Science.gov

Sample records for pressure pulse amplitude

  1. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Greenblatt, M.H.

    1958-03-25

    This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.

  2. PULSE AMPLITUDE ANALYSERS

    DOEpatents

    Lewis, I.A.D.

    1956-05-15

    This patent pentains to an electrical pulse amplitude analyzer, capable of accepting input pulses having a separation between adjacent pulses in the order of one microsecond while providing a large number of channels of classification. In its broad aspect the described pulse amplitude analyzer utilizes a storage cathode ray tube und control circuitry whereby the amplitude of the analyzed pulses controls both the intensity and vertical defiection of the beam to charge particular spots in horizontal sectors of the tube face as the beam is moved horizontally across the tube face. As soon as the beam has swept the length of the tube the information stored therein is read out by scanning individually each horizontal sector corresponding to a certain range of pulse amplitudes and applying the output signal from each scan to separate indicating means.

  3. Cuff width alters the amplitude envelope of wrist cuff pressure pulse waveforms.

    PubMed

    Jilek, Jiri; Stork, Milan

    2010-07-01

    The accuracy of noninvasive blood pressure (BP) measurement with any method is affected by cuff width. Measurement with a too narrow cuff overestimates BP and measurement with a too wide cuff underestimates BP. Automatic wrist cuff BP monitors use permanently attached narrow cuffs with bladders about 6 cm wide. Such narrow cuffs should result in under-cuffing for wrist circumferences larger than 15 cm. The objective of this qualitative study was to show that a narrow wrist cuff results in increased BP values when a cuff pulse amplitude ratio algorithm is used. According to the algorithm used in this study, systolic pressure (SBP) corresponds to the point of 50% of maximal amplitude; for diastolic pressure (DBP) the ratio is 70%. Data were acquired from 12 volunteers in the sitting position. The mean wrist circumference was 18 cm. The acquired cuff pulse data were used to compute SBP, mean pressure (MAP) and DBP. The mean values for a 6 cm cuff were SBP = 144 mmHg, MAP = 104 mmHg and DBP = 88 mmHg. The values for a 10 cm cuff were SBP = 128 mmHg, MAP = 93 mmHg and DBP = 78 mmHg. The reference BP values were SBP = 132 mmHg, MAP = 96 mmHg and DBP = 80 mmHg. All narrow (6 cm) cuff BP values were higher than wide (10 cm) cuff or reference BP values. The results indicate that wider wrist cuffs may be desirable for more accurate and reliable BP measurement with wrist monitors. PMID:20505218

  4. PULSE AMPLITUDE DISTRIBUTION RECORDER

    DOEpatents

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  5. Pulse amplitude modulated chlorophyll fluorometer

    SciTech Connect

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  6. The best marker for guiding the clinical management of patients with raised intracranial pressure-the RAP index or the mean pulse amplitude?

    PubMed

    Hall, Allan; O'Kane, Roddy

    2016-10-01

    Raised intracranial pressure is a common problem in a variety of neurosurgical conditions including traumatic brain injury, hydrocephalus and intracranial haemorrhage. The clinical management of these patients is guided by a variety of haemodynamic, biochemical and clinical factors. However to date there is no single parameter that is used to guide clinical management of patients with raised intracranial pressure (ICP). However, the role of ICP indices, specifically the mean pulse amplitude (AMP) and RAP index [correlation coefficient (R) between AMP amplitude (A) and mean ICP pressure (P); index of compensatory reserve], as an indicator of true ICP has been investigated. Whilst the RAP index has been used both as a descriptor of neurological deterioration in TBI patients and as a way of characterising the compensatory reserve in hydrocephalus, more recent studies have highlighted the limitation of the RAP index due to the influence that baseline effect errors have on the mean ICP, which is used in the calculation of the RAP index. These studies have suggested that the ICP mean pulse amplitude may be a more accurate marker of true intracranial pressure due to the fact that it is uninfluenced by the mean ICP and, therefore, the AMP may be a more reliable marker than the RAP index for guiding the clinical management of patients with raised ICP. Although further investigation needs to be undertaken in order to fully assess the role of ICP indices in guiding the clinical management of patients with raised ICP, the studies undertaken to date provide an insight into the potential role of ICP indices to treat raised ICP proactively rather than reactively and therefore help prevent or minimise secondary brain injury.

  7. The best marker for guiding the clinical management of patients with raised intracranial pressure-the RAP index or the mean pulse amplitude?

    PubMed

    Hall, Allan; O'Kane, Roddy

    2016-10-01

    Raised intracranial pressure is a common problem in a variety of neurosurgical conditions including traumatic brain injury, hydrocephalus and intracranial haemorrhage. The clinical management of these patients is guided by a variety of haemodynamic, biochemical and clinical factors. However to date there is no single parameter that is used to guide clinical management of patients with raised intracranial pressure (ICP). However, the role of ICP indices, specifically the mean pulse amplitude (AMP) and RAP index [correlation coefficient (R) between AMP amplitude (A) and mean ICP pressure (P); index of compensatory reserve], as an indicator of true ICP has been investigated. Whilst the RAP index has been used both as a descriptor of neurological deterioration in TBI patients and as a way of characterising the compensatory reserve in hydrocephalus, more recent studies have highlighted the limitation of the RAP index due to the influence that baseline effect errors have on the mean ICP, which is used in the calculation of the RAP index. These studies have suggested that the ICP mean pulse amplitude may be a more accurate marker of true intracranial pressure due to the fact that it is uninfluenced by the mean ICP and, therefore, the AMP may be a more reliable marker than the RAP index for guiding the clinical management of patients with raised ICP. Although further investigation needs to be undertaken in order to fully assess the role of ICP indices in guiding the clinical management of patients with raised ICP, the studies undertaken to date provide an insight into the potential role of ICP indices to treat raised ICP proactively rather than reactively and therefore help prevent or minimise secondary brain injury. PMID:27567609

  8. Dual amplitude pulse generator for radiation detectors

    DOEpatents

    Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.

    2001-01-01

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  9. Pressure pulse detection apparatus

    SciTech Connect

    Claycomb, J.R.

    1981-04-14

    A pressure pulse detection apparatus is disclosed which is adapted to receive small signals from downhole measuring while drilling apparatus which signals are propogated as pressure pulses traveling upstream in a column of drilling mud, which signals are obscured by mud pump pressure and velocity variations traveling downstream and which are significantly larger. The preferred embodiment incorporates a transient pressure transducer and an ultrasonic fluid velocity detector, the two forming output signals which are conditioned, amplified and offset against one another. They cancel (When properly calibrated) so that pressure and velocity variations from the mud pump upstream are nulled to zero. They reinforce so that pressure and velocity variations from the downhole signal generator are enhanced, thereby forming an output signal of downhole variations of interest.

  10. The pulsed amplitude unit for the SLC

    SciTech Connect

    Rolfe, J.; Browne, M.J.; Jobe, R.K.

    1987-02-01

    There is a recurring requirement in the SLC for the control of devices such as magnets, phase shifters, and attenuators on a beam-by-beam basis. The Pulsed Amplitude Unit (PAU) is a single width CAMAC module developed for this purpose. It provides digitally programmed analog output voltages on a beam-by-beam basis. Up to 32 preprogrammed values of output voltage are available from the single analog output of the module, and any of these values can be associated with any of the 256 possible SLC beam definitions. A 12-bit Analog-to-Digital Converter (ADC) digitizes an analog input signal at the appropriate beam time and stores it in a buffer memory. This feature is normally used to monitor the response of the device being controlled by the PAU at each beam time. Initial application of the PAU is a part of the system that controls the output of Klystrons in the SLC. The PAU combines several different functions in a single module. In order to accommodate these functions in a single width CAMAC module, field programmed logic is used extensively. Field Programmable Logic Arrays, Programmed Array Logic, and a Field Programmable Logic Sequencer are employed.

  11. Review on Dynamic Contour Tonometry and Ocular Pulse Amplitude.

    PubMed

    Willekens, Koen; Rocha, Rita; Van Keer, Karel; Vandewalle, Evelien; Abegão Pinto, Luís; Stalmans, Ingeborg; Marques-Neves, Carlos

    2015-01-01

    Intraocular pressure (IOP) measurement is the cornerstone of the management of glaucoma patients. The gold standard for assessing IOP is Goldmann applanation tonometry (GAT). Recently, the dynamic contour tonometer (DCT) has become available. While both devices provide reliable IOP measurements, the results are not interchangeable. DCT has the advantage of measuring an additional parameter: ocular pulse amplitude (OPA). OPA is defined as the difference between systolic and diastolic IOP and represents the pulsatile wave front produced by the varying amount of blood in the eye during the cardiac cycle. It has been shown to vary with ocular structural parameters, such as axial length, corneal thickness, and ocular rigidity, as well as with systemic variables like heart rate, blood pressure, and left ventricular ejection fraction. Although the existence of some of these associations is still controversial, the clinical relevance of OPA has been consistently suggested, especially in glaucoma. Further research on this intriguing parameter could not only provide insight into glaucoma pathophysiology but also help integrate this variable into clinical practice. PMID:26650248

  12. Arterial pulse wave pressure transducer

    NASA Technical Reports Server (NTRS)

    Kim, C.; Gorelick, D.; Chen, W. (Inventor)

    1974-01-01

    An arterial pulse wave pressure transducer is introduced. The transducer is comprised of a fluid filled cavity having a flexible membrane disposed over the cavity and adapted to be placed on the skin over an artery. An arterial pulse wave creates pressure pulses in the fluid which are transduced, by a pressure sensitive transistor in direct contact with the fluid, into an electric signal. The electrical signal is representative of the pulse waves and can be recorded so as to monitor changes in the elasticity of the arterial walls.

  13. Direct inversion methods for spectral amplitude modulation of femtosecond pulses.

    PubMed

    Delgado-Aguillón, Jesús; Garduño-Mejía, Jesús; López-Téllez, Juan Manuel; Bruce, Neil C; Rosete-Aguilar, Martha; Román-Moreno, Carlos Jesús; Ortega-Martínez, Roberto

    2014-04-01

    In the present work, we applied an amplitude-spatial light modulator to shape the spectral amplitude of femtosecond pulses in a single step, without an iterative algorithm, by using an inversion method defined as the generalized retardance function. Additionally, we also present a single step method to shape the intensity profile defined as the influence matrix. Numerical and experimental results are presented for both methods.

  14. Nonlinear amplitude frequency characteristics of attenuation in rock under pressure

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2006-12-01

    Laboratory experiments have been carried out to investigate the influence of change in strain amplitude on the frequency dependence of attenuation in samples of sandstone, smoky quartz and duralumin. The measurements were performed using the reflection method on pulse frequency of 1 MHz in the strain range ~(0.3-2.0) × 10-6 under a confining pressure of 20 MPa. The attenuation in rocks is nonlinearly dependent on frequency and strain amplitude. In sandstone for P-waves and in smoky quartz for P- and S-waves, the dependences Q-1p(f) and Q-1s(f) have the attenuation peak. With increasing amplitude, the peak frequency can shift towards both the lower and the higher frequencies. It depends on the location of the frequency of an incident (input) pulse with respect to the peak frequency on the frequency axis. For sandstone the peak frequency of P-waves shifts towards the higher frequencies. For smoky quartz the shift of peak frequency is absent in P-waves, and S-waves shift towards the lower frequencies. The attenuation at the incident frequency always monotonically decreases with amplitude, and the other frequency components have complex or monotonic characters depending on the location of the incident frequency in the relaxation spectrum. Q-1p(f) in duralumin has monotonic character, i.e. a relaxation peak in the measurement frequency band is absent. Attenuation strongly decreases with increasing frequency and weakly depends on strain amplitude. The curve Q-1s(f) has an attenuation peak, and its character essentially depends on strain amplitude. With increasing amplitude, the peak frequency shifts towards the lower frequencies. The unusual increase of peak frequency of the P-wave spectrum in the bottom reflection in comparison with peak frequency in spectrum of the initial reflection is detected. The unusual behaviour of attenuation is explained by features of the joint action of viscoelastic and microplastic mechanisms. These results can be used for improving methods

  15. SPECTRAL AMPLITUDE AND PHASE EVOLUTION IN PETAWATT LASER PULSES

    SciTech Connect

    Filip, C V

    2010-11-22

    The influence of the active gain medium on the spectral amplitude and phase of amplified pulses in a CPA system is studied. Results from a 10-PW example based on Nd-doped mixed glasses are presented. In conclusion, this study shows that, by using spectral shaping and gain saturation in a mixed-glass amplifier, it is possible to produce 124 fs, 1.4 kJ laser pulses. One detrimental effect, the pulse distortion due to resonant amplification medium, has been investigated and its magnitude as well as its compensation calculated.

  16. High pressure pulsed capillary viscometry

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Walowitt, J. A.; Pan, C. H. T.

    1972-01-01

    An analytical and test program was conducted in order to establish the feasibility of a multichamber pulsed-capillary viscometer. The initial design incorporated a piston, ram, and seals which produced measured pulses up to 30,000 psi in the closed chamber system. Pressure pulses from one to ten milliseconds were investigated in a system volume of 1 cuin. Four test fluids: a MIL-L-7808, a 5P4E polyphenyl ether, a MIL-L-23699A, and a synthetic hydrocarbon were examined in the test pressure assembly. The pressure-viscosity coefficient and viscosity delay time were determined for the MIL-L-7808 lubricant tested.

  17. Supratentorial pressures. Part II: Intracerebral pulse waves.

    PubMed

    Miller, J D; Peeler, D F; Pattisapu, J; Parent, A D

    1987-09-01

    Intracerebral pulse waves were recorded in cat and monkey while intracranial pressure (ICP) manipulations were performed. The intracerebral pulse waves appeared comparable to cerebrospinal fluid (CSF) pulsations. The wave forms were divided into multiple smaller waves, designated P1 to P4. The P1 component was primarily of arterial origin and was accentuated by increasing ICP unrelated to increased venous pressure, most commonly from a mass lesion. Bilateral carotid occlusion resulted in decreased amplitude of P1. Venous hypertension from jugular venous or sagittal sinus occlusion, on the other hand, accentuated waves P2 and P3 more than P1. This is consistent with a Starling resistor model of the cerebral venous system in which mass lesions may compress low-pressure veins and accentuate the arterial pressure-dependent P1 wave, whereas venous hypertension causes increased prominence of the later P2 and P3 waves. PMID:2891069

  18. Pump pulse duration dependence of coherent phonon amplitudes in antimony

    NASA Astrophysics Data System (ADS)

    Misochko, O. V.

    2016-08-01

    Coherent optical phonons of A 1 k and E k symmetry in antimony have been studied using the femtosecond pump-probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separation between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.

  19. Blood pressure evaluation using sphygmomanometry assisted by arterial pulse waveform detection by fiber Bragg grating pulse device

    NASA Astrophysics Data System (ADS)

    Sharath, Umesh; Sukreet, Raju; Apoorva, Girish; Asokan, Sundarrajan

    2013-06-01

    We report a blood pressure evaluation methodology by recording the radial arterial pulse waveform in real time using a fiber Bragg grating pulse device (FBGPD). Here, the pressure responses of the arterial pulse in the form of beat-to-beat pulse amplitude and arterial diametrical variations are monitored. Particularly, the unique signatures of pulse pressure variations have been recorded in the arterial pulse waveform, which indicate the systolic and diastolic blood pressure while the patient is subjected to the sphygmomanometric blood pressure examination. The proposed method of blood pressure evaluation using FBGPD has been validated with the auscultatory method of detecting the acoustic pulses (Korotkoff sounds) by an electronic stethoscope.

  20. Superposed pulse amplitude modulation for visible light communication.

    PubMed

    Li, J F; Huang, Z T; Zhang, R Q; Zeng, F X; Jiang, M; Ji, Y F

    2013-12-16

    We propose and experimentally demonstrate a novel modulation scheme called superposed pulse amplitude modulation (SPAM) which is low-cost, insensitive to non-linearity of light emitting diode (LED). Multiple optical pulses transmit parallelly from different spatial position in the LED array and overlap linearly in free space to realize SPAM. With LED arrangement, the experimental results show that using the modulation we proposed the data rate of 120 Mbit/s with BER 1 × 10(-3) can be achieved with an optical blue filter and RC post-equalization. PMID:24514674

  1. Pressure Pulse Measurements Using Optical Hydrophone Principles

    NASA Astrophysics Data System (ADS)

    Ueberle, Friedrich; Jamshidi-Rad, Abtin

    2011-02-01

    Pressure pulses are used in extracorporeal lithotripsy, pain therapy and other medical applications. Typical lithotripter pulses reach positive pressure amplitudes of ca. 20 to more than 100 MPa and negative pressures of -5 to more than -20 MPa, depending on the focusing properties and energy settings of the source. The IEC standard 61846, which defines the acoustic parameters of pressure pulse fields, describes the properties of "Focus-" and "Field-" type hydrophones, which were originally specified as PVDF sensors. During recent years, two types of optical sensors were developed, which are based on the principle of measuring reflection changes of a laser beam at a glass-water surface: The fiber optic sensor using bare optical fibers and the "light spot" sensor using a thick glass block. Measurements with both hydrophone types were made with a low pressure transducer (p+max=3 MPa), and two electromagnetic lithotripter sources with the same total acoustic energy (E5MPa=90mJ), one with a wide focus (FWHM = 11 mm, p+max = 30 MPa) and the other with a small focus (FWHM = 3,5 mm, p+max = 83 MPa). The results show that both optical sensor types provide high pressure-time signal fidelity comparable to PVDF membrane sensors. Both optical hydrophones can serve as "Focus-" and "Field-" hydrophones as defined in the lithotripsy measurement standard IEC 61846.

  2. Dipole pulse theory: Maximizing the field amplitude from 4π focused laser pulses

    NASA Astrophysics Data System (ADS)

    Gonoskov, Ivan; Aiello, Andrea; Heugel, Simon; Leuchs, Gerd

    2012-11-01

    We present a class of exact nonstationary solutions of Maxwell equations in vacuum from dipole pulse theory: electric and magnetic dipole pulses. These solutions can provide for a very efficient focusing of electromagnetic field and can be generated by 4π focusing systems, such as parabolic mirrors, by using radially polarized laser pulses with a suitable amplitude profile. The particular cases of a monochromatic dipole wave and a short dipole pulse with either quasi-Gaussian or Gaussian envelopes in the far-field region are analyzed and compared in detail. As a result, we propose how to increase the maximum field amplitude in the focus by properly shaping the temporal profile of the input laser pulses with given main wavelength and peak power.

  3. Population transfer by an amplitude-modulated pulse

    SciTech Connect

    Vitanov, N.V.; Yatsenko, L.P.; Bergmann, K.

    2003-10-01

    We propose a technique for coherent population inversion of a two-state system, which uses an amplitude-modulated pulse. In the modulation-free adiabatic basis, the modulation introduces oscillating interaction between the adiabatic states. In a second rotating-wave approximation picture, this oscillating interaction induces a pair of level crossings between the energies of the adiabatic states if the modulation frequency is chosen appropriately. By suitably offsetting the modulation with respect to the center of the pulse, one can make the modulation act only in the vicinity of one of these crossings. In a higher-order adiabatic basis, this crossing shows up as an avoided crossing between the energies of the higher-order adiabatic states. As a result robust and efficient population transfer can be achieved between the adiabatic states, and hence, between the original bare states. We derive analytically the conditions on the interaction parameters for this technique and verify them with numerical simulations. Possible experimental implementations are discussed.

  4. Streaming Induced by High-Amplitude Acoustic Pulses and its Implications.

    NASA Astrophysics Data System (ADS)

    Starritt, Hazel Catherine

    Available from UMI in association with The British Library. This thesis investigates some aspects of the nonlinear propagation of high amplitude ultrasound in the context of medical diagnostic applications. Nonlinear propagation occurring in focused diagnostic fields is shown to enhance acoustic streaming in water due to the increased absorption of the high frequency components in the distorted wave. The results of an extensive experimental investigation of streaming in water are presented. The streaming velocities were measured using the technique of hot film anemometry and were found to vary with total acoustic power, pulse repetition frequency, pulse duration and pulse pressure amplitude. The velocity in a high amplitude beam was shown to be enhanced typically by a factor of 5 compared with that in a low amplitude beam of the same acoustic power. Measurements of acoustic parameters were made for comparison. The results showed that in a nonlinear field absorption is enhanced in the region immediately on the transducer side of the focus and this region is shown to act as the "source pump" for the stream. The maximum streaming velocities generated by commercial ultrasonic equipment were measured in the fields of pulsed Doppler units, with maximum velocities generated in the fields of scanned imaging beams being an order of magnitude lower. Streams in stationary beams were observed to become established in time periods which are short compared with the "dwell time" of the transducer at a single location in clinical use. The implications of acoustic streaming and the forces associated with it are discussed in the context of the current diagnostic usage of ultrasound. In particular, obstetric applications are considered where the fetus is scanned through a low loss fluid path in which nonlinear propagation and acoustic streaming may occur.

  5. Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shifta)

    NASA Astrophysics Data System (ADS)

    Flandro, Gary A.; Fischbach, Sean R.; Majdalani, Joseph

    2007-09-01

    High-amplitude pressure oscillations in solid propellant rocket motor combustion chambers display nonlinear effects including: (1) limit cycle behavior in which the fluctuations may dwell for a considerable period of time near their peak amplitude, (2) elevated mean chamber pressure (DC shift), and (3) a triggering amplitude above which pulsing will cause an apparently stable system to transition to violent oscillations. Along with the obvious undesirable vibrations, these features constitute the most damaging impact of combustion instability on system reliability and structural integrity. The physical mechanisms behind these phenomena and their relationship to motor geometry and physical parameters must, therefore, be fully understood if instability is to be avoided in the design process, or if effective corrective measures must be devised during system development. Predictive algorithms now in use have limited ability to characterize the actual time evolution of the oscillations, and they do not supply the motor designer with information regarding peak amplitudes or the associated critical triggering amplitudes. A pivotal missing element is the ability to predict the mean pressure shift; clearly, the designer requires information regarding the maximum chamber pressure that might be experienced during motor operation. In this paper, a comprehensive nonlinear combustion instability model is described that supplies vital information. The central role played by steep-fronted waves is emphasized. The resulting algorithm provides both detailed physical models of nonlinear instability phenomena and the critically needed predictive capability. In particular, the origin of the DC shift is revealed.

  6. Continuous pulse amplitude monitoring of infrainguinal bypass grafts in the first 24 postoperative hours.

    PubMed

    Blankensteijn, J D; Abbott, W M

    1996-07-01

    To evaluate continuous pulse amplitude monitoring (CPAM) as a method for early postoperative graft surveillance following infrainguinal bypass surgery, a prospective observational study was carried out in 34 consecutive infrainguinal bypass grafts. CPAM tracings were compared with pre- and postoperative pulse palpation, ankle/brachial index (ABI) measurements, and pulse volume recordings (PVR). The utility of each method was defined by its ability to demonstrate graft patency in the first 24 hours. Pulse palpation was considered a useful monitoring tool if a postoperative pedal pulse was found in the absence of palpable preoperative pulses. The ABI qualified in this respect if a postoperative increase of at least 0.25 could be demonstrated; for PVR tracings an increase of at least one category was required. The utility of CPAM was established by an increase of at least 5 mm compared to the preoperative values. There were no early graft failures. We were therefore unable to calculate the ability of the studies to predict graft failure. The percentages (95% confidence limits) for which pulse palpation, ABI, and PVR were found capable of demonstrating graft patency were 50% (range 34% to 66%), 53% (range 36% to 70%), and 71% (range 54% to 83%), respectively. CPAM appeared to be far superior to these three methods with a utility of 94% (range 81% to 98%; p < 0.05). Patient and operator acceptability of CPAM was high. Skin pressure problems are a potential risk if the CPAM probe is left attached to the skin for more than 24 hours. CPAM was a valuable and reliable means of monitoring infrainguinal vascular reconstructions. Apart from being inexpensive, continuous, objective, and simple, CPAM is noninvasive and painless. It is advisable to remove the probe 24 hours after surgery, when the most crucial period for graft monitoring has passed. PMID:8879395

  7. Generation of one-cycle laser pulses by use of high-amplitude plasma waves

    PubMed

    Sheng; Sentoku; Mima; Nishihara

    2000-11-01

    The dynamics of a short laser pulse located in the density trough of a background plasma wave is investigated and a scheme is proposed to compress the pulse duration by use of a high-amplitude plasma wave. The threshold amplitude of the plasma wave, at which the compressing effect just balances the dispersive spreading of the laser pulse, is estimated for certain pulse profiles. Numerical simulations are conducted with particle-in-cell codes, where a pump pulse is used to generate a high-amplitude plasma wave and a signal pulse copropagates behind. It is shown that the signal pulse can be compressed by the plasma wave from ten laser cycles to about one cycle within a millimeter in tenuous plasma only a few percent of the critical density.

  8. Nonlinear reflection of high-amplitude laser pulses from relativistic electron mirrors

    NASA Astrophysics Data System (ADS)

    Kulagin, V. V.; Kornienko, V. N.; Cherepenin, V. A.

    2016-04-01

    A coherent X-ray pulse of attosecond duration can be formed in the reflection of a counterpropagating laser pulse from a relativistic electron mirror. The reflection of a high-amplitude laser pulse from the relativistic electron mirror located in the field of an accelerating laser pulse is investigated by means of two-dimensional (2D) numerical simulation. It is shown that provided the amplitude of the counterpropagating laser pulse is several times greater than the amplitude of the accelerating laser pulse, the reflection process is highly nonlinear, which causes a significant change in the X-ray pulse shape and its shortening up to generation of quasi-unipolar pulses and single-cycle pulses. A physical mechanism responsible for this nonlinearity of the reflection process is explained, and the parameters of the reflected X-ray pulses are determined. It is shown that the duration of these pulses may constitute 50 - 60 as, while their amplitude may be sub-relativistic.

  9. Reducing the duration of broadband excitation pulses using optimal control with limited RF amplitude.

    PubMed

    Skinner, Thomas E; Reiss, Timo O; Luy, Burkhard; Khaneja, Navin; Glaser, Steffen J

    2004-03-01

    Combining optimal control theory with a new RF limiting step produces pulses with significantly reduced duration and improved performance for a given maximum RF amplitude compared to previous broadband excitation by optimized pulses (BEBOP). The resulting pulses tolerate variations in RF homogeneity relevant for standard high-resolution NMR probes. Design criteria were transformation of Iz-->Ix over resonance offsets of +/-20kHz and RF variability of +/-5%, with a pulse length of 500 micros and peak RF amplitude equal to 17.5 kHz. Simulations transform Iz to greater than 0.995 Ix, with phase deviations of the final magnetization less than 2 degrees, over ranges of resonance offset and RF variability that exceed the design targets. Experimental performance of the pulse is in excellent agreement with the simulations. Performance tradeoffs for yet shorter pulses or pulses with decreased digitization are also investigated. PMID:14987600

  10. Enhancement of the amplitude of somatosensory evoked potentials following magnetic pulse stimulation of the human brain.

    PubMed

    Seyal, M; Browne, J K; Masuoka, L K; Gabor, A J

    1993-01-01

    In this study we have demonstrated an enhancement of cortically generated wave forms of the somatosensory evoked potential (SEP) following magnetic pulse stimulation of the human brain. Subcortically generated activity was unaltered. The enhancement of SEP amplitude was greatest when the median nerve was stimulated 30-70 msec following magnetic pulse stimulation over the contralateral parietal scalp. We posit that the enhancement of the SEP is the result of synchronization of pyramidal cells in the sensorimotor cortex resulting from the magnetic pulse.

  11. Critically ill patients in emergency department may be characterized by low amplitude and high variability of amplitude of pulse photoplethysmography

    PubMed Central

    2013-01-01

    Background The aim of the present pilot study was to determine if pulse photoplethysmography amplitude (PPGA) could be used as an indicator of critical illness and as a predictor of higher need of care in emergency department patients. Methods This was a prospective observational study. We collected vital signs and one minute of pulse photoplethysmograph signal from 251 consecutive patients admitted to a university hospital emergency department. The patients were divided in two groups regarding to the modified Early Warning Score (mEWS): > 3 (critically ill) and ≤ 3 (non-critically ill). Photoplethysmography characteristics were compared between the groups. Results Sufficient data for analysis was acquired from 212 patients (84.5%). Patients in critically ill group more frequently required intubation and invasive hemodynamic monitoring in the ED and received more intravenous fluids. Mean pulse photoplethysmography amplitude (PPGA) was significantly lower in critically ill patients (median 1.105 [95% CI of mean 0.9946-2.302] vs. 2.476 [95% CI of mean 2.239-2.714], P = 0.0257). Higher variability of PPGA significantly correlated with higher amount of fluids received in the ED (r = 0.1501, p = 0.0296). Conclusions This pilot study revealed differences in PPGA characteristics between critically ill and non-critically ill patients. Further studies are needed to determine if these easily available parameters could help increase accuracy in triage when used in addition to routine monitoring of vital signs. PMID:23799988

  12. Dependence of Two-Photon eGFP Bleaching on Femtosecond Pulse Spectral Amplitude and Phase.

    PubMed

    Graham, David J L; Tseng, Shu-Fen; Hsieh, Jer-Tsong; Chen, David J; Alexandrakis, George

    2015-11-01

    Photobleaching is a key limitation in two-photon imaging of fluorescent proteins with femtosecond pulsed excitation. We present measurements of the dependence of eGFP photobleaching on the spectral amplitude and phase of the pulses used. A strong dependence on the excitation wavelength was confirmed and measured over a 800-950 nm range. A fiber continuum light source and pulse shaping techniques were used to investigate photobleaching with broadband, 15 fs transform limited, pulses with differing spectral amplitude and phase. Narrow band pulses, >150 fs transform limited, typical of femtosecond laser sources used in two-photon imaging applications, were also investigated for their photobleaching dependence on pulse dispersion and bandwidth. The bleach rate for broadband pulses was found to be primarily determined by the second harmonic spectrum of the excitation light. On the other hand, for narrow band excitation pulses with similar center wavelengths improvement in bleach rate was found to be mostly dependent on reducing the pulse length. A simple model to predict the relative bleach rates for broadband pulses is presented and compared to the experimental data.

  13. Optimization of electric pulse amplitude and frequency in vitro for low voltage and high frequency electrochemotherapy.

    PubMed

    Shankayi, Zeinab; Firoozabadi, S M P; Hassan, Zohair Saraf

    2014-02-01

    During standard electrochemotherapy (ECT), using a train of 1,000 V/cm amplitude rectangular pulses with 1 Hz frequency, patients experience an unpleasant sensation and slight edema. According to the patients, muscle contractions provoked by high amplitude (about 1,000 V/cm) and low repetition frequency (1 Hz) pulses are the most unpleasant and painful sensations. Recently, ECT using low voltage and higher repetition frequency (LVHF) has been shown to be an effective tool for inhibiting tumor growth. The aim of the present study was to optimize electric pulse amplitude and repetition frequency for LVHF ECT by sampling the different sets of pulse parameters on cell viability and permeabilization. In ECT, a reversible effect based on high permeabilization is desirable. For this purpose, we used bleomycin to evaluate the permeabilization of K562 and MIA-PACA2 cells caused by low voltage (50-150 V/cm) and higher repetition frequency (4-6 kHz) electric pulses. We show that the reversible effect with electropermeabilization of the cells caused by LVHF ECT is accessible; this interaction is more effective for electric pulses with 70 V/cm amplitude. PMID:24271721

  14. The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter.

    PubMed

    Choi, M J; Coleman, A J; Saunders, J E

    1993-11-01

    This study concerns the radial dynamics of a bubble driven by pulsed ultrasound of the type generated during extracorporeal shock wave lithotripsy. In particular, a numerical model has been used to examine the sensitivity of the bubble oscillations to changes in both the amplitude of the driving field and the physical conditions of the fluid surrounding the bubble: viscosity, surface tension, temperature and gas content. It is shown that, at high negative pressures (p- = 10 MPa) as in lithotripsy, the timing and amplitude of bubble collapses have a considerably reduced sensitivity to the initial bubble size and all fluid parameters, except gas content, compared with those expected in lower-amplitude fields (p- = 0.2 MPa). This study indicates that, in the lithotripsy fields, the differences in the viscosity, surface tension and temperature of body fluids and the initial bubble size will have little effect on bubble dynamics compared with those expected in water.

  15. Control of broadband optically generated ultrasound pulses using binary amplitude holograms.

    PubMed

    Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E

    2016-04-01

    In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser. PMID:27106311

  16. FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound.

    PubMed

    Hallaj, I M; Cleveland, R O

    1999-05-01

    Full wave simulations provide a valuable tool for studying the spatial and temporal nature of an acoustic field. One method for producing such simulations is the finite-difference time-domain (FDTD) method. This method uses discrete differences to approximate derivatives in the governing partial differential equations. We used the FDTD method to model the propagation of finite-amplitude sound in a homogeneous thermoviscous fluid. The calculated acoustic pressure field was then used to compute the transient temperature rise in the fluid; the heating results from absorption of acoustic energy by the fluid. As an example, the transient temperature field was calculated in biological tissue in response to a pulse of focused ultrasound. Enhanced heating of the tissue from finite-amplitude effects was observed. The excess heating was attributed to the nonlinear generation of higher-frequency harmonics which are absorbed more readily than the fundamental. The effect of nonlinear distortion on temperature rise in tissue was observed to range from negligible at 1 MPa source pressure to an 80% increase in temperature elevation at 10 MPa source pressure.

  17. Laser pulse amplitude changes induced by terahertz waves under linear electro-optic effect

    SciTech Connect

    Ilyakov, I. E. Shishkin, B. V.; Kitaeva, G. Kh.; Akhmedzhanov, R. A.

    2014-04-14

    Changes in the amplitude of femtosecond laser pulses and in the energy of terahertz wave radiation induced during their co-propagation in ZnTe and GaP crystals are studied theoretically and experimentally. The results show that variation of the optical field amplitude leads to changes in the laser pulse energy and spectrum shift. We investigate the quantitative correlations between variations of the optical pulse energy, spectrum, phase and terahertz radiation energy. The values of laser pulse energy change and spectrum shift are proportional to the first time derivative of the magnitude of terahertz electric field, which enables coherent electro-optic detection. A simple and convenient calibration technique for terahertz energy detectors based on the correlation between laser and terahertz energy changes is proposed and tested.

  18. Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern

    NASA Astrophysics Data System (ADS)

    Beiderman, Yevgeny; Horovitz, Israel; Burshtein, Natanel; Teicher, Mina; Garcia, Javier; Mico, Vicente; Zalevsky, Zeev

    2010-11-01

    We present a novel technique for remote noncontact blood pulse pressure measurement. It is based on tracking both temporal and amplitude changes of reflected secondary speckle produced in human skin when illuminated by a laser beam. The implemented technique extracts the difference between the systolic and the diastolic blood pressure. Experimental results are presented showing good agreement when compared with conventional measurement methods.

  19. Relationship between T-wave amplitude and oxygen pulse in guinea pigs in hyperbaric helium and hydrogen.

    PubMed

    Kayar, S R; Parker, E C; Aukhert, E O

    1998-09-01

    Diving is known to induce a change in the amplitude of the T wave (ATw) of electrocardiograms, but it is unknown whether this is linked to a change in cardiovascular performance. We analyzed ATw in guinea pigs at 10-60 atm and 25-36 degreesC, breathing 2% O2 in either helium (heliox; n = 10) or hydrogen (hydrox; n = 9) for 1 h at each pressure. Core temperature and electrocardiograms were detected by using implanted radiotelemeters. O2 consumption rate was measured by using gas chromatography. In a previous study (S. R. Kayar and E. C. Parker. J. Appl. Physiol. 82: 988-997, 1997), we analyzed the O2 pulse, i.e., the O2 consumption rate per heart beat, in the same animals. By multivariate regression analysis, we identified variables that were significant to O2 pulse: body surface area, chamber temperature, core temperature, and pressure. In this study, inclusion of ATw made a significantly better model with fewer variables. After normalizing for chamber temperature and pressure, the O2 pulse increased with increasing ATw in heliox (P = 0.001) but with decreasing ATw in hydrox (P < 0.001). Thus ATw is associated with the differences in O2 pulse for animals breathing heliox vs. hydrox.

  20. Theoretical analysis of pressure pulse propagation in arterial vessels.

    PubMed

    Belardinelli, E; Cavalcanti, S

    1992-11-01

    An original mathematical model of viscous fluid motion in a tapered and distensible tube is presented. The model equations are deduced by assuming a two-dimensional flow and taking into account the nonlinear terms in the fluid motion equations, as well as the nonlinear deformation of the tube wall. One distinctive feature of the model is the formal integration with respect to the radial coordinate of the Navier-Stokes equations by power series expansion. The consequent computational frame allows an easy, accurate evaluation of the effects produced by changing the values of all physical and geometrical tube parameters. The model is employed to study the propagation along an arterial vessel of a pressure pulse produced by a single flow pulse applied at the proximal vessel extremity. In particular, the effects of the natural taper angle of the arterial wall on pulse propagation are investigated. The simulation results show that tapering considerably influences wave attenuation but not wave velocity. The substantially different behavior of pulse propagation, depending upon whether it travels towards the distal extremity or in the opposite direction, is observed: natural tapering causes a continuous increase in the pulse amplitude as it moves towards the distal extremity; on the contrary, the reflected pulse, running in the opposite direction, is greatly damped. For a vessel with physical and geometrical properties similar to those of a canine femoral artery and 0.1 degree taper angle, the forward amplification is about 0.9 m-1 and the backward attenuation is 1.4 m-1, so that the overall tapering effect gives a remarkably damped pressure response. For a natural taper angle of 0.14 degrees the perturbation is almost extinct when the pulse wave returns to the proximal extremity. PMID:1400535

  1. Spectral amplitude and phase measurement of ultrafast pulses using all-optical differential tomography.

    PubMed

    Londero, Pablo; Kuzucu, Onur; Gaeta, Alexander L

    2011-05-01

    We demonstrate a simple, all-optical, fiber-based method for characterizing the spectral amplitude and phase of ultrafast pulses using a differential tomographic measurement realized via four-wave mixing. The technique is applied to subpicosecond pulses in the C-band of the telecommunication spectrum. Characterization of amplified pulses and propagation through dispersive media is demonstrated and compared with autocorrelation measurements and calculated predictions. We show how our approach can be extended to larger bandwidths in similar systems, extending tomographic reconstruction of coherent fields to nearly an octave of bandwidth while maintaining a robust, waveguide-based geometry.

  2. Spectral amplitude and phase measurement of ultrafast pulses using all-optical differential tomography.

    PubMed

    Londero, Pablo; Kuzucu, Onur; Gaeta, Alexander L

    2011-05-01

    We demonstrate a simple, all-optical, fiber-based method for characterizing the spectral amplitude and phase of ultrafast pulses using a differential tomographic measurement realized via four-wave mixing. The technique is applied to subpicosecond pulses in the C-band of the telecommunication spectrum. Characterization of amplified pulses and propagation through dispersive media is demonstrated and compared with autocorrelation measurements and calculated predictions. We show how our approach can be extended to larger bandwidths in similar systems, extending tomographic reconstruction of coherent fields to nearly an octave of bandwidth while maintaining a robust, waveguide-based geometry. PMID:21540969

  3. Cognitive-Behavioral Therapy versus Temporal Pulse Amplitude Biofeedback Training for Recurrent Headache

    ERIC Educational Resources Information Center

    Martin, Paul R.; Forsyth, Michael R.; Reece, John

    2007-01-01

    Sixty-four headache sufferers were allocated randomly to cognitive-behavioral therapy (CBT), temporal pulse amplitude (TPA) biofeedback training, or waiting-list control. Fifty-one participants (14M/37F) completed the study, 30 with migraine and 21 with tension-type headache. Treatment consisted of 8, 1-hour sessions. CBT was highly effective,…

  4. Neural Network Burst Pressure Prediction in Graphite/Epoxy Pressure Vessels from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Walker, James L., II; Rowell, Ginger H.

    1995-01-01

    Acoustic emission (AE) data were taken during hydroproof for three sets of ASTM standard 5.75 inch diameter filament wound graphite/epoxy bottles. All three sets of bottles had the same design and were wound from the same graphite fiber; the only difference was in the epoxies used. Two of the epoxies had similar mechanical properties, and because the acoustic properties of materials are a function of their stiffnesses, it was thought that the AE data from the two sets might also be similar; however, this was not the case. Therefore, the three resin types were categorized using dummy variables, which allowed the prediction of burst pressures all three sets of bottles using a single neural network. Three bottles from each set were used to train the network. The resin category, the AE amplitude distribution data taken up to 25 % of the expected burst pressure, and the actual burst pressures were used as inputs. Architecturally, the network consisted of a forty-three neuron input layer (a single categorical variable defining the resin type plus forty-two continuous variables for the AE amplitude frequencies), a fifteen neuron hidden layer for mapping, and a single output neuron for burst pressure prediction. The network trained on all three bottle sets was able to predict burst pressures in the remaining bottles with a worst case error of + 6.59%, slightly greater than the desired goal of + 5%. This larger than desired error was due to poor resolution in the amplitude data for the third bottle set. When the third set of bottles was eliminated from consideration, only four hidden layer neurons were necessary to generate a worst case prediction error of - 3.43%, well within the desired goal.

  5. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    PubMed

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.

  6. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude

    NASA Astrophysics Data System (ADS)

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.

  7. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    PubMed

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time. PMID:22852729

  8. Ocular pulse amplitude is reduced in patients with advanced retinitis pigmentosa

    PubMed Central

    Schmidt, K.; Pillunat, L.; Kohler, K.; Flammer, J.

    2001-01-01

    BACKGROUND/AIMS—The choroid, a low resistance vascular structure carrying 85% of the ocular blood flow, provides nourishment to and removal of potential toxic waste products from the adjacent non-vascularised outer layers of the retina, macula, and optic disc regions. Choroidal perfusion may be reduced in retinitis pigmentosa (RP) and might contribute to retinal pigment epithelium (RPE) degeneration. The aim of this study was to determine whether choroidal perfusion is reduced in RP and whether this is correlated with the stage of disease.
METHODS—Ocular pulse amplitude (OPA) evaluated with the ocular blood flow (OBF) system, applanation intraocular pressure (IOP), visual fields, blood pressure (BP), and heart rate (HR) were measured in 75 RP patients having stage RP-I (stage I: visual field size: 7.85-14.67 cm2; n = 22), stage RP-II (stage II: visual field size: 2.83-7.84 cm2; n = 29), or stage RP-III (stage III: visual field size: 0.52-2.82 cm2; n = 24) were compared with matched healthy controls and each other.
RESULTS—Neither IOP nor systemic perfusion parameters were significantly (p >0.1) altered, but OPA (mm Hg) in RP patients beginning with stage RP-II (1.6 (0.1), 27.3%, p<0.0001), and RP-III (1.2 (0.1), 45.5%, p<0.0001) was significantly reduced when compared with matched subgroups from a pool of healthy controls (2.2 (0.1), n = 94).
CONCLUSIONS—OPA can be used neither for early clinical detection of RP nor to follow the natural course of the disease. However, our data show that in advanced stages of RP not only the retina but also the choroidal circulation is affected.

