005 Elseviver B.V.

  5. Investigation to define the propagation characteristics of a finite amplitude acoustic pressure wave

    NASA Technical Reports Server (NTRS)

    Peter, A. C.; Cottrell, J. W.

    1967-01-01

    A theoretical analysis of the propagation characteristics of a finite amplitude pressure wave is presented. The analysis attempts to study the contribution of entropy-producing regions to the mechanism of aerodynamic noise generation. It results in a nonlinear convective wave equation in terms of entropy and a thermodynamic 'J' function. A direct analogy between the derived governing equation and those used in classical literature is obtained. An idealization of the processes considered permits the uncoupling of the equations of motion with a consequent construction of an acoustic analogy treating shock wave emission of finite amplitude acoustic waves. An engineering approach is reflected in the concept of an extended plug nozzle whose function is to facilitate aerodynamic noise attenuation by modifying the entropy-producing regions.

  6. Determination of aortic valve opening time and left ventricular peak filling rate from the peripheral pulse amplitude in patients with ectopic beats.

    PubMed

    Zheng, Dingchang; Allen, John; Murray, Alan

    2008-12-01

    Ectopic beats are common in patients who have heart disease and are associated with reduced peripheral pulse amplitude. This study determined the start of the peripheral pulse increase and from it the opening of the aortic valve. The left ventricular peak filling rate was also estimated from the peripheral pulse. Results were compared with published invasive and cardiac imaging data. Twenty-five subjects with ectopic beat electrocardiograms (ECGs) were studied. The ECGs and the peripheral pulses, detected optically at the right index finger by a simple photoplethysmography (PPG) technique, were recorded for subsequent analysis. Peripheral pulse amplitudes for ectopic beats, post-ectopic sinus beats and normal sinus beats were determined. Ectopic beats induced a mean 68% decrease in pulse amplitude in comparison with sinus beats (p < 0.001). In contrast, the mean pulse amplitude for post-ectopic sinus beats increased by 20% (p < 0.01). Pulse amplitude changes were comparable with the published stroke volume differences for ectopic beats and post-ectopic sinus beats. The range of shortest coupling interval (CI) for ectopic beats with observable pulses was from 373 to 531 ms, with the mean value equivalent to 55% of the mean sinus RR interval, comparable with the opening of the aortic valve. Finally, as the CI increased, the pulse amplitude increased quickly from zero. The average rate of increase was equivalent to 4.8 times the normal sinus amplitude in 1 s, equal to 50% filling in 208 ms, showing diastolic rapid filling, comparable with published left ventricular peak filling rate data. In conclusion, the effect of ectopic beat CI on peripheral pulse amplitude has been determined, providing useful information for developing a technique to determine the opening of the aortic valve and the peak filling rate non-invasively and peripherally in patients with frequent ectopic beats.

  7. Effects of transmural pressure and muscular activity on pulse waves in arteries.

    PubMed

    Rachev, A I

    1980-05-01

    Propagation of small amplitude harmonic waves through a viscous incompressible fluid contained in an initially stressed elastic cylindrical tube is considered as a model of the pulse wave propagation in arteries. The nonlinearity and orthotropy of the vascular material is taken into account. Muscular activity is introduced by means of an "active" tension in circumferential direction of the vessel. The frequency equation is obtained and it is solved numerically for the parameters of a human abdominal aorta. Conclusions concerning pressure-dependence, age-dependence, and muscular activation-dependence of the wave characteristics are drawn which are in accord with available experimental data.

  8. A novel measuring implementation of femtosecond pulse amplitude and phase based on frequency-resolved optical gating

    NASA Astrophysics Data System (ADS)

    Liu, Chunping; Ruan, Shuang-chen; Liu, Chengxiang; Long, Jinhua

    2005-01-01

    A novel measuring implementation based on second-harmonic generation frequency-resolved optical gating (SHG-FROG) has been presented. Both the intensity and phase of arbitrary-shaped ultra-short laser pulses can be got. According to SHG-FROG, the femtosecond pulse produced by a laser resource is split into two beams which variable time delay one another is controlled by a stepped electromotor. The second-harmonic signal field is generated by focusing these two beams to a 100um BBO crystal. Changing the delay from 0 to N (N is the samples number of time domain or frequency domain) delay units, the two-dimensional spectrum data of the second-harmonic signal field are acquired by PC2000-ISA card spectrometer and OOIwinIP of Ocean Optics. These data are provided to a pulse amplitude and phase retrieval algorithm to retrieve the parameters of the pulse. An experimental system is erected and the all software modules, including spectrum data acquiring, pulse retrieving and displaying, are based on Labwindows/CVI of National Instrument Corp. The stepped electromotor is driven by the commands coming from RS-232 interface. The results show that after 50 times iterations or so, the iterative error of the algorithm can be reduced to an enough small value and then the pulse amplitude, phase and other parameters are the desired parameters. The whole measuring process can be finished in 2~3 seconds while the spectrum data is a 64x64 matrix and the iterative times are set to 50.

  9. Time-resolved pulsed spray drop sizing at elevated pressures

    NASA Astrophysics Data System (ADS)

    Drallmeier, J. A.; Peters, J. E.

    1986-04-01

    An experimental program was conducted to measure drop sizes in pulsed sprays for diesel and fuel-injected spark ignition engine applications. A forward-scattering unit was designed with a high-speed data acquisition system to permit the measurement of drop sizes in sprays at 0.4-ms intervals. Data were taken at elevated pressures from 0.345 to 3.45 MPa with a 0-deg pintle nozzle. The Sauter Mean Diameter (SMD) and size distribution were calculated using a computational method that is independent of a predetermined distribution function. Results taken at the spray centerline indicate that for most elevated pressures, the SMD in the secondary injection region tended to increase as the pressure in the fuel line decreased and tended to increase with increasing environmental pressure, both suggesting an inverse relationship between drop size and the pressure drop across the nozzle. Also as the environmental pressure was raised, the distribution width decreased at a slower rate than the SMD increased, indicating a spreading of the drop sizes with injection time at elevated pressures. Significant cycle-to-cycle variation in both the SMD and distribution width indicate that cycle-to-cycle variations must be considered in pulsed sprays. In addition, more variation was seen between random rather than consecutive cycles.

  10. A search for upstream pressure pulses associated with flux transfer events: An AMPTE/ISEE case study

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Baumjohann, W.; Cattell, C. A.; Luehr, H.; Smith, M. F.

    1994-01-01

    On September 19, 1984, the Active Magnetospheric Particle Tracers Explorers (AMPTE) United Kingdom Satellite (UKS) and Ion Release Module (IRM) and International Sun Earth Explorers (ISEE) 1 and 2 spacecraft passed outbound through the dayside magnetopause at about the same time. The AMPTE spacecraft pair crossed first and were in the near-subsolar magnetosheath for more than an hour. Meanwhile the ISEE pair, about 5 R(sub E) to the south, observed flux transfer event (FTE) signatures. We use the AMPTE UKS and IRM plasma and field observations of magnetosheath conditions directly upstream of the subsolar magnetopause to check whether pressure pulses are responsible for the FTE signatures seen at ISEE. Pulses in both the ion thermal pressure and the dynamic pressure are observed in the magnetosheath early on when IRM and UKS are close to the magnetopause, but not later. These large pulses appear to be related to reconnection going on at the magnetopause nearby. AMPTE magnetosheath data far from the magnetopause do not show a pressure pulse correlation with FTEs at ISEE. Moreover, the magnetic pressure and tension effects seen in the ISEE FTEs are much larger than any pressure effects seen in the magnetosheath. A superposed epoch analysis based on small-amplitude peaks in the AMPTE magnetosheath total static pressure (nkT + B(exp 2)/2 mu(sub 0)) hint at some boundary effects, less than 5 nT peak-to-peak variations in the ISEE 1 and 2 B(sub N) signature starting about 1 min after the pressure peak epoch. However, these variations are much smaller than the standard deviations of the B(sub N) field component. Thus the evidence from this case study suggests that upstream magnetosheath pressure pulses do not give rise to FTEs, but may produce very small amplitude signatures in the magnetic field at the magnetopause.

  11. RELATIONS BETWEEN DAIRY FOOD INTAKE AND ARTERIAL STIFFNESS: PULSE WAVE VELOCITY AND PULSE PRESSURE

    PubMed Central

    Crichton, Georgina E.; Elias, Merrrill F.; Dore, Gregory A.; Abhayaratna, Walter P.; Robbins, Michael A.

    2012-01-01

    Modifiable risk factors, such as diet, are becomingly increasingly important in the management of cardiovascular disease, one of the greatest major causes of death and disease burden. Few studies have examined the role of diet as a possible means of reducing arterial stiffness, as measured by pulse wave velocity, an independent predictor of cardiovascular events and all-cause mortality. The aim of this study was to investigate whether dairy food intake is associated with measures of arterial stiffness including carotid-femoral pulse wave velocity and pulse pressure. A cross-sectional analysis of a subset of the Maine Syracuse Longitudinal Study sample was performed. A linear decrease in pulse wave velocity was observed across increasing intakes of dairy food consumption (ranging from never/rarely to daily dairy food intake). The negative linear relationship between pulse wave velocity and intake of dairy food was independent of demographic variables, other cardiovascular disease risk factors and nutrition variables. The pattern of results was very similar for pulse pressure, while no association between dairy food intake and lipid levels was found. Further intervention studies are needed to ascertain whether dairy food intake may be an appropriate dietary intervention for the attenuation of age-related arterial stiffening and reduction of cardiovascular disease risk. PMID:22431583

  12. Augmentation pressure is influenced by ventricular contractility/relaxation dynamics: novel mechanism of reduction of pulse pressure by nitrates.

    PubMed

    Fok, Henry; Guilcher, Antoine; Li, Ye; Brett, Sally; Shah, Ajay; Clapp, Brian; Chowienczyk, Phil

    2014-05-01

    Augmentation pressure (AP), the increment in aortic pressure above its first systolic shoulder, is thought to be determined mainly by pressure wave reflection but could be influenced by ventricular ejection characteristics. We sought to determine the mechanism by which AP is selectively reduced by nitroglycerin (NTG). Simultaneous measurements of aortic pressure and flow were made at the time of cardiac catheterization in 30 subjects (11 women; age, 61±13 years [mean±SD]) to perform wave intensity analysis and calculate forward and backward components of AP generated by the ventricle and arterial tree, respectively. Measurements were made at baseline and after NTG given systemically (800 μg sublingually, n=20) and locally by intracoronary infusion (1 μg/min; n=10). Systemic NTG had no significant effect on first shoulder pressure but reduced augmentation (and central pulse pressure) by 12.8±3.1 mm Hg (P<0.0001). This resulted from a reduction in forward and backward wave components of AP by 7.0±2.4 and 5.8±1.3 mm Hg, respectively (each P<0.02). NTG had no significant effect on the ratio of amplitudes of either backward/forward waves or backward/forward compression wave energies, suggesting that effects on the backward wave were largely secondary to those on the forward wave. Time to the forward expansion wave was reduced (P<0.05). Intracoronary NTG decreased AP by 8.3±3.6 mm Hg (P<0.05) with no significant effect on the backward wave. NTG reduces AP and central pulse pressure by a mechanism that is, at least in part, independent of arterial reflections and relates to ventricular contraction/relaxation dynamics with enhanced myocardial relaxation.

  13. Can the use of pulsed direct current induce oscillation in the applied pressure during spark plasma sintering?

    PubMed

    Salamon, David; Eriksson, Mirva; Nygren, Mats; Shen, Zhijian

    2012-02-01

    The spark plasma sintering (SPS) process is known for its rapid densification of metals and ceramics. The mechanism behind this rapid densification has been discussed during the last few decades and is yet uncertain. During our SPS experiments we noticed oscillations in the applied pressure, related to a change in electric current. In this study, we investigated the effect of pulsed electrical current on the applied mechanical pressure and related changes in temperature. We eliminated the effect of sample shrinkage in the SPS setup and used a transparent quartz die allowing direct observation of the sample. We found that the use of pulsed direct electric current in our apparatus induces pressure oscillations with the amplitude depending on the current density. While sintering Ti samples we observed temperature oscillations resulting from pressure oscillations, which we attribute to magnetic forces generated within the SPS apparatus. The described current-pressure-temperature relations might increase understanding of the SPS process.

  14. Respiratory modulation of oscillometric cuff pressure pulses and Korotkoff sounds during clinical blood pressure measurement in healthy adults.

    PubMed

    Chen, Diliang; Chen, Fei; Murray, Alan; Zheng, Dingchang

    2016-05-10

    Accurate blood pressure (BP) measurement depends on the reliability of oscillometric cuff pressure pulses (OscP) and Korotkoff sounds (KorS) for automated oscillometric and manual techniques. It has been widely accepted that respiration is one of the main factors affecting BP measurement. However, little is known about how respiration affects the signals from which BP measurement is obtained. The aim was to quantify the modulation effect of respiration on oscillometric pulses and KorS during clinical BP measurement. Systolic and diastolic BPs were measured manually from 40 healthy subjects (from 23 to 65 years old) under normal and regular deep breathing. The following signals were digitally recorded during linear cuff deflation: chest motion from a magnetometer to obtain reference respiration, cuff pressure from an electronic pressure sensor to derive OscP, and KorS from a digital stethoscope. The effects of respiration on both OscP and KorS were determined from changes in their amplitude associated with respiration between systole and diastole. These changes were normalized to the mean signal amplitude of OscP and KorS to derive the respiratory modulation depth. Reference respiration frequency, and the frequencies derived from the amplitude modulation of OscP and KorS were also calculated and compared. Respiratory modulation depth was 14 and 40 % for OscP and KorS respectively under normal breathing condition, with significant increases (both p < 0.05) to 16 and 49 % with deeper breathing. There was no statistically significant difference between the reference respiration frequency and those derived from the oscillometric and Korotkoff signals (both p > 0.05) during deep breathing, and for the oscillometric signal during normal breathing (p > 0.05). Our study confirmed and quantified the respiratory modulation effect on the oscillometric pulses and KorS during clinical BP measurement, with increased modulation depth under regular deeper breathing.

  15. Mapping cerebral pulse pressure and arterial compliance over the adult lifespan with optical imaging.

    PubMed

    Tan, Chin Hong; Low, Kathy A; Kong, Tania; Fletcher, Mark A; Zimmerman, Benjamin; Maclin, Edward L; Chiarelli, Antonio M; Gratton, Gabriele; Fabiani, Monica

    2017-01-01

    Cerebrovascular health is important for maintaining a high level of cognitive performance, not only in old age, but also throughout the lifespan. Recently, it was first demonstrated that diffuse optical imaging measures of pulse amplitude and arterial compliance can provide estimates of cerebral arterial health throughout the cortex, and were associated with age, estimated cardiorespiratory fitness (eCRF), neuroanatomy and cognitive function in older adults (aged 55-87). The current study replicates and extends the original findings using a broader age range (a new adult sample aged 18-75), longer recording periods (360 s), and a more extensive optical montage (1536 channels). These methodological improvements represent a 5-fold increase in recording time and a 4-fold increase in coverage compared to the initial study. Results show that reliability for both pulse amplitude and compliance measures across recording blocks was very high (r(45) = .99 and .75, respectively). Pulse amplitude and pulse pressure were shown to correlate with age across the broader age range. We also found correlations between arterial health and both cortical and subcortical gray matter volumes. Additionally, we replicated the correlations between arterial compliance and age, eCRF, global brain atrophy, and cognitive flexibility. New regional analyses revealed that higher performance on the operation span (OSPAN) working memory task was associated with greater localized arterial compliance in frontoparietal cortex, but not with global arterial compliance. Further, greater arterial compliance in frontoparietal regions was associated with younger age and higher eCRF. These associations were not present in the visual cortex. The current study not only replicates the initial one in a sample including a much wider age range, but also provides new evidence showing that frontoparietal regions may be especially vulnerable to vascular degeneration during brain aging, with potential functional

  16. Mapping cerebral pulse pressure and arterial compliance over the adult lifespan with optical imaging

    PubMed Central

    Tan, Chin Hong; Low, Kathy A.; Kong, Tania; Fletcher, Mark A.; Zimmerman, Benjamin; Maclin, Edward L.; Chiarelli, Antonio M.; Gratton, Gabriele

    2017-01-01

    Cerebrovascular health is important for maintaining a high level of cognitive performance, not only in old age, but also throughout the lifespan. Recently, it was first demonstrated that diffuse optical imaging measures of pulse amplitude and arterial compliance can provide estimates of cerebral arterial health throughout the cortex, and were associated with age, estimated cardiorespiratory fitness (eCRF), neuroanatomy and cognitive function in older adults (aged 55–87). The current study replicates and extends the original findings using a broader age range (a new adult sample aged 18–75), longer recording periods (360 s), and a more extensive optical montage (1536 channels). These methodological improvements represent a 5-fold increase in recording time and a 4-fold increase in coverage compared to the initial study. Results show that reliability for both pulse amplitude and compliance measures across recording blocks was very high (r(45) = .99 and .75, respectively). Pulse amplitude and pulse pressure were shown to correlate with age across the broader age range. We also found correlations between arterial health and both cortical and subcortical gray matter volumes. Additionally, we replicated the correlations between arterial compliance and age, eCRF, global brain atrophy, and cognitive flexibility. New regional analyses revealed that higher performance on the operation span (OSPAN) working memory task was associated with greater localized arterial compliance in frontoparietal cortex, but not with global arterial compliance. Further, greater arterial compliance in frontoparietal regions was associated with younger age and higher eCRF. These associations were not present in the visual cortex. The current study not only replicates the initial one in a sample including a much wider age range, but also provides new evidence showing that frontoparietal regions may be especially vulnerable to vascular degeneration during brain aging, with potential functional

  17. Generation of very high pressure pulses with 1-bit time reversal in a solid waveguide

    NASA Astrophysics Data System (ADS)

    Montaldo, Gabriel; Roux, Phillippe; Derode, Arnaud; Negreira, Carlos; Fink, Mathias

    2001-12-01

    The use of piezoelectric transducer arrays has opened up the possibility of electronic steering and focusing of acoustic beams to track kidney stones. However, owing to the limited pressure delivered by each transducer (typically 10 bar), the number of transducers needed to reach an amplitude at the focus on the order of 1000 bars is typically of some hundreds of elements. We present here a new solution based on 1-bit time reversal in a solid waveguide to obtain, with a small number of transducers, a very high amplitude pulse in tissues located in front of the waveguide. The idea is to take advantage of the temporal dispersion in the waveguide to create, after time reversal, a temporally recompressed pulse with a stronger amplitude. The aim of this work is threefold: first, we experimentally demonstrate 1-bit time reversal between a point source in water and several transducers fastened to one section of a finite-length cylindrical waveguide. Second, we numerically and experimentally study the temporal and spatial focusing at the source as a function of the characteristics of the ``solid waveguide-time reversal mirror (TRM)'' system: length and diameter of the guide, number of transducers of the TRM. Last, we show that the instantaneous power delivered in water at the focus of the solid waveguide is much higher than the power directly transmitted into water from a classically focused transducer. The combination of 1-bit time reversal and a solid waveguide leads to shock wave lithotripsy with low-power electronics.

  18. Recording of amplitude-integrated electroencephalography, oxygen saturation, pulse rate, and cerebral blood flow during massage of premature infants.

    PubMed

    Rudnicki, Jacek; Boberski, Marek; Butrymowicz, Ewa; Niedbalski, Paweł; Ogniewski, Paweł; Niedbalski, Marek; Niedbalski, Zbigniew; Podraza, Wojciech; Podraza, Hanna

    2012-08-01

    Stimulation of the nervous system plays an important role in brain function and psychomotor development of children. Massage can benefit premature infants, but has limitations. The authors conducted a study to verify the direct effects of massage on amplitude-integrated electroencephalography (aEEG), oxygen saturation (SaO(2)), and pulse analyzed by color cerebral function monitor (CCFM) and cerebral blood flow assessed by the Doppler technique. The amplitude of the aEEG trend during massage significantly increased. Massage also impacted the dominant frequency δ waves. Frequency significantly increased during the massage and return to baseline after treatment. SaO(2) significantly decreased during massage. In four premature infants, massage was discontinued due to desaturation below 85%. Pulse frequency during the massage decreased but remained within physiological limits of greater than 100 beats per minute in all infants. Doppler flow values in the anterior cerebral artery measured before and after massage did not show statistically significant changes. Resistance index after massage decreased, which might provide greater perfusion of the brain, but this difference was not statistically significant. Use of the CCFM device allows for monitoring of three basic physiologic functions, namely aEEG, SaO(2), and pulse, and increases the safety of massage in preterm infants. Copyright © 2012 by Thieme Medical Publishers

  19. Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2 kV/cm

    SciTech Connect

    Cliffe, M. J. Rodak, A.; Graham, D. M.; Jamison, S. P.

    2014-11-10

    We demonstrate the generation of near-single cycle longitudinally polarized terahertz radiation using a large-area radially biased photoconductive antenna with a longitudinal field amplitude in excess of 2 kV/cm. The 76 mm diameter antenna was photo-excited by a 0.5 mJ amplified near-infrared femtosecond laser system and biased with a voltage of up to 100 kV applied over concentric electrodes. Amplitudes for both the transverse and longitudinal field components of the source were measured using a calibrated electro-optic detection scheme. By tightly focusing the radiation emitted from the photoconductive antenna, we obtained a maximum longitudinal field amplitude of 2.22 kV/cm with an applied bias field of 38.5 kV/cm.

  20. CAVITATION DAMAGE STUDY VIA A NOVEL REPETITIVE PRESSURE PULSE APPROACH

    SciTech Connect

    Wang, Jy-An John; Ren, Fei; Wang, Hong

    2010-01-01

    Cavitation damage can significantly affect system performance. Thus, there is great interest in characterizing cavitation damage and improving materials resistance to cavitation damage. In this paper, we present a novel methodology to simulate cavitation environment. A pulsed laser is utilized to induce optical breakdown in the cavitation media, with the emission of shock wave and the generation of bubbles. The pressure waves induced by the optical breakdown fluctuate/propagate within the media, which enables the cavitation to occur and to further develop cavitation damage at the solid boundary. Using the repetitive pulsed-pressure apparatus developed in the current study, cavitation damage in water media was verified on stainless steel and aluminum samples. Characteristic cavitation damages such as pitting and indentation are observed on sample surfaces using scanning electron microscopy.

  1. FEASIBILITY STUDY OF PRESSURE PULSING PIPELINE UNPLUGGING TECHNOLOGIES FOR HANFORD

    SciTech Connect

    Servin, M. A.; Garfield, J. S.; Golcar, G. R.

    2012-12-20

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging.

  2. Dynamic pressure transducer system for pulsed plasma flow diagnosis.

    NASA Technical Reports Server (NTRS)

    York, T. M.; Mckenna, K. F.; Michels, C. J.

    1973-01-01

    The response characteristics of high sensitivity piezoelectric pressure transducers suitable for use in the plasma flow induced by megawatt-level electric discharges in low density (less than 1 Torr) gases are described. The uniquely designed probe records the initial impingement of a large magnitude total pressure pulse, followed by the flow of primary interest with order-of-magnitude smaller signals. Effects relating to probe and support accelerations, blast shielding and probe heating are evaluated and accounted for in a probe system with a sensitivity of 40 V/atm.

  3. Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age

    PubMed Central

    Mohiuddin, Mohammad W.; Rihani, Ryan J.; Laine, Glen A.

    2012-01-01

    The mechanism of the well-documented increase in aortic pulse pressure (PP) with age is disputed. Investigators assuming a classical windkessel model believe that increases in PP arise from decreases in total arterial compliance (Ctot) and increases in total peripheral resistance (Rtot) with age. Investigators assuming a more sophisticated pulse transmission model believe PP rises because increases in pulse wave velocity (cph) make the reflected pressure wave arrive earlier, augmenting systolic pressure. It has recently been shown, however, that increases in cph do not have a commensurate effect on the timing of the reflected wave. We therefore used a validated, large-scale, human arterial system model that includes realistic pulse wave transmission to determine whether increases in cph cause increased PP with age. First, we made the realistic arterial system model age dependent by altering cardiac output (CO), Rtot, Ctot, and cph to mimic the reported changes in these parameters from age 30 to 70. Then, cph was theoretically maintained constant, while Ctot, Rtot, and CO were altered. The predicted increase in PP with age was similar to the observed increase in PP. In a complementary approach, Ctot, Rtot, and CO were theoretically maintained constant, and cph was increased. The predicted increase in PP was negligible. We found that increases in cph have a limited effect on the timing of the reflected wave but cause the system to degenerate into a windkessel. Changes in PP can therefore be attributed to a decrease in Ctot. PMID:22561301

  4. Electromagnetic pulses induce fluctuations in blood pressure in rats.

    PubMed

    Li, Bao-Feng; Guo, Guo-Zhen; Ren, Dong-Qing; Jing-Li; Zhang, Ruo-Bing

    2007-06-01

    To investigate the effects of exposure to electromagnetic pulses (EMP) on functional indices of the cardiovascular system in male Sprague-Dawley rats. A tapered parallel plate Gigahertz Transverse Electromagnetic cell (GTEM cell) with a flared rectangular coaxial transmission line was used to expose the rats to EMP (0.5 pps, total 200 pulses and whole-body averaged specific absorption rate 50 mW/kg at 200 kV/m or 75 mW/kg at 400 kV/m). Concurrent sham-exposed animals were used as controls. Cardiovascular functions, namely, heart rate, and systolic, mean and diastolic blood pressures were measured immediately and up to 4 weeks post-exposure using a non-invasive tail-cuff photoelectric sensor sphygmomanometer. The heart rates in sham- and EMP-exposed rats were not significantly changed. In the exposed rats, increased systolic blood pressure (SBP) occurred at 0 h and decreased SBP occurred at 1 day and 3 days after exposure. Significantly higher diastolic blood pressure (DBP) was found at 0 h and significantly lower DBP was found at 12 h, 1 day, and 1 month after exposure. Significantly higher mean arterial pressure (MAP) was noted at 0 h and significantly lower MAP was noted at 1 day. Significant alterations in arterial blood pressure were observed in rats exposed to EMP exposure while heart rate was not altered.

  5. Demonstration of km-scale orbital angular momentum multiplexing transmission using 4-level pulse-amplitude modulation signals.

    PubMed

    Zhu, Long; Yang, Chen; Xie, Dequan; Wang, Jian

    2017-02-15

    By designing and fabricating two kinds of orbital angular momentum (OAM) fibers, we demonstrate two OAM modes (OAM+1 and OAM-1) multiplexing transmission and demultiplexing in OAM fiber links. Moreover, we also experimentally demonstrate 4-level pulse-amplitude modulation (PAM-4) signal transmission using two OAM modes multiplexing in a km-scale OAM fiber and achieve a bit-error rate (BER) below 2×10-3 without multiple-input-multiple-output (MIMO) digital signal processing (DSP). The obtained results with favorable data-carrying OAM multiplexing transmission performance show potential application in km-scale short-reach optical interconnects.

  6. Comparison of discrete multi-tone and pulse amplitude modulation for beyond 100 Gbps short-reach application

    NASA Astrophysics Data System (ADS)

    Nishihara, Masato; Kai, Yutaka; Tanaka, Toshiki; Takahara, Tomoo; Li, Lei; Yan, Weizhen; Liu, Bo; Tao, Zhenning; Rasmussen, Jens C.

    2013-12-01

    Advanced multi-level modulation is an attractive modulation technique for beyond 100 Gbps short reach optical transmission system. Above all, discrete multi-tone (DMT) technique and pulse amplitude modulation (PAM) technique are the strong candidates. We compared the 100 Gbps transmission characteristics of DMT and PAM by simulation and experiment. The comparison was done by using same devices and only the digital signal processing was changed. We studied the transmission distance dependence for 0.5 to 40 km and the impact of the frequency responses of the optical devices. Finally we discuss the features of the both modulation techniques.

  7. Impact of colored noise in pulse amplitude measurements: A time-domain approach using differintegrals

    NASA Astrophysics Data System (ADS)

    Regadío, Alberto; Tabero, Jesús; Sánchez-Prieto, Sebastián

    2016-03-01

    In particle detectors, pulse shaping is the process of changing the waveform of the pulses in order to maximize the signal to noise ratio. This shaping usually only takes into account white, pink (flicker) and red (Brownian) noise. In this paper, a generalization of noise indexes as a function to an arbitrary fβ noise type, where β is a real number, is presented. This generalization has been created using the differintegral operator, defined in Fractional Calculus. These formulas are used to calculate the Equivalent Noise Change (ENC) in detector particle systems.

  8. Numerical Investigation on Atmospheric-Pressure Dielectric Barrier Discharges Driven by Combined rf and Short-Pulse Sources in Co-Axial Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Sun, Ji-zhong; Nozaki, Tomohiro; Wang, De-zhen

    Atmospheric-pressure discharges driven by combined rf and short-pulse sources in co-axial electrodes were investigated in this work using a one-dimensional self-consistent fluid model. It demonstrated that the plasma intensity in the rf discharge could be enhanced drastically when an additional low-duty-ratio pulse source was applied to the discharge. The study investigated how the plasma density varied with the voltage amplitude of the pulse source. Results showed that the discharge mode turned into glow mode as the pulse amplitude exceeded a critical value. Two cases were investigated on the premise that the outer electrode was electrically grounded: in the first case the positive pulse was applied to the inner electrode while in the second case the negative pulse was used instead, and the spatial discharge characteristics were compared.

  9. Ocular rigidity, outflow facility, ocular pulse amplitude, and pulsatile ocular blood flow in open-angle glaucoma: a manometric study.

    PubMed

    Dastiridou, Anna I; Tsironi, Evangelia E; Tsilimbaris, Miltiadis K; Ginis, Harilaos; Karyotakis, Nikos; Cholevas, Pierros; Androudi, Sofia; Pallikaris, Ioannis G

    2013-07-10

    To compare ocular rigidity (OR) and outflow facility (C) coefficients in medically treated open-angle glaucoma (OAG) patients and controls, and to investigate differences in ocular pulse amplitude (OPA) and pulsatile ocular blood flow (POBF) between the two groups. Twenty-one OAG patients and 21 controls undergoing cataract surgery were enrolled. Patients with early or moderate primary or pseudoexfoliative OAG participated in the glaucoma group. A computer-controlled system, consisting of a pressure transducer and a microstepping device was employed intraoperatively. After cannulation of the anterior chamber, IOP was increased by infusing the eye with microvolumes of saline solution. IOP was recorded after each infusion step. At an IOP of 40 mm Hg, an IOP decay curve was recorded for 4 minutes. OR coefficients, C, OPA, and POBF were estimated from IOP and volume recordings. There were no differences in age or axial length in the two groups. The OR coefficient was 0.0220 ± 0.0053 μl(-1) in the OAG and 0.0222 ± 0.0039 μl(-1) in the control group (P = 0.868). C was 0.092 ± 0.082 μL/min/mm Hg in the glaucoma group compared with 0.149 ± 0.085 μL/min/mm Hg in the control group at an IOP of 35 mm Hg (P < 0.001) and 0.178 ± 0.133 μL/min/mm Hg vs. 0.292 ± 0.166 μL/min/mm Hg, respectively, at an IOP of 25 mm Hg (P < 0.001). There were no differences in OPA or POBF between the two groups in baseline and increased levels of IOP (P > 0.05). Manometric data reveal lower C in OAG patients and increased C with increasing IOP. There were no differences in the OR coefficient, OPA, and POBF between medically treated OAG patients and controls, failing to provide evidence of altered scleral distensibility and choroidal blood flow in OAG.

  10. Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A

    NASA Astrophysics Data System (ADS)

    Liu, Jean; Milne, Glenn A.; Kopp, Robert E.; Clark, Peter U.; Shennan, Ian

    2016-02-01

    During the last deglaciation, sea levels rose as ice sheets retreated. This climate transition was punctuated by periods of more intense melting; the largest and most rapid of these--Meltwater Pulse 1A--occurred about 14,500 years ago, with rates of sea-level rise reaching approximately 4 m per century. Such rates of rise suggest ice-sheet instability, but the meltwater sources are poorly constrained, thus limiting our understanding of the causes and impacts of the event. In particular, geophysical modelling studies constrained by tropical sea-level records suggest an Antarctic contribution of more than seven metres, whereas most reconstructions from Antarctica indicate no substantial change in ice-sheet volume around the time of Meltwater Pulse 1A. Here we use a glacial isostatic adjustment model to reinterpret tropical sea-level reconstructions from Barbados, the Sunda Shelf and Tahiti. According to our results, global mean sea-level rise during Meltwater Pulse 1A was between 8.6 and 14.6 m (95% probability). As for the melt partitioning, we find an allowable contribution from Antarctica of either 4.1 to 10.0 m or 0 to 6.9 m (95% probability), using two recent estimates of the contribution from the North American ice sheets. We conclude that with current geologic constraints, the method applied here is unable to support or refute the possibility of a significant Antarctic contribution to Meltwater Pulse 1A.

  11. Can the use of pulsed direct current induce oscillation in the applied pressure during spark plasma sintering?

    PubMed Central

    Salamon, David; Eriksson, Mirva; Nygren, Mats; Shen, Zhijian

    2012-01-01

    The spark plasma sintering (SPS) process is known for its rapid densification of metals and ceramics. The mechanism behind this rapid densification has been discussed during the last few decades and is yet uncertain. During our SPS experiments we noticed oscillations in the applied pressure, related to a change in electric current. In this study, we investigated the effect of pulsed electrical current on the applied mechanical pressure and related changes in temperature. We eliminated the effect of sample shrinkage in the SPS setup and used a transparent quartz die allowing direct observation of the sample. We found that the use of pulsed direct electric current in our apparatus induces pressure oscillations with the amplitude depending on the current density. While sintering Ti samples we observed temperature oscillations resulting from pressure oscillations, which we attribute to magnetic forces generated within the SPS apparatus. The described current–pressure–temperature relations might increase understanding of the SPS process. PMID:27877472

  12. Effects of Biphasic Current Pulse Frequency, Amplitude, Duration and Interphase Gap on Eye Movement Responses to Prosthetic Electrical Stimulation of the Vestibular Nerve

    PubMed Central

    Davidovics, Natan S.; Fridman, Gene Y.; Chiang, Bryce; Della Santina, Charles C.

    2011-01-01

    An implantable prosthesis that stimulates vestibular nerve branches to restore sensation of head rotation and vision-stabilizing reflexes could benefit individuals disabled by bilateral loss of vestibular (inner ear balance) function. We developed a prosthesis that partly restores normal function in animals by delivering pulse frequency modulated (PFM) biphasic current pulses via electrodes implanted in semicircular canals. Because the optimal stimulus encoding strategy is not yet known, we investigated effects of varying biphasic current pulse frequency, amplitude, duration and interphase gap on vestibulo-ocular reflex (VOR) eye movements in chinchillas. Increasing pulse frequency increased response amplitude while maintaining a relatively constant axis of rotation. Increasing pulse amplitude (range 0–325 μA) also increased response amplitude but spuriously shifted eye movement axis, probably due to current spread beyond the target nerve. Shorter pulse durations (range 28–340 μs) required less charge to elicit a given response amplitude and caused less axis shift than longer durations. Varying interphase gap (range 25–175 μs) had no significant effect. While specific values reported herein depend on microanatomy and electrode location in each case, we conclude that PFM with short duration biphasic pulses should form the foundation for further optimization of stimulus encoding strategies for vestibular prostheses intended to restore sensation of head rotation. PMID:20813652

  13. Temperature and Pressure Dependence of Signal Amplitudes for Electrostriction Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2015-01-01

    The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].

  14. Pulse pressure is associated with walking impairment in multiple sclerosis.

    PubMed

    Heffernan, Kevin S; Ranadive, Sushant; Weikert, Madeline; Lane, Abbi; Yan, Huiman; Fernhall, Bo; Motl, Robert W

    2011-10-15

    Persons with multiple sclerosis (MS) have reduced gait performance and this is associated with disability and disease progression. The current study sought to test the hypothesis that higher central (aortic and carotid) and peripheral (brachial) pulse pressure (PP), manifestations of ventricular-vascular uncoupling related to increased arterial stiffness and pressure from wave reflections, would be associated with reduced gait performance in persons with MS. Participants consisted of 33 individuals with MS and 33 age/sex matched controls. Central blood pressure (BP) was assessed via applanation tonometry. Brachial BP was measured using an automated oscillometric cuff. PP was defined as systolic BP--diastolic BP. Gait performance was measured as 6-minute walk (6 MW) distance. Within the sample with MS, the 6 MW distance was significantly associated with brachial (r = -.49, p<.005), aortic (r = -.52, p<.001), and carotid (r = -.57, p<.001) pulse pressure. There was no association between any PP measure and 6 MW distance in controls (p>0.05 for all). In conclusion, PP is a predictor of gait performance in persons with MS. These findings suggest that vascular senescence and altered ventricular-vascular coupling may contribute, in part, to the deterioration of physical function in persons with MS.

  15. [High-frequency ventilation. I. Distribution of alveolar pressure amplitudes during high frequency oscillation in the lung model].

    PubMed

    Theissen, J; Lunkenheimer, P P; Niederer, P; Bush, E; Frieling, G; Lawin, P

    1987-09-01

    The pattern of intrapulmonary pressure distribution was studied during high-frequency ventilation in order to explain the inconsistent results reported in the literature. Methods. Pressure and flow velocity (hot-wire anemometry) were measured in different lung compartments: 1. In transalveolar chambers sealed to the perforated pleural surfaces of dried pig lungs; 2. In emphysema-simulating airbags sealed to the isolated bronchial trees of dried pig lungs; and 3. In transalveolar chambers sealed to the perforated pleural surfaces of freshly excised pig lungs. Results. 1. The pressure amplitudes change from one area to another and depending on the exciting frequency. 2. High-frequency oscillation is associated with an increase in pressure amplitude when the exciting frequency rises, whereas with conventional high-frequency jet ventilation the pressure amplitude is more likely to decrease with frequency. 3. During high-frequency jet ventilation the local pressure amplitude changes with the position of the tube in the trachea rather than with the exciting frequency. 4. When the volume of the measuring chamber is doubled the resulting pressure amplitude falls to half the control value. 5. The pressure amplitude and mean pressure measured in the transalveolar chamber vary more or less independently from the peak flow velocity. High-frequency ventilation is thus seen to be a frequency-dependant, inhomogeneous mode of ventilation that can essentially be homogenized by systematically changing the exciting frequency. The frequency-dependant response to different lung areas to excitation is likely to result from an intrabronchially-localized aerodynamic effect rather than the mechanical properties of the lung parenchyma.

  16. [Estimation of pulse pressure in subjects with carbohydrate disorders].

    PubMed

    Kowalski, Jan; Brylik, Anna; Irzmański, Robert; Ciećwierz, Julita; Jarzabek, Krzysztof; Pawlicki, Lucjan; Barylski, Marcin

    2012-03-01

    Carbohydrate disorders are important and independent risk factor for cardiovascular system diseases. Increased values of pulse pressure are an independent risk factor for cardiovascular complications and total mortality. The aim of the study was to evaluate the pulse pressure in subjects with carbohydrate disorders. The study comprised 112 subjects with carbohydrate disorders (54 females and 58 males), aged 30-78 (57.4 +/- 9.6) years. Carbohydrate disorders were diagnosed according to the Polish Diabetes Association criteria from 2007 (group 1). 56 subjects had impaired fasting glucose (IFG), 36--impaired glucose tolerance (IGT) and 20--type 2 diabetes. Comparative group comprised 30 subjects without cardiovascular diseases and carbohydrate disorders (15 females and 15 males), aged 29-64 (52.7,4 +/- 8.8) years (group II). The fasting serum glucose level was evaluated using an enzymatic method, Kone-Pro biochemical analyzer and bioMérieux Glucose RTU kit. In subjects with fasting glucose level > or = 100 mg/dl, an oral glucose tolerance test (OGTT) was performed. In all subjects 24-h ambulatory blood pressure monitoring with oscillometric method, using boso-TM-2430PL system (Bosch+Sohn, Germany). Pulse pressure (pp) was evaluated as a mean difference between the systolic and diastolic pressure. In subjects with carbohydrate disorders the mean value of pp was 56.79 +/- 16.28 mmHg and it was significantly higher (p < 0.05) than in comparative group (49.0 +/- 11.1 mmHg). Increased value of pp (> 63 mmHg) was found significantly more often in group with carbohydrate disorders (46% vs 10%) (p < 0.05). On the basis of ROC curve analysis and OR (odds ratio) it was shown that pp > or = 52.5 mmHg results in a threefold increased risk of carbohydrate disorders. Increased values of pulse pressure are found significantly more often in subjects with carbohydrate disorders. The risk of carbohydrate disorders increases threefold in subjects with pp > or = 52.5 mmHg.

  17. Note: measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air.

    PubMed

    Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V

    2012-08-01

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.

  18. Note: Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air

    SciTech Connect

    Tarasenko, V. F.; Rybka, D. V.; Burachenko, A. G.; Lomaev, M. I.; Balzovsky, E. V.

    2012-08-15

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be {approx}25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach {approx}25 ps too.

  19. Sex differences in pulse pressure trends with age are cross-cultural.

    PubMed

    Skurnick, Joan H; Aladjem, Mordechay; Aviv, Abraham

    2010-01-01

    Sex differences in systolic and diastolic blood pressure levels and trends with age have been consistently observed in both industrialized and unindustrialized populations. However, the impact of sex on pulse pressure, an index of vascular aging, in unindustrialized populations has not been addressed. The objective of this report was to characterize sex differences in aging trends of pulse pressure within unindustrialized populations. Using PubMed and Medline, we identified 60 articles with blood pressure data from unacculturated or partially acculturated populations. Data on 27 populations from 22 articles were included for analysis, on the basis of adequate description of study design and blood pressure measurement. Blood pressure means of adult age groups were modeled by linear and polynomial regression. The pulse pressure levels of women were lower than those of men in early adulthood and higher in older ages. Women had a steeper, steady increase in pulse pressure with age than men (P<0.001), whereas men had a stronger curvilinear upswing in pulse pressure with age (P=0.006). Partially acculturated populations had higher pulse pressures than unacculturated populations. Sex had a stronger effect on pulse pressure than acculturation. Pulse pressure trajectories of unindustrialized populations were slightly attenuated compared with those seen in National Health and Nutritional Examination Surveys III and IV of the US population. A sex effect on pulse pressure trends with age prevails across unacculturated and acculturated populations. Accordingly, the biological principles of arterial aging, as expressed in pulse pressure, are the same in all humans, regardless of demography.

  20. Systolic Blood Pressure Accuracy Enhancement in the Electronic Palpation Method Using Pulse Waveform

    DTIC Science & Technology

    2007-11-02

    1 of 4 SYSTOLIC BLOOD PRESSURE ACCURACY ENHANCEMENT IN THE ELECTRONIC PALPATION METHOD USING PULSE WAVEFORM H. S. S. Sorvoja1, R. A. Myllylä1...systolic blood pressure measurements based on pulse waveform. A set of measurement was carried out with elderly cardiac surgery patients. The experiments... blood pressure . Systolic pressure errors were defined and correlations with other specific values, like pressure rise time, pulse wave velocity

  1. Waveform descriptor for pulse onset detection of intracranial pressure signal.

    PubMed

    Yang, Li; Zhao, Mingxi; Peng, Chenglin; Hu, Xiao; Feng, Hua; Ji, Zhong

    2012-03-01

    We present an algorithm to identify the onset of intracranial pressure (ICP) pulses. The algorithm creates a waveform descriptor to extract the feature of each local minimum of the waveform and then identifies the onset by comparing the feature with a customized template. The waveform descriptor is derived by transforming the vectors connecting a given point and the local waveform samples around it into log-polar coordinates and ranking them into uniform bins. Using an ICP dataset consisting of 40933 normal beats and 306 segments of artifacts and noise, we investigated the performance of our algorithm (waveform descriptor, WD), global minimum within a sliding window (GM) and two other algorithms originally proposed for arterial blood pressure (ABP) signal (slope sum function, SSF and pulse waveform delineator, PUD). As a result, all the four algorithms showed good performance and WD showed overall better one. At a tolerance level of 30 ms (i.e., the predicted onset and ground truth were considered as correctly matched if the distance between the two was equal or less than 30 ms), WD achieved a sensitivity of 0.9723 and PPV of 0.9475, GM achieved a sensitivity of 0.9226 and PPV of 0.8968, PUD achieved a sensitivity of 0.9599 and PPV of 0.9327 and SSF, a sensitivity of 0.9720 and PPV of 0.9136. The evaluation indicates that the algorithms are effective for identifying the onset of ICP pulses.

  2. Multi-Pulsed High Hydrostatic Pressure Treatment of Foods.

    PubMed

    Buzrul, Sencer

    2015-05-25

    Multi-pulsed high hydrostatic pressure (mpHHP) treatment of foods has been investigated for more than two decades. It was reported that the mpHHP treatment, with few exceptions, is more effective than the classical or single-pulsed HHP (spHHP) treatment for inactivation of microorganisms in fruit juice, dairy products, liquid whole egg, meat products, and sea foods. Moreover, the mpHHP treatment could be also used to inactivate enzymes in foods and to increase the shelf-life of foods. The effects of the mpHHP treatment of foods are summarized and the differences between the mpHHP and spHHP are also emphasized.