 PMID:11371487

  9. Effects of low amplitude pulsed radiofrequency stimulation with different waveform in rats for neuropathic pain.

    PubMed

    Lin, W T; Chang, C H; Cheng, C Y; Chen, M C; Wen, Y R; Lin, C T; Lin, C W

    2013-01-01

    Pulsed-radiofrequency (PRF) electrical stimulation has been widely used for chronic pain treatment. It has been demonstrated with advantages of low temperature over traditional continuous radiofrequency (CRF) lesions with higher amplitude and mono polar electrode to treat pain in clinics (frequency 500 KHz, Pulse duration 20 msec, Amplitude 45 V, Treatment 2 min). We compare the effects of different pulse waveforms and PRF parameters (Pulse duration 25 ms, Treatment duration 5 min, low amplitude of 2.5/1.25 V) with a miniature bi-polar electrode on Dorsal root ganglion (DRG). The pain relief effect due to PRF is evaluated by using Von Frey method for the pain threshold index based on behavior response to mechanical stimulus of various strengths. Experimental results of Von Frey Score show that the sinusoidal group has higher responses than the square wave one. Both fast and secondary expressed proteins of c-fos and pp38 are measured from spinal cord tissue sectioning slides to characterize the pain associated inflammatory responses and their responses due to PRF stimulation.

  10. Effects of continuous-wave, pulsed, and sinusoidal-amplitude-modulated microwaves on brain energy metabolism.

    PubMed

    Sanders, A P; Joines, W T; Allis, J W

    1985-01-01

    A comparison of the effects of continuous-wave, sinusoidal-amplitude-modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague-Dawley rats (175-225 g). Brain NADH fluorescence, adenosine triphosphate (ATP) concentration, and creatine phosphate (CP) concentration were determined as a function of modulation frequency. Brain temperatures of animals were maintained between -0.1 and -0.4 degrees C from the preexposure temperature when subjected to as much as 20 mW/cm2 (average power) CW, pulsed, or sinusoidal-amplitude modulated 591-MHz radiation for 5 min. Sinusoidal-amplitude-modulated exposures at 16-24 Hz showed a trend toward preferential modulation frequency response in inducing an increase in brain NADH fluorescence. The pulse-modulated and sinusoidal-amplitude-modulated (16 Hz) microwaves were not significantly different from CW exposures in inducing increased brain NADH fluorescence and decreased ATP and CP concentrations. When the pulse-modulation frequency was decreased from 500 to 250 pulses per second the average incident power density threshold for inducing an increase in brain NADH fluorescence increased by a factor of 4--ie, from about 0.45 to about 1.85 mW/cm2. Since brain temperature did not increase, the microwave-induced increase in brain NADH and decrease in ATP and CP concentrations was not due to hyperthermia. This suggests a direct interaction mechanism and is consistent with the hypothesis of microwave inhibition of mitochondrial electron transport chain function of ATP production.

  11. A simple method of calculating pulse amplitudes and shapes arising from reflection from linear segments

    SciTech Connect

    Erickson, S.A. Jr.

    1988-01-02

    A new formulation for the amplitude and pulse shape from reflections from a linear segment for a bistatic planar geometry is presented. The formulation is useful in calculating reverberation from high intensity signals in an deep ocean basin where long range propagation can occur. This reverberation is important in calculating the acoustic interference to sonar arising from the detonation of nuclear or large chemical explosives, and for modeling long range active sonar. The reflections computed with the new formulation are significantly different from those of earlier versions of the reverberation model, with pulses generally shorter and more intense, leading to predictions of louder but more sporadic reverberation than previously estimated. 9 refs

  12. Echo amplitude sensitivity of bat auditory neurons improves with decreasing pulse-echo gap.

    PubMed

    Jen, Philip H-S; Wu, Chung Hsin

    2015-01-01

    During hunting, insectivorous bats systematically vary the parameters of emitted pulses and analyze the returning echoes to extract prey features. As such, the duration of the pulse (P) and echo (E), the P-E gap, and the P-E amplitude difference progressively decrease throughout the prey-approach sequence. Our previous studies have shown that most inferior collicular neurons of bats discharge maximally to a best duration, and they have the sharpest echo frequency and amplitude sensitivity when stimulated with P-E pairs with duration the same as the best duration. Furthermore, their echo duration and frequency sensitivity improves with decreasing P-E duration and P-E gap. The present study shows that this is also true in the amplitude domain. Thus, all these data indicate that bats can better extract multiple parameters of expected rather than unexpected echo after pulse emission. They also support the hypothesis that a bat's inferior collicular neurons improve the response sensitivity in multiple parametric domains as the prey is approached to increase the success of hunting. PMID:25426829

  13. Ocular Pulse Amplitude and Retinal Vessel Caliber Changes after Intravitreal Dexamethasone Implant

    PubMed Central

    Yilmaz, Ihsan; Perente, Irfan; Kesim, Cem; Saracoglu, Basak; Yazici, Ahmet Taylan; Taskapili, Muhittin

    2016-01-01

    Purpose: The purpose of this study is to evaluate possible changes in ocular pulse amplitude (OPA), retinal arteriole caliber (RAC), and retinal venule caliber (RVC), following the intravitreal injection of dexamethasone implants (DIs). Methods: Thirty-four eyes of 34 patients with macular edema were included. All participants received a full ophthalmologic examination at baseline. RAC and RVC were measured via optical coherence tomography; OPA and intraocular pressure (IOP) were measured via dynamic contour tonometry at baseline, month 1, and month 3. Statistical analysis was performed for before-after comparison of OPA, IOP, RAC, and RVC measurements. Results: The mean OPA (in order to baseline, month 1, month 3) was 2.8 ± 0.8, 2.9 ± 1.0, 2.9 ± 0.9. The mean IOP was 16.8 ± 2.9, 17.3 ± 2.7, 18.4 ± 2.9 mmHg. The mean RAC was 97.8 ± 9.2, 97.2 ± 9.0, 97.6 ± 9.4. The mean RVC was 124.4 ± 8.2, 124.8 ± 8.8, 123.8 ± 8.2. There were no statistically significant changes in RAC (P = 0.688), RVC (P = 0.714), OPA (P = 0.348), and IOP (P = 0.115). There was also no correlation between RAC and OPA (r = 0.12, P = 0.62) or RVC and OPA (r = 0.16, P = 0.68) at the last visit. Conclusion: The intravitreal injection of DI does not significantly affect RAC, RVC, or OPA, which indicates that the treatment does not alter overall retinal-choroidal vasculature or hemodynamics. PMID:27555709

  14. Effect of strain amplitude on relaxation spectra of attenuation in dry and saturated sandstone under pressure

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2007-06-01

    Laboratory experiments have been carried out to investigate the amplitude-frequency dependence of compressional- and shear-wave attenuation in samples of dry and saturated sandstone. The measurements were performed using the reflection method on a pulse frequency of 1 MHz in the strain range ~(0.3-2.0) × 10-6 under a confining pressure of 20 MPa. In general, the attenuation decreases monotonically with increasing strain amplitude as Q^{-1} \\propto \\varepsilon ^{-n_{\\sim} }, where n~ = 0.003-0.045. The decrease in P-wave attenuation, Q-1p, for dry sandstone is 5%, but for saturated sandstone there is no change. The analogous decrease for Q-1s in the dry and the saturated sandstone is 8% and 4%, respectively. The P-wave relaxation spectra, Q-1p(f), in the dry and saturated sandstone are slightly different from each other but the S-wave relaxation spectra, Q-1s(f), are very different. The amplitude variation causes the change in the value of the relaxation strength Δ that leads to the displacement of the curve Q-1(f) in the Y-direction. The value of Δs in the saturated rock is four times more than the value Δp in the dry rock, and the curves Q-1s(f) are shifted relative to Q-1p(f) towards higher frequencies. The upward-downward amplitude dependence Δp(ɛ1-6-1) both in the dry and the saturated rock is represented by the descending curve. The Δs(ɛ1-6-1) curve for the saturated rock shows hysteresis, but for the dry rock hysteresis is absent. The increase in the strain amplitude gives rise to a small change in peak frequency, but stimulates considerable (up to 40%) decrease in the S-wave relaxation peak width. The unusual behaviour of attenuation is explained by a feature of the joint action of viscoelastic and microplastic mechanisms. These results can be used to improve methods of geological interpretation of acoustical and seismic data.

  15. Efficient Amplitude-Modulated Pulses for Triple- to Single-Quantum Coherence Conversion in MQMAS NMR

    PubMed Central

    2014-01-01

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed “too challenging”. PMID:25047226

  16. Pavane for a pulse pressure variation defunct

    PubMed Central

    2013-01-01

    Hemodynamic management of critically ill patients in the ICU or high-risk patients in the operating room has paradoxically shown progress in terms of outcome after the systematic application of volume responsiveness/flow optimization based on pulse pressure variation and/or stroke volume variation during controlled, positive-pressure ventilation in patients without spontaneous respiratory efforts. This assessment of circulatory optimization should ideally be based on an exhaustive, predictive and coherent physiological understanding of the cardiovascular system model. This paper sketches the extremely complex physiological background of the concept of volume responsiveness, concluding that it is not a reliable means of guiding hemodynamic optimization because it is based on a nonexhaustive, nonpredictive and incoherent physiological model. PMID:24229428

  17. Relationship between pulse amplitude and thermal exchange in the finger: the effect of smoking.

    PubMed

    Saumet, J L; Leftheriotis, G; Dittmar, A; Delhomme, G

    1986-04-01

    In 24 healthy volunteers finger pulse amplitude and heart rate (HR) were monitored by pulse plethysmography and thermal exchange from the finger and were compared before and after the smoking of a single cigarette. Thermal exchange was measured using a direct calorimeter consisting of a recording bath and a reference bath, both of which were filled with water at 18 degree C. The subject immersed the two distal phalanx of a finger into the recording bath. The water thermal gradient between both baths after 4 min of finger immersion and the maximal value of heat loss from the finger to the water were recorded. Decreases in the water thermal gradient (from 6.06 to 5.33 degrees C, P less than 0.05) in maximal value of heat loss (from 22.5 to 18.75 w.m-2, P less than 0.01) and in plethysmographic wave amplitude (from 25.8 to 14.6 mm, P less than 0.01) and increased HR (from 72 to 83 beats min-1) were observed in smokers. These changes were not statistically significant in non-smokers. Water thermal gradient and maximal value of heat loss correlated with plethysmographic wave amplitude before and after smoking but not with HR in the 24 subjects studied. The present study shows a good relationship between vascular phenomena and thermal exchange in the fingers. The variations of finger pulse amplitude provide an adequate and sensitive adjustment of thermal exchange since the effects of smoking a single cigarette can be detected by both PWA and calorimetric measurements in the finger.

  18. Skin blood flow changes in anaesthetized humans: comparison between skin thermal clearance and finger pulse amplitude measurement.

    PubMed

    Saumet, J L; Leftheriotis, G; Dittmar, A; Delhomme, G; Degoute, C S

    1986-01-01

    The effect of general anaesthesia on skin blood flow in the left hand, measured by a new non-invasive probe using the thermal clearance method was examined. A mercury silastic gauge was placed around the third left finger and the plethysmographic wave amplitude was recorded to measure changes in finger pulse amplitude. Heart rate (HR), mean arterial blood pressure (MABP) and skin temperature were also recorded. General anaesthesia was induced by droperidol and phenoperidine injection and propanidid infusion in eight female patients. Skin thermal clearance, plethysmographic wave amplitude, HR, MABP and skin temperature were 0.40 +/- 0.02 w X m-1 degree C-1, 9 +/- 1 mm, 98 +/- 5 beats X min-1, 12.50 +/- 0.93 kPa and 33.3 +/- 3.4 degrees C respectively. The minimal value of MABP was 9.58 +/- 1.06 kPa, whereas skin thermal clearance, plethysmographic wave amplitude, HR and skin temperature increased to 0.45 +/- 0.02 w X m-1 degree C-1, 29 +/- 3 mm, 110 +/- 4 beats X min-1 and 34.4 +/- 0.4 degrees C. Changes in skin thermal clearance correlated well with plethysmographic wave amplitude. Statistically significant changes in these two parameters occurred before significant change in HR, MABP or skin temperature. The results show that the new non-invasive probe using the thermal clearance method appears to be a useful device for measuring cutaneous microcirculation in anaesthetized humans, and responds more quickly than change in skin temperature, which is a delayed effect of skin blood flow change. Our results also show that the intensity of cutaneous vasodilatation induced by general anaesthesia did not relate to the vascular tone before anaesthesia.

  19. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.

    2016-08-01

    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.

  20. Relationship between solar wind dynamic pressure and amplitude of geomagnetic sudden commencement (SC)

    NASA Astrophysics Data System (ADS)

    Araki, Tohru; Shinbori, Atsuki

    2016-05-01

    The local time variation of geomagnetic sudden commencements (SCs) has not been taken into account in the Siscoe's linear relationship which connects the SC amplitude with the corresponding dynamic pressure variation of the solar wind. By considering the physical background of SC, we studied which local time is best to extract the information of the solar wind dynamic pressure and concluded that the SC amplitude at 4-5 h local time of middle- and low-latitude stations most directly reflects the dynamic pressure effect. This result is used to re-check the order of magnitude of the largest 3 SCs observed since 1868.

  1. Envelope pulsed ultrasonic distance measurement system based upon amplitude modulation and phase modulation

    NASA Astrophysics Data System (ADS)

    Huang, Y. P.; Wang, J. S.; Huang, K. N.; Ho, C. T.; Huang, J. D.; Young, M. S.

    2007-06-01

    A novel microcomputer-based ultrasonic distance measurement system is presented. This study proposes an efficient algorithm which combines both the amplitude modulation (AM) and the phase modulation (PM) of the pulse-echo technique. The proposed system can reduce error caused by inertia delay and amplitude attenuation effect when using the AM and PM envelope square wave form (APESW). The APESW ultrasonic driving wave form causes a phase inversion phenomenon in the relative wave form of the receiver. The phase inversion phenomenon sufficiently identifies the "measurement pulse" in the received wave forms, which can be used for accurate time-of-flight (TOF) measurement. In addition, combining a countertechnique to compute the phase shifts of the last cycle for TOF, the presented system can obtain distance resolution of 0.1% of the wavelength corresponding to the 40kHz frequency of the ultrasonic wave. The standard uncertainty of the proposed distance measurement system is found to be 0.2mm at a range of 50-500mm. The APESW signal generator and phase detector of this measuring system are designed on a complex programmable logic device, which is used to govern the TOF measurement and send the data to a personal computer for distance calibration and examination. The main advantages of this APESW system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  2. Large amplitude dynamics of micro-/nanomechanical resonators actuated with electrostatic pulses

    SciTech Connect

    Juillard, J.; Bonnoit, A.; Avignon, E.; Hentz, S.; Colinet, E.

    2010-01-15

    In the field of resonant nano-electro-mechanical system (NEMS) design, it is a common misconception that large-amplitude motion, and thus large signal-to-noise ratio, can only be achieved at the risk of oscillator instability. In the present paper, we show that very simple closed-loop control schemes can be used to achieve stable large-amplitude motion of a resonant structure even when jump resonance (caused by electrostatic softening or Duffing hardening) is present in its frequency response. We focus on the case of a resonant accelerometer sensing cell, consisting of a nonlinear clamped-clamped beam with electrostatic actuation and detection, maintained in an oscillation state with pulses of electrostatic force that are delivered whenever the detected signal (the position of the beam) crosses zero. We show that the proposed feedback scheme ensures the stability of the motion of the beam much beyond the critical Duffing amplitude and that, if the parameters of the beam are correctly chosen, one can achieve almost full-gap travel range without incurring electrostatic pull-in. These results are illustrated and validated with transient simulations of the nonlinear closed-loop system.

  3. Stochastic sensitivity analysis for timing and amplitude of pressure waves in the arterial system.

    PubMed

    Eck, V G; Feinberg, J; Langtangen, H P; Hellevik, L R

    2015-04-01

    In the field of computational hemodynamics, sensitivity quantification of pressure and flow wave dynamics has received little attention. This work presents a novel study of the sensitivity of pressure-wave timing and amplitude in the arterial system with respect to arterial stiffness. Arterial pressure and flow waves were simulated with a one-dimensional distributed wave propagation model for compliant arterial networks. Sensitivity analysis of this model was based on a generalized polynomial chaos expansion evaluated by a stochastic collocation method. First-order statistical sensitivity indices were formulated to assess the effect of arterial stiffening on timing and amplitude of the pressure wave and backward-propagating pressure wave in the ascending aorta, at the maximum pressure and inflection point in the systolic phase. Only the stiffness of aortic arteries was found to significantly influence timing and amplitude of the backward-propagating pressure wave, whereas other large arteries in the systemic tree showed marginal impact. Furthermore, the ascending aorta, aortic arch, thoracic aorta, and infrarenal abdominal aorta had the largest influence on amplitude, whereas only the thoracic aorta influenced timing. Our results showed that the non-intrusive polynomial chaos expansion is an efficient method to compute statistical sensitivity measures for wave propagation models. These sensitivities provide new knowledge in the relative importance of arterial stiffness at various locations in the arterial network. Moreover, they will significantly influence clinical data collection and effective composition of the arterial tree for in-silico clinical studies.

  4. Finite-amplitude pressure waves in the radial mode of a cylinder

    NASA Technical Reports Server (NTRS)

    Kubo, I.; Moore, F. K.

    1972-01-01

    A numerical study of finite-strength, isentropic pressure waves transverse to the axis of a circular cylinder was made for the radial resonant mode. The waves occur in a gas otherwise at rest, filling the cylinder. A method of characteristics was used for the numerical solution. For small but finite amplitudes, calculations indicate the existence of waves of permanent potential form. For larger amplitudes, a shock is indicated to occur. The critical value of the initial amplitude parameter in the power series is found to be 0.06 to 0.08, under various types of initial conditions.

  5. Thermal Non-equilibrium Revealed by Periodic Pulses of Random Amplitudes in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.

    2016-08-01

    We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods of several hours. Models of loops including stratified and quasi-steady heating predict the development of a state of thermal non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed by falling condensations at the apex. Based on Fourier and wavelet analysis, we demonstrate that the observed periodic signals are indeed not signatures of vibrational modes. Instead, superimposed on the power law expected from the stochastic background emission, the power spectra of the time series exhibit the discrete harmonics and continua expected from periodic trains of pulses of random amplitudes. These characteristics reinforce our earlier interpretation of these pulsations as being aborted TNE cycles.

  6. Magnetospheric ULF waves with an increasing amplitude induced by solar wind dynamic pressure changes: THEMIS observations

    NASA Astrophysics Data System (ADS)

    Shen, X.; Zong, Q.; Shi, Q.; Tian, A.; Sun, W.; Wang, Y.; Zhou, X.; Fu, S.; Angelopoulos, V.; Pu, Z.; Hartinger, M.

    2014-12-01

    We report the in situ observation of the magnetospheric ultra-low frequency (ULF) waves with an increasing amplitude induced by solar wind dynamic pressure changes. We examine the magnetospheric responses to solar wind dynamic pressure enhancements from April 1, 2007 to December 31, 2012, and find six ULF wave events with slow but clear wave amplitude increase. The amplitudes of ion velocities and magnetic field of these waves continuously increase by 2.1 ˜ 4.4 times during three to six wave cycles. We choose two typical cases to further investigate the cause of this wave amplitude increase. We find that the wave amplitude growth is mainly contributed by the toroidal mode wave. Interestingly, toroidal mode waves are standing, while compressional and poloidal mode waves are not. Thus, we suspect that the wave amplitude increase may be caused by the superposition of two wave sources. One wave source is the standing wave excited by the solar wind dynamic impulse. Additionally, fast mode compressional wave continuously shakes the magnetic field lines. The azimuthal component of this magnetic perturbation is the second wave source. Furthermore, the simple model calculation of superposing two waves match the observations pretty well.

  7. Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges

    SciTech Connect

    Huo, W. G.; Jian, S. J.; Yao, J.; Ding, Z. F.

    2014-05-15

    In pulsed RF atmospheric pressure glow discharges, the gas breakdown judged by the rapid drop in the amplitude of the pulsed RF voltage is no longer universally true. The steep increment of the plasma-absorbed RF power is proposed to determine the gas breakdown. The averaged plasma-absorbed RF power over a pulse period is used to evaluate effects of the preceding pulsed RF discharge on the breakdown voltage of the following one, finding that the breakdown voltage decreases with the increment in the averaged plasma-absorbed RF power under constant pulse duty ratio. Effects of the pulse off-time on the breakdown voltage and the breakdown delay time are also studied. The obtained dependence of the breakdown voltage on the pulse off-time is indicative of the transitional plasma diffusion processes in the afterglow. The breakdown voltage varies rapidly as the plasma diffuses fast in the region of moderate pulse off-time. The contribution of nitrogen atom recombination at the alumina surface is demonstrated in the prolonged memory effect on the breakdown delay time vs. the pulse off-time and experimentally validated by introducing a trace amount of nitrogen into argon at short and long pulse off-times.

  8. Ion Acceleration in a Solitary Wave by Laser Pulse with Ramping-up Amplitude

    NASA Astrophysics Data System (ADS)

    He, Min-Qing; Tripathi, Vipin; Liu, Chuan-Sheng; Shao, Xi; Liu, Tung-Chang; Su, Jao-Jang; Sheng, Zheng-Ming

    2012-10-01

    Recent work by Jung et al. demonstrated experimentally the acceleration of mono-energetic ion beam by solitary waves generated and maintained by laser light with ramping-up amplitude.footnotetextD. Jung, L. Yin, B.J. Albright, D.C. Gautier, R. H"orlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X.Q. Yan, K.J. Bowers, T. Tajima, J.C. Fern'andez, D. Habs, and B.M. Hegelich, Phys. Rev. Lett. 107,115002(2011). Theoretical model is developed in this work to study the formation of the solitary wave and effects of the radiation pressure force on a soliton in the accelerating plasma. 2D Particle-In-Cell (PIC) simulations are performed to compare and validate the theory. Differences in generating and maintaining solitary wave for laser with and without ramping-up amplitude are also investigated. We will also investigate effects of radiation pressure acceleration of plasma with near critical density.

  9. Maximizing terahertz pulse amplitude from low temperature gallium arsenide photo conductive semiconductor switch

    NASA Astrophysics Data System (ADS)

    Ray, Sampad

    An antenna radiates when a time rate of change of signal arrives at the structure from a generator, after travelling through a transmitting medium. THz radiation in a photoconductive semiconductor switches (PCSS) follows the same principles. Here the signal is produced by the photoconductive action, which travels through the bulk to the metallic contacts. In the simulation analysis, therefore, one needs to analyze the substrate with semiconductor code to characterize the generated pulse and then use Maxwell's equation solver for the antenna (contact) analysis. This is because of the unavailability of a comprehensive simulation code that can solve both Maxwell's and semiconductor equations in tandem. In this study, two different commercially available simulation codes were used to optimize the THZ radiation from a GaAs PCSS. Results show that the 50 X 50 microm PCSS material produces a central frequency of 1.75 Terahertz, and a pulse amplitude of approximately 0.22 A at an optimum bias voltage of 1100 Volts. The PCSS was illuminated for 350 fs with a 0.78 microm beam, 50 Mw/cm2 in intensity. The FWHM of the generated pulse 0.4 ps, and the rise time is 0.275 ps. In the antenna analysis, results show that the rectangular patch antenna had a maximum return loss (S11) of approximately -30 dB and had multiple resonant frequencies. The maximum S11 was achieved at 5.6845 THz. The directivity of the main lobe was found out to be 6.2 dB with an angular width of 36.9 degrees. The main lobe was directed at 148 degrees. The side lobes were found out to be -6.8 dB.

  10. Effect of heat-induced pain stimuli on pulse transit time and pulse wave amplitude in healthy volunteers.

    PubMed

    van Velzen, Marit H N; Loeve, Arjo J; Kortekaas, Minke C; Niehof, Sjoerd P; Mik, Egbert G; Stolker, Robert J

    2016-01-01

    Pain is commonly assessed subjectively by interpretations of patient behaviour and/or reports from patients. When this is impossible the availability of a quantitative objective pain assessment tool based on objective physiological parameters would greatly benefit clinical practice and research beside the standard self-report tests. Vasoconstriction is one of the physiological responses to pain. The aim of this study was to investigate whether pulse transit time (PTT) and pulse wave amplitude (PWA) decrease in response to this vasoconstriction when caused by heat-induced pain. The PTT and PWA were measured in healthy volunteers, on both index fingers using photoplethysmography and electrocardiography. Each subject received 3 heat-induced pain stimuli using a Temperature-Sensory Analyzer thermode block to apply a controlled, increasing temperature from 32.0 °C to 50.0 °C to the skin. After reaching 50.0 °C, the thermode was immediately cooled down to 32.0 °C. The study population was divided into 2 groups with a time-interval between the stimuli 20s or 60s. The results showed a significant (p  <  0.05) decrease of both PTT and PWA on the stimulated and contralateral side. Moreover, there was no significant difference between the stimulated and contralateral side. The time-interval of 20s was too short to allow PTT and PWA to return to baseline values and should exceed 40s in future studies. Heat-induced pain causes a decrease of PTT and PWA. Consequently, it is expected that, in the future, PTT and PWA may be applied as objective indicators of pain, either beside the standard self-report test, or when self-report testing is impossible.

  11. Investigation on the generation characteristic of pressure pulse wave signal during the measurement-while-drilling process

    NASA Astrophysics Data System (ADS)

    Changqing, Zhao; Kai, Liu; Tong, Zhao; Takei, Masahiro; Weian, Ren

    2014-04-01

    The mud-pulse logging instrument is an advanced measurement-while-drilling (MWD) tool and widely used by the industry in the world. In order to improve the signal transmission rate, ensure the accurate transmission of information and address the issue of the weak signal on the ground of oil and gas wells, the signal generator should send out the strong mud-pulse signals with the maximum amplitude. With the rotary valve pulse generator as the study object, the three-dimensional Reynolds NS equations and standard k - ɛ turbulent model were used as a mathematical model. The speed and pressure coupling calculation was done by simple algorithms to get the amplitudes of different rates of flow and axial clearances. Tests were done to verify the characteristics of the pressure signals. The pressure signal was captured by the standpiece pressure monitoring system. The study showed that the axial clearances grew bigger as the pressure wave amplitude value decreased and caused the weakening of the pulse signal. As the rate of flow got larger, the pressure wave amplitude would increase and the signal would be enhanced.

  12. The pulse amplitude variation with QPO frequency in SAX J1808.4-3658: Resonances with the accretion disk

    NASA Astrophysics Data System (ADS)

    Caliskan, Sirin; Alpar, Mehmet Ali; Sasmaz Mus, Sinem

    2016-07-01

    SAX J1808.4-3658 is an accreting millisecond pulsar with a spin period of 401 Hz. The pulsed amplitudes of this source vary with its kHz QPO frequencies (Bult & van der Klis 2015). The pulsed amplitude peaks at certain upper kHz QPO frequencies which we associate with boundary layer modes of the viscous accretion disk (Erkut et al. 2008). We model this as peaks in the energy dissipation rate at the accretion caps due to resonances between the accretion column and the driving modes of the boundary layer.

  13. Real-time single-shot measurement and correction of pulse phase and amplitude for ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Pestov, Dmitry; Ryabtsev, Anton; Rasskazov, Gennady; Lozovoy, Vadim V.; Dantus, Marcos

    2014-05-01

    The transition of femtosecond lasers from the laboratory to commercial applications requires real-time automated pulse compression, ensuring optimum performance without assistance. Single-shot phase measurements together with closed-loop optimization based on real-time multiphoton intrapulse interference phase scan are demonstrated. On-the-fly correction of amplitude, as well as second- and third-order phase distortions based on the real-time measurements, is accomplished by a pulse shaper.

  14. Short delays and low pulse amplitudes produce widespread activation in the target-distance processing area of auditory cortex of the mustached bat.

    PubMed

    Macías, Silvio; Hechavarría, Julio C

    2016-08-01

    While approaching an object, echolocating bats decrease the amplitude of their vocalizations. This behavior is known as "echo-level compensation." Here, the activation pattern of the cortical FM-FM (frequency modulated) area of the mustached bat is assessed by using acoustic stimuli that correspond to sonar signals and their echoes emitted during echo-level compensation behavior. Activation maps were calculated from the delay response areas of 86 cortical neurons, and these maps were used to explore the topography of cortical activation during echolocation and its relation to the bats' cortical "chronotopy." Chronotopy predicts short echo-delays to be represented by rostral auditory cortex neurons while caudal neurons represent long echo-delays. The results show that a chronotopic activation of the cortex is evident only at loud pulse amplitudes [80-90 dB sound pressure level (SPL)]. In response to fainter pulse levels (60-70 dB SPL), as those produced as the animals zoom-in on targets, chronotopic activation of the cortex becomes less clear because units throughout the FM-FM area start firing, especially in response to short echo-delays. The fact that cortical activity is more widespread in response to combinations of short echo-delays and faint pulse amplitudes could represent an adaptation that enhances cortical activity in the late stages of echo-level compensation. PMID:27586724

  15. Short delays and low pulse amplitudes produce widespread activation in the target-distance processing area of auditory cortex of the mustached bat.

    PubMed

    Macías, Silvio; Hechavarría, Julio C

    2016-08-01

    While approaching an object, echolocating bats decrease the amplitude of their vocalizations. This behavior is known as "echo-level compensation." Here, the activation pattern of the cortical FM-FM (frequency modulated) area of the mustached bat is assessed by using acoustic stimuli that correspond to sonar signals and their echoes emitted during echo-level compensation behavior. Activation maps were calculated from the delay response areas of 86 cortical neurons, and these maps were used to explore the topography of cortical activation during echolocation and its relation to the bats' cortical "chronotopy." Chronotopy predicts short echo-delays to be represented by rostral auditory cortex neurons while caudal neurons represent long echo-delays. The results show that a chronotopic activation of the cortex is evident only at loud pulse amplitudes [80-90 dB sound pressure level (SPL)]. In response to fainter pulse levels (60-70 dB SPL), as those produced as the animals zoom-in on targets, chronotopic activation of the cortex becomes less clear because units throughout the FM-FM area start firing, especially in response to short echo-delays. The fact that cortical activity is more widespread in response to combinations of short echo-delays and faint pulse amplitudes could represent an adaptation that enhances cortical activity in the late stages of echo-level compensation.

  16. Simultaneously propagating voltage and pressure pulses in lipid monolayers of pork brain and synthetic lipids

    NASA Astrophysics Data System (ADS)

    Griesbauer, J.; Bössinger, S.; Wixforth, A.; Schneider, M. F.

    2012-12-01

    Hydrated interfaces are ubiquitous in biology and appear on all length scales from ions and individual molecules to membranes and cellular networks. In vivo, they comprise a high degree of self-organization and complex entanglement, which limits their experimental accessibility by smearing out the individual phenomenology. The Langmuir technique, however, allows the examination of defined interfaces, the controllable thermodynamic state of which enables one to explore the proper state diagrams. Here we demonstrate that voltage and pressure pulses simultaneously propagate along monolayers comprised of either native pork brain or synthetic lipids. The excitation of pulses is conducted by the application of small droplets of acetic acid and monitored subsequently employing time-resolved Wilhelmy plate and Kelvin probe measurements. The isothermal state diagrams of the monolayers for both lateral pressure and surface potential are experimentally recorded, enabling us to predict dynamic voltage pulse amplitudes of 0.1-3 mV based on the assumption of static mechanoelectrical coupling. We show that the underlying physics for such propagating pulses is the same for synthetic and natural extracted (pork brain) lipids and that the measured propagation velocities and pulse amplitudes depend on the compressibility of the interface. Given the ubiquitous presence of hydrated interfaces in biology, our experimental findings seem to support a fundamentally new mechanism for the propagation of signals and communication pathways in biology (signaling), which is based neither on protein-protein or receptor-ligand interaction nor diffusion.

  17. Analysis of Sterilization Effect of Atmospheric Pressure Pulsed Plasma

    SciTech Connect

    Ekem, N.; Akan, T.; Pat, S.; Akgun, Y.; Kiremitci, A.; Musa, G.

    2007-04-23

    We have developed a new technology, the High Voltage Atmospheric Pressure Pulsed Plasma (HVAPPP), for bacteria killing. The aim of this paper is to present a simple device to generate plasma able to kill efficiently bacteria.

  18. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pressure and vacuum pulse test. 159.111 Section 159.111 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... vacuum pulse test. Liquid retention components of the device with manufacturer specified...

  19. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Pressure and vacuum pulse test. 159.111 Section 159.111 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... vacuum pulse test. Liquid retention components of the device with manufacturer specified...

  20. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Pressure and vacuum pulse test. 159.111 Section 159.111 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... vacuum pulse test. Liquid retention components of the device with manufacturer specified...

  1. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Pressure and vacuum pulse test. 159.111 Section 159.111 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... vacuum pulse test. Liquid retention components of the device with manufacturer specified...

  2. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Pressure and vacuum pulse test. 159.111 Section 159.111 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... vacuum pulse test. Liquid retention components of the device with manufacturer specified...

  3. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    NASA Astrophysics Data System (ADS)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  4. Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals.

    PubMed

    Acuña, Alonso M; Snellenburg, Joris J; Gwizdala, Michal; Kirilovsky, Diana; van Grondelle, Rienk; van Stokkum, Ivo H M

    2016-01-01

    Pulse-amplitude modulated (PAM) fluorometry is extensively used to characterize photosynthetic organisms on the slow time-scale (1-1000 s). The saturation pulse method allows determination of the quantum yields of maximal (F(M)) and minimal fluorescence (F(0)), parameters related to the activity of the photosynthetic apparatus. Also, when the sample undergoes a certain light treatment during the measurement, the fluorescence quantum yields of the unquenched and the quenched states can be determined. In the case of cyanobacteria, however, the recorded fluorescence does not exclusively stem from the chlorophyll a in photosystem II (PSII). The phycobilins, the pigments of the cyanobacterial light-harvesting complexes, the phycobilisomes (PB), also contribute to the PAM signal, and therefore, F(0) and F(M) are no longer related to PSII only. We present a functional model that takes into account the presence of several fluorescent species whose concentrations can be resolved provided their fluorescence quantum yields are known. Data analysis of PAM measurements on in vivo cells of our model organism Synechocystis PCC6803 is discussed. Three different components are found necessary to fit the data: uncoupled PB (PB(free)), PB-PSII complexes, and free PSI. The free PSII contribution was negligible. The PB(free) contribution substantially increased in the mutants that lack the core terminal emitter subunits allophycocyanin D or allophycocyanin F. A positive correlation was found between the amount of PB(free) and the rate constants describing the binding of the activated orange carotenoid protein to PB, responsible for non-photochemical quenching. PMID:25893897

  5. Photosynthesis assessment in microphytobenthos using conventional and imaging pulse amplitude modulation fluorometry.

    PubMed

    Vieira, Sónia; Ribeiro, Lourenço; Jesus, Bruno; Cartaxana, Paulo; da Silva, Jorge Marques

    2013-01-01

    Imaging pulse amplitude modulated (Imaging-PAM) fluorometry is a breakthrough in the study of spatial heterogeneity of photosynthetic assemblages. However, Imaging and conventional PAM uses a different technology, making comparisons between these techniques doubtful. Thereby, photosynthetic processes were comparatively assessed using conventional (Junior PAM and PAM 101) and Imaging-PAM on intertidal microphytobenthos (MPB; mud and sand) and on cork oak leaves. Lower values of α (initial slope of the rETR, relative photosynthetic electron transport rate) vs E (incident photosynthetic active radiation) curve), ETR(max) (maximum relative ETR), E(k) (light saturation parameter) and F(v)/F(m) (maximum quantum efficiency of photosystem II of dark-adapted samples) were obtained using the Imaging-PAM. The level of discrepancy between conventional and Imaging-PAM systems was dependent on the type of sample, being more pronounced for MPB muddy sediments. This may be explained by differences in the depth integration of the fluorescence signal related to the thickness of the photosynthetic layer and in the light attenuation coefficients of downwelling irradiance. An additional relevant parameter is the taxonomic composition of the MPB, as cyanobacteria present in sandy sediments rendered different results with red and blue excitation light fluorometers. These findings emphasize the caution needed when interpreting chlorophyll fluorescence data of MPB communities.

  6. Performance of differential amplitude pulse-position modulation with RZ coding for indoor optical wireless links

    NASA Astrophysics Data System (ADS)

    Sethakaset, Ubolthip; Gulliver, T. Aaron

    2005-02-01

    We investigate the performance of a differential amplitude pulse-position modulation with return-to-zero coding (DAPPM-RZ) over an indoor optical wireless channel. We compare the performance of DAPPM-RZ(A=2) with DAPPM(A=2), DPPM and DH-PIM. The result shows that, over a non-dispersive channel, DAPPM-RZ yields better power efficiency than DAPPM. It requires about 1.5 dB less transmit power. However, the bandwidth of DAPPM-RZ is double that of DAPPM. Compared to DPPM, the bandwidth of DAPPM-RZ is about the same as that of DPPM but DAPPM-RZ yields less power efficiency. When the number of bits/symbol(M) is above 3, the DAPPM-RZ is superior to DH-PIM_2 in terms of power efficiency but has less bandwidth efficiency. Over a dispersive channel, given the same value of M, DAPPM-RZ outperforms DPPM, DAPPM (without RZ) and DH-PIM2 when the normalized rms delay spread is high.

  7. Pulse pressure amplification in relation to body fatness

    PubMed Central

    Wykretowicz, Andrzej; Rutkowska, Agnieszka; Krauze, Tomasz; Przymuszala, Dagmara; Guzik, Przemyslaw; Marciniak, Ryszard; Wysocki, Henryk

    2012-01-01

    AIMS Arterial pressure transfer to the periphery is accompanied by pulse pressure amplification (PPA). Pulse pressure is influence by body fat. The purpose of the present study was to evaluate any possible inter-relation between body fatness and PPA in healthy subjects. METHODS Haemodynamic and wave reflection indices were estimated by pulse wave analysis. Body fat was measured by bio-impedance. RESULTS A total of 367 healthy volunteers (136 men and 231 women) was studied. Pulse pressure amplification correlated significantly with percentage of body fat (r = −0.53, P < 0.0001), age (r = −0.62, P < 0.0001), height (r = 0.43, P < 0.0001), heart rate (r = 0.28, P < 0.0001) and mean blood pressure (r = −0.29, P < 0.0001). The association of PPA with body fat was also significant in a multiple linear regression model. Age was an independent predictor of PPA and analysis of study subjects subdivided into two groups, those <50 years and those >50 years showed that body fatness correlated inversely and significantly with PPA in individuals both younger and older than 50 years (r = −0.44, P < 0.0001, r = −0.37, P < 0.0001 respectively). Augmentation pressure was also associated significantly with percentage of body fat in both subgroups (r = 0.48, P < 0.0001 and r = 0.49, P < 0.0001 respectively). CONCLUSIONS This study performed on healthy subjects showed that pulse pressure amplification is related to body fatness over a wide age range. Percentage body fat is significantly associated with augmentation pressure, a component of central pulse pressure. PMID:22008022

  8. Genome-wide linkage analysis for loci affecting pulse pressure: the Family Blood Pressure Program.

    PubMed

    Bielinski, Suzette J; Lynch, Amy I; Miller, Michael B; Weder, Alan; Cooper, Richard; Oberman, Albert; Chen, Yii-Der Ida; Turner, Stephen T; Fornage, Myriam; Province, Michael; Arnett, Donna K

    2005-12-01

    Pulse pressure, the difference between systolic and diastolic blood pressure, is an independent risk factor for cardiovascular disease. Increased pulse pressure reflects reduced compliance of arteries and is a marker of atherosclerosis. To locate genes that affect pulse pressure, a genome-wide linkage scan for quantitative trait loci influencing pulse pressure was performed using variance components methods as implemented in sequential oligogenic linkage analysis routines. The analysis sample included 10 798 participants in 3320 families who were recruited as part of the Family Blood Pressure Program and were phenotyped with an oscillometric blood pressure measurement device using a consistent protocol across centers. Pulse pressure was adjusted for the effects of sex, age, age2, age-by-sex interaction, age2-by-sex interaction, body mass index, and field center to remove sources of variation other than the genetic effects related to pulse pressure. Significant linkage was observed on chromosome 18 (logarithm of odds [LOD]=3.2) in a combined racial sample, chromosome 20 (LOD=4.4), and 17 (LOD=3.6) in Hispanics, chromosome 21 (LOD=4.3) in whites, chromosome 19 (LOD=3.1) in a combined sample of blacks and whites, and chromosome 7 (logarithm of odds [LOD]=3.1) in blacks from the GenNet Network. Our genome scan shows significant evidence for linkage for pulse pressure in multiple areas of the genome, supporting previous published linkage studies. The identification of these loci for pulse pressure and the apparent congruence with other blood pressure phenotypes provide increased support that these regions contain genes influencing blood pressure phenotypes.

  9. Alternative Approaches to Conventional Pressure-Pulse-Decay Permeametry

    NASA Astrophysics Data System (ADS)

    Hannon, M. J., Jr.

    2015-12-01

    Although pressure-pulse-decay permeametry has been in wide use for the past 50 years, its standard configuration and design have remained largely intact, with performance optimizations based largely on sample geometry and reservoir volumes. This study concentrates on new unidirectional flow scenarios which can be reduced to analytical models. It begins by describing slight modifications to the classical pulse-decay techniques involving flow along the axial direction of cylindrical core samples, followed by models for flow in the radial direction in cylindrical and spherical coordinate systems. Such strategies enable noticeably, in some cases dramatically, faster experimental measurements within lower permeability regimes than conventional pressure-pulse-decay techniques. These approaches could form baseline alternatives to the industry-standard pulse-decay variants in wide use for ultra-low permeability materials like shales and caprocks.

  10. Ozone formation in pulsed SDBD in a wide pressure range

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  11. Spatio-temporal characteristics of Trichel pulse at low pressure

    SciTech Connect

    He, Shoujie; Jing, Ha

    2014-01-15

    Trichel pulses are investigated using a needle-to-plane electrode geometry at low pressure. The evolution of current and voltage, the spatio-temporal discharge images of Trichel pulse are measured. The rising time and duration time in a pulse are about 10 μs and several tens of microseconds, respectively. One period of pulse can be divided into three stages: the stage preceding cathode breakdown, cathode glow formation, and discharge decaying process. Besides a cathode glow and a dark space, an anode glow is also observed. The emission spectra mainly originate from the C{sup 3}Π{sub u} → B{sup 3}Π{sub g} transition for nitrogen. In addition, the capacitances in parallel connected with the discharge cell have important influence on the pulsing frequency.

  12. Numerical simulation of pressure waves in the cochlea induced by a microwave pulse.

    PubMed

    Yitzhak, Nir M; Ruppin, Raphael; Hareuveny, Ronen

    2014-10-01

    The pressure waves developing at the cochlea by the irradiation of the body with a plane wave microwave pulse are obtained by numerical simulation, employing a two-step finite-difference time-domain (FDTD) algorithm. First, the specific absorption rate (SAR) distribution is obtained by solving the Maxwell equations on a FDTD grid. Second, the temperature rise due to this SAR distribution is used to formulate the thermoelastic equations of motion, which are discretized and solved by the FDTD method. The calculations are performed for anatomically based full body human models, as well as for a head model. The dependence of the pressure amplitude at the cochlea on the frequency, the direction of propagation, and the polarization of the incident electromagnetic radiation, as well as on the pulse width, was investigated.

  13. Piston cylinder cell for high pressure ultrasonic pulse echo measurements.

    PubMed

    Kepa, M W; Ridley, C J; Kamenev, K V; Huxley, A D

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2. PMID:27587156

  14. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    NASA Astrophysics Data System (ADS)

    Kepa, M. W.; Ridley, C. J.; Kamenev, K. V.; Huxley, A. D.

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  15. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    SciTech Connect

    TROYER, G.L.

    2000-08-25

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% {at} 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency.