  3. Multi-Pulsed High Hydrostatic Pressure Treatment of Foods

    PubMed Central

    Buzrul, Sencer

    2015-01-01

    Multi-pulsed high hydrostatic pressure (mpHHP) treatment of foods has been investigated for more than two decades. It was reported that the mpHHP treatment, with few exceptions, is more effective than the classical or single-pulsed HHP (spHHP) treatment for inactivation of microorganisms in fruit juice, dairy products, liquid whole egg, meat products, and sea foods. Moreover, the mpHHP treatment could be also used to inactivate enzymes in foods and to increase the shelf-life of foods. The effects of the mpHHP treatment of foods are summarized and the differences between the mpHHP and spHHP are also emphasized. PMID:28231197

  4. Intracranial pressure pulse waveform correlates with aqueductal cerebrospinal fluid stroke volume.

    PubMed

    Hamilton, Robert; Baldwin, Kevin; Fuller, Jennifer; Vespa, Paul; Hu, Xiao; Bergsneider, Marvin

    2012-11-01

    This study identifies a novel relationship between cerebrospinal fluid (CSF) stroke volume through the cerebral aqueduct and the characteristic peaks of the intracranial pulse (ICP) waveform. ICP waveform analysis has become much more advanced in recent years; however, clinical practice remains restricted to mean ICP, mainly due to the lack of physiological understanding of the ICP waveform. Therefore, the present study set out to shed some light on the physiological meaning of ICP morphological metrics derived by the morphological clustering and analysis of continuous intracranial pulse (MOCAIP) algorithm by investigating their relationships with a well defined physiological variable, i.e., the stroke volume of CSF through the cerebral aqueduct. Seven patients received both overnight ICP monitoring along with a phase-contrast MRI (PC-MRI) of the cerebral aqueduct to quantify aqueductal stroke volume (ASV). Waveform morphological analysis of the ICP signal was performed by the MOCAIP algorithm. Following extraction of morphological metrics from the ICP signal, nine temporal ICP metrics and two amplitude-based metrics were compared with the ASV via Spearman's rank correlation. Of the nine temporal metrics correlated with the ASV, only the width of the P2 region (ICP-Wi2) reached significance. Furthermore, both ICP pulse pressure amplitude and mean ICP did not reach significance. In this study, we showed the width of the second peak (ICP-Wi2) of an ICP pulse wave is positively related to the volume of CSF movement through the cerebral aqueduct. This finding is an initial step in bridging the gap between ICP waveform morphology research and clinical practice.

  5. Bystander Effect Induced by Electroporation is Possibly Mediated by Microvesicles and Dependent on Pulse Amplitude, Repetition Frequency and Cell Type.

    PubMed

    Prevc, Ajda; Bedina Zavec, Apolonija; Cemazar, Maja; Kloboves-Prevodnik, Veronika; Stimac, Monika; Todorovic, Vesna; Strojan, Primoz; Sersa, Gregor

    2016-10-01

    Bystander effect, a known phenomenon in radiation biology, where irradiated cells release signals which cause damage to nearby, unirradiated cells, has not been explored in electroporated cells yet. Therefore, our aim was to determine whether bystander effect is present in electroporated melanoma cells in vitro, by determining viability of non-electroporated cells exposed to medium from electroporated cells and by the release of microvesicles as potential indicators of the bystander effect. Here, we demonstrated that electroporation of cells induces bystander effect: Cells exposed to electric pulses mediated their damage to the non-electroporated cells, thus decreasing cell viability. We have shown that shedding microvesicles may be one of the ways used by the cells to mediate the death signals to the neighboring cells. The murine melanoma B16F1 cell line was found to be more electrosensitive and thus more prone to bystander effect than the canine melanoma CMeC-1 cell line. In B16F1 cell line, bystander effect was present above the level of electropermeabilization of the cells, with the threshold at 800 V/cm. Furthermore, with increasing electric field intensities and the number of pulses, the bystander effect also increased. In conclusion, electroporation can induce bystander effect which may be mediated by microvesicles, and depends on pulse amplitude, repetition frequency and cell type.

  6. Antibody responses of mice exposed to low-power microwaves under combined, pulse-and-amplitude modulation

    SciTech Connect

    Veyret, B.; Bouthet, C.; Deschaux, P.; de Seze, R.; Geffard, M.; Joussot-Dubien, J.; le Diraison, M.; Moreau, J.M.; Caristan, A.

    1991-01-01

    Irradiation by pulsed microwaves (9.4 GHz, 1 microsecond pulses at 1,000/s), both with and without concurrent amplitude modulation (AM) by a sinusoid at discrete frequencies between 14 and 41 MHz, was assessed for effects on the immune system of Balb/C mice. The mice were immunized either by sheep red blood cells (SRBC) or by glutaric-anhydride conjugated bovine serum albumin (GA-BSA), then exposed to the microwaves at a low rms power density (30 microW/cm2; whole-body-averaged SAR approximately 0.015 W/kg). Sham exposure or microwave irradiation took place during each of five contiguous days, 10 h/day. The antibody response was evaluated by the plaque-forming cell assay (SRBC experiment) or by the titration of IgM and IgG antibodies (GA-BSA experiment). In the absence of AM, the pulsed field did not greatly alter immune responsiveness. In contrast, exposure to the field under the combined-modulation condition resulted in significant, AM-frequency-dependent augmentation or weakening of immune responses.

  7. A right ventricular pressure waveform based pulse contour cardiac output algorithm in canines.

    PubMed

    Karamanoglu, Mustafa; Bennett, Tom D

    2006-09-01

    Tracking changes in stroke volume or cardiac output (CO) can be useful in the diagnosis and treatment of various cardiac illnesses. Existing arterial pressure waveform based pulse contour CO algorithms perform poorly during altered systemic hemodynamics. In this study, a right ventricular pressure waveform based pulse contour CO algorithm was developed to estimate the amplitude and duration of a hypothetical triangular flow waveform in the pulmonary artery. This algorithm was tested against gold standard blood flow measurements in ten canines during acute perturbations to preload (inferior vena caval occlusion (IVCO), rapid saline infusion), afterload (descending aortic occlusion (DAO), serotonin, angiotensin II, sodium nitroprusside infusion), and cardiac contractility (dobutamine and propranolol infusion). The algorithm correctly predicted the changes in CO (r2 = 0.82) that varied from - 45 to 31% of the baseline levels. To explain this finding both the pulmonary arterial (PA) and the ascending aortic (AA) input impedances were modeled as three element windkessels. In the AA the peripheral resistance (from - 61 to 191%), characteristic impedance (from - 59 to 20%) and total arterial compliance (from - 49 to 34%) varied significantly with these perturbations. In contrast, these parameters in the PA changed little. In particular, except serotonin infusion, the characteristic impedance of the PA deviated only 6% (SD/mean) from baseline values. This suggests right ventricular pressure waveform based estimate of CO is possible during acute changes in left ventricular hemodynamics.

  8. Kinetics of high pressure argon-helium pulsed gas discharge

    NASA Astrophysics Data System (ADS)

    Emmons, D. J.; Weeks, D. E.

    2017-05-01

    Simulations of a pulsed direct current discharge are performed for a 7% argon in helium mixture at a pressure of 270 Torr using both zero- and one-dimensional models. Kinetics of species relevant to the operation of an optically pumped rare-gas laser are analyzed throughout the pulse duration to identify key reaction pathways. Time dependent densities, electron temperatures, current densities, and reduced electric fields in the positive column are analyzed over a single 20 μs pulse, showing temporal agreement between the two models. Through the use of a robust reaction rate package, radiation trapping is determined to play a key role in reducing A r (1 s5) metastable loss rates through the reaction sequence A r (1 s5)+e-→A r (1 s4)+e- followed by A r (1 s4)→A r +ℏω . Collisions with He are observed to be responsible for A r (2 p9) mixing, with nearly equal rates to A r (2 p10) and A r (2 p8) . Additionally, dissociative recombination of A r2+ is determined to be the dominant electron loss mechanism for the simulated discharge conditions and cavity size.

  9. Method of pressure pulse cleaning a tube bundle heat exchanger

    SciTech Connect

    Scharton, T.D.; Taylor, G.B.

    1987-04-07

    A method is described of removing the products of corrosion, oxidation, sedimentation and comparable chemical reactions collectively known as sludge which settle on the bottom of a tube bundle heat exchange and form a pile of sludge. The tube bundle heat exchanger is characterized by a tube bundle heat exchanger wall and a thick metal plate known as a tube sheet near the lower portion of the tube bundle heat exchanger wall's interior surface. The tube sheet serves to support the lower ends of a multiplicity of heat exchanger tubes within the tube bundle heat exchanger. The tube bundle heat exchange wall further comprises a multiplicity of small holes known as hand holes, manways, drain lines and vents, located around its circumference and above the tube sheet. The method is described of removing the pile of sludge which settles on the tube sheet comprising: a. locating at least one air-gun type pressure pulse shock wave source outside the tube bundle heat exchanger so as to be able to introduce pressure pulse shock waves through one or more of the multiplicity of hand holes, manways, drain lines and vents; and b. filling the tube bundle heat exchanger with a liquid to a level above the pile of sludge.

  10. Evaluation of the amperex 56 TVP photomultiplier. [characteristics: photoelectron time spread, anode pulse amplitude and photocathode sensing area

    NASA Technical Reports Server (NTRS)

    Lo, C. C.; Leskovar, B.

    1976-01-01

    Characteristics were measured for the Amperex 56 TVP 42 mm-diameter photomultiplier. Some typical photomultiplier characteristics-such as gain, dark current, transit and rise times-are compared with data provided. Photomultiplier characteristics generally not available such as the single photoelectron time spread, the relative collection efficiency, the relative anode pulse amplitude as a function of the voltage between the photocathode and focusing electrode, and the position of the photocathode sensing area were measured and are discussed for two 56 TVP's. The single photoelectron time spread, the relative collection efficiency, and the transit time difference as a function of the voltage between photocathode and focusing electrode were also measured and are discussed, particularly with respect to the optimization of photomultiplier operating conditions for timing applications.

  11. Using a heterodyne vibrometer in combination with pulse excitation for primary calibration of ultrasonic hydrophones in amplitude and phase

    NASA Astrophysics Data System (ADS)

    Weber, Martin; Wilkens, Volker

    2017-08-01

    A high-frequency vibrometer was used with ultrasonic pulse excitation in order to perform a primary hydrophone calibration. This approach enables the simultaneous characterization of the amplitude and phase transfer characteristic of ultrasonic hydrophones. The method allows a high frequency resolution in a considerably short time for the measurement. Furthermore, the uncertainty contributions of this approach were investigated and quantified. A membrane hydrophone was calibrated and the uncertainty budget for this measurement was determined. The calibration results are presented up to 70~\\text{MHz} . The measurement results show good agreement with the results obtained by sinusoidal burst excitation through the use of the vibrometer and by a homodyne laser interferometer, with RMS deviation of approximately 3% -4% in the frequency range from 1 to 60~\\text{MHz} . Further hydrophones were characterized up to 100~\\text{MHz} with this procedure to demonstrate the suitability for very high frequency calibration.

  12. Fully programmable two-dimensional pulse shaper for broadband line-by-line amplitude and phase control.

    PubMed

    Metcalf, Andrew J; Torres-Company, Victor; Supradeepa, V R; Leaird, Daniel E; Weiner, Andrew M

    2013-11-18

    We introduce a fully programmable two-dimensional (2D) pulse shaper, able to simultaneously control the amplitude and phase of very fine spectral components over a broad bandwidth. This is achieved by aligning two types of spectral dispersers in a cross dispersion setup: a virtually imaged phased array for accessing fine resolution and a transmission grating for achieving broad bandwidth. We take advantage of the resultant 2D dispersion profile as well as introduce programmability by adding a 2D liquid crystal on silicon spatial light modulator at the masking plane. Our shaper has a resolution of ~3 GHz operating over the entire 'C' band of >5.8 THz. Experimental evidence is provided that highlights the full programmability, fine spectral control, and broad bandwidth operation (limited currently by the bandwidth of the input light). We also show line-by-line manipulation of record 836 comb lines over the C-band.

  13. Understanding Cavitation Intensity through Pitting and Pressure Pulse Analysis

    NASA Astrophysics Data System (ADS)

    Jayaprakash, A.; Singh, S.; Choi, J.-K.; Chahine, G.

    2011-11-01

    Cavitation erosion is of interest to the designers of ship propulsion devices because of its detrimental effects. One of the difficulties of predicting cavitation erosion is that the intensity of cavitation is not well predicted or defined. In this work we attempt to define the intensity of a cavitation erosion field through analysis of cavitation induced erosion pits and pressure pulses. In the pitting tests, material samples were subjected to cavitation field for a short duration of time selected within the test sample's incubation period, so that the test sample undergoes plastic deformation only. The sample material reacts to these cavitation events by undergoing localized permanent deformation, called pits. The resulting pitted sample surfaces were then optically scanned and analyzed. The pressure signals under cavitating jets and ultrasonic horns, for different conditions, were experimentally recorded using high frequency response pressure transducers. From the analysis of the pitting data and recorded pressure signals, we propose a model that describes the statistics, which in the future can be used to define the cavitation field intensity. Support for this work was provided by Office of Naval Research (ONR) under contract number N00014-08-C-0450, monitored by Dr. Ki-Han Kim.

  14. Association of Adiposity with Pulse Pressure Amongst Gujarati Indian Adolescents

    PubMed Central

    Shaikh, Wasim A; Patel, Minal; Singh, SK

    2010-01-01

    Background and Aim: The current study was conducted to determine the effect of adiposity on vascular distensibility in Gujarati Indian adolescents as research indicating the pathogenesis of hypertension among overweight and/or obese Indian adolescents is scant and ethnic differences exist in the pathogenesis of hypertension Materials and Methods: A cross-sectional study was conducted on 488 Gujarati Indian adolescents of 16-19 years age group. Adiposity was assessed in terms of BMI, Body Fat %, Fat Mass, Fat Mass Index and Waist Circumference. Arterial blood pressure was recorded and pulse pressure (PP) was calculated using the standard equation based on the difference between systolic blood pressure (SBP) and diastolic blood pressure (DBP). Pearson’s correlation coefficient was determined to find the association between the markers of adiposity and SBP, DBP and PP. Result: A significant positive correlationship was found between adiposity and PP in boys. However, no significant correlationship was found between adiposity and PP in girls. Conclusion: An increase in total as well as visceral adiposity is probably associated with a decrease in vascular distensibility in the Gujarati Indian adolescent boys but not in girls, thus indicating a protective role of female sex hormone estrogen which has been shown earlier to protect the vasculature from atherosclerosis, endothelial dysfunction which occurs with increase in adiposity. PMID:21031107

  15. Association of adiposity with pulse pressure amongst gujarati Indian adolescents.

    PubMed

    Shaikh, Wasim A; Patel, Minal; Singh, Sk

    2010-07-01

    The current study was conducted to determine the effect of adiposity on vascular distensibility in Gujarati Indian adolescents as research indicating the pathogenesis of hypertension among overweight and/or obese Indian adolescents is scant and ethnic differences exist in the pathogenesis of hypertension A cross-sectional study was conducted on 488 Gujarati Indian adolescents of 16-19 years age group. Adiposity was assessed in terms of BMI, Body Fat %, Fat Mass, Fat Mass Index and Waist Circumference. Arterial blood pressure was recorded and pulse pressure (PP) was calculated using the standard equation based on the difference between systolic blood pressure (SBP) and diastolic blood pressure (DBP). Pearson's correlation coefficient was determined to find the association between the markers of adiposity and SBP, DBP and PP. A significant positive correlationship was found between adiposity and PP in boys. However, no significant correlationship was found between adiposity and PP in girls. An increase in total as well as visceral adiposity is probably associated with a decrease in vascular distensibility in the Gujarati Indian adolescent boys but not in girls, thus indicating a protective role of female sex hormone estrogen which has been shown earlier to protect the vasculature from atherosclerosis, endothelial dysfunction which occurs with increase in adiposity.

  16. [Cardiovascular risk stratification. Systolic, diastolic or pulse pressure?].

    PubMed

    Pede, S; Lombardo, M

    2001-04-01

    It is well known that hypertension is a highly prevalent condition in the population, carries a significant risk of adverse cardiovascular events and is therapeutically difficult to control. These factors render it "a major unsolved - but soluble - mass public health problem". One of the present-day aspects of the complexity of managing patients with high blood pressure (BP) derives from clinical and epidemiological data that have emerged over the past 10 years: the growing importance of the clinical significance of systolic and pulse BP. The pathophysiological basis of these data is based, on the one hand, on a better articulated definition of the components of BP, and on the other, on precise information concerning age-related modifications. The common definition of BP does not take into account pressure fluctuations occurring during the cardiac cycle; in fact, systolic and diastolic BP denote the extreme values of continuous variations in differential pressure. Diastolic BP reflects, to a greater extent, the trend of arterial resistances and mean BP (usually calculated as diastolic BP plus one third of the differential BP, and considered the "stable component" of the arterial sphygmogram) and has long been used as a diagnostic and therapeutic target. Systolic BP is more closely linked to variations in pulse BP (given from the difference between systolic and diastolic BP and considered the "dynamic component" of the arterial sphygmogram) and is produced by a group of factors including left ventricular ejection and the reflection of the sphygmic wave. As age increases, the walls of the aorta and the large elastic arteries progressively harden due to senile degenerative phenomena and the loss of elasticity as well as the progressive diffusion of atherosdclerotic lesions. This leads to the reduced capacity of the arterial wall to distend during the systole with a consequent increase in both systolic and pulse BP. These pathophysiological data have important clinical

  17. Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Li, Li; Wang, Yunuan; Xiu, Xianwu; Wang, Chao; Song, Yuzhi

    2016-11-01

    Atmospheric-pressure argon plasmas have received increasing attention due to their high potential in many industrial and biomedical applications. In this paper, a 1-D fluid model is used for studying the particle density characteristics of the argon plasmas generated by the pulsed dielectric barrier discharges. The temporal evolutions of the axial particle density distributions are illustrated, and the influences of changing the main discharge conditions on the averaged particle densities are researched by independently varying the various discharge conditions. The calculation results show that the electron density and the ion density reach two peaks near the momentary cathodes during the rising and the falling edges of the pulsed voltage. Compared with the charged particle densities, the densities of the resonance state atom Arr and the metastable state atom Arm have more uniform axial distributions, reach higher maximums and decay more slowly. During the platform of the pulsed voltage and the time interval between the pulses, the densities of the excited state atom Ar* are far lower than those of the Arr or the Arm. The averaged particle densities of the different considered particles increase with the increases of the amplitude and the frequency of the pulsed voltage. Narrowing the discharge gap and increasing the relative dielectric constant of the dielectric also contribute to the increase of the averaged particle densities. The effects of reducing the discharge gap distance on the neutral particle densities are more significant than the influences on the charged particle densities. supported by Natural Science Foundation of Shandong Province, China (No. ZR2015AQ008), and Project of Shandong Province Higher Educational Science and Technology Program of China (No. J15LJ04)

  18. [24-hour pulse pressure in children with chronic kidney disease].

    PubMed

    Zaniew, Marcin; Drozdz, Dorota; Mroziński, Bartłomiej; Rudziński, Andrzej; Blumczyński, Andrzej; Pietrzyk, Jacek A; Zachwieja, Jacek

    2008-01-01

    The aim of the study was to assess 24-h pulse pressure (PP) and to determine relationships between PP and echocardiographic parameters of left ventricle in children with chronic kidney disease (CKD). The study population included 47 children (mean age: 13.11 yrs) with CKD treated conservatively (n=14), with hemodialysis (HD) (n=13) and automated peritoneal dialysis (APD) (n=20). Retrospectively, antropometrical data, office blood pressure, ambulatory blood pressure monitoring (ABPM) variables and LV parameters in echocardiogaphy were analyzed. In study subjects, hypertension (HTN) was present in 25 (53.19%) and in 29 (61.7%) when based on office blood pressure and ABPM respectively. The prevalence of HTN was the highest in predialysis patients. 21 (44.6%) of children had left ventricular hypertrophy (LVH), which was the most frequently found in HD group. The mean PP value was 45.26 +/- 7.56 mmHg and was similar in all groups. Positive correlations were found between PP and weight (p < 0.001), height (p < 0.05), body surface area (p < 0.01) and LV measures (LV mass, LV posterior wall thickness and diastolic diameter of LV, all p < 0.05). Children with PP above median had tendency for greater LV mass (p = 0.06). There was no difference in severity of blood pressure and PP in children with/without LVH. However, in 45% of patients LVH was noted in whom the value of PP was greater than calculated normative value of PP (95 centile). HTN and LVH is common in children with CKD. A mean PP in children with CKD is lower when compared to adult population with CKD. The results confirm that PP increases with the age and an increasing PP has an influence on the changes of LV geometry. Assessment of PP in ABPM might help in identifying those with abnormal LV geometry.

  19. Effects of hypercapnia and arterial hypotension and hypertension on cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships.

    PubMed Central

    Avezaat, C J; van Eijndhoven, J H; Wyper, D J

    1980-01-01

    In twelve anaesthetised, ventilated dogs the effects of hypercapnia and pharmacologically induced arterial hypotension and hypertension on the interrelation between volume-pressure response (VPR) and cerebro-spinal fluid (CSF) pulse pressure were studied during continuous inflation of a supratentorial extradural balloon. Hypercapnia did not significantly affect the intracranial volume-pressure relationships, but did cause a significant increase in gradient of the relationship between CSF pulse pressure and intracranial pressure (ICP). Alteration of the arterial blood pressure showed opposite effects on VPR and CSF pulse pressure. A decrease in VPR and an increase in pulse pressure were observed during arterial hypotension; the reverse was found during arterial hypertension. The discrepancy between the effects on VPR and CSF pulse pressure of the variables under study was explained by changes in the transient increase in cerebral blood volume per cardiac cycle. On the basis of the results of this study it will be possible, during clinical ICP monitoring, to interpret changes in the CSF pulse pressure to ICP ratio in terms of changes in intracranial volume-pressure relationships. PMID:7373319

  20. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    SciTech Connect

    Krastelev, E. G. Sedin, A. A.; Tugushev, V. I.

    2015-12-15

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.

  1. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    NASA Astrophysics Data System (ADS)

    Krastelev, E. G.; Sedin, A. A.; Tugushev, V. I.

    2015-12-01

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80-90 ns, and a pulse repetition rate of up to 16 Hz.

  2. [Pulse pressure as a prognostic indicator of organ damage in patients with essential hypertension].

    PubMed

    Jołda-Mydłowska, Beata; Kobusiak-Prokopowicz, Małgorzata; Sławuta, Agnieszka; Witkowska, Maria

    2004-05-01

    Pulse pressure (PP), defined as systolic blood pressure minus diastolic blood pressure, plays an important role as a risk factor for cardiovascular events. Pulse pressure is pulsatile component of blood pressure. A widened pulse pressure reflects increased stiffness of the large arteries. The aim of the study was to evaluate the association between pulse pressure and organ damage in essential hypertension. We examined 60 subjects, 34 women aged 59 +/- 13 years and 26 men aged 48 +/- 17 years with primary hypertension. In every subject we performed 24-hour automatic blood pressure measurement and echocardiography, abdominal ultrasonography, funduscopy, chest x-ray. We measured sodium potassium, creatinine level in serum and in urine, creatinine clearance and microalbuminuria. Pulse pressure is proportional to the stage of hypertension. A dimension of the aorta parallels with measures of blood pressure. The strong correlation between pulse pressure and damage in funduscopy can indicate, that complication in fundus of the eye are dependent more than the level of a pressure. The significantly higher sodium level in serum and the positive correlation between natremia, natriuresis and pulse pressure proves the role of natrium in pathophysiology of hypertension.

  3. Pulsed, atmospheric pressure plasma source for emission spectrometry

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  4. Ultrasonic Power Output Measurement by Pulsed Radiation Pressure.

    PubMed

    Fick, Steven E; Breckenridge, Franklin R

    1996-01-01

    Direct measurements of time-averaged spatially integrated output power radiated into reflectionless water loads can be made with high accuracy using techniques which exploit the radiation pressure exerted by sound on all objects in its path. With an absorptive target arranged to intercept the entirety of an ultrasound beam, total beam power can be determined as accurately as the radiation force induced on the target can be measured in isolation from confounding forces due to buoyancy, streaming, surface tension, and vibration. Pulse modulation of the incident ultrasound at a frequency well above those characteristics of confounding phenomena provides the desired isolation and other significant advantages in the operation of the radiation force balance (RFB) constructed in 1974. Equipped with purpose-built transducers and electronics, the RFB is adjusted to equate the radiation force and a counterforce generated by an actuator calibrated against reference masses using direct current as the transfer variable. Improvements made during its one overhaul in 1988 have nearly halved its overall measurement uncertainty and extended the capabilities of the RFB to include measuring the output of ultrasonic systems with arbitrary pulse waveforms.

  5. Ultrasonic Power Output Measurement by Pulsed Radiation Pressure

    PubMed Central

    Fick, Steven E.; Breckenridge, Franklin R.

    1996-01-01

    Direct measurements of time-averaged spatially integrated output power radiated into reflectionless water loads can be made with high accuracy using techniques which exploit the radiation pressure exerted by sound on all objects in its path. With an absorptive target arranged to intercept the entirety of an ultrasound beam, total beam power can be determined as accurately as the radiation force induced on the target can be measured in isolation from confounding forces due to buoyancy, streaming, surface tension, and vibration. Pulse modulation of the incident ultrasound at a frequency well above those characteristics of confounding phenomena provides the desired isolation and other significant advantages in the operation of the radiation force balance (RFB) constructed in 1974. Equipped with purpose-built transducers and electronics, the RFB is adjusted to equate the radiation force and a counterforce generated by an actuator calibrated against reference masses using direct current as the transfer variable. Improvements made during its one overhaul in 1988 have nearly halved its overall measurement uncertainty and extended the capabilities of the RFB to include measuring the output of ultrasonic systems with arbitrary pulse waveforms. PMID:27805084

  6. Impact of body tilt on the central aortic pressure pulse.

    PubMed

    Rotaru, Corina; Liaudet, Lucas; Waeber, Bernard; Feihl, François

    2015-04-01

    The present work was undertaken to investigate, in young healthy volunteers, the relationships between the forward propagation times of arterial pressure waves and the timing of reflected waves observable on the aortic pulse, in the course of rapid changes in body position. 20 young healthy subjects, 10 men, and 10 women, were examined on a tilt table at two different tilt angles, -10° (Head-down) and + 45° (Head-up). In each position, carotid-femoral (Tcf) and carotid-tibial forward propagation times (Tct) were measured with the Complior device. In each position also, the central aortic pressure pulse was recorded with radial tonometry, using the SphygmoCor device and a generalized transfer function, so as to evaluate the timing of reflected waves reaching the aorta in systole (onset of systolic reflected wave, sT1r) and diastole (mean transit time of diastolic reflected wave, dMTT). The position shift from Head-up to Head-down caused a massive increase in both Tct (women from 130 ± 10 to 185 ± 18 msec P < 0.001, men from 136 ± 9 to 204 ± 18 msec P < 0.001) and dMTT (women from 364 ± 35 to 499 ± 33 msec P < 0.001, men from 406 ± 22 to 553 ± 21 msec P < 0.001). Mixed model regression showed that the changes in Tct and dMTT observed between Head-up and Head-down were tightly coupled (regression coefficient 2.1, 95% confidence interval 1.9-2.3, P < 0.001). These results strongly suggest that the diastolic waves observed on central aortic pulses reconstructed from radial tonometric correspond at least in part to reflections generated in the lower limbs.

  7. INTERACTION OF RADIATION WITH MATTER. LASER PLASMA: Increase in the amplitude of hf currents during exposure of a neutral target to microsecond CO2 laser pulses

    NASA Astrophysics Data System (ADS)

    Antipov, A. A.; Losev, Leonid L.; Meshalkin, E. A.

    1988-09-01

    High-frequency electric currents were generated by irradiation of a metal target with CO2 laser pulses. It was found that the region where the ambient gas was photoionized had a decisive influence on the hf current amplitude. A method for increasing the amplitude of the current by creating an auxiliary laser jet on the target was proposed and used. An hf current of up to 1 A amplitude was observed at a frequency of 75 MHz and this current lasted for 1.5 μs.

  8. Effects of flow amplitudes on intraprong pressures during bubble versus ventilator-generated nasal continuous positive airway pressure in premature infants.

    PubMed

    Kahn, Doron J; Habib, Robert H; Courtney, Sherry E

    2008-11-01

    The goal were to characterize the flow dependence of bubble nasal continuous positive airway pressure delivery in a cohort of preterm infants and to compare the actual (delivered) intraprong continuous positive airway pressure with the intended (set) nasal continuous positive airway pressure for both ventilator-generated nasal continuous positive airway pressure and bubble nasal continuous positive airway pressure delivery. A range of set values and constant flow rates were studied in the same preterm infants. For 12 premature infants of <1500 g (birth weight: 1140 +/- 267 g; gestational age: 28.5 +/- 1.9 weeks; study age: 12.9 +/- 8 days; all mean +/- SD), intraprong pressures were measured at 3 increasing flow settings, repeated for set nasal continuous positive airway pressures (or desired immersion depths) of 4 and 6 cm H(2)O. Next, intraprong pressures were measured at bubble nasal continuous positive airway pressure expiratory tubing submersion depths and ventilator-generated nasal continuous positive airway pressure set expiratory pressures of 2, 3, 4, 5, and 7 cm H(2)O while the flow rate was held constant. Actual (delivered) intraprong pressure during bubble nasal continuous positive airway pressure delivery was highly flow dependent and increased as the flow rate increased. During ventilator-generated nasal continuous positive airway pressure delivery, actual pressure at the nasal prongs closely approximated the pressure set at the ventilator. During bubble nasal continuous positive airway pressure delivery at constant flow rate, the average delivered prong pressure was 1.3 cm H(2)O (range: 0.5-2.2 cm H(2)O) higher than that set through submersion of the expiratory tubing, and the relative difference between the set and actual pressures increased at lesser immersion depths. Prong pressure during bubble nasal continuous positive airway pressure delivery is highly variable and depends on the interaction of submersion depth and flow amplitudes.

  9. Pulse pressure can predict mortality in advanced heart failure.

    PubMed

    Ferreira, Ana Rita; Mendes, Sofia; Leite, Luís; Monteiro, Sílvia; Pego, Mariano

    2016-04-01

    Pulse pressure (PP) is the difference between systolic and diastolic blood pressure (BP). PP rises markedly after the fifth decade of life. High PP is a risk factor for the development of coronary heart disease and heart failure. The aim of this study was to assess whether PP can be used as a prognostic marker in advanced heart failure. We retrospectively studied patients in NYHA class III-IV who were hospitalized in a single heart failure unit between January 2003 and August 2012. Demographic characteristics, laboratory tests, and cardiovascular risk factors were recorded. PP was calculated as the difference between systolic and diastolic BP at admission, and the patients were divided into two groups (group 1: PP >40 mmHg and group 2: PP ≤40 mmHg). Median follow-up was 666 ± 50 days for the occurrence of cardiovascular death and heart transplantation. During follow-up 914 patients in NYHA class III-IV were hospitalized, 520 in group 1 and 394 in group 2. The most important difference between the groups was in left ventricular dysfunction, which was greater in patients with lower PP. On Kaplan-Meier analysis, group 2 had higher mortality (38 vs. 24 patients, log-rank p=0.002). PP is easily calculated, and enables prediction of cardiovascular death in patients with advanced heart failure. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  10. Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells

    PubMed Central

    Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.

    2014-01-01

    The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction. PMID:24458018

  11. Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells

    NASA Astrophysics Data System (ADS)

    Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.

    2014-01-01

    The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction.

  12. Upper Extremity Pulse Pressure Predicts Amputation-Free Survival after Lower Extremity Bypass.

    PubMed

    Wise, Eric S; Wergin, Justine E; Mace, Eric H; Kallos, Justiss A; Muhlestein, Whitney E; Shelburne, Nicholas J; Hocking, Kyle M; Brophy, Colleen M; Guzman, Raul J

    2017-07-01

    Increased pulse pressure reflects pathologic arterial stiffening and predicts cardiovascular events and mortality. The effect of pulse pressure on outcomes in lower extremity bypass patients remains unknown. We thus investigated whether preoperative pulse pressure could predict amputation-free survival in patients undergoing lower extremity bypass for atherosclerotic occlusive disease. An institutional database identified 240 included patients undergoing lower extremity bypass from 2005 to 2014. Preoperative demographics, cardiovascular risk factors, operative factors, and systolic and diastolic blood pressures were recorded, and compared between patients with pulse pressures above and below 80 mm Hg. Factors were analyzed in bi- and multivariable models to assess independent predictors of amputation-free survival. Kaplan-Meier analysis was performed to evaluate the temporal effect of pulse pressure ≥80 mm Hg on amputation-free survival. Patients with a pulse pressure ≥80 mm Hg were older, male, and had higher systolic and lower diastolic pressures. Patients with pulse pressure <80 mm Hg demonstrated a survival advantage on Kaplan-Meier analysis at six months (log-rank P = 0.003) and one year (P = 0.005) postoperatively. In multivariable analysis, independent risk factors for decreased amputation-free survival at six months included nonwhite race, tissue loss, infrapopliteal target, and preoperative pulse pressure ≥80 mm Hg (hazard ratio 2.60; P = 0.02), while only tissue loss and pulse pressure ≥80 mm Hg (hazard ratio 2.30, P = 0.02) remained predictive at one year. Increased pulse pressure is independently associated with decreased amputation-free survival in patients undergoing lower extremity bypass. Further efforts to understand the relationship between increased arterial stiffness and poor outcomes in these patients are needed.

  13. Neural network burst pressure prediction in impact damaged Kevlar/epoxy bottles from acoustic emission amplitude data

    SciTech Connect

    Walker, J.L.; Workman, G.L.; Russell, S.S.

    1994-12-31

    Acoustic emission (AE) signal analysis has been used to measure the effect of impact damage on the burst pressure of 5.75 inch diameter filament wound Kevlar/epoxy pressure vessels. A calibrated dead weight drop fixture, featuring both sharp and blunt hemispherical impact tups, generated impact damages with energies up to twenty ft-lb{sub f} in the mid hoop region of each vessel. Burst pressures were obtained by hydrostatically testing twenty-seven damaged and undamaged bottles, eleven of which were filled with inert propellant to simulate a rocket motor. Burst pressure prediction models were developed by correlating the differential AE amplitude distributions, Generated during the first pressure ramp to 25% of the expected burst pressure for the undamaged vessels, to known burst pressures using back propagation neural networks. Independent networks were created for the inert propellant filled vessels and the unfilled vessels using a small subset of each during the training phases. The remaining bottles served as the test sets. The eleven filled vessels had an average prediction error of 5.6%, while the unfilled bottles averaged 5.4%. Both of these results were within the 95% prediction interval, but a portion of the vessel burst pressure errors were greater than the {+-}5% worst case error obtained in previous work. in conclusion, the AE amplitude distribution data collected at low proof loads provided a suitable input for neural network burst pressure prediction in damaged and undamaged Kevlar/epoxy bottles. This included pressure vessels both with and without propellant backing. Work is ongoing to decrease the magnitude of the prediction error through network restructuring.

  14. Arsenic toxicity in the water weed Wolffia arrhiza measured using Pulse Amplitude Modulation Fluorometry (PAM) measurements of photosynthesis.

    PubMed

    Ritchie, Raymond J; Mekjinda, Nutsara

    2016-10-01

    Accumulation of arsenic in plants is a serious South-east Asian environmental problem. Photosynthesis in the small aquatic angiosperm Wolffia arrhiza is very sensitive to arsenic toxicity, particularly in water below pH 7 where arsenite (As (OH)3) (AsIII) is the dominant form; at pH >7 AsO4(2-) (As(V) predominates). A blue-diode PAM (Pulse Amplitude Fluorometer) machine was used to monitor photosynthesis in Wolffia. Maximum gross photosynthesis (Pgmax) and not maximum yield (Ymax) is the most reliable indicator of arsenic toxicity. The toxicity of arsenite As(III) and arsenate (H2AsO4(2-)) As(V) vary with pH. As(V) was less toxic than As(III) at both pH 5 and pH 8 but both forms of arsenic were toxic (>90% inhibition) at below 0.1molm(-3) when incubated in arsenic for 24h. Arsenite toxicity was apparent after 1h based on Pgmax and gradually increased over 7h but there was no apparent effect on Ymax or photosynthetic efficiency (α0).

  15. Extremum seeking to control the amplitude and frequency of a pulsed jet for bluff body drag reduction

    NASA Astrophysics Data System (ADS)

    Brackston, Rowan D.; Wynn, Andrew; Morrison, Jonathan F.

    2016-10-01

    Feedback control of fluid flows presents a challenging problem due to nonlinear dynamics and unknown optimal operating conditions. Extremum seeking control presents a suitable method for many flow control situations but involves its own challenges. In this paper, we provide a brief analysis of the extremum seeking method, with attention to modifications that we find to be advantageous. In particular, we present an adaptation for optimisation of the frequency of a harmonic input signal, a common scenario for open-loop flow control systems. We then present results from the experimental implementation of our modified method to the open-loop control system of Oxlade et al. (J Fluid Mech 770:305-318, 2015), an axisymmetric bluff-body wake, forced by a pulsed jet. We find that the system is able to achieve optimal operating conditions in both the amplitude and frequency of the harmonic input signal, and is able to largely reject the disturbances arising from measurements of a highly turbulent flow. We finally show the ability of the extremum seeking system to adapt to changing conditions.

  16. Accurate control of optoelectronic amplitude to phase noise conversion in photodetection of ultra-fast optical pulses.

    PubMed

    Bouchand, Romain; Nicolodi, Daniele; Xie, Xiaopeng; Alexandre, Christophe; Le Coq, Yann

    2017-05-29

    When illuminating a photodiode with modulated laser light, optical intensity fluctuations of the incident beam are converted into phase fluctuations of the output electrical signal. This amplitude to phase noise conversion (APC) thus imposes a stringent constraint on the relative intensity noise (RIN) of the laser carrier when dealing with ultra-low phase noise microwave generation. Although the APC vanishes under certain conditions, it exhibits random fluctuations preventing efficient long-term passive stabilization schemes. In this paper, we present a digital coherent modulation-demodulation system for automatic measurement and control of the APC of a photodetector. The system is demonstrated in the detection of ultra-short optical pulses with an InGaAs photodetector and enables stable generation of ultra-low phase noise microwave signals with RIN rejection beyond 50 dB. This simple system can be used in various optoelectronic schemes, making photodetection virtually insensitive to the RIN of the lasers. We utilize this system to investigate the impact of the radiofrequency (RF) transmission line at the output of the photodetector on the APC coefficient that can affect the accuracy of the measurement in certain cases.

  17. PULSE AMPLITUDE DEPENDS ON kHz QPO FREQUENCY IN THE ACCRETING MILLISECOND PULSAR SAX J1808.4-3658

    SciTech Connect

    Bult, Peter; Van der Klis, Michiel

    2015-01-10

    We study the relation between the 300-700 Hz upper kHz quasi-periodic oscillation (QPO) and the 401 Hz coherent pulsations across all outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658 observed with the Rossi X-ray Timing Explorer. We find that the pulse amplitude systematically changes by a factor of ∼2 when the upper kHz QPO frequency passes through 401 Hz: it halves when the QPO moves to above the spin frequency and doubles again on the way back. This establishes for the first time the existence of a direct effect of kHz QPOs on the millisecond pulsations and provides a new clue to the origin of the upper kHz QPO. We discuss several scenarios and conclude that while more complex explanations can not formally be excluded, our result strongly suggests that the QPO is produced by azimuthal motion at the inner edge of the accretion disk, most likely orbital motion. Depending on whether this azimuthal motion is faster or slower than the spin, the plasma then interacts differently with the neutron-star magnetic field. The most straightforward interpretation involves magnetospheric centrifugal inhibition of the accretion flow that sets in when the upper kHz QPO becomes slower than the spin.

  18. Surface pressure distributions on a delta wing undergoing large amplitude pitching oscillations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, Scott A.

    1989-01-01

    Wind tunnel experiments were performed on a 70 deg sweep delta wing to determine the effect of a sinusoidal pitching motion on the pressure field on the suction side of the wing. Twelve pressure taps were placed from 35 to 90 percent of the chord, at 60 percent of the local semi-span. Pressure coefficients were measured as a function of Reynolds number and pitch rate. The pressure coefficient was seen to vary at approximately the same frequency as the pitching frequency. The relative pressure variation at each chord location was comparable for each case. The average pressure distribution through each periodic motion was near the static distribution for the average angle of attack. Upon comparing the upstroke and downstroke pressures for a specific angle of attack, the downstroke pressures were slightly larger. Vortex breakdown was seen to have the most significant effect at the 40 to 45 percent chord location, where a decrease in pressure was apparent.

  19. Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure.

    PubMed

    Aries, Marcel J H; Czosnyka, Marek; Budohoski, Karol P; Kolias, Angelos G; Radolovich, Danila K; Lavinio, Andrea; Pickard, John D; Smielewski, Peter

    2012-08-01

    Guidelines for the management of traumatic brain injury (TBI) call for the development of accurate methods for assessment of the relationship between cerebral perfusion pressure (CPP) and cerebral autoregulation and to determine the influence of quantitative indices of pressure autoregulation on outcome. We investigated the relationship between slow fluctuations of arterial blood pressure (ABP) and intracranial pressure (ICP) pulse amplitude (an index called PAx) using a moving correlation technique to reflect the state of cerebral vasoreactivity and compared it to the index of pressure reactivity (PRx) as a moving correlation coefficient between averaged values of ABP and ICP. A retrospective analysis of prospective 327 TBI patients (admitted on neurocritical care unit of a university hospital in the period 2003-2009) with continuous ABP and ICP monitoring. PAx was worse in patients who died compared to those who survived (-0.04 ± 0.15 vs. -0.16 ± 0.15, χ2 = 28, p < 0.001). In contrast to PRx, PAx was able to differentiate between fatal and non-fatal outcome in a group of 120 patients with ICP levels below 15 mmHg (-0.04 ± 0.16 vs. -0.14 ± 0.16, χ2 = 6, p = 0.01). PAx is a new modified index of cerebrovascular reactivity which performs equally well as established PRx in long-term monitoring in severe TBI patients, but importantly is potentially more robust at lower values of ICP. In view of establishing an autoregulation-oriented CPP therapy, continuous determination of PAx is feasible but its value has to be evaluated in a prospective controlled trail.

  20. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    PubMed

    Wain, Louise V; Verwoert, Germaine C; O'Reilly, Paul F; Shi, Gang; Johnson, Toby; Johnson, Andrew D; Bochud, Murielle; Rice, Kenneth M; Henneman, Peter; Smith, Albert V; Ehret, Georg B; Amin, Najaf; Larson, Martin G; Mooser, Vincent; Hadley, David; Dörr, Marcus; Bis, Joshua C; Aspelund, Thor; Esko, Tõnu; Janssens, A Cecile J W; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian'an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U; Webster, Rebecca J; Zhang, Feng; Peden, John F; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hottenga, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I; Trompet, Stella; Bragg-Gresham, Jennifer L; Alizadeh, Behrooz Z; Chambers, John C; Guo, Xiuqing; Lehtimäki, Terho; Kühnel, Brigitte; Lopez, Lorna M; Polašek, Ozren; Boban, Mladen; Nelson, Christopher P; Morrison, Alanna C; Pihur, Vasyl; Ganesh, Santhi K; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco U S; Rivadeneira, Fernando; Sijbrands, Eric J G; Uitterlinden, Andre G; Hwang, Shih-Jen; Vasan, Ramachandran S; Wang, Thomas J; Bergmann, Sven; Vollenweider, Peter; Waeber, Gérard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Glazer, Nicole L; Taylor, Kent D; Harris, Tamara B; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Inês; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sõber, Siim; Lu, Xiaowen; Nolte, Ilja M; Penninx, Brenda W; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F; Melander, Olle; O'Donnell, Christopher J; Salomaa, Veikko; d'Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, Fabiola M; Facheris, Maurizio; Collins, Francis S; Bergman, Richard N; Beilby, John P; Hung, Joseph; Musk, A William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S; Navarro, Pau; Wild, Sarah H; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco J C; Willemsen, Gonneke; Parker, Alex N; Rose, Lynda M; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L; Kähönen, Mika; Viikari, Jorma; Döring, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H; Hoen, Peter A C 't; König, Inke R; Felix, Janine F; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Breteler, Monique; Debette, Stéphanie; Destefano, Anita L; Fornage, Myriam; Mitchell, Gary F; Smith, Nicholas L; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J; Wichmann, H-Erich; Raitakari, Olli T; Palmas, Walter; Kooner, Jaspal S; Stolk, Ronald P; Jukema, J Wouter; Wright, Alan F; Boomsma, Dorret I; Bandinelli, Stefania; Gyllensten, Ulf B; Wilson, James F; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D; Palmer, Lyle J; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth J F; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J; Oostra, Ben A; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P; Beckmann, Jacques S; Witteman, Jacqueline C M; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B; Psaty, Bruce M; Caulfield, Mark J; Rao, Dabeeru C; Tobin, Martin D; Elliott, Paul; van Duijn, Cornelia M

    2011-09-11

    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP.

  1. Risk Associated with Pulse Pressure on Out-of-Office Blood Pressure Measurement

    PubMed Central

    Gu, Yu-Mei; Aparicio, Lucas S.; Liu, Yan-Ping; Asayama, Kei; Hansen, Tine W.; Niiranen, Teemu J.; Boggia, José; Thijs, Lutgarde; Staessen, Jan A.