  16. Influence of pressurization rate and pressure pulsing on the inactivation of Bacillus amyloliquefaciens spores during pressure-assisted thermal processing.

    PubMed

    Ratphitagsanti, Wannasawat; Ahn, Juhee; Balasubramaniam, V M; Yousef, Ahmed E

    2009-04-01

    Pressure-assisted thermal processing (PATP) is an emerging sterilization technology in which a combination of pressure (500 to 700 MPa) and temperature (90 to 120 degrees C) are used to inactivate bacterial spores. The objective of this study was to examine the role of pressurization rate and pressure pulsing in enhancing PATP lethality to the bacterial spore. Bacillus amyloliquefaciens TMW 2.479 spore suspensions were prepared in deionized water at three inoculum levels (1.1 x 10(9), 1.4 x 10(8), and 1.3 x 10(6) CFU/ml), treated at two pressurization rates (18.06 and 3.75 MPa/s), and held at 600 MPa and 105 degrees C for 0, 0.5, 1, 2, 3, and 5 min. Experiments were carried out using custom-fabricated, high-pressure microbial kinetic testing equipment. Single and double pulses with equivalent pressure-holding times (1 to 3 min) were investigated by using the spore suspension containing 1.4 x 10(8) CFU/ml. Spore survivors were enumerated by pour plating, using Trypticase soy agar after incubation at 32 degrees C for 2 days. During short pressure-holding times (< or = 2 min), PATP treatment with the slow pressurization rate provided enhanced spore reduction over that of the fast pressurization rate. However, these differences diminished with extended pressure-holding times. After a 5-min pressure-holding time, B. amyloliquefaciens population decreased about 6 log CFU/ml, regardless of pressurization rate and inoculum level. Double-pulse treatment enhanced PATP spore lethality by approximately 2.4 to 4 log CFU/ml, in comparison to single pulse for a given pressure-holding time. In conclusion, pressure pulsing considerably increases the efficacy of PATP treatment against bacterial spores. Contribution of pressurization rate to PATP spore lethality varies with duration of pressure holding.

  17. Influence of pressurization rate and pressure pulsing on the inactivation of Bacillus amyloliquefaciens spores during pressure-assisted thermal processing.

    PubMed

    Ratphitagsanti, Wannasawat; Ahn, Juhee; Balasubramaniam, V M; Yousef, Ahmed E

    2009-04-01

    Pressure-assisted thermal processing (PATP) is an emerging sterilization technology in which a combination of pressure (500 to 700 MPa) and temperature (90 to 120 degrees C) are used to inactivate bacterial spores. The objective of this study was to examine the role of pressurization rate and pressure pulsing in enhancing PATP lethality to the bacterial spore. Bacillus amyloliquefaciens TMW 2.479 spore suspensions were prepared in deionized water at three inoculum levels (1.1 x 10(9), 1.4 x 10(8), and 1.3 x 10(6) CFU/ml), treated at two pressurization rates (18.06 and 3.75 MPa/s), and held at 600 MPa and 105 degrees C for 0, 0.5, 1, 2, 3, and 5 min. Experiments were carried out using custom-fabricated, high-pressure microbial kinetic testing equipment. Single and double pulses with equivalent pressure-holding times (1 to 3 min) were investigated by using the spore suspension containing 1.4 x 10(8) CFU/ml. Spore survivors were enumerated by pour plating, using Trypticase soy agar after incubation at 32 degrees C for 2 days. During short pressure-holding times (< or = 2 min), PATP treatment with the slow pressurization rate provided enhanced spore reduction over that of the fast pressurization rate. However, these differences diminished with extended pressure-holding times. After a 5-min pressure-holding time, B. amyloliquefaciens population decreased about 6 log CFU/ml, regardless of pressurization rate and inoculum level. Double-pulse treatment enhanced PATP spore lethality by approximately 2.4 to 4 log CFU/ml, in comparison to single pulse for a given pressure-holding time. In conclusion, pressure pulsing considerably increases the efficacy of PATP treatment against bacterial spores. Contribution of pressurization rate to PATP spore lethality varies with duration of pressure holding. PMID:19435226

  18. Amplitude and polarization instability of picosecond light pulses exciting a semiconductor optical resonator.

    PubMed

    Markarov, V A; Pershin, S M; Podshivalov, A A; Zadoian, R S; Zheludev, N I

    1983-11-01

    The first results of our study of nonlinear shift, distortion of form, and destruction of picosecond light pulses interacting with a nonlinear Fabry-Perot resonator in a strongly nonstationary regime are reported. Polarization instability of the light pulse transmitted through a nonlinear resonator has been observed. PMID:19718182

  19. Determination of aortic pulse wave velocity from waveform decomposition of the central aortic pressure pulse.

    PubMed

    Qasem, Ahmed; Avolio, Alberto

    2008-02-01

    Aortic pulse wave velocity (PWV), calculated from pulse transit time (PTT) using 2 separate pulse recordings over a known distance, is a significant biomarker of cardiovascular risk. This study evaluates a novel method of determining PTT from waveform decomposition of central aortic pressure using a single pulse measurement. Aortic pressure was estimated from a transformed radial pulse and decomposed into forward and backward waves using a triangular flow wave. Pulse transit time was determined from cross-correlation of forward and backward waves. Pulse transit time, representing twice the PTT between 2 specific sites, was compared with independent measurements of carotid-femoral PTT in a cohort of 46 subjects (23 females; age 57+/-14 years). Linear regression between measured PTT (y; milliseconds) and calculated PTT (x; milliseconds) was y=1.05x-2.1 (r=0.67; P<0.001). This model was tested in a separate group of 44 subjects (21 females; age 55+/-14 years) by comparing measured carotid-femoral PWV (y; meters per second) and PWV calculated using the estimated value of PTT (eTR/2) and carotid femoral distance (x; meters per second; y=1.21x-2.5; r=0.82; P<0.001). Findings indicate that the time lag between the forward and backward waves obtained from the decomposition of aortic pressure wave can be used to determine PWV along the aortic trunk and shows good agreement with carotid-femoral PWV. This technique can be used as a noninvasive and nonintrusive method for measurement of aortic PWV using a single pressure recording.

  20. Augmentation pressure is influenced by ventricular contractility/relaxation dynamics: novel mechanism of reduction of pulse pressure by nitrates.

    PubMed

    Fok, Henry; Guilcher, Antoine; Li, Ye; Brett, Sally; Shah, Ajay; Clapp, Brian; Chowienczyk, Phil

    2014-05-01

    Augmentation pressure (AP), the increment in aortic pressure above its first systolic shoulder, is thought to be determined mainly by pressure wave reflection but could be influenced by ventricular ejection characteristics. We sought to determine the mechanism by which AP is selectively reduced by nitroglycerin (NTG). Simultaneous measurements of aortic pressure and flow were made at the time of cardiac catheterization in 30 subjects (11 women; age, 61±13 years [mean±SD]) to perform wave intensity analysis and calculate forward and backward components of AP generated by the ventricle and arterial tree, respectively. Measurements were made at baseline and after NTG given systemically (800 μg sublingually, n=20) and locally by intracoronary infusion (1 μg/min; n=10). Systemic NTG had no significant effect on first shoulder pressure but reduced augmentation (and central pulse pressure) by 12.8±3.1 mm Hg (P<0.0001). This resulted from a reduction in forward and backward wave components of AP by 7.0±2.4 and 5.8±1.3 mm Hg, respectively (each P<0.02). NTG had no significant effect on the ratio of amplitudes of either backward/forward waves or backward/forward compression wave energies, suggesting that effects on the backward wave were largely secondary to those on the forward wave. Time to the forward expansion wave was reduced (P<0.05). Intracoronary NTG decreased AP by 8.3±3.6 mm Hg (P<0.05) with no significant effect on the backward wave. NTG reduces AP and central pulse pressure by a mechanism that is, at least in part, independent of arterial reflections and relates to ventricular contraction/relaxation dynamics with enhanced myocardial relaxation. PMID:24516104

  1. Augmentation pressure is influenced by ventricular contractility/relaxation dynamics: novel mechanism of reduction of pulse pressure by nitrates.

    PubMed

    Fok, Henry; Guilcher, Antoine; Li, Ye; Brett, Sally; Shah, Ajay; Clapp, Brian; Chowienczyk, Phil

    2014-05-01

    Augmentation pressure (AP), the increment in aortic pressure above its first systolic shoulder, is thought to be determined mainly by pressure wave reflection but could be influenced by ventricular ejection characteristics. We sought to determine the mechanism by which AP is selectively reduced by nitroglycerin (NTG). Simultaneous measurements of aortic pressure and flow were made at the time of cardiac catheterization in 30 subjects (11 women; age, 61±13 years [mean±SD]) to perform wave intensity analysis and calculate forward and backward components of AP generated by the ventricle and arterial tree, respectively. Measurements were made at baseline and after NTG given systemically (800 μg sublingually, n=20) and locally by intracoronary infusion (1 μg/min; n=10). Systemic NTG had no significant effect on first shoulder pressure but reduced augmentation (and central pulse pressure) by 12.8±3.1 mm Hg (P<0.0001). This resulted from a reduction in forward and backward wave components of AP by 7.0±2.4 and 5.8±1.3 mm Hg, respectively (each P<0.02). NTG had no significant effect on the ratio of amplitudes of either backward/forward waves or backward/forward compression wave energies, suggesting that effects on the backward wave were largely secondary to those on the forward wave. Time to the forward expansion wave was reduced (P<0.05). Intracoronary NTG decreased AP by 8.3±3.6 mm Hg (P<0.05) with no significant effect on the backward wave. NTG reduces AP and central pulse pressure by a mechanism that is, at least in part, independent of arterial reflections and relates to ventricular contraction/relaxation dynamics with enhanced myocardial relaxation.

  2. Pressure pulse detection apparatus incorporating noise reduction feature

    SciTech Connect

    Claycomb, J.R.

    1980-09-23

    An improved apparatus is disclosed for use in a measuring while drilling apparatus which forms a pressure pulse promulgated from a downhole location upwardly through the drill string and column of mud therein. This apparatus includes a mud line section adapted to flow drilling mud in the mud flow line through an axial passage therein. The apparatus includes an encircling bladder which receives hydraulic oil under pressure to inflate to choke the passage. A pitot tube is focused downstream and thus does not intercept the mud flow from the pump and the noise which is created by pump operation. Mud pressure variations directed upstream from the measuring while drilling apparatus, however, are directed into the pitot tube. These pressure variations are coupled to a pressure signal transducer which forms an output signal of some type which is recorded. Pump noise is nulled to a minimum.

  3. Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2 kV/cm

    SciTech Connect

    Cliffe, M. J. Rodak, A.; Graham, D. M.; Jamison, S. P.

    2014-11-10

    We demonstrate the generation of near-single cycle longitudinally polarized terahertz radiation using a large-area radially biased photoconductive antenna with a longitudinal field amplitude in excess of 2 kV/cm. The 76 mm diameter antenna was photo-excited by a 0.5 mJ amplified near-infrared femtosecond laser system and biased with a voltage of up to 100 kV applied over concentric electrodes. Amplitudes for both the transverse and longitudinal field components of the source were measured using a calibrated electro-optic detection scheme. By tightly focusing the radiation emitted from the photoconductive antenna, we obtained a maximum longitudinal field amplitude of 2.22 kV/cm with an applied bias field of 38.5 kV/cm.

  4. Temperature and Pressure Dependence of Signal Amplitudes for Electrostriction Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2015-01-01

    The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].

  5. Comparison of discrete multi-tone and pulse amplitude modulation for beyond 100 Gbps short-reach application

    NASA Astrophysics Data System (ADS)

    Nishihara, Masato; Kai, Yutaka; Tanaka, Toshiki; Takahara, Tomoo; Li, Lei; Yan, Weizhen; Liu, Bo; Tao, Zhenning; Rasmussen, Jens C.

    2013-12-01

    Advanced multi-level modulation is an attractive modulation technique for beyond 100 Gbps short reach optical transmission system. Above all, discrete multi-tone (DMT) technique and pulse amplitude modulation (PAM) technique are the strong candidates. We compared the 100 Gbps transmission characteristics of DMT and PAM by simulation and experiment. The comparison was done by using same devices and only the digital signal processing was changed. We studied the transmission distance dependence for 0.5 to 40 km and the impact of the frequency responses of the optical devices. Finally we discuss the features of the both modulation techniques.

  6. Amplitude autocorrelation of femtosecond laser pulses using linear photogalvanic effect in sillenite crystals

    NASA Astrophysics Data System (ADS)

    Grachev, A. I.; Romashko, R. V.; Kulchin, Yu. N.; Golik, S. S.; Nippolainen, E.; Kamshilin, A. A.

    2012-06-01

    We demonstrate excitation of the linear photogalvanic current in a Bi12TiO20 crystal by two orthogonally polarized femtosecond laser pulses with detecting the electrical current via charge accumulation on the sample electrodes. Such a setup was used to implement an interferometric autocorrelation technique for characterization of ultrashort light pulses. Integration of the detected current in femtosecond time domain leads to vanishing of a bipolar component of the photogalvanic current which arises due to a pulse chirping. The advantage of the proposed technique is that it produces the electric field correlation function directly without the need for data processing using a compact, robust, and non-expensive detector in the form of a photoconductive cell of a non-centrosymmetric crystal.

  7. Impact of colored noise in pulse amplitude measurements: A time-domain approach using differintegrals

    NASA Astrophysics Data System (ADS)

    Regadío, Alberto; Tabero, Jesús; Sánchez-Prieto, Sebastián

    2016-03-01

    In particle detectors, pulse shaping is the process of changing the waveform of the pulses in order to maximize the signal to noise ratio. This shaping usually only takes into account white, pink (flicker) and red (Brownian) noise. In this paper, a generalization of noise indexes as a function to an arbitrary fβ noise type, where β is a real number, is presented. This generalization has been created using the differintegral operator, defined in Fractional Calculus. These formulas are used to calculate the Equivalent Noise Change (ENC) in detector particle systems.

  8. CAVITATION DAMAGE STUDY VIA A NOVEL REPETITIVE PRESSURE PULSE APPROACH

    SciTech Connect

    Wang, Jy-An John; Ren, Fei; Wang, Hong

    2010-01-01

    Cavitation damage can significantly affect system performance. Thus, there is great interest in characterizing cavitation damage and improving materials resistance to cavitation damage. In this paper, we present a novel methodology to simulate cavitation environment. A pulsed laser is utilized to induce optical breakdown in the cavitation media, with the emission of shock wave and the generation of bubbles. The pressure waves induced by the optical breakdown fluctuate/propagate within the media, which enables the cavitation to occur and to further develop cavitation damage at the solid boundary. Using the repetitive pulsed-pressure apparatus developed in the current study, cavitation damage in water media was verified on stainless steel and aluminum samples. Characteristic cavitation damages such as pitting and indentation are observed on sample surfaces using scanning electron microscopy.

  9. [Research of the EEMD method to pulse analysis of traditional Chinese medicine based on different amplitudes of the added white noise].

    PubMed

    Yan, Haixia; Qin, Kairong; Wang, Yiqin; Li, Fufeng; Run, Fengying; Hong, Yujian; Hao, Jiming

    2011-02-01

    The ensemble empirical mode decomposition (EEMD) can be used to overcome the mode mixing problem of empirical mode decomposition (EMD) effectively. The EEMD method and Hilbert-Huang Transform (HHT) can be used to analyze pulse signals of Traditional Chinese Medicine (TCM). The amplitudes of the added white noise were about 0.1 and 0.2 time standard deviation of the investigated signal respectively. The difference of average frequency and average energy of every mode between normal pulse, slippery pulse, wiry pulse and wiry-slippery pulse were demonstrated based on different amplitudes of the added white noise. The results showed that it is more in line with clinical practice when the amplitude of the added white noise is about 0.2 time standard deviation of the investigated signal.

  10. FEASIBILITY STUDY OF PRESSURE PULSING PIPELINE UNPLUGGING TECHNOLOGIES FOR HANFORD

    SciTech Connect

    Servin, M. A.; Garfield, J. S.; Golcar, G. R.

    2012-12-20

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging.

  11. Light pressure acceleration with frequency-tripled laser pulse

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Ji, Liangliang; Wang, Wenpeng; Zhao, Xueyan; Xu, Jiancai; Yu, Yahong; Yi, Longqing; Shi, Yin; Xu, Tongjun; Zhang, Lingang

    2014-08-15

    Light pressure acceleration of ions in the interaction of the frequency-tripled (3ω) laser pulse and foil target is studied, and a promising method to increase accelerated ion energy is shown. Results show that at a constant laser energy, much higher ion energy peak value is obtained for 3ω laser compared with that using the fundamental frequency laser. The effect of energy loss during frequency conversion on ion acceleration is considered, which may slightly decrease the acceleration effect.

  12. Effects of Biphasic Current Pulse Frequency, Amplitude, Duration and Interphase Gap on Eye Movement Responses to Prosthetic Electrical Stimulation of the Vestibular Nerve

    PubMed Central

    Davidovics, Natan S.; Fridman, Gene Y.; Chiang, Bryce; Della Santina, Charles C.

    2011-01-01

    An implantable prosthesis that stimulates vestibular nerve branches to restore sensation of head rotation and vision-stabilizing reflexes could benefit individuals disabled by bilateral loss of vestibular (inner ear balance) function. We developed a prosthesis that partly restores normal function in animals by delivering pulse frequency modulated (PFM) biphasic current pulses via electrodes implanted in semicircular canals. Because the optimal stimulus encoding strategy is not yet known, we investigated effects of varying biphasic current pulse frequency, amplitude, duration and interphase gap on vestibulo-ocular reflex (VOR) eye movements in chinchillas. Increasing pulse frequency increased response amplitude while maintaining a relatively constant axis of rotation. Increasing pulse amplitude (range 0–325 μA) also increased response amplitude but spuriously shifted eye movement axis, probably due to current spread beyond the target nerve. Shorter pulse durations (range 28–340 μs) required less charge to elicit a given response amplitude and caused less axis shift than longer durations. Varying interphase gap (range 25–175 μs) had no significant effect. While specific values reported herein depend on microanatomy and electrode location in each case, we conclude that PFM with short duration biphasic pulses should form the foundation for further optimization of stimulus encoding strategies for vestibular prostheses intended to restore sensation of head rotation. PMID:20813652

  13. Effects of pulse parameters on the atmospheric-pressure dielectric barrier discharges driven by the high-voltage pulses in Ar and N2

    NASA Astrophysics Data System (ADS)

    Pan, J.; Tan, Z. Y.; Wang, X. L.; Sha, C.; Nie, L. L.; Chen, X. X.

    2014-12-01

    In this work, the atmospheric-pressure dielectric barrier discharges in Ar and N2 excited by repetitive voltage pulses have been numerically studied using a 1D fluid model. The differences between the discharge characteristics for Ar and N2 have been presented when changing the parameters of the applied pulse voltage. In this work we present the following significant results. With an increase of the amplitude of the applied pulse voltage, the increase of the maximum discharge current density in Ar is evident, compared with N2; and the discharge mode changes from the weak atmospheric-pressure glow discharge (APGD) to the standard APGD for Ar, and from the atmospheric-pressure Townsend discharge to the APGD for N2. In addition, the increase of the averaged electron density in N2 is more evident than that in Ar, especially when the standard APGD occurs in N2. The increasing frequency leads to lower maximum discharge current density for Ar, however, the reverse is true for N2. With an increase of the pulse width of the applied pulse voltage, the averaged electron density and the maximum discharge current density change slightly in Ar, but they increase drastically in N2.

  14. Note: Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air

    SciTech Connect

    Tarasenko, V. F.; Rybka, D. V.; Burachenko, A. G.; Lomaev, M. I.; Balzovsky, E. V.

    2012-08-15

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be {approx}25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach {approx}25 ps too.

  15. Intracranial pressure pulse waveform correlates with aqueductal cerebrospinal fluid stroke volume.

    PubMed

    Hamilton, Robert; Baldwin, Kevin; Fuller, Jennifer; Vespa, Paul; Hu, Xiao; Bergsneider, Marvin

    2012-11-01

    This study identifies a novel relationship between cerebrospinal fluid (CSF) stroke volume through the cerebral aqueduct and the characteristic peaks of the intracranial pulse (ICP) waveform. ICP waveform analysis has become much more advanced in recent years; however, clinical practice remains restricted to mean ICP, mainly due to the lack of physiological understanding of the ICP waveform. Therefore, the present study set out to shed some light on the physiological meaning of ICP morphological metrics derived by the morphological clustering and analysis of continuous intracranial pulse (MOCAIP) algorithm by investigating their relationships with a well defined physiological variable, i.e., the stroke volume of CSF through the cerebral aqueduct. Seven patients received both overnight ICP monitoring along with a phase-contrast MRI (PC-MRI) of the cerebral aqueduct to quantify aqueductal stroke volume (ASV). Waveform morphological analysis of the ICP signal was performed by the MOCAIP algorithm. Following extraction of morphological metrics from the ICP signal, nine temporal ICP metrics and two amplitude-based metrics were compared with the ASV via Spearman's rank correlation. Of the nine temporal metrics correlated with the ASV, only the width of the P2 region (ICP-Wi2) reached significance. Furthermore, both ICP pulse pressure amplitude and mean ICP did not reach significance. In this study, we showed the width of the second peak (ICP-Wi2) of an ICP pulse wave is positively related to the volume of CSF movement through the cerebral aqueduct. This finding is an initial step in bridging the gap between ICP waveform morphology research and clinical practice.

  16. Evaluation of the amperex 56 TVP photomultiplier. [characteristics: photoelectron time spread, anode pulse amplitude and photocathode sensing area

    NASA Technical Reports Server (NTRS)

    Lo, C. C.; Leskovar, B.

    1976-01-01

    Characteristics were measured for the Amperex 56 TVP 42 mm-diameter photomultiplier. Some typical photomultiplier characteristics-such as gain, dark current, transit and rise times-are compared with data provided. Photomultiplier characteristics generally not available such as the single photoelectron time spread, the relative collection efficiency, the relative anode pulse amplitude as a function of the voltage between the photocathode and focusing electrode, and the position of the photocathode sensing area were measured and are discussed for two 56 TVP's. The single photoelectron time spread, the relative collection efficiency, and the transit time difference as a function of the voltage between photocathode and focusing electrode were also measured and are discussed, particularly with respect to the optimization of photomultiplier operating conditions for timing applications.

  17. Fully programmable two-dimensional pulse shaper for broadband line-by-line amplitude and phase control.

    PubMed

    Metcalf, Andrew J; Torres-Company, Victor; Supradeepa, V R; Leaird, Daniel E; Weiner, Andrew M

    2013-11-18

    We introduce a fully programmable two-dimensional (2D) pulse shaper, able to simultaneously control the amplitude and phase of very fine spectral components over a broad bandwidth. This is achieved by aligning two types of spectral dispersers in a cross dispersion setup: a virtually imaged phased array for accessing fine resolution and a transmission grating for achieving broad bandwidth. We take advantage of the resultant 2D dispersion profile as well as introduce programmability by adding a 2D liquid crystal on silicon spatial light modulator at the masking plane. Our shaper has a resolution of ~3 GHz operating over the entire 'C' band of >5.8 THz. Experimental evidence is provided that highlights the full programmability, fine spectral control, and broad bandwidth operation (limited currently by the bandwidth of the input light). We also show line-by-line manipulation of record 836 comb lines over the C-band. PMID:24514316

  18. Electron Heating in Pulsed Atmospheric Pressure Glow Discharges

    NASA Astrophysics Data System (ADS)

    Stark, Robert H.; Leipold, Frank; Jiang, Chunqi; Merhi, Hisham; Schoenbach, Karl H.

    2000-10-01

    Atmospheric pressure glow discharges in air and noble gases have been operated by using microhollow cathode discharges as plasma cathodes [1]. In these discharges the electron energy distribution is determined by the value of the reduced electric field (E/N). Pulsing the discharges causes the electron energy distribution to shift into an energy range where the ionization rate increases strongly. In order to study this effect, a 10 ns high voltage pulse was applied to a dc glow discharge in atmospheric air. Electrical measurements of the temporal development of current and voltage and optical measurements of the integral emission intensity during the pulse and in the afterglow of the discharge have shown an increase in electron life time from 200 ns at 10 kV/cm to approximately 1.6 μ at 30 kV/cm. The measured effect can be used to reduce the power consumption of glow discharges and to induce and enhance certain plasma processes. [1] Robert H. Stark and Karl H. Schoenbach, Appl. Phys. Lett., 74, 3770 (1999) This work was funded by the Air Force Office of Scientific Research (AFOSR).

  19. Effect of pulse frequency and amplitude of D-Trp6-luteinizing hormone-releasing hormone on the pulsatile secretion of prolactin and LH.

    PubMed

    Rodriguez, T; Bordiu, E; Rubio, J A; Duran, A; Charro, A L

    1993-09-01

    This work analyzes the effect of the pulse amplitude and frequency of a potent LHRH analog, D-Trp6-LHRH, in a perfusion system of isolated rat pituitary cells. To this purpose, we studied the LH and PRL secretion in different conditions: basal secretion, secretion after increasing concentrations of D-Trp6-LHRL (0.001, 0.01, 0.1 and 1 nM) secretion in function of the pulses frequency (2,3, and 4 pulses per h) and amplitude (0.1, 1 and 10 nM). The principal findings were: 1. The basal LH and PRL secretions was pulsatile; 2. The stimulation of LH by the analog was not dose-dependent; 3. When more than 2 pulses per h were administered, a rapid desensitization of gonadotroph to release LH (at 20-30 min) occurred; 4. There was a loss of pulsatility of PRL secretion with an increase in the pulse frequency and amplitude of the D-Trp6-LHRH, which was produced parallelly to the desensitization of the gonadotroph to release LH. In summary, these findings suggest that a rapid loss of pulsatility of the PRL when the D-Trp6-LHRH pulse frequency and amplitude is increased might be due to the early desensitization of the gonadotroph to the analog.

  20. Relativistic electron accelerations associated with the interplanetary pressure pulse

    NASA Astrophysics Data System (ADS)

    Miyoshi, Yoshizumi; Saito, Shinji; Matsumoto, Yosuke; Hayashi, Masahiro; Amano, Takanobu; Seki, Kanako

    2016-04-01

    The radiation belt electron fluxes are highly variable, and various time scales for the flux enhancements are observed. The rapid flux enhancements of the outer belt electrons have been observed associated with the solar wind pressure pulse. In order to investigate such rapid flux enhancements, we conduct the code-coupling simulations of GEMSIS-RB test particle simulation [Saito et al., 2010] and GEMSIS-GM global MHD simulation [Matsumoto et al., 2010]. The GEMSIS-RB simulation calculates the 3-dimentional guiding-center motion of a number of test particles in the electric/magnetic fields provided from the GEMSIS-GM. After the arrival of the pressure pulse, the outer belt electrons in the dayside moves inward due to the drift resonance with inductive electric fields of the fast mode waves. Some of electrons are strongly accelerated within a few ten minutes and spiral patterns of drifted electrons can be observed. We may discuss the possibility to identify such selected acceleration of relativistic electrons by Van Allen Probes and upcoming ERG satellite.

  1. Relationship between stroke volume and pulse pressure during blood volume perturbation: a mathematical analysis.

    PubMed

    Bighamian, Ramin; Hahn, Jin-Oh

    2014-01-01

    Arterial pulse pressure has been widely used as surrogate of stroke volume, for example, in the guidance of fluid therapy. However, recent experimental investigations suggest that arterial pulse pressure is not linearly proportional to stroke volume. However, mechanisms underlying the relation between the two have not been clearly understood. The goal of this study was to elucidate how arterial pulse pressure and stroke volume respond to a perturbation in the left ventricular blood volume based on a systematic mathematical analysis. Both our mathematical analysis and experimental data showed that the relative change in arterial pulse pressure due to a left ventricular blood volume perturbation was consistently smaller than the corresponding relative change in stroke volume, due to the nonlinear left ventricular pressure-volume relation during diastole that reduces the sensitivity of arterial pulse pressure to perturbations in the left ventricular blood volume. Therefore, arterial pulse pressure must be used with care when used as surrogate of stroke volume in guiding fluid therapy.

  2. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    NASA Astrophysics Data System (ADS)

    Krastelev, E. G.; Sedin, A. A.; Tugushev, V. I.

    2015-12-01

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80-90 ns, and a pulse repetition rate of up to 16 Hz.

  3. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    SciTech Connect

    Krastelev, E. G. Sedin, A. A.; Tugushev, V. I.

    2015-12-15

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.

  4. Central Pulse Pressure in Chronic Kidney Disease: A CRIC Ancillary Study

    PubMed Central

    Townsend, Raymond R.; Chirinos, Julio A.; Parsa, Afshin; Weir, Matthew A.; Sozio, Stephen M.; Lash, James P.; Chen, Jing; Steigerwalt, Susan P.; Go, Alan S.; Hsu, Chi-yuan; Rafey, Mohammed; Wright, Jackson T.; Duckworth, Mark J.; Gadegbeku, Crystal A.; Joffe, Marshall P.

    2010-01-01

    Central pulse pressure can be non-invasively derived using the radial artery tonometric methods. Knowledge of central pressure profiles has predicted cardiovascular morbidity and mortality in several populations of patients, particularly those with known coronary artery disease and those receiving dialysis. Few data exist characterizing central pressure profiles in patients with mild-moderate chronic kidney disease who are not on dialysis. We measured central pulse pressure cross-sectionally in 2531 participants in the Chronic Renal Insufficiency Cohort study to determine correlates of the magnitude of central pulse pressure in the setting of chronic kidney disease. Tertiles of central pulse pressure (CPP) were < 36 mmHg, 36–51 mmHg and > 51 mmHg with an overall mean (± S.D.) of 46 ± 19 mmHg. Multivariable regression identified the following independent correlates of central pulse pressure: age, gender, diabetes mellitus, heart rate (negatively correlated), glycosylated hemoglobin, hemoglobin, glucose and PTH concentrations. Additional adjustment for brachial mean arterial pressure and brachial pulse pressure showed associations for age, gender, diabetes, weight and heart rate. Discrete intervals of brachial pulse pressure stratification showed substantial overlap within the associated central pulse pressure values. The large size of this unique chronic kidney disease cohort provides an ideal situation to study the role of brachial and central pressure measurements in kidney disease progression and cardiovascular disease incidence. PMID:20660819

  5. Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells

    PubMed Central

    Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.

    2014-01-01

    The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction. PMID:24458018

  6. Pulsed microwave discharge at atmospheric pressure for NOx decomposition

    NASA Astrophysics Data System (ADS)

    Baeva, M.; Gier, H.; Pott, A.; Uhlenbusch, J.; Höschele, J.; Steinwandel, J.

    2002-02-01

    A 3.0 GHz pulsed microwave source operated at atmospheric pressure with a pulse power of 1.4 MW, a maximum repetition rate of 40 Hz, and a pulse length of 3.5 µs is experimentally studied with respect to the ability to remove NOx from synthetic exhaust gases. Experiments in gas mixtures containing N2/O2/NO with typically 500 ppm NO are carried out. The discharge is embedded in a high-Q microwave resonator, which provides a reliable plasma ignition. Vortex flow is applied to the exhaust gas to improve gas treatment. Concentration measurements by Fourier transform infrared spectroscopy confirm an NOx reduction of more than 90% in the case of N2/NO mixtures. The admixture of oxygen lowers the reductive potential of the reactor, but NOx reduction can still be observed up to 9% O2 concentration. Coherent anti-Stokes Raman scattering technique is applied to measure the vibrational and rotational temperature of N2. Gas temperatures of about 400 K are found, whilst the vibrational temperature is 3000-3500 K in pure N2. The vibrational temperature drops to 1500 K when O2 and/or NO are present. The randomly distributed relative frequency of occurrence of selected breakdown field intensities is measured by a calibrated, short linear-antenna. The breakdown field strength in pure N2 amounts to 2.2×106 V m-1, a value that is reproducible within 2%. In the case of O2 and/or NO admixture, the frequency distribution of the breakdown field strength scatters more and extends over a range from 3 to 8×106 V m-1.

  7. Neural network burst pressure prediction in impact damaged Kevlar/epoxy bottles from acoustic emission amplitude data

    SciTech Connect

    Walker, J.L.; Workman, G.L.; Russell, S.S.

    1994-12-31

    Acoustic emission (AE) signal analysis has been used to measure the effect of impact damage on the burst pressure of 5.75 inch diameter filament wound Kevlar/epoxy pressure vessels. A calibrated dead weight drop fixture, featuring both sharp and blunt hemispherical impact tups, generated impact damages with energies up to twenty ft-lb{sub f} in the mid hoop region of each vessel. Burst pressures were obtained by hydrostatically testing twenty-seven damaged and undamaged bottles, eleven of which were filled with inert propellant to simulate a rocket motor. Burst pressure prediction models were developed by correlating the differential AE amplitude distributions, Generated during the first pressure ramp to 25% of the expected burst pressure for the undamaged vessels, to known burst pressures using back propagation neural networks. Independent networks were created for the inert propellant filled vessels and the unfilled vessels using a small subset of each during the training phases. The remaining bottles served as the test sets. The eleven filled vessels had an average prediction error of 5.6%, while the unfilled bottles averaged 5.4%. Both of these results were within the 95% prediction interval, but a portion of the vessel burst pressure errors were greater than the {+-}5% worst case error obtained in previous work. in conclusion, the AE amplitude distribution data collected at low proof loads provided a suitable input for neural network burst pressure prediction in damaged and undamaged Kevlar/epoxy bottles. This included pressure vessels both with and without propellant backing. Work is ongoing to decrease the magnitude of the prediction error through network restructuring.

  8. Pulsed, atmospheric pressure plasma source for emission spectrometry

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  9. Surface pressure distributions on a delta wing undergoing large amplitude pitching oscillations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, Scott A.

    1989-01-01

    Wind tunnel experiments were performed on a 70 deg sweep delta wing to determine the effect of a sinusoidal pitching motion on the pressure field on the suction side of the wing. Twelve pressure taps were placed from 35 to 90 percent of the chord, at 60 percent of the local semi-span. Pressure coefficients were measured as a function of Reynolds number and pitch rate. The pressure coefficient was seen to vary at approximately the same frequency as the pitching frequency. The relative pressure variation at each chord location was comparable for each case. The average pressure distribution through each periodic motion was near the static distribution for the average angle of attack. Upon comparing the upstroke and downstroke pressures for a specific angle of attack, the downstroke pressures were slightly larger. Vortex breakdown was seen to have the most significant effect at the 40 to 45 percent chord location, where a decrease in pressure was apparent.

  10. [Pulse pressure in the therapeutic management of hypertension?].

    PubMed

    Scholze, Jürgen

    2004-05-01

    Data from the Framingham and several other studies have demonstrated a relatively consistent increase of systolic blood pressure over lifetime but a decrease of diastolic blood pressure after the age of 50-60 years-resulting in an increase of pulse pressure (PP). Epidemiologic studies in the past 10-15 years have stressed the importance of PP as an independent risk factor for cardiovascular morbidity and mortality, especially myocardial infarction and congestive heart failure.A wide clinic PP (60-65 mmHg) has been shown to be a marker of increased arterial stiffness and an elevated cardiovascular morbidity. PP is determined by combined hemodynamic cardiac (ventricular ejection) and arterial factors, like arterial stiffness as well as the timing and intensity of wave reflections. Recent careful measurements have suggested that PP is transmitted much deeper into the microcirculation, which is strongly influenced by aging, hypertension, diabetes, and renal insufficiency (endothelial dysfunction, eutrophic and hypertrophic remodeling, progressive loss of microvessels). Antihypertensive drugs may improve vascular compliance and the alterations of microvascular architecture by reducing blood pressure, relaxing vascular smooth muscle, or promoting long-term effects on extracellular matrix, collagen, vascular smooth muscle, and cardiomyocyte growth and remodeling.Diuretics, beta blockers, long-acting calcium channel blockers, angiotensin-converting enzyme (ACE) inhibitors and angiotensin I (AT(1)) receptor antagonists were critically discussed in relation to their influence on vascular compliance, endothelial dysfunction, the remodeling process, PP, and cardiovascular morbidity and mortality. The vascular protective action of some (especially AT(1) antagonists, ACE inhibitors, calcium channel blockers) but not all (beta blockers) may contribute to improve the outcome of hypertensive patients, although this is presently unproven.

  11. Impact of body tilt on the central aortic pressure pulse.

    PubMed

    Rotaru, Corina; Liaudet, Lucas; Waeber, Bernard; Feihl, François

    2015-04-01

    The present work was undertaken to investigate, in young healthy volunteers, the relationships between the forward propagation times of arterial pressure waves and the timing of reflected waves observable on the aortic pulse, in the course of rapid changes in body position. 20 young healthy subjects, 10 men, and 10 women, were examined on a tilt table at two different tilt angles, -10° (Head-down) and + 45° (Head-up). In each position, carotid-femoral (Tcf) and carotid-tibial forward propagation times (Tct) were measured with the Complior device. In each position also, the central aortic pressure pulse was recorded with radial tonometry, using the SphygmoCor device and a generalized transfer function, so as to evaluate the timing of reflected waves reaching the aorta in systole (onset of systolic reflected wave, sT1r) and diastole (mean transit time of diastolic reflected wave, dMTT). The position shift from Head-up to Head-down caused a massive increase in both Tct (women from 130 ± 10 to 185 ± 18 msec P < 0.001, men from 136 ± 9 to 204 ± 18 msec P < 0.001) and dMTT (women from 364 ± 35 to 499 ± 33 msec P < 0.001, men from 406 ± 22 to 553 ± 21 msec P < 0.001). Mixed model regression showed that the changes in Tct and dMTT observed between Head-up and Head-down were tightly coupled (regression coefficient 2.1, 95% confidence interval 1.9-2.3, P < 0.001). These results strongly suggest that the diastolic waves observed on central aortic pulses reconstructed from radial tonometric correspond at least in part to reflections generated in the lower limbs.

  12. Impact of body tilt on the central aortic pressure pulse

    PubMed Central

    Rotaru, Corina; Liaudet, Lucas; Waeber, Bernard; Feihl, François

    2015-01-01

    The present work was undertaken to investigate, in young healthy volunteers, the relationships between the forward propagation times of arterial pressure waves and the timing of reflected waves observable on the aortic pulse, in the course of rapid changes in body position. 20 young healthy subjects, 10 men, and 10 women, were examined on a tilt table at two different tilt angles, −10° (Head-down) and + 45° (Head-up). In each position, carotid-femoral (Tcf) and carotid-tibial forward propagation times (Tct) were measured with the Complior device. In each position also, the central aortic pressure pulse was recorded with radial tonometry, using the SphygmoCor device and a generalized transfer function, so as to evaluate the timing of reflected waves reaching the aorta in systole (onset of systolic reflected wave, sT1r) and diastole (mean transit time of diastolic reflected wave, dMTT). The position shift from Head-up to Head-down caused a massive increase in both Tct (women from 130 ± 10 to 185 ± 18 msec P < 0.001, men from 136 ± 9 to 204 ± 18 msec P < 0.001) and dMTT (women from 364 ± 35 to 499 ± 33 msec P < 0.001, men from 406 ± 22 to 553 ± 21 msec P < 0.001). Mixed model regression showed that the changes in Tct and dMTT observed between Head-up and Head-down were tightly coupled (regression coefficient 2.1, 95% confidence interval 1.9–2.3, P < 0.001). These results strongly suggest that the diastolic waves observed on central aortic pulses reconstructed from radial tonometric correspond at least in part to reflections generated in the lower limbs. PMID:25862096

  13. Impact of body tilt on the central aortic pressure pulse.

    PubMed

    Rotaru, Corina; Liaudet, Lucas; Waeber, Bernard; Feihl, François

    2015-04-01

    The present work was undertaken to investigate, in young healthy volunteers, the relationships between the forward propagation times of arterial pressure waves and the timing of reflected waves observable on the aortic pulse, in the course of rapid changes in body position. 20 young healthy subjects, 10 men, and 10 women, were examined on a tilt table at two different tilt angles, -10° (Head-down) and + 45° (Head-up). In each position, carotid-femoral (Tcf) and carotid-tibial forward propagation times (Tct) were measured with the Complior device. In each position also, the central aortic pressure pulse was recorded with radial tonometry, using the SphygmoCor device and a generalized transfer function, so as to evaluate the timing of reflected waves reaching the aorta in systole (onset of systolic reflected wave, sT1r) and diastole (mean transit time of diastolic reflected wave, dMTT). The position shift from Head-up to Head-down caused a massive increase in both Tct (women from 130 ± 10 to 185 ± 18 msec P < 0.001, men from 136 ± 9 to 204 ± 18 msec P < 0.001) and dMTT (women from 364 ± 35 to 499 ± 33 msec P < 0.001, men from 406 ± 22 to 553 ± 21 msec P < 0.001). Mixed model regression showed that the changes in Tct and dMTT observed between Head-up and Head-down were tightly coupled (regression coefficient 2.1, 95% confidence interval 1.9-2.3, P < 0.001). These results strongly suggest that the diastolic waves observed on central aortic pulses reconstructed from radial tonometric correspond at least in part to reflections generated in the lower limbs. PMID:25862096

  14. PULSE AMPLITUDE DEPENDS ON kHz QPO FREQUENCY IN THE ACCRETING MILLISECOND PULSAR SAX J1808.4-3658

    SciTech Connect

    Bult, Peter; Van der Klis, Michiel

    2015-01-10

    We study the relation between the 300-700 Hz upper kHz quasi-periodic oscillation (QPO) and the 401 Hz coherent pulsations across all outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658 observed with the Rossi X-ray Timing Explorer. We find that the pulse amplitude systematically changes by a factor of ∼2 when the upper kHz QPO frequency passes through 401 Hz: it halves when the QPO moves to above the spin frequency and doubles again on the way back. This establishes for the first time the existence of a direct effect of kHz QPOs on the millisecond pulsations and provides a new clue to the origin of the upper kHz QPO. We discuss several scenarios and conclude that while more complex explanations can not formally be excluded, our result strongly suggests that the QPO is produced by azimuthal motion at the inner edge of the accretion disk, most likely orbital motion. Depending on whether this azimuthal motion is faster or slower than the spin, the plasma then interacts differently with the neutron-star magnetic field. The most straightforward interpretation involves magnetospheric centrifugal inhibition of the accretion flow that sets in when the upper kHz QPO becomes slower than the spin.

  15. Arsenic toxicity in the water weed Wolffia arrhiza measured using Pulse Amplitude Modulation Fluorometry (PAM) measurements of photosynthesis.

    PubMed

    Ritchie, Raymond J; Mekjinda, Nutsara

    2016-10-01

    Accumulation of arsenic in plants is a serious South-east Asian environmental problem. Photosynthesis in the small aquatic angiosperm Wolffia arrhiza is very sensitive to arsenic toxicity, particularly in water below pH 7 where arsenite (As (OH)3) (AsIII) is the dominant form; at pH >7 AsO4(2-) (As(V) predominates). A blue-diode PAM (Pulse Amplitude Fluorometer) machine was used to monitor photosynthesis in Wolffia. Maximum gross photosynthesis (Pgmax) and not maximum yield (Ymax) is the most reliable indicator of arsenic toxicity. The toxicity of arsenite As(III) and arsenate (H2AsO4(2-)) As(V) vary with pH. As(V) was less toxic than As(III) at both pH 5 and pH 8 but both forms of arsenic were toxic (>90% inhibition) at below 0.1molm(-3) when incubated in arsenic for 24h. Arsenite toxicity was apparent after 1h based on Pgmax and gradually increased over 7h but there was no apparent effect on Ymax or photosynthetic efficiency (α0). PMID:27318559

  16. Pulsed particle beam high pressure/shock research in India

    NASA Astrophysics Data System (ADS)

    Shyam, Anurag; Shukla, Rohit

    2012-07-01

    We have two major facilities for particle beam driven shock wave/high pressure generation. One being AMBA and the other being 1.2MJ capacitor bank RUDRA. Apparatus for Mega-Ampere Beam Application which is known as AMBA is now with India and the experiments are being planned from the facility for the shock wave and high pressure studies using the AMBA for intense light-ion beam generation and then bombarding them on a flyer target. To enhance the AMBA machine to double the output current is also under consideration. AMBA is a pulsed power source which delivers 50kJ of energy in 50ns with 1.7 MV minimum peak voltages maintained as an average of various shots in the case of positive polarity output in a suitable ion-diode. The output impedance of the AMBA machine is 2.25ohms and hence it is a 1.5 TW machine. With peak power densities up to ~1TW/cm2, and proton ranges in condensed matter of 10 to 20 μm, specific energy depositions of several MJ/g at deposition rates of the order of 100 TW/g are obtained. This way the AMBA system can be used as a shock wave generator in both, direct drive and impact experiments. We also have 1.2MJ capacitor bank capable of delivering 3.6MA peak current at 44kV charging voltage to be used for Magnetized target fusion based on z-pinch regime of target material compression. The related diagnostics for the system, which are currently being developed, are mentioned in the present paper. Both the systems and the high pressure experiments to be conducted are described in the paper. A brief detail on the plasma focus devices, which also produce shock waves using particle beams, is also presented in the paper.

  17. Double pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: interrelationship of gate delay, pulse energies, interpulse delay, and pressure

    SciTech Connect

    Michel, Anna P. M.; Chave, Alan D

    2008-11-01

    Laser-induced breakdown spectroscopy (LIBS) has been identified as an analytical chemistry technique suitable for field use. We use double pulse LIBS to detect five analytes (sodium, manganese, calcium, magnesium, and potassium) that are of key importance in understanding the chemistry of deep ocean hydrothermal vent fluids as well as mixtures of vent fluids and seawater. The high pressure aqueous environment of the deep ocean is simulated in the laboratory, and the key double pulse experimental parameters (laser pulse energies, gate delay time, and interpulse delay time) are studied at pressures up to 2.76x10{sup 7} Pa. Each element is found to have a unique optimal set of parameters for detection. For all pressures and energies, a short ({<=}100 ns) gate delay is necessary. As pressure increases, a shorter interpulse delay is needed and the double pulse conditions effectively become single pulse for both the 1.38x10{sup 7} Pa and the 2.76x10{sup 7} Pa conditions tested. Calibration curves reveal the limits of detection of the elements (5000 ppm Mg, 500 ppm K, 500 ppm Ca, 1000 ppm Mn, and 50 ppm Na) in aqueous solutions at 2.76x10{sup 7} Pa for the experimental setup used. When compared to our previous single pulse LIBS work for Ca, Mn, and Na, the use of double pulse LIBS for analyte detection in high pressure aqueous solutions did not improve the limits of detection.

  18. Non-contact acoustic tests based on nanosecond laser ablation: Generation of a pulse sound source with a small amplitude

    NASA Astrophysics Data System (ADS)

    Hosoya, Naoki; Kajiwara, Itsuro; Inoue, Tatsuo; Umenai, Koh

    2014-09-01

    A method to generate a pulse sound source for acoustic tests based on nanosecond laser ablation with a plasma plume is discussed. Irradiating a solid surface with a laser beam expands a high-temperature plasma plume composed of free electrons, ionized atoms, etc. at a high velocity throughout ambient air. The shockwave generated by the plasma plume becomes the pulse sound source. A laser ablation sound source has two features. Because laser ablation is induced when the laser fluence reaches 1012-1014 W/m2, which is less than that for laser-induced breakdown (1015 W/m2), laser ablation can generate a lower sound pressure, and the sound source has a hemispherical radiation pattern on the surface where laser ablation is generated. Additionally, another feature is that laser-induced breakdown sound sources can fluctuate, whereas laser ablation sound sources do not because laser ablation is produced at a laser beam-irradiation point. We validate this laser ablation method for acoustic tests by comparing the measured and theoretical resonant frequencies of an impedance tube.

  19. Numerical simulation of a ramjet inlet flowfield in response to large amplitude combustor pressure oscillation

    NASA Technical Reports Server (NTRS)

    Hsieh, T.; Wardlaw, A. B., Jr.; Coakley, T.

    1984-01-01

    The unsteady flow of a two-dimensional ramjet inlet is studied numerically by solving the Navier-Stokes equation with a two-equation turbulence model. Unsteadiness is introduced by prescribing the pressure disturbance at the inlet exit plane. The case with a sinusoidal exit plane pressure fluctuation of 20 percent of the steady exit pressure is considered. The resulting flow field exhibits a complicated interaction between the terminal shock, separation pockets and core flow. The exit plane properties feature a non-linear response to the imposed sinusoidal pressure variation.

  20. Risk Associated with Pulse Pressure on Out-of-Office Blood Pressure Measurement

    PubMed Central

    Gu, Yu-Mei; Aparicio, Lucas S.; Liu, Yan-Ping; Asayama, Kei; Hansen, Tine W.; Niiranen, Teemu J.; Boggia, José; Thijs, Lutgarde; Staessen, Jan A.

    2014-01-01

    Background Longitudinal studies have demonstrated that the risk of cardiovascular disease increases with pulse pressure (PP). However, PP remains an elusive cardiovascular risk factor with findings being inconsistent between studies. The 2013 ESH/ESC guideline proposed that PP is useful in stratification and suggested a threshold of 60 mm Hg, which is 10 mm Hg higher compared to that in the 2007 guideline; however, no justification for this increase was provided. Methodology Published thresholds of PP are based on office blood pressure measurement and often on arbitrary categorical analyses. In the International Database on Ambulatory blood pressure in relation to Cardiovascular Outcomes (IDACO) and the International Database on HOme blood pressure in relation to Cardiovascular Outcome (IDHOCO), we determined outcome-driven thresholds for PP based on ambulatory or home blood pressure measurement, respectively. Results The main findings were that for people aged <60 years, PP did not refine risk stratification, whereas in older people the thresholds were 64 and 76 mm Hg for the ambulatory and home PP, respectively. However, PP provided little added predictive value over and beyond classical risk factors. PMID:26587443

  1. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    PubMed Central

    Wain, Louise V; Verwoert, Germaine C; O’Reilly, Paul F; Shi, Gang; Johnson, Toby; Johnson, Andrew D; Bochud, Murielle; Rice, Kenneth M; Henneman, Peter; Smith, Albert V; Ehret, Georg B; Amin, Najaf; Larson, Martin G; Mooser, Vincent; Hadley, David; Dörr, Marcus; Bis, Joshua C; Aspelund, Thor; Esko, Tõnu; Janssens, A Cecile JW; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian’an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U; Webster, Rebecca J; Zhang, Feng; Peden, John F; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hotteng, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I; Trompet, Stella; Bragg-Gresham, Jennifer L; Alizadeh, Behrooz Z; Chambers, John C; Guo, Xiuqing; Lehtimäki, Terho; Kühnel, Brigitte; Lopez, Lorna M; Polašek, Ozren; Boban, Mladen; Nelson, Christopher P; Morrison, Alanna C; Pihur, Vasyl; Ganesh, Santhi K; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco US; Rivadeneira, Fernando; Sijbrands, Eric JG; Uitterlinden, Andre G; Hwang, Shih-Jen; Vasan, Ramachandran S; Wang, Thomas J; Bergmann, Sven; Vollenweider, Peter; Waeber, Gérard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Glazer, Nicole L; Taylor, Kent D; Harris, Tamara B; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Inês; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sõber, Siim; Lu, Xiaowen; Nolte, Ilja M; Penninx, Brenda W; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F; Melander, Olle; O’Donnell, Christopher J; Salomaa, Veikko; d’Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, M Fabiola; Facheris, Maurizio; Collins, Francis S; Bergman, Richard N; Beilby, John P; Hung, Joseph; Musk, A William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S; Navarro, Pau; Wild, Sarah H; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco JC; Willemsen, Gonneke; Parker, Alex N; Rose, Lynda M; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L; Kähönen, Mika; Viikari, Jorma; Döring, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H; ’t Hoen, Peter AC; König, Inke R; Felix, Janine F; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Breteler, Monique; Debette, Stéphanie; DeStefano, Anita L; Fornage, Myriam; Mitchell, Gary F; Smith, Nicholas L; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J; Wichmann, H-Erich; Raitakari, Olli T; Palmas, Walter; Kooner, Jaspal S; Stolk, Ronald P; Jukema, J Wouter; Wright, Alan F; Boomsma, Dorret I; Bandinelli, Stefania; Gyllensten, Ulf B; Wilson, James F; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D; Palmer, Lyle J; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth JF; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J; Oostra, Ben A; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P; Beckmann, Jacques S; Witteman, Jacqueline CM; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B; Psaty, Bruce M; Caulfield, Mark J; Rao, Dabeeru C

    2012-01-01

    Numerous genetic loci influence systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans 1-3. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N=74,064) and follow-up studies (N=48,607), we identified at genome-wide significance (P= 2.7×10-8 to P=2.3×10-13) four novel PP loci (at 4q12 near CHIC2/PDGFRAI, 7q22.3 near PIK3CG, 8q24.12 in NOV, 11q24.3 near ADAMTS-8), two novel MAP loci (3p21.31 in MAP4, 10q25.3 near ADRB1) and one locus associated with both traits (2q24.3 near FIGN) which has recently been associated with SBP in east Asians. For three of the novel PP signals, the estimated effect for SBP was opposite to that for DBP, in contrast to the majority of common SBP- and DBP-associated variants which show concordant effects on both traits. These findings indicate novel genetic mechanisms underlying blood pressure variation, including pathways that may differentially influence SBP and DBP. PMID:21909110

  2. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    PubMed

    Wain, Louise V; Verwoert, Germaine C; O'Reilly, Paul F; Shi, Gang; Johnson, Toby; Johnson, Andrew D; Bochud, Murielle; Rice, Kenneth M; Henneman, Peter; Smith, Albert V; Ehret, Georg B; Amin, Najaf; Larson, Martin G; Mooser, Vincent; Hadley, David; Dörr, Marcus; Bis, Joshua C; Aspelund, Thor; Esko, Tõnu; Janssens, A Cecile J W; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian'an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U; Webster, Rebecca J; Zhang, Feng; Peden, John F; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hottenga, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I; Trompet, Stella; Bragg-Gresham, Jennifer L; Alizadeh, Behrooz Z; Chambers, John C; Guo, Xiuqing; Lehtimäki, Terho; Kühnel, Brigitte; Lopez, Lorna M; Polašek, Ozren; Boban, Mladen; Nelson, Christopher P; Morrison, Alanna C; Pihur, Vasyl; Ganesh, Santhi K; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco U S; Rivadeneira, Fernando; Sijbrands, Eric J G; Uitterlinden, Andre G; Hwang, Shih-Jen; Vasan, Ramachandran S; Wang, Thomas J; Bergmann, Sven; Vollenweider, Peter; Waeber, Gérard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Glazer, Nicole L; Taylor, Kent D; Harris, Tamara B; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Inês; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sõber, Siim; Lu, Xiaowen; Nolte, Ilja M; Penninx, Brenda W; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F; Melander, Olle; O'Donnell, Christopher J; Salomaa, Veikko; d'Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, Fabiola M; Facheris, Maurizio; Collins, Francis S; Bergman, Richard N; Beilby, John P; Hung, Joseph; Musk, A William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S; Navarro, Pau; Wild, Sarah H; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco J C; Willemsen, Gonneke; Parker, Alex N; Rose, Lynda M; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L; Kähönen, Mika; Viikari, Jorma; Döring, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H; Hoen, Peter A C 't; König, Inke R; Felix, Janine F; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Breteler, Monique; Debette, Stéphanie; Destefano, Anita L; Fornage, Myriam; Mitchell, Gary F; Smith, Nicholas L; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J; Wichmann, H-Erich; Raitakari, Olli T; Palmas, Walter; Kooner, Jaspal S; Stolk, Ronald P; Jukema, J Wouter; Wright, Alan F; Boomsma, Dorret I; Bandinelli, Stefania; Gyllensten, Ulf B; Wilson, James F; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D; Palmer, Lyle J; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth J F; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J; Oostra, Ben A; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P; Beckmann, Jacques S; Witteman, Jacqueline C M; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B; Psaty, Bruce M; Caulfield, Mark J; Rao, Dabeeru C; Tobin, Martin D; Elliott, Paul; van Duijn, Cornelia M

    2011-09-11

    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP.

  3. Aortic pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.

    PubMed

    Nguyen, Phuc H; Tuzun, Egemen; Quick, Christopher M

    2016-09-01

    Aortic pulse pressure arises from the interaction of the heart, the systemic arterial system, and peripheral microcirculations. The complex interaction between hemodynamics and arterial remodeling precludes the ability to experimentally ascribe changes in aortic pulse pressure to particular adaptive responses. Therefore, the purpose of the present work was to use a human systemic arterial system model to test the hypothesis that pulse pressure homeostasis can emerge from physiological adaptation of systemic arteries to local mechanical stresses. First, we assumed a systemic arterial system that had a realistic topology consisting of 121 arterial segments. Then the relationships of pulsatile blood pressures and flows in arterial segments were characterized by standard pulse transmission equations. Finally, each arterial segment was assumed to remodel to local stresses following three simple rules: 1) increases in endothelial shear stress increases radius, 2) increases in wall circumferential stress increases wall thickness, and 3) increases in wall circumferential stress decreases wall stiffness. Simulation of adaptation by iteratively calculating pulsatile hemodynamics, mechanical stresses, and vascular remodeling led to a general behavior in response to mechanical perturbations: initial increases in pulse pressure led to increased arterial compliances, and decreases in pulse pressure led to decreased compliances. Consequently, vascular adaptation returned pulse pressures back toward baseline conditions. This behavior manifested when modeling physiological adaptive responses to changes in cardiac output, changes in peripheral resistances, and changes in local arterial radii. The present work, thus, revealed that pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.

  4. Acute Effects of Continuous Positive Air way Pressure on Pulse Pressure in Chronic Heart Failure

    PubMed Central

    Quintão, Mônica; Chermont, Sérgio; Marchese, Luana; Brandão, Lúcia; Bernardez, Sabrina Pereira; Mesquita, Evandro Tinoco; Rocha, Nazareth de Novaes; Nóbrega, Antônio Claudio L.

    2014-01-01

    Background Patients with heart failure (HF) have left ventricular dysfunction and reduced mean arterial pressure (MAP). Increased adrenergic drive causes vasoconstriction and vessel resistance maintaining MAP, while increasing peripheral vascular resistance and conduit vessel stiffness. Increased pulse pressure (PP) reflects a complex interaction of the heart with the arterial and venous systems. Increased PP is an important risk marker in patients with chronic HF (CHF). Non-invasive ventilation (NIV) has been used for acute decompensated HF, to improve congestion and ventilation through both respiratory and hemodynamic effects. However, none of these studies have reported the effect of NIV on PP. Objective The objective of this study was to determine the acute effects of NIV with CPAP on PP in outpatients with CHF. Methods Following a double-blind, randomized, cross-over, and placebo-controlled protocol, twenty three patients with CHF (17 males; 60 ± 11 years; BMI 29 ± 5 kg/cm2, NYHA class II, III) underwent CPAP via nasal mask for 30 min in a recumbent position. Mask pressure was 6 cmH2O, whereas placebo was fixed at 0-1 cmH2O. PP and other non invasive hemodynamics variables were assessed before, during and after placebo and CPAP mode. Results CPAP decreased resting heart rate (Pre: 72 ± 9; vs. Post 5 min: 67 ± 10 bpm; p < 0.01) and MAP (CPAP: 87 ± 11; vs. control 96 ± 11 mmHg; p < 0.05 post 5 min). CPAP decreased PP (CPAP: 47 ± 20 pre to 38 ± 19 mmHg post; vs. control: 42 ± 12 mmHg, pre to 41 ± 18 post p < 0.05 post 5 min). Conclusion NIV with CPAP decreased pulse pressure in patients with stable CHF. Future clinical trials should investigate whether this effect is associated with improved clinical outcome. PMID:24676373

  5. Enhancement of the central-transition signal in static and magic-angle-spinning NMR of quadrupolar nuclei by frequency-swept fast amplitude-modulated pulses

    NASA Astrophysics Data System (ADS)

    Bräuniger, Thomas; Ramaswamy, Kannan; Madhu, P. K.

    2004-01-01

    We here report on using fast amplitude-modulated (FAM) pulse trains with constantly incremented pulse durations (SW-FAM) for signal enhancement in one-dimensional nuclear magnetic resonance spectra of quadrupolar nuclei with half-integer spin. In such systems, a FAM pulse train leads to a redistribution of populations across the spin levels, which results in a substantial gain for the central-transition signal. Compared to fixed-duration FAM pulse trains, SW-FAM delivers about the same signal enhancement for spinning samples, but gives much better performance in the static case. This is demonstrated for several compounds, observing the nuclei 23Na ( I=3/2), 27Al ( I=5/2), and 45Sc ( I=7/2).

  6. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  7. Pasteurization of fruit juices by means of a pulsed high pressure process.

    PubMed

    Donsì, Giorgio; Ferrari, Giovanna; Maresca, Paola

    2010-04-01

    The use of pulsed high hydrostatic pressure was investigated as a possible approach to stabilize foodstuffs. The objective of this article was to investigate the effect of the main processing variables (pressure [150 to 300 MPa], temperature levels [25 to 50 degrees C], and pulse number [1 to 10]) on the sanitation of nonpasteurized clear Annurca apple juice as well as freshly-squeezed clear orange juice. The aim of the article was the optimization of the process parameters in step-wise pressure treatment (pressure holding time of each pulse: 60 s, compression rate: 10.5 MPa/s, decompression time: 2 to 5s). The shelf life of the samples, processed at optimized conditions, was evaluated in terms of microbiological stability and quality retention. According to our experimental results, the efficiency of pulsed high pressure processes depends on the combination of pulse holding time and number of pulses. The pulsed high pressure cycles have no additive or synergetic effect on microbial count. The efficacy of the single pulses decreases with the increase of the pulse number and pressure level. Therefore the first pulse cycle is more effective than the following ones. By coupling moderate heating to high pressure, the lethality of the process increases but thermal degradation of the products can be detected. The optimization of the process condition thus results in a compromise between the reduction of the pressure value, due to the synergetic temperature action, and the achievement of quality of the final production. The juices processed under optimal processing conditions show a minimum shelf life of 21 d at a storage temperature of 4 degrees C.

  8. Pasteurization of fruit juices by means of a pulsed high pressure process.

    PubMed

    Donsì, Giorgio; Ferrari, Giovanna; Maresca, Paola

    2010-04-01

    The use of pulsed high hydrostatic pressure was investigated as a possible approach to stabilize foodstuffs. The objective of this article was to investigate the effect of the main processing variables (pressure [150 to 300 MPa], temperature levels [25 to 50 degrees C], and pulse number [1 to 10]) on the sanitation of nonpasteurized clear Annurca apple juice as well as freshly-squeezed clear orange juice. The aim of the article was the optimization of the process parameters in step-wise pressure treatment (pressure holding time of each pulse: 60 s, compression rate: 10.5 MPa/s, decompression time: 2 to 5s). The shelf life of the samples, processed at optimized conditions, was evaluated in terms of microbiological stability and quality retention. According to our experimental results, the efficiency of pulsed high pressure processes depends on the combination of pulse holding time and number of pulses. The pulsed high pressure cycles have no additive or synergetic effect on microbial count. The efficacy of the single pulses decreases with the increase of the pulse number and pressure level. Therefore the first pulse cycle is more effective than the following ones. By coupling moderate heating to high pressure, the lethality of the process increases but thermal degradation of the products can be detected. The optimization of the process condition thus results in a compromise between the reduction of the pressure value, due to the synergetic temperature action, and the achievement of quality of the final production. The juices processed under optimal processing conditions show a minimum shelf life of 21 d at a storage temperature of 4 degrees C. PMID:20492291

  9. Pressure-dependent seismic reflection amplitude changes in crystalline crust: lessons learned at the Continental Deep Drilling Site (KTB)

    NASA Astrophysics Data System (ADS)

    Beilecke, T.; Bram, K.; Buske, S.

    2010-01-01

    We conducted an active seismic experiment aimed at measuring changes in seismic reflection amplitudes as a consequence of fresh water injection and corresponding pressure changes at the German Continental Deep Drilling site (KTB). The injection took place at the bottom of the 4-km-deep pilot borehole in the SE2 fault zone in crystalline rock units between the springs of 2004 and 2005. Prior to the experiment, theoretical calculations indicated a possible increase in the compressional wave reflection coefficient as a result of an injection-induced reduction of the seismic velocities within the fault zone. Despite good repeatability of the emitted source signals, the experiment suffered from missing the clear reflection signals expected from the fault zone with regard to seismic data from past experiments. Applying various data-processing steps did not enhance the signals enough to obtain clear reflections or even pressure-dependent reflection amplitude changes. The signal-to-noise ratio remains smaller than the effects under observation. Provided that reflections are present in the data, the error bar of the recorded signals is of the order of 100 per cent. Therefore, we conclude that the experiment was not successful in seismically measuring pressure variations. However, important lessons for land seismic time-lapse measurements in crystalline environments have been learned: (i) The source should be capable of emitting frequencies below 30 Hz. (ii) The detector array setup proved to be partly questionable because in a scattering environment like the crystalline rocks at the KTB site, the incidence of a plane wave precondition might be violated for high-frequency signals. (iii) Near-surface variations of elastic properties likely influence seismic monitoring. (iv) Using a step function, that is a first-order pressure discontinuity, to model the subsurface pressure build-up, is very likely too simple an approach.

  10. Engine ignition timing with knock control by combustion pressure harmonic amplitude ratio

    SciTech Connect

    Jensen, E.J.

    1989-07-11

    An ignition timing control is described for an internal combustion engine including a combustion chamber, means effective to ignite a combustible charge in the combustion chamber and power output apparatus including a rotating crankshaft driven in response to the expansion of the ignited combustible charge. The ignition timing control consists of: means effective to define a normal ignition timing for the engine in the absence of knock; pressure sensing means effective to sense the combustion chamber and generate a combustion pressure signal therefrom; means effective to sense the rotational speed of the crankshaft; frequency selective filter means for generating a plurality of predetermined harmonic signals of the combustion pressure signal, the frequency selective filter means being responsive to the last means to maintain the frequencies of the harmonic signals at whole number multiples of the firing frequency of the engine as the rotational speed of the crankshaft changes.

  11. Optimized Shapes of Ocsillating Resonators for Generating High-Amplitude Pressure Waves

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Finkbeiner, Joshua; Daniels, Christopher; Steinetz, Bruce M.

    2003-01-01

    It is well known that the resonator geometry strongly influences the resonant frequencies of an acoustical resonator and the generated nonlinear standing pressure waveform. Maximizing the ratio of maximum to minimum gas pressure at an end of an oscillating resonator by optimizing the cavity contour is investigated numerically. A quasi-Newton type scheme is used to find optimized axisymmetric resonator shapes to achieve the maximum pressure compression ratio. The acoustical field is solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects are obtained through an automation scheme based on continuation methods. Results are presented from optimizing cone, horn-cone, and cosine resonator geometries. Significant performance improvement is found in the optimized shapes over others previously published. Different optimized shapes are found when starting with different initial guesses, indicating multiple local extrema. The numerical model is validated by comparing with the experimental results of a horn-cone shaped resonator.

  12. Fast amplitude-modulated pulse trains with frequency sweep (SW-FAM) in static NMR of half-integer spin quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Bräuniger, Thomas; Hempel, Günter; Madhu, P. K.

    2006-07-01

    In solid-state NMR of quadrupolar nuclei with half-integer spin I, fast amplitude-modulated (FAM) pulse trains have been utilised to enhance the intensity of the central-transition signal, by transferring spin population from the satellite transitions. In this paper, the signal-enhancement performance of the recently introduced SW-FAM pulse train with swept modulation frequency [T. Bräuniger, K. Ramaswamy, P.K. Madhu, Enhancement of the central-transition signal in static and magic-angle-spinning NMR of quadrupolar nuclei by frequency-swept fast amplitude-modulated pulses, Chem. Phys. Lett. 383 (2004) 403-410] is explored in more detail for static spectra. It is shown that by sweeping the modulation frequencies linearly over the pulse pairs (SW (1/τ)-FAM), the shape of the frequency distribution is improved in comparison to the original pulse scheme (SW (τ)-FAM). For static spectra of 27Al (I = 5/2), better signal-enhancement performance is found for the SW (1/τ)-FAM sequence, as demonstrated both by experiments and numerical simulations.

  13. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at high pressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NO(x) emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8.

  14. Pulse pressure is an independent risk factor of cardiovascular disease in renal transplant patients.

    PubMed

    Fernández-Fresnedo, G; Escallada, R; Rodrigo, E; de Francisco, A L M; Sanz de Castro, S; Ruiz, J C; Piñera, C; Cotorruelo, J G; Arias, M

    2003-08-01

    Elevated pulse pressure in the general population has been shown to be associated with cardiovascular disease, which is the main cause of death in renal transplant patients. We investigated the effects that a wide pulse pressure has on cardiovascular disease after renal transplantation in a cohort of 532 transplant patients with functioning grafts for more than one year. Patients were classified into two groups depending on whether the one-year pulse pressure was less than or greater than 65 mm Hg. We analyzed patient survival, posttransplant cardiovascular disease and principle causes of death. Five- and ten-year patient survival were lower among the group with higher pulse pressures. The main cause of death was vascular disease in both groups. The presence of posttransplant cardiovascular disease was higher among the group with higher pulse pressures (RR=1.73). In addition, the incidence of an elevated pulse pressure was directly associated with recipient age and posttransplant diabetes mellitus. In conclusion, pulse pressure represents an independent risk factor for increased cardiovascular morbidity and mortality in renal transplant patients.

  15. Validation of the pulse decomposition analysis algorithm using central arterial blood pressure

    PubMed Central

    2014-01-01

    Background There is a significant need for continuous noninvasive blood pressure (cNIBP) monitoring, especially for anesthetized surgery and ICU recovery. cNIBP systems could lower costs and expand the use of continuous blood pressure monitoring, lowering risk and improving outcomes. The test system examined here is the CareTaker® and a pulse contour analysis algorithm, Pulse Decomposition Analysis (PDA). PDA’s premise is that the peripheral arterial pressure pulse is a superposition of five individual component pressure pulses that are due to the left ventricular ejection and reflections and re-reflections from only two reflection sites within the central arteries. The hypothesis examined here is that the model’s principal parameters P2P1 and T13 can be correlated with, respectively, systolic and pulse pressures. Methods Central arterial blood pressures of patients (38 m/25 f, mean age: 62.7 y, SD: 11.5 y, mean height: 172.3 cm, SD: 9.7 cm, mean weight: 86.8 kg, SD: 20.1 kg) undergoing cardiac catheterization were monitored using central line catheters while the PDA parameters were extracted from the arterial pulse signal obtained non-invasively using CareTaker system. Results Qualitative validation of the model was achieved with the direct observation of the five component pressure pulses in the central arteries using central line catheters. Statistically significant correlations between P2P1 and systole and T13 and pulse pressure were established (systole: R square: 0.92 (p < 0.0001), diastole: R square: 0.78 (p < 0.0001). Bland-Altman comparisons between blood pressures obtained through the conversion of PDA parameters to blood pressures of non-invasively obtained pulse signatures with catheter-obtained blood pressures fell within the trend guidelines of the Association for the Advancement of Medical Instrumentation SP-10 standard (standard deviation: 8 mmHg(systole: 5.87 mmHg, diastole: 5.69 mmHg)). Conclusions The results indicate that arterial

  16. Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses

    SciTech Connect

    Cappa, F.; Guglielmi, Y.; Rutqvist, J.; Tsang, C.-F.; Thoraval, A.

    2008-03-16

    The flow parameters of a natural fracture were estimated by modeling in situ pressure pulses. The pulses were generated in two horizontal boreholes spaced 1 m apart vertically and intersecting a near-vertical highly permeable fracture located within a shallow fractured carbonate reservoir. Fracture hydromechanical response was monitored using specialized fiber-optic borehole equipment that could simultaneously measure fluid pressure and fracture displacements. Measurements indicated a significant time lag between the pressure peak at the injection point and the one at the second measuring point, located 1 m away. The pressure pulse dilated and contracted the fracture. Field data were analyzed through hydraulic and coupled hydromechanical simulations using different governing flow laws. In matching the time lag between the pressure peaks at the two measuring points, our hydraulic models indicated that (1) flow was channeled in the fracture, (2) the hydraulic conductivity tensor was highly anisotropic, and (3) the radius of pulse influence was asymmetric, in that the pulse travelled faster vertically than horizontally. Moreover, our parametric study demonstrated that the fluid pressure diffusion through the fracture was quite sensitive to the spacing and orientation of channels, hydraulic aperture, storativity and hydraulic conductivity. Comparison between hydraulic and hydromechanical models showed that the deformation significantly affected fracture permeability and storativity, and consequently, the fluid pressure propagation, suggesting that the simultaneous measurements of pressure and mechanical displacement signals could substantially improve the interpretation of pulse tests during reservoir characterization.

  17. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure.

    PubMed

    Dockery, D W; Pope, C A; Kanner, R E; Martin Villegas, G; Schwartz, J

    1999-01-01

    Epidemiologic studies have linked fine particulate air pollution with increases in morbidity and mortality rates from cardiopulmonary complications. Although the underlying biologic mechanisms responsible for this increase remain largely unknown, potential pathways include transient declines in blood oxygenation and changes in pulse rate following exposures to particulate air pollution episodes. This study evaluated potential associations between daily measures of respirable particulate matter (PM) with pulse rate and oxygen saturation of the blood. Pulse rate and oxygen saturation (Spo2) using pulse oximetry were measured daily in 90 elderly subjects living near air pollution monitors during the winter of 1995-96 in Utah Valley. We also evaluated potential associations of oxygen saturation and pulse rate with barometric pressure. Small but statistically significant positive associations between day-to-day changes in Spo2 and barometric pressure were observed. Pulse rate was inversely associated with barometric pressure. Exposure to particulate pollution was not significantly associated with Spo2 except in male participants 80 years of age or older. Increased daily pulse rate, as well as the odds of having a pulse rate 5 or 10 beats per minute (bpm) above normal (normal is defined as the individual's mean pulse rate throughout the study period), were significantly associated with exposure to particulate pollution on the previous 1 to 5 days. The medical or biologic relevance of these increases in pulse rate following exposure to particulate air pollution requires further study.

  18. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure.

    PubMed

    Dockery, D W; Pope, C A; Kanner, R E; Martin Villegas, G; Schwartz, J

    1999-01-01

    Epidemiologic studies have linked fine particulate air pollution with increases in morbidity and mortality rates from cardiopulmonary complications. Although the underlying biologic mechanisms responsible for this increase remain largely unknown, potential pathways include transient declines in blood oxygenation and changes in pulse rate following exposures to particulate air pollution episodes. This study evaluated potential associations between daily measures of respirable particulate matter (PM) with pulse rate and oxygen saturation of the blood. Pulse rate and oxygen saturation (Spo2) using pulse oximetry were measured daily in 90 elderly subjects living near air pollution monitors during the winter of 1995-96 in Utah Valley. We also evaluated potential associations of oxygen saturation and pulse rate with barometric pressure. Small but statistically significant positive associations between day-to-day changes in Spo2 and barometric pressure were observed. Pulse rate was inversely associated with barometric pressure. Exposure to particulate pollution was not significantly associated with Spo2 except in male participants 80 years of age or older. Increased daily pulse rate, as well as the odds of having a pulse rate 5 or 10 beats per minute (bpm) above normal (normal is defined as the individual's mean pulse rate throughout the study period), were significantly associated with exposure to particulate pollution on the previous 1 to 5 days. The medical or biologic relevance of these increases in pulse rate following exposure to particulate air pollution requires further study. PMID:10192116

  19. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  20. Effects of ionic liquid electrode on pulse discharge plasmas in the wide range of gas pressures

    SciTech Connect

    Chen Qiang; Hatakeyama, Rikizo; Kaneko, Toshiro

    2010-11-15

    Gas-liquid interfacial pulse discharge plasmas are generated in the wide range of gas pressures, where an ionic liquid is used as the liquid electrode. By analyzing the characteristics of discharge voltage and current, the discharge mechanisms at low and high pressures are found to be dominated by secondary electron emission and first Townsend ionization, respectively. Therefore, the discharge properties at low and high pressures are mainly determined by the cathode material and the discharge gas type, respectively. Furthermore, the plasma properties are investigated by a double Langmuir probe. The density of the positive pulse plasma is found to be much smaller than that of the negative pulse plasma, although the discharge voltage and current of the negative and positive pulse plasmas are of the same order of magnitude. The positive pulse discharge plasma is considered to quickly diffuse onto the chamber wall from the radially central region due to its high plasma potential compared with that in the peripheral region.

  1. Fast amplitude-modulated pulse trains with frequency sweep (SW-FAM) in solid-state NMR of spin-7/2 nuclei

    NASA Astrophysics Data System (ADS)

    Bräuniger, Thomas; Madhu, P. K.

    2008-07-01

    We here investigate the sensitivity enhancement of central-transition NMR spectra of quadrupolar nuclei with spin-7/2 in the solid state, generated by fast amplitude-modulated RF pulse trains with constant (FAM-I) and incremented pulse durations (SW-FAM). Considerable intensity is gained for the central-transition resonance of single-quantum spectra by means of spin population transfer from the satellite transitions, both under static and magic-angle-spinning (MAS) conditions. It is also shown that incorporation of a SW-FAM train into the excitation part of a 7QMAS sequence improves the efficiency of 7Q coherence generation, resulting in improved signal-to-noise ratio. The application of FAM-type pulse trains may thus facilitate faster spectra acquisition of spin-7/2 systems.

  2. Optical measurement of acoustic pressure amplitudes-at the sensitivity limits of Rayleigh scattering.

    PubMed

    Rausch, Anne; Fischer, André; Kings, Nancy; Bake, Friedrich; Roehle, Ingo

    2012-07-01

    Rayleigh scattering is a measurement technique applicable for the determination of density distributions in various technical or natural flows. The current sensitivity limits of the Rayleigh scattering technique were investigated experimentally. It is shown that it is possible to measure density oscillations caused by acoustic pressure oscillations noninvasively and directly. Acoustical standing waves in a rectangular duct were investigated using Rayleigh scattering and compared to microphone measurements. The comparison showed a sensitivity of the Rayleigh scattering technique of 75 Pa (7·10(-4) kg/m(3)) and a precision of 14 Pa (1·10(-4) kg/m(3)). Therefore, it was also shown that Rayleigh scattering is applicable for acoustic measurements. PMID:22743495

  3. Measurement of a piezoelectric d constant for poly(vinylidene fluoride) transducers using pressure pulses

    NASA Astrophysics Data System (ADS)

    Bur, Anthony J.; Roth, Steven C.

    1985-01-01

    The hydrostatic piezoelectric coefficient dh has been measured for biaxially-oriented poly(vinylidene fluoride) transducers using pressure pulses having peak values of 1.8×107 Pa (2600 psi) and a pulse width of approximately 10 ms. For these measurements, the sample was placed in an oil pressure chamber at room temperature and the pressure pulse was initiated by dropping a 16-kg mass onto a plunger in the chamber. Since adiabatic compressional heating accompanies the pressure pulse, temperature compensation of the transducer was necessary. This was achieved by incorporating a thermocouple in the bilaminate configuration of the transducer and by amplifying the thermocouple signal appropriately to account for the pyroelectric response due to adiabatic heating, which was approximately 15% of the transducer signal. The calculation of dh shows that the response of the bilaminate transducer is linear up to 1.8×107 Pa (2600 psi).

  4. Use of pulsed-high hydrostatic pressure treatment to decrease patulin in apple juice

    NASA Astrophysics Data System (ADS)

    Avsaroglu, M. D.; Bozoglu, F.; Alpas, H.; Largeteau, A.; Demazeau, G.

    2015-04-01

    This study was aimed at reducing patulin content of apple juice using a non-thermal method, namely pulsed-high hydrostatic pressure (p-HHP). Commercially available clear apple juice was contaminated artificially with different concentrations of patulin (5, 50 and 100 ppb). Then, the samples were processed 5 min at different pressure treatments (300-500 MPa) in combination with different temperatures (30-50°C) and pulses (6 pulses × 50 s and 2 pulses × 150 s). To compare the impact of pulses, single pulse of high hydrostatic pressure (HHP) treatment was also applied with the same pressure/temperature combinations and holding time. Results indicated that pressure treatment in combination with mild heat and pulses reduced the levels of patulin in clear apple juice up to 62.11%. However, reduction rates did not follow a regular pattern. p-HHP was found to be more effective in low patulin concentrations, whereas HHP was more effective for high patulin concentrations. To the best of our knowledge, this is the first study using p-HHP to investigate the reduction of patulin content in apple juice.

  5. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    SciTech Connect

    Zhang, Jie; Guo, Ying; Shi, Yuncheng; Zhang, Jing; Shi, J. J.

    2015-08-15

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  6. Global Remote Sensing of Precipitating Electron Energies: A Comparison of Substorms and Pressure Pulse Related Intensifications

    NASA Technical Reports Server (NTRS)

    Chua, D.; Parks, G. K.; Brittnacher, M. J.; Germany, G. A.; Spann, J. F.

    2000-01-01

    The Polar Ultraviolet Imager (UVI) observes aurora responses to incident solar wind pressure pulses and interplanetary shocks such its those associated with coronal mass ejections. Previous observations have demonstrated that the arrival of it pressure pulse at the front of the magnetosphere results in highly disturbed geomagnetic conditions and a substantial increase in both dayside and nightside aurora precipitations. Our observations show it simultaneous brightening over bread areas of the dayside and nightside auroral in response to a pressure pulse, indicating that more magnetospheric regions participate as sources for auroral precipitation than during isolate substorm. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated event to those during isolated substorms. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated events to those during isolated auroral substorms. Electron precipitation during substorms has characteristic energies greater than 10 KeV and is structured both in local time and in magnetic latitude. For auroral intensifications following the arrival of'a pressure pulse or interplanetary shock. Electron precipitation is less spatially structured and has greater flux of lower characteristic energy electrons (Echar less than 7 KeV) than during isolated substorm onsets. These observations quantify the differences between global and local auroral precipitation processes and will provide a valuable experimental check for models of sudden storm commencements and magnetospheric response to perturbations in the solar wind.

  7. [Research on the Method of Blood Pressure Monitoring Based on Multiple Parameters of Pulse Wave].

    PubMed

    Miao, Changyun; Mu, Dianwei; Zhang, Cheng; Miao, Chunjiao; Li, Hongqiang

    2015-10-01

    In order to improve the accuracy of blood pressure measurement in wearable devices, this paper presents a method for detecting blood pressure based on multiple parameters of pulse wave. Based on regression analysis between blood pressure and the characteristic parameters of pulse wave, such as the pulse wave transit time (PWTT), cardiac output, coefficient of pulse wave, the average slope of the ascending branch, heart rate, etc. we established a model to calculate blood pressure. For overcoming the application deficiencies caused by measuring ECG in wearable device, such as replacing electrodes and ECG lead sets which are not convenient, we calculated the PWTT with heart sound as reference (PWTT(PCG)). We experimentally verified the detection of blood pressure based on PWTT(PCG) and based on multiple parameters of pulse wave. The experiment results showed that it was feasible to calculate the PWTT from PWTT(PCG). The mean measurement error of the systolic and diastolic blood pressure calculated by the model based on multiple parameters of pulse wave is 1.62 mm Hg and 1.12 mm Hg, increased by 57% and 53% compared to those of the model based on simple parameter. This method has more measurement accuracy. PMID:26964321

  8. A comparison of systolic blood pressure measurement obtained using a pulse oximeter, and direct systolic pressure measurement in anesthetized sows.

    PubMed Central

    Caulkett, N A; Duke, T; Bailey, J V

    1994-01-01

    Systolic blood pressure measurement obtained with a pulse oximeter has been compared to values obtained by other indirect methods in man. Direct pressure measurement is subject to less error than indirect techniques. This study was designed to compare systolic pressure values obtained using a pulse oximeter, with values obtained by direct arterial pressure measurement. The pulse oximeter waveform was used as an indication of perfusion. A blood pressure cuff was applied proximal to the pulse oximeter probe. The cuff was inflated until the oximeter waveform disappeared, this value was recorded as the systolic pressure at the disappearance of the waveform (SPD). The cuff was inflated to a pressure > 200 mmHg, then gradually deflated until the waveform reappeared, this value was recorded as the systolic pressure at reappearance of the waveform (SPR). The average of the two values, SPD and SPR, was calculated and recorded as SPA. The study was performed in sows (n = 21) undergoing cesarean section under epidural anesthesia and IV sedation. A total of 280 measurements were made of SPD, SPR and SPA. Regression analysis of SPA and direct measurement revealed a correlation coefficient (r) of 0.81. Calculation of mean difference (bias) and standard deviation of the bias (precision) for direct pressure--SPA revealed a value of 1.3 +/- 12.1. When compared with direct measurement, the correlation of this technique was similar to that recorded for other indirect techniques used in small animals. This indicates that this technique would be useful for following systolic pressure trends.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004540

  9. Brachial vs. central systolic pressure and pulse wave transmission indicators: a critical analysis.

    PubMed

    Izzo, Joseph L

    2014-12-01

    This critique is intended to provide background for the reader to evaluate the relative clinical utilities of brachial cuff systolic blood pressure (SBP) and its derivatives, including pulse pressure, central systolic pressure, central augmentation index (AI), and pulse pressure amplification (PPA). The critical question is whether the newer indicators add sufficient information to justify replacing or augmenting brachial cuff blood pressure (BP) data in research and patient care. Historical context, pathophysiology of variations in pulse wave transmission and reflection, issues related to measurement and model errors, statistical limitations, and clinical correlations are presented, along with new comparative data. Based on this overview, there is no compelling scientific or practical reason to replace cuff SBP with any of the newer indicators in the vast majority of clinical situations. Supplemental value for central SBP may exist in defining patients with exaggerated PPA ("spurious systolic hypertension"), managing cardiac and aortic diseases, and in studies of cardiovascular drugs, but there are no current standards for these possibilities.

  10. Short-pulse high-power microwave breakdown at high pressures

    NASA Astrophysics Data System (ADS)

    Zhao, Peng-Cheng; Liao, Cheng; Feng, Ju

    2015-02-01

    The fluid model is proposed to investigate the gas breakdown driven by a short-pulse (such as a Gaussian pulse) high-power microwave at high pressures. However, the fluid model requires specification of the electron energy distribution function (EEDF); the common assumption of a Maxwellian EEDF can result in the inaccurate breakdown prediction when the electrons are not in equilibrium. We confirm that the influence of the incident pulse shape on the EEDF is tiny at high pressures by using the particle-in-cell Monte Carlo collision (PIC-MCC) model. As a result, the EEDF for a rectangular microwave pulse directly derived from the Boltzmann equation solver Bolsig+ is introduced into the fluid model for predicting the breakdown threshold of the non-rectangular pulse over a wide range of pressures, and the obtained results are very well matched with those of the PIC-MCC simulations. The time evolution of a non-rectangular pulse breakdown in gas, obtained by the fluid model with the EEDF from Bolsig+, is presented and analyzed at different pressures. In addition, the effect of the incident pulse shape on the gas breakdown is discussed. Project supported by the National Basic Research Program of China (Grant No. 2013CB328904), the NSAF of China (Grant No. U1330109), and 2012 Doctoral Innovation Funds of Southwest Jiaotong University.