    2014-01-01

    Background Longitudinal studies have demonstrated that the risk of cardiovascular disease increases with pulse pressure (PP). However, PP remains an elusive cardiovascular risk factor with findings being inconsistent between studies. The 2013 ESH/ESC guideline proposed that PP is useful in stratification and suggested a threshold of 60 mm Hg, which is 10 mm Hg higher compared to that in the 2007 guideline; however, no justification for this increase was provided. Methodology Published thresholds of PP are based on office blood pressure measurement and often on arbitrary categorical analyses. In the International Database on Ambulatory blood pressure in relation to Cardiovascular Outcomes (IDACO) and the International Database on HOme blood pressure in relation to Cardiovascular Outcome (IDHOCO), we determined outcome-driven thresholds for PP based on ambulatory or home blood pressure measurement, respectively. Results The main findings were that for people aged <60 years, PP did not refine risk stratification, whereas in older people the thresholds were 64 and 76 mm Hg for the ambulatory and home PP, respectively. However, PP provided little added predictive value over and beyond classical risk factors. PMID:26587443

  2. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    PubMed Central

    Wain, Louise V; Verwoert, Germaine C; O’Reilly, Paul F; Shi, Gang; Johnson, Toby; Johnson, Andrew D; Bochud, Murielle; Rice, Kenneth M; Henneman, Peter; Smith, Albert V; Ehret, Georg B; Amin, Najaf; Larson, Martin G; Mooser, Vincent; Hadley, David; Dörr, Marcus; Bis, Joshua C; Aspelund, Thor; Esko, Tõnu; Janssens, A Cecile JW; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian’an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U; Webster, Rebecca J; Zhang, Feng; Peden, John F; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hotteng, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I; Trompet, Stella; Bragg-Gresham, Jennifer L; Alizadeh, Behrooz Z; Chambers, John C; Guo, Xiuqing; Lehtimäki, Terho; Kühnel, Brigitte; Lopez, Lorna M; Polašek, Ozren; Boban, Mladen; Nelson, Christopher P; Morrison, Alanna C; Pihur, Vasyl; Ganesh, Santhi K; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco US; Rivadeneira, Fernando; Sijbrands, Eric JG; Uitterlinden, Andre G; Hwang, Shih-Jen; Vasan, Ramachandran S; Wang, Thomas J; Bergmann, Sven; Vollenweider, Peter; Waeber, Gérard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Glazer, Nicole L; Taylor, Kent D; Harris, Tamara B; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Inês; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sõber, Siim; Lu, Xiaowen; Nolte, Ilja M; Penninx, Brenda W; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F; Melander, Olle; O’Donnell, Christopher J; Salomaa, Veikko; d’Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, M Fabiola; Facheris, Maurizio; Collins, Francis S; Bergman, Richard N; Beilby, John P; Hung, Joseph; Musk, A William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S; Navarro, Pau; Wild, Sarah H; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco JC; Willemsen, Gonneke; Parker, Alex N; Rose, Lynda M; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L; Kähönen, Mika; Viikari, Jorma; Döring, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H; ’t Hoen, Peter AC; König, Inke R; Felix, Janine F; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Breteler, Monique; Debette, Stéphanie; DeStefano, Anita L; Fornage, Myriam; Mitchell, Gary F; Smith, Nicholas L; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J; Wichmann, H-Erich; Raitakari, Olli T; Palmas, Walter; Kooner, Jaspal S; Stolk, Ronald P; Jukema, J Wouter; Wright, Alan F; Boomsma, Dorret I; Bandinelli, Stefania; Gyllensten, Ulf B; Wilson, James F; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D; Palmer, Lyle J; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth JF; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J; Oostra, Ben A; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P; Beckmann, Jacques S; Witteman, Jacqueline CM; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B; Psaty, Bruce M; Caulfield, Mark J; Rao, Dabeeru C

    2012-01-01

    Numerous genetic loci influence systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans 1-3. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N=74,064) and follow-up studies (N=48,607), we identified at genome-wide significance (P= 2.7×10-8 to P=2.3×10-13) four novel PP loci (at 4q12 near CHIC2/PDGFRAI, 7q22.3 near PIK3CG, 8q24.12 in NOV, 11q24.3 near ADAMTS-8), two novel MAP loci (3p21.31 in MAP4, 10q25.3 near ADRB1) and one locus associated with both traits (2q24.3 near FIGN) which has recently been associated with SBP in east Asians. For three of the novel PP signals, the estimated effect for SBP was opposite to that for DBP, in contrast to the majority of common SBP- and DBP-associated variants which show concordant effects on both traits. These findings indicate novel genetic mechanisms underlying blood pressure variation, including pathways that may differentially influence SBP and DBP. PMID:21909110

  3. Influence of gas pressure on electron beam emission current of pulsed cathodic-arc-based forevacuum plasma electron source

    NASA Astrophysics Data System (ADS)

    Burdovitsin, Victor A.; Kazakov, Andrey V.; Medovnik, Alexander V.; Oks, Efim M.

    2017-09-01

    We describe our experimental investigation of the effect of background gas pressure on the emission parameters of a pulsed cathodic-arc-based forevacuum-pressure plasma-cathode electron source. We find that increased gas pressure over the range 4-16 Pa significantly reduces the beam current rise-time and significantly increases the emission current amplitude. For example, at a discharge current of 20 A, increasing the working gas pressure from 4 Pa to 16 Pa increases the emission current from 8 A to 18 A and shortens the beam rise-time from 50 μs to 20 μs. This influence of gas pressure on the electron beam parameters can be explained by the effect of arc discharge current switching from the anode to emission. In our case, the current switching effect is caused by increased working gas pressure. In the forevacuum pressure range, the increase of the electron emission current with the growth of gas pressure is due to a rise in the emission plasma potential which is caused by ion back-streaming from the plasma formed in the electron beam transport region. A model describing the influence of gas pressure on the electron emission from the plasma is presented.

  4. Sarcopenia Is Associated with High Pulse Pressure in Older Women

    PubMed Central

    Coelho Júnior, Hélio José; Aguiar, Samuel da Silva; Gonçalves, Ivan de Oliveira; Sampaio, Ricardo Aurélio Carvalho; Uchida, Marco Carlos; Moraes, Milton Rocha; Asano, Ricardo Yukio

    2015-01-01

    Introduction. Sarcopenia is a geriatric syndrome associated with impairment of muscle function, metabolism, and cognition in older women. Recent studies have shown a relationship between changes in muscle mass and the cardiovascular system. However, this relationship has not been fully elucidated. Methods. One hundred and thirty community-dwelling Brazilian older women (65.4 ± 6.3 years) were recruited to participate in this study. Data on body composition (via bioelectrical impedance measurements), cardiovascular parameters (using an automatic and noninvasive monitor), and muscle function (using a 3-meter gait speed test) were measured. Results. Sarcopenic older women (n = 43) presented higher levels of pulse pressure (PP) (60.3 ± 2.6 mmHg) and lower muscle function (0.5 ± 0.0 m/s) compared with nonsarcopenic subjects (n = 87) (53.7 ± 1.5 mmHg; 0.9 ± 0.0 m/s) (P < 0.05). Linear regression analysis demonstrated a significantly negative association between skeletal muscle index (SMI) and PP levels (β = −226, P < 0.05). Furthermore, sarcopenic older women showed a 3.1-fold increased risk of having higher PP levels compared with nonsarcopenic women (IC = 1.323–7.506) (P < 0.05). Conclusion. Sarcopenic older women showed lower muscle function and higher cardiovascular risk due to increased PP levels compared with nonsarcopenic subjects. PMID:26346157

  5. Pulsed laser kinetic studies of liquids under high pressure

    NASA Astrophysics Data System (ADS)

    Eyring, E. M.

    1993-06-01

    Experiments have been developed for measuring the rates of chemical reactions liquids and in supercritical CO2. A pulsed (Q-switch) Nd:YAG laser at 355 nm was the pump beam for laser flash photolysis studies of molybdenum and tungsten hexacarbonyls undergoing ligand displacement reactions by bidentate chelating agents such as 2,2'-bipyridine in toluene. Experiments were carried out at 0.1 to 150 MPa. In the case of molybdenum complexes, the reaction mechanism for thermal ring closure is found from activation volumes to change from associative interchange to dissociative interchange as substituents on the 2,2'-bipyridine ligands become bulkier. In a similar study of more rigid, substituted phenanthroline bidentate ligands it was found that substituent bulkiness had little effect on the thermal ring closure mechanism. Similar high pressure flash photolysis experiments with tungsten hexacarbonyl have also been completed. The concentration dependence of the fluorescence and nonradiative decay quantum yields for cresyl violet in several solvents has been reported as well as stability constants for the complexation of lithium ion by four different crown ethers dissolved in a room temperature molten salt.

  6. [Pulse pressure and mean pressure: physiopathology and predictive value of coronary events and ictus].

    PubMed

    Verdecchia, P

    2001-11-01

    Increased pulse pressure (PP) reflects an increased stiffness of aorta and other large elastic arteries. These arteries dilate by about 10% during systole and contract owing to elastic return during diastole. As a result, blood flow towards periphery becomes less pulsatile and more continuous. An increased stiffness of aorta and large elastic arteries due to progressively reduced elastic content with aging (atherosclerotic processes) leads to increased systolic blood pressure (BP), because of their reduced distension during systole, and decreased diastolic BP due to their reduced blood content at the beginning of diastole. Several epidemiological studies have shown that PP is the BP component which most closely predicts cardiovascular risk, particularly over 55 years of age. In particular, increased PP is an important predictor of coronary events, while increased mean BP is a more specific predictor of cerebrovascular events.

  7. Acute Effects of Continuous Positive Air way Pressure on Pulse Pressure in Chronic Heart Failure

    PubMed Central

    Quintão, Mônica; Chermont, Sérgio; Marchese, Luana; Brandão, Lúcia; Bernardez, Sabrina Pereira; Mesquita, Evandro Tinoco; Rocha, Nazareth de Novaes; Nóbrega, Antônio Claudio L.

    2014-01-01

    Background Patients with heart failure (HF) have left ventricular dysfunction and reduced mean arterial pressure (MAP). Increased adrenergic drive causes vasoconstriction and vessel resistance maintaining MAP, while increasing peripheral vascular resistance and conduit vessel stiffness. Increased pulse pressure (PP) reflects a complex interaction of the heart with the arterial and venous systems. Increased PP is an important risk marker in patients with chronic HF (CHF). Non-invasive ventilation (NIV) has been used for acute decompensated HF, to improve congestion and ventilation through both respiratory and hemodynamic effects. However, none of these studies have reported the effect of NIV on PP. Objective The objective of this study was to determine the acute effects of NIV with CPAP on PP in outpatients with CHF. Methods Following a double-blind, randomized, cross-over, and placebo-controlled protocol, twenty three patients with CHF (17 males; 60 ± 11 years; BMI 29 ± 5 kg/cm2, NYHA class II, III) underwent CPAP via nasal mask for 30 min in a recumbent position. Mask pressure was 6 cmH2O, whereas placebo was fixed at 0-1 cmH2O. PP and other non invasive hemodynamics variables were assessed before, during and after placebo and CPAP mode. Results CPAP decreased resting heart rate (Pre: 72 ± 9; vs. Post 5 min: 67 ± 10 bpm; p < 0.01) and MAP (CPAP: 87 ± 11; vs. control 96 ± 11 mmHg; p < 0.05 post 5 min). CPAP decreased PP (CPAP: 47 ± 20 pre to 38 ± 19 mmHg post; vs. control: 42 ± 12 mmHg, pre to 41 ± 18 post p < 0.05 post 5 min). Conclusion NIV with CPAP decreased pulse pressure in patients with stable CHF. Future clinical trials should investigate whether this effect is associated with improved clinical outcome. PMID:24676373

  8. Acute effects of continuous positive air way pressure on pulse pressure in chronic heart failure.

    PubMed

    Quintão, Mônica; Chermont, Sérgio; Marchese, Luana; Brandão, Lúcia; Bernardez, Sabrina Pereira; Mesquita, Evandro Tinoco; Novaes Rocha, Nazareth de; Nóbrega, Antônio Claudio L

    2014-02-01

    Patients with heart failure (HF) have left ventricular dysfunction and reduced mean arterial pressure (MAP). Increased adrenergic drive causes vasoconstriction and vessel resistance maintaining MAP, while increasing peripheral vascular resistance and conduit vessel stiffness. Increased pulse pressure (PP) reflects a complex interaction of the heart with the arterial and venous systems. Increased PP is an important risk marker in patients with chronic HF (CHF). Non-invasive ventilation (NIV) has been used for acute decompensated HF, to improve congestion and ventilation through both respiratory and hemodynamic effects. However, none of these studies have reported the effect of NIV on PP. The objective of this study was to determine the acute effects of NIV with CPAP on PP in outpatients with CHF. Following a double-blind, randomized, cross-over, and placebo-controlled protocol, twenty three patients with CHF (17 males; 60±11 years; BMI 29±5 kg/cm2, NYHA class II, III) underwent CPAP via nasal mask for 30 min in a recumbent position. Mask pressure was 6 cmH2O, whereas placebo was fixed at 0-1 cmH2O. PP and other non invasive hemodynamics variables were assessed before, during and after placebo and CPAP mode. CPAP decreased resting heart rate (Pre: 72±9; vs. Post 5 min: 67±10 bpm; p<0.01) and MAP (CPAP: 87±11; vs. control 96±11 mmHg; p<0.05 post 5 min). CPAP decreased PP (CPAP: 47±20 pre to 38±19 mmHg post; vs. control: 42±12 mmHg, pre to 41±18 post p<0.05 post 5 min). NIV with CPAP decreased pulse pressure in patients with stable CHF. Future clinical trials should investigate whether this effect is associated with improved clinical outcome.

  9. Prediction of systolic blood pressure using peripheral pulse palpation in cats.

    PubMed

    Reineke, Erica L; Rees, Colleen; Drobatz, Kenneth J

    2016-01-01

    To evaluate the ability of peripheral pulse palpation to predict systolic blood pressure (SBP) in cats presenting as emergencies. Prospective observational study performed over an 8-month period. University veterinary teaching hospital. One hundred two cats presenting to the emergency service. Eligibility for inclusion in the study included a physical examination and a SBP via Doppler technique performed prior to treatment. None. Femoral and metatarsal pulses were digitally palpated and the quality of the pulses was assessed as either strong, moderate, poor, or absent. A concurrent SBP was also recorded. The median SBP for all cats was 92.5 mm Hg (range, 30-240 mm Hg). Femoral pulse quality was found to strongly correlate with the admission SBP (P < 0.001, rho = 0.6755). The median SBP for each femoral pulse quality category (strong, moderate, poor, or absent) was significantly different (P < 0.05). For metatarsal pulses, the median SBP for cats with either absent or strong pulses was significantly different (P < 0.001). Cats with absent metatarsal and femoral pulses had a median SBP of 30 mm Hg (range, 30-105 mm Hg), whereas cats with strong metatarsal pulses had a median SBP of 135 mm Hg (range, 58-210 mm Hg). Absent metatarsal pulses correctly identified cats with a blood pressure of 75 mm Hg or less 84% the time (area under the curve: 0.89, confidence interval 0.81, 0.97). In cats, peripheral pulse quality assessment by emergency room veterinarians correlates with SBP. With progressive decreases in blood pressure, metatarsal pulses will disappear and it is only with severe hypotension that femoral pulses are absent. An assessment of both dorsal metatarsal pulse and femoral pulse quality during triage may be useful in identifying abnormalities in blood pressure. © Veterinary Emergency and Critical Care Society 2015.

  10. Characterization of 350 HZ thermoacoustic driven orifice pulse tube refrigerator with measurements of the phase of the mass flow and pressure

    SciTech Connect

    Godshalk, K.M.; Jin, C.; Kwong, Y.K.

    1996-12-31

    The world`s first 350 Hz thermoacoustic driven orifice pulse tube refrigerator (TADOPTR) has been designed and built by Tektronix, Inc., in cooperation with Los Alamos National Laboratories (LANL) and the National Institute of Standards and Technology (NIST). This highly instrumented system includes hot wire anemometers and pressure sensors for measuring the phase of the mass flow and pressure at all key locations in the TADOPTR, permitting for the first time detailed comparison to analytical models developed by LANL and NIST. Characterization results for velocity and pressure phase, pressure amplitude, and enthalpy flow show good agreement with the simulations. The authors have also demonstrated a new design method that uses the inertance of the pulse tube at 350 Hz to achieve the desired phase between the mass flow and pressure, rather than the usual double inlet design. The authors have designed and characterized single stage and two stage 350 Hz TADOPTRs.

  11. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  12. Pulse-pressure-enhancing controller for better physiologic perfusion of rotary blood pumps based on speed modulation.

    PubMed

    Huang, Feng; Ruan, Xiaodong; Fu, Xin

    2014-01-01

    Sufficient pulsation is important for physiologic perfusion if adequate flow is to be guaranteed. A fuzzy control method for rotary blood pumps using active speed modulation is proposed in this article. It maintains the mean aortic pressure to provide sufficient perfusion while it simultaneously enhances the pulse pressure. The controller uses the indices extracted from the aortic pressure as feedback to determine the amplitude and offset of the rectangular speed modulation waveform, which is synchronous with the cardiac cycle. An additional algorithm is included to prevent regurgitation. The controller is tested both in a baroreflex-cardiovascular model and in a preliminary in vitro experiment. Simulation results demonstrate that the controller is able to increase the pulse pressure to approximately 20 mm Hg and at the same time maintains the mean pressure at 100 mm Hg, when heart failure occurs. It is also quite robust under various physiologic disturbances. Experimental results show that the speed modulation can be implemented in real pumps and that the controller is feasible in practice.

  13. Pasteurization of fruit juices by means of a pulsed high pressure process.

    PubMed

    Donsì, Giorgio; Ferrari, Giovanna; Maresca, Paola

    2010-04-01

    The use of pulsed high hydrostatic pressure was investigated as a possible approach to stabilize foodstuffs. The objective of this article was to investigate the effect of the main processing variables (pressure [150 to 300 MPa], temperature levels [25 to 50 degrees C], and pulse number [1 to 10]) on the sanitation of nonpasteurized clear Annurca apple juice as well as freshly-squeezed clear orange juice. The aim of the article was the optimization of the process parameters in step-wise pressure treatment (pressure holding time of each pulse: 60 s, compression rate: 10.5 MPa/s, decompression time: 2 to 5s). The shelf life of the samples, processed at optimized conditions, was evaluated in terms of microbiological stability and quality retention. According to our experimental results, the efficiency of pulsed high pressure processes depends on the combination of pulse holding time and number of pulses. The pulsed high pressure cycles have no additive or synergetic effect on microbial count. The efficacy of the single pulses decreases with the increase of the pulse number and pressure level. Therefore the first pulse cycle is more effective than the following ones. By coupling moderate heating to high pressure, the lethality of the process increases but thermal degradation of the products can be detected. The optimization of the process condition thus results in a compromise between the reduction of the pressure value, due to the synergetic temperature action, and the achievement of quality of the final production. The juices processed under optimal processing conditions show a minimum shelf life of 21 d at a storage temperature of 4 degrees C.

  14. Numerical simulation of a ramjet inlet flowfield in response to large amplitude combustor pressure oscillation

    NASA Technical Reports Server (NTRS)

    Hsieh, T.; Wardlaw, A. B., Jr.; Coakley, T.

    1984-01-01

    The unsteady flow of a two-dimensional ramjet inlet is studied numerically by solving the Navier-Stokes equation with a two-equation turbulence model. Unsteadiness is introduced by prescribing the pressure disturbance at the inlet exit plane. The case with a sinusoidal exit plane pressure fluctuation of 20 percent of the steady exit pressure is considered. The resulting flow field exhibits a complicated interaction between the terminal shock, separation pockets and core flow. The exit plane properties feature a non-linear response to the imposed sinusoidal pressure variation.

  15. Radial Pulse Character Relationship to Systolic Blood Pressure and Trauma Outcomes

    DTIC Science & Technology

    2005-12-01

    RADIAL PULSE CHARACTER RELATIONSHIPS TO SYSTOLIC BLOOD PRESSURE AND TRAUMA OUTCOMES John McManus, MD, MCR, Andrey L. Yershov, MD, PhD, David Ludwig...pable pulse characteristics in the radial artery would es- timate systolic blood pressure (SBP) and predict outcome in trauma patients. Methods. Data...setting is problematic. The ability to obtain a blood pressure (BP) measurement in an aus- tere environment is often limited by time constraints

  16. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at high pressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NO(x) emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8.

  17. Relationship between Resting Heart Rate, Blood Pressure and Pulse Pressure in Adolescents.

    PubMed

    Christofaro, Diego Giulliano Destro; Casonatto, Juliano; Vanderlei, Luiz Carlos Marques; Cucato, Gabriel Grizzo; Dias, Raphael Mendes Ritti

    2017-05-01

    High resting heart rate is considered an important factor for increasing mortality chance in adults. However, it remains unclear whether the observed associations would remain after adjustment for confounders in adolescents. To analyze the relationship between resting heart rate, blood pressure and pulse pressure in adolescents of both sexes. A cross-sectional study with 1231 adolescents (716 girls and 515 boys) aged 14-17 years. Heart rate, blood pressure and pulse pressure were evaluated using an oscillometric blood pressure device, validated for this population. Weight and height were measured with an electronic scale and a stadiometer, respectively, and waist circumference with a non-elastic tape. Multivariate analysis using linear regression investigated the relationship between resting heart rate and blood pressure and pulse pressure in boys and girls, controlling for general and abdominal obesity. Higher resting heart rate values were observed in girls (80.1 ± 11.0 beats/min) compared to boys (75.9 ± 12.7 beats/min) (p ≤ 0.001). Resting heart rate was associated with systolic blood pressure in boys (Beta = 0.15 [0.04; 0.26]) and girls (Beta = 0.24 [0.16; 0.33]), with diastolic blood pressure in boys (Beta = 0.50 [0.37; 0.64]) and girls (Beta = 0.41 [0.30; 0.53]), and with pulse pressure in boys (Beta = -0.16 [-0.27; -0.04]). This study demonstrated a relationship between elevated resting heart rate and increased systolic and diastolic blood pressure in both sexes and pulse pressure in boys even after controlling for potential confounders, such as general and abdominal obesity. A frequência cardíaca de repouso é considerada um importante fator de aumento de mortalidade em adultos. Entretanto, ainda é incerto se as associações observadas permanecem após ajuste para fatores de confusão em adolescentes. Analisar a relação entre frequência cardíaca de repouso, pressão arterial e pressão de pulso em adolescentes dos dois sexos. Estudo transversal

  18. Automatic algorithm for monitoring systolic pressure variation and difference in pulse pressure.

    PubMed

    Pestel, Gunther; Fukui, Kimiko; Hartwich, Volker; Schumacher, Peter M; Vogt, Andreas; Hiltebrand, Luzius B; Kurz, Andrea; Fujita, Yoshihisa; Inderbitzin, Daniel; Leibundgut, Daniel

    2009-06-01

    Difference in pulse pressure (dPP) reliably predicts fluid responsiveness in patients. We have developed a respiratory variation (RV) monitoring device (RV monitor), which continuously records both airway pressure and arterial blood pressure (ABP). We compared the RV monitor measurements with manual dPP measurements. ABP and airway pressure (PAW) from 24 patients were recorded. Data were fed to the RV monitor to calculate dPP and systolic pressure variation in two different ways: (a) considering both ABP and PAW (RV algorithm) and (b) ABP only (RV(slim) algorithm). Additionally, ABP and PAW were recorded intraoperatively in 10-min intervals for later calculation of dPP by manual assessment. Interobserver variability was determined. Manual dPP assessments were used for comparison with automated measurements. To estimate the importance of the PAW signal, RV(slim) measurements were compared with RV measurements. For the 24 patients, 174 measurements (6-10 per patient) were recorded. Six observers assessed dPP manually in the first 8 patients (10-min interval, 53 measurements); no interobserver variability occurred using a computer-assisted method. Bland-Altman analysis showed acceptable bias and limits of agreement of the 2 automated methods compared with the manual method (RV: -0.33% +/- 8.72% and RV(slim): -1.74% +/- 7.97%). The difference between RV measurements and RV(slim) measurements is small (bias -1.05%, limits of agreement 5.67%). Measurements of the automated device are comparable with measurements obtained by human observers, who use a computer-assisted method. The importance of the PAW signal is questionable.

  19. Optimized laser pulse profile for efficient radiation pressure acceleration of ions

    SciTech Connect

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarela-tivistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

  20. Optimized laser pulse profile for efficient radiation pressure acceleration of ions

    SciTech Connect

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-09-15

    The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover, the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarelativistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

  1. Validation of the pulse decomposition analysis algorithm using central arterial blood pressure

    PubMed Central

    2014-01-01

    Background There is a significant need for continuous noninvasive blood pressure (cNIBP) monitoring, especially for anesthetized surgery and ICU recovery. cNIBP systems could lower costs and expand the use of continuous blood pressure monitoring, lowering risk and improving outcomes. The test system examined here is the CareTaker® and a pulse contour analysis algorithm, Pulse Decomposition Analysis (PDA). PDA’s premise is that the peripheral arterial pressure pulse is a superposition of five individual component pressure pulses that are due to the left ventricular ejection and reflections and re-reflections from only two reflection sites within the central arteries. The hypothesis examined here is that the model’s principal parameters P2P1 and T13 can be correlated with, respectively, systolic and pulse pressures. Methods Central arterial blood pressures of patients (38 m/25 f, mean age: 62.7 y, SD: 11.5 y, mean height: 172.3 cm, SD: 9.7 cm, mean weight: 86.8 kg, SD: 20.1 kg) undergoing cardiac catheterization were monitored using central line catheters while the PDA parameters were extracted from the arterial pulse signal obtained non-invasively using CareTaker system. Results Qualitative validation of the model was achieved with the direct observation of the five component pressure pulses in the central arteries using central line catheters. Statistically significant correlations between P2P1 and systole and T13 and pulse pressure were established (systole: R square: 0.92 (p < 0.0001), diastole: R square: 0.78 (p < 0.0001). Bland-Altman comparisons between blood pressures obtained through the conversion of PDA parameters to blood pressures of non-invasively obtained pulse signatures with catheter-obtained blood pressures fell within the trend guidelines of the Association for the Advancement of Medical Instrumentation SP-10 standard (standard deviation: 8 mmHg(systole: 5.87 mmHg, diastole: 5.69 mmHg)). Conclusions The results indicate that arterial

  2. Validation of the pulse decomposition analysis algorithm using central arterial blood pressure.

    PubMed

    Baruch, Martin C; Kalantari, Kambiz; Gerdt, David W; Adkins, Charles M

    2014-07-08

    There is a significant need for continuous noninvasive blood pressure (cNIBP) monitoring, especially for anesthetized surgery and ICU recovery. cNIBP systems could lower costs and expand the use of continuous blood pressure monitoring, lowering risk and improving outcomes.The test system examined here is the CareTaker® and a pulse contour analysis algorithm, Pulse Decomposition Analysis (PDA). PDA's premise is that the peripheral arterial pressure pulse is a superposition of five individual component pressure pulses that are due to the left ventricular ejection and reflections and re-reflections from only two reflection sites within the central arteries.The hypothesis examined here is that the model's principal parameters P2P1 and T13 can be correlated with, respectively, systolic and pulse pressures. Central arterial blood pressures of patients (38 m/25 f, mean age: 62.7 y, SD: 11.5 y, mean height: 172.3 cm, SD: 9.7 cm, mean weight: 86.8 kg, SD: 20.1 kg) undergoing cardiac catheterization were monitored using central line catheters while the PDA parameters were extracted from the arterial pulse signal obtained non-invasively using CareTaker system. Qualitative validation of the model was achieved with the direct observation of the five component pressure pulses in the central arteries using central line catheters. Statistically significant correlations between P2P1 and systole and T13 and pulse pressure were established (systole: R square: 0.92 (p < 0.0001), diastole: R square: 0.78 (p < 0.0001). Bland-Altman comparisons between blood pressures obtained through the conversion of PDA parameters to blood pressures of non-invasively obtained pulse signatures with catheter-obtained blood pressures fell within the trend guidelines of the Association for the Advancement of Medical Instrumentation SP-10 standard (standard deviation: 8 mmHg(systole: 5.87 mmHg, diastole: 5.69 mmHg)). The results indicate that arterial blood pressure can be accurately measured and tracked

  3. Properties of Solar Wind Dynamic Pressure Pulses at 1 AU during the Deep Minimum between Solar Cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Xie, Y. Q.; Zuo, P. B.; Feng, X. S.; Zhang, Y.

    2015-06-01

    Observations during the deep solar minimum between Solar Cycles 23 and 24 offer an opportunity for characterizing the nature of solar wind dynamic pressure pulses (DPPs) under extreme solar activity. In this study, we identify 226 DPPs from July 2008 to June 2009 using an automatic detection algorithm based on high-resolution plasma data from the Wind spacecraft to investigate the features of DPPs during the deep solar minimum. For comparison, the similarities and differences of the statistical characteristics of the DPPs during the deep solar minimum and during the previous solar minimum are also examined. It is found that the number and the occurrence rate of DPPs during the deep solar minimum are only about one-third of those during the previous minimum, which may be attributed to lower solar wind dynamic pressure and weaker dynamic pressure fluctuations. From a statistical perspective, however, no obvious difference is apparent between the other basic DPP properties in the two solar minima, such as the absolute and relative amplitude of the dynamic pressure changes and the durations of the transition regions of DPPs. Other basic properties of the DPPs during the deep solar minimum are as follows: 1) the distribution of the absolute value of the dynamic pressure amplitude change peaks at 1.0 - 1.5 nPa, 2) the most probable relative pressure changes are 0.2 - 0.8, 3) DPP durations are broad-peaked between 150 s and 210 s with a mean of about 171 s, 4) 76.7 % of the DPPs can be considered as pressure balance structures, 5) dynamic pressure changes across DPPs are dominated by density changes, 6) specially, during the deep solar minimum, a considerable portion of DPPs, 86.7 %, are associated with large-scale solar wind transients such as interplanetary coronal mass ejections (ICMEs) and stream interaction regions (SIRs).

  4. Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses

    SciTech Connect

    Cappa, F.; Guglielmi, Y.; Rutqvist, J.; Tsang, C.-F.; Thoraval, A.

    2008-03-16

    The flow parameters of a natural fracture were estimated by modeling in situ pressure pulses. The pulses were generated in two horizontal boreholes spaced 1 m apart vertically and intersecting a near-vertical highly permeable fracture located within a shallow fractured carbonate reservoir. Fracture hydromechanical response was monitored using specialized fiber-optic borehole equipment that could simultaneously measure fluid pressure and fracture displacements. Measurements indicated a significant time lag between the pressure peak at the injection point and the one at the second measuring point, located 1 m away. The pressure pulse dilated and contracted the fracture. Field data were analyzed through hydraulic and coupled hydromechanical simulations using different governing flow laws. In matching the time lag between the pressure peaks at the two measuring points, our hydraulic models indicated that (1) flow was channeled in the fracture, (2) the hydraulic conductivity tensor was highly anisotropic, and (3) the radius of pulse influence was asymmetric, in that the pulse travelled faster vertically than horizontally. Moreover, our parametric study demonstrated that the fluid pressure diffusion through the fracture was quite sensitive to the spacing and orientation of channels, hydraulic aperture, storativity and hydraulic conductivity. Comparison between hydraulic and hydromechanical models showed that the deformation significantly affected fracture permeability and storativity, and consequently, the fluid pressure propagation, suggesting that the simultaneous measurements of pressure and mechanical displacement signals could substantially improve the interpretation of pulse tests during reservoir characterization.

  5. Influence of ambient pressure on the hole formation process in ultrashort pulse laser deep drilling

    NASA Astrophysics Data System (ADS)

    Döring, Sven; Richter, Sören; Ullsperger, Tobias; Tünnermann, Andreas; Nolte, Stefan

    2013-03-01

    We investigate the influence of the ambient pressure on the hole formation process during percussion drilling of silicon by applying an in-situ imaging technique. In this study the pressure is varied from atmospheric conditions down to medium vacuum of 10 !bar. Drilling was performed using an ultrashort pulse system providing 8 ps pulses with up to 125 μJ at 1030 nm. At this wavelength, the ablation behavior of silicon is comparable to metals. At the beginning of the drilling process, we observe an increased drilling efficiency by 40% already for a moderate pressure decrease to 100 mbar. The formation of an ideally shaped hole lasts for approximately 200 pulses instead of only 100 as for atmospheric conditions and therefore leads to 3 times the depth at this point. The effect can be enhanced by increasing the pulse energy, but not by decreasing pressure further. However, the number of pulses till the end of the drilling process is extended by decreasing the pressure further. For a low ambient pressure of 10 μbar, this is accompanied by an increase of the maximum achievable depth of more than 100%. Simultaneously the hole shape changes from a few ends and bulges at atmospheric conditions to numerous branches over the complete lower part of the hole at low pressure. This drilling behavior can be attributed to a better removal of ablated particles from the hole capillary with decreasing pressure, which leads to lower scattering losses for the pulse propagation inside the hole.

  6. Effects of pressure-dependent segmental arterial compliance and postural changes on pulse wave transmission in an arterial model of the human upper limb.

    PubMed

    Xu, Ke; Butlin, Mark; Avolio, Alberto P

    2011-01-01

    With increasing interest in the effect of postural changes on arterial blood pressure and vascular properties, it is important to understand effects of pressure-dependent arterial compliance. This study investigates effects of pressure-dependent compliance on pulse wave velocity (PWVar), pressure wave shape, and transmission characteristics in an arterial model of the human arm from heart to radial artery from supine to standing. Estimated central pressure waveform was used as the input for the model, calculated using a validated transfer function (SphygmoCor, AtCor Medical) from recorded radial pulses in 10 healthy male subjects (53.8 ± 7.9 years) during 0, 30, 60 and 90 degree head-up tilt. A 5-segment linear model was optimized using estimated central and recorded radial arterial pulse; each segment represented by an equivalent inductance, resistance and capacitance (compliance (C)) Pressure-dependent compliance (C(P)=a · e(b · P) was added to develop a nonlinear model, and the radial pulse calculated. Comparison of the radial pulse calculated by the linear and nonlinear models showed no statistical difference in systolic, diastolic, mean, and pulse pressure in any position of tilt. However, waveform shape was increasingly divergent at higher angles of tilt (RMS error 2.3 ± 1.2 mmHg supine, 6.5 ± 3.0 mmHg standing) as was PWVar (0% increase from supine to standing in the linear model, 16.7% increase in nonlinear model). Fourier analysis demonstrated peak amplitude of transmission being at higher frequencies and phase delay being lower in the nonlinear model relative to the linear model. Pressure-dependent arterial compliance, whilst having no effect on peak values of pressure, has significant effects on waveform shape and transmission speed, especially with a more upright position.

  7. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  8. Genome-wide linkage analysis of pulse pressure in American Indians: the Strong Heart Study.

    PubMed

    Franceschini, Nora; MacCluer, Jean W; Rose, Kathreen M; Rutherford, Sue; Cole, Shelley A; Laston, Sandy; Göring, Harald H H; Diego, Vincent P; Roman, Mary J; Lee, Elisa T; Best, Lyle G; Howard, Barbara V; Fabsitz, Richard R; North, Kari E

    2008-02-01

    Pulse pressure, a measure of central arterial stiffness and a predictor of cardiovascular mortality, has known genetic components. To localize the genetic effects of pulse pressure, we conducted a genome-wide linkage analysis of 1,892 American-Indian participants of the Strong Heart Family Study (SHFS). Blood pressure was measured three times and the average of the last two measures was used for analyses. Pulse pressure, the difference between systolic blood pressure (SBP) and diastolic blood pressure (DBP), was log-transformed and adjusted for the effects of age and sex within each study center. Variance component linkage analyses were performed using marker allele frequencies derived from all individuals and multipoint identity-by-descent matrices calculated in Loki. We identified a quantitative-trait locus influencing pulse pressure on chromosome 7 at 37 cM (marker D7S493, LOD = 3.3) and suggestive evidence of linkage on chromosome 19 at 92 cM (marker D19S888, LOD = 1.8). The signal on 7p15.3 overlaps positive findings for pulse pressure among Utah population samples, suggesting that this region may harbor gene variants for blood pressure related traits.

  9. Optimized Shapes of Ocsillating Resonators for Generating High-Amplitude Pressure Waves

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Finkbeiner, Joshua; Daniels, Christopher; Steinetz, Bruce M.

    2003-01-01

    It is well known that the resonator geometry strongly influences the resonant frequencies of an acoustical resonator and the generated nonlinear standing pressure waveform. Maximizing the ratio of maximum to minimum gas pressure at an end of an oscillating resonator by optimizing the cavity contour is investigated numerically. A quasi-Newton type scheme is used to find optimized axisymmetric resonator shapes to achieve the maximum pressure compression ratio. The acoustical field is solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects are obtained through an automation scheme based on continuation methods. Results are presented from optimizing cone, horn-cone, and cosine resonator geometries. Significant performance improvement is found in the optimized shapes over others previously published. Different optimized shapes are found when starting with different initial guesses, indicating multiple local extrema. The numerical model is validated by comparing with the experimental results of a horn-cone shaped resonator.

  10. [A calibrated method for blood pressure measurement based on volume pulse wave].

    PubMed

    Youde, Ding; Qinkai, Deng; Feixue, Liang; Jinseng, Guo

    2010-01-01

    Physiology parameters measurement based on volume pulse wave is suitable for the monitoring blood pressure continuously. This paper described that the systolic blood pressure (SBP) and diastolic blood pressure (DBP) can be calibrated by measuring the pulse propagation time, just on one point of finger tip. The volume pulse wave was acquired by lighting the red and infrared LED alternately, and after signal processing, an accelerated pulse wave was obtained. Then by measuring the pulse wave propagation time between the progressive wave and reflected wave, we can find the relationship of the time and the blood pressure, and establish the related systolic blood pressure measurement equation. At the same time, based on the relationship between alternating current and direct current components in the volume pulse waveforms and through regression analysising, the relevant diastolic blood pressure measurement equation can be established. 33 clinical experimentation cases have been worked by dividing them into two groups: training group (18 cases) and control group (15 cases), by comparing with the measuring results of the OMRON electronic sphygmomanometer. The results indicated that the two methods had good coherence. The measurement described is simple and reliable, and may be served as a new method for noninvasively and continuously measurement of blood pressure.

  11. Sex Difference in Cardiovascular Risk: Role of Pulse Pressure Amplification

    PubMed Central

    Regnault, Véronique; Thomas, Frédérique; Safar, Michel E.; Osborne-Pellegrin, Mary; Khalil, Raouf A.; Pannier, Bruno; Lacolley, Patrick

    2013-01-01

    Objectives Our aim was to explore whether the carotid/brachial pulse pressure (C/B-PP) ratio selectively predicts the gender difference in age-related cardiovascular death. Background Hypertension and cardiovascular complications are more severe in men and post-menopausal women than in pre-menopausal women. C-PP is lower than B-PP, and the C/B-PP ratio is a physiological marker of PP amplification between C and B arteries which tends toward 1.0 with age. Methods The study involved 72,437 men (aged 41.0±11.1 years, mean±SD) and 52,714 women (39.5±11.6 years). C-PP was calculated for each gender by a multiple regression analysis including B-PP, age, height and risk factors, a method validated beforehand in a subgroup of 834 subjects. During the 12 years of follow-up, 3028 men and 969 women died. Results In the total population, the adjusted hazard ratios (HR, 95% CI) of C/B-PP ratio were: (i) for all cause mortality: men, 1.51 (1.47–1.56), women, 2.46 (2.27–2.67) (p<0.0001); (ii) for cardiovascular mortality: men, 1.81 (1.70–1.93), women, 4.46 (3.66–5.45) (p<0.0001). The C/B-PP impact on mortality did not significantly increase from younger men to those over 55, from: 1.44 (1.31–1.58) to 1.65 (1.48–1.84), but increased significantly with age in women: 3.19 (2.08–4.89) vs 5.60 (4.17–7.50) (p<0.01). Thus the mortality impact of C/B-PP ratio was 3-fold higher in women than in men over 55. Conclusions The C/B amplification is highly predictive of differences in cardiovascular risk between men and women. In post-menopausal women, the attenuation of PP amplification, mainly related to increased aortic stiffness, contributes to the significant increase in cardiovascular risk. PMID:22575315

  12. Influence of potential pulses amplitude sequence in a voltammetric electronic tongue (VET) applied to assess antioxidant capacity in aliso.

    PubMed

    Fuentes, Esteban; Alcañiz, Miguel; Contat, Laura; Baldeón, Edwin O; Barat, José M; Grau, Raúl

    2017-06-01

    Four signals configurations were studied, two of them built by small increases of potential and two with bigger increments. The highest current values were obtained when pulses with bigger change of potential were used although the best results were shown by the pulse sequence which included an intermediate pulse before the relevant pulse. A mathematical model based on trolox pattern was developed to predict antioxidant capacity of aliso, employing information obtained from all the electrodes, although model validation could be done only employing the information from gold electrode.

  13. Mineral metabolism influences pulse pressure increase provoked by chronic kidney disease.

    PubMed

    Craver, L; Marco, M Paz; Sarro, F; Martin, M L; Borras, M; Valdivielso, J M; Fernández, E

    2007-08-01

    Pulse pressure (PP) increase has been associated with hypertension, ageing and chronic kidney disease. Although hyperparathyroidism and phosphate imbalance have been suspect in PP increase in hemodialysis patients, the link between these parameters and pulse pressure, in renal disease before dialysis, has not been established. 1966 chronic kidney disease (CKD) patients. ANOVA, Student's t-and Chi-square, rank correlations (Spearman) and multivariate analysis, with PP as the dependent variable, while adjusting for other covariables. There was an increase of pulse pressure parallel to renal function deterioration, and a significant influence of age, diabetes, hypertension, phosphate and PTH on pulse pressure in the whole population, as well as in patients with glomerular filtration rate < 60 ml/min. The impact of phosphate was particularly high after the age of 50. PP increase present in renal disease patients might be primarily due to the underlying mineral metabolism disturbances.

  14. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    SciTech Connect

    Zhang, Jie; Guo, Ying; Shi, Yuncheng; Zhang, Jing; Shi, J. J.

    2015-08-15

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  15. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... installed must be subjected to 50 fillings of water at a pressure head of 7 feet or the maximum pressure... gallon per minute or larger positive displacement pump that remains in operation 30 seconds...

  16. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... installed must be subjected to 50 fillings of water at a pressure head of 7 feet or the maximum pressure... gallon per minute or larger positive displacement pump that remains in operation 30 seconds...

  17. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... installed must be subjected to 50 fillings of water at a pressure head of 7 feet or the maximum pressure... gallon per minute or larger positive displacement pump that remains in operation 30 seconds...

  18. GENOME-WIDE LINKAGE ANALYSIS OF PULSE PRESSURE IN AMERICAN INDIANS: THE STRONG HEART STUDY

    PubMed Central

    Franceschini, Nora; MacCluer, Jean W.; Rose, Kathreen M.; Rutherford, Sue; Cole, Shelley A.; Laston, Sandy; Göring, Harald H.H.; Diego, Vincent P.; Roman, Mary J.; Lee, Elisa T.; Best, Lyle G.; Howard, Barbara V.; Fabsitz, Richard R.; North, Kari E.

    2010-01-01

    Background Pulse pressure, a measure of central arterial stiffness and a predictor of cardiovascular mortality, has known genetic components. Methods To localize the genetic effects of pulse pressure, we conducted a genome-wide linkage analysis of 1,892 American Indian participants of the Strong Heart Family Study. Blood pressure was measured three times and the average of the last two measures was used for analyses. Pulse pressure, the difference between systolic and diastolic blood pressures, was log-transformed and adjusted for the effects of age and sex within each study center. Variance component linkage analyses were performed using marker allele frequencies derived from all individuals and multipoint identity-by-descent matrices calculated in Loki. Results We identified a quantitative trait locus influencing pulse pressure on chromosome 7 at 37 cM (marker D7S493, LOD=3.3) and suggestive evidence of linkage on chromosome 19 at 92 cM (marker D19S888, LOD=1.8). Conclusions The signal on 7p15.3 overlaps positive findings for pulse pressure among Utah population samples, suggesting that this region may harbor gene variants for blood pressure related traits. PMID:18188160

  19. Dynamic high pressure generation through plasma implosion driven by an intense laser pulse

    NASA Astrophysics Data System (ADS)

    Li, M.; Wang, J. X.; Yuan, T.; Xu, Y. X.; Zhu, W. J.

    2017-03-01

    When an intense laser pulse is loaded upon solids, very high impact pressure can be generated on the surface. In this letter, we simulate this process through one-dimensional particle-in-cell simulation and find that the pressure as high as 0.13 TPa can be generated after the laser pulse with intensity 1015 W/cm2 and 5 picosecond duration is injected upon a nanometer solid-density plasma. The peak pressure is shown to be resulted from an energetic high-density plasma bunch, produced through plasma implosion under extremely high light pressure.

  20. Global Remote Sensing of Precipitating Electron Energies: A Comparison of Substorms and Pressure Pulse Related Intensifications

    NASA Technical Reports Server (NTRS)

    Chua, D.; Parks, G. K.; Brittnacher, M. J.; Germany, G. A.; Spann, J. F.

    2000-01-01

    The Polar Ultraviolet Imager (UVI) observes aurora responses to incident solar wind pressure pulses and interplanetary shocks such its those associated with coronal mass ejections. Previous observations have demonstrated that the arrival of it pressure pulse at the front of the magnetosphere results in highly disturbed geomagnetic conditions and a substantial increase in both dayside and nightside aurora precipitations. Our observations show it simultaneous brightening over bread areas of the dayside and nightside auroral in response to a pressure pulse, indicating that more magnetospheric regions participate as sources for auroral precipitation than during isolate substorm. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated event to those during isolated substorms. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated events to those during isolated auroral substorms. Electron precipitation during substorms has characteristic energies greater than 10 KeV and is structured both in local time and in magnetic latitude. For auroral intensifications following the arrival of'a pressure pulse or interplanetary shock. Electron precipitation is less spatially structured and has greater flux of lower characteristic energy electrons (Echar less than 7 KeV) than during isolated substorm onsets. These observations quantify the differences between global and local auroral precipitation processes and will provide a valuable experimental check for models of sudden storm commencements and magnetospheric response to perturbations in the solar wind.

  1. Global Remote Sensing of Precipitating Electron Energies: A Comparison of Substorms and Pressure Pulse Related Intensifications

    NASA Technical Reports Server (NTRS)

    Chua, D.; Parks, G. K.; Brittnacher, M. J.; Germany, G. A.; Spann, J. F.

    2000-01-01

    The Polar Ultraviolet Imager (UVI) observes aurora responses to incident solar wind pressure pulses and interplanetary shocks such its those associated with coronal mass ejections. Previous observations have demonstrated that the arrival of it pressure pulse at the front of the magnetosphere results in highly disturbed geomagnetic conditions and a substantial increase in both dayside and nightside aurora precipitations. Our observations show it simultaneous brightening over bread areas of the dayside and nightside auroral in response to a pressure pulse, indicating that more magnetospheric regions participate as sources for auroral precipitation than during isolate substorm. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated event to those during isolated substorms. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated events to those during isolated auroral substorms. Electron precipitation during substorms has characteristic energies greater than 10 KeV and is structured both in local time and in magnetic latitude. For auroral intensifications following the arrival of'a pressure pulse or interplanetary shock. Electron precipitation is less spatially structured and has greater flux of lower characteristic energy electrons (Echar less than 7 KeV) than during isolated substorm onsets. These observations quantify the differences between global and local auroral precipitation processes and will provide a valuable experimental check for models of sudden storm commencements and magnetospheric response to perturbations in the solar wind.