  11. The effects of pulse duration on ablation pressure driven by laser radiation

    SciTech Connect

    Zhou, Lei; Li, Xiao-Ya Zhu, Wen-Jun; Wang, Jia-Xiang; Tang, Chang-Jian

    2015-03-28

    The effects of laser pulse duration on the ablation pressure induced by laser radiation are investigated using Al target. Numerical simulation results using one dimensional radiation hydro code for laser intensities from 5×10{sup 12}W/cm{sup 2} to 5×10{sup 13}W/cm{sup 2} and pulse durations from 0.5 ns to 20 ns are presented. These results suggest that the laser intensity scaling law of ablation pressure differs for different pulse durations. And the theoretical analysis shows that the effects of laser pulse duration on ablation pressure are mainly caused by two regimes: the unsteady-state flow and the radiative energy loss to vacuum.

  12. Robust spot-poled membrane hydrophones for measurement of large amplitude pressure waveforms generated by high intensity therapeutic ultrasonic transducers.

    PubMed

    Wilkens, Volker; Sonntag, Sven; Georg, Olga

    2016-03-01

    The output characterization of medical high intensity therapeutic ultrasonic devices poses several challenges for the hydrophones to be used for pressure measurements. For measurements at clinical levels in the focal region, extreme robustness, broad bandwidth, large dynamic range, and small receiving element size are all needed. Conventional spot-poled membrane hydrophones, in principle, meet some of these features and were used to detect large amplitude ultrasonic fields to investigate their applicability. Cavitation in water was the limiting effect causing damage to the electrodes and membrane. A new hydrophone design comprising a steel foil front protection layer has been developed, manufactured, characterized, tested, and optimized. The latest prototypes additionally incorporate a low absorption and acoustic impedance matched backing, and could be used for maximum peak rarefactional and peak compressional pressure measurements of 15 and 75 MPa, respectively, at 1.06 MHz driving frequency. Axial and lateral beam profiles were measured also for a higher driving frequency of 3.32 MHz to demonstrate the applicability for output beam characterization at the focal region at clinical levels. The experimental results were compared with results of numerical nonlinear sound field simulations and good agreement was found if detection bandwidth and spatial averaging were taken into account. PMID:27036269

  13. Ejector-Enhanced, Pulsed, Pressure-Gain Combustor

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Dougherty, Kevin T.

    2009-01-01

    An experimental combination of an off-the-shelf valved pulsejet combustor and an aerodynamically optimized ejector has shown promise as a prototype of improved combustors for gas turbine engines. Despite their name, the constant pressure combustors heretofore used in gas turbine engines exhibit typical pressure losses ranging from 4 to 8 percent of the total pressures delivered by upstream compressors. In contrast, the present ejector-enhanced pulsejet combustor exhibits a pressure rise of about 3.5 percent at overall enthalpy and temperature ratios compatible with those of modern turbomachines. The modest pressure rise translates to a comparable increase in overall engine efficiency and, consequently, a comparable decrease in specific fuel consumption. The ejector-enhanced pulsejet combustor may also offer potential for reducing the emission of harmful exhaust compounds by making it practical to employ a low-loss rich-burn/quench/lean-burn sequence. Like all prior concepts for pressure-gain combustion, the present concept involves an approximation of constant-volume combustion, which is inherently unsteady (in this case, more specifically, cyclic). The consequent unsteadiness in combustor exit flow is generally regarded as detrimental to the performance of downstream turbomachinery. Among other adverse effects, this unsteadiness tends to detract from the thermodynamic benefits of pressure gain. Therefore, it is desirable in any intermittent combustion process to minimize unsteadiness in the exhaust path.

  14. Kinetics of Deformation of Alloys by Pulsed Pressure of an Electric Discharge

    NASA Astrophysics Data System (ADS)

    Chebotnyagin, L. M.; Potapov, V. V.; Lopatin, V. V.

    2015-05-01

    Stepped kinetics of deformation of alloys by pulsed pressure from an expanding plasma channel has been observed. On the deformation curves there are time intervals during which deformation does not vary, and these intervals shorten closer to the central cross sections of the wave source. This is explained by the shockwave nature of pressure transfer. A connection between the parameters of the discharge circuit and the pulsed pressure at the wave front of the expanding plasma channel is established enabling a quantitative estimate with allowance for the dynamic viscosity of the metal.

  15. Pulse transit time-based blood pressure estimation using hilbert-huang transform.

    PubMed

    Zhang, Qiao; Shi, Yang; Teng, Daniel; Dinh, Anh; Ko, Seok-Bum; Chen, Li; Basran, Jenny; Dal Bello-Haas, Vanina; Choi, Younhee

    2009-01-01

    The pulse transit time (PTT) based method has been suggested as a continuous, cuffless and non-invasive approach to estimate blood pressure. It is of paramount importance to accurately determine the pulse transit time from the measured electrocardiogram (ECG) and photoplethysmo-gram (PPG) signals. We apply the celebrated Hilbert-Huang Transform (HHT) to process both the ECG and PPG signals, and improve the accuracy of the PTT estimation. Further, the blood pressure variation is obtained by using a well-established formula reflecting the relationship between the blood pressure and the estimated PTT. Simulation results are provided to illustrate the effectiveness of the proposed method.

  16. Investigation of the effects of continuous-wave, pulse- and amplitude-modulated microwaves on single excitable cells of Chara corallina.

    PubMed

    Liu, L M; Garber, F; Cleary, S F

    1982-01-01

    Single internodal excitable cells of Chara corallina were exposed to CW, pulse-modulated and sinusoidally modulated S-band microwave fields in a temperature-controlled waveguide exposure chamber. All electrical measurements were made external to the waveguide (ie, under no impressed microwave field). The dependent variables measured before, during, and after exposure to the S-band microwave fields included: resting potential, amplitude of the action potential, rise and decay time of the action potential, conduction velocity, and excitability. Cells maintained at 22 +/- 0.1 degrees C during exposure showed no consistent or statistically significant microwave-dependent alterations in any of the dependent variables.

  17. Model calibration for pressure drop in a pulse-jet cleaned fabric filter

    NASA Astrophysics Data System (ADS)

    Koehler, John L.; David, Leith

    A model based on Darcy's law allows prediction of pressure drop in a pulse-jet cleaned fabric filter. The model considers the effects of filtration velocity, dust areal density added during one filtration cycle, and pulse pressure. Data used to calibrate the model were collected in experiments with three fabric surface treatments and three dusts conducted at three filtration velocities, for a total of 27 different experimental conditions. The fabric used was polyester felt with untreated, singed, or PTFE-laminated surface. The dusts used were granite, limestone and fly ash. Filtration velocities were 50,75 and 100 mm s -1. Dust areal density added during one filtration cycle was constant, as was pulse pressure. Under these conditions, fabric surface treatment alone largely determined the values for two of the three constants in the model; the third constant depends on pressure drop characteristics of the venturi at the top of each filter bag.

  18. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    SciTech Connect

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, Rene; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S.

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  19. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons.

    PubMed

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, René; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S

    2012-08-01

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM(2.5) (particulate matter with an aerodynamic diameter <2.5 μm) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM(10) (particulate matter with an aerodynamic diameter <10 μm) were measured. Each interquartile range increase of 20.8 μg/m³ in 24-h mean outdoor PM(2.5) was associated with an increase in pulse pressure of 4.0 mm Hg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM(2.5) were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  20. Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?

    PubMed

    Lopez, Rosana; Badel, Eric; Peraudeau, Sebastien; Leblanc-Fournier, Nathalie; Beaujard, François; Julien, Jean-Louis; Cochard, Hervé; Moulia, Bruno

    2014-05-01

    When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices.

  1. Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: The Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations

    NASA Astrophysics Data System (ADS)

    Shen, X. C.; Zong, Q.-G.; Shi, Q. Q.; Tian, A. M.; Sun, W. J.; Wang, Y. F.; Zhou, X. Z.; Fu, S. Y.; Hartinger, M. D.; Angelopoulos, V.

    2015-09-01

    Ultralow frequency (ULF) waves play an important role in transferring energy by buffeting the magnetosphere with solar wind pressure impulses. The amplitudes of magnetospheric ULF waves, which are induced by solar wind dynamic pressure enhancements or shocks, are thought to damp in one half a wave cycle or an entire wave cycle. We report in situ observations of solar wind dynamic pressure impulse-induced magnetospheric ULF waves with increasing amplitudes. We found six ULF wave events induced by solar wind dynamic pressure enhancements with slow but clear wave amplitude increase. During three or four wave cycles, the amplitudes of ion velocities and electric field of these waves increased continuously by 1.3-4.4 times. Two significant events were selected to further study the characteristics of these ULF waves. We found that the wave amplitude growth is mainly contributed by the toroidal mode wave. Three possible mechanisms of causing the wave amplitude increase are discussed. First, solar wind dynamic pressure perturbations, which are observed in a duration of 20-30 min, might transfer energy to the magnetospheric ULF waves continually. Second, the wave amplitude increase in the radial electric field may be caused by superposition of two wave modes, a standing wave excited by the solar wind dynamic impulse and a propagating compressional wave directly induced by solar wind oscillations. When superposed, the two wave modes fit observations as does a calculation that superposes electric fields from two wave sources. Third, the normal of the solar wind discontinuity is at an angle to the Sun-Earth line. Thus, the discontinuity will affect the dayside magnetopause continuously for a long time.

  2. The research of the solar panels-commutator-inverter-load system with the pulse-amplitude control

    NASA Astrophysics Data System (ADS)

    Taissariyeva, K. N.; Issembergenov, N. T.

    2014-11-01

    The system "solar panels-commutator-inverter-load" with amplitude-impulse control was researched. It was shown that if the solar panels are located in a certain way at the input of the inverter, it will be possible to get multilevel voltage close to sine wave with the help of amplitude-impulse control of commutator at the output of inverter. Herewith the effect is saving of solar panels depending on the quantity of voltage level, and also the enhanced voltage distortion coefficient (THD). For instance, with 8-level of voltage 28,2% and THD=4,64%, with 13-level of voltage, 30,5% and THD=2,65%, and with 26-level of voltage 31,7% and THD=1,22%. The given results were obtained through computer modeling and experimental research.

  3. Pulse pressure monitoring through non-contact cardiac motion detection using 2.45 GHz microwave Doppler radar.

    PubMed

    Singh, Aditya; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    The use of a Continuous Wave (CW) quadrature Doppler radar is proposed here for continuous non-invasive Pulse Pressure monitoring. A correspondence between the variation in systemic pulse and variation in the displacement of the chest due to heart is demonstrated, establishing feasibility for the approach. Arctangent demodulation technique was used to process baseband data from radar measurements on two test subjects, in order to determine the absolute cardiac motion. An Omron digital Blood pressure cuff was used to measure the systolic and diastolic blood pressures from which the pulse pressure was calculated. Correlation between pulse pressure and cardiac motion was observed through changes induced due to different postures of the body.

  4. Intraocular Pressure Regulation: Findings of Pulse-Dependent Trabecular Meshwork Motion Lead to Unifying Concepts of Intraocular Pressure Homeostasis

    PubMed Central

    2014-01-01

    Abstract Intraocular pressure (IOP) is the only treatable risk factor in glaucoma, one of the world's leading causes of blindness. Mechanisms that maintain IOP within a normal range have been poorly understood in contrast to intrinsic mechanisms that regulate systemic blood pressure. Vessel walls experience continuous pulse-induced cyclic pressure and flow. Pressure-dependent wall stress and flow-dependent shear stress provide sensory signals that initiate mechanotransduction responses. The responses optimize vessel wall elasticity, compliance and lumen size, providing a feedback loop to maintain intrinsic pressure homeostasis. Aqueous humor is part of a vascular circulatory loop, being secreted into the anterior chamber of the eye from the vasculature, then returning to the vasculature by passing through the trabecular meshwork (TM), a uniquely modified vessel wall interposed between the anterior chamber and a vascular sinus called Schlemm's canal (SC). Since pressure in circulatory loops elsewhere is modulated by cyclic stresses, one might predict similar pressure modulation in the aqueous outflow system. Recent laboratory evidence in fact demonstrates that cyclic IOP changes alter aqueous outflow while increasing cellularity and contractility of TM cells. Cyclic changes also lead to alterations in gene expression, changes in cytoskeletal networks and modulation of signal transduction. A new technology, phase-based optical coherence tomography, demonstrates in vivo pulse-dependent TM motion like that elsewhere in the vasculature. Recognition of pulse-dependent TM motion provides a linkage to well-characterized mechanisms that provide pressure homeostasis in the systemic vasculature. The linkage may permit unifying concepts of pressure control and provide new insights into IOP homeostatic mechanisms. PMID:24359130

  5. Relationship between radial and central arterial pulse wave and evaluation of central aortic pressure using the radial arterial pulse wave.

    PubMed

    Takazawa, Kenji; Kobayashi, Hideyuki; Shindo, Naohisa; Tanaka, Nobuhiro; Yamashina, Akira

    2007-03-01

    Since a decrease of central aortic pressure contributes to the prevention of cardiovascular events, simple measurement of not only brachial blood pressure but also central aortic pressure may be useful in the prevention and treatment of cardiovascular diseases. In this study, we simultaneously measured radial artery pulse waves non-invasively and ascending aortic pressure invasively, before and after the administration of nicorandil. We then compared changes in central aortic pressure and radial arterial blood pressure calibrated with brachial blood pressure in addition to calculating the augmentation index (AI) at the aorta and radial artery. After nicorandil administration, the reduction in maximal systolic blood pressure in the aorta (Deltaa-SBP) was -14+/-15 mmHg, significantly larger than that in early systolic pressure in the radial artery (Deltar-SBP) (-9+/-12 mmHg). The reduction in late systolic blood pressure in the radial artery (Deltar-SBP2) was -15+/-14 mmHg, significantly larger than Deltar-SBP, but not significantly different from Deltaa-SBP. There were significant relationships between Deltaa-SBP and Deltar-SBP (r=0.81, p<0.001), and between Deltaa-SBP and Deltar-SBP2 (r=0.91, p<0.001). The slope of the correlation regression line with Deltar-SBP2 (0.83) was larger and closer to 1 than that with Deltar-SBP (0.63), showing that the relationship was close to 1:1. Significant correlations were obtained between aortic AI (a-AI) and radial AI (r-AI) (before nicorandil administration: r=0.91, p<0.001; after administration: r=0.70, p<0.001). These data suggest that the measurement of radial artery pulse wave and observation of changes in the late systolic blood pressure in the radial artery (r-SBP2) in addition to the ordinary measurement of brachial blood pressure may enable a more accurate evaluation of changes in maximal systolic blood pressure in the aorta (a-SBP).

  6. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    PubMed

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.

  7. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    PubMed

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system. PMID:27225558

  8. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.

    PubMed

    Ikenaga, Yuki; Nishi, Shohei; Komagata, Yuka; Saito, Masashi; Lagrée, Pierre-Yves; Asada, Takaaki; Matsukawa, Mami

    2013-11-01

    A pulse wave is the displacement wave which arises because of ejection of blood from the heart and reflection at vascular bed and distal point. The investigation of pressure waves leads to understanding the propagation characteristics of a pulse wave. To investigate the pulse wave behavior, an experimental study was performed using an artificial polymer tube and viscous liquid. A polyurethane tube and glycerin solution were used to simulate a blood vessel and blood, respectively. In the case of the 40 wt% glycerin solution, which corresponds to the viscosity of ordinary blood, the attenuation coefficient of a pressure wave in the tube decreased from 4.3 to 1.6 dB/m because of the tube stiffness (Young's modulus: 60 to 200 kPa). When the viscosity of liquid increased from approximately 4 to 10 mPa·s (the range of human blood viscosity) in the stiff tube, the attenuation coefficient of the pressure wave changed from 1.6 to 3.2 dB/m. The hardening of the blood vessel caused by aging and the increase of blood viscosity caused by illness possibly have opposite effects on the intravascular pressure wave. The effect of the viscosity of a liquid on the amplitude of a pressure wave was then considered using a phantom simulating human blood vessels. As a result, in the typical range of blood viscosity, the amplitude ratio of the waves obtained by the experiments with water and glycerin solution became 1:0.83. In comparison with clinical data, this value is much smaller than that seen from blood vessel hardening. Thus, it can be concluded that the blood viscosity seldom affects the attenuation of a pulse wave.

  9. Temporal evolution of atmosphere pressure plasma jets driven by microsecond pulses with positive and negative polarities

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Yang, Wenjin; Zhang, Cheng; Fang, Zhi; Zhou, Yixiao; Schamiloglu, Edl

    2014-09-01

    Current-voltage characteristics, discharge images, and optical spectra of atmospheric pressure plasma jets (APPJs) are studied using a microsecond pulse length generator producing repetitive output pulses with different polarities. The experimental results show that the APPJs excited by the pulses with positive polarity have longer plume, faster propagation speed, higher power, and more excited species, such as \\text{N}2 , O, He, \\text{N}2+ , than that with the negatively excited APPJs. The images taken using an intensified charge-coupled device show that the APPJs excited by pulses with positive polarity are characterized by a bullet-like structure, while the APPJs excited by pulses with negative polarity are continuous. The propagation speed of the APPJs driven by a microsecond pulse length generator is about tens of km/s, which is similar to the APPJs driven by a kHz frequency sinusoidal voltage source. The analysis shows that the space charge accumulation effect plays an important role during the discharge. The transient enhanced electric field induced by the accumulated ions between the needle-like electrode and the nozzle in the APPJs excited by pulses with negative polarity enhances electron field emission from the cathode, which is illustrated by the bright line on the time-integrated images. This makes the shape of the APPJ excited using pulses with negative polarity different from the bullet-like shape of the APPJs excited by pulses with positive polarity.

  10. Influences of impedance matching network on pulse-modulated radio frequency atmospheric pressure glow discharges

    SciTech Connect

    Huo, W. G.; Xu, K.; Sun, B.; Ding, Z. F.

    2012-08-15

    Pulse-modulated RF atmospheric pressure glow discharges (APDGs) were investigated in recent years to reduce the thermal accumulation and extend the operation region of the stable alpha glow mode. Different pulse-modulated voltage and current waveforms were acquired in previous experiments, but no attention was paid to the interpretation. We investigated this issue and associated phenomenon via positive and negative feedback effects derived from varying the series capacitor in the inversely L-shaped matching network used in our pulse-modulated RF APGD source. The evolutions of pulse-modulated RF waveforms were found to be associated with the feedback region and the pulsed plasma absorbed RF power. In the positive feedback region, pulse-modulated RF APGDs are relatively stable. In the negative feedback region, wide spikes as well as undershoots occur in RF voltage and current waveforms and the plasma absorbed RF power. In case of a high RF power discharge with a low modulation frequency, the pulse-modulated RF APGD is extinguished and re-ignited due to the enhanced undershoot during the initial pulse phase. The pulse-modulated RF APGD can transit from positive to negative feedback region in a range of series capacitance. Experimental results are discussed by the aid of equivalent circuit, negative and positive feedback effects.

  11. Automatic Detection Algorithm of the Solar Wind Dynamic Pressure Pulses with the Application to WIND High-resolution Data

    NASA Astrophysics Data System (ADS)

    Zuo, P.; Feng, X. S.

    2014-12-01

    Solar wind dynamic pressure pulses (DPPs), i.e. the abrupt change in solar wind dynamic pressure, can affect the energy and momentum transfer from the solar wind to the magnetosphere-ionosphere coupling system, and as a result, cause various types of disturbances. To detect the DPPs rapidly from the solar wind plasma data, an automated DPP-hunting computer code is developed. In order to meet the research requirements, it demands not only identify and isolate the special structure, but also automatically select appropriate preceding and succeeding reference data points, for which there are very small variations in solar wind dynamic pressure, to represent the plasma status before and after the pressure change, as well as determine the DPP fine ramp structure where the solar wind transits from one relatively quiet status to another. It indicates from the high-resolution measurements that the pressure changes can occur on time scale from a few seconds to many minutes. The code can be used to hunt DPPs of arbitrary ramp length and arbitrary pressure change amplitude by adjusting the criteria. It can be applied to variable data rates. The strong DPPs that have very large pressure change are most geoeffective so as to affect the near-Earth environment intensively. Thus the code also benefits the space weather warning or forecasting when applied to the real-time spacecraft data to hunt the large DPPs. Here we present the major algorithm to identify and define the upstream, downstream and the ramp region. The effectiveness of this code is tested on WIND high-resolution measurements covering the 23th solar cycle. We will show the test results during the interval of magnetic cloud (MC) and corotating interation region (CIR). The statistical results of DPPs in 23th solar cycle are also discussed.

  12. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Kim, I. Jong; Pae, Ki Hong; Choi, Il Woo; Lee, Chang-Lyoul; Kim, Hyung Taek; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Kim, Chul Min; Nam, Chang Hee

    2016-07-01

    The radiation pressure acceleration (RPA) of charged particles has been a challenging task in laser-driven proton/ion acceleration due to its stringent requirements in laser and target conditions. The realization of radiation-pressure-driven proton acceleration requires irradiating ultrathin targets with an ultrahigh contrast and ultraintense laser pulses. We report the generation of 93-MeV proton beams achieved by applying 800-nm 30-fs circularly polarized laser pulses with an intensity of 6.1 × 10 20 W / cm 2 to 15-nm-thick polymer targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and three-dimensional particle-in-cell simulations. We expect this clear demonstration of RPA to facilitate the realization of laser-driven proton/ion sources delivering energetic and short-pulse particle beams for novel applications.

  13. Pulsed laser kinetic studies of liquids under high pressure

    SciTech Connect

    Eyring, E.M.

    1991-11-25

    A high pressure apparatus constructed for measuring the rates of reactions in liquids under pressures ranging from 1 atm to 2000 atm has been used to measure the complexation kinetics of molybdenum hexacarbonyl reacting with 2,2-bipyridine, 4,4{prime}-dimethyl-2-2{prime}-bipyridine and 4,4{prime}-diphenyl-2-2{prime} bipyridine in toluene. Pentacarbonyl reaction intermediates are created by a 10 nsec flash of frequency tripled Nd:YAG laser light. Measured activation volumes for chelate ligand ring closure indicate a change in mechanism from associative interchange to dissociative interchange as steric hindrance increases. A similar high pressure kinetics study of molybdenum carbonyl complexation by several substituted phenanthrolines is now well advanced that indicates that with the more rigid phenanthroline ligands steric effects from bulky substituents have less effect on the ring closure mechanism than in the case of the bipyridine ligands. An experimental concentration dependence of the fluorescence quantum yield of cresyl violet has been harmonized with previously published contradictory reports. Fluorescence of cresyl violet in various solvents and in micellar systems has also been systematically explored.

  14. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall

    2013-10-01

    Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of

  15. Arterial pulse pressure amplification described by means of a nonlinear wave model: characterization of human aging

    NASA Astrophysics Data System (ADS)

    Alfonso, M.; Cymberknop, L.; Armentano, R.; Pessana, F.; Wray, S.; Legnani, W.

    2016-04-01

    The representation of blood pressure pulse as a combination of solitons captures many of the phenomena observed during its propagation along the systemic circulation. The aim of this work is to analyze the applicability of a compartmental model for propagation regarding the pressure pulse amplification associated with arterial aging. The model was applied to blood pressure waveforms that were synthesized using solitons, and then validated by waveforms obtained from individuals from differentiated age groups. Morphological changes were verified in the blood pressure waveform as a consequence of the aging process (i.e. due to the increase in arterial stiffness). These changes are the result of both a nonlinear interaction and the phenomena present in the propagation of nonlinear mechanic waves.

  16. Non-invasive measurement of the blood pressure pulse using multiple PPGs

    NASA Astrophysics Data System (ADS)

    Seymour, John; Pennington, Gary

    Heart disease, the leading cause of death in the US, may be spotted early on by looking at photoplethysmogram (PPG) data. This experiment explores a new method of continuously monitoring the blood pressure pulse with PPG data. In contrast to the traditional sphygmomanometer (cuff) method, which yields only the systolic and diastolic pressure during measurement, this method tracks the blood pressure pulse wave in a non-invasive continuous manner. This procedure allows for fast, inexpensive, and detailed analysis of the patient's blood pressure implementable on a large scale. We also explore the second derivative of the PPG data. In combination with the above method, the patient's heart risk can be effectively detected. We acknowledge Fisher Endowment Grant support from the Jess and Mildred Fisher College of Science and Mathematics, Towson University.

  17. Dissociation of nitrogen in a pulse-periodic dielectric barrier discharge at atmospheric pressure

    SciTech Connect

    Popov, N. A.

    2013-05-15

    Nitrogen molecule dissociation in a pulse-periodic atmospheric-pressure dielectric barrier discharge is numerically analyzed. It is shown that the quenching rate of predissociation states at atmospheric pressure is relatively low and the production of nitrogen atoms in this case can be adequately described using the cross section for electron-impact dissociation of N{sub 2} molecules taken from the paper by P.C. Cosby [J. Chem. Phys. 98, 9544 (1993)].

  18. Pulsed laser kinetic studies of liquids under high pressure

    SciTech Connect

    Eyring, E.M.

    1992-09-22

    A laser flash photolysis kinetic study of 2,2{prime}-bipyridine bidentate chelating ligands with one claw in the first coordination sphere of a molybdenum carbonyl complex has been completed at pressures up to 150 MPa. The reaction mechanism for thermal ring closure is found from activation volumes to change from associative interchange to dissociative interchange as substituents on the 2,2{prime}-bipyridine ligands become bulkier. In a similar study of more rigid, substituted phenanthroline bidentate ligands it was found that substituent bulkiness had little effect on the thermal ring closure mechanism. Stability constants for lithium ion complexes with crown ethers in a room temperature molten salt, fluorescence quantum yields for cresyl violet and several other dyes in solution, and the oxidation of alcohols by OsO{sub 4} have also been investigated.

  19. Propagation of the pulsed electron beam of nanosecond duration in gas composition of high pressure

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G.; Sazonov, R.; Ponomarev, D.; Remnev, G.

    2015-11-01

    This paper presents the results of the investigation of the propagation of an electron beam in the high-pressure gas compositions (50, 300, and 760 Torr): sulfur hexafluoride and hydrogen, sulfur hexafluoride and nitrogen, sulfur hexafluoride and argon. The experiments have been performed using the TEA-500 laboratory accelerator. The main parameters of the accelerator are as follows: an accelerating voltage of 500 kV; an electron beam current of 10 kA; a pulse width at half maximum of 60 ns; a pulse energy of 200 J; a pulse repetition rate of up to 5 pulses per second, a beam diameter of 5 cm. The pulsed electron beam was injected into a 55 cm metal drift tube. The drift tube is equipped with three reverse-current shunts with simultaneous detecting of signals. The obtained results of the investigation make it possible to conclude that the picture of the processes occurring in the interaction of an electron beam in the high-pressure gas compositions is different from that observed in the propagation of the electron beam in the low-pressure gas compositions (1 Torr).

  20. Oscillometric measurement of arterial pulse pressure for patients supported by a rotary blood pump.

    PubMed

    Yu, Yih-Choung; Peterson, Anna

    2015-01-01

    A computer model has been developed to evaluate the accuracy of an oscillometric method to measure the arterial pulse pressure from a patient with a rotary ventricular assist device (VAD). This computer model consists of three major components: the cardiovascular system, the HeartMate II VAD, and the operation of an automated cuff. Simulation was performed to mimic failure, recovery, and normal cardiac functions of a patient, supported by the HeartMate II VAD at different levels from minimum to maximum. The oscillating cuff pressure, simulating the air pressure of a deflecting cuff, was obtained from simulation under different conditions to test the accuracy of an oscillometric algorithm in determining the arterial pulse pressure. The algorithm was able to detect the systolic and diastolic arterial pressure with the error within ±2 mmHg in most cases, except the cases when ventricular suction, induced by the VAD, occurred. The results from this study suggested that the oscillometric algorithm is capable to accurately detect the arterial pulse pressure for a rotary VAD patient if the algorithm is properly tuned.

  1. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond Protein Extracts.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...

  2. Compression and acceleration of electron bunches to high energies in the interference field of intense laser pulses with tilted amplitude fronts: concept and modelling

    SciTech Connect

    Korobkin, V V; Romanovsky, Mikhail Yu; Trofimov, V A; Shiryaev, O B

    2013-03-31

    A new concept of accelerating electrons by laser radiation is proposed, namely, direct acceleration by a laser field under the conditions of interference of several relativistic-intensity laser pulses with amplitude fronts tilted by the angle 45 Degree-Sign with respect to the phase fronts. Due to such interference the traps moving with the speed of light arise that capture the electrons, produced in the process of ionisation of low-density gas by the same laser radiation. The modelling on the basis of solving the relativistic Newton equation with the appropriate Lorenz force shows that these traps, moving in space, successively collect electrons from the target, compress the resulting electron ensemble in all directions up to the dimensions smaller than the wavelength of the laser radiation and accelerate it up to the energies of the order of a few GeV per electron. (extreme light fields and their applications)

  3. Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?

    PubMed Central

    Lopez, Rosana; Badel, Eric

    2014-01-01

    When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices. PMID:24558073

  4. Elastic moduli of precompressed pyrophyllite used in ultrahigh pressure research. [propagation of ultrasonic pulses

    NASA Technical Reports Server (NTRS)

    Sachse, W.; Ruoff, A. L.

    1974-01-01

    The propagation of ultrasonic pulses in pyrophyllite specimens was studied to determine the effect of specimen precompression on the measured elastic moduli. Measurements were made at room pressure and, for the precompressed specimens, to pressures of 3 kbar. Pyrophyllite was found to be elastically anisotropic, apparently the result of the fabric present in our material. The room pressure adiabatic bulk modulus as measured on specimens made of isostatically compacted powered pyrophyllite was determined to be 96.1 kbar. The wave speeds of ultrasonic pulses in pyrophyllite were found to decrease with increasing specimen precompression. A limiting value of precompression was found, above which no further decrease in wave speed was observed. For the shear wave speeds this occurs at 10 kbar while for the longitudinal wave at 25 kbar. In the limit, the shear waves propagate 20% slower than in the unprecompressed samples; for the longitudinal wave the difference is 30%.

  5. Serum lipids and apolipoprotein B values, blood pressure and pulse rate in anorexia nervosa.

    PubMed

    Sánchez-Muniz, F J; Marcos, A; Varela, P

    1991-01-01

    Some risk factors associated with coronary heart disease (CHD) were evaluated in patients with different types of anorexia nervosa (AN). Anthropometric parameters, serum cholesterol, triglycerides and apoprotein (apo) B values, blood pressure and pulse rate were tested in 29 young female patients and 16 controls. Cholesterol, triglycerides and apo B were higher at the acute period of the illness (AN1), whereas at the chronic period the values of these parameters tended to normalize. Triglycerides were higher in patients who binge ate (bulimarexia). Systolic blood pressure decreased in all types of AN, while diastolic blood pressure decreased only in AN1; pulse rate was not altered. According to cholesterol and apo B values, AN patients may be at risk of CHD if they remain at low body weight. PMID:1855497

  6. Amplitude- and rise-time-compensated filters

    DOEpatents

    Nowlin, Charles H.

    1984-01-01

    An amplitude-compensated rise-time-compensated filter for a pulse time-of-occurrence (TOOC) measurement system is disclosed. The filter converts an input pulse, having the characteristics of random amplitudes and random, non-zero rise times, to a bipolar output pulse wherein the output pulse has a zero-crossing time that is independent of the rise time and amplitude of the input pulse. The filter differentiates the input pulse, along the linear leading edge of the input pulse, and subtracts therefrom a pulse fractionally proportional to the input pulse. The filter of the present invention can use discrete circuit components and avoids the use of delay lines.

  7. Wave reflection augments central systolic and pulse pressures during facial cooling.

    PubMed

    Edwards, David G; Roy, Matthew S; Prasad, Raju Y

    2008-06-01

    Cardiovascular events are more common in the winter months, possibly because of hemodynamic alterations in response to cold exposure. The purpose of this study was to determine the effect of acute facial cooling on central aortic pressure, arterial stiffness, and wave reflection. Twelve healthy subjects (age 23 +/- 3 yr; 6 men, 6 women) underwent supine measurements of carotid-femoral pulse wave velocity (PWV), brachial artery blood pressure, and central aortic pressure (via the synthesis of a central aortic pressure waveform by radial artery applanation tonometry and generalized transfer function) during a control trial (supine rest) and a facial cooling trial (0 degrees C gel pack). Aortic augmentation index (AI), an index of wave reflection, was calculated from the aortic pressure waveform. Measurements were made at baseline, 2 min, and 7 min during each trial. Facial cooling increased (P < 0.05) peripheral and central diastolic and systolic pressures. Central systolic pressure increased more than peripheral systolic pressure (22 +/- 3 vs. 15 +/- 2 mmHg; P < 0.05), resulting in decreased pulse pressure amplification ratio. Facial cooling resulted in a robust increase in AI and a modest increase in PWV (AI: -1.4 +/- 3.8 vs. 21.2 +/- 3.0 and 19.9 +/- 3.6%; PWV: 5.6 +/- 0.2 vs. 6.5 +/- 0.3 and 6.2 +/- 0.2 m/s; P < 0.05). Change in mean arterial pressure but not PWV predicted the change in AI, suggesting that facial cooling may increase AI independent of aortic PWV. Facial cooling and the resulting peripheral vasoconstriction are associated with an increase in wave reflection and augmentation of central systolic pressure, potentially explaining ischemia and cardiovascular events in the cold.

  8. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor

    PubMed Central

    Nishiyama, Michiko; Sonobe, Masako; Watanabe, Kazuhiro

    2016-01-01

    In this paper, we present a pulse pressure waveform sensor that does not constrain a wearer’s daily activity; the sensor uses hetero-core fiber optics. Hetero-core fiber sensors have been found to be sensitive to moderate bending. To detect minute pulse pressure changes from the radial artery at the wrist, we devised a fiber sensor arrangement using three-point bending supports. We analyzed and evaluated the measurement validity using wavelet transformation, which is well-suited for biological signal processing. It was confirmed that the detected pulse waveform had a fundamental mode frequency of around 1.25 Hz over the time-varying waveform. A band-pass filter with a range of frequencies from 0.85 to 1.7 Hz was used to pick up the fundamental mode. In addition, a high-pass filter with 0.85 Hz frequency eliminated arm motion artifacts; consequently, we achieved high signal-to-noise ratio. For unrestricted daily health management, it is desirable that pulse pressure monitoring can be achieved by simply placing a device on the hand without the sensor being noticed. Two types of arrangements were developed and demonstrated in which the pulse sensors were either embedded in a base, such as an armrest, or in a wearable device. A wearable device without cuff pressure using a sensitivity-enhanced fiber sensor was successfully achieved with a sensitivity of 0.07–0.3 dB with a noise floor lower than 0.01 dB for multiple subjects.

  9. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor

    PubMed Central

    Nishiyama, Michiko; Sonobe, Masako; Watanabe, Kazuhiro

    2016-01-01

    In this paper, we present a pulse pressure waveform sensor that does not constrain a wearer’s daily activity; the sensor uses hetero-core fiber optics. Hetero-core fiber sensors have been found to be sensitive to moderate bending. To detect minute pulse pressure changes from the radial artery at the wrist, we devised a fiber sensor arrangement using three-point bending supports. We analyzed and evaluated the measurement validity using wavelet transformation, which is well-suited for biological signal processing. It was confirmed that the detected pulse waveform had a fundamental mode frequency of around 1.25 Hz over the time-varying waveform. A band-pass filter with a range of frequencies from 0.85 to 1.7 Hz was used to pick up the fundamental mode. In addition, a high-pass filter with 0.85 Hz frequency eliminated arm motion artifacts; consequently, we achieved high signal-to-noise ratio. For unrestricted daily health management, it is desirable that pulse pressure monitoring can be achieved by simply placing a device on the hand without the sensor being noticed. Two types of arrangements were developed and demonstrated in which the pulse sensors were either embedded in a base, such as an armrest, or in a wearable device. A wearable device without cuff pressure using a sensitivity-enhanced fiber sensor was successfully achieved with a sensitivity of 0.07–0.3 dB with a noise floor lower than 0.01 dB for multiple subjects. PMID:27699128

  10. Properties of dielectric-barrier-free atmospheric pressure microplasma driven by submicrosecond dc pulse voltage

    SciTech Connect

    Ha, Chang-Seung; Choi, Joon-Young; Kim, Dong-Hyun; Park, Chung-Hoo; Lee, Hae June; Lee, Ho-Jun

    2009-08-10

    Atmospheric pressure microplasma driven by dc pulse is developed. This device has a simple structure comprised of a flowing helium (He) feed gas and dielectric-free metal electrodes without an external current limiting resistor. It is shown that a stable glow mode plasma can be sustained without arc runaway by limiting the voltage pulse width to shorter than 300 ns. The properties of the device are reported in terms of discharge current waveforms, rotational temperature of N{sub 2}{sup +}, and spatiotemporally resolved optical emission characteristics.

  11. Pulsed Discharge Effects on Bacteria Inactivation in Low-Pressure Radio-Frequency Oxygen Plasma

    NASA Astrophysics Data System (ADS)

    Vicoveanu, Dragos; Ohtsu, Yasunori; Fujita, Hiroharu

    2008-02-01

    The sporicidal effects of low-pressure radio frequency (RF) discharges in oxygen, produced by the application of continuous and pulsed RF power, were evaluated. For all cases, the survival curves showed a biphasic evolution. The maximum efficiency for bacteria sterilization was obtained when the RF power was injected in the continuous wave mode, while in the pulsed mode the lowest treatment temperature was ensured. The inactivation rates were calculated from the microorganism survival curves and their dependencies on the pulse characteristics (i.e., pulse frequency and duty cycle) were compared with those of the plasma parameters. The results indicated that the inactivation rate corresponding to the first phase of the survival curves is related to the time-averaged intensity of the light emission by the excited neutral atoms in the pulsed plasma, whereas the inactivation rate calculated from the second slope of the survival curves and the time-averaged plasma density have similar behaviors, when the pulse parameters were modified.

  12. Amplitude Modulator Chassis

    SciTech Connect

    Erbert, G

    2009-09-01

    The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 ps apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.

  13. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    SciTech Connect

    Eslami, E. Barjasteh, A.; Morshedian, N.

    2015-06-15

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.

  14. A new non-invasive method using pulse oximetry for the assessment of arterial toe pressure.

    PubMed

    Samuelsson, P; Blohmé, G; Fowelin, J; Eriksson, J W

    1996-07-01

    We evaluated a novel, simple non-invasive method to assess systolic arterial toe pressures (ATP). It was employed in 63 subjects, of which 37 had suspected or established lower extremity arterial disease (LEAD) and 26 did not. 48 of the subjects had diabetes and 15 were non-diabetic. Pulsatile toe blood flow was monitored with a regular pulse oximeter (Biox 3700TM, BOC Ohmeda, Helsingborg, Sweden) (POX) with the sensor on the tip of the great toe. A small blood pressure cuff was placed around the proximal part of the toe and was connected to a sphygmomanometer (TycosTM, Levimed AB, Höganäs, Sweden). Systolic pressure was estimated as the cuff pressure at which pulsatile blood flow ceased during cuff inflation. Toe pressure measurement was obtained, in parallel, using the established strain gauge plethysmographic technique. There was a good concordance between the two methods (linear regression: r = 0.93; y = 1.1 x x-6.4; y = pressure obtained with the pulse oximeter, x = pressure obtained with strain gauge, in mmHg). However, patients with very low systolic toe pressures, < 20 mmHg, could not be reproducibly assessed using the POX method. In conclusion, the POX method was found to be a simple and reliable method for the estimation of systolic toe pressures, at least for those above the severely ischemic level. It may provide an easily accessible and cost-effective means of vascular assessment at the bedside, as well as for out-patients.

  15. Generation of negative pressures and spallation phenomena in diamond exposed to a picosecond laser pulse

    SciTech Connect

    Abrosimov, S A; Bazhulin, A P; Bol'shakov, A P; Konov, V I; Krasyuk, I K; Pashinin, P P; Ral'chenko, V G; Semenov, A Yu; Sovyk, D N; Stuchebryukhov, I A; Khomich, A A; Fortov, V E; Khishchenko, K V

    2014-06-30

    The spallation phenomena in poly- and single-crystal synthetic diamonds have been experimentally investigated. A shockwave impact on a target was implemented using a 70-ps laser pulse in the Kamerton-T facility. The ablation pressure of 0.66 TPa on the front target surface was formed by pulsed radiation of a neodymium phosphate glass laser (second harmonic λ = 0.527 mm, pulse energy 2.5 J) with an intensity as high as 2 × 10{sup 13} W cm{sup -2}. The maximum diamond spall strength σ* ≈ 16.5 GPa is found to be 24% of the theoretical ultimate strength. Raman scattering data indicate that a small amount of crystalline diamond in the spallation region on the rear side of the target is graphitised. (extreme light fields and their applications)

  16. Quarter-wave pulse tube

    NASA Astrophysics Data System (ADS)

    Swift, G. W.; Gardner, D. L.; Backhaus, S. N.

    2011-10-01

    In high-power pulse-tube refrigerators, the pulse tube itself can be very long without too much dissipation of acoustic power on its walls. The pressure amplitude, the volume-flow-rate amplitude, and the time phase between them evolve significantly along a pulse tube that is about a quarter-wavelength long. Proper choice of length and area makes the oscillations at the ambient end of the long pulse tube optimal for driving a second, smaller pulse-tube refrigerator, thereby utilizing the acoustic power that would typically have been dissipated in the first pulse-tube refrigerator's orifice. Experiments show that little heat is carried from the ambient heat exchanger to the cold heat exchanger in such a long pulse tube, even though the oscillations are turbulent and even when the tube is compactly coiled.

  17. Studies on an improved indigenous pressure wave generator and its testing with a pulse tube cooler

    NASA Astrophysics Data System (ADS)

    Jacob, S.; Karunanithi, R.; Narsimham, G. S. V. L.; Kranthi, J. Kumar; Damu, C.; Praveen, T.; Samir, M.; Mallappa, A.

    2014-01-01

    Earlier version of an indigenously developed Pressure Wave Generator (PWG) could not develop the necessary pressure ratio to satisfactorily operate a pulse tube cooler, largely due to high blow by losses in the piston cylinder seal gap and due to a few design deficiencies. Effect of different parameters like seal gap, piston diameter, piston stroke, moving mass and the piston back volume on the performance is studied analytically. Modifications were done to the PWG based on analysis and the performance is experimentally measured. A significant improvement in PWG performance is seen as a result of the modifications. The improved PWG is tested with the same pulse tube cooler but with different inertance tube configurations. A no load temperature of 130 K is achieved with an inertance tube configuration designed using Sage software. The delivered PV power is estimated to be 28.4 W which can produce a refrigeration of about 1 W at 80 K.

  18. Promising high-pressure DF - CO{sub 2} laser for amplifying picosecond radiation pulses

    SciTech Connect

    Agroskin, V Ya; Bravy, B G; Vasil'ev, G K; Kashtanov, S A; Makarov, E F; Sotnichenko, S A; Chernyshev, Yu A

    2012-10-31

    A scheme of the experiment is described and the results of measuring the small-signal gain in the active medium of a pulsed chemical DF - CO{sub 2} laser at a medium pressure in the range from 1 to 2.5 atm are reported. The values obtained (above 5 m{sup -1} at a pressure of 2.5 atm) make this laser a promising final amplifier of a multiterawatt laser system in the 10-{mu}m wavelength region. (lasers)

  19. Effect of electromagnetic pulse transverse inhomogeneity on ion acceleration by radiation pressure

    SciTech Connect

    Lezhnin, K. V.; Kamenets, F. F.; Beskin, V. S.; Kando, M.; Esirkepov, T. Zh.; Bulanov, S. V.