  2. Elevated Pulse Pressure is Associated with Hemolysis, Proteinuria and Chronic Kidney Disease in Sickle Cell Disease

    PubMed Central

    Novelli, Enrico M.; Hildesheim, Mariana; Rosano, Caterina; Vanderpool, Rebecca; Simon, Marc; Kato, Gregory J.; Gladwin, Mark T.

    2014-01-01

    A seeming paradox of sickle cell disease is that patients do not suffer from a high prevalence of systemic hypertension in spite of endothelial dysfunction, chronic inflammation and vasculopathy. However, some patients do develop systolic hypertension and increased pulse pressure, an increasingly recognized major cardiovascular risk factor in other populations. Hence, we hypothesized that pulse pressure, unlike other blood pressure parameters, is independently associated with markers of hemolytic anemia and cardiovascular risk in sickle cell disease. We analyzed the correlates of pulse pressure in patients (n  =  661) enrolled in a multicenter international sickle cell trial. Markers of hemolysis were analyzed as independent variables and as a previously validated hemolytic index that includes multiple variables. We found that pulse pressure, not systolic, diastolic or mean arterial pressure, independently correlated with high reticulocyte count (beta  =  2.37, p  =  0.02) and high hemolytic index (beta  =  1.53, p = 0.002) in patients with homozygous sickle cell disease in two multiple linear regression models which include the markers of hemolysis as independent variables or the hemolytic index, respectively. Pulse pressure was also independently associated with elevated serum creatinine (beta  =  3.21, p  =  0.02), and with proteinuria (beta  =  2.52, p  =  0.04). These results from the largest sickle cell disease cohort to date since the Cooperative Study of Sickle Cell Disease show that pulse pressure is independently associated with hemolysis, proteinuria and chronic kidney disease. We propose that high pulse pressure may be a risk factor for clinical complications of vascular dysfunction in sickle cell disease. Longitudinal and mechanistic studies should be conducted to confirm these hypotheses. PMID:25478953

  3. A comparison of systolic blood pressure measurement obtained using a pulse oximeter, and direct systolic pressure measurement in anesthetized sows.

    PubMed Central

    Caulkett, N A; Duke, T; Bailey, J V

    1994-01-01

    Systolic blood pressure measurement obtained with a pulse oximeter has been compared to values obtained by other indirect methods in man. Direct pressure measurement is subject to less error than indirect techniques. This study was designed to compare systolic pressure values obtained using a pulse oximeter, with values obtained by direct arterial pressure measurement. The pulse oximeter waveform was used as an indication of perfusion. A blood pressure cuff was applied proximal to the pulse oximeter probe. The cuff was inflated until the oximeter waveform disappeared, this value was recorded as the systolic pressure at the disappearance of the waveform (SPD). The cuff was inflated to a pressure > 200 mmHg, then gradually deflated until the waveform reappeared, this value was recorded as the systolic pressure at reappearance of the waveform (SPR). The average of the two values, SPD and SPR, was calculated and recorded as SPA. The study was performed in sows (n = 21) undergoing cesarean section under epidural anesthesia and IV sedation. A total of 280 measurements were made of SPD, SPR and SPA. Regression analysis of SPA and direct measurement revealed a correlation coefficient (r) of 0.81. Calculation of mean difference (bias) and standard deviation of the bias (precision) for direct pressure--SPA revealed a value of 1.3 +/- 12.1. When compared with direct measurement, the correlation of this technique was similar to that recorded for other indirect techniques used in small animals. This indicates that this technique would be useful for following systolic pressure trends.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004540

  4. Brachial vs. central systolic pressure and pulse wave transmission indicators: a critical analysis.

    PubMed

    Izzo, Joseph L

    2014-12-01

    This critique is intended to provide background for the reader to evaluate the relative clinical utilities of brachial cuff systolic blood pressure (SBP) and its derivatives, including pulse pressure, central systolic pressure, central augmentation index (AI), and pulse pressure amplification (PPA). The critical question is whether the newer indicators add sufficient information to justify replacing or augmenting brachial cuff blood pressure (BP) data in research and patient care. Historical context, pathophysiology of variations in pulse wave transmission and reflection, issues related to measurement and model errors, statistical limitations, and clinical correlations are presented, along with new comparative data. Based on this overview, there is no compelling scientific or practical reason to replace cuff SBP with any of the newer indicators in the vast majority of clinical situations. Supplemental value for central SBP may exist in defining patients with exaggerated PPA ("spurious systolic hypertension"), managing cardiac and aortic diseases, and in studies of cardiovascular drugs, but there are no current standards for these possibilities.

  5. A method for pressure-pulse suppression in fluid-filled piping

    SciTech Connect

    Shin, Y.W.; Bielick, E.F. ); Wiedermann, A.H. ); Ockert, C.E. )

    1989-01-01

    A simple, nondestructive method to suppress pressure pulses in fluid-filled piping was proposed and theoretically analyzed earlier. In this paper, the proposed method is verified experimentally. The results of experiments performed for the range of parameters of practical importance indicated that the attenuation of pressure pulses was in accordance with the theoretical predictions. This paper describes the experimental setup and the test models of the proposed pulse suppression devices and discusses the experimental results. In particular, the measured attenuation factors are presented and compared with the theoretical predictions. 8 ref., 17 fig., 2 tab.

  6. The effects of pulse duration on ablation pressure driven by laser radiation

    SciTech Connect

    Zhou, Lei; Li, Xiao-Ya Zhu, Wen-Jun; Wang, Jia-Xiang; Tang, Chang-Jian

    2015-03-28

    The effects of laser pulse duration on the ablation pressure induced by laser radiation are investigated using Al target. Numerical simulation results using one dimensional radiation hydro code for laser intensities from 5×10{sup 12}W/cm{sup 2} to 5×10{sup 13}W/cm{sup 2} and pulse durations from 0.5 ns to 20 ns are presented. These results suggest that the laser intensity scaling law of ablation pressure differs for different pulse durations. And the theoretical analysis shows that the effects of laser pulse duration on ablation pressure are mainly caused by two regimes: the unsteady-state flow and the radiative energy loss to vacuum.

  7. Hemodynamic Correlates of Blood Pressure Across the Adult Age Spectrum: Noninvasive Evaluation in the Framingham Heart Study

    PubMed Central

    Mitchell, Gary F.; Wang, Na; Palmisano, Joseph N.; Larson, Martin G.; Hamburg, Naomi M.; Vita, Joseph A.; Levy, Daniel; Benjamin, Emelia J.; Vasan, Ramachandran S.

    2010-01-01

    Background Systolic blood pressure and pulse pressure are substantially higher in older adults. The relative contributions of increased forward versus reflected pressure wave amplitude or earlier arrival of the reflected wave to elevated pulse pressure remain controversial. Methods and Results We measured proximal aortic pressure and flow, forward pressure wave amplitude, global wave reflection, reflected wave timing and pulse wave velocity noninvasively in 6417 (age range, 19 to 90 years; 53% women) Framingham Heart Study Third Generation and Offspring participants. Variation in forward wave amplitude paralleled pulse pressure throughout adulthood. In contrast, wave reflection and pulse pressure were divergent across adulthood: in younger participants, pulse pressure was lower and wave reflection higher with advancing age whereas in older participants, pulse pressure was higher and wave reflection lower with age. Reflected wave timing differed modestly across age groups despite considerable differences in pulse wave velocity. Forward wave amplitude explained 80% (central) and 66% (peripheral) of the variance in pulse pressure in younger participants (<50 years) and 90% and 84% in the older participants (≥50 years, all P<0.0001). In a stepwise model that evaluated age-pulse pressure relations in the full sample, the late accelerated increases in central and peripheral pulse pressure were markedly attenuated when variation in forward wave amplitude was considered. Conclusions Higher pulse pressure at any age and higher pulse pressure with advancing age is predominantly associated with a larger forward pressure wave. The influence of wave reflection on age-related differences in pulse pressure was minor. PMID:20855656

  8. Multiscale cross-approximate entropy analysis as a measurement of complexity between ECG R-R interval and PPG pulse amplitude series among the normal and diabetic subjects.

    PubMed

    Wu, Hsien-Tsai; Lee, Chih-Yuan; Liu, Cyuan-Cin; Liu, An-Bang

    2013-01-01

    Physiological signals often show complex fluctuation (CF) under the dual influence of temporal and spatial scales, and CF can be used to assess the health of physiologic systems in the human body. This study applied multiscale cross-approximate entropy (MC-ApEn) to quantify the complex fluctuation between R-R intervals series and photoplethysmography amplitude series. All subjects were then divided into the following two groups: healthy upper middle-aged subjects (Group 1, age range: 41-80 years, n = 27) and upper middle-aged subjects with type 2 diabetes (Group 2, age range: 41-80 years, n = 24). There are significant differences of heart rate variability, LHR, between Groups 1 and 2 (1.94 ± 1.21 versus 1.32 ± 1.00, P = 0.031). Results demonstrated differences in sum of large scale MC-ApEn (MC-ApEn(LS)) (5.32 ± 0.50 versus 4.74 ± 0.78, P = 0.003). This parameter has a good agreement with pulse-pulse interval and pulse amplitude ratio (PAR), a simplified assessment for baroreflex activity. In conclusion, this study employed the MC-ApEn method, integrating multiple temporal and spatial scales, to quantify the complex interaction between the two physical signals. The MC-ApEn(LS) parameter could accurately reflect disease process in diabetics and might be another way for assessing the autonomic nerve function.

  9. Associations of apolipoprotein B with pulse pressure and glucose in Chinese families with familial combined hyperlipidemia.

    PubMed

    Pei, Wei-dong; Sun, Yu-hua; Liu, Qun; Zheng, Wei-yue; Zhang, Jian; Zhang, Chao-yang; Gong, Jing; Hopkins, Paul N; Hui, Ru-tai; Liu, Li-sheng; Yang, Yue-jin

    2007-02-14

    Familial combined hyperlipidemia (FCHL), with a marked elevation of apolipoprotein B (apoB), is estimated to cause 10-20% of premature coronary artery disease. However, little data are available to demonstrate the associations of apoB with pulse pressure and glucose levels in FCHL families in China. This study was to investigate the potential influence factors for blood pressure and glucose phenotypes in FCHL families by multiple linear regression analysis. We recruited 147 FCHL relatives and 90 spouses, aged 30 to 60 years, from 42 Chinese families with FCHL. Our results showed that triglyceride and low density lipoprotein cholesterol were associated with fasting glucose levels (all P<0.05). Body mass index and glucose significantly correlated to systolic blood pressure, diastolic blood pressure, and mean arterial pressure, respectively (all P<0.05). Furthermore, apoB was significantly related to pulse pressure and glucose in FCHL families (all P<0.05). Thus, this study demonstrates that apoB is significantly associated with pulse pressure and glucose levels in FCHL families. Accordingly, our data suggest that apoB may be a candidate risk marker for pulse pressure and glucose in FCHL populations.

  10. Central venous pulse pressure analysis using an R-synchronized pressure measurement system.

    PubMed

    Fujita, Yoshihisa; Hayashi, Daisuke; Wada, Shinya; Yoshioka, Naoki; Yasukawa, Takeshi; Pestel, Gunther

    2006-12-01

    The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7 mmHg and -0.9+/- 0.5 mmHg, respectively), with a mean pulse pressure of 3.4 mmHg. The difference between the mean CVP and CVP at end-diastole during expiration was 0.58+/- 0.81 mmHg. The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.

  11. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    SciTech Connect

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, Rene; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S.

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  12. Pulse Blood Pressure Correlates with Late Outcome in Acute Ischemic Stroke without Significant Culprit Artery Stenosis.

    PubMed

    Tien, Yi-Ting; Chang, Ming-Hong; Lee, Yu-Shan; Liaw, Yeng-Fung; Chen, Po-Lin

    2016-05-01

    This study was conducted to test the hypothesis that elevated blood pressure at the early stage is associated with unfavorable outcome in acute ischemic stroke patients with stenosis of less than 50% of the culprit artery. Patients with acute ischemic stroke onset within 48 hours and stenosis of less than 50% of the culprit artery from a prospective stroke registry were analyzed. A modified Rankin Scale score of 1 or lower at 3 months was defined as a favorable late outcome. Univariate and multivariate logistic regression analyses were used to analyze the association between hemodynamic parameters and outcome. One hundred thirty-six patients fulfilled the selection criteria. Patients with favorable outcome had lower pulse pressure at emergency department (ED) triage, lower systolic blood pressure (SBP) at 24 hours, lower pulse pressure at 24 hours, and lower heart rate (HR) at 24 hours. The univariate logistic regression analysis showed that history of stroke, elevated SBP at 24 hours, elevated HR at 24 hours, elevated pulse pressure at 24 hours, and higher National Institutes of Health Stroke Scale score at ED triage were associated with a less favorable late outcome. Two separate models of multivariate logistic regression analyses showed that pulse pressure at ED triage and pulse pressure at 24 hours, respectively, were significantly associated with less favorable outcome. Elevated pulse pressure at the early stage is independently associated with unfavorable late outcome in acute ischemic stroke patients with culprit artery stenosis less than 50%. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. [Role of pulse pressure, systolic blood pressure, and diastolic blood pressure in the prediction of cardiovascular risk. Cohort study].

    PubMed

    Baena-Díez, José Miguel; Bermúdez-Chillida, Noemí; García-Lareo, Manel; Olivia Byram, Alice; Vidal-Solsona, Marc; Vilató-García, Mónica; Gómez-Fernández, Claudia; Vásquez-Lazo, Javier Ernesto

    2008-03-22

    To analize the role of pulse pressure (PP), systolic (SBP) and diastolic blood pressure (DBP), in the prediction of cardiovascular risk. A prospective cohort study carried out in 2 primary care center, including 932 patients aged between 35-84 years old, without cardiovascular events, selected by simple random sampling, and with an 8 year follow-up. PP, SBP, and DBP were categorized in tertiles, comparing the upper with the 2 lowers. First cardiovascular event, whether fatal or not, such as coronary heart disease, cerebrovascular disease, and peripheral arterial disease was recorded as a composite variable. Results were studied according to Cox models, adjusting for age, sex, smoking, total cholesterol, high density lipoprotein cholesterol, and diabetes mellitus. We studied the correlation between PP with SBP, DBP, and cardiovascular risk factors. We registered 85 cardiovascular events: 43 cases of coronary heart disease, 27 cerebrovascular disease, and 17 peripheral arterial disease. The adjusted hazard ratios for composite variable were: upper PP tertile (>/= 59 mmHg) = 1.3 (95% confidence interval [CI], 0.8-2.1); upper SBP tertile (>/= 140 mmHg) = 1.5 (95% CI, 1.0-2.5); upper DBP tertile (>/= 84 mmHg) = 1.1 (95% CI, 0.7-1.8). Results were similar for specific cardiovascular events. PP was correlated with SBP (r = 0.825; p < 0.001), age (r = 0.422; p < 0.001), diabetes mellitus (r = 0.242; p < 0.001), and smoking (r = -0.158; p = 0.01), with adjusted hazard ratio for these variables of 1.0 (95% CI, 0.6-1.9). PP is an arterial pressure component very correlated with SBP and other factors, but is not a better cardiovascular risk predictor than SBP.

  14. Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?

    PubMed

    Lopez, Rosana; Badel, Eric; Peraudeau, Sebastien; Leblanc-Fournier, Nathalie; Beaujard, François; Julien, Jean-Louis; Cochard, Hervé; Moulia, Bruno

    2014-05-01

    When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices.

  15. Pulse Oximeter Derived Blood Pressure Measurement in Patients With a Continuous Flow Left Ventricular Assist Device.

    PubMed

    Hellman, Yaron; Malik, Adnan S; Lane, Kathleen A; Shen, Changyu; Wang, I-Wen; Wozniak, Thomas C; Hashmi, Zubair A; Munson, Sarah D; Pickrell, Jeanette; Caccamo, Marco A; Gradus-Pizlo, Irmina; Hadi, Azam

    2016-10-26

    Currently, blood pressure (BP) measurement is obtained noninvasively in patients with continuous flow left ventricular assist device (LVAD) by placing a Doppler probe over the brachial or radial artery with inflation and deflation of a manual BP cuff. We hypothesized that replacing the Doppler probe with a finger-based pulse oximeter can yield BP measurements similar to the Doppler derived mean arterial pressure (MAP). We conducted a prospective study consisting of patients with contemporary continuous flow LVADs. In a small pilot phase I inpatient study, we compared direct arterial line measurements with an automated blood pressure (ABP) cuff, Doppler and pulse oximeter derived MAP. Our main phase II study included LVAD outpatients with a comparison between Doppler, ABP, and pulse oximeter derived MAP. A total of five phase I and 36 phase II patients were recruited during February-June 2014. In phase I, the average MAP measured by pulse oximeter was closer to arterial line MAP rather than Doppler (P = 0.06) or ABP (P < 0.01). In phase II, pulse oximeter MAP (96.6 mm Hg) was significantly closer to Doppler MAP (96.5 mm Hg) when compared to ABP (82.1 mm Hg) (P = 0.0001). Pulse oximeter derived blood pressure measurement may be as reliable as Doppler in patients with continuous flow LVADs.

  16. Retrieval of the pulse amplitude and phase from cross-phase modulation spectrograms using the simulated annealing method.

    PubMed

    Honzatko, Pavel; Kanka, J; Vrany, B

    2004-11-29

    The simulated annealing method is used for retrieving the amplitude and phase from cross-phase modulation spectrograms. The method allows us to take into account the birefringence of the measurement fiber and resolution of the optical spectrum analyzer. The influence of the birefringence and analyzer resolution are discussed.

  17. Pulse pressure monitoring through non-contact cardiac motion detection using 2.45 GHz microwave Doppler radar.

    PubMed

    Singh, Aditya; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    The use of a Continuous Wave (CW) quadrature Doppler radar is proposed here for continuous non-invasive Pulse Pressure monitoring. A correspondence between the variation in systemic pulse and variation in the displacement of the chest due to heart is demonstrated, establishing feasibility for the approach. Arctangent demodulation technique was used to process baseband data from radar measurements on two test subjects, in order to determine the absolute cardiac motion. An Omron digital Blood pressure cuff was used to measure the systolic and diastolic blood pressures from which the pulse pressure was calculated. Correlation between pulse pressure and cardiac motion was observed through changes induced due to different postures of the body.

  18. High-pressure dielectric barrier discharge Xenon lamps generating short pulses of high-peak-power VUV radiation (172nm) with high pulse-to-pulse reproducibility.

    NASA Astrophysics Data System (ADS)

    Carman, Robert; Ward, Barry; Mildren, Richard; Kane, Deborah

    2003-10-01

    Dielectric barrier discharges (DBDs) are used to efficiently generate radiation in the ultraviolet and vacuum-ultraviolet spectral regions (88nm-350nm) by forming rare-gas and rare-gas halide excimers in a transient plasma. Usually, DBD lamps generate the light output quasi-continuously or in bursts with a high degree of stochastic or random variability in the instantaneous UV/VUV intensity. However, regular pulses of high-peak-power UV/VUV, with high pulse-to-pulse reproducibility, are of interest for applications in biology, surface treatment and cleaning, and time-resolved fluorescence spectroscopy. Such pulses can be generated from spatially homogeneous plasmas in a Xe DBD when the discharge is driven by uni-polar voltage pulses of short duration ( 100ns)^1. In the present study, we will report Xe DBD lamp performance and VUV output pulse characteristics for gas pressures up to 2.5bar and excitation conditions tailored for high-peak-power output. The experimental results will be compared to theoretical results from a detailed 1-D computer model of the spatio-temporal evolution of the plasma kinetics and Xe species population densities. ^1R.P.Mildren and R.J.Carman, J.Phys.D, 34, L1-L6, (2001)

  19. Relationship between radial and central arterial pulse wave and evaluation of central aortic pressure using the radial arterial pulse wave.

    PubMed

    Takazawa, Kenji; Kobayashi, Hideyuki; Shindo, Naohisa; Tanaka, Nobuhiro; Yamashina, Akira

    2007-03-01

    Since a decrease of central aortic pressure contributes to the prevention of cardiovascular events, simple measurement of not only brachial blood pressure but also central aortic pressure may be useful in the prevention and treatment of cardiovascular diseases. In this study, we simultaneously measured radial artery pulse waves non-invasively and ascending aortic pressure invasively, before and after the administration of nicorandil. We then compared changes in central aortic pressure and radial arterial blood pressure calibrated with brachial blood pressure in addition to calculating the augmentation index (AI) at the aorta and radial artery. After nicorandil administration, the reduction in maximal systolic blood pressure in the aorta (Deltaa-SBP) was -14+/-15 mmHg, significantly larger than that in early systolic pressure in the radial artery (Deltar-SBP) (-9+/-12 mmHg). The reduction in late systolic blood pressure in the radial artery (Deltar-SBP2) was -15+/-14 mmHg, significantly larger than Deltar-SBP, but not significantly different from Deltaa-SBP. There were significant relationships between Deltaa-SBP and Deltar-SBP (r=0.81, p<0.001), and between Deltaa-SBP and Deltar-SBP2 (r=0.91, p<0.001). The slope of the correlation regression line with Deltar-SBP2 (0.83) was larger and closer to 1 than that with Deltar-SBP (0.63), showing that the relationship was close to 1:1. Significant correlations were obtained between aortic AI (a-AI) and radial AI (r-AI) (before nicorandil administration: r=0.91, p<0.001; after administration: r=0.70, p<0.001). These data suggest that the measurement of radial artery pulse wave and observation of changes in the late systolic blood pressure in the radial artery (r-SBP2) in addition to the ordinary measurement of brachial blood pressure may enable a more accurate evaluation of changes in maximal systolic blood pressure in the aorta (a-SBP).

  20. Lorentzian amplitude and phase pulse shaping for nonresonant background suppression and enhanced spectral resolution in coherent anti-Stokes Raman scattering spectroscopy and microscopy.

    PubMed

    Konorov, Stanislav O; Blades, Michael W; Turner, Robin F B

    2010-07-01

    Femtosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy offers several advantages over spontaneous Raman spectroscopy due to the inherently high sensitivity and low average power deposition in the sample. Femtosecond CARS can be implemented in a collinear pump/probe beam configuration for microspectroscopy applications and has emerged as a powerful technique for chemical imaging of biological specimens. However, one serious limitation of this approach is the presence of a high nonresonant background component that often obscures the resonant signals of interest. We report here an innovative pulse-shaping method based on Lorentzian amplitude and phase spectral modulation of a broadband femtosecond probe pulse that yields spectra with both high spectral resolution and no nonresonant background. No further mathematical analysis is needed to extract Raman spectra. The utility of the proposed method for CARS microscopy is demonstrated using a mixture of polystyrene and latex beads, as well as dry-fixed embryonic stem cells.

  1. Investigation to define the propagation characteristics of a finite amplitude acoustic pressure wave, phase 1 final report, 29 jun. 1964 - 29 jul. 1965

    NASA Technical Reports Server (NTRS)

    Li, T. C.; Peter, A. C.

    1965-01-01

    The contribution of high entropy production regions to the generation and propagation characteristics of a finite amplitude pressure is considered. Preliminary analysis indicates that, for nozzles where pressure rations are above critical, the predominant contribution may come from the shock layer formation in the exhaust region. Temperature effects indicate high dependence of the forcing function upon the initial temperature of the media.

  2. Perceived social isolation moderates the relationship between early childhood trauma and pulse pressure in older adults.

    PubMed

    Norman, Greg J; Hawkley, Louise; Ball, Aaron; Berntson, Gary G; Cacioppo, John T

    2013-06-01

    Over a million children are subjected to some form of trauma in the United States every year. Early trauma has been shown to have deleterious effects on cardiovascular health in adulthood. However, the presence of strong social relationships as an adult can buffer an individual against many of the harmful effects of early trauma. Furthermore, the perception of social isolation has been shown to be a significant risk factor for the development of cardiovascular disease and is a strong predictor of all cause mortality. One likely mechanism thought to underlie the influence of perceived isolation on health is changes in arterial stiffness. One of the more widely used measures of arterial stiffness in older individuals is pulse pressure. The goal of the present study was to determine whether early childhood trauma is associated with elevations on pulse pressure. Furthermore, this study sought to determine whether perceived social isolation moderates the relationship between early trauma and pulse pressure. Results revealed that individuals with low perceived social isolation displayed no significant relationship between early trauma and pulse pressure. However, individuals who reported higher levels of perceived isolation showed a significant positive association between early trauma and pulse pressure. Therefore, the detrimental effects of early trauma may be partially dependent upon the quality of social relationships as an adult.

  3. Pulse pressure variation to predict fluid responsiveness in spontaneously breathing patients: tidal vs. forced inspiratory breathing.

    PubMed

    Hong, D M; Lee, J M; Seo, J H; Min, J J; Jeon, Y; Bahk, J H

    2014-07-01

    We evaluated whether pulse pressure variation can predict fluid responsiveness in spontaneously breathing patients. Fifty-nine elective thoracic surgical patients were studied before induction of general anaesthesia. After volume expansion with hydroxyethyl starch 6 ml.kg(-1) , patients were defined as responders by a ≥ 15% increase in the cardiac index. Haemodynamic variables were measured before and after volume expansion and pulse pressure variations were calculated during tidal breathing and during forced inspiratory breathing. Median (IQR [range]) pulse pressure variation during forced inspiratory breathing was significantly higher in responders (n = 29) than in non-responders (n = 30) before volume expansion (18.2 (IQR 14.7-18.2 [9.3-31.3])% vs. 10.1 (IQR 8.3-12.6 [4.8-21.1])%, respectively, p < 0.001). The receiver-operating characteristic curve revealed that pulse pressure variation during forced inspiratory breathing could predict fluid responsiveness (area under the curve 0.910, p < 0.0001). Pulse pressure variation measured during forced inspiratory breathing can be used to guide fluid management in spontaneously breathing patients.

  4. Energy Characteristics of Auroral Electron Precipitation: A Comparison of Substorms and Pressure Pulse Related Auroral Activity

    NASA Technical Reports Server (NTRS)

    Chua, D.; Parks, G. K.; Brittnacher, M. J.; Peria, W.; Germany, G. A.; Spann, J. F., Jr.; Carlson, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Polar Ultraviolet Imager (UVI) observes auroral responses to incident solar wind pressure pulses and interplanetary shocks such as those associated with coronal mass ejections. The arrival of a CME pressure pulse at the front of the magnetosphere results in highly disturbed geomagnetic conditions and a substantial increase in both dayside and nightside auroral precipitation. Our observations show a simultaneous brightening over broad areas of the dayside and nightside aurora in response to a pressure pulse, indicating that more magnetospheric regions participate as sources for auroral precipitation than during isolated substorms. We estimate the average energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated events to those during isolated auroral substorms. Electron precipitation during substorms has average energies greater than 10 keV and is structured both in local time and magnetic latitude. For auroral intensifications following the arrival of a pressure pulse or interplanetary shock, electron precipitation is less spatially structured and has greater ux of lower energy electrons (Eave _ 7 keV) than during isolated substorm, onsets. The average energies of the precipitating electrons inferred from UVI are consistent with those measured in-situ by the FAST spacecraft. These observations quantify the differences between global and local auroral precipitation processes and will provide a valuable experimental check for models of sudden storm commencements and magnetospheric response to perturbations in the solar wind.

  5. Intraocular pressure regulation: findings of pulse-dependent trabecular meshwork motion lead to unifying concepts of intraocular pressure homeostasis.

    PubMed

    Johnstone, Murray A

    2014-01-01

    Intraocular pressure (IOP) is the only treatable risk factor in glaucoma, one of the world's leading causes of blindness. Mechanisms that maintain IOP within a normal range have been poorly understood in contrast to intrinsic mechanisms that regulate systemic blood pressure. Vessel walls experience continuous pulse-induced cyclic pressure and flow. Pressure-dependent wall stress and flow-dependent shear stress provide sensory signals that initiate mechanotransduction responses. The responses optimize vessel wall elasticity, compliance and lumen size, providing a feedback loop to maintain intrinsic pressure homeostasis. Aqueous humor is part of a vascular circulatory loop, being secreted into the anterior chamber of the eye from the vasculature, then returning to the vasculature by passing through the trabecular meshwork (TM), a uniquely modified vessel wall interposed between the anterior chamber and a vascular sinus called Schlemm's canal (SC). Since pressure in circulatory loops elsewhere is modulated by cyclic stresses, one might predict similar pressure modulation in the aqueous outflow system. Recent laboratory evidence in fact demonstrates that cyclic IOP changes alter aqueous outflow while increasing cellularity and contractility of TM cells. Cyclic changes also lead to alterations in gene expression, changes in cytoskeletal networks and modulation of signal transduction. A new technology, phase-based optical coherence tomography, demonstrates in vivo pulse-dependent TM motion like that elsewhere in the vasculature. Recognition of pulse-dependent TM motion provides a linkage to well-characterized mechanisms that provide pressure homeostasis in the systemic vasculature. The linkage may permit unifying concepts of pressure control and provide new insights into IOP homeostatic mechanisms.

  6. Pulse transit time as a surrogate measure of changes in systolic arterial pressure in children during sleep.

    PubMed

    Vlahandonis, Anna; Biggs, Sarah N; Nixon, Gillian M; Davey, Margot J; Walter, Lisa M; Horne, Rosemary S C

    2014-08-01

    Pulse transit time has been proposed as a surrogate measure of systolic arterial pressure, as it is dependent upon arterial stiffness. Past research has shown that pulse transit time has a significant inverse relationship to systolic arterial pressure in adults; however, studies in children are limited. This study aimed to explore the relationship between systolic arterial pressure and pulse transit time in children during sleep. Twenty-five children (13.1 ± 1.6 years, 48% male) underwent overnight polysomnography (PSG) with a simultaneous recording of continuous systolic arterial pressure and photoplethysmography. Pulse transit time was calculated as the time delay between the R-wave peak of the electrocardiogram (ECG) to the 50% point of the upstroke of the corresponding photoplethysmography waveform; 500 beats of simultaneous systolic arterial pressure and pulse transit time were analysed in each sleep stage for each child. Pulse transit time was normalized to each subject's mean wake pulse transit time. The ability of pulse transit time to predict systolic arterial pressure change was determined by linear mixed-effects modelling. Significant negative correlations between pulse transit time and systolic arterial pressure were found for individual children for each sleep stage [mean correlations for cohort: non-rapid eye movement (NREM) sleep 1 and 2 r = -0.57, slow wave sleep (SWS) r = -0.76, REM r = -0.65, P < 0.01 for all]. Linear mixed-model analysis demonstrated that changes in pulse transit time were a significant predictor of changes in systolic arterial pressure for each sleep stage (P < 0.001). The model of pulse transit time-predicted systolic arterial pressure closely tracked actual systolic arterial pressure changes over time. This study demonstrated that pulse transit time was accurate in tracking systolic arterial pressure changes over time. Thus, the use of pulse transit time as a surrogate measure of changes in systolic arterial pressure in

  7. Influences of impedance matching network on pulse-modulated radio frequency atmospheric pressure glow discharges

    SciTech Connect

    Huo, W. G.; Xu, K.; Sun, B.; Ding, Z. F.

    2012-08-15

    Pulse-modulated RF atmospheric pressure glow discharges (APDGs) were investigated in recent years to reduce the thermal accumulation and extend the operation region of the stable alpha glow mode. Different pulse-modulated voltage and current waveforms were acquired in previous experiments, but no attention was paid to the interpretation. We investigated this issue and associated phenomenon via positive and negative feedback effects derived from varying the series capacitor in the inversely L-shaped matching network used in our pulse-modulated RF APGD source. The evolutions of pulse-modulated RF waveforms were found to be associated with the feedback region and the pulsed plasma absorbed RF power. In the positive feedback region, pulse-modulated RF APGDs are relatively stable. In the negative feedback region, wide spikes as well as undershoots occur in RF voltage and current waveforms and the plasma absorbed RF power. In case of a high RF power discharge with a low modulation frequency, the pulse-modulated RF APGD is extinguished and re-ignited due to the enhanced undershoot during the initial pulse phase. The pulse-modulated RF APGD can transit from positive to negative feedback region in a range of series capacitance. Experimental results are discussed by the aid of equivalent circuit, negative and positive feedback effects.

  8. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.

    PubMed

    Ikenaga, Yuki; Nishi, Shohei; Komagata, Yuka; Saito, Masashi; Lagrée, Pierre-Yves; Asada, Takaaki; Matsukawa, Mami

    2013-11-01

    A pulse wave is the displacement wave which arises because of ejection of blood from the heart and reflection at vascular bed and distal point. The investigation of pressure waves leads to understanding the propagation characteristics of a pulse wave. To investigate the pulse wave behavior, an experimental study was performed using an artificial polymer tube and viscous liquid. A polyurethane tube and glycerin solution were used to simulate a blood vessel and blood, respectively. In the case of the 40 wt% glycerin solution, which corresponds to the viscosity of ordinary blood, the attenuation coefficient of a pressure wave in the tube decreased from 4.3 to 1.6 dB/m because of the tube stiffness (Young's modulus: 60 to 200 kPa). When the viscosity of liquid increased from approximately 4 to 10 mPa·s (the range of human blood viscosity) in the stiff tube, the attenuation coefficient of the pressure wave changed from 1.6 to 3.2 dB/m. The hardening of the blood vessel caused by aging and the increase of blood viscosity caused by illness possibly have opposite effects on the intravascular pressure wave. The effect of the viscosity of a liquid on the amplitude of a pressure wave was then considered using a phantom simulating human blood vessels. As a result, in the typical range of blood viscosity, the amplitude ratio of the waves obtained by the experiments with water and glycerin solution became 1:0.83. In comparison with clinical data, this value is much smaller than that seen from blood vessel hardening. Thus, it can be concluded that the blood viscosity seldom affects the attenuation of a pulse wave.

  9. The research of the solar panels-commutator-inverter-load system with the pulse-amplitude control

    NASA Astrophysics Data System (ADS)

    Taissariyeva, K. N.; Issembergenov, N. T.

    2014-11-01

    The system "solar panels-commutator-inverter-load" with amplitude-impulse control was researched. It was shown that if the solar panels are located in a certain way at the input of the inverter, it will be possible to get multilevel voltage close to sine wave with the help of amplitude-impulse control of commutator at the output of inverter. Herewith the effect is saving of solar panels depending on the quantity of voltage level, and also the enhanced voltage distortion coefficient (THD). For instance, with 8-level of voltage 28,2% and THD=4,64%, with 13-level of voltage, 30,5% and THD=2,65%, and with 26-level of voltage 31,7% and THD=1,22%. The given results were obtained through computer modeling and experimental research.

  10. Pulse wave velocity and digital volume pulse as indirect estimators of blood pressure: pilot study on healthy volunteers.

    PubMed

    Padilla, Juan M; Berjano, Enrique J; Sáiz, Javier; Rodriguez, Rafael; Fácila, Lorenzo

    2009-09-01

    The purpose of the study was to asses the potential use of pulse wave velocity (PWV) and digital volume pulse (DVP) as estimators of systolic (SBP) and diastolic (DPB) blood pressure. Single and multiple correlation studies were conducted, including biometric parameters and risk factors. Brachial-ankle PWV (baPWV) and DVP signals were obtained from a Pulse Trace PWV and Pulse Trace PCA (pulse contour analysis), respectively. The DVP (obtained by photoplethysmography), allowed stiffness (SI) and reflection indexes (RI) to be derived. The first study on 47 healthy volunteers showed that both SBP and DPB correlated significantly both with baPWV and SI. Multiple regression models of the baPWV and the waist-to-hip ratio (WHR) allowed SBP and DBP to be modeled with r = 0.838 and r = 0.673, respectively. SI results also employed WHR and modeled SBP and DBP with r = 0.852 and r = 0.663, respectively. RI did not correlate either with SBP or DBP. In order to avoid the use of ultrasound techniques to measure PWV, we then developed a custom-built system to measure PWV by photoplethysmography and validated it against the Pulse Trace. With the same equipment we conducted a second pilot study with ten healthy volunteers. The best SBP multiple regression model for SBP achieved r = 0.997 by considering the heart-finger PWV (hfPWV measured between R-wave and index finger), WHR and heart rate. Only WHR was significant in the DBP model. Our findings suggest that the hfPWV photoplethysmography signal could be a reliable estimator of approximate SBP and could be used, for example, to monitor cardiac patients during physical exercise sessions in cardiac rehabilitation.

  11. Method and Apparatus for Pressure Pulse Arcjet Starting

    NASA Technical Reports Server (NTRS)

    Sandkovic, John M. (Inventor); Curran, Francis M. (Inventor)

    1997-01-01

    The invention disclosed is directed to a model and apparatus for an arcjet starter. The invention discloses a method of moving an arc from the subsonic region of the thruster to the supersonic region by introducing a pressurized propellant into the annular area of the anode.

  12. Method and apparatus for pressure pulse arcjet starting

    NASA Technical Reports Server (NTRS)

    Sankovic, John M. (Inventor); Curran, Francis M. (Inventor)

    1996-01-01

    The invention disclosed is directed to a method and apparatus for an arcjet starter. The invention discloses a method of moving an arc from the subsonic region of the thruster to the supersonic region by introducing a pressurized propellant into the casuty of the anode.

  13. Method and Apparatus for Pressure Pulse Arcjet Starting

    NASA Technical Reports Server (NTRS)

    Sankovic, John M. (Inventor); Curran, Francis M. (Inventor)

    1999-01-01

    The invention disclosed is directed to a method and apparatus for an arcjet starter. The invention discloses a method of moving an arc from the subsonic region of the thruster to the supersonic region by introducing a pressurized propellant into the casuty of the anode.

  14. Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Seals, R. K.

    1974-01-01

    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.

  15. Experimental verification of the ablation pressure dependence upon the laser intensity at pulsed irradiation of metals

    NASA Astrophysics Data System (ADS)

    Krasyuk, I. K.; Semenov, A. Yu; Stuchebryukhov, I. A.; Khishchenko, K. V.

    2016-11-01

    Experiments for verification of a functional dependence of the ablation pressure on the irradiated surface of a target upon the laser intensity in a range from 1.2 to 350 TW/cm2 have been carried out. For that, at some intensities of the laser irradiation, time intervals between the laser pulse maximum and the moment of the shock-wave front arrival to the rear surface of the target were measured, which are dependent on the ablation pressure. Two schemes of the measurements were used. At the first scheme, at higher laser intensities, the front arrival moment is determined via an electron-optical camera when the rear surface begins glowing. At the second scheme, the front arrival moment is recorded when a probe laser pulse changes the character of the reflection by the rear surface of the irradiated target. Results of measurements are in agreement with the ablation pressure dependence upon the laser pulse intensity within 20%.

  16. Controlling Ion and UV/VUV Photon Fluxes in Pulsed Low Pressure Plasmas for Materials Processing

    NASA Astrophysics Data System (ADS)

    Tian, Peng; Kushner, Mark J.

    2012-10-01

    UV/VUV photon fluxes in plasma materials processing have a variety of effects ranging from damaging to synergistic. To optimize these processes, it is desirable to have separate control over the fluxes of ions and photons, or at least be able to control their relative fluxes or overlap in time. Pulsed plasmas may provide such control as the rates at which ion and photon fluxes respond to the pulse power deposition are different. Results from a computational investigation of pulsed plasmas will be discussed to determine methods to control the ratio of ion to photon fluxes. Simulations were performed using a 2-dimensional plasma hydrodynamics model which addresses radiation transport using a Monte Carlo Simulation. Radiation transport is frequency resolved using partial-frequency-redistribution algorithms. Results for low pressure (10s of mTorr) inductively and capacitively coupled plasmas in Ar/Cl2 mixtures will be discussed while varying duty cycle, reactor geometry, gas mixture and pressure. We found that the time averaged ratio of VUV photon-to-ion fluxes in ICPs can be controlled with duty cycle of the pulsed power. Even with radiation trapping, photon fluxes tend to follow the power pulse whereas due to their finite response times, fluxes of ions tend to average the power pulse. Due to the overshoot in electron temperature that occurs at the start of low-duty-cycle pulses, disproportionately large photon fluxes (compared to ion fluxes) can be generated.

  17. Resonance of the exchange amplitude of a photon by an electron scattering in a pulsed laser field

    NASA Astrophysics Data System (ADS)

    Nedoreshta, V. N.; Roshchupkin, S. P.; Voroshilo, A. I.

    2015-06-01

    Resonant scattering of a photon by an electron in the presence of the field of the low intensity circularly polarized pulsed laser wave is studied theoretically. The approximation used the case in which a laser-pulse duration is significantly greater than the characteristic oscillation time. The resonance conditions of the exchange diagrams by electron and positron intermediate states were determined. The probability of such a process is calculated. It is demonstrated that the resonant probability may be six to ten orders of magnitude higher than the probability of the Compton effect in the absence of the external field. Obtained results can be verified experimentally in the framework of modern research projects (SLAC, FAIR, XFEL, and ELI).

  18. Pulsed laser kinetic studies of liquids under high pressure

    SciTech Connect

    Eyring, E.M.

    1990-11-29

    A high pressure apparatus has been constructed for measuring rates of reactions in liquids under pressures ranging from 1 atm to 2000 atm. This apparatus is being used to test the effect of ligand bulk on the rate of a thermal ring closure reaction. Microphonic photoacoustic signals obtained by illuminating solid samples with synchrotron soft x-rays and with visible laser beams have been successfully correlated with a theory for photoacoustic signal enhancement by volatile liquids. The concentration dependence of the fluorescence and nonradiative quantum yields for cresyl violet dissolved in methanol has been determined. Stability constants for complexes of lithium ion with four different crown ethers dissolved in a low temperature molten salt have been measured.

  19. Ion Based Pressure Sensor for Pulse Detonation Engines

    DTIC Science & Technology

    2004-03-01

    Chapman - Jouguet Detonation cycles to be 27%, 47%, and 49% respectively [6]. Compared to the constant pressure Brayton cycle, the Humphrey cycle...the wave, according to Chapman - Jouguet theory, travels at supersonic speeds relative to the unburned fuel-air mixture. The PDE takes advantage of...a successful detonation near Chapman - Jouguet predicted speeds, the combustion must produce a strong shock wave that travels down the tube. This

  20. Effect of hydrostatic pressure pulsing on the inactivation of Salmonella enteritidis in liquid whole egg.

    PubMed

    Bari, M L; Ukuku, D O; Mori, M; Kawamoto, S; Yamamoto, K

    2008-04-01

    Eggs and egg-containing foods contaminated with bacterial human pathogens have been implicated in numerous foodborne outbreaks leading to costly recalls. Research was undertaken to investigate the use of high pressure-pulse treatment to inactivate Salmonella Enteritidis inoculated in liquid egg. Liquid egg was inoculated with Salmonella Enteritidis (8.0 log colony-forming units [CFU]/mL) and exposed to hydrostatic pressures (300-400 MPa) and pressure (350 MPa) pulsing at 25 degrees C, 40 degrees C, and 50 degrees C for up to 40 minutes to determine the maximum allowable pressure that can inactivate the Salmonella with minimal injury. Pressure treatments (350 and 400 MPa) at 25 degrees C for up to 40 minutes reduced the population of Salmonella Enteritidis by approximately 4.8 and 6.0 log(10) CFU/mL, respectively. High pressure (350 MPa) treatment at 50 degrees C and 2-minute pulses at four cycles for a total of 11.4 minutes, including the come-up and come-down times, led to a significant (p < 0.05) inactivation of Salmonella Enteritidis in liquid egg without causing coagulation. However coagulation occurred in the liquid egg at 400 MPa pressure treatment for 10 minutes at 50 degrees C. No Salmonella population was recovered in this liquid egg stored at 4 degrees C, 25 degrees C, and 37 degrees C for 24 hours suggesting that 350 MPa hydrostatic pressure and pulsing treatment is a better alternative for inactivation of Salmonella in liquid egg than continuous pressure treatment.

  1. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall

    2013-10-01

    Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of

  2. Non-invasive measurement of the blood pressure pulse using multiple PPGs

    NASA Astrophysics Data System (ADS)

    Seymour, John; Pennington, Gary

    Heart disease, the leading cause of death in the US, may be spotted early on by looking at photoplethysmogram (PPG) data. This experiment explores a new method of continuously monitoring the blood pressure pulse with PPG data. In contrast to the traditional sphygmomanometer (cuff) method, which yields only the systolic and diastolic pressure during measurement, this method tracks the blood pressure pulse wave in a non-invasive continuous manner. This procedure allows for fast, inexpensive, and detailed analysis of the patient's blood pressure implementable on a large scale. We also explore the second derivative of the PPG data. In combination with the above method, the patient's heart risk can be effectively detected. We acknowledge Fisher Endowment Grant support from the Jess and Mildred Fisher College of Science and Mathematics, Towson University.

  3. Arterial pulse pressure amplification described by means of a nonlinear wave model: characterization of human aging

    NASA Astrophysics Data System (ADS)

    Alfonso, M.; Cymberknop, L.; Armentano, R.; Pessana, F.; Wray, S.; Legnani, W.

    2016-04-01

    The representation of blood pressure pulse as a combination of solitons captures many of the phenomena observed during its propagation along the systemic circulation. The aim of this work is to analyze the applicability of a compartmental model for propagation regarding the pressure pulse amplification associated with arterial aging. The model was applied to blood pressure waveforms that were synthesized using solitons, and then validated by waveforms obtained from individuals from differentiated age groups. Morphological changes were verified in the blood pressure waveform as a consequence of the aging process (i.e. due to the increase in arterial stiffness). These changes are the result of both a nonlinear interaction and the phenomena present in the propagation of nonlinear mechanic waves.