    2015-03-15

    During ion acceleration by radiation pressure, a transverse inhomogeneity of an electromagnetic pulse leads to an off-axis displacement of the irradiated target, limiting the achievable ion energy. This effect is analytically described within the framework of a thin foil target model and with particle-in-cell simulations showing that the maximum energy of the accelerated ions decreases as the displacement from the axis of the target's initial position increases. The results obtained can be applied to the optimization of ion acceleration by the laser radiation pressure with mass-limited targets.

  20. Development of a Pulsed Pressure-Based Technique for Cavitation Damage Study

    SciTech Connect

    Ren, Fei; Wang, Jy-An John; Liu, Yun; Wang, Hong

    2012-01-01

    Cavitation occurs in many fluid systems and can lead to severe material damage. To assist the study of cavitation damage, a novel testing method utilizing pulsed pressure was developed. In this talk, the scientific background and the technical approach of this development are present and preliminary testing results are discussed. It is expected that this technique can be used to evaluate cavitation damage under various testing conditions including harsh environments such as those relevant to geothermal power generation.

  1. Pulse pressure monitoring through non-contact cardiac motion detection using 2.45 GHz microwave Doppler radar.

    PubMed

    Singh, Aditya; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    The use of a Continuous Wave (CW) quadrature Doppler radar is proposed here for continuous non-invasive Pulse Pressure monitoring. A correspondence between the variation in systemic pulse and variation in the displacement of the chest due to heart is demonstrated, establishing feasibility for the approach. Arctangent demodulation technique was used to process baseband data from radar measurements on two test subjects, in order to determine the absolute cardiac motion. An Omron digital Blood pressure cuff was used to measure the systolic and diastolic blood pressures from which the pulse pressure was calculated. Correlation between pulse pressure and cardiac motion was observed through changes induced due to different postures of the body. PMID:22255299

  2. Large-amplitude coherent phonons and inverse Stone-Wales transitions in graphitic systems with defects interacting with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Valencia, Felipe; Romero, Aldo H.; Jeschke, Harald O.; Garcia, Martin E.

    2006-08-01

    The mechanical response of a defective graphene layer to an ultrafast laser pulse is investigated through nonadiabatic molecular dynamics simulations. The defects are pentagon-heptagon pairs introduced by a single Stone-Wales transformation in the simulation cell. We found that when the fraction of excited electrons ξ is below 6%, the layer exhibits strong transversal displacements in the neighborhood of the defect. The amplitude of these movements increases with the amount of energy absorbed until the threshold of ξ=6% is reached. Under this condition the layer undergoes a subpicosecond inverse Stone-Wales transition, healing the defect. The absorbed energy per atom required to induce this mechanism is approximately 1.3eV , a value that is below the laser damage thresholds for the pristine layers. The transition is lead by the electronic entropy and follows a path with strong out-of-plane contributions; it differs from the predicted path for thermally activated transitions, as calculated using standard transition state approaches. The same phenomenon is observed in defective zig-zag and armchair nanotubes. In contrast, for a defective C60 fullerene the mechanism is hindered by the presence of edge-sharing pentagons.

  3. Influence of nitrogen background pressure on structure of niobium nitride films grown by pulsed laser deposition

    SciTech Connect

    Ashraf H. Farha, Ali O. Er, Yüksel Ufuktepe, Ganapati Myneni, Hani E. Elsayed-Ali

    2011-12-01

    Depositions of niobium nitride thin films on Nb using pulsed laser deposition (PLD) with different nitrogen background pressures (10.7 to 66.7 Pa) have been performed. The effect of nitrogen pressure on NbN formation in this process was examined. The deposited films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), and energy dispersive X-ray (EDX) analysis. Hexagonal {beta}-Nb{sub 2}N and cubic {delta}-NbN phases resulted when growth was performed in low nitrogen background pressures. With an increase in nitrogen pressure, NbN films grew in single hexagonal {beta}-Nb{sub 2}N phase. The formation of the hexagonal texture during the film growth was studied. The c/a ratio of the hexagonal {beta}-Nb{sub 2}N unit cell parameter increases with increasing nitrogen pressure. Furthermore, the N:Nb ratio has a strong influence on the lattice parameter of the {delta}-NbN, where the highest value was achieved for this ratio was 1.19. It was found that increasing nitrogen background pressure leads to change in the phase structure of the NbN film. With increasing nitrogen pressure, the film structure changes from hexagonal to a mixed phase and then back to a hexagonal phase.

  4. Effects of large pressure amplitude low frequency noise in the parotid gland perivasculo-ductal connective tissue.

    PubMed

    Oliveira, Pedro; Brito, José; Mendes, João; da Fonseca, Jorge; Águas, Artur; Martins dos Santos, José

    2013-01-01

    Introdução: Em tecidos e órgãos expostos a ruído de baixa frequência de alta amplitude ocorre fibrose na ausência de sinais inflamatórios, que se pensa ser uma resposta protetora. No tecido conjuntivo perivasculo-ductal da glândula parótida seguem artérias, veias e a árvore ductal. Crê-se que o tecido conjuntivo perivasculo-ductal funcione como um estabilizador mecânico do tecido glandular.Material e Métodos: Para quantificar a proliferação de tecido conjuntivo perivasculo-ductal em ratos expostos a ruído de baixafrequência de alta amplitude foram utilizados 60 ratos Wistar igualmente divididos em seis grupos. Um grupo mantido em silêncio, e os restantes 5 expostos a ruído de baixa frequência de alta amplitude continuamente: g1-168h (1 semana); g2-504h (3 semanas); g3-840h (5semanas); g4-1512h (9 semanas) e g5-2184h (13 semanas). Após a exposição, as parótidas foram removidas e o tecido conjuntivo perivasculo-ductal foi medido em todos os grupos. Foi efectuada análise estatística com ANOVA por SPSS 13.0.Resultados: A tendência é um aumento global das áreas do tecido conjuntivo perivasculo-ductal, que se desenvolve de forma linear e significativa com o tempo de exposição (p < 0,001).Discussão: Tem sido sugerido que a resposta biológica à exposição ao ruído de baixa frequência de alta amplitude está associada à necessidade de manter a integridade estrutural. O reforço estrutural seria conseguido através do aumento do tecido conjuntivo perivasculo-ductal.Conclusões: Assim, estes resultados mostram que o tecido conjuntivo perivasculo-ductal aumenta em resposta à exposição ao ruído de baixa frequência de alta amplitude.

  5. Application of Pressure Pulse Test Analysis in CO2 Leakage Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Shakiba, M.; Hosseini, S. A.

    2015-12-01

    Over the past decade, numerous research and industrial projects have been devoted to investigate the feasibility and efficiency of carbon dioxide capture, storage, and utilization. Besides the studies over the characteristics of candidate formations for CO2 injection, much attention has been paid to answer the environmental concerns regarding the CO2 leak to overlying formations. To first detect and then track a possible CO2 leak, different techniques have been proposed in the literature; however, most of them examine only a small portion of the formation and have a low resolution for early leak detection. To further increase the extent of the investigation zone and to monitor a large section of the formation in more detail, multi-well testing techniques have received a significant attention. Pressure pulse testing is a multi-well test technique in which a pressure signal generated by periods of injection and shut-in from a pulser well is propagated inside the formation, and the corresponding response is recorded at the observer wells. The recorded pressure response is then analyzed to measure the rock and fluid properties and to monitor the possible changes over the time. In this research study, we have applied frequency methods as well as superposition principle to interpret the pressure pulse test data and monitor the changes in transmissibility and storativity of the formation between the well pairs. We have used synthetic reservoir models and numerical reservoir simulations to produce the pressure pulse test data. The analysis of the simulation results indicated that even a small amount of CO2 leak in the investigation zone can have a measurable effect on the calculated storativity and transmissibility factors. This can be of a great importance when an early leak detection is of interest. Moreover, when multiple wells are available in the formation, the distribution of the calculated parameters can visualize the extent of CO2 leak, which has a great

  6. Investigation of the propagation of a gigawatt pulsed electron beam in compositions of high-pressure gas

    SciTech Connect

    Sazonov, R. V.; Kholodnaya, G. E.; Ponomarev, D. V.; Remnev, G. E.

    2014-07-15

    The paper presents the results of the experimental investigation of pulsed electron beam propagation with a varying current density (electron energy E{sub e} = 350–400 keV; total current of a diode I{sub e} up to 11 kA; (half-amplitude) pulse duration t = 60 ns, pulse energy W{sub e} up to 120 J) in two- and three-component gas compositions used in the pulsed plasma chemical synthesis of nanosized oxides. The mean value of the specific absorbed energy within the zone of pulsed electron beam propagation with a current density of 0.05–0.06 kA/cm{sup 2} in gas compositions has been determined.

  7. Exhaust pressure and density of various pulsed MPD-Arc thruster systems

    NASA Technical Reports Server (NTRS)

    Michels, C. J.

    1973-01-01

    Exhaust flow in a new 155-cm-i.d. vacuum facility is compared with earlier measurements in a small (15.2-cm-i.d.) duct. Reductions in post-transient impact pressure are about 5:1 in the larger facility. Corresponding reduced electron number densities (about 2 x 10 to the 13th power per cu cm) are noted. A new 125-microsec pulse-forming network power source produced no major differences in impact pressure compared to the crowbarred condenser bank used earlier. Comparing a puff gas feed of the arc chamber with a new 10-msec steady gas feed also shows no major difference in impact pressure for 125-microsec powering.

  8. AUTOMATIC DETECTION ALGORITHM OF DYNAMIC PRESSURE PULSES IN THE SOLAR WIND

    SciTech Connect

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Li, Huijun; Xu, Xiaojun E-mail: fengx@spaceweather.ac.cn

    2015-04-20

    Dynamic pressure pulses (DPPs) in the solar wind are a significant phenomenon closely related to the solar-terrestrial connection and physical processes of solar wind dynamics. In order to automatically identify DPPs from solar wind measurements, we develop a procedure with a three-step detection algorithm that is able to rapidly select DPPs from the plasma data stream and simultaneously define the transition region where large dynamic pressure variations occur and demarcate the upstream and downstream region by selecting the relatively quiet status before and after the abrupt change in dynamic pressure. To demonstrate the usefulness, efficiency, and accuracy of this procedure, we have applied it to the Wind observations from 1996 to 2008 by successfully obtaining the DPPs. The procedure can also be applied to other solar wind spacecraft observation data sets with different time resolutions.

  9. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1996-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  10. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    NASA Astrophysics Data System (ADS)

    McCarthy, B. M.; O'Flynn, B.; Mathewson, A.

    2011-08-01

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  11. Alleviation of pressure pulse effects for trains entering tunnels. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Dayman, B., Jr.; Hammitt, A. G.; Holway, H. P.; Tucker, C. E., Jr.; Vardy, A. E.

    1979-01-01

    The degree to which it is possible to attenuate the effects of pressure pulses on the passengers in trains entering tunnels by modifying the normally abrupt portal of a constant-diameter single track tunnel was investigated. Although the suggested modifications to the tunnel entrance portal may not appreciably decrease the magnitude of the pressure rise, they are very effective in reducing the discomfort to the human ear by substantially decreasing the rate of pressure rise to that which the normal ear can accommodate. Qualitative comparison was made of this portal modification approach with other approaches: decreasing the train speed or sealing the cars. The optimum approach, which is dependent upon the conditions and requirements of each particular rail system, is likely to be the portal modification one for a rapid rail mass transit system.

  12. Fiber optic based heart-rate and pulse pressure shape monitor

    NASA Astrophysics Data System (ADS)

    Kokkinos, D.; Dehipawala, S.; Holden, T.; Cheung, E.; Musa, M.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2012-01-01

    Macro-bending fiber optic based heart-rate and pulse pressure shape monitors have been fabricated and tested for non-invasive measurement. Study of fiber bending loss and its stability and variations are very important especially for sensor designs based on optical fiber bending. Wavelengths from 1300 nm to 1550 nm have been used with fabrication based on multimode fiber, single mode fiber, and photonic crystal fiber. The smallest studied curvature would demand the use of single mode standard fibers. The collected data series show high quality suitable for random series analysis. Fractal property of optically measured pulse pressure data has been observed to correlate with physical activity. Correlation to EKG signal suggests that the fabricated monitors are capable of measuring the differential time delays at wrist and leg locations. The difference in time delay could be used to formulate a velocity parameter for diagnostics. The pulse shape information collected by the fiber sensor provides additional parameters for the analysis of the fractal nature of the heart. The application to real time measurement of blood vessel stiffness with this optical non-invasive fiber sensor is discussed.

  13. Analysis based on global model of nitrogen plasma produced by pulsed microwave at low pressure

    SciTech Connect

    Qiu, Feng; Yan, Eryan Meng, Fanbao; Ma, Hongge; Liu, Minghai

    2015-07-15

    This paper analyzes certain evolution processes in nitrogen plasmas discharged using pulsed microwaves at low pressure. Comparing the results obtained from the global model incorporating diffusion and the microwave transmission method, the temporal variation of the electron density is analyzed. With a discharge pressure of 300 Pa, the results obtained from experiments and the global model calculation show that when the discharge begins the electron density in the plasma rises quickly, to a level above the critical density corresponding to the discharge microwave frequency, but falls slowly when the discharge microwave pulse is turned off. The results from the global model also show that the electron temperature increases rapidly to a peak, then decays after the electron density reaches the critical density, and finally decreases quickly to room temperature when the discharge microwave pulse is turned off. In the global model, the electron density increases because the high electron temperature induces a high ionization rate. The decay of the electron density mainly comes from diffusion effect.

  14. Diamondoid synthesis by nanosecond pulsed microplasmas generated in He at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Shizuno, Tomoki; Oshima, Fumito; Pai, David Z.; Terashima, Kazuo

    2012-10-01

    Diamondoids are sp^3 hybridized carbon nanomaterials that possess interesting properties making them attractive for biotechnology, medicine, and opto- and nanoelectronics. So far, larger diamondoids have been synthesized using the smallest diamondoid (adamantane) as a precursor. For this electric discharges and pulsed laser plasmas generated in supercritical fluids, and hot filament chemical vapor deposition have been used, but these methods are difficult to realize or very time-consuming. We have developed a more convenient approach where diamondoids are synthesized by high-voltage nanosecond pulsed microplasmas (voltage 15 kVp-p, frequency 1 Hz, pulse width 10 ns) generated in He at atmospheric pressure using point-to-plane tungsten electrodes. Adamantane was used as a precursor, and synthesis was conducted for 10^5 pulses at gas temperatures of 297, 373 and 473 K. Energy dispersive X-ray and micro-Raman spectroscopy were conducted to determine the composition of the products, and gas chromatography - mass spectra indicated the formation of diamantane. It was found that synthesis is more efficient at room temperature than at higher temperatures, and time-resolved optical emission spectroscopy suggest that the chemical reactions take place in the afterglow.

  15. High-voltage nanosecond pulses in a low-pressure radio-frequency discharge.

    PubMed

    Pustylnik, M Y; Hou, L; Ivlev, A V; Vasilyak, L M; Couëdel, L; Thomas, H M; Morfill, G E; Fortov, V E

    2013-06-01

    An influence of a high-voltage (3-17 kV) 20 ns pulse on a weakly-ionized low-pressure (0.1-10 Pa) capacitively coupled radiofrequency (RF) argon plasma is studied experimentally. The plasma evolution after pulse exhibits two characteristic regimes: a bright flash, occurring within 100 ns after the pulse (when the discharge emission increases by 2-3 orders of magnitude over the steady-state level), and a dark phase, lasting a few hundreds μs (when the intensity of the discharge emission drops significantly below the steady-state level). The electron density increases during the flash and remains very large at the dark phase. 1D3V particle-in-cell simulations qualitatively reproduce both regimes and allow for detailed analysis of the underlying mechanisms. It is found that the high-voltage nanosecond pulse is capable of removing a significant fraction of plasma electrons out of the discharge gap, and that the flash is the result of the excitation of gas atoms, triggered by residual electrons accelerated in the electric field of immobile bulk ions. The secondary emission from the electrodes due to vacuum UV radiation plays an important role at this stage. High-density plasma generated during the flash provides efficient screening of the RF field (which sustains the steady-state plasma). This leads to the electron cooling and, hence, onset of the dark phase.

  16. A STATISTICAL SURVEY OF DYNAMIC PRESSURE PULSES IN THE SOLAR WIND BASED ON WIND OBSERVATIONS

    SciTech Connect

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun E-mail: fengx@spaceweather.ac.cn

    2015-07-20

    Solar wind dynamic pressure pulse (DPP) structures, across which the dynamic pressure changes abruptly over timescales from a few seconds to several minutes, are often observed in the near-Earth space environment. The space weather effects of DPPs on the magnetosphere–ionosphere coupling system have been widely investigated in the last two decades. In this study, we perform a statistical survey on the properties of DPPs near 1 AU based on nearly 20 years of observations from the WIND spacecraft. It is found that only a tiny fraction of DPPs (around 4.2%) can be regarded as interplanetary shocks. For most DPPs, the total pressure (the sum of the thermal pressure and magnetic pressure) remains in equilibrium, but there also exists a small fraction of DPPs that are not pressure-balanced. The overwhelming majority of DPPs are associated with solar wind disturbances, including coronal mass ejection-related flows, corotating interaction regions, as well as complex ejecta. The annual variations of the averaged occurrence rate of DPPs are roughly in phase with the solar activity during solar cycle 23, and during the rising phase of solar cycle 24.

  17. Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration

    NASA Astrophysics Data System (ADS)

    Wang, Yanhui; Ye, Huanhuan; Zhang, Jiao; Wang, Qi; Zhang, Jie; Wang, Dezhen

    2016-05-01

    In this paper, we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model. The results show that, the DBDs driven by positive pulse, negative pulse and bipolar pulse possess different behaviors. Moreover, the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes. For the case of the positive pulse, the breakdown field is much lower than that of the negative pulse, and its propagation characteristic is different from the negative pulse DBD. When the DBD is driven by a bipolar pulse voltage, there exists the interaction between the positive and negative pulses, resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors. In addition, the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied. supported by National Natural Science Foundation of China (No. 11405022)

  18. The effects of pulse pressure from seismic water gun technology on Northern Pike

    USGS Publications Warehouse

    Gross, Jackson A.; Irvine, Kathryn M.; Wilmoth, Siri K.; Wagner, Tristany L.; Shields, Patrick A; Fox, Jeffrey R.

    2013-01-01

    We examined the efficacy of sound pressure pulses generated from a water gun for controlling invasive Northern Pike Esox lucius. Pulse pressures from two sizes of water guns were evaluated for their effects on individual fish placed at a predetermined random distance. Fish mortality from a 5,620.8-cm3 water gun (peak pressure source level = 252 dB referenced to 1 μP at 1 m) was assessed every 24 h for 168 h, and damage (intact, hematoma, or rupture) to the gas bladder, kidney, and liver was recorded. The experiment was replicated with a 1,966.4-cm3 water gun (peak pressure source level = 244 dB referenced to 1 μP at 1 m), but fish were euthanized immediately. The peak sound pressure level (SPLpeak), peak-to-peak sound pressure level (SPLp-p), and frequency spectrums were recorded, and the cumulative sound exposure level (SELcum) was subsequently calculated. The SPLpeak, SPLp-p, and SELcum were correlated, and values varied significantly by treatment group for both guns. Mortality increased and organ damage was greater with decreasing distance to the water gun. Mortality (31%) by 168 h was only observed for Northern Pike exhibiting the highest degree of organ damage. Mortality at 72 h and 168 h postexposure was associated with increasing SELcum above 195 dB. The minimum SELcum calculated for gas bladder rupture was 199 dB recorded at 9 m from the 5,620.8-cm3 water gun and 194 dB recorded at 6 m from the 1,966.4-cm3water gun. Among Northern Pike that were exposed to the large water gun, 100% of fish exposed at 3 and 6 m had ruptured gas bladders, and 86% exposed at 9 m had ruptured gas bladders. Among fish that were exposed to pulse pressures from the smaller water gun, 78% exhibited gas bladder rupture. Results from these initial controlled experiments underscore the potential of water guns as a tool for controlling Northern Pike.

  19. Simulations of nanosecond-pulsed dielectric barrier discharges in atmospheric pressure air

    SciTech Connect

    Soo Bak, Moon; Cappelli, Mark A.

    2013-03-21

    This paper describes simulations of nanosecond pulse plasma formation between planer electrodes covered by dielectric barriers in air at atmospheric pressure and 340 K. The plasma formation process starts as electrons detach from negative ions of molecular oxygen that are produced from the previous discharge pulse. An ionization front is found to form close to the positively biased electrode and then strengthens and propagates towards the grounded electrode with increasing gap voltage. Charge accumulation and secondary emission from the grounded electrode eventually lead to sheath collapse. One interesting feature is a predicted reversal in gap potential due to the accumulated charge, even when there is no reversal in applied potential. The simulation results are compared to recent measurement of mid-gap electric field under the same discharge conditions [Ito et al., Phys. Rev. Lett. 107, 065002 (2011)].

  20. The 24-hour pulse wave velocity, aortic augmentation index, and central blood pressure in normotensive volunteers.

    PubMed

    Kuznetsova, Tatyana Y; Korneva, Viktoria A; Bryantseva, Evgeniya N; Barkan, Vitaliy S; Orlov, Artemy V; Posokhov, Igor N; Rogoza, Anatoly N

    2014-01-01

    The purpose of this study was to examine the pulse wave velocity, aortic augmentation index corrected for heart rate 75 (AIx@75), and central systolic and diastolic blood pressure during 24-hour monitoring in normotensive volunteers. Overall, 467 subjects (206 men and 261 women) were recruited in this study. Participants were excluded from the study if they were less than 19 years of age, had blood test abnormalities, had a body mass index greater than 2 7.5 kg/m(2), had impaired glucose tolerance, or had hypotension or hypertension. Ambulatory blood pressure monitoring (ABPM) with the BPLab(®) device was performed in each subject. ABPM waveforms were analyzed using the special automatic Vasotens(®) algorithm, which allows the calculation of pulse wave velocity, AIx@75, central systolic and diastolic blood pressure for "24-hour", "awake", and "asleep" periods. Circadian rhythms and sex differences in these indexes were identified. Pending further validation in prospective outcome-based studies, our data may be used as preliminary diagnostic values for the BPLab ABPM additional index in adult subjects.

  1. An atmospheric pressure self-pulsing micro thin-cathode discharge

    NASA Astrophysics Data System (ADS)

    Du, Beilei; Mohr, Sebastian; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2011-03-01

    A micro thin-cathode discharge (μTCD) is a modified micro hollow-cathode discharge (MHCD) where the anode is much thicker than the one in a MHCD, which allows a stable operation at atmospheric pressure. The μTCD was operated at different pressures in argon by a dc voltage. At atmospheric pressure, the μTCD operates in a self-pulsing mode with current peaks with a duration of a few nanoseconds and a current density up to 105 A cm-2, supplied by the charge stored in the capacitance of the discharge device. The plasma emission was observed by an ICCD camera. Both, the voltage-current characteristic and the ICCD image indicate that this self-pulsing is due to a periodic ignition of a spark discharge. The electron density was measured by Stark broadening of the Hβ-line with an admixture of 1% hydrogen. In the periodic spark mode the electron density is of the order of 1016 cm-3. The direct measurement of the discharge current in these kinds of discharges is not possible, since it is driven by the inherent capacitance of the discharge device. Therefore, an electrical model including stray capacitances is set up. The modelled results agree very well with the measured currents and voltages.

  2. The 24-hour pulse wave velocity, aortic augmentation index, and central blood pressure in normotensive volunteers.

    PubMed

    Kuznetsova, Tatyana Y; Korneva, Viktoria A; Bryantseva, Evgeniya N; Barkan, Vitaliy S; Orlov, Artemy V; Posokhov, Igor N; Rogoza, Anatoly N

    2014-01-01

    The purpose of this study was to examine the pulse wave velocity, aortic augmentation index corrected for heart rate 75 (AIx@75), and central systolic and diastolic blood pressure during 24-hour monitoring in normotensive volunteers. Overall, 467 subjects (206 men and 261 women) were recruited in this study. Participants were excluded from the study if they were less than 19 years of age, had blood test abnormalities, had a body mass index greater than 2 7.5 kg/m(2), had impaired glucose tolerance, or had hypotension or hypertension. Ambulatory blood pressure monitoring (ABPM) with the BPLab(®) device was performed in each subject. ABPM waveforms were analyzed using the special automatic Vasotens(®) algorithm, which allows the calculation of pulse wave velocity, AIx@75, central systolic and diastolic blood pressure for "24-hour", "awake", and "asleep" periods. Circadian rhythms and sex differences in these indexes were identified. Pending further validation in prospective outcome-based studies, our data may be used as preliminary diagnostic values for the BPLab ABPM additional index in adult subjects. PMID:24812515

  3. The solar wind pressure pulse as a ring current source in the disturbed magnetosphere

    NASA Astrophysics Data System (ADS)

    Kalegaev, Vladimir; Vlasova, Natalia; Nazarkov, Ilya

    2016-07-01

    The solar wind pressure and IMF are the most important factors of interplanetary medium disturbing the Earth's magnetosphere. They determine the momentum/energy transfer inside the magnetopause. The relative dynamics of solar wind pressure and IMF controls the development of the different storm-time magnetospheric currents during disturbances. While the southward turning of IMF is well-known magnetic storm source, the role of the strong pressure pulse under northward IMF is not enough studied. We present the results of studying the solar wind pressure influence on the magnetospheric structure during events on 21-22 January 2005 and 22-23 June 2015 when the main phase of geomagnetic storms developed under IMF Bz>0. Joint analysis of experimental and modeling data was carried out. Equatorial ion fluxes of 30-80 keV protons of the storm time equatorial belt (STEB) measured by low-altitude polar sun-synchronous NOAA POES satellites were used to estimate the ring current evolution. The magnetic field of the large-scale magnetospheric currents was calculated in terms of the paraboloid model of the magnetospheric geomagnetic field A2000. It was found that ring current development during the early main phase of the magnetic storms was provided not only large-scale magnetospheric convection but also by extremely strong solar wind dynamical impact. Interplanetary shock caused intensive trapped particle non-adiabatic radial motion to the lover L-shells during SSC and subsequent ring current enhancement similar to that taking place due to particle injection from the tail. The extreme solar wind pressure pulse can produce the ring current enhancement even under the northward orientation of the interplanetary magnetic field.

  4. Specific features of the behaviour of targets under negative pressures created by a picosecond laser pulse

    SciTech Connect

    Abrosimov, S A; Bazhulin, A P; Voronov, Valerii V; Geras'kin, A A; Krasyuk, Igor K; Pashinin, Pavel P; Semenov, Andrei Yu; Stuchebryukhov, I A; Khishchenko, K V; Fortov, Vladimir E

    2013-03-31

    New experimental data are obtained concerning the character of spallation and the mechanical strength of targets made of aluminium, aluminium - magnesium alloy (AMg6M), polymethylmethacrylate (PMMA, plexiglass), tantalum, copper, tungsten, palladium, silicon, and lead under the impact of laser radiation with the duration 70 ps. The specific features of the spallation phenomenon, in which the separation of a part of the target substance occurs at the back surface as a result of the effect of negative pressures (tensile stresses) in the substance, are experimentally studied. To determine the time moment of spallation, the electrocontact method of measuring the velocity of the spalled layer is developed and implemented. The obtained results show that the values of spall strength of the studied materials at moderate amplitudes of the shock-wave effect agree with the known literature data, while at higher pressures the growth of spall strength is observed, which is an evidence of the material hardening. The results of the studies demonstrate that the dynamic strength of a substance depends on both the duration and the amplitude of the shock-wave impact on the target. (extreme light fields and their applications)

  5. Effects of tidal amplitude on intertidal resource availability and dispersal pressure in prehistoric human coastal populations: the Mediterranean Atlantic transition

    NASA Astrophysics Data System (ADS)

    Fa, Darren Andrew

    2008-11-01

    In this paper I argue that there is a growing body of evidence supporting an increasingly central position of coastal environments in human evolution and dispersals, rather than as merely peripheral habitats. Eustatic fluctuations during glacial cycles have meant that most prehistoric coastlines are now underwater, and lack of evidence to date of a close relationship between people and the coast can be most plausibly ascribed to the limited studies so far on submerged sites. Coastal environments provide high diversity in food resources, consisting of multiple ecotones in close proximity, which reduces the need to forage widely. One of the richest and most easily exploited coastal resources by human populations living on the coast are molluscs from marine rocky intertidal communities, which recent evidence has highlighted as important as far back as the Middle Palaeolithic. However, the density of these resources is limited by a number of factors, and this varies geographically. One of the main large-scale factors limiting rocky intertidal mollusc densities is tidal amplitude, beyond which smaller-scale local factors such as exposure to wave action and shore aspect, further affect species distributions. The area around the Strait of Gibraltar is used as a case study of an area, which is affected by large variations in tidal amplitudes thus allowing for quantitative comparisons between taxonomically and climatically similar regions. Shorelines along the Mediterranean coast, with reduced tidal amplitudes, exhibit compressed zonations and harbour fewer macro-mollusc individuals, with the reverse being the case along the Atlantic coast, which has significantly larger tides. Data from Middle and Upper Palaeolithic sites along the Strait are used to establish harvested species and present-day data are used to model the potential distributions and associated variables such as calorific returns of key food species. An optimal foraging model is used to explore the effects of

  6. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral

    PubMed Central

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0–21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming. PMID:26582993

  7. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral.

    PubMed

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming. PMID:26582993

  8. Serum osteoprotegerin is associated with pulse pressure in kidney transplant recipients

    PubMed Central

    Nemeth, Zsofia K.; Mardare, Nicoleta G.; Czira, Maria E.; Deak, Gyorgy; Kiss, Istvan; Mathe, Zoltan; Remport, Adam; Ujszaszi, Akos; Covic, Adrian; Molnar, Miklos Z.; Mucsi, Istvan

    2015-01-01

    Pulse pressure (PP) reflects increased large artery stiffness, which is caused, in part, by arterial calcification in patients with chronic kidney disease. PP has been shown to predict both cardiovascular and cerebrovascular events in various patient populations, including kidney transplant (KTX) recipients. Osteoprotegerin (OPG) is a marker and regulator of arterial calcification, and it is related to cardiovascular survival in hemodialysis patients. Here we tested the hypothesis that OPG is associated with increased pulse pressure. We cross-sectionally analyzed the association between serum OPG and PP in a prevalent cohort of 969 KTX patients (mean age: 51 +/− 13 years, 57% male, 21% diabetics, mean eGFR 51 +/− 20 ml/min/1.73 m2). Independent associations were tested in a linear regression model adjusted for multiple covariables. PP was positively correlated with serum OPG (rho = 0.284, p < 0.001). Additionally, a positive correlation was seen between PP versus age (r = 0.358, p < 0.001), the Charlson Comorbidity Index (r = 0.232, p < 0.001), serum glucose (r = 0.172, p < 0.001), BMI (r = 0.133, p = 0.001) and serum cholesterol (r = 0.094, p = 0.003). PP was negatively correlated with serum Ca, albumin and eGFR. The association between PP and OPG remained significant after adjusting for multiple potentially relevant covariables (beta = 0.143, p < 0.001). We conclude that serum OPG is independently associated with pulse pressure in kidney transplant recipients. PMID:26459001

  9. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.

    2011-10-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  10. Aerodynamic stability analysis of NASA J85-13/planar pressure pulse generator installation

    NASA Technical Reports Server (NTRS)

    Chung, K.; Hosny, W. M.; Steenken, W. G.

    1980-01-01

    A digital computer simulation model for the J85-13/Planar Pressure Pulse Generator (P3 G) test installation was developed by modifying an existing General Electric compression system model. This modification included the incorporation of a novel method for describing the unsteady blade lift force. This approach significantly enhanced the capability of the model to handle unsteady flows. In addition, the frequency response characteristics of the J85-13/P3G test installation were analyzed in support of selecting instrumentation locations to avoid standing wave nodes within the test apparatus and thus, low signal levels. The feasibility of employing explicit analytical expression for surge prediction was also studied.

  11. Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses

    SciTech Connect

    Henig, A.; Hoerlein, R.; Kiefer, D.; Jung, D.; Habs, D.; Steinke, S.; Schnuerer, M.; Sokollik, T.; Nickles, P. V.; Sandner, W.; Schreiber, J.; Hegelich, B. M.; Yan, X. Q.; Meyer-ter-Vehn, J.; Tajima, T.

    2009-12-11

    We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5x10{sup 19} W/cm{sup 2}. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell simulations reveal that those C{sup 6+} ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.

  12. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    NASA Astrophysics Data System (ADS)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Gu, Y. Q.; Ma, W. J.; Yan, X. Q.

    2016-08-01

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  13. Slow slip pulses driven by thermal pressurization of pore fluid: theory and observational constraints

    NASA Astrophysics Data System (ADS)

    Garagash, D.

    2012-12-01

    We discuss recently developed solutions for steadily propagating self-healing slip pulses driven by thermal pressurization (TP) of pore fluid [Garagash, 2012] on a fault with a constant sliding friction. These pulses are characterized by initial stage of undrained weakening of the fault (when fluid/heat can not yet escape the frictionally heated shear zone), which gives way to partial restrengthening due to increasing hydrothermal diffusion under conditions of diminished rate of heating, leading to eventual locking of the slip. The rupture speed of these pulses is decreasing function of the thickness (h) of the principal shear zone. We find that "thick" shear zones, h >> hdyna, where hdyna = (μ/τ0) (ρc/fΛ)(4α/cs), can support aseismic TP pulses propagating at a fraction hdyna/h of the shear wave speed cs, while "thin" shear zones, h˜hdyna or thinner, can only harbor seismic slip. (Here μ - shear modulus, τ0 - the nominal fault strength, f - sliding friction, ρc - the heat capacity of the fault gouge, Λ - the fluid thermal pressurization factor, α - hydrothermal diffusivity parameter of the gouge). For plausible range of fault parameters, hdyna is between 10s to 100s of micrometers, suggesting that slow slip transients propagating at 1 to 10 km/day may occur in the form of a TP slip pulse accommodated by a meter-thick shear zone. We verify that this is, indeed, a possibility by contrasting the predictions for aseismic, small-slip TP pulses operating at seismologically-constrained, near-lithostatic pore pressure (effective normal stress ≈ 3 to 10 MPa) with the observations (slip duration at a given fault location ≈ week, propagation speed ≈ 15 km/day, and the inferred total slip ≈ 2 to 3 cm) for along-strike propagation of the North Cascadia slow slip events of '98-99 [Dragert et al., 2001, 2004]. Furthermore, we show that the effect of thermal pressurization on the strength of the subduction interface is comparable to or exceeds that of the rate

  14. Plasma polymerization of ethylene in an atmospheric pressure-pulsed discharge

    NASA Technical Reports Server (NTRS)

    Donohoe, K.; Wydeven, T.

    1979-01-01

    The polymerization of ethylene in an atmospheric pressure-pulsed discharge has been studied. Partial pressures of ethylene up to 4 kN/sq m were used with helium as a diluent. Deposition rates (on glass slides) were the same throughout the discharge volume over a wide range of operating conditions. These rates were in the 1-2 A/sec range. The films were clear, soft, and showed good adhesion to the glass substrates. Oligomers large enough to visibly scatter 637.8-nm light were observed in the gas phase under all conditions in which film deposition occurred. The experimental results suggest that Brownian diffusion of these oligomers was the rate-limiting step in the film deposition process.

  15. High-pressure pulsed avalanche discharges: Formulas for required preionization density and rate for homogeneity

    SciTech Connect

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E.

    1997-02-01

    The requirements on preionization for the formation of spatially homogeneous pulsed avalanche discharges are examined. The authors derive two formulas which apply in the case of a slowly rising electric field, one which gives the required preionization density at breakdown, and one which gives the required preionization rate. These quantities are expressed as functions of the electrochemical properties of the gas, the neutral density, and the electric field rise time. They also treat the statistical effect that the electrons tend to form groups, in contrast to being randomly distributed in space, during the prebreakdown phase. This process is found to increase the required preionization rate significantly, typically by a factor of five for a discharge at atmospheric pressure. Homogeneous high-pressure discharges have been used for laser excitation, and have also been proposed for chemical plasma processing (ozone production) because of their good scaling properties and high efficiency.

  16. Single pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: interrelationship of gate delay and pulse energy

    SciTech Connect

    Michel, Anna P. M.; Chave, Alan D

    2008-11-01

    The ability of oceanographers to make sustained measurements of ocean processes is limited by the number of available sensors for long-term in situ analysis. In recent years, laser-induced breakdown spectroscopy (LIBS) has been identified as a viable technique to develop into an oceanic chemical sensor. We performed single pulse laser-induced breakdown spectroscopy of high pressure bulk aqueous solutions to detect three analytes (sodium, manganese, and calcium) that are of key importance in hydrothermal vent fluids, an ocean environment that would greatly benefit from the development of an oceanic LIBS sensor. The interrelationship of the key experimental parameters, pulse energy and gate delay, for a range of pressures up to 2.76x10{sup 7} Pa, is studied. A minimal effect of pressure on the peak intensity is observed. A short gate delay (less than 200 ns) must be used at all pressures. The ability to use a relatively low laser pulse energy (less than approx. 60 mJ) for detection of analytes at high pressure is also established. Na, Mn, and Ca are detectable at pressures up to 2.76x10{sup 7} Pa at 50, 500, and 50 ppm, respectively, using an Echelle spectrometer.

  17. Inactivation of spores using pulsed electric field in a pressurized flow system

    SciTech Connect

    Choi, Jaegu; Wang Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; Lin Xiaofei; Sato, Hiroshi; Seta, Harumichi; Matsubara, Hitoshi; Saeki, Takeshi

    2008-11-01

    Pulsed electric field (PEF) inactivation is a very effective method to kill bacteria in liquid while avoiding thermal damage. However, only a limited inactivation effect on spores has been reported to date and the possible mechanisms are still unclear. Therefore, a study of inactivation of spores using PEF in a pressurized flow system is reported in this paper. PEF with a maximum magnitude higher than 110 kV/cm and a pulse width of 100 ns has been applied to a carefully designed treatment chamber through which a suspension fluid of 0.5 MPa continuously flows. Using the proposed PEF inactivation method, maximum 6.7 log reductions were achieved for B. subtilis spores that were investigated. These reductions were much greater than those obtained by a heat inactivation approach. Through frequency analysis using the frequency components of the applied pulses and the frequency response of the equivalent circuit of the spore, it was found that most voltage is applied to the outside of the core in the lower frequency and to the inside in the upper frequency. Also, transmission electron microscope micrographs of B. subtilis spores were taken in order to verify the effect of the PEF treatment.

  18. Pulse Pressure Is Associated With Early Brain Atrophy and Cognitive Decline: Modifying Effects of APOE-ε4.

    PubMed

    Nation, Daniel A; Preis, Sarah R; Beiser, Alexa; Bangen, Katherine J; Delano-Wood, Lisa; Lamar, Melissa; Libon, David J; Seshadri, Sudha; Wolf, Philip A; Au, Rhoda

    2016-01-01

    We investigated whether midlife pulse pressure is associated with brain atrophy and cognitive decline, and whether the association was modified by apolipoprotein-E ε4 (APOE-ε4) and hypertension. Participants (549 stroke-free and dementia-free Framingham Offspring Cohort Study participants, age range=55.0 to 64.9 y) underwent baseline neuropsychological and magnetic resonance imaging (subset, n=454) evaluations with 5- to 7-year follow-up. Regression analyses investigated associations between baseline pulse pressure (systolic-diastolic pressure) and cognition, total cerebral volume and temporal horn ventricular volume (as an index of smaller hippocampal volume) at follow-up, and longitudinal change in these measures. Interactions with APOE-ε4 and hypertension were assessed. Covariates included age, sex, education, assessment interval, and interim stroke. In the total sample, baseline pulse pressure was associated with worse executive ability, lower total cerebral volume, and greater temporal horn ventricular volume 5 to 7 years later, and longitudinal decline in executive ability and increase in temporal horn ventricular volume. Among APOE-ε4 carriers only, baseline pulse pressure was associated with longitudinal decline in visuospatial organization. Findings indicate arterial stiffening, indexed by pulse pressure, may play a role in early cognitive decline and brain atrophy in mid to late life, particularly among APOE-ε4 carriers. PMID:27556935

  19. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  20. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    NASA Astrophysics Data System (ADS)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  1. Tunable time-reversal cavity for high-pressure ultrasonic pulses generation: A tradeoff between transmission and time compression

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael

    2012-08-01

    This Letter presents a time reversal cavity that has both a high reverberation time and a good transmission factor. A multiple scattering medium has been embedded inside a fluid-filled reverberating cavity. This allows creating smart ultrasonic sources able to generate very high pressure pulses at the focus outside the cavity with large steering capabilities. Experiments demonstrate a 25 dB gain in pressure at the focus. This concept will enable us to convert conventional ultrasonic imaging probes driven by low power electronics into high power probes for therapeutic applications requiring high pressure focused pulses, such as histotripsy or lithotripsy.

  2. Quantum cascade laser absorption spectroscopy with the amplitude-to-time conversion technique for atmospheric-pressure plasmas

    SciTech Connect

    Yumii, Takayoshi; Kimura, Noriaki; Hamaguchi, Satoshi

    2013-06-07

    The NO{sub 2} concentration, i.e., density, in a small plasma of a nitrogen oxide (NOx) treatment reactor has been measured by highly sensitive laser absorption spectroscopy. The absorption spectroscopy uses a single path of a quantum cascade laser beam passing through a plasma whose dimension is about 1 cm. The high sensitivity of spectroscopy is achieved by the amplitude-to-time conversion technique. Although the plasma reactor is designed to convert NO in the input gas to NO{sub 2}, it has been demonstrated by this highly sensitive absorption spectroscopy that NO{sub 2} in a simulated exhaust gas that enters the reactor is decomposed by the plasma first and then NO{sub 2} is formed again, possibly more than it was decomposed, through a series of gas-phase reactions by the time the gas exits the reactor. The observation is consistent with that of an earlier study on NO decomposition by the same type of a plasma reactor [T. Yumii et al., J. Phys. D 46, 135202 (2013)], in which a high concentration of NO{sub 2} was observed at the exit of the reactor.

  3. Investigation of ion-ion-recombination at atmospheric pressure with a pulsed electron gun.

    PubMed

    Heptner, Andre; Cochems, Philipp; Langejuergen, Jens; Gunzer, Frank; Zimmermann, Stefan

    2012-11-01

    For future development of simple miniaturized sensors based on pulsed atmospheric pressure ionization as known from ion mobility spectrometry, we investigated the reaction kinetics of ion-ion-recombination to establish selective ion suppression as an easy to apply separation technique for otherwise non-selective ion detectors. Therefore, the recombination rates of different positive ion species, such as protonated water clusters H(+)(H(2)O)(n) (positive reactant ions), acetone, ammonia and dimethyl-methylphosphonate ions, all recombining with negative oxygen clusters O(2)(-)(H(2)O)(n) (negative reactant ions) in a field-free reaction region, are measured and compared. For all experiments, we use a drift tube ion mobility spectrometer equipped with a non-radioactive electron gun for pulsed atmospheric pressure ionization of the analytes. Both, ionization and recombination times are controlled by the duty cycle and repetition rate of the electron emission from the electron gun. Thus, it is possible to investigate the ion loss caused by ion-ion-recombination depending on the recombination time defined as the time delay between the end of the electron emission and the ion injection into the drift tube. Furthermore, the effect of the initial total ion density in the reaction region on the ion-ion-recombination rate is investigated by varying the density of the emitted electrons.

  4. No influence of lower leg heating on central arterial pulse pressure in young men.

    PubMed

    Kosaki, Keisei; Sugawara, Jun; Akazawa, Nobuhiko; Tanahashi, Koichiro; Kumagai, Hiroshi; Ajisaka, Ryuichi; Maeda, Seiji

    2015-07-01

    Central arterial pulse pressure (PP), a strong predictor of cardiovascular disease, mainly consists of an incident wave generated by left ventricular ejection and a late-arriving reflected wave emanating from the lower body. We have tested the hypothesis that a reduction in leg vascular tone by heat treatment of the lower leg attenuates the central arterial PP. Pressure and wave properties of the peripheral and central arteries were measured in eight young men before and after heat treatment of the lower leg (temperature approx. 43 °C) for 30 and 60 min, respectively. Following the lower leg heat trial, leg (femoral-ankle) pulse wave velocity (PWV) was significantly decreased, but aortic (carotid-femoral) PWV and parameters of wave reflection and carotid arterial PP did not change significantly. No significant changes were observed in these parameters in the control trial. These results suggest that the reduction in leg vascular tone induced by heat treatment of the lower leg may not affect wave reflection and central arterial PP in young men.

  5. Measurements of Electron Temperature and Gas Temperature in a Pulsed Atmospheric Pressure Air Discharge

    NASA Astrophysics Data System (ADS)

    Leipold, Frank; Hufney Mohamed, Abdel-Aleam; Schoenbach, Karl H.

    2001-10-01

    The application of electrical pulses with duration shorter than the time constant for glow-to-arc transition allows us to shift the electron energy distribution in high pressure glow discharges temporally to high energy values [1]. Application of these nonequilibrium plasmas are plasma ramparts, plasma reactors, and excimer light sources. In order to obtain information on the electron energy distribution , or electron energy, respectively, and the gas temperature with the required temporal resolution of 1 ns, we have explored two diagnostic methods. One is based on the evaluation of the bremsstrahlung. This method allows us to determine the electron temperature [2]. The gas temperature is obtained from the rotational spectrum of the second positive system of nitrogen. The results of measurement on a 10 ns pulsed atmospheric pressure air glow will be presented. References [1] Robert H. Stark and Karl H. Schoenbach, J. Appl. Phys. 89, 3568 (2001) [2] Jaeyoung Park, Ivars Henins, Hans W. Herrmann, and Gary S. Selwyn, Physics of Plasmas 7, 3141 (2000). [3] R. Block, O. Toedter, and K. H. Schoenbach, Bull. APS 43, 1478 (1998)

  6. Pulse

    MedlinePlus

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.

  7. Blood pressure and obesity exert independent influences on pulse wave velocity in youth.

    PubMed

    Lurbe, Empar; Torro, Isabel; Garcia-Vicent, Consuelo; Alvarez, Julio; Fernández-Fornoso, José Antonio; Redon, Josep

    2012-08-01

    The objective was to analyze pulse wave velocity (PWV) in normotensive, high-normal, and hypertensive youths by using aortic-derived parameters from peripheral recordings. The impact of obesity on vascular phenotypes was also analyzed. A total of 501 whites from 8 to 18 years of age were included. The subjects were divided according to BP criteria: 424 (85%) were normotensive, 56 (11%) high-normal, and 21 (4%) hypertensive. Obesity was present in 284 (56%) and overweight in 138 (28%). Pulse wave analysis using a SphygmoCor device was performed to determine central blood pressure (BP), augmentation index, and measurement of PWV. Among the BP groups, differences appeared in age, sex, and height but not in body mass index. Significant differences in peripheral and central systolic and diastolic BPs and pulse pressures were observed within groups. A graded increase in PWV was present across the BP strata without differences in augmentation index. Using a multiple regression analysis, age, BP groups, and obesity status were independently associated with PWV. Older and hypertensive subjects had the highest PWV, whereas, from normal weight status to obesity, PWV decreased. Likewise, PWV was positively related to peripheral or central systolic BP and negatively related to body mass index z score. For 1 SD of peripheral systolic BP, PWV increased 0.329 m/s, and for 1 SD of body mass index z score PWV decreased 0.129 m/s. In conclusion, PWV is increased in hypertensive and even in high-normal children and adolescents. Furthermore, obesity, the factor most frequently related to essential hypertension in adolescents, blunted the expected increment in PWV of hypertensive and high-normal subjects.

  8. Implantable reflectance pulse transit time blood pressure sensor with oximetry capability

    NASA Astrophysics Data System (ADS)

    Fiala, J.; Gehrke, R.; Theodor, M.; Bingger, P.; Förster, K.; Heilmann, C.; Beyersdorf, F.; Zappe, H.; Seifert, A.

    2010-04-01

    We present a novel implantable multi-wavelength reflectance sensor for the measurement of blood pressure with pulse transit time (PTT). Continuous long-term monitoring of blood pressure and arterial oxygen saturation is vital for medical diagnostics and the ensuing therapy of cardiovascular diseases. Conventional cuff-based blood pressure monitors do not provide continuous data and put severe constraints on the patients' daily lives. An implantable sensor would eliminate such problems. The new biocompatible sensor is placed subcutaneously on blood perfused tissue. The PTT is calculated by photoplethysmograms and the ECG-signal, that is recorded with intracorporal electrodes. In addition, the sensor detects the arterial oxygen saturation. An ensuing spectralphotometric analysis of the light intensity changes delivers data on the concentration of dysfunctional hemoglobin derivatives. Experimental measurements showed a clear correlation between the estimated PTT and the systolic blood pressure reference. These initial results demonstrate the potential of the sensor as part of an fully implantable sensor system for the longterm-monitoring of cardiovascular parameters.

  9. Optical and electrical characterization of pulse-modulated argon atmospheric-pressure inductively coupled microplasma jets

    SciTech Connect

    Tajima, Satomi; Tsuchiya, Shouichi; Matsumori, Masashi; Nakatsuka, Shigeki; Ichiki, Takanori

    2010-10-15

    The critical parameters determining the generation of the pulse-modulated argon atmospheric-pressure inductively coupled plasma (AP-ICP) microjet were studied by varying the power, P, pulse-modulation frequency, f, and duty ratio, DR. The temporal changes in the net output power, P{sub net}, monitored between the very high frequency power supply and matching network by an rf sampler, and ArI 4s{sup '}[1/2]{sub 1}{sup O}-4p{sup '}[1/2]{sub 0} emission from the antenna were measured to elucidate the behavior of this plasma. The AP-ICP microjet, which produces high-density (0.9-1.1x10{sup 15} cm{sup -3}) nonequilibrium plasma, consists of an alumina discharge tube with the inner diameter of 0.8 mm. The generation diagram of the pulse-modulated plasma was created by having f as the horizontal axis and DR as the vertical axis while varying P up to 50 W. At f{<=}10 kHz, the plasma was generated at above the linear lines of f and DR, which indicated the existence of the critical power-off period of approximately 80 {mu}s. At f>10 kHz, the pulse-modulated plasma was produced above constant DR and almost independent of f. The time-averaged power, P, which is the product of P and DR, had to be more than 8-10 W to sustain the pulse-modulated plasma. From the measurement of the temporal changes in the net power and ArI emission, the dynamic behavior of the pulse-modulated plasma was revealed as follows. The prebreakdown period was present for {approx}5 {mu}s after the power was turned on. Once the plasma was generated, the impedance was changed and the reflected power gradually decreased. A strong emission peak was observed immediately after the breakdown, followed by the gradual increase up to the steady state. Finally, the intense afterpeak was observed at 0.8 {mu}s after the power was turned off.

  10. Pulse pressure is inversely related to aortic root diameter implications for the pathogenesis of systolic hypertension.

    PubMed

    Farasat, S Morteza; Morrell, Christopher H; Scuteri, Angelo; Ting, Chih-Tai; Yin, Frank C P; Spurgeon, Harold A; Chen, Chen-Huan; Lakatta, Edward G; Najjar, Samer S

    2008-02-01

    Hypertension accelerates the age-associated increase in aortic root diameter (AoD), likely because of chronically elevated distending pressures. However, the pulsatile component of blood pressure may have a different relationship with AoD. We sought to assess the relationship between AoD and pulse pressure (PP) while accounting for left ventricular and central arterial structural and functional properties, which are known to influence PP. The study population was composed of 1256 individuals, aged 30 to 79 years (48% women and 48% hypertensive), none of whom were on antihypertensive medications. Blood pressure was measured in the sitting position with conventional sphygmomanometry. PP was calculated as the difference between systolic and diastolic blood pressures. AoD was measured at end diastole at the level of the sinuses of Valsalva with echocardiography. The relationship between AoD and PP was evaluated with multiple regression analyses. PP was 50+/-14 mm Hg in men and 54+/-18 mm Hg in women, and AoD was 31.9+/-3.5 mm in men and 28.9+/-3.5 mm in women. After adjusting for age, age(2), height, weight, and mean arterial pressure, AoD was independently and inversely associated with PP in both sexes. After further adjustments for central arterial stiffness and wall thickness, reflected waves, and left ventricular geometry, AoD remained inversely associated with PP in both men (coefficient=-0.48; P=0.0003; model R(2)=0.51) and women (coefficient=-0.40; P=0.01; model R(2)=0.61). Thus, AoD is inversely associated with PP, suggesting that a small AoD may contribute to the pathogenesis of systolic hypertension. Longitudinal studies are needed to examine this possibility.

  11. Measurement of Electron Densities in a Pulsed Atmospheric Pressure Air Discharge

    NASA Astrophysics Data System (ADS)

    Leipold, Frank; Stark, Robert H.; Schoenbach, Karl H.

    2000-10-01

    Microhollow cathode discharges have been shown to serve as plasma cathodes for atmospheric pressure air discharges [1]. The high pressure discharges are operated dc at currents from 10 mA up to 30 mA and at average electric fields of 1.25 kV/cm. The electron density in the dc discharge was measured by an interferometrique technique [2]. For a dc filamentary air discharge with a current of 10 mA, the radial electron density distribution was found to be parabolic with a total width of 660 μ m and an electron density of ne = 10^13 cm-3 in the center of the discharge. The diagnostic technique has now also been applied to pulsed discharges. It was found that the method provides electron densities measurements for discharges with durations as low as 5 μ s. The spatial distribution of the index of refraction in the pulsed discharge was obtained by shifting the discharge volume through the laser beam and by using an inversion method to obtain the radial index profile. For the electron density with a assumed parabolic profile, the maximum value was measured as 1.17*10^14 cm-3. (10 mA atmospheric pressure air discharge. The temperature profile was found to be gaussian with a half width of 1.3 mm. Acknowledgement This work was funded by the Air Force Office of Scientific Research in Cooperation with the DDR&E Air Plasma Ramparts MURI Program. References [1] Robert H. Stark and Karl H. Schoenbach, Appl. Phys. Lett. 74, 3770 (1999) [2] Frank Leipold, Robert H. Stark, and Karl H. Schoenbach, to appear in J. Phys. D., Appl. Phys.

  12. Kinetic studies of NO formation in pulsed air-like low-pressure dc plasmas

    NASA Astrophysics Data System (ADS)

    Hübner, M.; Gortschakow, S.; Guaitella, O.; Marinov, D.; Rousseau, A.; Röpcke, J.; Loffhagen, D.

    2016-06-01

    The kinetics of the formation of NO in pulsed air-like dc plasmas at a pressure of 1.33 mbar and mean currents between 50 and 150 mA of discharge pulses with 5 ms duration has been investigated both experimentally and by self-consistent numerical modelling. Using time-resolved quantum cascade laser absorption spectroscopy, the densities of NO, NO2 and N2O have been measured in synthetic air as well as in air with 0.8% of NO2 and N2O, respectively. The temporal evolution of the NO density shows four distinct phases during the plasma pulse and the early afterglow in the three gas mixtures that were used. In particular, a steep density increase during the ignition phase and after termination of the discharge current pulse has been detected. The NO concentration has been found to reach a constant value of 0.57× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} , 1.05× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} , and 1.3× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} for mean plasma currents of 50 mA, 100 mA and 150 mA, respectively, in the afterglow. The measured densities of NO2 and N2O in the respective mixture decrease exponentially during the plasma pulse and remain almost constant in the afterglow, especially where the admixture of NO2 has a remarkable impact on the NO production during the ignition. The numerical results of the coupled solution of a set of rate equations for the various heavy particles and the time-dependent Boltzmann equation of the electrons agree quite well with the experimental findings for the different air-like plasmas. The main reaction processes have been analysed on the basis of the model calculations and the remaining differences between the experiment and modelling especially during the afterglow are discussed.

  13. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    SciTech Connect

    Zhang, Cheng; Shao, Tao Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-10-15

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs.

  14. Impact of Mental and Physical Stress on Blood Pressure and Pulse Pressure under Normobaric versus Hypoxic Conditions

    PubMed Central

    Trapp, Michael; Trapp, Eva-Maria; Egger, Josef W.; Domej, Wolfgang; Schillaci, Giuseppe; Avian, Alexander; Rohrer, Peter M.; Hörlesberger, Nina; Magometschnigg, Dieter; Cervar-Zivkovic, Mila; Komericki, Peter; Velik, Rosemarie; Baulmann, Johannes

    2014-01-01

    Objective Hypobaric hypoxia, physical and psychosocial stress may influence key cardiovascular parameters including blood pressure (BP) and pulse pressure (PP). We investigated the effects of mild hypobaric hypoxia exposure on BP and PP reactivity to mental and physical stress and to passive elevation by cable car. Methods 36 healthy volunteers participated in a defined test procedure consisting of a period of rest 1, mental stress task (KLT-R), period of rest 2, combined mental (KLT-R) and physical task (bicycle ergometry) and a last period of rest both at Graz, Austria (353 m asl) and at the top station Dachstein (2700 m asl). Beat-to-beat heart rate and BP were analysed both during the test procedures at Graz and at Dachstein and during passive 1000 m elevation by cable car (from 1702 m to 2700 m). Results A significant interaction of kind of stress (mental vs. combined mental and physical) and study location (Graz vs. Dachstein) was found in the systolic BP (p = .007) and PP (p = .002) changes indicating that during the combined mental and physical stress task sBP was significantly higher under hypoxic conditions whereas sBP and PP were similar during mental stress both under normobaric normoxia (Graz) and under hypobaric hypoxia (Dachstein). During the passive ascent in cable car less trivialization (psychological coping strategy) was associated with an increase in PP (p = .004). Conclusion Our data show that combined mental and physical stress causes a significant higher raise in sBP and PP under hypoxic conditions whereas isolated mental stress did not affect sBP and PP under hypoxic conditions. PP-reaction to ascent in healthy subjects is not uniform. BP reactions to ascent that represents an accumulation of physical (mild hypobaric hypoxia) and psychological stressors depend on predetermined psychological traits (stress coping strategies). Thus divergent cardiovascular reactions can be explained by applying the multidimensional aspects of the

  15. Very High Pressure Single Pulse Shock Tube Studies of Aromatic Species

    SciTech Connect

    Brezinsky, K.

    2006-11-28

    The principal focus of this research program is aimed at understanding the oxidation and pyrolysis chemistry of primary aromatic molecules and radicals with the goal of developing a comprehensive kinetic model at conditions that are relevant to practical combustion devices. A very high pressure single pulse shock tube is used to obtain experimental data over a wide pressure range in the high pressure regime, 5-1000 bars, at pre-flame temperatures for fuel pyrolysis and oxidation over a broad spectrum of equivalence ratios. Stable species sampled from the shock tube are analyzed using standard chromatographic techniques using GC/MS-PDD and GC/TCD-FID. Experimental data from the HPST (stable species profiles) and data from other laboratories (if available) are simulated using kinetic models (if available) to develop a comprehensive model that can describe aromatics oxidation and pyrolysis over a wide range of experimental conditions. The shock tube has been heated (1000C) recently to minimize effects due to condensation of aromatic, polycyclic and other heavy species. Work during this grant period has focused on 7 main areas summarized in the final technical report.

  16. Psychiatric features and disturbance of circadian rhythm of temperature, pulse, and blood pressure in Wilson's disease.

    PubMed

    Matarazzo, Eneida B

    2002-01-01

    Wilson's disease (hepatolenticular degeneration), a disease of genetic origin, is due to abnormal copper metabolism affecting many organs and systems, especially the liver and the nervous system. The initial symptoms can be exclusively or predominantly psychiatric, including psychotic features. Three cases are reported in which the clinical picture at the beginning was compatible with a psychiatric diagnosis. During hospitalization, before treatment, there were abnormal and spontaneous changes in the circadian rhythm of temperature, pulse, and blood pressure, recorded every 6 hours, with febrile peaks in the absence of infectious focus. Because the hypothalamus is important in the regulation of these autonomic functions, the hypothesis of a possible hypothalamic dysfunction was made, justifying a wide clinical and laboratory investigation that allowed the diagnosis of Wilson's disease. Alertness to circadian rhythm abnormalities in such cases may help the psychiatrist avoid an erroneous diagnosis.

  17. Towards Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice

    PubMed Central

    Hahn, Jin-Oh; Inan, Omer T.; Mestha, Lalit K.; Kim, Chang-Sei; Töreyin, Hakan; Kyal, Survi

    2015-01-01

    Ubiquitous blood pressure (BP) monitoring is needed to improve hypertension detection and control and is becoming feasible due to recent technological advances such as in wearable sensing. Pulse transit time (PTT) represents a well-known, potential approach for ubiquitous BP monitoring. The goal of this review is to facilitate the achievement of reliable, ubiquitous BP monitoring via PTT. We explain the conventional BP measurement methods and their limitations; present models to summarize the theory of the PTT-BP relationship; outline the approach while pinpointing the key challenges; overview the previous work towards putting the theory to practice; make suggestions for best practice and future research; and discuss realistic expectations for the approach. PMID:26057530

  18. Continuous blood pressure measurement using the pulse transit time: Comparison to intra-arterial measurement.

    PubMed

    Patzak, Andreas; Mendoza, Yuri; Gesche, Heiko; Konermann, Martin

    2015-01-01

    Continuous blood pressure (BP) measurement allows the investigation of transient changes in BP and thus may give insights into mechanisms of BP control. We validated a continuous, non-invasive BP measurement based on the pulse transit time (PTT), i.e., BP(PTT), by comparing it with the intra-arterial BP (BP(i.a.)) measurement. Twelve subjects (five females and seven males) were included. BP(i.a.) was obtained from the radial artery using a system from ReCor Medical. Systolic and diastolic BP were calculated using the PTT (BP(PTT), SOMNOscreen). (PTT) was determined from the electrocardiogram and the peripheral pulse wave. The BP was modulated by application of increasing doses of dobutamine (5, 10, 20 μg/kg body mass). Systolic BP(PTT) and systolic BP(i.a.) correlated significantly (R = 0.94). The limits of agreement in the Bland-Altman plot were ± 19 mmHg; the mean values differed by 1 mmHg. The correlation coefficient for the diastolic BP measurements was R = 0.42. The limits of agreement in the Bland-Altman plot were ± 18 mmHg, with a mean difference of 5 mmHg in favour of the BP(PTT). The study demonstrates a significant correlation between the measurement methods for systolic BP. The results encourage the application of PTT-based BP measurement for the evaluation of BP dynamics and pathological BP changes.

  19. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    NASA Astrophysics Data System (ADS)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  20. Study on hairpin-shaped argon plasma jets resonantly excited by microwave pulses at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Xia, Guangqing; Zou, Changlin; Li, Ping; Hu, Yelin; Ye, Qiubo; Eliseev, S.; Stepanova, O.; Saifutdinov, A. I.; Kudryavtsev, A. A.; Liu, Minghai

    2015-07-01

    In the present study, atmospheric pressure argon plasma jets driven by lower-power pulsed microwaves have been proposed with a type of hairpin resonator. The plasma jet plume demonstrates distinctive characteristics, like arched plasma pattern and local plasma bullets. In order to understand how the hairpin resonator works, electromagnetic simulation of the electric field distribution and self-consistent fluid simulation of the interaction between the enhanced electric field and the pulse plasma plume are studied. Simulated spatio-temporal distributions of the electric field, the electron temperature, the electron density, and the absorbed power density have been sampled, respectively. The experimental and simulated results together suggest that the driving mechanism of the hairpin resonator works in the multiple electromagnetic modes of transmission line and microwave resonator, while the local plasma bullets are resonantly generated by local enhanced electric field of surface plasmon polaritons. Moreover, it should be noticed that the radian of the arched plasma plume is mainly affected by the input power and gas flow rate, respectively.

  1. Serial pulsed Doppler assessment of pulmonary artery pressure in very low birth-weight infants.

    PubMed

    Murase, M; Ishida, A

    2000-01-01

    We assessed pulmonary artery pressure (PAP) during the early neonatal period in very low birth-weight (VLBW) infants using serial echocardiographic measurements of the ratio of the pulmonary artery acceleration time to the right ventricular ejection time corrected by heart rate [AT:RVET(c)]. Eighty-four VLBW infants weighing less than 1,500 g were examined using serial color Doppler echocardiography from 3 hours to day 7 after birth. The AT:RVET(c) of infants born after 30 weeks of gestation showed a rapid, significant increase during the early neonatal period, whereas those of the groups born at less than 30 weeks showed no significant increase before day 14. At 24 hours after birth, the AT:RVET(c) values of VLBW infants did not correlate well with either the ratio of the right preejection period to the right ventricular ejection time on M-mode echocardiography or the pressure gradient between the right ventricle and the right atrium, as estimated by tricuspid regurgitation on pulsed Doppler echocardiography. The AT:RVET(c) value for the chronic lung disease (CLD) group did not differ significantly from that for the oxygen-dependent group at any assessment point. During the early neonatal period, the AT:RVET(c) of VLBW infants, as calculated by pulsed Doppler echocardiography, differed with their gestational age and did not appear to correlate well with PAP. Our data also suggest that AT:RVET(c) values may not be a good predictor of the subsequent occurrence of CLD in VLBW infants.

  2. Pulsed laser ablation plasmas generated in CO{sub 2} under high-pressure conditions up to supercritical fluid

    SciTech Connect

    Kato, Toru; Stauss, Sven; Kato, Satoshi; Urabe, Keiichiro; Terashima, Kazuo; Baba, Motoyoshi; Suemoto, Tohru

    2012-11-26

    Pulsed laser ablation of solids in supercritical media has a large potential for nanomaterials fabrication. We investigated plasmas generated by pulsed laser ablation of Ni targets in CO{sub 2} at pressures ranging from 0.1 to 16 MPa at 304.5 K. Plasma species were characterized by optical emission spectroscopy, and the evolution of cavitation bubbles and shockwaves were observed by time-resolved shadowgraph imaging. Ni and O atomic emissions decreased with increasing gas pressure; however, near the critical point the intensities reached local maxima, probably due to the enhancement of the plasma excitation and effective quenching resulting from the large density fluctuation.

  3. Pulse pressure variation and stroke volume variation under different inhaled concentrations of isoflurane, sevoflurane and desflurane in pigs undergoing hemorrhage

    PubMed Central

    Oshiro, Alexandre Hideaki; Otsuki, Denise Aya; Hamaji, Marcelo Waldir M; Rosa, Kaleizu T; Ida, Keila Kazue; Fantoni, Denise T; Auler, José Otavio Costa

    2015-01-01

    OBJECTIVES: Inhalant anesthesia induces dose-dependent cardiovascular depression, but whether fluid responsiveness is differentially influenced by the inhalant agent and plasma volemia remains unknown. The aim of this study was to compare the effects of isoflurane, sevoflurane and desflurane on pulse pressure variation and stroke volume variation in pigs undergoing hemorrhage. METHODS: Twenty-five pigs were randomly anesthetized with isoflurane, sevoflurane or desflurane. Hemodynamic and echocardiographic data were registered sequentially at minimum alveolar concentrations of 1.00 (M1), 1.25 (M2), and 1.00 (M3). Then, following withdrawal of 30% of the estimated blood volume, these data were registered at a minimum alveolar concentrations of 1.00 (M4) and 1.25 (M5). RESULTS: The minimum alveolar concentration increase from 1.00 to 1.25 (M2) decreased the cardiac index and increased the central venous pressure, but only modest changes in mean arterial pressure, pulse pressure variation and stroke volume variation were observed in all groups from M1 to M2. A significant decrease in mean arterial pressure was only observed with desflurane. Following blood loss (M4), pulse pressure variation, stroke volume variation and central venous pressure increased (p<0.001) and mean arterial pressure decreased in all groups. Under hypovolemia, the cardiac index decreased with the increase of anesthesia depth in a similar manner in all groups. CONCLUSION: The effects of desflurane, sevoflurane and isoflurane on pulse pressure variation and stroke volume variation were not different during normovolemia or hypovolemia. PMID:26735220

  4. Pulse wave myelopathy: An update of an hypothesis highlighting the similarities between syringomyelia and normal pressure hydrocephalus.

    PubMed

    Bateman, Grant A

    2015-12-01

    Most hypotheses trying to explain the pathophysiology of idiopathic syringomyelia involve mechanisms whereby CSF is pumped against a pressure gradient, from the subarachnoid space into the cord parenchyma. On review, these theories have universally failed to explain the disease process. A few papers have suggested that the syrinx fluid may originate from the cord capillary bed itself. However, in these papers, the fluid is said to accumulate due to impaired fluid drainage out of the cord. Again, there is little evidence to substantiate this. This proffered hypothesis looks at the problem from the perspective that syringomyelia and normal pressure hydrocephalus are almost identical in their manifestations but only differ in their site of effect within the neuraxis. It is suggested that the primary trigger for syringomyelia is a reduction in the compliance of the veins draining the spinal cord. This reduces the efficiency of the pulse wave dampening, occurring within the cord parenchyma, increasing arteriolar and capillary pulse pressure. The increased capillary pulse pressure opens the blood-spinal cord barrier due to a direct effect upon the wall integrity and interstitial fluid accumulates due to an increased secretion rate. An increase in arteriolar pulse pressure increases the kinetic energy within the cord parenchyma and this disrupts the cytoarchitecture allowing the fluid to accumulate into small cystic regions in the cord. With time the cystic regions coalesce to form one large cavity which continues to increase in size due to the ongoing interstitial fluid secretion and the hyperdynamic cord vasculature.

  5. Free fatty acids are associated with pulse pressure in women, but not men, with type 1 diabetes mellitus.

    PubMed

    Conway, Baqiyyah; Evans, Rhobert W; Fried, Linda; Kelsey, Sheryl; Edmundowicz, Daniel; Orchard, Trevor J

    2009-09-01

    Cardiovascular disease (CVD) is the leading cause of death in type 1 diabetes mellitus (T1D). Pulse pressure, a measure of arterial stiffness, is elevated in T1D and associated with CVD. Free fatty acids (FFAs), elevated in women and abdominal adiposity, are also elevated in T1D and CVD. We thus examined the association of fasting FFAs with pulse pressure and coronary artery calcification (CAC, a marker of coronary atherosclerotic burden) in an adult population (n = 150) of childhood-onset T1D and whether any such associations varied by abdominal adiposity and sex. Mean age and diabetes duration were 42 and 33 years, respectively, when CAC, visceral abdominal adiposity (VAT), and subcutaneous abdominal adiposity (SAT) were determined by electron beam tomography. Free fatty acids were determined by in vitro colorimetry. Pulse pressure was calculated as systolic blood pressure minus diastolic blood pressure. Free fatty acids were log transformed before analyses, and all analyses were controlled for serum albumin. Free fatty acids were associated with pulse pressure in women (r = 0.24, P = .04), but not in men (r = 0.07, P = .55). An interaction for the prediction of pulse pressure was noted between FFAs and both VAT (P = .03) and SAT (P = .008) in women, but only a marginal interaction with SAT (P = .09) and no interaction for VAT (P = .40) with FFAs were observed in men. In multivariable linear regression analysis allowing for serum albumin, age, height, heart rate, albumin excretion rate, hemoglobin A(1c), high-density lipoprotein cholesterol, hypertension medication use, FFAs, SAT, and the interaction between FFAs and SAT, the interaction between FFAs and SAT remained associated with pulse pressure in women (FFAs, P = .04; interaction term, P = .03), but not men (FFAs, P = .32; interaction term, P = .32). FFAs showed no association with log-transformed CAC. Although FFAs were not associated with CAC in either sex, they were associated with pulse pressure in women

  6. Pulse blood pressure and cardiovascular mortality in a population-based cohort of elderly Costa Ricans

    PubMed Central

    Rosero-Bixby, L; Coto-Yglesias, F; Dow, W H

    2016-01-01

    We studied the relationships between blood pressure (BP), pulse pressure (PP) and cardiovascular (CV) death in older adults using data from 2346 participants enrolled in the Costa Rican CRELES study, mean age 76 years (s.d. 10.2), 31% qualified as wide PP. All covariates included and analyzed were collected prospectively as part of a 4-year home-based follow-up; mortality was tracked for an additional 3 years, identifying 266 CV deaths. Longitudinal data revealed little change over time in systolic BP (SBP), a decline in diastolic BP, and widening of PP. Wide PP was associated with higher risk of CV death but only among individuals receiving antihypertensive drug therapy. Individuals with both wide PP and receiving therapy had 2.6 hazard rate of CV death relative to people with normal-PP plus not taking treatment (TRT), even adjusting for SBP. Increasing PP between visits was significantly associated to higher CV death independently of TRT status. SBP and DBP were not significantly associated to CV death when the effect of PP was controlled for. Conclusion: elderly hypertensive patients with wide or increasing PP, especially if receiving TRT, are the highest CV risk group, thus must be carefully assessed, monitored and treated with caution. PMID:26674758

  7. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    PubMed Central

    Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-01-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165

  8. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    SciTech Connect

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun E-mail: fengx@spaceweather.ac.cn

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  9. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.

    PubMed

    Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D

    2015-10-09

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  10. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Barnes, Ronald A., Jr.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-10-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  11. Strong Solar Wind Dynamic Pressure Pulses: Interplanetary Sources and Their Impacts on Geosynchronous Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Zuo, Pingbing; Feng, Xueshang; Xie, Yanqiong; Wang, Yi; Xu, Xiaojun

    2015-10-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  12. Opportunities in pulse combustion

    SciTech Connect

    Brenchley, D.L.; Bomelburg, H.J.

    1985-10-01

    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  13. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air

    SciTech Connect

    Yang Dezheng; Wang Wenchun; Jia Li; Nie Dongxia; Shi Hengchao

    2011-04-01

    In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.

  14. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets: Experimental Data Archive

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important. This is the supplemental CD-ROM

  15. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important.

  16. Chart-Recorded Capillary Pulse Pressure Measurement as an Unobtrusive Means of Detecting Unspecified Frame-Specific Flaws in Programmed Instruction Sequences: An Experimental Study. Final Report.

    ERIC Educational Resources Information Center

    Fraley, Lawrence E., Jr.

    Capillary pulse pressure measurement may have potential as a covert but direct means of determining a subject's level of affect as he encounters the frame-by-frame content of programed instruction. An experiment was designed which called for recording the capillary pulse pressure of subjects as they worked through some programed instruction…

  17. [Changes in epidural pulse pressure in brain edema following experimental focal ischemia].

    PubMed

    Mase, M

    1990-07-01

    It is well known that epidural pulse pressure (PP) increases with rising intracranial pressure (ICP). However, PP at the same ICP is not always identical in various intracranial pathologies. Many authors have investigated PP at increased states of ICP, but few studies related to brain edema have been done. This study was carried out in order to clarify the changes of PP in brain edema following focal ischemia. ICP and PP were measured in two groups of anesthetized dogs; 1) increased volume of CSF by cisternal saline injection (control, n = 5), 2) brain edema caused by focal ischemia (edema, n = 11). Ischemia was induced by electro-coagulation of the right anterior cerebral artery and by clipping the right middle cerebral artery and right internal carotid artery transorbitaly. The brain was recirculated for 6 hours after 2 hours of ischemia. The ischemic areas were identified by Evans blue, triphenyl tetrazolium chloride (TTC) or histological examination. Water content of the brain was measured by the wet-dry weight method. The canine focal ischemic model showed consistent ischemic damage in the caudate nucleus and produced brain edema successfully. PP increased linearly with rising ICP to 35 mmHg, and PP in the edema group was significantly smaller than that in the control group at the same ICP value. The slopes of the regression equation of ICP and PP were significantly different between the edema and control group (edema: 0.061 +/- 0.030, control: 0.107 +/- 0.015, mean +/- SD, p less than 0.01). These results suggest that PP is easily affected by ischemic brain edema.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2223260

  18. Outcome-driven thresholds for ambulatory pulse pressure in 9938 participants recruited from 11 populations.

    PubMed

    Gu, Yu-Mei; Thijs, Lutgarde; Li, Yan; Asayama, Kei; Boggia, José; Hansen, Tine W; Liu, Yan-Ping; Ohkubo, Takayoshi; Björklund-Bodegård, Kristina; Jeppesen, Jørgen; Dolan, Eamon; Torp-Pedersen, Christian; Kuznetsova, Tatiana; Stolarz-Skrzypek, Katarzyna; Tikhonoff, Valérie; Malyutina, Sofia; Casiglia, Edoardo; Nikitin, Yuri; Lind, Lars; Sandoya, Edgardo; Kawecka-Jaszcz, Kalina; Imai, Yutaka; Mena, Luis J; Wang, Jiguang; O'Brien, Eoin; Verhamme, Peter; Filipovsky, Jan; Maestre, Gladys E; Staessen, Jan A

    2014-02-01

    Evidence-based thresholds for risk stratification based on pulse pressure (PP) are currently unavailable. To derive outcome-driven thresholds for the 24-hour ambulatory PP, we analyzed 9938 participants randomly recruited from 11 populations (47.3% women). After age stratification (<60 versus ≥60 years) and using average risk as reference, we computed multivariable-adjusted hazard ratios (HRs) to assess risk by tenths of the PP distribution or risk associated with stepwise increasing (+1 mm Hg) PP levels. All adjustments included mean arterial pressure. Among 6028 younger participants (68 853 person-years), the risk of cardiovascular (HR, 1.58; P=0.011) or cardiac (HR, 1.52; P=0.056) events increased only in the top PP tenth (mean, 60.6 mm Hg). Using stepwise increasing PP levels, the lower boundary of the 95% confidence interval of the successive thresholds did not cross unity. Among 3910 older participants (39 923 person-years), risk increased (P≤0.028) in the top PP tenth (mean, 76.1 mm Hg). HRs were 1.30 and 1.62 for total and cardiovascular mortality, and 1.52, 1.69, and 1.40 for all cardiovascular, cardiac, and cerebrovascular events. The lower boundary of the 95% confidence interval of the HRs associated with stepwise increasing PP levels crossed unity at 64 mm Hg. While accounting for all covariables, the top tenth of PP contributed less than 0.3% (generalized R(2) statistic) to the overall risk among the elderly. Thus, in randomly recruited people, ambulatory PP does not add to risk stratification below age 60; in the elderly, PP is a weak risk factor with levels below 64 mm Hg probably being innocuous.

  19. Twenty four hour pulse pressure predicts long term recurrence in acute stroke patients

    PubMed Central

    Tsivgoulis, G; Spengos, K; Zakopoulos, N; Manios, E; Xinos, K; Vassilopoulos, D; Vemmos, K

    2005-01-01

    Objectives: The impact of different blood pressure (BP) components during the acute stage of stroke on the risk of recurrent stroke is controversial. The present study aimed to investigate by 24 hour BP monitoring a possible association between acute BP values and long term recurrence. Methods: A total of 339 consecutive patients with first ever acute stroke underwent 24 hour BP monitoring within 24 hours of ictus. Known stroke risk factors and clinical findings on admission were documented. Patients given antihypertensive medication during BP monitoring were excluded. The outcome of interest during the one year follow up was recurrent stroke. The Cox proportional hazard model was used to analyse association of casual and 24 hour BP recordings with one year recurrence after adjusting for stroke risk factors, baseline clinical characteristics, and secondary prevention therapies. Results: The cumulative one year recurrence rate was 9.2% (95% CI 5.9% to 12.3%). Multivariate Cox regression analyses revealed age, diabetes mellitus, and 24 hour pulse pressure (PP) as the only significant predictors for stroke recurrence. The relative risk for one year recurrence associated with every 10 mm Hg increase in 24 hour PP was 1.323 (95% CI 1.019 to 1.718, p = 0.036). Higher casual PP levels were significantly related to an increased risk of one year recurrence on univariate analysis, but not in the multivariate Cox regression model. Conclusions: Elevated 24 hour PP levels in patients with acute stroke are independently associated with higher risk of long term recurrence. Further research is required to investigate whether the risk of recurrent stroke can be reduced to a greater extent by decreasing the pulsatile component of BP in patients with acute stroke. PMID:16170077

  20. Distortion cancellation of frequency converted pulses with simple linear signal processing and application to frequency modulation to amplitude modulation conversion in high power lasers.

    PubMed

    Vidal, Sébastien; Luce, Jacques; Hocquet, Steve; Gouédard, Claude; Calvet, Pierre; Penninckx, Denis

    2012-08-20

    It is known that a linear filter may be easily compensated with its inverse transfer function. However, it was shown that this approach could also be valid even for such a complex nonlinear system as frequency conversion. As a matter of fact, it is possible to at least partly precompensate for distortions occurring within, or even downstream from, frequency conversion crystals with a simple linear optical filter set upstream. In this paper, we give the theoretical background and derive the optimum precompensation filter from simple analytical formulas even in the case of saturation. We first show the relevance of our approach for Gaussian pulses: the pulse may be short or not and chirped or not, and the same linear precompensation filter may be used as long as saturation is not reached. We then study the case of phase-modulated pulses, as can be found on high power lasers such as lasers for fusion. We show that previous experimental results are in perfect agreement with these calculations. Finally, justified by our simple analytical formulas, we present a rigorous parametrical study giving the distortion reduction for any second and third harmonic generation system in the case of phase-modulated pulses. PMID:22907009

  1. Relation of pulse pressure and arterial stiffness to concentric left ventricular hypertrophy in young men (from the Bogalusa Heart Study).

    PubMed

    Toprak, Ahmet; Reddy, Jagadeesh; Chen, Wei; Srinivasan, Sathanur; Berenson, Gerald

    2009-04-01

    Differences in geometric adaptation of the left ventricle and associated cardiovascular risk may reflect the differential effects of classic risk factors and arterial stiffness on the left ventricle. In the present study, the influence of cardiovascular risk factors and arterial stiffness indexes on left ventricular (LV) geometry types were studied in a large community-based cohort of young adults. As part of the Bogalusa Heart Study, echocardiographic examinations of the heart were performed on 786 black and white adults (age range 24 to 43 years, average 36; 42% men, 70% white). Arterial stiffness indexes of the study cohort included aorta-femoral pulse wave velocity, carotid artery elastic modulus, and arterial compliance using tonometry. Pulse pressure in young adults with concentric LV hypertrophy (47 +/- 11 mm Hg) was significantly higher than in those with eccentric LV hypertrophy (40 +/- 8 mm Hg) and normal geometry (37 +/- 7 mm Hg). Multinomial logistic regression analysis showed that widened pulse pressure, the presence of diabetes mellitus, and increased body mass index were associated with concentric LV hypertrophy compared with normal geometry. Similarly, higher Peterson's and Young's elastic modulus of the carotid arteries and lower large- and small-artery compliance, in addition to increased body mass index, diabetes mellitus, and black race, were associated with concentric LV hypertrophy in young adults. In conclusion these data suggested that concentric LV hypertrophy was associated with widened pulse pressure, increased arterial stiffness, and decreased arterial compliance in young adults.

  2. A widened pulse pressure: a potential valuable prognostic indicator of mortality in patients with sepsis

    PubMed Central

    Al-khalisy, Hassan; Nikiforov, Ivan; Jhajj, Manjit; Kodali, Namratha; Cheriyath, Pramil

    2015-01-01

    Background Sepsis is one of the leading causes of death in the United States and the most common cause of death among critically ill patients in non-coronary intensive care units. Previous studies have showed pulse pressure (PP) to be a predictor of fluid responsiveness in patients with sepsis. Additionally, previous studies have correlated PP to cardiovascular risk factors and increase in mortality in end-stage renal disease patients. Objectives To determine the correlation between PP and mortality in patients with sepsis. Methods A retrospective review was conducted on 5,003 patients admitted with the diagnosis of sepsis using ICD-9 codes during the time period from January 2010 to December 2014 at two community-based hospitals in central Pennsylvania. Results Our study findings showed significant decrease in the mortality when the PP was greater than 70 mmHg of patients with sepsis (p-value: 0.0003, odds ratio: 0.67, 95% confidence limit: 0.54–0.83). Conclusion Based on our findings, we suggest that PP could be a valuable clinical tool in the early assessment of patients admitted with sepsis and could be used as a prognostic factor to assess and implement management therapy for the patients with sepsis. PMID:26653692

  3. Effect of Pressure Level on the Performance of an Auto-Initiated Pulsed Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Kelvin, Loh; Abhijit, Kushari

    2010-08-01

    Pulsed plasma thrusters (PPT) are micro-propulsion devices used in satellites for station keeping. Conventionally the plasma discharge in a PPT is initiated by a spark plug. The primary objective of the present work was to develop and characterize a PPT that does not need a spark plug to initiate the plasma discharge. If the spark plug is eliminated, the size of the thrusters can be reduced and arrays of such thrusters can be manufactured using micro electro mechanical systems (MEMS) techniques, which can provide tremendous control authority over the satellite positioning. A parallel rail thruster was built and its performances were characterized inside a vacuum chamber to elucidate the effect of vacuum level on the performance. The electrical performance of the thruster was quantified by measuring the voltage output from a Rogowski coil, and the thrust produced by the developed thruster was estimated by measuring the force exerted by the plume on a light weight pendulum, whose deflection was measured using a laser displacement sensor. It was observed that the thruster can operate without a spark plug. In general, the performance parameters such as thrust, mass ablation, impulse bit, and specific impulse per discharge, would increase with the increase in pressure up to an optimum level due to the increase in discharge energy as well as the decrease in the total impedance of the plasma discharge. The thrust efficiency is found to be affected by the discharge energy.

  4. Telomere Length and Pulse Pressure in Newly Diagnosed, Antipsychotic-Naive Patients With Nonaffective Psychosis

    PubMed Central

    Fernandez-Egea, Emilio; Bernardo, Miguel; Heaphy, Christopher M.; Griffith, Jeffrey K.; Parellada, Eduard; Esmatjes, Enric; Conget, Ignacio; Nguyen, Linh; George, Varghese; Stöppler, Hubert; Kirkpatrick, Brian

    2009-01-01

    Introduction: Recent studies suggest that in addition to factors such as treatment side effects, suicide, and poor health habits, people with schizophrenia may have an increased risk of diabetes prior to antipsychotic treatment. Diabetes is associated with an increased pulse pressure (PP) and a shortened telomere. We tested the hypothesis that prior to antipsychotic treatment, schizophrenia and related disorders are associated with a shortened telomere, as well as an increased PP. Methods: Telomere content (which is highly correlated with telomere length) and PP were measured in newly diagnosed, antipsychotic-naive patients with schizophrenia and related disorders on first clinical contact and in matched control subjects. Both groups were also administered an oral glucose tolerance test. Results: Compared with control subjects, the patients with psychosis had decreased telomere content and an increased PP. As previously reported, they also had increased glucose concentrations at 2 hours. These differences could not be attributed to differences in age, ethnicity, smoking, gender, body mass index, neighborhood of residence, socioeconomic status, aerobic conditioning, or an increased cortisol concentration in the psychotic subjects. Discussion: These results suggest that prior to antipsychotic use, nonaffective psychosis is associated with reduced telomere content and increased PP, indices that have been linked to an increased risk of diabetes and hypertension. PMID:19279086

  5. Key conditions for stable ion radiation pressure acceleration by circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Qiao, B.; Zepf, M.; Gibbon, P.; Borghesi, M.; Schreiber, J.; Geissler, M.