  4. Impact of passive vibration on pressure pulse wave characteristics.

    PubMed

    Sanchez-Gonzalez, M A; Wong, A; Vicil, F; Gil, R; Park, S Y; Figueroa, A

    2012-10-01

    The augmentation index (AIx), a marker of wave reflection, decreases following acute leg exercise. Passive vibration (PV) causes local vasodilation that may reduce AIx. This study investigated the effects of acute PV on wave reflection and aortic hemodynamics. In a crossover fashion 20 (M=9, F=11) healthy young (22±3 year) participants were randomized to 10 min PV or no vibration control (CON) trials. Subjects rested in the supine position with their legs over a vibration platform for the entire session. Radial waveforms were obtained by applanation tonometry before and after 3 min (Post-3) and 30 min (Post-30) of PV (∼5.37 G) or CON. No change in parameters was found at Post-3. We found significant time-by-trial interactions (P<0.01) at Post-30 for augmented pressure, AIx and second systolic peak pressure (P2), such that these parameters significantly (P<0.05) decreased (-2.3±3.0 mm Hg, -7.2±6.9% and -1.5±3.5 mm Hg, respectively) after PV but not after CON. These findings suggest that acute PV applied to the legs decreases AIx owing to a decrease in wave reflection magnitude (P2). Further research is warranted to evaluate the potential clinical application of PV in populations at an increased cardiovascular risk who are unable to perform conventional exercise.

  5. On the Relationship of Interplanetary Pressure Pulses and Subsequent Auroral Activity

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Smith, M.; Germany, G.; Chua, D.; Brittnacher, M.; Parks, G.

    1999-01-01

    The relation between interplanetary pressure pulses and subsequent auroral breakup is examined using over 70 cases from 1997 to 1999. A solar wind-magnetosphere coupling parameter (based on Bargatze et al., Solar Wind-Magnetosphere Coupling, Terra Scientific Publishing Co., p. 101- 109, 1986) is used to correlate the amount of energy stored in the magnetospheric to the time delay for auroral activity relative to the SW pressure enhancement.

  6. Dissociation of nitrogen in a pulse-periodic dielectric barrier discharge at atmospheric pressure

    SciTech Connect

    Popov, N. A.

    2013-05-15

    Nitrogen molecule dissociation in a pulse-periodic atmospheric-pressure dielectric barrier discharge is numerically analyzed. It is shown that the quenching rate of predissociation states at atmospheric pressure is relatively low and the production of nitrogen atoms in this case can be adequately described using the cross section for electron-impact dissociation of N{sub 2} molecules taken from the paper by P.C. Cosby [J. Chem. Phys. 98, 9544 (1993)].

  7. Arterial Pulse Pressure and Its Association With Reduced Stroke Volume During Progressive Central Hypovolemia

    DTIC Science & Technology

    2006-09-01

    NM, Joyner MJ. Influence of increased central venous pressure on baroreflex control of sympathetic activity in humans. Am J Physiol Heart Circ Physiol...Arterial Pulse Pressure and Its Association With Reduced Stroke Volume During Progressive Central Hypovolemia Victor A. Convertino, PhD, William H...reduction of SV and change in MSNA during graded central hypovolemia in humans. Methods: After a 12-minute baseline data collection period, 13 men were

  8. Propagation of the pulsed electron beam of nanosecond duration in gas composition of high pressure

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G.; Sazonov, R.; Ponomarev, D.; Remnev, G.

    2015-11-01

    This paper presents the results of the investigation of the propagation of an electron beam in the high-pressure gas compositions (50, 300, and 760 Torr): sulfur hexafluoride and hydrogen, sulfur hexafluoride and nitrogen, sulfur hexafluoride and argon. The experiments have been performed using the TEA-500 laboratory accelerator. The main parameters of the accelerator are as follows: an accelerating voltage of 500 kV; an electron beam current of 10 kA; a pulse width at half maximum of 60 ns; a pulse energy of 200 J; a pulse repetition rate of up to 5 pulses per second, a beam diameter of 5 cm. The pulsed electron beam was injected into a 55 cm metal drift tube. The drift tube is equipped with three reverse-current shunts with simultaneous detecting of signals. The obtained results of the investigation make it possible to conclude that the picture of the processes occurring in the interaction of an electron beam in the high-pressure gas compositions is different from that observed in the propagation of the electron beam in the low-pressure gas compositions (1 Torr).

  9. Isentropic compression of metals, at multi-megabar pressures, using high explosive pulsed power

    SciTech Connect

    Tasker, D. G.; Goforth, J. H.; King, J. C.; Martinez, E. C.; Oona, H.; Sena, F. C.; Reisman, D. B.; Cauble, R. C.

    2001-01-01

    Accurate, ultra-high pressure isentropic equation of state (EOS) data, are required for a variety of applications and materials. Asay reported a new method to obtain these data using pulsed magnetic loading on the Sandia Z-machine. Fast rising current pulses (risetimes from 100 to 30011s) at current densities exceeding many MNcm, create continuous magnetic loading up to a few Mbar. As part of a collaborative effort between the Los Alamos and Lawrence Livermore National Laboratories we are adapting our high explosive pulsed power (HEPP) methods to obtain isentropic EOS data with the Asay technique. This year we plan to obtain isentropic EOS data for copper and tantalum at pressures up to -2 Mbar; eventually we hope to reach several tens of Mbar. We will describe the design of the HEPP systems and show out attempts to obtain EOS data to date.

  10. Dissociation of carbon-dioxide at high-pressure using nanosecond-pulsed dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Yong, Taemin; Cappelli, Mark

    2016-10-01

    This study investigates the efficiency of the conversion of CO2 into CO and O2 using nanosecond repetitively pulsed discharges in a high pressure reactor capable of exceeding the supercritical point. The electrode configuration consists of a pin-to-plane geometry with the plane electrode covered by dielectric material (SiO2) . The products of CO2 splitting are measured using mass spectrometry. The energy efficiency is determined for a range of residence times, pulse frequency and energy, and reactor pressures. The extent of CO2 conversion is found to be dependent on the duration of the processing time, reaching an equilibrium level that is linearly-dependent on the discharge pulse energy. The results are compared with our previous experiment conducted in the absence of the dielectric layer.

  11. Enhancement of proton acceleration by frequency-chirped laser pulse in radiation pressure mechanism

    NASA Astrophysics Data System (ADS)

    Vosoughian, H.; Riazi, Z.; Afarideh, H.; Yazdani, E.

    2015-07-01

    The transition from hole-boring to light-sail regime of radiation pressure acceleration by frequency-chirped laser pulses is studied using particle-in-cell simulation. The penetration depth of laser into the plasma with ramped density profile increases when a negatively chirped laser pulse is applied. Because of this induced transparency, the laser reflection layer moves deeper into the target and the hole-boring stage would smoothly transit into the light-sail stage. An optimum chirp parameter which satisfies the laser transparency condition, a 0 ≈ π n e l / n c λ , is obtained for each ramp scale length. Moreover, the efficiency of conversion of laser energy into the kinetic energy of particles is maximized at the obtained optimum condition. A relatively narrow proton energy spectrum with peak enhancement by a factor of 2 is achieved using a negatively chirped pulse compared with the un-chirped pulse.

  12. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond Protein Extracts.

    USDA-ARS?s Scientific Manuscript database

    The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...

  13. Resonant Pulse Combustors: A Reliable Route to Practical Pressure Gain Combustion

    NASA Technical Reports Server (NTRS)

    Paxson, Dan

    2017-01-01

    A particular type of pressure gain combustion (PGC) device is described, which is under investigation at GRC. The Resonant Pulse Combustor (RPC) has been largely overlooked due to its theoretically low performance. However, its practical performance is quite competitive with other PGC systems, and its physical simplicity is unmatched.

  14. Swept-Ramp Detonation Initiation Performance in a High-Pressure Pulse Detonation Combustor

    DTIC Science & Technology

    2010-12-01

    wide range of thrust and power generation applications. Thrust applications would require initial combustor pressures of about 1 –4 atm while power...5 1 . General ... General To fully understand the pulse detonation engine cycle it is necessary to understand the difference between a detonation and the more common

  15. Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?

    PubMed Central

    Lopez, Rosana; Badel, Eric

    2014-01-01

    When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices. PMID:24558073

  16. An investigation into the potential hypoalgesic effects of different amplitudes of PA mobilisations on the lumbar spine as measured by pressure pain thresholds (PPT).

    PubMed

    Krouwel, Oliver; Hebron, Clair; Willett, Elaine

    2010-02-01

    Mobilisation of the spine is a common technique used in clinical practice. Studies have shown that mobilisation to the spine can decrease pain. The optimum treatment dose for achieving this has not so far been investigated. Previous studies that demonstrate the pain relieving effects of mobilisations have used large amplitude of oscillations. The importance of amplitude on pain relief has not been established. The current study aims to: a) Investigate the importance of amplitude as part of the treatment dose. b) To explore the extent of any pain reliving effects seen following mobilisations. The study employed a randomised, single blind, within-subjects repeated measure design. Thirty asymptomatic subjects participated. The subjects completed three experimental conditions on three separate occasions. The conditions were: large amplitude of oscillations (forces between 50 and 200N), small amplitude of oscillations (150N-200N) and quasi-static (maintained at 200N). Each condition involved a 3x1minute central PA mobilisation at a frequency of 1.5Hz on the lumbar spine. Pressure pain thresholds (PPT) were measured immediately before and after each intervention at 4 different sites. The sites were chosen to determine the extent of the hypoalgesic response. Results demonstrated a significant increase in PPT following lumbar mobilisations (p=0.013) at all measured sites. However, no significant difference was found between amplitude conditions (p=0.864). This study suggests that in asymptomatic subjects a systemic hypoalgesic response is caused by lumbar mobilisation regardless of amplitude.

  17. Performance improvement by orthogonal pulse amplitude modulation and discrete multitone modulation signals in hybrid fiber-visible laser light communication system

    NASA Astrophysics Data System (ADS)

    Zhang, Fangliu; He, Jing; Deng, Rui; Chen, Qinghui; Chen, Lin

    2016-10-01

    A modulation format, orthogonal pulse amplitude modulation and discrete multitone modulation (O-PAM-DMT), is experimentally demonstrated in a hybrid fiber-visible laser light communication (fiber-VLLC) system using a cost-effective directly modulated laser and blue laser diode. In addition, low overhead is achieved by utilizing only one training sequence to implement synchronization and channel estimation. Through adjusting the ratio of PAM and DMT signal, three types of O-PAM-DMT signals are investigated. After transmission over a 20-km standard single-mode fiber and 5-m free-space VLLC, the receiver sensitivity for 4.36-Gbit/s O-PAM-DMT signals can be improved by 0.4, 1.4, and 2.7 dB, respectively, at a bit error rate of 1×10-3, compared with a conventional DMT signal.

  18. Elastic moduli of precompressed pyrophyllite used in ultrahigh pressure research. [propagation of ultrasonic pulses

    NASA Technical Reports Server (NTRS)

    Sachse, W.; Ruoff, A. L.

    1974-01-01

    The propagation of ultrasonic pulses in pyrophyllite specimens was studied to determine the effect of specimen precompression on the measured elastic moduli. Measurements were made at room pressure and, for the precompressed specimens, to pressures of 3 kbar. Pyrophyllite was found to be elastically anisotropic, apparently the result of the fabric present in our material. The room pressure adiabatic bulk modulus as measured on specimens made of isostatically compacted powered pyrophyllite was determined to be 96.1 kbar. The wave speeds of ultrasonic pulses in pyrophyllite were found to decrease with increasing specimen precompression. A limiting value of precompression was found, above which no further decrease in wave speed was observed. For the shear wave speeds this occurs at 10 kbar while for the longitudinal wave at 25 kbar. In the limit, the shear waves propagate 20% slower than in the unprecompressed samples; for the longitudinal wave the difference is 30%.

  19. Growth of arc in high-pressure, pulsed glow discharge by gas density depletion

    NASA Astrophysics Data System (ADS)

    Imada, Go; Yatsui, Kiyoshi; Masuda, Wataru

    2000-10-01

    Effects of gas density depletion on arc formation of high-pressure, pulsed glow discharge have been investigated by eliminating the other factors which may affect the discharge stability, such as shock waves, residual ions, electrode heating, and discharge products. The gas density depletion has been simulated by utilizing a subsonic gas flow between the curved electrodes combined with a convergent nozzle and a divergent diffuser. A comparison has been made on the discharge in the aerodynamically created gas density depletion with the second discharge in the double-pulse discharge within a stable gas. We have found that the large gas density depletion, Δρ/ρ0˜-3.6% corresponding to a pulse repetition rate (PRR) of ˜50 Hz, tends to cause an arc-like filament or an arc without the shocks, ions, electrode heating, and products. However, the second discharge in the double-pulse discharge becomes an arc in much smaller gas density depletion (Δρ/ρ0˜-1.2% corresponding to PRR ˜3 Hz). Therefore, the collapse of high-pressure, pulsed glow discharge is most likely caused by some factor other than the gas density depletion.

  20. An in vitro comparison of tibial tray cementation using gun pressurization or pulsed lavage.

    PubMed

    Schlegel, Ulf J; Püschel, Klaus; Morlock, Michael M; Nagel, Katrin

    2014-05-01

    Aseptic loosening of the tibial component remains a limitation to the highly successful procedure of total knee arthroplasty (TKA). Pulsed lavage improves bone cement penetration and interface strength in tibial tray cementation. This study tested whether pressurized cement application with a cement gun can compensate the use of jet lavage for bone surface preparation. Tibial components were implanted in six pairs of cadaveric tibiae. On one side, pulsed lavage of the tibial bone was combined with finger packing of bone cement; on the other side, syringe lavage and gun cementing was used. Cement penetration into the bone was determined from computed tomography scans, and Interface strength was determined by pull-out testing. Cement penetration was greater (p = 0.004) and interface strength was higher (p = 0.028) in the pulsed lavage group. Pressurization of cement by gun application could not compensate for the omission of pulsed lavage. Thus, pulsed lavage should be considered a crucial factor in TKA to improve implant fixation, which cannot be compensated for by cement application technique.

  1. Nozzle Exit Over-Pressure and Vortex Ring Interaction in a Fully-Pulsed Jet

    NASA Astrophysics Data System (ADS)

    Krueger, Paul S.; Gharib, Morteza

    2002-11-01

    Vortex rings formed by a starting jets will stop entraining circulation and pinch off from their generating or "trailing" jet for sufficiently large piston stroke length to jet diameter ratios (L/D) [Gharib et. al., JFM, 1998]. Recent work by the authors has demonstrated that the leading vortex ring contributes more impulse per unit L/D than does the trailing jet, highlighting the significance of vortex ring pinch off for propulsive applications. The impulse advantage of the leading vortex ring is provided by nozzle exit over-pressure resulting from the acceleration of ambient fluid during ring formation. The present work extends these single-pulse results to a periodic series of starting jets, i.e., a fully-pulsed jet. Measurements were made of the time-averaged thrust of fully-pulsed jets generated using a piston-cylinder mechanism for 2 < L/D < 6 and a range of pulsing frequencies. The results indicate that vortex ring formation provides substantial nozzle exit over-pressure (and hence, thrust benefit) in the pulsed case as well, but the benefit tends to diminish with increasing frequency. Various vortex ring interactions contribute to this trend.

  2. Investigation of the Acoustic Source Characteristics of High Energy Laser Pulses: Models and Experiment

    DTIC Science & Technology

    2008-06-01

    consistent with the expected approximately 1/r relationship for pressure amplitudes under 100MPa. The modeling effort employed AUTODYN , a finite...agreed with Vogel’s measured values. The efficiency, pulse length, pulse shape, and variation of pressure amplitude with range achieved with AUTODYN ...Nonlinear Acoustics, AUTODYN , Acoustic Modeling, Shock Acoustics 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY

  3. Wave reflection augments central systolic and pulse pressures during facial cooling.

    PubMed

    Edwards, David G; Roy, Matthew S; Prasad, Raju Y

    2008-06-01

    Cardiovascular events are more common in the winter months, possibly because of hemodynamic alterations in response to cold exposure. The purpose of this study was to determine the effect of acute facial cooling on central aortic pressure, arterial stiffness, and wave reflection. Twelve healthy subjects (age 23 +/- 3 yr; 6 men, 6 women) underwent supine measurements of carotid-femoral pulse wave velocity (PWV), brachial artery blood pressure, and central aortic pressure (via the synthesis of a central aortic pressure waveform by radial artery applanation tonometry and generalized transfer function) during a control trial (supine rest) and a facial cooling trial (0 degrees C gel pack). Aortic augmentation index (AI), an index of wave reflection, was calculated from the aortic pressure waveform. Measurements were made at baseline, 2 min, and 7 min during each trial. Facial cooling increased (P < 0.05) peripheral and central diastolic and systolic pressures. Central systolic pressure increased more than peripheral systolic pressure (22 +/- 3 vs. 15 +/- 2 mmHg; P < 0.05), resulting in decreased pulse pressure amplification ratio. Facial cooling resulted in a robust increase in AI and a modest increase in PWV (AI: -1.4 +/- 3.8 vs. 21.2 +/- 3.0 and 19.9 +/- 3.6%; PWV: 5.6 +/- 0.2 vs. 6.5 +/- 0.3 and 6.2 +/- 0.2 m/s; P < 0.05). Change in mean arterial pressure but not PWV predicted the change in AI, suggesting that facial cooling may increase AI independent of aortic PWV. Facial cooling and the resulting peripheral vasoconstriction are associated with an increase in wave reflection and augmentation of central systolic pressure, potentially explaining ischemia and cardiovascular events in the cold.

  4. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    PubMed

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  5. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor

    PubMed Central

    Nishiyama, Michiko; Sonobe, Masako; Watanabe, Kazuhiro

    2016-01-01

    In this paper, we present a pulse pressure waveform sensor that does not constrain a wearer’s daily activity; the sensor uses hetero-core fiber optics. Hetero-core fiber sensors have been found to be sensitive to moderate bending. To detect minute pulse pressure changes from the radial artery at the wrist, we devised a fiber sensor arrangement using three-point bending supports. We analyzed and evaluated the measurement validity using wavelet transformation, which is well-suited for biological signal processing. It was confirmed that the detected pulse waveform had a fundamental mode frequency of around 1.25 Hz over the time-varying waveform. A band-pass filter with a range of frequencies from 0.85 to 1.7 Hz was used to pick up the fundamental mode. In addition, a high-pass filter with 0.85 Hz frequency eliminated arm motion artifacts; consequently, we achieved high signal-to-noise ratio. For unrestricted daily health management, it is desirable that pulse pressure monitoring can be achieved by simply placing a device on the hand without the sensor being noticed. Two types of arrangements were developed and demonstrated in which the pulse sensors were either embedded in a base, such as an armrest, or in a wearable device. A wearable device without cuff pressure using a sensitivity-enhanced fiber sensor was successfully achieved with a sensitivity of 0.07–0.3 dB with a noise floor lower than 0.01 dB for multiple subjects. PMID:27699128

  6. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor.

    PubMed

    Nishiyama, Michiko; Sonobe, Masako; Watanabe, Kazuhiro

    2016-09-01

    In this paper, we present a pulse pressure waveform sensor that does not constrain a wearer's daily activity; the sensor uses hetero-core fiber optics. Hetero-core fiber sensors have been found to be sensitive to moderate bending. To detect minute pulse pressure changes from the radial artery at the wrist, we devised a fiber sensor arrangement using three-point bending supports. We analyzed and evaluated the measurement validity using wavelet transformation, which is well-suited for biological signal processing. It was confirmed that the detected pulse waveform had a fundamental mode frequency of around 1.25 Hz over the time-varying waveform. A band-pass filter with a range of frequencies from 0.85 to 1.7 Hz was used to pick up the fundamental mode. In addition, a high-pass filter with 0.85 Hz frequency eliminated arm motion artifacts; consequently, we achieved high signal-to-noise ratio. For unrestricted daily health management, it is desirable that pulse pressure monitoring can be achieved by simply placing a device on the hand without the sensor being noticed. Two types of arrangements were developed and demonstrated in which the pulse sensors were either embedded in a base, such as an armrest, or in a wearable device. A wearable device without cuff pressure using a sensitivity-enhanced fiber sensor was successfully achieved with a sensitivity of 0.07-0.3 dB with a noise floor lower than 0.01 dB for multiple subjects.

  7. Estimated Pulse Wave Velocity Calculated from Age and Mean Arterial Blood Pressure

    PubMed Central

    Greve, Sara V.; Laurent, Stephan; Olsen, Michael H.

    2017-01-01

    In a recently published paper, Greve et al [J Hypertens 2016;34:1279-1289] investigate whether the estimated carotid-femoral pulse wave velocity (ePWV), calculated using an equation derived from the relationship between carotid-femoral pulse wave velocity (cfPWV), age, and blood pressure, predicts cardiovascular disease (CVD) as good as the measured cfPWV. Because ePWV predicts CVD as good as cfPWV, some might wonder whether ePWV could be replaced by cfPWV, which is a time-consuming measurement requiring an expensive apparatus. This question is addressed in this mini-review. PMID:28229052

  8. Propagation of current pulses with an amplitude of up to 85 kA in soil over distances of several tens of meters

    NASA Astrophysics Data System (ADS)

    Smirnov, V. P.; Fortov, V. E.; Bykov, Yu. A.; Ermolaev, V. A.; Son, E. E.; Bazelyan, E. M.; Skobarikhin, Yu. V.; Grabovski, E. V.; Oleinik, G. M.; Shishlov, A. O.; Gribov, A. N.; Grigor'yants, V. K.; Goryushin, Yu. A.

    2016-02-01

    Conditions for the propagation in soil of current pulses with an amplitude of up to 85 kA and temporal characteristics typical of a lightning stroke are studied with the help of a specially designed mobile test complex on the basis of a 4-MJ capacitive energy storage with an output voltage of up to 2 MV. In contrast to the conventional opinion that the ionization processes in highly conductive soils are weakly pronounced, a dramatic reduction in the grounding resistance at a resistivity of about 100 Ω m and currents above 10 kA was observed. A time interval in which the grounding resistance is determined by the skin effect in soil is revealed. It is shown that the grounding resistance continues to decrease behind the front of the current pulse due to the continuous growth of spark channels in soil. Time variations in the grounding resistance cannot be related to the formation of a continuous ionization zone near the grounding electrodes and are explained only by the simultaneous growth of several long spark channels extending from the grounding device.

  9. Propagation of current pulses with an amplitude of up to 85 kA in soil over distances of several tens of meters

    SciTech Connect

    Smirnov, V. P.; Fortov, V. E.; Bykov, Yu. A.; Ermolaev, V. A.; Son, E. E.; Bazelyan, E. M. Skobarikhin, Yu. V.; Grabovski, E. V.; Oleinik, G. M.; Shishlov, A. O.; Gribov, A. N.; Grigor’yants, V. K.; Goryushin, Yu. A.

    2016-02-15

    Conditions for the propagation in soil of current pulses with an amplitude of up to 85 kA and temporal characteristics typical of a lightning stroke are studied with the help of a specially designed mobile test complex on the basis of a 4-MJ capacitive energy storage with an output voltage of up to 2 MV. In contrast to the conventional opinion that the ionization processes in highly conductive soils are weakly pronounced, a dramatic reduction in the grounding resistance at a resistivity of about 100 Ω m and currents above 10 kA was observed. A time interval in which the grounding resistance is determined by the skin effect in soil is revealed. It is shown that the grounding resistance continues to decrease behind the front of the current pulse due to the continuous growth of spark channels in soil. Time variations in the grounding resistance cannot be related to the formation of a continuous ionization zone near the grounding electrodes and are explained only by the simultaneous growth of several long spark channels extending from the grounding device.

  10. Amplitude- and rise-time-compensated filters

    DOEpatents

    Nowlin, Charles H.

    1984-01-01

    An amplitude-compensated rise-time-compensated filter for a pulse time-of-occurrence (TOOC) measurement system is disclosed. The filter converts an input pulse, having the characteristics of random amplitudes and random, non-zero rise times, to a bipolar output pulse wherein the output pulse has a zero-crossing time that is independent of the rise time and amplitude of the input pulse. The filter differentiates the input pulse, along the linear leading edge of the input pulse, and subtracts therefrom a pulse fractionally proportional to the input pulse. The filter of the present invention can use discrete circuit components and avoids the use of delay lines.

  11. Dual-modality arterial pulse monitoring system for continuous blood pressure measurement.

    PubMed

    Wen-Xuan Dai; Yuan-Ting Zhang; Jing Liu; Xiao-Rong Ding; Ni Zhao

    2016-08-01

    Accurate and ambulatory measurement of blood pressure (BP) is essential for efficient diagnosis, management and prevention of cardiovascular diseases (CVDs). However, traditional cuff-based BP measurement methods provide only intermittent BP readings and can cause discomfort with the occlusive cuff. Although pulse transit time (PTT) method is promising for cuffless and continuous BP measurement, its pervasive use is restricted by its limited accuracy and requirement of placing sensors on multiple body sites. To tackle these issues, we propose a novel dual-modality arterial pulse monitoring system for continuous blood pressure measurement, which simultaneously records the pressure and photoplethysmography (PPG) signals of radial artery. The obtained signals can be used to generate a pressure-volume curve, from which the elasticity index (EI) and viscosity index (VI) can be extracted. Experiments were carried out among 7 healthy subjects with their PPG, ECG, arterial pressure wave and reference BP collected to examine the effectiveness of the proposed indexes. The results of this study demonstrate that a linear regression model combining EI and VI has significantly higher BP tracking correlation coefficient as compared to the PTT method. This suggests that the proposed system and method can potentially be used for convenient and continuous blood pressure estimation with higher accuracy.

  12. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    SciTech Connect

    Eslami, E. Barjasteh, A.; Morshedian, N.

    2015-06-15

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.

  13. Generation of negative pressures and spallation phenomena in diamond exposed to a picosecond laser pulse

    SciTech Connect

    Abrosimov, S A; Bazhulin, A P; Bol'shakov, A P; Konov, V I; Krasyuk, I K; Pashinin, P P; Ral'chenko, V G; Semenov, A Yu; Sovyk, D N; Stuchebryukhov, I A; Khomich, A A; Fortov, V E; Khishchenko, K V

    2014-06-30

    The spallation phenomena in poly- and single-crystal synthetic diamonds have been experimentally investigated. A shockwave impact on a target was implemented using a 70-ps laser pulse in the Kamerton-T facility. The ablation pressure of 0.66 TPa on the front target surface was formed by pulsed radiation of a neodymium phosphate glass laser (second harmonic λ = 0.527 mm, pulse energy 2.5 J) with an intensity as high as 2 × 10{sup 13} W cm{sup -2}. The maximum diamond spall strength σ* ≈ 16.5 GPa is found to be 24% of the theoretical ultimate strength. Raman scattering data indicate that a small amount of crystalline diamond in the spallation region on the rear side of the target is graphitised. (extreme light fields and their applications)

  14. Blood pressure and pulse wave velocity as metrics for evaluating pathologic ageing of the cardiovascular system.

    PubMed

    Nilsson, Peter M; Khalili, Payam; Franklin, Stanley S

    2014-02-01

    The influence of chronological ageing on the components of the cardiovascular system is of fundamental importance for understanding how hemodynamics change and the cardiovascular risk increases with age, the most important risk marker. An increase in peripheral vascular resistance associated with increased stiffness of central elastic arteries represents hallmarks of this ageing effect on the vasculature, referred to as early vascular ageing (EVA). In clinical practice, it translates into increased brachial and central systolic blood pressure and corresponding pulse pressure in subjects above 50 years of age, as well as increased carotid-femoral pulse wave velocity (c-f PWV)--a marker of arterial stiffness. A c-f PWV value ≥ 10 m/s is threshold for increased risk according. Improved lifestyle and control of risk factors via appropriate drug therapy are of importance in providing vascular protection related to EVA. One target group might be members of risk families including subjects with early onset cardiovascular disease.

  15. Optical emission spectroscopy of nanosecond repetitively pulsed microplasmas generated in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Orriere, Thomas; Moreau, Eric; Benard, Nicolas; Pai, David

    2015-09-01

    Nanosecond repetitively pulsed (NRP) microplasmas are generated in room temperature air at atmospheric pressure, in order to investigate the enhanced control of discharge properties via the combined effects of spatial confinement and nanosecond repetitive pulsing. Discharges were generated using high-voltage pulses of 15-ns duration applied to a tungsten pin-to-pin reactor, with inter-electrode gap distances (d) from 2 mm down to 0.2 mm. Optical emission spectroscopy and electrical characterization performed on the discharge indicate that heat transfer and plasma chemistry are influenced by the microplasma geometry. Ultrafast gas heating is observed upon deducing the rotational temperature of N2 from the measured emission spectrum of the N2 (C -->B) (0, 2) and (1, 3) transition bands, but use of the microplasma geometry (d = 0.2 mm) results in lower gas temperatures than in larger discharge gaps (d = 2 mm), including at high pulse repetition frequency (30 kHz) where substantial steady-state gas heating can occur. The measured Stark broadening of the Hα transition is significantly greater than for previously studied NRP discharges in air at atmospheric pressure, indicating that the maximum electron number density may be correspondingly much greater, up to 1018 cm-3. Furthermore, for NRP microplasmas, the intensities of emission from excited atomic ions (O+ and N+) are much higher than those of excited neutral atoms (O and N), in contrast to NRP discharges generated in larger discharge gaps.

  16. Limitation of the pulse length in a high-pressure UV He-Cd laser

    SciTech Connect

    Novoselov, Yu. N.; Uvarin, V.V.

    1995-06-01

    Results of investigating an atmospheric-pressure He-Cd laser with electron-beam pumping simulating conditions of excitation of a medium by fragments of nuclear reactions are reported. Limitation of the duration of UV lasing pulses ({lambda} = 325 nm) in experiments is shown to be caused by lowering the pump flux to the upper laser level. This may be associated with an effect of impurity gases desorbed from walls of a laser cell by an electron beam. 9 refs., 2 figs.

  17. Development of a Pulsed Pressure-Based Technique for Cavitation Damage Study

    SciTech Connect

    Ren, Fei; Wang, Jy-An John; Liu, Yun; Wang, Hong

    2012-01-01

    Cavitation occurs in many fluid systems and can lead to severe material damage. To assist the study of cavitation damage, a novel testing method utilizing pulsed pressure was developed. In this talk, the scientific background and the technical approach of this development are present and preliminary testing results are discussed. It is expected that this technique can be used to evaluate cavitation damage under various testing conditions including harsh environments such as those relevant to geothermal power generation.

  18. Modeling of asymmetric pulsed phenomena in dielectric-barrier atmospheric-pressure glow discharges

    SciTech Connect

    Ha Yan; Wang Huijuan; Wang Xiaofei

    2012-01-15

    Asymmetric current pulses in dielectric-barrier atmospheric-pressure glow discharges are investigated by a self-consistent, one-dimensional fluid model. It is found that the glow mode and Townsend mode can coexist in the asymmetric discharge even though the gas gap is rather large. The reason for this phenomenon is that the residual space charge plays the role of anode and reduces the gap width, resulting in the formation of a Townsend discharge.

  19. Effect of electromagnetic pulse transverse inhomogeneity on ion acceleration by radiation pressure

    SciTech Connect

    Lezhnin, K. V.; Kamenets, F. F.; Beskin, V. S.; Kando, M.; Esirkepov, T. Zh.; Bulanov, S. V.

    2015-03-15

    During ion acceleration by radiation pressure, a transverse inhomogeneity of an electromagnetic pulse leads to an off-axis displacement of the irradiated target, limiting the achievable ion energy. This effect is analytically described within the framework of a thin foil target model and with particle-in-cell simulations showing that the maximum energy of the accelerated ions decreases as the displacement from the axis of the target's initial position increases. The results obtained can be applied to the optimization of ion acceleration by the laser radiation pressure with mass-limited targets.

  20. Promising high-pressure DF - CO{sub 2} laser for amplifying picosecond radiation pulses

    SciTech Connect

    Agroskin, V Ya; Bravy, B G; Vasil'ev, G K; Kashtanov, S A; Makarov, E F; Sotnichenko, S A; Chernyshev, Yu A

    2012-10-31

    A scheme of the experiment is described and the results of measuring the small-signal gain in the active medium of a pulsed chemical DF - CO{sub 2} laser at a medium pressure in the range from 1 to 2.5 atm are reported. The values obtained (above 5 m{sup -1} at a pressure of 2.5 atm) make this laser a promising final amplifier of a multiterawatt laser system in the 10-{mu}m wavelength region. (lasers)

  1. Amplitude Modulator Chassis

    SciTech Connect

    Erbert, G

    2009-09-01

    The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 ps apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.

  2. Nanosecond pulsed laser nanostructuring of Au thin films: Comparison between irradiation at low and atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Sánchez-Aké, C.; Canales-Ramos, A.; García-Fernández, T.; Villagrán-Muniz, M.

    2017-05-01

    Au thin films with tens of nm in thickness deposited on glass substrates were irradiated with nanosecond UV (355 nm) laser pulses at atmospheric pressure and in vacuum conditions (∼600 and 10-5 Torr). We studied the effect of the laser fluence (200-400 mJ/cm2), thickness of the starting film (∼40-80 nm) and surrounding pressure on the partial ablation/evaporation of the films and the morphology of the produced nanoparticles (NPs). The dynamics of NPs formation was studied by measuring in real time the transmission of the samples upon continuous-wave laser exposure, and by means of probe beam deflection technique. The ejection of material from the film as a result of the irradiation was confirmed by time-resolved shadowgraphy technique. Experiments show that the NPs diameter and their size distribution are smaller when the irradiation is performed in vacuum regardless the laser fluence and thickness of the started film. It is also shown that the plasmon band shifts to higher frequencies with lower background pressure. The optical measurements show that the films melt and ablate during the laser pulse, but the transmission of the irradiated areas continues changing during tens of microseconds due to ejection of material and solidification of the remaining gold. Our results indicate that partial ablation cannot be neglected in nanostructuration by ns-pulsed irradiation of thin films when their thickness is in the studied range.

  3. Pulse-pressure variation predicts fluid responsiveness during heart displacement for off-pump coronary artery bypass surgery.

    PubMed

    Lee, Jong-Hwan; Jeon, Yunseok; Bahk, Jae-Hyon; Gil, Nam-Su; Kim, Ki-Bong; Hong, Deok Man; Kim, Hyun Joo

    2011-12-01

    The aim of this study was to evaluate the ability of pulse-pressure variation to predict fluid responsiveness during heart displacement for off-pump coronary artery bypass surgery using receiver operating characteristic analysis. A prospective study. A clinical study in a single cardiac anesthesia institution. Thirty-five patients undergoing elective off-pump coronary artery bypass surgery. Central venous pressure, pulmonary arterial occlusion pressure, pulse-pressure variation, and cardiac index were measured 5 minutes after revascularization of the left anterior descending coronary artery and before heart displacement. Immediately after heart displacement for revascularization of the left circumflex artery, and 10 minutes after fluid loading with hydroxyethyl starch 6% (10 mL/kg) during heart displacement, the measurements were repeated. Patients whose cardiac indices increased by ≥15% from fluid loading were defined as responders. After heart displacement, only pulse-pressure variation showed significant difference between the responders and nonresponders (13.48 ± 6.42 v 7.33 ± 3.81, respectively; p < 0.01). Moreover, receiver operating characteristic analysis showed that pulse-pressure variation successfully predicted fluid responsiveness (area under the curve = 0.839, p = 0.0001). Pulse-pressure variation >7.69% identified the responders, with a sensitivity of 86% and a specificity of 83%. Pulse-pressure variation successfully predicted fluid responsiveness and would be useful in guiding fluid management during heart displacement for off-pump coronary artery bypass surgery. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. A Neural Network for Estimation of Aortic Pressure from the Radial Artery Pressure Pulse

    DTIC Science & Technology

    2001-10-25

    from periphery to artery: a model based study, American Journal of Physiology, 1998,274:43, pp H1386-92 [9] C. Chen, E. Nevo , B Fetics, P Pak, F, Yin, L...36. [10] B Fetics, E Nevo , C. Chen, D Kass, Parametric model derivation of transfer function for noninvasive estimation of aortic pressure by radial

  5. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    NASA Astrophysics Data System (ADS)

    Girault, Frédéric; Schubnel, Alexandre; Pili, Éric

    2017-09-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture

  6. Steady-State Indicator of Intracranial Pressure Dynamic System using Geodesic Distance of ICP Pulse Waveform

    PubMed Central

    Hu, Xiao; Gonzalez, Nestor; Bergsneider, Marvin

    2013-01-01

    Normal functioning of the brain depends on the homeostasis (~ steady state) of its various physiological sub-systems, one of which is the intracranial pressure (ICP) dynamic system. ICP dynamic system of an injured brain is susceptible to various acute changes that should ideally be detected by ICP monitoring even for comatose patients. However, the status quo of ICP monitoring solely targets mean ICP. We aimed to demonstrate a novel approach to detect acute deviation from steady state of an ICP dynamic system in an absence of significant mean ICP changes. We hypothesized that steady state of ICP dynamic systems is reflected as ICP pulses of similar mean ICP levels resembling each other. A general framework was used to derive such a steady-state indicator that can accommodate different metrics of inter-pulse distance and different statistics of the distance histograms. In addition to conventional Euclidean distance and Pearson correlation, geodesic distance between pulses was introduced as a novel metric. These different ways of calculating steady-state indicators under the proposed framework were evaluated on three types of continuous ICP recordings: 1) those between two consecutive brain imaging studies that demonstrated acute ventricular enlargement for slit ventricle syndrome (SVS) patients undergoing a trial of shunt externalization and clamping (SVS+); 2) those between consecutive brain imaging studies from the SVS patients under the same trial but without ventricular enlargement (SVS−); 3) overnight recordings from patients with suspected normal pressure hydrocephalus (NPH). It was observed that only the standard deviation of geodesic distance correctly differentiated between SVS+ and SVS− and between SVS+ and NPH while avoiding discriminating between SVS− and NPH. It was also found that 45% SVS+ cases had a multimodal geodesic distance histogram while none of SVS− and 3.8% of NPH cases had such a multimodal histogram. Pulses with a large number of

  7. Pressure Dependent Magnetoluminescence of Semiconductor Quantum Wells in CW and Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jones, E. D.; Kim, Y.; Perry, C. H.; Tozer, S.; Rickel, D. G.

    1996-03-01

    We report on low-temperature pressure dependent magnetoluminescence measurements of a In_0.2Ga_0.8As/GaAs 80Åwide n-type single-strained-quantum well in cw (max 18T) and pulsed (max 60T) magnetic fields using a miniture diamond anvil cell. Landau level shifts were studied at 4 and 76 K with pressures ranging from ambient to about 40 kbar. The nc = 0 to nv = 0 Landau level transition was linear in magnetic field for all pressures, but there is evidence of a slope change for fields of about 20T. The pressure coefficients of the bandgap energy are the expected 9-10 meV/kbar. Also observed was the Γ-X pressure induced transition between the InGaAs Γ-point and the GaAs barrier X-point at the highest pressures. The pressure dependence of the conduction- and valence-band masses will also be discussed.

  8. Tubular Cardiac Tissues Derived from Human Induced Pluripotent Stem Cells Generate Pulse Pressure In Vivo

    PubMed Central

    Seta, Hiroyoshi; Matsuura, Katsuhisa; Sekine, Hidekazu; Yamazaki, Kenji; Shimizu, Tatsuya

    2017-01-01

    Human induced pluripotent stem (iPS) cell-derived cardiac cells provide the possibility to fabricate cardiac tissues for transplantation. However, it remains unclear human bioengineered cardiac tissues function as a functional pump in vivo. Human iPS cells induced to cardiomyocytes in suspension were cultured on temperature-responsive dishes to fabricate cardiac cell sheets. Two pairs of triple-layered sheets were transplanted to wrap around the inferior vena cava (IVC) of nude rats. At 4 weeks after transplantation, inner pressure changes in the IVC were synchronized with electrical activations of the graft. Under 80 pulses per minute electrical stimulation, the inner pressure changes at 8 weeks increased to 9.1 ± 3.2 mmHg, which were accompanied by increases in the baseline inner pressure of the IVC. Immunohistochemical analysis revealed that 0.5-mm-thick cardiac troponin T-positive cardiac tissues, which contained abundant human mitochondria, were clearly engrafted lamellar around the IVC and surrounded by von Willebrand factor-positive capillary vessels. The mRNA expression of several contractile proteins in cardiac tissues at 8 weeks in vivo was significantly upregulated compared with those at 4 weeks. We succeeded in generating pulse pressure by tubular human cardiac tissues in vivo. This technology might lead to the development of a bioengineered heart assist pump. PMID:28358136

  9. Social support and loneliness in college students: effects on pulse pressure reactivity to acute stress.

    PubMed

    O'Donovan, Aoife; Hughes, Brian

    2007-01-01

    Socially supportive relationships at university may buffer against psychological stress in students, particularly in those experiencing loneliness. To examine the relation of social support at university and loneliness with pulse pressure (PP) reactivity to acute psychological stress in a sample of first-year undergraduate students. Sixty-five female, adolescent, first-year university students. Pulse pressure (PP) was calculated as the arithmetic difference between systolic blood pressure and diastolic blood pressure, which were measured during a resting baseline and during a stressful reading task. The difference between baseline and reading task PP represents PP reactivity. The Social Support at University Scale (SSUS) was used to assess social support availability in university, and the Revised UCLA Loneliness Scale was used to assess loneliness. Hierarchical linear regression was used to examine main and interactive effects of SSUS and loneliness on PP change scores, and simple slopes were computed to assist in the interpretation of interaction effects. Social support at university was associated with lower PP reactivity in students reporting medium (t = -2.03, p = .04) or high levels of loneliness (t = -2.93, p = .004), but not in those reporting low levels of loneliness (t = -0.20, p = .83). Psychosocial interventions designed to increase social support available at university, and targeted at students experiencing loneliness may buffer against the harmful effects of acute stressors in lonely first-year students.

  10. Application of Pressure Pulse Test Analysis in CO2 Leakage Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Shakiba, M.; Hosseini, S. A.

    2015-12-01

    Over the past decade, numerous research and industrial projects have been devoted to investigate the feasibility and efficiency of carbon dioxide capture, storage, and utilization. Besides the studies over the characteristics of candidate formations for CO2 injection, much attention has been paid to answer the environmental concerns regarding the CO2 leak to overlying formations. To first detect and then track a possible CO2 leak, different techniques have been proposed in the literature; however, most of them examine only a small portion of the formation and have a low resolution for early leak detection. To further increase the extent of the investigation zone and to monitor a large section of the formation in more detail, multi-well testing techniques have received a significant attention. Pressure pulse testing is a multi-well test technique in which a pressure signal generated by periods of injection and shut-in from a pulser well is propagated inside the formation, and the corresponding response is recorded at the observer wells. The recorded pressure response is then analyzed to measure the rock and fluid properties and to monitor the possible changes over the time. In this research study, we have applied frequency methods as well as superposition principle to interpret the pressure pulse test data and monitor the changes in transmissibility and storativity of the formation between the well pairs. We have used synthetic reservoir models and numerical reservoir simulations to produce the pressure pulse test data. The analysis of the simulation results indicated that even a small amount of CO2 leak in the investigation zone can have a measurable effect on the calculated storativity and transmissibility factors. This can be of a great importance when an early leak detection is of interest. Moreover, when multiple wells are available in the formation, the distribution of the calculated parameters can visualize the extent of CO2 leak, which has a great

  11. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time

    NASA Astrophysics Data System (ADS)

    Martin, Stephanie L.-O.; Carek, Andrew M.; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T.; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2016-12-01

    Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms - and thus PTT through larger, more elastic arteries - in terms of its ability to improve tracking of BP in individual subjects. We measured “scale PTT”, conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of -0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of -0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP.

  12. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time

    PubMed Central

    Martin, Stephanie L.-O.; Carek, Andrew M.; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T.; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2016-01-01

    Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms – and thus PTT through larger, more elastic arteries – in terms of its ability to improve tracking of BP in individual subjects. We measured “scale PTT”, conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of −0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of −0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP. PMID:27976741

  13. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry.

    PubMed

    Stibal, Marek; Elster, Josef; Sabacká, Marie; Kastovská, Klára

    2007-02-01

    The seasonal and diel dynamics of the physiological state and photosynthetic activity of the snow alga Chlamydomonas nivalis were investigated in a snowfield in Svalbard. The snow surface represents an environment with very high irradiation intensities along with stable low temperatures close to freezing point. Photosynthetic activity was measured using pulse amplitude modulation fluorometry. Three types of cell (green biflagellate vegetative cells, orange spores clustered by means of mucilaginous sheaths, and purple spores with thick cell walls) were found, all of them photosynthetically active. The pH of snow ranged between 5.0 and 7.5, and the conductivity ranged between 5 and 75 microS cm(-1). The temperature of snow was stable (-0.1 to +0.1 degrees C), and the incident radiation values ranged from 11 to 1500 micromol photons m(-2) s(-1). The photosynthetic activity had seasonal and diel dynamics. The Fv/Fm values ranged between 0.4 and 0.7, and generally declined over the course of the season. A dynamic response of Fv/Fm to the irradiance was recorded. According to the saturating photon fluence values Ek, the algae may have obtained saturating light as deep as 3 cm in the snow when there were higher-light conditions, whereas they were undersaturated at prevalent low light even if on the surface.

  14. A controlled comparison of brachial artery flow mediated dilation (FMD) and digital pulse amplitude tonometry (PAT) in the assessment of endothelial function in systemic lupus erythematosus.

    PubMed

    Aizer, J; Karlson, E W; Chibnik, L B; Costenbader, K H; Post, D; Liang, M H; Gall, V; Gerhard-Herman, M D

    2009-03-01

    The utility of flow mediated dilation (FMD) a measure of endothelial function is limited by operator dependence. Pulse amplitude tonometry (PAT) is a novel, less operator-dependent technique to assess endothelial function. This study compares PAT to FMD in SLE and controls. Thirty women with SLE and 31 controls were enrolled. Medications, cardiovascular disease and risk factors, SLE activity (SLAM-R) and damage (SLICC-DI) were recorded. FMD and PAT were performed simultaneously. Endothelium-independent function was assessed with nitroglycerin. Average age was 48.3 +/- 10.1 years, SLE duration 16.2 years, SLAM-R 8.3 and SLICC-DI 1.0. Framingham Risk Scores were < or =2% in most subjects. There were no differences between SLE cases and controls in FMD, PAT or response to nitroglycerin. This study found no association between FMD and PAT in SLE or controls. In the 17 SLE cases with a history of Raynaud's, correlation between FMD and PAT was 0.50 (P = 0.04). There was no difference in endothelial function assessed by FMD or PAT in SLE cases versus controls. FMD did not correlate with PAT except in SLE cases with a history of Raynaud's. Correlation between FMD and PAT may be stronger in populations with greater variation in endothelial function and more cardiovascular risk factors.

  15. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1996-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  16. Pulsed neutron powder diffraction at high pressure by a capacity-increased sapphire anvil cell

    NASA Astrophysics Data System (ADS)

    Okuchi, Takuo; Yoshida, Masashi; Ohno, Yoshiki; Tomioka, Naotaka; Purevjav, Narangoo; Osakabe, Toyotaka; Harjo, Stefanus; Abe, Jun; Aizawa, Kazuya; Sasaki, Shigeo

    2013-12-01

    A new design of opposed anvil cell for time-of-flight neutron powder diffraction was prepared for use at advanced pulsed sources. A couple of single-crystal sapphire sphere anvils and a gasket of fully hardened Ti-Zr null alloy were combined to compress 35 mm3 of sample volume to 1 GPa and 11 mm3 to 2 GPa of pressures, respectively. A very high-quality powder diffraction pattern was obtained at Japan Proton Accelerator Research Complex for a controversial high pressure phase of methane hydrate. The counting statistics, resolution, absolute accuracy and d-value range of the pattern were all improved to be best suitable for precise structure refinement. The sample is optically accessible to be measured by Raman and fluorescence spectroscopy during and after compression. The current cell will be an alternative choice to study hydrogenous materials of complex structures that are stable at the described pressure regime.

  17. Alleviation of pressure pulse effects for trains entering tunnels. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Dayman, B., Jr.; Hammitt, A. G.; Holway, H. P.; Tucker, C. E., Jr.; Vardy, A. E.

    1979-01-01

    The degree to which it is possible to attenuate the effects of pressure pulses on the passengers in trains entering tunnels by modifying the normally abrupt portal of a constant-diameter single track tunnel was investigated. Although the suggested modifications to the tunnel entrance portal may not appreciably decrease the magnitude of the pressure rise, they are very effective in reducing the discomfort to the human ear by substantially decreasing the rate of pressure rise to that which the normal ear can accommodate. Qualitative comparison was made of this portal modification approach with other approaches: decreasing the train speed or sealing the cars. The optimum approach, which is dependent upon the conditions and requirements of each particular rail system, is likely to be the portal modification one for a rapid rail mass transit system.

  18. Influence of pulsing electromagnetic field therapy on resting blood pressure in aging adults.

    PubMed

    Rikk, János; Finn, Kevin J; Liziczai, Imre; Radák, Zsolt; Bori, Zoltán; Ihász, Ferenc

    2013-06-01

    This double-blind study tested the effects of pulsating electromagnetic field (PEMF) therapy sessions on the changes in peripheral cardiovascular function in a group of aging adults after 12 weeks of treatment. Each therapy session involved 15 min of exposure to low-frequency PEMF with asymmetrical waveforms emitted by the Impulser™ Pro mattress. The treatment was provided 5 days per week for a total of 60 sessions. Resting blood pressure and arterial stiffness index were determined for peripheral cardiovascular function. Fifty-four older men and women (mean age 59.8 ± 3.5 yrs) completed the entire protocol involving either the PEMF or a sham treatment. The results include statistically significant reductions in systolic and pulse blood pressure, while no significant difference in diastolic pressure or the index of arterial stiffness was observed. These findings suggest that the PEMF treatment might be linked to improvements in peripheral resistance or circulation.

  19. Exhaust pressure and density of various pulsed MPD-Arc thruster systems

    NASA Technical Reports Server (NTRS)

    Michels, C. J.

    1973-01-01

    Exhaust flow in a new 155-cm-i.d. vacuum facility is compared with earlier measurements in a small (15.2-cm-i.d.) duct. Reductions in post-transient impact pressure are about 5:1 in the larger facility. Corresponding reduced electron number densities (about 2 x 10 to the 13th power per cu cm) are noted. A new 125-microsec pulse-forming network power source produced no major differences in impact pressure compared to the crowbarred condenser bank used earlier. Comparing a puff gas feed of the arc chamber with a new 10-msec steady gas feed also shows no major difference in impact pressure for 125-microsec powering.

  20. Exhaust pressure and density of various pulsed mpd-arc thruster systems

    NASA Technical Reports Server (NTRS)

    Michels, C. J.

    1973-01-01

    Exhaust flow in a new, 155 cm i.d., vacuum facility was compared with earlier measurements in a small (15.2 cm i.d.) duct. Reductions in post transient impact pressure were about 5:1 in the larger facility. Corresponding reduced electron number densities (approximately 2 x 10 to the 13th power/cucm) were noted. A new, 125 miscrosecond, pulse forming network power source produced no major differences in impact pressure compared to the crowbarred condenser bank used earlier. Comparing a puff gas feed of the arc chamber with a new 10 millisecond steady gas feed also showed no major difference in impact pressure for 125 miscrosecond powering.

  1. AUTOMATIC DETECTION ALGORITHM OF DYNAMIC PRESSURE PULSES IN THE SOLAR WIND

    SciTech Connect

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Li, Huijun; Xu, Xiaojun E-mail: fengx@spaceweather.ac.cn

    2015-04-20

    Dynamic pressure pulses (DPPs) in the solar wind are a significant phenomenon closely related to the solar-terrestrial connection and physical processes of solar wind dynamics. In order to automatically identify DPPs from solar wind measurements, we develop a procedure with a three-step detection algorithm that is able to rapidly select DPPs from the plasma data stream and simultaneously define the transition region where large dynamic pressure variations occur and demarcate the upstream and downstream region by selecting the relatively quiet status before and after the abrupt change in dynamic pressure. To demonstrate the usefulness, efficiency, and accuracy of this procedure, we have applied it to the Wind observations from 1996 to 2008 by successfully obtaining the DPPs. The procedure can also be applied to other solar wind spacecraft observation data sets with different time resolutions.

  2. Fiber optic based heart-rate and pulse pressure shape monitor

    NASA Astrophysics Data System (ADS)

    Kokkinos, D.; Dehipawala, S.; Holden, T.; Cheung, E.; Musa, M.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2012-01-01

    Macro-bending fiber optic based heart-rate and pulse pressure shape monitors have been fabricated and tested for non-invasive measurement. Study of fiber bending loss and its stability and variations are very important especially for sensor designs based on optical fiber bending. Wavelengths from 1300 nm to 1550 nm have been used with fabrication based on multimode fiber, single mode fiber, and photonic crystal fiber. The smallest studied curvature would demand the use of single mode standard fibers. The collected data series show high quality suitable for random series analysis. Fractal property of optically measured pulse pressure data has been observed to correlate with physical activity. Correlation to EKG signal suggests that the fabricated monitors are capable of measuring the differential time delays at wrist and leg locations. The difference in time delay could be used to formulate a velocity parameter for diagnostics. The pulse shape information collected by the fiber sensor provides additional parameters for the analysis of the fractal nature of the heart. The application to real time measurement of blood vessel stiffness with this optical non-invasive fiber sensor is discussed.

  3. Analysis based on global model of nitrogen plasma produced by pulsed microwave at low pressure

    SciTech Connect

    Qiu, Feng; Yan, Eryan Meng, Fanbao; Ma, Hongge; Liu, Minghai

    2015-07-15

    This paper analyzes certain evolution processes in nitrogen plasmas discharged using pulsed microwaves at low pressure. Comparing the results obtained from the global model incorporating diffusion and the microwave transmission method, the temporal variation of the electron density is analyzed. With a discharge pressure of 300 Pa, the results obtained from experiments and the global model calculation show that when the discharge begins the electron density in the plasma rises quickly, to a level above the critical density corresponding to the discharge microwave frequency, but falls slowly when the discharge microwave pulse is turned off. The results from the global model also show that the electron temperature increases rapidly to a peak, then decays after the electron density reaches the critical density, and finally decreases quickly to room temperature when the discharge microwave pulse is turned off. In the global model, the electron density increases because the high electron temperature induces a high ionization rate. The decay of the electron density mainly comes from diffusion effect.

  4. Improved Performance of an Indigenous Stirling Type Pulse Tube Cooler and Pressure Wave Generator

    NASA Astrophysics Data System (ADS)

    Kumar, J. Kranthi; Jacob, S.; Karunanithi, R.; Narasimham, G. S. V. L.; Damu, C.; Praveen, T.; Samir, M.

    Sustained efforts have been made in our laboratory to improve the performance of an indigenously developed pressure wave gen- erator by reducing the mechanical losses and the required input power. An acoustically matching pulse tube cooler, with a design target of 0.5 W at 80 K, was designed using Sage and experience gained from previous studies. The pulse tube cooler was fabri- cated and tested. The effect of regenerator stacking pattern on the cooler performance was studied by filling the regenerator with mesh of the same size #400 and with multi meshes #250, 325, 400. In present experiments, regenerator with #400 mesh at 30 bar filling pressure performed better with more energy efficiency. A no load temperature of 74 K was achieved with input power of 59 W corresponding to a cooling power of 0.22 W at 80 K. Parasitic heat load to the cooler was measured be 0.68 W. This heat load is primarily by heat conduction through the regenerator and pulse tube wall. By reducing the wall thickness from 0.30 mm to 0.15 mm, the parasitic loads can be reduced by 50%.

  5. Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors

    NASA Astrophysics Data System (ADS)

    Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev

    2017-02-01

    Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in continuous monitoring of blood pressure and pulse wave velocity. In this paper, we introduce two techniques for non-contact sensing of vital bio signs. In the first approach the optical sensor is based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual. In the second concept we show a remote noncontact blood pulse wave velocity and pressure measurement based on tracking the temporal changes of reflected secondary speckle patterns produced in human skin when illuminated by a laser beams. In both concept experimental validation of the proposed schemes is shown and analyzed.

  6. Characterization of a discontinuous atmospheric pressure interface. Multiple ion introduction pulses for improved performance

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Li, Guangtao; Nie, Zongxiu; Duncan, Jason; Ouyang, Zheng; Cooks, R. Graham

    2009-06-01

    Discontinuous atmospheric pressure interfaces (DAPI) are used to match the rate of sample introduction to the pumping capacity of miniature mass spectrometers. In this study, the influence of the interface flow conductance and the mass spectrometer pumping speed on ion introduction into a handheld mass spectrometer is investigated. Results show that an intermediate flow conductance (2.6 × 10-3 L/s) gives the best ion introduction efficiency whereas the pumping speed has no influence in the range studied (0.35-7.1 L/s) except that a minimum pumping speed of 0.35 L/s is required. The linear dynamic range decreases with increasing interface open time, a result that corresponds to observations made using standard electrical gating of ion introduction a method that is not available at the high pressures involved in API into miniature systems where ions are transported through pneumatic flow. However, the mechanical opening of the interface with DAPI can be used for automatic gain control (AGC) using an external ion source. Software modifications to allow the use of multiple ion introduction pulses before mass analysis of the trapped ion population improve the detection limits. This method was validated by comparing the results obtained from the same sample using a single ion introduction pulse and multiple ion introduction pulses. In conjunction with this method, a broad-band waveform can be applied to selectively accumulate analyte ions, allowing essentially the entire ion trapping capacity to be devoted to one or more ions of interest.

  7. Femtosecond pulse compression in pressure-gas cells filled with argon.

    PubMed

    Champeaux, Stéphanie; Bergé, Luc

    2003-12-01

    The nonlinear propagation of femtosecond pulses in pressure-gas cells filled with argon is investigated. By increasing the pressure for reaching peak power levels close to the threshold for self-focusing, it is shown that either group-velocity dispersion or multiphoton ionizing (MPI) sources can become key players for arresting the beam collapse. For input powers noticeably above critical, MPI rapidly dominates and the formation of self-guided filaments of light occurs. We discuss the dynamical role of MPI in shortening the pulse duration up to the optical cycle limit. Two different wavelength domains are commented. The influence of space-time focusing and self-steepening effects is furthermore discussed. Their respective roles in promoting shock structures are studied and shown to still promote pulse shortening in suitable power regimes. Finally, spectral broadening is analyzed and proven to be more important for large laser wavelengths. Numerical integration of the propagation equations is explained in the light of analytical arguments.

  8. Increased Pre-operative Pulse Pressure Predicts Procedural Complications and Mortality in Patients Undergoing Tibial Interventions for Critical Limb Ischemia

    PubMed Central

    Darling, Jeremy D.; Lee, Vanessa; Schermerhorn, Marc L.; Guzman, Raul J.

    2015-01-01

    Introduction Pulse pressure is a non-invasive measure of arterial stiffness. Elevated pulse pressure is associated with an increased risk of cardiovascular events and death. The effects of pulse pressure on outcomes after endovascular interventions for critical limb ischemia (CLI), however, are unknown. We thus evaluated whether increased pre-operative pulse pressure was associated with adverse outcomes and mortality in patients undergoing endovascular tibial artery intervention. Methods All patients undergoing endovascular tibial intervention for CLI at a single institution from 2004 to 2014 were included in this study. Pre-operative pulse pressure was derived from measurements obtained in the holding area prior to the procedure. Patients were divided into 2 groups based on pulse pressure, < 80 or ≥ 80. Patient demographics and co-morbidities were documented, and outcomes including procedural complications, repeat intervention, amputation, and mortality were recorded. Multivariable logistic regression was utilized to account for patient demographics and comorbidities. Results Of 371 patients, 186 patients had a pre-operative pulse pressure <80 and 185 had a pre-operative pulse pressure ≥80. No significant differences in patient demographics or comorbidities were identified; however there was a trend toward older age in patients with elevated pulse pressure (70 vs. 72, P = 0.07). On univariate analysis, procedural complications (21% vs. 13%, P = 0.02), reinterventions (26% vs. 17%, P < 0.01), and restenosis (32% vs. 23%, P = 0.03) were more common among patients with pulse pressure ≥ 80. Procedural complications remained significant on multivariate analysis (OR 1.8, 95% CI 1.0-3.1, P = 0.04). There was no difference in 30-day mortality; however increased mortality was seen at 5 years of follow-up (OR: 1.6, 95% CI: 1.0-2.5, P = 0.04) following multivariable analysis. Conclusions Increased pre-operative pulse pressure is associated with procedural complications

  9. NO2 production in a high pressure pulsed microwave discharge designed for VOC removal

    NASA Astrophysics Data System (ADS)

    Rousseau, A.; Dantier, A.; Mechtchanov, A.; Roepcke, J.; Golubovski, Y.; Ionikh, Y.; Porokhova, I.

    2002-10-01

    Non thermal pulsed microwave discharges represent an alternative to Dielectric Barrier Discharges for the removal of atmospheric pollutants. However, due to the relatively high peak power density injected in the plasma and to the high chemical efficiency of such a microwave plasma source, toxic nitrogen oxides may also be generated as undesirable by-products. Tuneable diode laser absorption spectroscopy (TDLAS) is used for highly sensitive and non intrusive diagnostic of undesirable NO2 produced by the discharge itself. The influence of the pulsed discharge parameters (pressure, peak power, pulse duration and frequency) on the generation of NO2 production is studied. It is showed that NO2 density increases monotoneously with the injected mean energy and the use of short pulses is a mean to limit its production. The time resolved measurements of the gas temperature are performed which shows that the heating of the gas occurs within 0.1ms. Finally, efficiency of such a discharge for VOC removal is studied.

  10. High-voltage nanosecond pulses in a low-pressure radio-frequency discharge.

    PubMed

    Pustylnik, M Y; Hou, L; Ivlev, A V; Vasilyak, L M; Couëdel, L; Thomas, H M; Morfill, G E; Fortov, V E

    2013-06-01

    An influence of a high-voltage (3-17 kV) 20 ns pulse on a weakly-ionized low-pressure (0.1-10 Pa) capacitively coupled radiofrequency (RF) argon plasma is studied experimentally. The plasma evolution after pulse exhibits two characteristic regimes: a bright flash, occurring within 100 ns after the pulse (when the discharge emission increases by 2-3 orders of magnitude over the steady-state level), and a dark phase, lasting a few hundreds μs (when the intensity of the discharge emission drops significantly below the steady-state level). The electron density increases during the flash and remains very large at the dark phase. 1D3V particle-in-cell simulations qualitatively reproduce both regimes and allow for detailed analysis of the underlying mechanisms. It is found that the high-voltage nanosecond pulse is capable of removing a significant fraction of plasma electrons out of the discharge gap, and that the flash is the result of the excitation of gas atoms, triggered by residual electrons accelerated in the electric field of immobile bulk ions. The secondary emission from the electrodes due to vacuum UV radiation plays an important role at this stage. High-density plasma generated during the flash provides efficient screening of the RF field (which sustains the steady-state plasma). This leads to the electron cooling and, hence, onset of the dark phase.

  11. Diamondoid synthesis by nanosecond pulsed microplasmas generated in He at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Shizuno, Tomoki; Oshima, Fumito; Pai, David Z.; Terashima, Kazuo

    2012-10-01

    Diamondoids are sp^3 hybridized carbon nanomaterials that possess interesting properties making them attractive for biotechnology, medicine, and opto- and nanoelectronics. So far, larger diamondoids have been synthesized using the smallest diamondoid (adamantane) as a precursor. For this electric discharges and pulsed laser plasmas generated in supercritical fluids, and hot filament chemical vapor deposition have been used, but these methods are difficult to realize or very time-consuming. We have developed a more convenient approach where diamondoids are synthesized by high-voltage nanosecond pulsed microplasmas (voltage 15 kVp-p, frequency 1 Hz, pulse width 10 ns) generated in He at atmospheric pressure using point-to-plane tungsten electrodes. Adamantane was used as a precursor, and synthesis was conducted for 10^5 pulses at gas temperatures of 297, 373 and 473 K. Energy dispersive X-ray and micro-Raman spectroscopy were conducted to determine the composition of the products, and gas chromatography - mass spectra indicated the formation of diamantane. It was found that synthesis is more efficient at room temperature than at higher temperatures, and time-resolved optical emission spectroscopy suggest that the chemical reactions take place in the afterglow.

  12. Transient Cavitation Induced by High Amplitude Diagnostic Ultrasound.

    NASA Astrophysics Data System (ADS)

    Ayme, Eveline J.

    1988-07-01

    Study of the response of gaseous microbubbles to medical ultrasound is essential to apprehend the potentially dangerous effects of transient cavitation on living tissues. However, the prediction of such response is complicated by the finite -amplitude distortion associated with high amplitude acoustic fields. Through a combination of theoretical developments, computer simulations, and experiments, this dissertation investigates the consequences of the interaction between finite-amplitude distortion and transient cavitation, in the context of a diagnostic ultrasonic field. The theoretical approach is to synthesize the asymmetry between compression and rarefaction half-cycles which characterizes a typical nonlinearly distorted pulse obtained at the focus of a diagnostic transducer immersed in water. The synthetic pulse is used to drive a theoretical model for nonlinear bubble dynamics. Comparison with sinusoidal pulses "equivalent" to the distorted pulse as measured by a selection of descriptive parameters shows that: (i) the peak-positive pressure (P_{+} ) in the distorted pulse is a very poor predictor of transient cavitation, (ii) the peak-negative pressure (P_{-}) is a better indicator but underestimates the actual bubble response, (iii) the best predictor is the pressure amplitude of the fundamental (P_{F}) in a Fourier series representation of the distorted pulse. These predictions are tested experimentally on Drosophila larvae. The larvae are exposed to pulsed, symmetric, sinusoidal fields and to pulsed, asymmetric, distorted fields. The killing ratio of the larvae is plotted as a function of the same selection of descriptive parameters, namely P_{+}, P_{ -}, and P_{F}. The resulting curves are compared with the killing ratio plotted against the peak pressure in the sinusoidal, undistorted pulse (P_{A}). If the distorted pulse is described in terms of P_ {-} or P_{+} , the killing ratios are significantly different; if the distorted pulse is described in terms

  13. A STATISTICAL SURVEY OF DYNAMIC PRESSURE PULSES IN THE SOLAR WIND BASED ON WIND OBSERVATIONS

    SciTech Connect

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun E-mail: fengx@spaceweather.ac.cn

    2015-07-20

    Solar wind dynamic pressure pulse (DPP) structures, across which the dynamic pressure changes abruptly over timescales from a few seconds to several minutes, are often observed in the near-Earth space environment. The space weather effects of DPPs on the magnetosphere–ionosphere coupling system have been widely investigated in the last two decades. In this study, we perform a statistical survey on the properties of DPPs near 1 AU based on nearly 20 years of observations from the WIND spacecraft. It is found that only a tiny fraction of DPPs (around 4.2%) can be regarded as interplanetary shocks. For most DPPs, the total pressure (the sum of the thermal pressure and magnetic pressure) remains in equilibrium, but there also exists a small fraction of DPPs that are not pressure-balanced. The overwhelming majority of DPPs are associated with solar wind disturbances, including coronal mass ejection-related flows, corotating interaction regions, as well as complex ejecta. The annual variations of the averaged occurrence rate of DPPs are roughly in phase with the solar activity during solar cycle 23, and during the rising phase of solar cycle 24.

  14. The effects of pulse pressure from seismic water gun technology on Northern Pike

    USGS Publications Warehouse

    Gross, Jackson A.; Irvine, Kathryn M.; Wilmoth, Siri K.; Wagner, Tristany L.; Shields, Patrick A; Fox, Jeffrey R.

    2013-01-01

    We examined the efficacy of sound pressure pulses generated from a water gun for controlling invasive Northern Pike Esox lucius. Pulse pressures from two sizes of water guns were evaluated for their effects on individual fish placed at a predetermined random distance. Fish mortality from a 5,620.8-cm3 water gun (peak pressure source level = 252 dB referenced to 1 μP at 1 m) was assessed every 24 h for 168 h, and damage (intact, hematoma, or rupture) to the gas bladder, kidney, and liver was recorded. The experiment was replicated with a 1,966.4-cm3 water gun (peak pressure source level = 244 dB referenced to 1 μP at 1 m), but fish were euthanized immediately. The peak sound pressure level (SPLpeak), peak-to-peak sound pressure level (SPLp-p), and frequency spectrums were recorded, and the cumulative sound exposure level (SELcum) was subsequently calculated. The SPLpeak, SPLp-p, and SELcum were correlated, and values varied significantly by treatment group for both guns. Mortality increased and organ damage was greater with decreasing distance to the water gun. Mortality (31%) by 168 h was only observed for Northern Pike exhibiting the highest degree of organ damage. Mortality at 72 h and 168 h postexposure was associated with increasing SELcum above 195 dB. The minimum SELcum calculated for gas bladder rupture was 199 dB recorded at 9 m from the 5,620.8-cm3 water gun and 194 dB recorded at 6 m from the 1,966.4-cm3water gun. Among Northern Pike that were exposed to the large water gun, 100% of fish exposed at 3 and 6 m had ruptured gas bladders, and 86% exposed at 9 m had ruptured gas bladders. Among fish that were exposed to pulse pressures from the smaller water gun, 78% exhibited gas bladder rupture. Results from these initial controlled experiments underscore the potential of water guns as a tool for controlling Northern Pike.

  15. Compaction-induced elevated pore pressure and creep pulsing in California faults

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, M.; Shirzaei, M.

    2016-12-01

    The creeping segment of San Andreas Fault (CSAF) is recognized as a weak fault, namely, cannot sustain large earthquake stress drops. Moreover, variable creep rate constrained using kinematic models of geodetic and seismic data implies that the fault frictional strength is both spatially and temporally variable. Intrinsic low friction of fault zone material and locally elevated pore pressure due to ascend of mantle-derived fluid are proposed as possible justifications for CSAF weakness. However, lack of plausible explanation for creep pulsing observed at seismogenic zone in both hypotheses, calls for rethinking of the underlying mechanisms and processes governing the CSAF behavior. Here we provide evidence for the role of pore pressure variation in changing the fault frictional strength, not primarily due to mantle fluids. Using a rate- and state-dependent friction model, we estimate fault frictional properties between 2003 and 2011, and link their apparent temporal variations to undulation of effective normal stress. Since there is no evidence that tectonic stressing rate varies during this study period, we conclude that the variation of effective normal stress is a result of pore pressure change in the fault zone. We show that temporally variable pore pressure and its inferred spatial heterogeneity correlate perfectly with the variation of surface creep rate obtained using InSAR observations. Furthermore, our analysis of microseismicity suggests that the temporal variation of Gutenberg-Richter b-value and released seismic moment has respectively positive and negative correlation with the pore pressure variations. Our results highlight the role of 3D seal-bounded compartments formed through the compaction of intergranular pore spaces, leading to spatially heterogeneous elevated pore pressure and initiation of accelerated creep events. Frictional dilation due to creep acceleration, on the other hand, causes redistribution and reduction of the pore pressure

  16. Aortic Pulse Pressure Amplification Imputed From Simple Clinical Measures Adds to the Ability of Brachial Pressure to Predict Survival.

    PubMed

    Bursztyn, Michael; Norton, Gavin R; Ben-Dov, Iddo Z; Booysen, Hendrik L; Sibiya, Moekanyi J; Sareli, Pinhas; Woodiwiss, Angela J

    2016-06-01

    Although aortic-to-brachial pulse pressure amplification (PPamp) may offer prognostic information beyond brachial blood pressure (BP), this approach is limited in resource-limited settings. We aimed to derive an equation to impute central aortic PP (PPc) from simple clinical measures and assess whether imputed PPamp adds to the ability of brachial BP to predict mortality. An imputation equation for PPc, incorporating brachial PP, age, mean arterial pressure, and pulse rate, was identified from multivariate modeling of the factors associated with radial applanation tonometry-derived (measured) PPc in 1,179 community participants and validated in a clinical sample of 351 patients. We applied the equation to ambulatory awake BP and pulse rate values in a separate group of 4,796 patients referred for ambulatory monitoring and evaluated the impact on all-cause mortality. Imputed PPc values closely approximated measured PPc (r (2) = 0.96, mean difference ± (2 × SD) = 1.4±6.2mm Hg). In adjusted Cox proportional models including adjustments for awake brachial PP during 47,111 person-years of follow-up, where 648 patients died, hazards ratio for all-cause mortality per SD of awake PPamp was 0.79 (95% confidence interval (CI): 0.68-0.93, P < 0.005). The hazards ratio for brachial PP with (1.49, CI = 1.36-1.64, P < 0.0001) or without (1.46, CI = 1.35-1.59, P < 0.0001) PPamp in the model was similar. Awake PPamp also predicted survival independent of awake brachial systolic BP (P < 0.0001). PPc imputed from simple clinical assessments closely approximates measured PPc. PPamp derived from imputed PPc adds to the ability of brachial BP to predict survival. In resource-limited settings, an imputation equation may be employed to approximate aortic BP and enhance risk prediction. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Measurement of the frequency response of a diaphragm-based pressure sensor by use of a pulsed excimer laser.

    PubMed

    Shen, Fabin; Xu, Juncheng; Wang, Anbo

    2005-08-01

    We present a novel method for measuring the frequency response of a diaphragm-based optical fiber Fabry-Perot interferometric pressure sensor. The impulse response of the sensor to the radiation pressure generated by an excimer laser pulse is measured. The Fourier transform of the impulse response yields the frequency response of the pressure sensor. Experimental results show that it is a convenient and efficient method for measurement of the frequency response of diaphragm-based pressure sensors.

  18. Nonlinear response of plates subjected to inplane and lateral pressure pulses.

    NASA Technical Reports Server (NTRS)

    Knapp, L. J.

    1973-01-01

    The nonlinear response of a rectangular plate exposed to a far-field sonic boom disturbance is studied. The plate is subjected to both lateral and in-plane disturbances. The lateral disturbance is in the form of an N-shaped pressure pulse, and the in-plane disturbance is represented by a sinusoidal pulse. The equations of motion are reduced to a set of nonlinear coupled ordinary differential equations using Galerkin's method. These equations are solved numerically using Hamming's (1959) modified predictor-corrector integration method. The effects of in-plane boundary conditions and in-plane inertia are investigated. The nonlinear results, when compared to the linear theory, serve to delineate the realm of validity of the linear theory.

  19. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    PubMed

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed.

  20. Analysis of nitrogen plasma generated by a pulsed plasma system near atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hayakawa, R.; Yoshimura, T.; Ashida, A.; Fujimura, N.; Kitahata, H.; Yuasa, M.

    2004-12-01

    Stable discharging of pure nitrogen can be maintained even at atmospheric pressure when alternative pulsed voltage is applied between two parallel plate electrodes. We evaluated the nitrogen plasma generated by an alternative pulsed voltage system. The excited nitrogen species in a pure nitrogen plasma was evaluated using optical emission spectroscopy. In the discharging space, the largest peak detected corresponded to the N2 second positive system. Additionally, the emission peaks from the excited nitrogen atom were detected at a pressure of as high as 45Torr. In the downstream space, we detected emission peaks from the N2 Herman's infrared system as well as the N2 second positive system. The N2 (AΣu+3) state is considered to be the origin of the N2 Herman's infrared system. The emission intensities from the N2 second positive system and the N2 Herman's infrared system increase with increasing nitrogen gas pressure, whereas the emission intensity from the N2+ first negative system decreases.

  1. The 24-hour pulse wave velocity, aortic augmentation index, and central blood pressure in normotensive volunteers

    PubMed Central

    Kuznetsova, Tatyana Y; Korneva, Viktoria A; Bryantseva, Evgeniya N; Barkan, Vitaliy S; Orlov, Artemy V; Posokhov, Igor N; Rogoza, Anatoly N

    2014-01-01

    The purpose of this study was to examine the pulse wave velocity, aortic augmentation index corrected for heart rate 75 (AIx@75), and central systolic and diastolic blood pressure during 24-hour monitoring in normotensive volunteers. Overall, 467 subjects (206 men and 261 women) were recruited in this study. Participants were excluded from the study if they were less than 19 years of age, had blood test abnormalities, had a body mass index greater than 2 7.5 kg/m2, had impaired glucose tolerance, or had hypotension or hypertension. Ambulatory blood pressure monitoring (ABPM) with the BPLab® device was performed in each subject. ABPM waveforms were analyzed using the special automatic Vasotens® algorithm, which allows the calculation of pulse wave velocity, AIx@75, central systolic and diastolic blood pressure for “24-hour”, “awake”, and “asleep” periods. Circadian rhythms and sex differences in these indexes were identified. Pending further validation in prospective outcome-based studies, our data may be used as preliminary diagnostic values for the BPLab ABPM additional index in adult subjects. PMID:24812515

  2. High Pressure Techniques for Low Temperature Studies in DC and Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Tozer, S. W.

    Pressure can be used to expand the parameter space available in almost any experiment and allows for the continuous tuning of the electrical and orbital properties of a material. When combined with low temperatures and high magnetic fields, it becomes a powerful tool for the exploration of the band structure and defect levels in semiconductors, exotic transport mechanisms in molecular conductors, and the coexistence of magnetism and superconductivity. We have developed a variety of miniature pressure cells to allow the user to take full advantage of these opportunities. Metallic diamond anvil cells as small as 6 mm in diameter and 8 mm in height allow the sample to be rotated in field at millikelvin temperatures. Miniature plastic DACs and sapphire ball cells, rotators, and specialized He-4 and He-3 systems have also been developed to provide similar experimental capabilities in pulsed magnetic fields. Methods and designs to generate hydrostatic pressure and techniques to perform optical and electrical measurements in DC and pulsed fields will be presented. We would like to acknowledge the technical assistance of Richard Desilets, Howard Kolb, John Farrell, and Mike Pacheco. A portion of this work was performed at the National High Magnetic Field Laboratory, which is sponsored by NSF Cooperative Agreement No. DMR-9527035 and by the State of Florida.

  3. High Pressure Techniques for Low Temperature Studies in DC and Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Tozer, S. W.

    2002-07-01

    Pressure can be used to expand the parameter space available in almost any experiment and allows for the continuous tuning of the electrical and orbital properties of a material. When combined with low temperatures and high magnetic fields, it becomes a powerful tool for the exploration of the band structure and defect levels in semiconductors, exotic transport mechanisms in molecular conductors, and the coexistence of magnetism and superconductivity. We have developed a variety of miniature pressure cells to allow the user to take full advantage of these opportunities. Metallic diamond anvil cells as small as 6 mm in diameter and 8 mm in height allow the sample to be rotated in field at millikelvin temperatures. Miniature plastic DACs and sapphire ball cells, rotators, and specialized He-4 and He-3 systems have also been developed to provide similar experimental capabilities in pulsed magnetic fields. Methods and designs to generate hydrostatic pressure and techniques to perform optical and electrical measurements in DC and pulsed fields will be presented. We would like to acknowledge the technical assistance of Richard Desilets, Howard Kolb, John Farrell, and Mike Pacheco. A portion of this work was performed at the National High Magnetic Field Laboratory, which is sponsored by NSF Cooperative Agreement No. DMR-9527035 and by the State of Florida.

  4. The 24-hour pulse wave velocity, aortic augmentation index, and central blood pressure in normotensive volunteers.

    PubMed

    Kuznetsova, Tatyana Y; Korneva, Viktoria A; Bryantseva, Evgeniya N; Barkan, Vitaliy S; Orlov, Artemy V; Posokhov, Igor N; Rogoza, Anatoly N

    2014-01-01

    The purpose of this study was to examine the pulse wave velocity, aortic augmentation index corrected for heart rate 75 (AIx@75), and central systolic and diastolic blood pressure during 24-hour monitoring in normotensive volunteers. Overall, 467 subjects (206 men and 261 women) were recruited in this study. Participants were excluded from the study if they were less than 19 years of age, had blood test abnormalities, had a body mass index greater than 2 7.5 kg/m(2), had impaired glucose tolerance, or had hypotension or hypertension. Ambulatory blood pressure monitoring (ABPM) with the BPLab(®) device was performed in each subject. ABPM waveforms were analyzed using the special automatic Vasotens(®) algorithm, which allows the calculation of pulse wave velocity, AIx@75, central systolic and diastolic blood pressure for "24-hour", "awake", and "asleep" periods. Circadian rhythms and sex differences in these indexes were identified. Pending further validation in prospective outcome-based studies, our data may be used as preliminary diagnostic values for the BPLab ABPM additional index in adult subjects.

  5. Nanosecond-timescale high-pressure gas discharge in a microwave pulse compressor

    NASA Astrophysics Data System (ADS)

    Shlapakovski, Anatoli; Beilin, Leonid; Krasik, Yakov

    2016-09-01

    The results of experimental and numerical studies of the microwave plasma discharge initiated by a nanosecond laser pulse are presented. The discharge is ignited in the pressurized gas filling the switch, which opens the charged resonant cavity, so that the accumulated microwave energy is rapidly released into a load. Fast-framing optical imaging showed that the plasma in the switch appears as filaments expanding along the RF electric field. The temporal evolution of the plasma density was derived from time-resolved spectroscopic measurements. With increasing microwave energy in the cavity, the plasma appears earlier in time after the laser beam enters the switch and its density rises more steeply reaching values which exceed 1016 cm-3 at a gas pressure of 2 .105 Pa. Numerical simulations were conducted using the gas conductivity model of plasma and representation of discharge origin by setting initial population of seed electrons treated by PIC algorithm. The results showed good agreement with the experiments and explained how the self-consistent dynamics of the plasma and RF fields determines the quality of microwave output pulses. In addition, the dynamics of the microwave energy absorption in the discharge plasma was studied. It was shown that at a high pressure, even with an unlimited rate of ionization, a significant portion of the stored energy, 20%, is lost. This work was partially supported by the BSF Grant No. 2012038.

  6. Transient pressure-pulse decay permeability measurements in the Barnett shale

    NASA Astrophysics Data System (ADS)

    Bhandari, A. R.; Reece, J.; Cronin, M. B.; Flemings, P. B.; Polito, P. J.

    2012-12-01

    We conducted transient pressure-pulse decay permeability measurements on core plugs of the Barnett shale using a hydrostatic pressure cell. Core plugs, 3.8 cm in diameter and less than 2.5 cm in length, were prepared from a core obtained at a depth of approximately 2330 m from the Mitchel Energy 2 T. P. Sims well in the Mississippian Barnett Formation (Loucks and Ruppel, 2007). We performed permeability measurements of the core plugs using argon at varying confining pressures in two different directions (perpendicular and parallel to bedding planes). We calculate gas permeability from changes in pressure with time using the analytical solution of the pressure diffusion equation with appropriate boundary conditions for our test setup (Dicker and Smits, 1988). Based on our limited results, we interpret 2 × 10-18 m2 for vertical permeability and 156 × 10-18 m2 for horizontal permeability. We demonstrate an extreme stress dependence of the horizontal flow permeability where permeability decreases from 156 × 10-18 m2 to 2.5 × 10-18 m2 as the confining stress is increased from 3.5 to 35 MPa. These permeability measurements are at the high side of other pulsed permeability measurements in the Barnett shale (Bustin et al. 2008; Vermylen, 2011). Permeabilities calculated from mercury injection capillary pressure curves, using theoretically derived permeability-capillary pressure models based on parallel tubes assumption, are orders of magnitude less than our transient pressure-pulse decay permeability measurements (for example, 3.7×10-21 m2 (this study), 10-21 -10-20 m2 (Sigal, 2007), 10-20 -10-17 m2 (Prince et al., 2010)). We interpret that the high measured permeabilities are due to microfractures in the sample. At this point, we do not know if the microfractures are due to sampling disturbance (stress-relief induced) or represent an in-situ fracture network. Our study illustrates the importance of characterization of microfractures at the core scale to understand

  7. Investigation of the effect of a bend in a transfer line that separates a pulse tube cold head and a pressure wave generator

    NASA Astrophysics Data System (ADS)

    Dev, A. A.; Atrey, M. D.; Vanapalli, S.

    2017-02-01

    A transfer line between a pulse tube cold head and a pressure wave generator is usually required to isolate the cold head from the vibrations of the compressor. Although it is a common practice to use a thin and narrow straight tube, a bent tube would allow design flexibility and easy mounting of the cold head, such as in a split Stirling type pulse tube cryocooler. In this paper, we report a preliminary investigation on the effect of the bending of the tube on the flow transfer characteristics. A numerical study using commercial computational fluid dynamics model is performed to gain insight into the flow characteristics in the bent tube. Oscillating flow experiments are performed with a straight and a bent tube at a filling pressure of 15 bar and an operating frequency of 40, 50 and 60 Hz. The data and the corresponding numerical simulations point to the hypothesis that the secondary flow in the bent tube causes a decrease in flow at a fixed pressure amplitude.

  8. Pulse Pressure Relation to Aortic and Left Ventricular Structure in Older People in the AGES-Reykjavik Study

    PubMed Central

    Torjesen, Alyssa A; Sigurđsson, Sigurđur; Westenberg, Jos JM; Gotal, John D; Bell, Vanessa; Aspelund, Thor; Launer, Lenore J; de Roos, Albert; Gudnason, Vilmundur; Harris, Tamara B; Mitchell, Gary F

    2014-01-01

    High pulse pressure, a major cardiovascular risk factor, has been attributed to medial elastic fiber degeneration and aortic dilation, which transfers hemodynamic load to stiffer collagen. However, recent studies suggest higher pulse pressure is instead associated with smaller aortic diameter. Thus, we sought to elucidate relations of pulse pressure with aortic stiffness and aortic and cardiac dimensions. We used magnetic resonance imaging to examine relations of pulse pressure with lumen area and wall stiffness and thickness in the thoracic aorta and left ventricular structure in 526 participants (72 to 94 years of age, 295 women) in the community-based Age, Gene/Environment Susceptibility-Reykjavik Study. In a multivariable model that adjusted for age, sex, height, weight, and standard vascular risk factors, central pulse pressure had a negative relation with aortic lumen area (all effects expressed as mm Hg/SD; B=−8.1±1.2, P<0.001) and positive relations with left ventricular end-diastolic volume (B=3.8±1.0, P<0.001), carotid-femoral pulse wave velocity (B=3.6±1.0, P<0.001), and aortic wall area (B=3.0±1.2, P=0.015). Higher pulse pressure in older people is associated with smaller aortic lumen area and greater aortic wall stiffness and thickness and left ventricular volume. Relations of larger ventricular volume and smaller aortic lumen with higher pulse pressure suggest mismatch in hemodynamic load accommodation by the heart and aorta in older people. PMID:25024287

  9. Pulse pressure relation to aortic and left ventricular structure in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study.

    PubMed

    Torjesen, Alyssa A; Sigurðsson, Sigurður; Westenberg, Jos J M; Gotal, John D; Bell, Vanessa; Aspelund, Thor; Launer, Lenore J; de Roos, Albert; Gudnason, Vilmundur; Harris, Tamara B; Mitchell, Gary F

    2014-10-01

    High pulse pressure, a major cardiovascular risk factor, has been attributed to medial elastic fiber degeneration and aortic dilation, which transfers hemodynamic load to stiffer collagen. However, recent studies suggest higher pulse pressure is instead associated with smaller aortic diameter. Thus, we sought to elucidate relations of pulse pressure with aortic stiffness and aortic and cardiac dimensions. We used magnetic resonance imaging to examine relationships of pulse pressure with lumen area and wall stiffness and thickness in the thoracic aorta and left ventricular structure in 526 participants (72-94 years of age, 295 women) in the community-based Age, Gene/Environment Susceptibility-Reykjavik Study. In a multivariable model that adjusted for age, sex, height, weight, and standard vascular risk factors, central pulse pressure had a negative relationship with aortic lumen area (all effects expressed as mm Hg/SD; B=-8.1±1.2; P<0.001) and positive relationships with left ventricular end-diastolic volume (B=3.8±1.0; P<0.001), carotid-femoral pulse wave velocity (B=3.6±1.0; P<0.001), and aortic wall area (B=3.0±1.2; P=0.015). Higher pulse pressure in older people is associated with smaller aortic lumen area and greater aortic wall stiffness and thickness and left ventricular volume. Relationships of larger ventricular volume and smaller aortic lumen with higher pulse pressure suggest mismatch in hemodynamic load accommodation by the heart and aorta in older people. © 2014 American Heart Association, Inc.

  10. Improving the homogeneity of alternating current-drive atmospheric pressure dielectric barrier discharges in helium with an additional low-amplitude radio frequency power source: A numerical study

    SciTech Connect

    Wang Qi; Sun Jizhong; Zhang Jianhong; Wang Dezhen; Liu Liying

    2013-04-15

    It was proposed in this paper that the homogeneity of the atmospheric pressure discharge driven by an ac power source could be improved by applying an auxiliary low-amplitude rf power source. To verify the idea, a two-dimensional fluid model then was applied to study the atmospheric discharges in helium driven by ac power, low-amplitude rf power, and combined ac and low-amplitude rf power, respectively. Simulation results confirmed that an auxiliary rf power could improve the homogeneity of a discharge driven by an ac power source. It was further found that there existed a threshold voltage of the rf power source leading to the transition from inhomogeneous to homogeneous discharge. As the frequency of the rf power source increased from 2 to 22 MHz, the magnitude of the threshold voltage dropped first rapidly and then to a constant value. When the frequency was over 13.56 MHz, the magnitude of the threshold voltage was smaller than one-sixth of the ac voltage amplitude under the simulated discharge parameters.

  11. Spectroscopic diagnostics of a pulsed discharge in high-pressure argon

    NASA Astrophysics Data System (ADS)

    Treshchalov, A. B.; Lissovskii, A. A.

    2010-05-01

    Results of investigation of high-pressure argon plasma excited by a high-current pulsed volume discharge are presented. The plasma diagnostics employs spatiotemporal dependences of the emission intensity in the VUV — visible range. A homogenous discharge is observed at pressures up to 10 atm. It is found that the spectrum of the UV — visible photorecombination continuum is sensitive to the discharge constriction. Change in the shape of the spectrum is caused bythe change of the type of positive charge carriers upon passing of the discharge from the uniform phase (molecular Ar2+ ions) to the arc phase (atomic Ar+ ions). Experimental data and model calculations show that the electron heating after the main excitation pulse is a highly undesirable process. It slows down the recombination flow in the plasma, which results in stretching of all the kinetic processes for all excited components in time, and hence in a decrease in the peak values of their concentrations. Electron collision-induced mixing effi-ciently converts the reservoir of long-lived Ar2* molecules in the triplet state into rapidly emitting singlet excimers. It is this mechanism that dominates the production of singlet Ar2* excimer molecules. The threshold concentration needed to obtain lasing at a wavelength of 127 nm on Ar2* excimers (1Σ+u(v=0)) was, according to calculations, about 5×1015 cm-3 for the gain 0.05 cm-1. This concentration can be achieved in the case of homogeneous pulsed discharge pumping with the peak electron concentration 2.×1016 cm-3 at the argon pressure 10 atm.

  12. Blood Pressure Estimation Using Pulse Transit Time From Bioimpedance and Continuous Wave Radar.

    PubMed

    Buxi, Dilpreet; Redout, Jean-Michel; Yuce, Mehmet Rasit

    2017-04-01

    We have developed and tested a new architecture for pulse transit time (PTT) estimation at the central arteries using electrical bioimpedance, electrocardiogram, and continuous wave radar to estimate cuffless blood pressure. A transmitter and receiver antenna are placed at the sternum to acquire the arterial pulsation at the aortic arch. A four-electrode arrangement across the shoulders acquires arterial pulse across the carotid and subclavian arteries from bioimpedance as well as a bipolar lead I electrocardiogram. The PTT and pulse arrival times (PATs) are measured on six healthy male subjects during exercise on a bicycle ergometer. Using linear regression, the estimated PAT and PTT values are calibrated to the systolic and mean as well as diastolic blood pressure from an oscillometric device. For all subjects, the Pearson correlation coefficients for PAT-SBP and PTT-SBP are -0.66 (p = 0.001) and -0.48 (p = 0.0029), respectively. Correlation coefficients for individual subjects ranged from -0.54 to -0.9 and -0.37 to -0.95, respectively. The proposed system architecture is promising in estimating cuffless arterial blood pressure at the central, proximal arteries, which obey the Moens-Korteweg equation more closely when compared to peripheral arteries. An important advantage of PTT from the carotid and subclavian arteries is that the PTT over the central elastic arteries is measured instead of the peripheral arteries, which potentially reduces the changes in PTT due to vasomotion. Furthermore, the sensors can be completely hidden under a patients clothes, making them more acceptable by the patient for ambulatory monitoring.

  13. High pulse pressure and metabolic syndrome are associated with proteinuria in young adult women

    PubMed Central

    2013-01-01

    Background Obesity and metabolic syndrome play causative roles in the increasing prevalence of proteinuria in the general population. However, in young adult women the clinical significance of incidentally discovered proteinuria and its association with metabolic syndrome are unclear. We investigated the prevalence and risk factors for proteinuria in this population. Methods A total of 10,385 women aged 20 to 39 years who underwent health screenings were surveyed. Each patient was tested for proteinuria with a dipstick (−, ±, 1+, 2+, or 3+), and proteinuria was defined as 1+ or greater. Persistent proteinuria was established by confirming proteinuria in a subsequent test. Metabolic syndrome was defined in accordance with the updated National Cholesterol Education Program Adult Treatment Panel III criteria for Asia. Results The mean age was 28.9 ± 5.5 years, and the prevalence of persistent proteinuria was 1.0%. Among these subjects with persistent proteinuria, obesity and metabolic syndrome were found in 10.4% and 5.2%, respectively. Metabolic syndrome, as well as its components of hypertension, hyperglycemia, central obesity, low high-density lipoprotein levels, and high triglyceride levels, was closely related to the presence of proteinuria. In addition, a wide pulse pressure of ≥40 mmHg was another independent risk factor for proteinuria [odds ratio (OR) 3.29, 95% confidence interval (CI) 1.03–11.91)]. This had an additive effect on metabolic syndrome in terms of predicting proteinuria. Even in subjects without metabolic syndrome, the influence of an increased pulse pressure was consistent (OR 2.75, 95% CI 1.03–8.61). Conclusions Specific attention to proteinuria may be necessary in asymptomatic young women aged 20 to 39 years if they have metabolic syndrome or a wide pulse pressure. PMID:23433013

  14. Spectroscopic diagnostics of a pulsed discharge in high-pressure argon

    SciTech Connect

    Treshchalov, A B; Lissovskii, A A

    2010-05-26

    Results of investigation of high-pressure argon plasma excited by a high-current pulsed volume discharge are presented. The plasma diagnostics employs spatiotemporal dependences of the emission intensity in the VUV - visible range. A homogenous discharge is observed at pressures up to 10 atm. It is found that the spectrum of the UV - visible photorecombination continuum is sensitive to the discharge constriction. Change in the shape of the spectrum is caused bythe change of the type of positive charge carriers upon passing of the discharge from the uniform phase (molecular Ar{sub 2}{sup +} ions) to the arc phase (atomic Ar{sup +} ions). Experimental data and model calculations show that the electron heating after the main excitation pulse is a highly undesirable process. It slows down the recombination flow in the plasma, which results in stretching of all the kinetic processes for all excited components in time, and hence in a decrease in the peak values of their concentrations. Electron collision-induced mixing effi-ciently converts the reservoir of long-lived Ar{sub 2}* molecules in the triplet state into rapidly emitting singlet excimers. It is this mechanism that dominates the production of singlet Ar{sub 2}* excimer molecules. The threshold concentration needed to obtain lasing at a wavelength of 127 nm on Ar{sub 2}* excimers ({sup 1{Sigma}+}{sub u(v=0)}) was, according to calculations, about 5x10{sup 15} cm{sup -3} for the gain 0.05 cm{sup -1}. This concentration can be achieved in the case of homogeneous pulsed discharge pumping with the peak electron concentration 2.x10{sup 16} cm{sup -3} at the argon pressure 10 atm.

  15. Effects of large pressure amplitude low frequency noise in the parotid gland perivasculo-ductal connective tissue.

    PubMed

    Oliveira, Pedro; Brito, José; Mendes, João; da Fonseca, Jorge; Águas, Artur; Martins dos Santos, José

    2013-01-01

    Introdução: Em tecidos e órgãos expostos a ruído de baixa frequência de alta amplitude ocorre fibrose na ausência de sinais inflamatórios, que se pensa ser uma resposta protetora. No tecido conjuntivo perivasculo-ductal da glândula parótida seguem artérias, veias e a árvore ductal. Crê-se que o tecido conjuntivo perivasculo-ductal funcione como um estabilizador mecânico do tecido glandular.Material e Métodos: Para quantificar a proliferação de tecido conjuntivo perivasculo-ductal em ratos expostos a ruído de baixafrequência de alta amplitude foram utilizados 60 ratos Wistar igualmente divididos em seis grupos. Um grupo mantido em silêncio, e os restantes 5 expostos a ruído de baixa frequência de alta amplitude continuamente: g1-168h (1 semana); g2-504h (3 semanas); g3-840h (5semanas); g4-1512h (9 semanas) e g5-2184h (13 semanas). Após a exposição, as parótidas foram removidas e o tecido conjuntivo perivasculo-ductal foi medido em todos os grupos. Foi efectuada análise estatística com ANOVA por SPSS 13.0.Resultados: A tendência é um aumento global das áreas do tecido conjuntivo perivasculo-ductal, que se desenvolve de forma linear e significativa com o tempo de exposição (p < 0,001).Discussão: Tem sido sugerido que a resposta biológica à exposição ao ruído de baixa frequência de alta amplitude está associada à necessidade de manter a integridade estrutural. O reforço estrutural seria conseguido através do aumento do tecido conjuntivo perivasculo-ductal.Conclusões: Assim, estes resultados mostram que o tecido conjuntivo perivasculo-ductal aumenta em resposta à exposição ao ruído de baixa frequência de alta amplitude.

  16. Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kim, Sun Ja; Chung, T. H.; Bae, S. H.; Leem, S. H.

    2010-07-01

    By using an atmospheric pressure plasma jet driven by pulsed dc voltage with repetition rate of several tens of kilohertz, we were able to induce apoptosis in cultured human breast cancer cells (MCF-7). The apoptotic changes in cells with plasma treatment were detected by flow cytometry and fluorescence staining assay. A significant portion of these cells was observed to exhibit the apoptotic fragmentation. Helium plasma with additive O2 gas was found to be effective in the induction of apoptosis. This plasma jet provides an effective mode of human breast cancer cell therapy.

  17. High-quality in situ manganite thin films by pulsed laser deposition at low background pressures

    NASA Astrophysics Data System (ADS)

    Tebano, A.; Balestrino, G.; Boggio, N. G.; Aruta, C.; Davidson, B.; Medaglia, P. G.

    2006-06-01

    We show that by decreasing the laser fluence it is possible to improve the oxidation process in manganite thin films under low background oxygen pressure, allowing the in situ use of conventional Reflection High Energy Electron Diffraction diagnostic. Films deposited at low fluence (corresponding to a deposition rate per pulse lower than 10-2 unit cells per laser shot) show a two-dimensional growth mode and possess very good transport properties without the necessity of any further post-growth annealing treatment. A physical model, based on the plume-background interaction as a primary mechanism of film oxidation during growth, is proposed to explain the experimental findings.

  18. Aerodynamic stability analysis of NASA J85-13/planar pressure pulse generator installation

    NASA Technical Reports Server (NTRS)

    Chung, K.; Hosny, W. M.; Steenken, W. G.

    1980-01-01

    A digital computer simulation model for the J85-13/Planar Pressure Pulse Generator (P3 G) test installation was developed by modifying an existing General Electric compression system model. This modification included the incorporation of a novel method for describing the unsteady blade lift force. This approach significantly enhanced the capability of the model to handle unsteady flows. In addition, the frequency response characteristics of the J85-13/P3G test installation were analyzed in support of selecting instrumentation locations to avoid standing wave nodes within the test apparatus and thus, low signal levels. The feasibility of employing explicit analytical expression for surge prediction was also studied.

  19. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.

    2011-10-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  20. Full-density, net-shape powder consolidation using dynamic magnetic pulse pressures

    NASA Astrophysics Data System (ADS)

    Chelluri, Bhanu; Barber, John P.

    1999-07-01

    The full-density consolidation of powders into net-shape parts yields high green strength, low shrinkage, short sinter times, superior mechanical properties, and low manufacturing costs. The conventional lowcost, single-press, single-sinter process typically densifies powders at less than 65 percent green density. This article describes the Magnepress™ process, a powder-processing technique wherein pulsed magnetic pressures consolidate powders into full-density parts without admixed lubricants or binders. The Magnepress technique is especially suitable for producing net-shape products with radial symmetry (e.g., rods, cylindrical parts with internal features, tubular shapes, and high aspect-ratio specimens).

  1. Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses.

    PubMed

    Henig, A; Steinke, S; Schnürer, M; Sokollik, T; Hörlein, R; Kiefer, D; Jung, D; Schreiber, J; Hegelich, B M; Yan, X Q; Meyer-ter-Vehn, J; Tajima, T; Nickles, P V; Sandner, W; Habs, D

    2009-12-11

    We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5x10(19) W/cm2. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell simulations reveal that those C6+ ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.

  2. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    SciTech Connect

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Ma, W. J.; Gu, Y. Q.; Yan, X. Q.

    2016-08-15

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  3. Pulse

    MedlinePlus

    ... the underside of the opposite wrist, below the base of the thumb. Press with flat fingers until ... determine if the patient's heart is pumping. Pulse measurement has other uses as well. During or immediately ...

  4. Specific features of the behaviour of targets under negative pressures created by a picosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Abrosimov, S. A.; Bazhulin, A. P.; Voronov, Valerii V.; Geras'kin, A. A.; Krasyuk, Igor K.; Pashinin, Pavel P.; Semenov, Andrei Yu; Stuchebryukhov, I. A.; Khishchenko, K. V.; Fortov, Vladimir E.

    2013-03-01

    New experimental data are obtained concerning the character of spallation and the mechanical strength of targets made of aluminium, aluminium - magnesium alloy (AMg6M), polymethylmethacrylate (PMMA, plexiglass), tantalum, copper, tungsten, palladium, silicon, and lead under the impact of laser radiation with the duration 70 ps. The specific features of the spallation phenomenon, in which the separation of a part of the target substance occurs at the back surface as a result of the effect of negative pressures (tensile stresses) in the substance, are experimentally studied. To determine the time moment of spallation, the electrocontact method of measuring the velocity of the spalled layer is developed and implemented. The obtained results show that the values of spall strength of the studied materials at moderate amplitudes of the shock-wave effect agree with the known literature data, while at higher pressures the growth of spall strength is observed, which is an evidence of the material hardening. The results of the studies demonstrate that the dynamic strength of a substance depends on both the duration and the amplitude of the shock-wave impact on the target.

  5. Specific features of the behaviour of targets under negative pressures created by a picosecond laser pulse

    SciTech Connect

    Abrosimov, S A; Bazhulin, A P; Voronov, Valerii V; Geras'kin, A A; Krasyuk, Igor K; Pashinin, Pavel P; Semenov, Andrei Yu; Stuchebryukhov, I A; Khishchenko, K V; Fortov, Vladimir E

    2013-03-31

    New experimental data are obtained concerning the character of spallation and the mechanical strength of targets made of aluminium, aluminium - magnesium alloy (AMg6M), polymethylmethacrylate (PMMA, plexiglass), tantalum, copper, tungsten, palladium, silicon, and lead under the impact of laser radiation with the duration 70 ps. The specific features of the spallation phenomenon, in which the separation of a part of the target substance occurs at the back surface as a result of the effect of negative pressures (tensile stresses) in the substance, are experimentally studied. To determine the time moment of spallation, the electrocontact method of measuring the velocity of the spalled layer is developed and implemented. The obtained results show that the values of spall strength of the studied materials at moderate amplitudes of the shock-wave effect agree with the known literature data, while at higher pressures the growth of spall strength is observed, which is an evidence of the material hardening. The results of the studies demonstrate that the dynamic strength of a substance depends on both the duration and the amplitude of the shock-wave impact on the target. (extreme light fields and their applications)

  6. Slow slip pulses driven by thermal pressurization of pore fluid: theory and observational constraints

    NASA Astrophysics Data System (ADS)

    Garagash, D.

    2012-12-01

    We discuss recently developed solutions for steadily propagating self-healing slip pulses driven by thermal pressurization (TP) of pore fluid [Garagash, 2012] on a fault with a constant sliding friction. These pulses are characterized by initial stage of undrained weakening of the fault (when fluid/heat can not yet escape the frictionally heated shear zone), which gives way to partial restrengthening due to increasing hydrothermal diffusion under conditions of diminished rate of heating, leading to eventual locking of the slip. The rupture speed of these pulses is decreasing function of the thickness (h) of the principal shear zone. We find that "thick" shear zones, h >> hdyna, where hdyna = (μ/τ0) (ρc/fΛ)(4α/cs), can support aseismic TP pulses propagating at a fraction hdyna/h of the shear wave speed cs, while "thin" shear zones, h˜hdyna or thinner, can only harbor seismic slip. (Here μ - shear modulus, τ0 - the nominal fault strength, f - sliding friction, ρc - the heat capacity of the fault gouge, Λ - the fluid thermal pressurization factor, α - hydrothermal diffusivity parameter of the gouge). For plausible range of fault parameters, hdyna is between 10s to 100s of micrometers, suggesting that slow slip transients propagating at 1 to 10 km/day may occur in the form of a TP slip pulse accommodated by a meter-thick shear zone. We verify that this is, indeed, a possibility by contrasting the predictions for aseismic, small-slip TP pulses operating at seismologically-constrained, near-lithostatic pore pressure (effective normal stress ≈ 3 to 10 MPa) with the observations (slip duration at a given fault location ≈ week, propagation speed ≈ 15 km/day, and the inferred total slip ≈ 2 to 3 cm) for along-strike propagation of the North Cascadia slow slip events of '98-99 [Dragert et al., 2001, 2004]. Furthermore, we show that the effect of thermal pressurization on the strength of the subduction interface is comparable to or exceeds that of the rate

  7. A Small Volume Bioassay to Assess Bacterial/Phytoplankton Co-culture Using WATER-Pulse-Amplitude-Modulated (WATER-PAM) Fluorometry

    PubMed Central

    Bramucci, Anna R.; Labeeuw, Leen; Mayers, Teaghan J.; Saby, Julie A.; Case, Rebecca J.

    2015-01-01

    Conventional methods for experimental manipulation of microalgae have employed large volumes of culture (20 ml to 5 L), so that the culture can be subsampled throughout the experiment1–7. Subsampling of large volumes can be problematic for several reasons: 1) it causes variation in the total volume and the surface area:volume ratio of the culture during the experiment; 2) pseudo-replication (i.e., replicate samples from the same treatment flask8) is often employed rather than true replicates (i.e., sampling from replicate treatments); 3) the duration of the experiment is limited by the total volume; and 4) axenic cultures or the usual bacterial microbiota are difficult to maintain during long-term experiments as contamination commonly occurs during subsampling. The use of microtiter plates enables 1 ml culture volumes to be used for each replicate, with up to 48 separate treatments within a 12.65 x 8.5 x 2.2 cm plate, thereby decreasing the experimental volume and allowing for extensive replication without subsampling any treatment. Additionally, this technique can be modified to fit a variety of experimental formats including: bacterial-algal co-cultures, algal physiology tests, and toxin screening9–11. Individual wells with an alga, bacterium and/or co-cultures can be sampled for numerous laboratory procedures including, but not limited to: WATER-Pulse-Amplitude-Modulated (WATER-PAM) fluorometry, microscopy, bacterial colony forming unit (cfu) counts and flow cytometry. The combination of the microtiter plate format and WATER-PAM fluorometry allows for multiple rapid measurements of photochemical yield and other photochemical parameters with low variability between samples, high reproducibility and avoids the many pitfalls of subsampling a carboy or conical flask over the course of an experiment. PMID:25867634

  8. On the determination of the worst sampling error in a communication system for pulse amplitude modulated signals. Part II: The finite dimensional model

    NASA Astrophysics Data System (ADS)

    Kerber, Dirk

    1991-09-01

    This paper is dedicated to the problem of optimizing the transmission properties of a Pulse Amplitude Modulation (PAM) system. The system is disturbed by a random timing jitter in the sampling device which periodically evaluates the continuous output signal at discrete times. Mathematically the timing jitter is a random variable with unknown probability distribution. So, our optimization problem turns out to be actually a minimax problem, for which mathematical game theory with its powerful concepts becomes the suitable frame for our analysis. In the first part [4] we have established a general existence theorem for the minimax problem, and we have worked out some properties of solutions in the case that the feasible impulse responses form a space of infinite dimension. This part summarizes results which we obtain, if we allow only for impulse responses lying in a certain n-dimensional subspace of the original space (see [2, 3]). By general results from semi-infinite optimization (see [1]) we know that, writing the minimax problem as a semi-infinite optimization problem, we can reduce the number of restrictions from infinity to a number s≤ n+1. On the basis of our special model we present a theory of “uniformly” singular quadratic forms, which has been developed (see [3]) in order to get additional statements about s. In this way we supplement the work of Krabs [6], who was the first to present such a finite dimensional model, arguing that it is impossible for an engineer to construct a system in a way that an arbitrary impulse response is realized, unless this impulse response has a “simple” structure (for instance a low pass filter). The first two paragraphs have been taken almost literally from part I in order to render the lecture more comfortable. The interesting parts, however, are the following ones, where the results specific for the finite dimensional case are worked out.

  9. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral.

    PubMed

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.

  10. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral

    PubMed Central

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0–21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming. PMID:26582993

  11. Single pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: interrelationship of gate delay and pulse energy

    SciTech Connect

    Michel, Anna P. M.; Chave, Alan D

    2008-11-01

    The ability of oceanographers to make sustained measurements of ocean processes is limited by the number of available sensors for long-term in situ analysis. In recent years, laser-induced breakdown spectroscopy (LIBS) has been identified as a viable technique to develop into an oceanic chemical sensor. We performed single pulse laser-induced breakdown spectroscopy of high pressure bulk aqueous solutions to detect three analytes (sodium, manganese, and calcium) that are of key importance in hydrothermal vent fluids, an ocean environment that would greatly benefit from the development of an oceanic LIBS sensor. The interrelationship of the key experimental parameters, pulse energy and gate delay, for a range of pressures up to 2.76x10{sup 7} Pa, is studied. A minimal effect of pressure on the peak intensity is observed. A short gate delay (less than 200 ns) must be used at all pressures. The ability to use a relatively low laser pulse energy (less than approx. 60 mJ) for detection of analytes at high pressure is also established. Na, Mn, and Ca are detectable at pressures up to 2.76x10{sup 7} Pa at 50, 500, and 50 ppm, respectively, using an Echelle spectrometer.

  12. Plasma polymerization of ethylene in an atmospheric pressure-pulsed discharge

    NASA Technical Reports Server (NTRS)

    Donohoe, K.; Wydeven, T.

    1979-01-01

    The polymerization of ethylene in an atmospheric pressure-pulsed discharge has been studied. Partial pressures of ethylene up to 4 kN/sq m were used with helium as a diluent. Deposition rates (on glass slides) were the same throughout the discharge volume over a wide range of operating conditions. These rates were in the 1-2 A/sec range. The films were clear, soft, and showed good adhesion to the glass substrates. Oligomers large enough to visibly scatter 637.8-nm light were observed in the gas phase under all conditions in which film deposition occurred. The experimental results suggest that Brownian diffusion of these oligomers was the rate-limiting step in the film deposition process.

  13. High-pressure pulsed avalanche discharges: Formulas for required preionization density and rate for homogeneity

    SciTech Connect

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E.

    1997-02-01

    The requirements on preionization for the formation of spatially homogeneous pulsed avalanche discharges are examined. The authors derive two formulas which apply in the case of a slowly rising electric field, one which gives the required preionization density at breakdown, and one which gives the required preionization rate. These quantities are expressed as functions of the electrochemical properties of the gas, the neutral density, and the electric field rise time. They also treat the statistical effect that the electrons tend to form groups, in contrast to being randomly distributed in space, during the prebreakdown phase. This process is found to increase the required preionization rate significantly, typically by a factor of five for a discharge at atmospheric pressure. Homogeneous high-pressure discharges have been used for laser excitation, and have also been proposed for chemical plasma processing (ozone production) because of their good scaling properties and high efficiency.

  14. Cuff-less blood pressure measurement using pulse arrival time and a Kalman filter

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Xianxiang; Fang, Zhen; Xue, Yongjiao; Zhan, Qingyuan; Yang, Ting; Xia, Shanhong

    2017-02-01

    The present study designs an algorithm to increase the accuracy of continuous blood pressure (BP) estimation. Pulse arrival time (PAT) has been widely used for continuous BP estimation. However, because of motion artifact and physiological activities, PAT-based methods are often troubled with low BP estimation accuracy. This paper used a signal quality modified Kalman filter to track blood pressure changes. A Kalman filter guarantees that BP estimation value is optimal in the sense of minimizing the mean square error. We propose a joint signal quality indice to adjust the measurement noise covariance, pushing the Kalman filter to weigh more heavily on measurements from cleaner data. Twenty 2 h physiological data segments selected from the MIMIC II database were used to evaluate the performance. Compared with straightforward use of the PAT-based linear regression model, the proposed model achieved higher measurement accuracy. Due to low computation complexity, the proposed algorithm can be easily transplanted into wearable sensor devices.

  15. Substrate temperature and oxygen pressure dependence of pulsed laser-deposited Sr ferrite films

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, P.; O'Neill, M.; Atkinson, R.; Salter, I. W.; Gerber, R.

    1996-01-01

    The effect of substrate temperature and oxygen pressure on the microstructure, magnetic and magneto-optical properties of Sr ferrite (SrM) films grown on (001) single-crystal sapphire substrates by pulsed laser deposition has been investigated. Polycrystalline SrM films with perpendicular magnetic anisotropy could be prepared under a wide range of oxygen pressures and relatively high temperatures, sufficient to crystallise the material. However, an almost exclusive c-axis orientation normal to the film plane could be attained only at a narrow operational window centered at 0.1 mbar and 840°C. The magneto-optical properties of the films were comparable to those of the bulk barium hexaferrite single-crystal material. In addition, results obtained by atomic force microscopy provide convincing evidence that the growth of Sr ferrite on sapphire takes place by a spiral growth mechanism.

  16. Plasma polymerization of ethylene in an atmospheric pressure-pulsed discharge

    NASA Technical Reports Server (NTRS)

    Donohoe, K.; Wydeven, T.

    1979-01-01

    The polymerization of ethylene in an atmospheric pressure-pulsed discharge has been studied. Partial pressures of ethylene up to 4 kN/sq m were used with helium as a diluent. Deposition rates (on glass slides) were the same throughout the discharge volume over a wide range of operating conditions. These rates were in the 1-2 A/sec range. The films were clear, soft, and showed good adhesion to the glass substrates. Oligomers large enough to visibly scatter 637.8-nm light were observed in the gas phase under all conditions in which film deposition occurred. The experimental results suggest that Brownian diffusion of these oligomers was the rate-limiting step in the film deposition process.

  17. Impact of arterial load on the agreement between pulse pressure analysis and esophageal Doppler

    PubMed Central

    2013-01-01

    Introduction The reliability of pulse pressure analysis to estimate cardiac output is known to be affected by arterial load changes. However, the contribution of each aspect of arterial load could be substantially different. In this study, we evaluated the agreement of eight non-commercial algorithms of pulse pressure analysis for estimating cardiac output (PPCO) with esophageal Doppler cardiac output (EDCO) during acute changes of arterial load. In addition, we aimed to determine the optimal arterial load parameter that could detect a clinically significant difference between PPCO and the EDCO. Methods We included mechanically ventilated patients monitored with a prototype esophageal Doppler (CardioQ-Combi™, Deltex Medical, Chichester, UK) and an indwelling arterial catheter who received a fluid challenge or in whom the vasoactive medication was introduced or modified. Initial calibration of PPCO was made with the baseline value of EDCO. We evaluated several aspects of arterial load: total systemic vascular resistance (TSVR = mean arterial pressure [MAP]/EDCO * 80), net arterial compliance (C = EDCO-derived stroke volume/pulse pressure), and effective arterial elastance (Ea = 0.9 * systolic blood pressure/EDCO-derived stroke volume). We compared CO values with Bland-Altman analysis, four-quadrant plot and a modified polar plot (with least significant change analysis). Results A total of 16,964-paired measurements in 53 patients were performed (median 271; interquartile range: 180-415). Agreement of all PPCO algorithms with EDCO was significantly affected by changes in arterial load, although the impact was more pronounced during changes in vasopressor therapy. When looking at different parameters of arterial load, the predictive abilities of Ea and C were superior to TSVR and MAP changes to detect a PPCO-EDCO discrepancy ≥ 10% in all PPCO algorithms. An absolute Ea change > 8.9 ± 1.7% was associated with a PPCO-EDCO discrepancy ≥ 10% in most algorithms

  18. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    NASA Astrophysics Data System (ADS)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  19. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  20. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, Sizhe; Lu, Xinpei

    2016-09-01

    We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.

  1. Tunable time-reversal cavity for high-pressure ultrasonic pulses generation: A tradeoff between transmission and time compression

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael

    2012-08-01

    This Letter presents a time reversal cavity that has both a high reverberation time and a good transmission factor. A multiple scattering medium has been embedded inside a fluid-filled reverberating cavity. This allows creating smart ultrasonic sources able to generate very high pressure pulses at the focus outside the cavity with large steering capabilities. Experiments demonstrate a 25 dB gain in pressure at the focus. This concept will enable us to convert conventional ultrasonic imaging probes driven by low power electronics into high power probes for therapeutic applications requiring high pressure focused pulses, such as histotripsy or lithotripsy.

  2. High pressure, thermal and pulsed electric-field-induced structural changes in selected food allergens.

    PubMed

    Johnson, Phil E; Van der Plancken, Iesel; Balasa, Ana; Husband, Fiona A; Grauwet, Tara; Hendrickx, Marc; Knorr, Dietrich; Mills, E N Clare; Mackie, Alan R

    2010-12-01

    The effects of high-pressure/temperature treatment and pulsed electric field treatment on native peanut Ara h 2, 6 and apple Mal d 3 and Mal d 1b prepared by heterologous expression were examined. Changes in secondary structure and aggregation state of the treated proteins were characterized by circular dichroism spectroscopy and gel-filtration chromatography. Pulsed electric field treatment did not induce any significant changes in the structure of any of the allergens. High-pressure/temperature at 20 °C did not change the structure of the Ara h 2, 6 or Mal d 3 and resulted in only minor changes in structure of Mal d 1b. Ara h 2, 6 was stable to HPP at 80 °C, whereas changes in circular dichroism spectra were observed for both apple allergens. However, these changes were attributable to aggregation and adiabatic heating during HPP. An ELISA assay of temperature treated Mal d 3 showed the antibody reactivity correlated well with the loss of structure. In conclusion, novel-processing techniques had little effect on purified allergen structure. Further studies will demonstrate if these stability properties are retained in foodmatrices. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ion kinetics and self pulsing in DC microplasma discharges at atmospheric and higher pressure

    NASA Astrophysics Data System (ADS)

    Mahamud, Rajib; Farouk, Tanvir I.

    2016-04-01

    Atmospheric pressure microplasma devices have been the subject of considerable interest and research during the last decade. Most of the operation regime of the plasma discharges studied fall in the ‘abnormal’, ‘normal’ and ‘corona’ modes—increasing and a ‘flat’ voltage current characteristics. However, the negative differential resistance regime at atmospheric and high pressures has been less studied and possesses unique characteristics that can be employed for novel applications. In this work, the role of ion kinetics especially associated with trace impurities; on the self pulsing behavior has been investigated. Detailed numerical simulations have been conducted with a validated model for a helium-nitrogen feed gas mixture. Different oscillatory modes were observed where the discharge was found to undergo complete or partial relaxation. Trace amount of nitrogen was found to significantly alter the pulsing characteristics. External parameters influencing these self oscillations are also studied and aspects of the ion kinetics on the oscillatory behavior are discussed.

  4. No influence of lower leg heating on central arterial pulse pressure in young men.

    PubMed

    Kosaki, Keisei; Sugawara, Jun; Akazawa, Nobuhiko; Tanahashi, Koichiro; Kumagai, Hiroshi; Ajisaka, Ryuichi; Maeda, Seiji

    2015-07-01

    Central arterial pulse pressure (PP), a strong predictor of cardiovascular disease, mainly consists of an incident wave generated by left ventricular ejection and a late-arriving reflected wave emanating from the lower body. We have tested the hypothesis that a reduction in leg vascular tone by heat treatment of the lower leg attenuates the central arterial PP. Pressure and wave properties of the peripheral and central arteries were measured in eight young men before and after heat treatment of the lower leg (temperature approx. 43 °C) for 30 and 60 min, respectively. Following the lower leg heat trial, leg (femoral-ankle) pulse wave velocity (PWV) was significantly decreased, but aortic (carotid-femoral) PWV and parameters of wave reflection and carotid arterial PP did not change significantly. No significant changes were observed in these parameters in the control trial. These results suggest that the reduction in leg vascular tone induced by heat treatment of the lower leg may not affect wave reflection and central arterial PP in young men.

  5. Perceived Control Predicts Pulse Pressure in African American Men: The Baltimore Study of Black Aging.

    PubMed

    Hill, LaBarron K; Sims Wright, Regina; Aiken-Morgan, Adrienne T; Gamaldo, Alyssa; Edwards, Christopher L; Whitfield, Keith E

    2015-08-07

    Poorer health profiles among African American men throughout the life course evince greater rates of cardiovascular disease (CVD) and significantly earlier mortality compared with other groups. Despite growing emphasis on identifying how psychosocial factors influence disparate disease risk, little of this research has focused intently on African American men. Using hierarchical linear regression, we explored the additive influence of stress, depression, and perceived control on pulse pressure, an established marker of CVD risk, in a sample (N = 153) of African American men (mean age = 66.73 ± 9.29) from the Baltimore Study of Black Aging (BSBA). After accounting for age and health status indicators, perceived control emerged as a significant predictor of pulse pressure. These findings suggest that greater belief in one's own efficacy is a protective factor for cardiovascular health among African American men. Future research should examine whether enhancing perceived control can have an appreciable impact on the immense CVD burden in this and other at-risk populations.

  6. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    PubMed Central

    Huang, Chin-Ming; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung; Wei, Ching-Chuan; Chen, Chiachung; Liao, Yin-Tzu; Chen, Fun-Jou

    2011-01-01

    This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP) and heart rate variability (HRV). The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25 ± 4 yr; 29 men and 31 women) were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF) and high-frequency (HF) components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr) (P < .05), but the cold stress significantly increased AIr (P < .01). The spectral energy of RPP did not show any statistical difference in 0 ~ 10 Hz region under both conditions, but in the region of 10 ~ 50 Hz, there was a significant increase (P < .01) in the heat test and a significant decrease in the cold test (P < .01). The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10 ~ 50 Hz (SE10−50 Hz) but not in the region of 0 ~ 10 Hz (SE0−10 Hz). The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses. PMID:21113292

  7. VUV-VIS spectroscopic diagnostics of a pulsed high-pressure discharge in argon

    NASA Astrophysics Data System (ADS)

    Treshchalov, A. B.; Lissovski, A. A.

    2009-12-01

    High-pressure argon plasma, excited by a high-current pulsed volume discharge, has been investigated. Spatial-time VUV-VIS emission kinetics were used for the plasma diagnostics. A homogeneous discharge was obtained at a pressure of up to 10 bar. It was revealed that the spectral shape of the UV-VIS photorecombination continuum is a sensitive diagnostic tool for the constriction of the discharge. This shape changes because of the difference of the positive charge carriers in the arc (atomic Ar+ ions) and homogeneous (molecular Ar_{2}^{+} ions) phases of the discharge. The intensity of this continuum is proportional to the square of the electron density. The experimental data and modelling show that the heating of electrons after the main excitation pulse is a very undesirable process. It suppresses the recombination flow in plasma, thus the kinetics of all excited species are spread in time with a decrease in the Ar_{2}^{\\ast } excimers densities. The electron collision-induced mixing effectively converts the reservoir of long-lived triplet Ar_{2}^{\\ast } molecules to fast-emitted singlet excimers. This mechanism is dominant in the production of singlet excimers. A realistic threshold density for the lasing of Ar_2^{\\ast}({{}^{1}\\Sigma_u})_{(v=0)} excimers of about 5 × 1015 cm-3 was estimated (the gain coefficient is 0.05 cm-1). This criterion could be realized in 10 bar of Ar by a homogeneous single pulse discharge pumping with a peak electron density of 2.4 × 1016 cm-3.

  8. Validity of Pulse Pressure Variation (PPV) Compared with Stroke Volume Variation (SVV) in Predicting Fluid Responsiveness

    PubMed Central

    Rathore, Abhishek; Singh, Shalendra; Lamsal, Ritesh; Taank, Priya; Paul, Debashish

    2017-01-01

    Objective Static monitors for assessing the fluid status during major surgeries and in critically ill patients have been gradually replaced by more accurate dynamic monitors in modern-day anaesthesia practice. Pulse pressure variation (PPV) and systolic pressure variation (SPV) are the two commonly used dynamic indices for assessing fluid responsiveness. Methods In this prospective observational study, 50 patients undergoing major surgeries were monitored for PPV and SPV: after the induction of anaesthesia and after the administration of 500 mL of isotonic crystalloid bolus. Following the fluid bolus, patients with a cardiac output increase of more than 15% were classified as responders and those with an increase of less than 15% were classified as non-responders. Results There were no significant differences in the heart rate (HR), mean arterial pressure (MAP), PPV, SVV, central venous pressure (CVP) and cardiac index (CI) between responders and non-responders. Before fluid bolus, the stroke volume was significantly lower in responders (p=0.030). After fluid bolus, MAP was significantly higher in responders but there were no significant changes in HR, CVP, CI, PPV and SVV. In both responders and non-responders, PPV strongly correlated with SVV before and after fluid bolus. Conclusion Both PPV and SVV are useful to predict cardiac response to fluid loading. In both responders and non-responders, PPV has a greater association with fluid responsiveness than SVV. PMID:28868168

  9. A method for determining transverse permeability of tight reservoir cores by radial pressure pulse decay measurement

    NASA Astrophysics Data System (ADS)

    Yang, Zehao; Dong, Mingzhe; Zhang, Shaojie; Gong, Houjian; Li, Yajun; Long, Feifei

    2016-10-01

    A transverse pressure pulse decay (TPPD) method is presented to measure transverse permeability of tight reservoir cores in a cell with finite volume. Given appropriate assumptions, a mathematical model based on the specially designed experiment is formulated, and its general solution is proposed. Early-time and late-time techniques are further presented for convenient postprocessing applications of experimental data. Meanwhile, sensitivity analysis of TPPD method is given. It is found that a good TPPD experimental principle can be obtained by adjusting test gas, experimental pressure, dimension of core sample, and volume ratio (λ). The volume ratio error (λerror) analysis reveals the following: (1) a larger λerror results in increased transverse permeability error (kerror); (2) the volume ratio (λ) is better not very close to 0.754; (3) when λ is equal to or greater than 1, the kerror resulting from λerror is monotonic decreasing as the volume ratio increases. In practice, λ is usually equal to or greater than 1 due to the very small pore volume of a tight core. But this does not mean that the volume ratio should be as large as possible. The reason for this is that a pressure transducer with higher resolution is needed to record pressure change. That means experimental apparatus is much more costly. And such a TPPD experiment requires a much longer time to attain the late-time straight line behavior. The best choice is to find an optimal balance point among experimental cost, time, and accuracy.

  10. Pulse pressure is inversely related to aortic root diameter implications for the pathogenesis of systolic hypertension.

    PubMed

    Farasat, S Morteza; Morrell, Christopher H; Scuteri, Angelo; Ting, Chih-Tai; Yin, Frank C P; Spurgeon, Harold A; Chen, Chen-Huan; Lakatta, Edward G; Najjar, Samer S

    2008-02-01

    Hypertension accelerates the age-associated increase in aortic root diameter (AoD), likely because of chronically elevated distending pressures. However, the pulsatile component of blood pressure may have a different relationship with AoD. We sought to assess the relationship between AoD and pulse pressure (PP) while accounting for left ventricular and central arterial structural and functional properties, which are known to influence PP. The study population was composed of 1256 individuals, aged 30 to 79 years (48% women and 48% hypertensive), none of whom were on antihypertensive medications. Blood pressure was measured in the sitting position with conventional sphygmomanometry. PP was calculated as the difference between systolic and diastolic blood pressures. AoD was measured at end diastole at the level of the sinuses of Valsalva with echocardiography. The relationship between AoD and PP was evaluated with multiple regression analyses. PP was 50+/-14 mm Hg in men and 54+/-18 mm Hg in women, and AoD was 31.9+/-3.5 mm in men and 28.9+/-3.5 mm in women. After adjusting for age, age(2), height, weight, and mean arterial pressure, AoD was independently and inversely associated with PP in both sexes. After further adjustments for central arterial stiffness and wall thickness, reflected waves, and left ventricular geometry, AoD remained inversely associated with PP in both men (coefficient=-0.48; P=0.0003; model R(2)=0.51) and women (coefficient=-0.40; P=0.01; model R(2)=0.61). Thus, AoD is inversely associated with PP, suggesting that a small AoD may contribute to the pathogenesis of systolic hypertension. Longitudinal studies are needed to examine this possibility.

  11. Effects of tidal amplitude on intertidal resource availability and dispersal pressure in prehistoric human coastal populations: the Mediterranean Atlantic transition

    NASA Astrophysics Data System (ADS)

    Fa, Darren Andrew

    2008-11-01

    In this paper I argue that there is a growing body of evidence supporting an increasingly central position of coastal environments in human evolution and dispersals, rather than as merely peripheral habitats. Eustatic fluctuations during glacial cycles have meant that most prehistoric coastlines are now underwater, and lack of evidence to date of a close relationship between people and the coast can be most plausibly ascribed to the limited studies so far on submerged sites. Coastal environments provide high diversity in food resources, consisting of multiple ecotones in close proximity, which reduces the need to forage widely. One of the richest and most easily exploited coastal resources by human populations living on the coast are molluscs from marine rocky intertidal communities, which recent evidence has highlighted as important as far back as the Middle Palaeolithic. However, the density of these resources is limited by a number of factors, and this varies geographically. One of the main large-scale factors limiting rocky intertidal mollusc densities is tidal amplitude, beyond which smaller-scale local factors such as exposure to wave action and shore aspect, further affect species distributions. The area around the Strait of Gibraltar is used as a case study of an area, which is affected by large variations in tidal amplitudes thus allowing for quantitative comparisons between taxonomically and climatically similar regions. Shorelines along the Mediterranean coast, with reduced tidal amplitudes, exhibit compressed zonations and harbour fewer macro-mollusc individuals, with the reverse being the case along the Atlantic coast, which has significantly larger tides. Data from Middle and Upper Palaeolithic sites along the Strait are used to establish harvested species and present-day data are used to model the potential distributions and associated variables such as calorific returns of key food species. An optimal foraging model is used to explore the effects of

  12. Complementary Effects of Negative-Pressure Wound Therapy and Pulsed Radiofrequency Energy on Cutaneous Wound Healing in Diabetic Mice.

    PubMed

    Chen, Bin; Kao, Huang-Kai; Dong, Ziqing; Jiang, Zhaohua; Guo, Lifei

    2017-01-01

    Negative-pressure wound therapy and pulsed radiofrequency energy are two clinical modalities used to treat soft-tissue wounds. They are purported to affect healing differently. The aim of this experimental study was to contrast the two modalities at a mechanistic level and to investigate whether their combined therapy could achieve additive and complementary effects on wound healing. Full-thickness dorsal cutaneous wounds of diabetic, db/db, mice were treated with either negative-pressure wound therapy, pulsed radiofrequency energy, or combined therapies. Macroscopic healing kinetics were examined. Epidermal regeneration (proliferation rate and length of reepithelialization) and neovascularization (blood vessel density) were investigated. Messenger RNA levels indicative of angiogenic (basic fibroblast growth factor), profibrotic (transforming growth factor-β), epidermal proliferative (keratinocyte growth factor), and extracellular matrix remodeling (collagen 1) processes were measured in wound tissues. All three treatment groups displayed faster wound healing. The negative-pressure wound therapy/pulsed radiofrequency energy combined therapy led to significantly faster healing than either the negative-pressure wound therapy or pulsed radiofrequency energy therapy alone. Epidermal regeneration and neovascularization were enhanced in all three groups. The two negative-pressure wound therapy groups (alone and combined with pulsed radiofrequency energy) demonstrated more significant increases in expression of all assayed growth factors than the pulsed radiofrequency energy group. Furthermore, the combined therapy exhibited a more profound elevation in collagen 1 expression than either of the two therapies alone. Combining the negative-pressure wound therapy and pulsed radiofrequency energy modalities can achieve additive benefits in cutaneous healing, and the two therapies can be easily used together to complement each other in clinical wound treatments.

  13. Using pressure pulse seismology to examine basal criticality and the influence of sticky spots on glacial flow

    NASA Astrophysics Data System (ADS)

    Kavanaugh, J. L.; Moore, P. L.; Dow, C. F.; Sanders, J. W.

    2010-12-01

    Here we report results of water pressure pulse studies conducted at Storglaciären (Sweden) and West Washmawapta Glacier (British Columbia, Canada). Comparison of pressure pulse records with meteorological conditions at Storglaciären indicates that several periods of increased basal slip activity observed during a 10 day interval of summer 2008 were due to precipitation loading of the glacier surface, rather than to infiltration of surface water to the glacier bed; this indicates that the glacier bed was close to the failure strength for much of this interval. Pressure pulse magnitudes for the two glaciers were well-fit by power law distributions similar to those earlier observed at Trapridge Glacier (and similar in form to the Gutenberg-Richter relationship commonly used in seismology), suggesting that the mechanical processes that give rise to these distributions are robust features of soft-bedded glaciers. In contrast, interevent time distributions for both glaciers diverge from those observed at Trapridge Glacier for short recurrence intervals, suggesting that the factors that govern the rate at which these processes occur differ between glaciers. An examination of pressure pulse characteristics at West Washmawapta Glacier indicates that the establishment of a basal drainage system in summer 2008 resulted in increased stability and reduced sensitivity to meltwater input, suggesting that common assumptions about the relationship between meltwater production and ice flow are oversimplified. These results demonstrate that water pressure pulse observations can provide valuable insight into the dynamics of soft-bedded glaciers.

  14. Problems in Nonlinear Acoustics: Pulsed Finite Amplitude Sound Beams, Nonlinear Propagation of Sound in Layered Media, Time Domain Solutions for Focused Sound Beams, Focusing of Sound with an Ellipsoidal Mirror, and Modeling Finite Amplitude Propagation in Waveguides.

    DTIC Science & Technology

    1991-08-01

    Introduction of an article by Hamilton and TenCate . 5 In a real ocean environment, however, not only does sound penetrate the ocean bottom, but the...F. Hamilton and J. A. TenCate , "Finite amplitude sound near cutoff in higher-order modes of a rectangular duct," J. Acoust. Soc. Am. 84, 327-334

  15. Inter-pulse delay optimization in dual-pulse laser induced breakdown vacuum ultraviolet spectroscopy of a steel sample in ambient gases at low pressure

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Hayden, P.; Laasch, R.; Costello, J. T.; Kennedy, E. T.

    2013-08-01

    Time-integrated spatially-resolved Laser Induced Breakdown Spectroscopy (LIBS) has been used to investigate spectral emissions from laser-induced plasmas generated on steel targets. Instead of detecting spectral lines in the visible/near ultraviolet (UV), as investigated in conventional LIBS, this work explored the use of spectral lines emitted by ions in the shorter wavelength vacuum ultraviolet (VUV) spectral region. Single-pulse (SP) and dual-pulse LIBS (DP-LIBS) experiments were performed on standardized steel samples. In the case of the double-pulse scheme, two synchronized lasers were used, an ablation laser (200 mJ/15 ns), and a reheating laser (665 mJ/6 ns) in a collinear beam geometry. Spatially resolved and temporally integrated laser induced plasma VUV emission in the DP scheme and its dependence on inter-pulse delay time were studied. The VUV spectral line intensities were found to be enhanced in the DP mode and were significantly affected by the inter-pulse delay time. Additionally, the influence of ambient conditions was investigated by employing low pressure nitrogen, argon or helium as buffer gases in the ablation chamber. The results clearly demonstrate the existence of a sharp ubiquitous emission intensity peak at 100 ns and a wider peak, in the multi-microsecond range of inter-pulse time delay, dependent on the ambient gas conditions.

  16. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    SciTech Connect

    Zhang, Cheng; Shao, Tao Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-10-15

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs.

  17. Improving pressure robustness, reliability, and versatility of solenoid-pump flow systems using a miniature economic control unit including two simple pressure pulse mathematical models.

    PubMed

    Horstkotte, Burkhard; Ledesma, Erich; Duarte, Carlos M; Cerdà, Víctor

    2010-08-15

    In this work we have systematically studied the behavior of solenoid pumps (SMP) as a function of flow rate and flow resistance. Using a new, economic, and miniature control unit, we achieved improvements of the systems versatility, transportability, and pressure robustness. A further important improvement with respect to pressure resistance was achieved when a flexible pumping tube was inserted between the solenoid pump and the flow resistance acting as a pressure reservoir and pulsation damper. The experimental data were compared with two pressure pulse models for SMP, which were developed during this work and which were well-suited to describe the SMP operation.

  18. Fluid modeling of plasma dynamics in pulsed RF capacitive glow discharges in low pressure argon

    NASA Astrophysics Data System (ADS)

    Liu, Ruiqiang; Liu, Yue; Jia, Wenzhu; Zhou, Yanwen

    2017-08-01

    Based on the drift-diffusive approximation, one-dimensional fluid modeling is carried out for the pulsed RF capacitive glow discharges in low pressure argon. Investigated are the effects of various discharge parameters, such as the duty cycle ratio and frequency of the pulsed modulation, and the material properties of the electrode, on the plasma characteristics such as the electron recombination rate, during both the initial and the steady state phases of the discharge. The modeling results show that, after switching off the applied voltage during the pulsed modulation of the RF discharge, the electron density increases first and then decreases. This phenomenon is particularly pronounced before the discharge reaches steady state. Meanwhile, independent of whether the discharge has reached steady state or not, right after the applied voltage is switched on during each modulation period, the electron and ion densities and the metastable argon atom density, as well as their generation rate, experience a time delay (phase lag) with respect to the applied voltage. The results also show that, at the initial phase of the pulsed modulation, during the steady state discharge, the electron temperature in the center of the bulk plasma is almost not affected by the applied voltage, or by the material properties of the electrode such as the secondary electron emission rate. The electron density, however, does increase with these parameters, resulting in increased power density dissipation of the plasma. On the other hand, at fixed applied voltage, the central electron temperature of the bulk plasma is reduced by increasing several parameters, including the modulation duty ratio, the distance between two electrodes, and the modulation frequency, as well as the electron recombination rate due to different choices of the electrode material. This eventually leads to a reduction of the dissipated power density in the plasma. In particular, with the increase of the modulation duty

  19. The association of 25(OH)D with blood pressure, pulse pressure and carotid-radial pulse wave velocity in African women.

    PubMed

    Kruger, Iolanthé M; Kruger, Marlena C; Doak, Colleen M; Schutte, Aletta E; Huisman, Hugo W; Van Rooyen, Johannes M; Schutte, Rudolph; Malan, Leoné; Malan, Nicolaas T; Fourie, Carla M T; Kruger, Annamarie

    2013-01-01

    High susceptibility of the African population to develop cardiovascular disease obliges us to investigate possible contributing risk factors. Our aim was to determine whether low 25(OH)D status is associated with increased blood pressure and carotid-radial pulse wave velocity in black South African women. We studied 291 urban women (mean age: 57.56±9.00 yrs.). 25(OH)D status was determined by serum 25(OH)D levels. Women were stratified into sufficient (>30 ng/ml), and insufficient/deficient (<30 ng/ml) groups. Cardiovascular variables were compared between groups. Women with low 25(OH)D levels had significantly higher SBP (150.8±27.1 vs. 137.6±21.0), DBP (94.7±14.5 vs. 89.3±12.3) and PP (53.15(50.7;55.7) vs. 46.3(29.4;84.6)) compared to women with sufficient levels. No significant difference was observed with regards to c-rPWV. ANCOVA analyses still revealed significant differences between the two groups with regards to SBP, DBP as well as PP. Partial correlations revealed significant inverse association between SBP and 25(OH)D (p = .04;r = -.12). Women with low 25(OH)D levels were ∼2 times more likely to have high SBP (95% CI: 3.23;1.05). To conclude, women with deficient/insufficient 25(OH)D had significantly higher SBP compared to women with a sufficient 25(OH) status.

  20. Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse.

    PubMed

    Pegoraro, F; Bulanov, S V

    2007-08-10

    The stability of a thin plasma foil accelerated by the radiation pressure of a high intensity electromagnetic (e.m.) pulse is investigated analytically and with particle in cell numerical simulations. It is shown that the onset of a Rayleigh-Taylor-like instability can lead to transverse bunching of the foil and to broadening of the energy spectrum of fast ions. The use of a properly tailored e.m. pulse with a sharp intensity rise can stabilize the foil acceleration.

  1. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.

    2006-02-01

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was ˜100ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  2. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    SciTech Connect

    Tarasenko, Victor F.

    2006-02-20

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3 kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was {approx}100 ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  3. Study on the characteristics of barrier free surface discharge driven by repetitive nanosecond pulses at atmospheric pressure

    SciTech Connect

    Lei, Pang; Qiaogen, Zhang; Kun, He; Chunliang, Liu

    2016-05-15

    Nanosecond pulsed plasma has an enormous potential in many applications. In this paper, the characteristics of barrier free nanosecond pulsed surface discharge are investigated by the use of an actuator with a strip-strip film electrode configuration, including the effect of electrode width and the gap distance on the plasma morphology and electrical characteristics at atmospheric pressure. It was found that it is relative easier to generate a quasi uniform discharge with a thinner electrode width and a smaller gap distance. The underlying physical mechanism was also discussed. Besides that, the influence of airflow on repetitive pulsed surface discharge was examined. By comparing to the discharge produced by two different pulse waveforms in airflows, we found that the discharge driven by a faster pulse behaves more stable. Finally, a model was developed to analyze the interaction of the airflow and the discharge channels.

  4. Very High Pressure Single Pulse Shock Tube Studies of Aromatic Species

    SciTech Connect

    Brezinsky, K.

    2006-11-28

    The principal focus of this research program is aimed at understanding the oxidation and pyrolysis chemistry of primary aromatic molecules and radicals with the goal of developing a comprehensive kinetic model at conditions that are relevant to practical combustion devices. A very high pressure single pulse shock tube is used to obtain experimental data over a wide pressure range in the high pressure regime, 5-1000 bars, at pre-flame temperatures for fuel pyrolysis and oxidation over a broad spectrum of equivalence ratios. Stable species sampled from the shock tube are analyzed using standard chromatographic techniques using GC/MS-PDD and GC/TCD-FID. Experimental data from the HPST (stable species profiles) and data from other laboratories (if available) are simulated using kinetic models (if available) to develop a comprehensive model that can describe aromatics oxidation and pyrolysis over a wide range of experimental conditions. The shock tube has been heated (1000C) recently to minimize effects due to condensation of aromatic, polycyclic and other heavy species. Work during this grant period has focused on 7 main areas summarized in the final technical report.

  5. Radiative heat transfer in plasma of pulsed high pressure caesium discharge

    NASA Astrophysics Data System (ADS)

    Lapshin, V. F.

    2016-01-01

    Two-temperature many component gas dynamic model is used for the analysis of features of radiative heat transfer in pulsed high pressure caesium discharge plasma. It is shown that at a sufficiently high pressure the radial optical thickness of arc column is close to unit (τR (λ) ∼ 1) in most part of spectrum. In this case radiative heat transfer has not local character. In these conditions the photons which are emitted in any point of plasma volume are absorbed in other point remote from an emission point on considerable distance. As a result, the most part of the electric energy put in the discharge mainly near its axis is almost instantly redistributed on all volume of discharge column. In such discharge radial profiles of temperature are smooth. In case of low pressure, when discharge plasma is optically transparent for own radiation in the most part of a spectrum (τR(λ) << 1), the emission of radiation without reabsorption takes place. Radiative heat transfer in plasma has local character and profiles of temperature have considerable gradient.

  6. Left ventricular hypertrophy, diastolic dysfunction, pulse pressure, and plasma ET-1 in marathon runners with exaggerated blood pressure response.

    PubMed

    Kim, Young Joo; Goh, Choong Won; Byun, Young Sup; Lee, Yoon Hee; Lee, Jeong Beom; Shin, Young Oh

    2013-01-01

    This study was conducted to study left ventricular hypertrophy (LVH), diastolic dysfunction, pulse pressure (PP), and plasma endothelin (ET)-1 level in amateur marathon runners with an exaggerated blood pressure response (EBPR) to exercise. The study participants included normotensive marathon runners (NM, n = 15), EBPR marathon runners (EBPR, n = 17), normotensive sedentary individuals (CON, n = 13), and hypertensive patients (HTN, n = 14). An integrated M-mode/2-dimensional echocardiographic analysis was performed. Plasma ET-1 levels at resting were measured using a commercial ELISA kit. LV wall thickness and end-diastolic dimensions as well as LV mass index (LVMI) were higher in EBPR than in CON. There were no differences in systolic function among the groups. Analysis of diastolic function, such as lower Em and higher E/Em ratio on TDI, showed a worse relaxation pattern in EBPR. Despite LVH, NM subjects showed no abnormality of LV diastolic dysfunction. HTN subjects in the early stage of their disease showed a slightly modified LV structural and diastolic function, but there was no statistical difference compared with CON. The E/Em ratio was significantly correlated with PP and LVMI. LVMI was significantly correlated with PP. There was a significant difference in plasma ET-1 concentration between marathon runners and hypertensive subjects. We demonstrated that marathon runners with EBPR showed an increase in LVMI and diastolic dysfunction more than HTN subjects in the early stage. PP was significantly related to these two variables. Caution should be exercised when connecting LVH and diastolic dysfunction with plasma ET-1 concentration in all marathon runners.

  7. Impact of Mental and Physical Stress on Blood Pressure and Pulse Pressure under Normobaric versus Hypoxic Conditions

    PubMed Central

    Trapp, Michael; Trapp, Eva-Maria; Egger, Josef W.; Domej, Wolfgang; Schillaci, Giuseppe; Avian, Alexander; Rohrer, Peter M.; Hörlesberger, Nina; Magometschnigg, Dieter; Cervar-Zivkovic, Mila; Komericki, Peter; Velik, Rosemarie; Baulmann, Johannes

    2014-01-01

    Objective Hypobaric hypoxia, physical and psychosocial stress may influence key cardiovascular parameters including blood pressure (BP) and pulse pressure (PP). We investigated the effects of mild hypobaric hypoxia exposure on BP and PP reactivity to mental and physical stress and to passive elevation by cable car. Methods 36 healthy volunteers participated in a defined test procedure consisting of a period of rest 1, mental stress task (KLT-R), period of rest 2, combined mental (KLT-R) and physical task (bicycle ergometry) and a last period of rest both at Graz, Austria (353 m asl) and at the top station Dachstein (2700 m asl). Beat-to-beat heart rate and BP were analysed both during the test procedures at Graz and at Dachstein and during passive 1000 m elevation by cable car (from 1702 m to 2700 m). Results A significant interaction of kind of stress (mental vs. combined mental and physical) and study location (Graz vs. Dachstein) was found in the systolic BP (p = .007) and PP (p = .002) changes indicating that during the combined mental and physical stress task sBP was significantly higher under hypoxic conditions whereas sBP and PP were similar during mental stress both under normobaric normoxia (Graz) and under hypobaric hypoxia (Dachstein). During the passive ascent in cable car less trivialization (psychological coping strategy) was associated with an increase in PP (p = .004). Conclusion Our data show that combined mental and physical stress causes a significant higher raise in sBP and PP under hypoxic conditions whereas isolated mental stress did not affect sBP and PP under hypoxic conditions. PP-reaction to ascent in healthy subjects is not uniform. BP reactions to ascent that represents an accumulation of physical (mild hypobaric hypoxia) and psychological stressors depend on predetermined psychological traits (stress coping strategies). Thus divergent cardiovascular reactions can be explained by applying the multidimensional aspects of the

  8. Short-term effects of air temperature on blood pressure and pulse pressure in potentially susceptible individuals.

    PubMed

    Lanzinger, Stefanie; Hampel, Regina; Breitner, Susanne; Rückerl, Regina; Kraus, Ute; Cyrys, Josef; Geruschkat, Uta; Peters, Annette; Schneider, Alexandra

    2014-09-01

    Only few epidemiological studies have investigated the association between air temperature and blood pressure (BP) or pulse pressure (PP), with inconsistent findings. We examined whether short-term changes in air temperature were associated with changes in BP or PP in three different populations. Between March 2007 and December 2008, 371 systolic and diastolic BP measurements were collected in 30 individuals with type-2 diabetes mellitus (T2D), 30 persons with impaired glucose tolerance and 42 healthy individuals without a metabolic disorder from Augsburg, Germany. Hourly means of ambient meteorological data were obtained from a fixed measurement station. Personal temperature measurements were conducted using data loggers. Temperature effects were evaluated using additive mixed models adjusting for time trend and relative humidity. Decreases in air temperature were associated with an increase in systolic BP, diastolic BP and PP in individuals with T2D. For example, a 1°C decrease in ambient temperature was associated with an immediate increase in systolic BP of 1.0 mmHg (95%-confidence interval: [0.5;1.4]mmHg). Effects of personally measured air temperature were similar. Temperature effects were modified by age, body mass index, gender, antihypertensive medication and whereabouts, such as being indoors. We observed associations between decreases in air temperature and increases in BP as well as PP in persons with T2D indicating that these people might be potentially more susceptible to changes in air temperature. Our findings may provide a hypothesis for a mechanism between air temperature decreases and short-term increases of cardiovascular events. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Impact of mental and physical stress on blood pressure and pulse pressure under normobaric versus hypoxic conditions.

    PubMed

    Trapp, Michael; Trapp, Eva-Maria; Egger, Josef W; Domej, Wolfgang; Schillaci, Giuseppe; Avian, Alexander; Rohrer, Peter M; Hörlesberger, Nina; Magometschnigg, Dieter; Cervar-Zivkovic, Mila; Komericki, Peter; Velik, Rosemarie; Baulmann, Johannes

    2014-01-01

    Hypobaric hypoxia, physical and psychosocial stress may influence key cardiovascular parameters including blood pressure (BP) and pulse pressure (PP). We investigated the effects of mild hypobaric hypoxia exposure on BP and PP reactivity to mental and physical stress and to passive elevation by cable car. 36 healthy volunteers participated in a defined test procedure consisting of a period of rest 1, mental stress task (KLT-R), period of rest 2, combined mental (KLT-R) and physical task (bicycle ergometry) and a last period of rest both at Graz, Austria (353 m asl) and at the top station Dachstein (2700 m asl). Beat-to-beat heart rate and BP were analysed both during the test procedures at Graz and at Dachstein and during passive 1000 m elevation by cable car (from 1702 m to 2700 m). A significant interaction of kind of stress (mental vs. combined mental and physical) and study location (Graz vs. Dachstein) was found in the systolic BP (p = .007) and PP (p = .002) changes indicating that during the combined mental and physical stress task sBP was significantly higher under hypoxic conditions whereas sBP and PP were similar during mental stress both under normobaric normoxia (Graz) and under hypobaric hypoxia (Dachstein). During the passive ascent in cable car less trivialization (psychological coping strategy) was associated with an increase in PP (p = .004). Our data show that combined mental and physical stress causes a significant higher raise in sBP and PP under hypoxic conditions whereas isolated mental stress did not affect sBP and PP under hypoxic conditions. PP-reaction to ascent in healthy subjects is not uniform. BP reactions to ascent that represents an accumulation of physical (mild hypobaric hypoxia) and psychological stressors depend on predetermined psychological traits (stress coping strategies). Thus divergent cardiovascular reactions can be explained by applying the multidimensional aspects of the biopsychosocial concept.

  10. Relationship between pulse transit time and blood pressure is impaired in patients with chronic heart failure.

    PubMed

    Wagner, Daniel R; Roesch, Norbert; Harpes, Patrick; Körtke, Heinrich; Plumer, Pierre; Saberin, Amir; Chakoutio, Viviane; Oundjede, Denis; Delagardelle, Charles; Beissel, Jean; Gilson, Georges; Kindermann, Ingrid; Böhm, Michael

    2010-10-01

    Pulse transit time (PTT), the interval between ventricular electrical activity and arrival of the peripheral pulse wave, has been used to detect changes in autonomic tone during sleep and anesthesia. The purpose of this study was to evaluate PTT in patients with chronic heart failure (HF). Pulse transit time was measured with R-wave gated photoplethysmography in 24 healthy volunteers and in 112 patients with chronic HF and ejection fraction (EF) <40%. PTT was mildly elevated in patients with HF (468 ± 12 vs. 430 ± 23 ms, p = 0.001). In healthy volunteers, PTT was directly proportional to blood pressure (BP): when BP increased, PTT shortened, and vice versa. This relationship between PTT and BP (PTTi) was altered in patients with HF and particularly in the 26 patients with decompensated HF (3.6 ± 0.4 vs. 4.2 ± 0.9, p = 0.04). PTTi did not correlate with functional NYHA class and levels of pro-BNP, epinephrine or norepinephrine. There was a modest correlation between PTTi and EF (p = 0.01, r = -0.48) and PTTi tended to correlate with microvascular flow measured with Laser Doppler (p = 0.08). However, there was an excellent correlation between PTTi and systolic time intervals, left ventricular ejection time (LVET) (p = 0.0014, r = -0.75) and pre-ejection time/LVET (p = 0.006, r = 0.80). The latter ratio reflects ventricular-arterial coupling. The relationship between PTT and BP is altered in severe HF and may indicate impaired ventricular-arterial coupling. It merits further investigation as both parameters can be easily determined and used for serial monitoring in HF.

  11. Ramped-amplitude NOVEL

    NASA Astrophysics Data System (ADS)

    Can, T. V.; Weber, R. T.; Walish, J. J.; Swager, T. M.; Griffin, R. G.

    2017-04-01

    We present a pulsed dynamic nuclear polarization (DNP) study using a ramped-amplitude nuclear orientation via electron spin locking (RA-NOVEL) sequence that utilizes a fast arbitrary waveform generator (AWG) to modulate the microwave pulses together with samples doped with narrow-line radicals such as 1,3-bisdiphenylene-2-phenylallyl (BDPA), sulfonated-BDPA (SA-BDPA), and trityl-OX063. Similar to ramped-amplitude cross polarization in solid-state nuclear magnetic resonance, RA-NOVEL improves the DNP efficiency by a factor of up to 1.6 compared to constant-amplitude NOVEL (CA-NOVEL) but requires a longer mixing time. For example, at τmix = 8 μs, the DNP efficiency reaches a plateau at a ramp amplitude of ˜20 MHz for both SA-BDPA and trityl-OX063, regardless of the ramp profile (linear vs. tangent). At shorter mixing times (τmix = 0.8 μs), we found that the tangent ramp is superior to its linear counterpart and in both cases there exists an optimum ramp size and therefore ramp rate. Our results suggest that RA-NOVEL should be used instead of CA-NOVEL as long as the electronic spin lattice relaxation T1e is sufficiently long and/or the duty cycle of the microwave amplifier is not exceeded. To the best of our knowledge, this is the first example of a time domain DNP experiment that utilizes modulated microwave pulses. Our results also suggest that a precise modulation of the microwave pulses can play an important role in optimizing the efficiency of pulsed DNP experiments and an AWG is an elegant instrumental solution for this purpose.

  12. Effect of the spiral liquid crystals on the amplitude and temporal characteristics of the pressure-sensitive luminophore

    NASA Astrophysics Data System (ADS)

    Zharkova, Galina M.; Petrov, Alexander P.; Kovrizhina, Valentina N.

    2016-10-01

    The article discusses the properties of the coatings based on porphyrin platinum complex and the polymer binder, which are used for measuring the pressure distribution on the model surface. To enhance the emission of the phosphor coating liquid crystals are made with the properties of a photonic crystal. Developed liquid crystal mixture in which the end of the band gap coincides with the peak of the phosphor luminescence. It is shown that the intensity of the luminescence of the phosphor in such a medium is increased in 3 times.

  13. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice.

    PubMed

    Mukkamala, Ramakrishna; Hahn, Jin-Oh; Inan, Omer T; Mestha, Lalit K; Kim, Chang-Sei; Töreyin, Hakan; Kyal, Survi

    2015-08-01

    Ubiquitous blood pressure (BP) monitoring is needed to improve hypertension detection and control and is becoming feasible due to recent technological advances such as in wearable sensing. Pulse transit time (PTT) represents a well-known potential approach for ubiquitous BP monitoring. The goal of this review is to facilitate the achievement of reliable ubiquitous BP monitoring via PTT. We explain the conventional BP measurement methods and their limitations; present models to summarize the theory of the PTT-BP relationship; outline the approach while pinpointing the key challenges; overview the previous work toward putting the theory to practice; make suggestions for best practice and future research; and discuss realistic expectations for the approach.

  14. Towards Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice

    PubMed Central

    Hahn, Jin-Oh; Inan, Omer T.; Mestha, Lalit K.; Kim, Chang-Sei; Töreyin, Hakan; Kyal, Survi

    2015-01-01

    Ubiquitous blood pressure (BP) monitoring is needed to improve hypertension detection and control and is becoming feasible due to recent technological advances such as in wearable sensing. Pulse transit time (PTT) represents a well-known, potential approach for ubiquitous BP monitoring. The goal of this review is to facilitate the achievement of reliable, ubiquitous BP monitoring via PTT. We explain the conventional BP measurement methods and their limitations; present models to summarize the theory of the PTT-BP relationship; outline the approach while pinpointing the key challenges; overview the previous work towards putting the theory to practice; make suggestions for best practice and future research; and discuss realistic expectations for the approach. PMID:26057530

  15. Inactivation of Microorganisms in Model Biofilms by an Atmospheric Pressure Pulsed Non-thermal Plasma

    NASA Astrophysics Data System (ADS)

    Akishev, Yuri; Trushkin, N.; Grushin, M.; Petryakov, A.; Karal'nik, V.; Kobzev, E.; Kholodenko, V.; Chugunov, V.; Kireev, G.; Rakitsky, Yu.; Irkhina, I.

    Non-thermal plasma jet formed by self-running pulsed-periodical high-current spark generator (PPSG) was used for atmospheric pressure inactivation of microorganisms including biofilms. A distinctive feature of the PPSG is a formation of transient hot plasma clouds (plasma bullets) periodically flying out to the target. We experimented with model biofilms of E. coli and Bacillus subtilis monocultures which were grown on agar and surfaces of steel and polypropylene coupons. High efficiency of plasma inactivation was demonstrated. This effect is associated primarily with an interaction of transient hot plasma clouds with biofilms. Besides complete or partial degradation of the cell membrane, weakening of the cell wall of E.coli culture by active plasma was found.

  16. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    NASA Astrophysics Data System (ADS)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  17. 1D simulation of runaway electrons generation in pulsed high-pressure gas discharge

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. Yu.; Kozyrev, A. V.; Semeniuk, N. S.

    2015-10-01

    The results of theoretical modelling of runaway electron generation in the high-pressure nanosecond pulsed gas discharge are presented. A novel hybrid model of gas discharge has been successfully built. Hydrodynamic and kinetic approaches are used simultaneously to describe the dynamics of different components of low-temperature discharge plasma. To consider motion of ions and low-energy (plasma) electrons the corresponding equations of continuity with drift-diffusion approximation are used. To describe high-energy (runaway) electrons the Boltzmann kinetic equation is included. As a result of the simulation we obtained spatial and temporal distributions of charged particles and electric field in a pulsed discharge. Furthermore, the energy spectra calculated runaway electrons in different cross-sections, particularly, the discharge gap in the anode plane. It is shown that the average energy of fast electrons (in eV) in the anode plane is usually slightly higher than the instantaneous value of the applied voltage to the gap (in V).

  18. Designing cyclic pressure pulsing in naturally fractured reservoirs using an inverse looking recurrent neural network

    NASA Astrophysics Data System (ADS)

    Artun, E.; Ertekin, T.; Watson, R.; Miller, B.

    2012-01-01

    In this paper, an inverse looking approach is presented to efficiently design cyclic pressure pulsing (huff 'n' puff) with N 2 and CO 2, which is an effective improved oil recovery method in naturally fractured reservoirs. A numerical flow simulation model with compositional, dual-porosity formulation is constructed. The model characteristics are from the Big Andy Field, which is a depleted, naturally fractured oil reservoir in Kentucky. A set of cyclic pulsing design scenarios is created and run using this model. These scenarios and corresponding performance indicators are fed into the recurrent neural network for training. In order to capture the cyclic, time-dependent behavior of the process, recurrent neural networks are used to develop proxy models that can mimic the reservoir simulation model in an inverse looking manner. Two separate inverse looking proxy models for N 2 and CO 2 injections are constructed to predict the corresponding design scenarios, given a set of desired performance characteristics. Predictive capabilities of developed proxy models are evaluated by comparing simulation outputs with neural-network outputs. It is observed that networks are able to accurately predict the design parameters, such as the injection rate and the duration of injection, soaking and production periods.

  19. Effects of the pulse width on the reactive species production and DNA damage in cancer cells exposed to atmospheric pressure microsecond-pulsed helium plasma jets

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Kang, Tae Hong; Chung, T. H.

    2017-08-01

    Plasma-liquid and plasma-cell interactions were investigated using an atmospheric pressure dc microsecond-pulsed helium plasma jet. We investigated the effects of the electrical parameters such as applied voltage and pulse width (determined by the pulse frequency and duty ratio) on the production of reactive species in the gas/liquid phases and on the DNA damage responses in the cancer cells. The densities of reactive species including OH radicals were estimated inside the plasma-treated liquids using a chemical probe method, and the nitrite concentration was detected by Griess assay. Importantly, the more concentration of OH resulted in the more DNA base oxidation and breaks in human lung cancer A549 cells. The data are very suggestive that there is strong correlation between the production of OH in the plasmas/liquids and the DNA damage.

  20. Pulsed laser ablation plasmas generated in CO{sub 2} under high-pressure conditions up to supercritical fluid

    SciTech Connect

    Kato, Toru; Stauss, Sven; Kato, Satoshi; Urabe, Keiichiro; Terashima, Kazuo; Baba, Motoyoshi; Suemoto, Tohru

    2012-11-26

    Pulsed laser ablation of solids in supercritical media has a large potential for nanomaterials fabrication. We investigated plasmas generated by pulsed laser ablation of Ni targets in CO{sub 2} at pressures ranging from 0.1 to 16 MPa at 304.5 K. Plasma species were characterized by optical emission spectroscopy, and the evolution of cavitation bubbles and shockwaves were observed by time-resolved shadowgraph imaging. Ni and O atomic emissions decreased with increasing gas pressure; however, near the critical point the intensities reached local maxima, probably due to the enhancement of the plasma excitation and effective quenching resulting from the large density fluctuation.

  1. Pulse Pressure and Subclinical Cardiovascular Disease in the Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    2013-01-01

    BACKGROUND Brachial pulse pressure (PP) has been found to be associated with markers of subclinical cardiovascular disease, including carotid intima–media thickness and left-ventricular mass index (LVMI), but it is unclear whether these associations are independent of traditional cardiovascular risk factors and of the steady, nonpulsatile component of blood pressure (BP). Moreover, it is unknown whether these associations are modified by gender, age, or race/ethnicity. METHODS We used multivariate linear regression models to assess the relationship between brachial PP and three markers of subclinical cardiovascular disease (CVD) (common carotid intima–media thickness (CC-IMT), internal carotid intima–media thickness (IC-IMT), and LVMI) in four race/ethnic groups in the Multi-Ethnic Study of Atherosclerosis. The models were adjusted for traditional Framingham risk factors (age, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, diabetes, smoking status), use of lipid-lowering medication, use of antihypertensive medication, study site, and mean arterial pressure (MAP). RESULTS The assessment was done on 6,776 participants (2,612 non-Hispanic white, 1,870 African-American, 1,494 Hispanic, and 800 Chinese persons). The associations between brachial PP and CC-IMT, IC-IMT, and LVMI were significant in fully adjusted models. The three subclinical markers also showed significant interactions with gender (P < 0.0001), with stronger interactions in men. There was an interaction with age for LVMI (P = 0.004) and IC-IMT (P = 0.008). Race/ethnicity modified the association of PP with CC-IMT. CONCLUSIONS Brachial PP was independently associated with subclinical CVD after adjustment for cardiovascular risk factors and mean arterial pressure (MAP). The strength of the association differed significantly for strata of gender, age, and race/ethnicity. PMID:23388832

  2. An efficient, compact pulsed D2O terahertz super-radiant laser pumped with a fundamental transverse mode transversely excited atmospheric pressure CO2 laser

    NASA Astrophysics Data System (ADS)

    Geng, Lijie; Ren, Deming; Zhao, Weijiang; Qu, Yanchen; Chen, Huiying; Du, Jun

    2013-02-01

    An efficient, compact pulsed D2O terahertz (THz) super-radiant laser pumped by a TEA (transversely excited atmospheric pressure) CO2 laser is presented. The pulse energy of the THz laser has been discussed as a function of CO2 laser pump energy, D2O gas pressure, and pump absorption. A pulse width of about 110 ns and the maximum pulse energy of about 1.3 mJ have been achieved at 385 μm, with pumping by a 378 mJ fundamental transverse mode TEA CO2 laser, and the photon conversion efficiency of 29% has been achieved. We have also studied the temporal behavior features such as the decay time, the full width at half-maximum, and the pulse broadening of the THz laser pulse compared with the pump pulse and the residual pump pulse at the optimum pressure.

  3. Opportunities in pulse combustion

    SciTech Connect

    Brenchley, D.L.; Bomelburg, H.J.

    1985-10-01

    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  4. Pulse pressure variation and stroke volume variation under different inhaled concentrations of isoflurane, sevoflurane and desflurane in pigs undergoing hemorrhage

    PubMed Central

    Oshiro, Alexandre Hideaki; Otsuki, Denise Aya; Hamaji, Marcelo Waldir M; Rosa, Kaleizu T; Ida, Keila Kazue; Fantoni, Denise T; Auler, José Otavio Costa

    2015-01-01

    OBJECTIVES: Inhalant anesthesia induces dose-dependent cardiovascular depression, but whether fluid responsiveness is differentially influenced by the inhalant agent and plasma volemia remains unknown. The aim of this study was to compare the effects of isoflurane, sevoflurane and desflurane on pulse pressure variation and stroke volume variation in pigs undergoing hemorrhage. METHODS: Twenty-five pigs were randomly anesthetized with isoflurane, sevoflurane or desflurane. Hemodynamic and echocardiographic data were registered sequentially at minimum alveolar concentrations of 1.00 (M1), 1.25 (M2), and 1.00 (M3). Then, following withdrawal of 30% of the estimated blood volume, these data were registered at a minimum alveolar concentrations of 1.00 (M4) and 1.25 (M5). RESULTS: The minimum alveolar concentration increase from 1.00 to 1.25 (M2) decreased the cardiac index and increased the central venous pressure, but only modest changes in mean arterial pressure, pulse pressure variation and stroke volume variation were observed in all groups from M1 to M2. A significant decrease in mean arterial pressure was only observed with desflurane. Following blood loss (M4), pulse pressure variation, stroke volume variation and central venous pressure increased (p<0.001) and mean arterial pressure decreased in all groups. Under hypovolemia, the cardiac index decreased with the increase of anesthesia depth in a similar manner in all groups. CONCLUSION: The effects of desflurane, sevoflurane and isoflurane on pulse pressure variation and stroke volume variation were not different during normovolemia or hypovolemia. PMID:26735220

  5. Effects of an inverted position on blood pressure, pulse rate, and deep tendon reflexes of healthy young adults.

    PubMed

    Rheault, W; Derleth, M; Casey, M; Czarnik, C; Kania, D; Nagel, G

    1985-09-01

    This study reports the effects of an inverted position on pulse rate, blood pressure, and deep tendon reflexes of the biceps muscle, triceps muscle, and Achilles tendon. Twenty healthy adults were used as subjects. We collected data both before and after the subjects were in the inverted position for eight minutes on a specially designed tonic labyrinthine inverted table. A significant decrease in systolic blood pressure and all tendon reflexes was observed along with a significant increase in diastolic blood pressure (p less than .05). Pulse rate showed no change. The findings indicate that the inverted position is likely to be effective for decreasing muscle tone and systolic blood pressure. Although this study used healthy subjects, the inverted position may be used as a therapeutic technique, provided the clinician monitors closely the physiological effects on patients.

  6. An in vitro quantification of pressures exerted by earlobe pulse oximeter probes following reports of device-related pressure ulcers in ICU patients .

    PubMed

    Goodell, Teresa T

    2012-11-01

    The earlobe often is used to monitor perfusion when pulse oximeter signal quality is impaired in the fingers and toes. Prompted by intermittent occurrences of roughly circular earlobe pressure ulcers among patients in intensive care units, a convenience sample of seven calibrated pulse oximeter probes was used to quantify earlobe pressure exerted by these devices in vitro. All were tested twice with an electronic load cell, a strain gauge with a transducer that transforms the measured force into a readable numerical signal. The probe was clipped to the load cell just as it is clipped to the earlobe in the clinical setting. The probes exerted an average of 0.24 lb (SD 0.6) of force over an area of 0.3 square inches, equal to an average of 20.7 mm Hg (SD 0.6) pressure on tissue. This value exceeds some empirically derived values of capillary perfusion pressure. The occurrence of device-related pressure ulcers, as well pressure ulcers on the ears, has been documented, but little is known about device-related earlobe pressure ulcers or the actual pressure exerted by these devices. Additional in vitro studies are needed to quantify the pressures exerted by these and other probes, and future prevalence and incidence studies should include more detailed pressure ulcer location and device use documentation. Until more is known about the possible role of these devices in the development of pressure ulcers, clinicians should be cognizant of their potential for causing pressure ulcers, particularly in patients whose conditions can compromise skin integrity.

  7. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    SciTech Connect

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun E-mail: fengx@spaceweather.ac.cn

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  8. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    PubMed Central

    Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-01-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165

  9. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.

    PubMed

    Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D

    2015-10-09

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  10. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Barnes, Ronald A., Jr.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-10-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  11. Improvement of discharge pumping for pulsed high-pressure gas lasers

    NASA Astrophysics Data System (ADS)

    Velikin, Alexei A.; Galaktionov, Imar I.; Belov, Sergei N.; Kanatenko, Michael A.; Podmoshensky, Ivan V.

    1990-10-01

    This paper presents an upgrading technique using anisotropic-resistive (AR) electrodes and radionucide pre-ionization for discharge pumping of pulsed high-pressure gas lasers. Plutonium-238, polonium-210 and krypton-85 radionucide alpha and beta radiation sources were effectivelyused for pre-ionization in the volumetric discharge setup. These sources feature high stability, versatility and simplicity as compared to traditional UV irradiation and electron beam ionization techniques. The use of AR electrodes makes it possible to suppress efficiently electrode instabilities in volumetric discharges with various power modes of operation and to increase energy input in an active medium by a factor of 2-3 due to extended discharge duration in the volumetric phase. With the use of the AR cathode as an alternative to a metal one, a commercially available photo-ionization 2 laser gained two-fold increase in generation energy. It also showed a stable operation of the volumetric discharge in Ar, Kr, Xe mixtures with He at atmospheric pressure and allowed us to obtain generation in An, Kr!, Xe! spectral lines.

  12. Pulse blood pressure and cardiovascular mortality in a population-based cohort of elderly Costa Ricans

    PubMed Central

    Rosero-Bixby, L; Coto-Yglesias, F; Dow, W H

    2016-01-01

    We studied the relationships between blood pressure (BP), pulse pressure (PP) and cardiovascular (CV) death in older adults using data from 2346 participants enrolled in the Costa Rican CRELES study, mean age 76 years (s.d. 10.2), 31% qualified as wide PP. All covariates included and analyzed were collected prospectively as part of a 4-year home-based follow-up; mortality was tracked for an additional 3 years, identifying 266 CV deaths. Longitudinal data revealed little change over time in systolic BP (SBP), a decline in diastolic BP, and widening of PP. Wide PP was associated with higher risk of CV death but only among individuals receiving antihypertensive drug therapy. Individuals with both wide PP and receiving therapy had 2.6 hazard rate of CV death relative to people with normal-PP plus not taking treatment (TRT), even adjusting for SBP. Increasing PP between visits was significantly associated to higher CV death independently of TRT status. SBP and DBP were not significantly associated to CV death when the effect of PP was controlled for. Conclusion: elderly hypertensive patients with wide or increasing PP, especially if receiving TRT, are the highest CV risk group, thus must be carefully assessed, monitored and treated with caution. PMID:26674758

  13. Noninvasive Assessment of Carotid Pulse Pressure Values: An Accelerometric-Based Approach.

    PubMed

    Di Lascio, Nicole; Gemignani, Vincenzo; Bruno, Rosa Maria; Bianchini, Elisabetta; Stea, Francesco; Ghiadoni, Lorenzo; Faita, Francesco

    2016-04-01

    Central pulse pressure (cPP) is increasingly investigated as possible independent predictor of cardiovascular risk and carotid pulse pressure (carPP) can be used as a surrogate of cPP. Despite its importance, carPP measurement remains challenging in clinical practice. The aim of this study was to introduce a new easier-to-use method for noninvasive carPP evaluation based on the use of a MEMS accelerometer. carPP values (carPP(acc)) were obtained in 22 subjects (10 males, 47 ±17 years, hypertension: 50%) postprocessing and double integrating the accelerometric signals. carPP(acc) measurements were compared with tonometric assessments (carPP(ton)), and ultrasound-derived measurements (carPP(us)). Moreover, accelerometric carotid pressure waveforms (P(acc)) were contrasted in terms of shape to those obtained by tonometry (P(ton)) and ultrasound images elaboration (P(US)), calculating the root mean square error (RMSE(ton), RMSE(US)) and the regression coefficients (r(ton) and r(US)). Moreover, both the repeatability and reproducibility analyses were performed. carPP(acc) values (45.9 ±10.6 mmHg) were significantly correlated with carPP(ton) (47.5 ±11.3 mmHg) and carPP(US) (43.3 ±8.4 mmHg) assessments (R = 0.94, p < 0.0001 and R = 0.80, p < 0.0001, respectively). The validity of the accelerometric approach was confirmed by morphological parameters ( RMSE(ton) = 5 ±1.95 mmHg, RMSE(US) = 5.5 ±2.3 mmHg, r(ton) = 0.94 ±0.04, r(US) = 0.93 ±0.04). Coefficient of variation (CV) was equal to 6.2% for the repeatability analysis, while CV values for interoperator and intersession reproducibilities were 8.9% and 9.4%, respectively. The proposed approach, providing an easier and more available measurement, could represent a valid alternative to existing and used technique for carPP assessment.

  14. Oral Administration of Forskolin, Homotaurine, Carnosine, and Folic Acid in Patients with Primary Open Angle Glaucoma: Changes in Intraocular Pressure, Pattern Electroretinogram Amplitude, and Foveal Sensitivity.

    PubMed

    Mutolo, Maria Giulia; Albanese, Giuseppe; Rusciano, Dario; Pescosolido, Nicola

    2016-04-01

    To evaluate the effects of a food supplement containing forskolin, homotaurine, carnosine, folic acid, vitamins B1, B2, B6, and magnesium in patients with primary open angle glaucoma (POAG) already in treatment and compensated by intraocular pressure (IOP)-lowering drugs, during a period of 12 months. Twenty-two patients (44 eyes) with POAG, with their IOP compensated by topical drugs, were enrolled and randomly assigned to the food supplement or control treatment group. The additional food supplement treatment consisted of 2 tablets per day (1 in the morning, 1 in the evening) given for 1 year of a balanced association of homotaurine, Coleus forskohlii root extract, L-carnosine, folic acid, vitamins B1, B2, B6, and magnesium. Pattern Electroretinogram (PERG) amplitude, foveal sensitivity obtained with the visual field analyzer frequency doubling technology, and IOP were detected at enrollment (T0), 3 months (T1), 6 months (T2), 9 months (T3), and 12 months (T4). We observed in treated patients a significant further decrease of IOP and an improvement of PERG amplitude at 6, 9, and 12 months, and foveal sensitivity at 12 months. All values remained substantially stable in control patients. The results of the present pilot study indicate that the components of the food supplement reach the eye in a detectable manner, as evidenced by the effects on the IOP. Moreover, they suggest a short-term neuroactive effect, as indicated by the improvement of PERG amplitude and foveal sensitivity in treated, but not in control patients.

  15. Method specificity of non-invasive blood pressure measurement: oscillometry and finger pulse pressure vs acoustic methods.

    PubMed Central

    De Mey, C; Schroeter, V; Butzer, R; Roll, S; Belz, G G

    1995-01-01

    1. The agreement of blood pressure measurements by stethoscope auscultation (SBPa, DBPa-IV and DBPa-V), oscillometry (Dinamap; SBPo, and DBPo) and digital photoplethysmography (Finapres; SBPf, and DBPf) with the graphical analysis of the analogue microphone signals of vascular wall motion sound (SBPg and DBPg) was evaluated in eight healthy subjects in the presence of responses to the intravenous infusion of 1 microgram min-1 isoprenaline. 2. In general, there was good agreement between the SBP/DBP-measurements based on auscultatory Korotkoff-I- and IV-criteria and the reference method; the average method difference in estimating the isoprenaline responses for SBPa-SBPg was: -1.1, 95% CI: -5.4 to 3.1 mm Hg with a within-subject between-method repeatability coefficient (REP) of 11.6 mm Hg and for DBPa-IV-DBPg: 3.5, 95% CI: -0.5 to 6.5 mm Hg, REP: 11.5 mm Hg. The ausculatation of Korotkoff-V substantially overestimated the isoprenaline induced reduction of DBP: method difference DBPa-V-DBPg: -11.3, 95% CI: -17.8 to -4.7 mm Hg, REP: 31.8 mm Hg. 3. Oscillometry yielded good approximations for the SBP response to isoprenaline (average method difference SBPo-SBPg: -2.9, 95% CI: -9.0 to 3.3 mm Hg, REP: 17.6 mm Hg) but was poorly sensitive with regard to the DBP responses: method difference DBPo-DBPg: 6.5, 95% CI: -1.3 to 14.3 mm Hg, REP: 25.7 mm Hg. 4. Whilst the finger pulse pressure agreed well with regard to DBP (method difference for the DBP responses to isoprenaline: DBPf-DBPg: 1.8, 95% CI: -5.1 to 8.6 mm Hg, REP: 18.5 mm Hg) it was rather unsatisfactory with regard to SBP (method difference SBPf-SBPg: -14.1, 95% CI: -28.2 to -0.1 mm Hg, REP: 49.9 mm Hg).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8554929

  16. Identification of Vascular Parameters Based on the Same Pressure Pulses Waves Used to Measure Pulse Wave Velocity

    DTIC Science & Technology

    2001-10-25

    fig. 3) was designed and included to the pre-developed PWV/PWA system. The implemented optimization algorithm was based on a steepest descend gradient ...of transmission of the pulse wave and elasticity of arteries,” Lancet, vol. I, pp. 891-892, 1922. [6] S. Graf et al., “ Desarrollo de um sistema para

  17. Assessing intravascular volume by difference in pulse pressure in pigs submitted to graded hemorrhage.

    PubMed

    Pestel, Gunther J; Hiltebrand, Luzius B; Fukui, Kimiko; Cohen, Delphine; Hager, Helmut; Kurz, Andrea M

    2006-10-01

    We assessed changes in intravascular volume monitored by difference in pulse pressure (dPP%) after stepwise hemorrhage in an experimental pig model. Six pigs (23-25 kg) were anesthetized (isoflurane 1.5 vol%) and mechanically ventilated to keep end-tidal CO2 (etCO2) at 35 mmHg. A PA-catheter and an arterial catheter were placed via femoral access. During and after surgery, animals received lactated Ringer's solution as long as they were considered volume responders (dPP>13%). Then animals were allowed to stabilize from the induction of anesthesia and insertion of catheters for 30 min. After stabilization, baseline measurements were taken. Five percent of blood volume was withdrawn, followed by another 5%, and then in 10%-increments until death from exsanguination occurred. After withdrawal of 5% of blood volume, all pigs were considered volume responders (dPP>13%); dPP rose significantly from 6.1+/-3.3% to 19.4+/-4.2%. The regression analysis of stepwise hemorrhage revealed a linear relation between blood loss (hemorrhage in %) and dPP (y=0.99*x+14; R2=0.7764; P<.0001). In addition, dPP was the only parameter that changed significantly between baseline and a blood loss of 5% (P<0.01), whereas cardiac output, stroke volume, heart rate, MAP, central venous pressure, pulmonary artery occlusion pressure, and systemic vascular resistance, respectively, remained unchanged. We conclude that in an experimental hypovolemic pig model, dPP correlates well with blood loss.

  18. Pulsed electron beam propagation in gases under pressure of 6.6 kPa in drift tube

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Poloskov, A. V.

    2017-02-01

    This paper presents the results of an investigation of pulsed electron beam transport propagated in a drift tube filled with different gases (He, H2, N2, Ar, SF6, and CO2). The total pressure in the drift tube was 6.6 kPa. The experiments were carried out using a TEA-500 pulsed electron accelerator. The electron beam was propagated in the drift tube composed of two sections equipped with reverse current shunts. Under a pressure of 6.6 kPa, the maximum value of the electron beam charge closed on the walls of the drift tube was recorded when the beam was propagated in hydrogen and carbon dioxide. The minimum value of the electron beam charge closed on the walls of the drift tube was recorded for sulfur hexafluoride. The visualization of the pulsed electron beam energy losses onto the walls of the drift chamber was carried out using radiation-sensitive film.

  19. Plasma-chemical reactor based on a low-pressure pulsed arc discharge for synthesis of nanopowders

    NASA Astrophysics Data System (ADS)

    Karpov, I. V.; Ushakov, A. V.; Lepeshev, A. A.; Fedorov, L. Yu.

    2017-01-01

    A reactor for producing nanopowders in the plasma of a low-pressure arc discharge has been developed. As a plasma source, a pulsed cold-cathode arc evaporator has been applied. The design and operating principle of the reactor have been described. Experimental data on how the movement of a gaseous mixture in the reactor influences the properties of nanopowders have been presented.

  20. A comparison of the failure times of pulse oximeters during blood pressure cuff-induced hypoperfusion in volunteers.

    PubMed

    Kawagishi, Toshiya; Kanaya, Noriaki; Nakayama, Masayasu; Kurosawa, Saori; Namiki, Akiyoshi

    2004-09-01

    Important information may not be obtained if the pulse oximetry signal is lost during inflation of a cuff for blood pressure measurement, particularly in patients with hemodynamic instability. In the present study, we compared the failure times of pulse oximeters during cuff-induced hypoperfusion in volunteers. A pulse oximeter sensor was attached to the index finger, and a blood pressure cuff was attached to the same arm of each volunteer. MasimoSET Radical (Masimo), Nellcor N-395 (N-395), Nellcor N-20PA, and Nellcor D-25 were tested. To evaluate the failure time of each pulse oximeter, time to peak of cuff pressure, time to loss of signal, time to recovery of signal, and failure interval were measured. All measurements were performed three times for each pulse oximeter and were averaged. There were no differences in hemodynamic measurements among the groups. Time to loss of signal was longer in Masimo than the other pulse oximeters. Masimo and N-395 showed significantly shorter times to recovery of signal than those of the other two pulse oximeters. Failure interval was in the order of Masimo < N-395 < Nellcor D-25 = Nellcor N-20PA. Masimo did not lose a signal as rapidly as the other oximeters studied. Masimo was similar in performance to the N-395 at providing useful data sooner than conventional technology after a loss of the signal. These observations suggest that data will be more availabl