    2011-05-01

    Radiation pressure acceleration (RPA) theoretically may have great potential to revolutionize the study of laserdriven ion accelerators due to its high conversion efficiency and ability to produce high-quality monoenergetic ion beams. However, the instability issue of ion acceleration has been appeared to be a fundamental limitation of the RPA scheme. To solve this issue is very important to the experimental realization and exploitation of this new scheme. In our recent work, we have identified the key condition for efficient and stable ion RPA from thin foils by CP laser pulses, in particular, at currently available moderate laser intensities. That is, the ion beam should remain accompanied with enough co-moving electrons to preserve a local "bunching" electrostatic field during the acceleration. In the realistic LS RPA, the decompression of the co-moving electron layer leads to a change of local electrostatic field from a "bunching" to a "debunching" profile, resulting in premature termination of acceleration. One possible scheme to achieve stable RPA is using a multi-species foil. Two-dimensional PIC simulations show that 100 MeV/u monoenergetic C6+ and/or proton beams are produced by irradiation of a contaminated copper foil with CP lasers at intensities 5 × 1020W/cm2, achievable by current day lasers.

  6. Pulse Pressure Magnifies the Effect of COMT Val(158)Met on 15 Years Episodic Memory Trajectories.

    PubMed

    Persson, Ninni; Lavebratt, Catharina; Sundström, Anna; Fischer, Håkan

    2016-01-01

    We investigated whether a physiological marker of cardiovascular health, pulse pressure (PP), and age magnified the effect of the functional COMT Val(158)Met (rs4680) polymorphism on 15-years cognitive trajectories [episodic memory (EM), visuospatial ability, and semantic memory] using data from 1585 non-demented adults from the Betula study. A multiple-group latent growth curve model was specified to gauge individual differences in change, and average trends therein. The allelic variants showed negligible differences across the cognitive markers in average trends. The older portion of the sample selectively age-magnified the effects of Val(158)Met on EM changes, resulting in greater decline in Val compared to homozygote Met carriers. This effect was attenuated by statistical control for PP. Further, PP moderated the effects of COMT on 15-years EM trajectories, resulting in greater decline in Val carriers, even after accounting for the confounding effects of sex, education, cardiovascular diseases (diabetes, stroke, and hypertension), and chronological age, controlled for practice gains. The effect was still present after excluding individuals with a history of cardiovascular diseases. The effects of cognitive change were not moderated by any other covariates. This report underscores the importance of addressing synergistic effects in normal cognitive aging, as the addition thereof may place healthy individuals at greater risk for memory decline. PMID:26973509

  7. Moderation of near-field pressure over a supersonic flight model using laser-pulse energy deposition

    NASA Astrophysics Data System (ADS)

    Furukawa, D.; Aoki, Y.; Iwakawa, A.; Sasoh, A.

    2016-05-01

    The impact of a thermal bubble produced by energy deposition on the near-field pressure over a Mach 1.7 free-flight model was experimentally investigated using an aeroballistic range. A laser pulse from a transversely excited atmospheric (TEA) CO2 laser was sent into a test chamber with 68 kPa ambient pressure, focused 10 mm below the flight path of a conically nosed cylinder with a diameter of 10 mm. The pressure history, which was measured 150 mm below the flight path along the acoustic ray past the bubble, exhibited precursory pressure rise and round-off peak pressure, thereby demonstrating the proof-of-concept of sonic boom alleviation using energy deposition.

  8. Improved operation of a microwave pulse compressor with a laser-triggered high-pressure gas plasma switch

    NASA Astrophysics Data System (ADS)

    Shlapakovski, A.; Gorev, S.; Krasik, Ya. E.

    2016-08-01

    The influence of laser beam parameters on the output pulses of a resonant microwave compressor with a laser-triggered plasma switch was investigated. The S-band compressor, consisting of a rectangular waveguide-based cavity and H-plane waveguide tee with a shorted side arm, was filled with pressurized dry air and pumped by 1.8-μs-long microwave pulses of up to 450 kW power. A Nd:YAG laser was used to ignite the gas discharge in the tee side arm for output pulse extraction. The laser beam (at 213 nm or 532 nm) was directed along the RF electric field lines. It was found that the compressor operated most effectively when the laser beam was focused at the center of the switch waveguide cross-section. In this case, the power extraction efficiency reached ˜47% at an output power of ˜14 MW, while when the laser beam was not focused the maximal extraction efficiency was only ˜20% at ˜6 MW output power. Focusing the laser beam resulted also in a dramatic decrease (down to <1 ns) in the delay of the output pulses' appearance with respect to the time of the beam's entrance into the switch, and the jitter of the output pulses' appearance was minimized. In addition, the quality of the output pulses' waveform was significantly improved.

  9. Plasma Aldosterone Concentration Is Positively Associated With Pulse Pressure in Patients With Primary Hypertension

    PubMed Central

    Yao, Xiaoguang; Li, Nanfang; Zhang, Yujie; Zhang, Juhong; Abulikm, Suofeiya; Zhang, Delian; Chang, Guijuan; Zhou, Keming; Kong, Jianqiong

    2015-01-01

    Abstract Increasing evidence showed a link between arterial elasticity and stiffness and pulse pressure (PP), in which plasma aldosterone may play a role. The observational study aimed to explore the potential relations between plasma aldosterone concentration (PAC) and PP in patients with hypertension. We evaluated the relation between PP and PAC in supine, seated, and upright positions in 195 patients with primary hypertension who underwent postural stimulation test. They were divided into 3 groups by tertiles of PP: PP ≤ 44 mm Hg (n = 70), 44 mm Hg < PP ≤ 51 mm Hg (n = 63), and PP ≥ 51 mm Hg (n = 62). The PAC in different postures was compared, respectively. The results showed the following. First, segregated by tertiles of PP, serum K+, 24-hour systolic blood pressure, 24-hour diastolic blood pressure, sex, upright PAC, and seated PAC showed statistically significant differences in groups. Second, the PAC were significantly different in 3 levels of PP regardless of postures, the individuals with PP ≥ 51 mm Hg had the highest PAC. On contrast, the patients with PAC > 12 ng/dL showed greater PP than those with PAC ≤ 12 ng/dL. Third, weak associations between PP and upright (r = 0.288, P < 0.001), seated (r = 0.265, P < 0.001), and supine postures (r = 0.191, P = 0.008) were detected by simple correlation analysis. After corrected serum K+, age, and sex, the partial correlation coefficients did not change greatly. Fourth, the logistic regression model was constructed with PP ≥ 40 mm Hg or PP < 40 mm Hg as the dependent variable; the serum K+[OR = 0.043, 95% CI: 1.09(1.00–1.12)] and PAC [OR = 0.025, 95%CI: 0.35(0.13–0.88)] were included as significant contributing factors. The results showed that higher PAC was weakly, but significantly, correlated to greater PP regardless of different postures, suggesting that higher PAC may be a risk factor of reduced arterial

  10. Pulsed positive discharges in air at moderate pressures near a dielectric rod

    NASA Astrophysics Data System (ADS)

    Dubinova, A.; Trienekens, D.; Ebert, U.; Nijdam, S.; Christen, T.

    2016-10-01

    We study pulsed positive discharges in air in a cylindrically symmetric setup with an electrode needle close (about 1 mm) above the top of a dielectric cylindrical rod of 4 mm in diameter mounted at its bottom on a grounded plate electrode. We present ICCD (intensified charge-coupled device) pictures and evaluations of experiments as well as simulations with a fluid discharge model; the simulations use cylindrical symmetry. In the experiments, there is an initial inception cloud phase, where the cylindrical symmetry is maintained, and later a streamer phase, where it is broken spontaneously. At 75-150 mbar, discharges with cylindrical symmetry are not attracted to the dielectric rod, but move away from it. The dielectric rod plays the sole role of an obstacle that shades (in the context of photoionization) a cone-shaped part of the inception cloud; the cone size is determined by the geometry of the setup. The material properties of the dielectric rod, such as its dielectric permittivity and the efficiency of the photon induced secondary electron emission do not have a noticeable effect. This is due to the abundance of photoionization in air, which supplies a positive discharge with free electrons and allows it to propagate along the electric field lines. Using some simple field calculations, we show that field enhancement due to dielectric polarization does not play a significant role in our geometry as long as the discharge maintains its cylindrical symmetry. The field component towards the rod is insufficiently enhanced to cause the discharge to move towards the rod. Any additional electrons produced by the dielectric surface do not influence this discharge morphology. This interpretation is supported by both experiments and simulations. At higher pressures (400-600 mbar) or for larger gaps between the needle and the dielectric rod, the inception cloud reaches its maximal radius within the gap between needle and rod and destabilizes there. In those cases

  11. Coherent pulse interrogation system for fiber Bragg grating sensing of strain and pressure in dynamic extremes of materials.

    PubMed

    Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; Mielke, Chuck H; Azad, Abul; Marshall, Bruce; La Lone, Brandon M; Henson, Bryan; Smilowitz, Laura

    2015-06-01

    A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals are recorded using a single 35 GHz photodetector and a 50 G Samples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L<10-4) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.

  12. Coherent pulse interrogation system for fiber Bragg grating sensing of strain and pressure in dynamic extremes of materials.

    PubMed

    Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; Mielke, Chuck H; Azad, Abul; Marshall, Bruce; La Lone, Brandon M; Henson, Bryan; Smilowitz, Laura

    2015-06-01

    A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals are recorded using a single 35 GHz photodetector and a 50 G Samples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L<10-4) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events. PMID:26072789

  13. DIFFERENTIAL PULSE HEIGHT DISCRIMINATOR

    DOEpatents

    Test, L.D.

    1958-11-11

    Pulse-height discriminators are described, specifically a differential pulse-height discriminator which is adapted to respond to pulses of a band of amplitudes, but to reject pulses of amplitudes greater or less than tbe preselected band. In general, the discriminator includes a vacuum tube having a plurality of grids adapted to cut off plate current in the tube upon the application of sufficient negative voltage. One grid is held below cutoff, while a positive pulse proportional to the amplltude of each pulse is applled to this grid. Another grid has a negative pulse proportional to the amplitude of each pulse simultaneously applied to it. With this arrangement the tube will only pass pulses which are of sufficlent amplitude to counter the cutoff bias but not of sufficlent amplitude to cutoff the tube.

  14. Remote sensing of atmospheric pressure and sea state from satellites using short-pulse multicolor laser altimeters

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Tsai, B. M.; Abshire, J. B.

    1983-01-01

    Short pulse multicolor laser ranging systems are currently being developed for satellite ranging applications. These systems use Q-switched pulsed lasers and streak tube cameras to provide timing accuracies approaching a few picoseconds. Satellite laser ranging systems was used to evaluate many important geophysical phenomena such as fault motion, polar motion and solid earth tides, by measuring the orbital perturbations of retroreflector equipped satellites. Some existing operational systems provide range resolution approaching a few millimeters. There is currently considerable interest in adapting these highly accurate systems for use as airborne and satellite based altimeters. Potential applications include the measurement of sea state, ground topography and atmospheric pressure. This paper reviews recent progress in the development of multicolor laser altimeters for use in monitoring sea state and atmospheric pressure.

  15. Review of critical flow rate, propagation of pressure pulse, and sonic velocity in two-phase media

    NASA Technical Reports Server (NTRS)

    Hsu, Y.

    1972-01-01

    For single-phase media, the critical discharge velocity, the sonic velocity, and the pressure pulse propagation velocity can be expressed in the same form by assuming isentropic, equilibria processes. In two-phase mixtures, the same concept is not valid due to the existence of interfacial transports of momentum, heat, and mass. Thus, the three velocities should be treated differently and separately for each particular condition, taking into account the various transport processes involved under that condition. Various attempts are reviewed to predict the critical discharge rate or the propagation velocities by considering slip ratio (momentum change), evaporation (mass and heat transport), flow pattern, etc. Experimental data were compared with predictions based on various theorems. The importance is stressed of the time required to achieve equilibrium as compared with the time available during the process, for example, of passing a pressure pulse.

  16. Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique

    NASA Astrophysics Data System (ADS)

    Ikhlaq, U.; R., Ahmad; Shafiq, M.; Saleem, S.; S. Shah, M.; Hussain, T.; A. Khan, I.; K., Abbas; S. Abbas, M.

    2014-10-01

    Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers' microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar (1 bar = 105 Pa). A considerable increase in surface microhardness (approximately by a factor of 2) is observed for longer duration (10 h) and 2-mbar pressure. Longer duration (10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.

  17. Sensitivity enhancement of the central-transition signal of half-integer spin quadrupolar nuclei in solid-state NMR: Features of multiple fast amplitude-modulated pulse transfer

    NASA Astrophysics Data System (ADS)

    Goswami, Mithun; Madhu, P. K.

    2008-06-01

    Sensitivity enhancement of solid-state NMR spectrum of half-integer spin quadrupolar nuclei under both magic-angle spinning (MAS) and static cases has been demonstrated by transferring polarisation associated with satellite transitions to the central m = -1/2 → 1/2 transition with suitably modulated radio-frequency pulse schemes. It has been shown that after the application of such enhancement schemes, there still remains polarisation in the satellite transitions that can be transferred to the central transition. This polarisation is available without having to wait for the spin system to return to thermal equilibrium. We demonstrate here the additional sensitivity enhancement obtained by making use of this remaining polarisation with fast amplitude-modulated (FAM) pulse schemes under both MAS and static conditions on a spin-3/2 and a spin-5/2 system. Considerable signal enhancement is obtained with the application of the multiple FAM sequence, denoted as m-FAM. We also report here some of the salient features of these multiple FAM sequences with respect to the nutation frequency of the pulses and the spinning frequency.

  18. Effects of non-thermal atmospheric pressure pulsed plasma on the adhesion and durability of resin composite to dentin.

    PubMed

    Han, Geum-Jun; Kim, Jae-Hoon; Chung, Sung-No; Chun, Bae-Hyeock; Kim, Chang-Keun; Seo, Deog-Gyu; Son, Ho-Hyun; Cho, Byeong-Hoon

    2014-12-01

    This study investigated the effect of low-power, non-thermal atmospheric pressure plasma (NT-APP) treatments, in pulsed and conventional modes, on the adhesion of resin composite to dentin and on the durability of the bond between resin composite and dentin. A pencil-type NT-APP jet was applied in pulsed and conventional modes to acid-etched dentin. The microtensile bond strength (MTBS) of resin composite to dentin was evaluated at 24 h and after thermocycling in one control group (no plasma) and in two experimental groups (pulsed plasma and conventional plasma groups) using the Scotchbond Multi-Purpose Plus Adhesive System. Data were analyzed using two-factor repeated-measures anova and Weibull statistics. Fractured surfaces and the bonded interfaces were evaluated using a field-emission scanning electron microscope. Although there were no significant differences between the plasma treatment groups, the plasma treatment improved the MTBS compared with the control group. After thermocycling, the MTBS did not decrease in the control or conventional plasma group but increased in the pulsed plasma group. Thermocycling increased the Weibull moduli of plasma-treated groups. In conclusion, plasma treatment using NT-APP improved the adhesion of resin composite to dentin. Using a pulsed energy source, the energy delivered to the dentin was effectively reduced without any reduction in bond strength or durability. PMID:25311730

  19. Effects of non-thermal atmospheric pressure pulsed plasma on the adhesion and durability of resin composite to dentin.

    PubMed

    Han, Geum-Jun; Kim, Jae-Hoon; Chung, Sung-No; Chun, Bae-Hyeock; Kim, Chang-Keun; Seo, Deog-Gyu; Son, Ho-Hyun; Cho, Byeong-Hoon

    2014-12-01

    This study investigated the effect of low-power, non-thermal atmospheric pressure plasma (NT-APP) treatments, in pulsed and conventional modes, on the adhesion of resin composite to dentin and on the durability of the bond between resin composite and dentin. A pencil-type NT-APP jet was applied in pulsed and conventional modes to acid-etched dentin. The microtensile bond strength (MTBS) of resin composite to dentin was evaluated at 24 h and after thermocycling in one control group (no plasma) and in two experimental groups (pulsed plasma and conventional plasma groups) using the Scotchbond Multi-Purpose Plus Adhesive System. Data were analyzed using two-factor repeated-measures anova and Weibull statistics. Fractured surfaces and the bonded interfaces were evaluated using a field-emission scanning electron microscope. Although there were no significant differences between the plasma treatment groups, the plasma treatment improved the MTBS compared with the control group. After thermocycling, the MTBS did not decrease in the control or conventional plasma group but increased in the pulsed plasma group. Thermocycling increased the Weibull moduli of plasma-treated groups. In conclusion, plasma treatment using NT-APP improved the adhesion of resin composite to dentin. Using a pulsed energy source, the energy delivered to the dentin was effectively reduced without any reduction in bond strength or durability.

  20. High daytime and nighttime ambulatory pulse pressure predict poor cognitive function and mild cognitive impairment in hypertensive individuals.

    PubMed

    Riba-Llena, Iolanda; Nafría, Cristina; Filomena, Josefina; Tovar, José L; Vinyoles, Ernest; Mundet, Xavier; Jarca, Carmen I; Vilar-Bergua, Andrea; Montaner, Joan; Delgado, Pilar

    2016-01-01

    High blood pressure accelerates normal aging stiffness process. Arterial stiffness (AS) has been previously associated with impaired cognitive function and dementia. Our aims are to study how cognitive function and status (mild cognitive impairment, MCI and normal cognitive aging, NCA) relate to AS in a community-based population of hypertensive participants assessed with office and 24-hour ambulatory blood pressure measurements. Six hundred ninety-nine participants were studied, 71 had MCI and the rest had NCA. Office pulse pressure (PP), carotid-femoral pulse wave velocity, and 24-hour ambulatory PP monitoring were collected. Also, participants underwent a brain magnetic resonance to study cerebral small-vessel disease (cSVD) lesions. Multivariate analysis-related cognitive function and cognitive status to AS measurements after adjusting for demographic, vascular risk factors, and cSVD. Carotid-femoral pulse wave velocity and PP at different periods were inversely correlated with several cognitive domains, but only awake PP measurements were associated with attention after correcting for confounders (beta = -0.22, 95% confidence interval (CI) -0.41, -0.03). All ambulatory PP measurements were related to MCI, which was independently associated with nocturnal PP (odds ratio (OR) = 2.552, 95% CI 1.137, 5.728) and also related to the presence of deep white matter hyperintensities (OR = 1.903, 1.096, 3.306). Therefore, higher day and night ambulatory PP measurements are associated with poor cognitive outcomes.

  1. Pulse pressure and heart rate in patients with metabolic syndrome across Europe: insights from the GOOD survey.

    PubMed

    Perlini, S; Naditch-Brule, L; Farsang, C; Zidek, W; Kjeldsen, S E

    2013-07-01

    The Global Cardiometabolic Risk Profile in Patients with hypertension disease (GOOD) survey investigated the global cardiometabolic risk profile in 3464 adult outpatients with hypertension across 289 sites in 12 European countries. The pulse pressure and heart rate profile of the survey population was evaluated according to the presence or absence of metabolic syndrome and/or type 2 diabetes mellitus. History and treatment of hypertension were not counted as criteria for metabolic syndrome as they applied to all patients. Out of the 3370 recruited patients, 1033 had metabolic syndrome and 1177 had neither metabolic syndrome nor diabetes. When compared with patients with no metabolic syndrome or diabetes, patients with metabolic syndrome had higher pulse pressure (59±14 vs. 55±14 mm Hg) and heart rate (75.2±11.0 vs. 72.5±10.0 beats per min) (P<0.001 for both), independent of the concomitant presence or absence of diabetes, despite a more prevalent use of β-blockers. In conclusion, in hypertensive outpatients the presence of metabolic syndrome is associated with increased heart rate and pulse pressure, which may at least in part reflect increased arterial stiffness and increased sympathetic tone. This may contribute, to some extent, to explaining the increased cardiovascular risk attributed to the presence of metabolic syndrome.

  2. Small Gas Bubble Experiment for Mitigation of Cavitation Damage and Pressure Waves in Short-pulse Mercury Spallation Targets

    SciTech Connect

    Wendel, Mark W; Felde, David K; Sangrey, Robert L; Abdou, Ashraf A; West, David L; Shea, Thomas J; Hasegawa, Shoichi; Kogawa, Hiroyuki; Naoe, Dr. Takashi; Farny, Dr. Caleb H.; Kaminsky, Andrew L

    2014-01-01

    Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center - Weapons Neutron Research Center (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubbler provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 m in radius with achieved gas void fractions in the 10^-5 to 10^-4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was surface damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was between half and a quarter that of flow alone. Other data collected included surface motion tracking by three laser Doppler vibrometers (LDV), loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones.

  3. Numerical and analytical assessment of the influence of blood flow through arterial perforators on the pulse pressure shape

    NASA Astrophysics Data System (ADS)

    Pieniak, Marcin; Piechna, Adam; Cieślicki, Krzysztof

    2015-09-01

    Most of the existing models of cardiovascular system do not take into account the leakage of blood through a number of small vessels branching the main arterial trunks and called perforators. Therefore, the aim of this study is to investigate their influence on the pulse pressure waveform. Linearized, 1D computer model of a minute part of the cardiovascular system has been designed and series of simulations with and without leakage have been conducted. Blood flow in a single segment of the arterial system and pressure in vascular nodes were described by the two first order partial differential equations. A set of boundary conditions on both ends of a single vascular segment and at nodal point have been formulated. To solve the linear set of above equations, a numerical method of characteristic has been used. It was shown that the leakage reduces reflection from the peripheral resistance. The simulations have also shown a decrease of the average pressure value with increase of leakage and modification of the pulse pressure waveform. All these effects depended strongly on the assumed leakage value and practically died out when its value was reduced to about 10% of the main flow.

  4. R. Lynette & Associates and Pacific Northwest Laboratory staff exchange: Analysis and evaluation of the application of the Pulse Amplitude Synthesis and Control (PASC) converter in a wind power plant

    SciTech Connect

    1998-12-31

    The main objective of staff exchanges is to facilitate cooperative activities between PNL staff and U.S. private industry. Funding for the projects is provided by the DOE Office of Energy Research Laboratory Technology Transfer Program. Dr. Matthew Donnelly, a Research Engineer in the Applied Physics Center, Initiated a PNL disclosure for Pulse Amplitude Synthesis and Control (PASC) converter intellectual property protection in 1993. PASC converter research at the Pacific Northwest Laboratory (PNL) has been funded through the ETDI LDRD program. Recent work has centered on building the three-phase 20kW laboratory unit, the development of control algorithms and the study of the application of PASC converters in a 25MW wind power plant (through the staff exchange with RLA reported on here). An overview and description of the PASC converter is included as Appendix A.

  5. Effect of Buddhist meditation on serum cortisol and total protein levels, blood pressure, pulse rate, lung volume and reaction time.

    PubMed

    Sudsuang, R; Chentanez, V; Veluvan, K

    1991-09-01

    Serum cortisol and total protein levels, blood pressure, heart rate, lung volume, and reaction time were studied in 52 males 20-25 years of age practicing Dhammakaya Buddhist meditation, and in 30 males of the same age group not practicing meditation. It was found that after meditation, serum cortisol levels were significantly reduced, serum total protein level significantly increased, and systolic pressure, diastolic pressure and pulse rate significantly reduced. Vital capacity, tidal volume and maximal voluntary ventilation were significantly lower after meditation than before. There were also significant decreases in reaction time after mediation practice. The percentage decrease in reaction time during meditation was 22%, while in subjects untrained in meditation, the percentage decrease was only 7%. Results from these studies indicate that practising Dhammakaya Buddhist meditation produces biochemical and physiological changes and reduces the reaction time.

  6. Inactivation of bacteria and spores by pulse electric field and high pressure CO2 at low temperature.

    PubMed

    Spilimbergo, Sara; Dehghani, Fariba; Bertucco, Alberto; Foster, Neil R

    2003-04-01

    The common methods for inactivation of bacteria involve heating or exposure to toxic chemicals. These methods are not suitable for heat-sensitive materials, food, and pharmaceutical products. Recently, a complete inactivation of many microorganisms was achieved with high-pressure carbon dioxide at ambient temperature and in the absence of organic solvent and irradiation. The inactivation of spores with CO(2) required long residence time and high temperatures, such as 60 degrees C. In this study the synergistic effect of pulsed electric field (PEF) in combination with high-pressure CO(2) for inactivation was investigated. The bacteria Escherichia coli, Staphylococcus aureus, and Bacillus cereus were suspended in glycerol solution and treated in the first step with PEF (up to 25 KV/cm) and then with high-pressure CO(2) not higher than 40 degrees C and 200 bar. The inactivation efficiency was determined by counting the colony formation units of control and sample. Samples of the cells subjected to PEF treatment alone and in combination with CO(2) treatment were examined by scanning electron microscopy to determine the effect of the processes on the cell wall. Experimental results indicate that the viability decreased with increasing electrical field strength and number of pulses. A further batch treatment with supercritical CO(2) lead to complete inactivation of bacterial species and decreased the count of the spores by at least three orders of magnitude, the inactivation being enhanced by an increase of contact time between CO(2) and the sample. A synergistic effect between the pulsed electric field and the high-pressure CO(2) was evident in all the species treated. The new low temperature process is an alternative for pasteurization of thermally labile compounds such as protein and plasma and minimizes denaturation of important nutrient compounds in the liquid media.

  7. Relationship between Sum of the Four Limbs' Pulse Pressure and Brachial-Ankle Pulse Wave Velocity and Atherosclerosis Risk Factors in Chinese Adults

    PubMed Central

    Zheng, Yansong; Li, Zongbin; Shu, Hua; Liu, Minyan; Chen, Zhilai; Huang, Jianhua

    2015-01-01

    The aim of the present study was to analyze the relationship between the sum of the four limbs' pulse pressure (Sum-PP) and brachial-ankle pulse wave velocity (baPWV) and atherosclerosis risk factors and evaluate the feasibility of Sum-PP in diagnosing atherosclerosis systemically. For the purpose, a cross-sectional study was conducted on the basis of medical information of 20748 adults who had a health examination in our hospital. Both Sum-PP and baPWV exhibited significant variations among different human populations grouped by gender, smoking, drinking, and age. Interestingly, Sum-PP had similar varying tendency with baPWV in different populations. And further study in different populations showed that Sum-PP was significantly positively related to baPWV. We also investigated the relationship between Sum-PP, baPWV, and cardiovascular risk factors, respectively. We found that both Sum-PP and baPWV had significant positive correlation with atherosclerosis risk factors while both of them were negatively related to HDL-c. In addition, there was a significant close correlation between Sum-PP and baPWV in the whole population (r = 0.4616, P < 0.0001). Thus, Sum-PP is closely related to baPWV and is of important value for clinical diagnosis of atherosclerosis. PMID:25695080

  8. Temporal evolution of temperature and OH density produced by nanosecond repetitively pulsed discharges in water vapour at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Sainct, F. P.; Lacoste, D. A.; Kirkpatrick, M. J.; Odic, E.; Laux, C. O.

    2014-02-01

    We report on an experimental study of the temporal evolution of OH density and gas temperature in spark discharges created by nanosecond repetitively pulsed discharges in pure water vapour at 475 K and atmospheric pressure. The plasma was generated by 20 kV, 20 ns pulses, at a repetition frequency of 10 kHz. The temperature was measured during the discharge by optical emission spectroscopy of the second positive system of N2, and between two discharges by two-colour OH-planar laser induced fluorescence (OH-PLIF) using two pairs of rotational transitions. Between two successive discharges, the relative density of OH was measured by OH-PLIF and was found to decay very slowly, with a 1/e decay time of about 50 µs. With the use of a chemical kinetics model, the OH density was placed on an absolute scale.

  9. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses

    SciTech Connect

    Lu Xinpei; Laroussi, Mounir

    2006-09-15

    Nonequilibrium plasmas driven by submicrosecond high voltage pulses have been proven to produce high-energy electrons, which in turn lead to enhanced ionization and excitations. Here, we describe a device capable of launching a cold plasma plume in the surrounding air. This device, ''the plasma pencil,'' is driven by few hundred nanosecond wide pulses at repetition rates of a few kilohertz. Correlation between current-voltage characteristics and fast photography shows that the plasma plume is in fact a small bulletlike volume of plasma traveling at unusually high velocities. A model based on photoionization is used to explain the propagation kinetics of the plasma bullet under low electric field conditions.

  10. Analysis of the scintillation mechanism in a pressurized {sup 4}He fast neutron detector using pulse shape fitting

    SciTech Connect

    Kelley, R.P. Ray, H.; Jordan, K.A.; Murer, D.

    2015-03-15

    An empirical investigation of the scintillation mechanism in a pressurized {sup 4}He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a {sup 252}Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the {sup 4}He detector. A further understanding of this mechanism in the {sup 4}He detector will advance the use of this system as a neutron spectrometer. For {sup 252}Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a {sup 252}Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  11. Effect of ambient gas pressure on pulsed laser ablation plume dynamics and ZnTe film growth

    SciTech Connect

    Rouleau, C.M.; Lowndes, D.H.; Geohegan, D.B.; Allard, L.F.; Strauss, M.A.; Cao, S.; Pedraza, A.J.; Puretzky, A.A.

    1995-12-01

    Epitaxial thin films of nitrogen-doped p-ZnTe were grown on single-crystal, semi-insulating Ga-As substrates via pulsed laser ablation of a stoichiometric ZnTe target. Both low pressure nitrogen ambients and high vacuum were used. Results of in situ reflection high energy electron diffraction (RHEED) and time-resolved ion probe measurements have been compared with ex situ Hall effect and transmission electron microscopy (TEM) measurements. A strong correlation was observed between the nature of the film`s surface during growth (2-D vs. 3-D, assessed via RHEED) and the ambient gas pressures employed during deposition. The extended defect content (assessed via cross-sectional TEM) in the region >150 mn from the film/substrate interface was found to increase with the ambient gas pressure during deposition, which could not be explained by lattice mismatch alone. At sufficiently high pressures, misoriented, columnar grains developed which were not only consistent with the RHEED observations but also were correlated with a marked decrease in Hall mobility and a slight decrease in hole concentration. Ion probe measurements, which monitored the attenuation and slowing of the ion current arriving at the substrate surface, indicated that for increasing nitrogen pressure the fast (vacuum) velocity distribution splits into a distinct fast and two collisionally-slowed components or modes. Gas controlled variations in these components mirrored trends in electrical properties and microstructural measurements.

  12. Modification of surface energy, dry etching, and organic film removal using atmospheric-pressure pulsed-corona plasma

    SciTech Connect

    Yamamoto, Toshiaki; Newsome, J.R.; Ensor, D.S.

    1995-05-01

    A laboratory-scale atmospheric-pressure plasma reactor, using a nanosecond pulsed corona, was constructed to demonstrate potential applications ranging from modification of surface energy to removal of surface organic films. For surface modification studies, three different substrates were selected to evaluate the surface energies: bare aluminum, polyurethane, and silicon coated with photoresist. The critical surface energy for all materials studied significantly increased after the plasma treatment. The effects of gas composition and plasma treatment time were also investigated. Photoresist, ethylene glycol, and Micro surfactant were used as test organic films. The etching rate of a photoresist coating on silicon was 9 nm/min. Organic film removal using atmospheric pressure plasma technology was shown to be feasible.

  13. Pressure waves in liquid mercury target from pulsed heat loads and the possible way controlling their effects

    SciTech Connect

    Ni, L.; Skala, K.

    1996-06-01

    In ESS project liquid metals are selected as the main target for the pulsed spallation neutron source. Since the very high instantaneous energy is deposited on the heavy molten target in a very short period time, pressure waves are generated. They travel through the liquid and cause high stress in the container. Also, additional stress should be considered in the wall which is the result of direct heating of the target window. These dynamic processes were simulated with computational codes with the static response being analized first. The total resulting dynamic wall stress has been found to have exceeded the design stress for the selected container material. Adding a small amount of gas bubbles in the liquid could be a possible way to reduce the pressure waves.

  14. Second derivative of the finger arterial pressure waveform: an insight into dynamics of the peripheral arterial pressure pulse.

    PubMed

    Simek, J; Wichterle, D; Melenovský, V; Malík, J; Svacina, S; Widimský, J

    2005-01-01

    The study investigated second derivative of the finger arterial pressure waveform (SDFAP) in 120 healthy middle-aged subjects and in 24 subjects with essential hypertension. SDFAP consists of 5 sequential waves 'a'-'e'. Their normalized magnitudes (B/A, C/A, D/A, and E/A) were calculated. In multivariate regression analysis, B/A and C/A correlated only with age. D/A independently correlated with age, heart period, mean blood pressure (MBP), body height, and gender. E/A independently correlated with age and MBP. D/A and E/A were higher (0.42+/-0.16 vs. 0.33+/-0.14, p = 0.05 and 0.63+/-0.15 vs. 0.45+/-0.14, p < 0.001), while B/A and C/A were lower (1.04+/-0.16 vs. 1.20+/-0.17, p = 0.002 and 0.09+/-0.15 vs. 0.26+/-0.20, p = 0.001) in hypertensives compared to sex- and age-matched controls. After the adjustment for MBP, heart period, and body mass index (ANCOVA), independent discriminative power was preserved only for indices B/A and C/A (p = 0.001 and 0.021, respectively). Therefore, B/A and C/A provide additional information about simple clinical characteristics and might reflect the structural alteration of the arterial wall in hypertensive subjects.

  15. Strong Solar Wind Dynamic Pressure Pulses during Solar Cycle 23 and Their Impacts on Geosynchronous Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Zuo, P.

    2015-12-01

    Solar wind dynamic pressure pulse (DPP) structures, across which the dynamic pressure abruptly changes over timescales from a few seconds to several minutes, are often observed in the near-Earth space environment. In this investigation, we first present a statistical study on the properties of strong dynamic pressure pulses in the solar wind during solar cycle 23. It is found that overwhelming majority of DPPs are associated with the solar wind disturbances including the CME-related flows, the corotating interaction regions, as well as the complex ejecta. The annual variations of the averaged occurrence rate of DPPs are roughly in phase with the solar activities. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears no systematic investigations on the response of GMFs to negative DPPs. Here we also study the decompression/compression effects of very strong negative/positive DPPs on GMFs under northward IMFs. In response to the decompression of strong negative DPPs, GMFs on dayside, near the dawn and dusk on nightside are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of events when GOES is located at the midnight sector, GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that on certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here we found that, a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, being stronger at the noon sector.

  16. Temporal evolution of the electron density produced by nanosecond repetitively pulsed discharges in water vapor at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Sainct, Florent; Lacoste, Deanna; Kirkpatrick, Michael; Odic, Emmanuel; Laux, Christophe

    2014-10-01

    A study of plasma discharges produced by nanosecond repetitive pulses (NRP) in water vapor at 450 K and 1 atm is presented. The plasma was generated between two point electrodes with 20-ns duration, high-voltage (0--20 kV) pulses, at a repetition frequency of 10 kHz, in the spark regime (2 mJ/pulse). Atomic lines measured by optical emission spectroscopy were used to determine the electron number density in this non-equilibrium water-vapor plasma. The broadenings and shifts of the Hα and Hβ lines of the hydrogen Balmer series and of the atomic oxygen triplet at 777 nm were analyzed. For a maximum reduced electric field of about 200 Td, a maximum electron density of 2 × 1018 cm-3 was measured, corresponding to an ionization level of about 10 %. This ionization level is two orders of magnitude higher than the one obtained for similar NRP discharges in air at atmospheric pressure.

  17. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  18. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    SciTech Connect

    Chen, Zhaoquan; Yin, Zhixiang Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui; Xia, Guangqing; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-21

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  19. Non-invasive measurements of pulse pressure variation and stroke volume variation in anesthetized patients using the Nexfin blood pressure monitor.

    PubMed

    Stens, Jurre; Oeben, Jeroen; Van Dusseldorp, Ab A; Boer, Christa

    2016-10-01

    Nexfin beat-to-beat arterial blood pressure monitoring enables continuous assessment of hemodynamic indices like cardiac index (CI), pulse pressure variation (PPV) and stroke volume variation (SVV) in the perioperative setting. In this study we investigated whether Nexfin adequately reflects alterations in these hemodynamic parameters during a provoked fluid shift in anesthetized and mechanically ventilated patients. The study included 54 patients undergoing non-thoracic surgery with positive pressure mechanical ventilation. The provoked fluid shift comprised 15° Trendelenburg positioning, and fluid responsiveness was defined as a concomitant increase in stroke volume (SV) >10 %. Nexfin blood pressure measurements were performed during supine steady state, Trendelenburg and supine repositioning. Hemodynamic parameters included arterial blood pressure (MAP), CI, PPV and SVV. Trendelenburg positioning did not affect MAP or CI, but induced a decrease in PPV and SVV by 3.3 ± 2.8 and 3.4 ± 2.7 %, respectively. PPV and SVV returned back to baseline values after repositioning of the patient to baseline. Bland-Altman analysis of SVV and PPV showed a bias of -0.3 ± 3.0 % with limits of agreement ranging from -5.6 to 6.2 %. The SVV was more superior in predicting fluid responsiveness (AUC 0.728) than the PVV (AUC 0.636), respectively. The median bias between PPV and SVV was different for patients younger [-1.5 % (-3 to 0)] or older [+2 % (0-4.75)] than 55 years (P < 0.001), while there were no gender differences in the bias between PPV and SVV. The Nexfin monitor adequately reflects alterations in PPV and SVV during a provoked fluid shift, but the level of agreement between PPV and SVV was low. The SVV tended to be superior over PPV or Eadyn in predicting fluid responsiveness in our population.

  20. Experimental Evaluation of Permeability in Wellbore Cements under Elevated Temperatue, Pressure and Salinity Using a Liquid Pressure-Pulse Decay Permeameter

    NASA Astrophysics Data System (ADS)

    Bello, K.; Radonjic, M.

    2013-12-01

    Kolawole Bello (kbello1@tigers.lsu.edu) and Mileva Radonjic (mileva@lsu.edu), Craft and Hawkins Department of Petroleum Engineering, 2131 Patrick F. Taylor Hall, Louisiana State University, Baton Rouge, LA 70803 Geopressured reservoirs in the northern Gulf of Mexico basin along the coast of Louisiana have been determined to be viable source of geothermal energy and also for carbon sequestration. These reservoirs are made of unconsolidated sandstone capped by shale layers and possess temperatures as high as 140°C. In addition, high salinities of 100 g/L are associated with these reservoirs due to the dissolution of surrounding salt domes. In production of geothermal reservoir, cementing cost accounts for 50% of total costs unlike in oil and gas wells where cementing cost is approximately 15%. This difference in cost is caused by the difference in fluid chemistry. In this project, we propose in-situ harvesting of heat energy resulting in differential temperature across the cement. As a result of thermal loading, hydrated cement fractures. In addition, leaching occurs in wellbore cements when exposed to pH less than 13 causing an increase in permeability. This consequently leads to lack of zonal isolation and compromises the mechanical integrity of the cement. This study provides ways of evaluating wellbore cements under conditions experienced in geopressured reservoirs. For the first time, we have state of the art equipment capable of measuring brine permeability of cement using Liquid Pressure-pulse Decay Permeameter (PDPL). Under in-situ confining pressure, brine permeability is more accurate than gas permeability due to the decrease in pore throat diameter. PDPL provides an efficient and accurate way of measuring brine permeability in low permeability materials at reservoir temperature and pressure. This permeability is function of pressure decay over time. Permeability measurements were taken before and after cyclic thermal loading of cement cores at

  1. A chair for cuffless real-time estimation of systolic blood pressure based on pulse transit time.

    PubMed

    Tang, Zunyi; Sekine, Masaki; Tamura, Toshiyo; Yoshida, Masaki; Chen, Wenxi

    2015-01-01

    This study presents an unobtrusive cuffless blood pressure (BP) monitoring system for estimating beat-by-beat systolic blood pressure (SBP) in real-time based on pulse transit time (PTT). The system mainly includes an electrocardiograph with three conductive textile electrodes, a pulse monitor with a LED and a photodetector, a control circuit with a Bluetooth module, and a battery, all of which are mounted on a common armchair to measure ECG and photoplethysmography (PPG) signals from users during sitting on the armchair. The measured ECG and PPG data are transmitted to the software terminal installed on a tablet PC and are further derived to obtain a series of PTT for estimating beat-by-beat BP using Chen's method. We had 9 healthy subjects undergo the BP monitoring experiments of still sitting on a chair for 3 minutes, lying on a bed for 10 minutes, and pedaling using ergometer for 11 minutes in order to assess the accuracy of the estimated BP. A Finometer and a cuff-type BP meter were used as references in the experiments. Preliminary results showed that the mean error and mean absolute difference (MAD) of estimated BP were within -0.5 ± 5.3 mmHg and 4.1 ± 3.4 mmHg, respectively, compared to references. The result suggests that the proposed BP estimation system has the potential for long-term home BP monitoring. PMID:26737443

  2. High-temperature and high-pressure pulsed synthesis apparatus for supercritical production of nanoparticles.

    PubMed

    Eltzholtz, Jakob R; Iversen, Bo B

    2011-08-01

    In materials science continuous flow supercritical fluid reactors are widely used for highly controlled synthesis of nanoparticles. The major limitation of continuous flow reactors is that the inherent distribution of residence times leads to broadening of the corresponding size distribution of the nanoparticles, and in addition it is not possible to carry out synthesis with very short or very long reaction times. Here, we report a new synthesis concept that we call pulsed synthesis, which removes the limitations of flow synthesis at the expense of a more complex reactor design and extensive computer control. Another limitation of flow synthesis is that it is largely a black box, where limited direct information is available of the specific chemical reactions taking place, the particle nucleation, the particle growth, etc. Such information is commonly obtained from in situ synchrotron and neutron scattering studies, but transfer of information from in situ studies with static reactors to laboratory flow reactor conditions is highly non-trivial. The new pulse reactor provides superior heating rates, arbitrary residence times with narrow distribution limited only by the pulse duration, and the ability of using the same reactor both for nanoparticle production and in situ synchrotron studies; thus eliminating the need for transfer of in situ information to laboratory reactor designs.

  3. Pressure and Thrust Measurements of a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Nguyen, Namtran C.; Cutler, Andrew D.

    2008-01-01

    This paper describes the development of a small-scale, high-frequency pulsed detonation actuator. The device utilized a fuel mixture of H2 and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at approx.600 Hz, for the lambda/4 mode. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to specific impulse of 2611 s. This value is comparable to other H2-fueled pulsed detonation engines (PDEs) experiments. The injection and detonation frequency for this new experimental case was approx.600 Hz, and was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the model and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 lb/cu in, and compares favorably with other experiments, which typically have thrust-per-unit-volume values of approximately 0.01 lb/cu in.

  4. Pressure and Thrust Measurements of a High-Frequency Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Nguyen, N.; Cutler, A. D.

    2008-01-01

    This paper describes measurements of a small-scale, high-frequency pulsed detonation tube. The device utilized a mixture of H2 fuel and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at about 600 Hz, for the quarter wave mode of resonance. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to H2 flow based specific impulse of 2970 s. This value is comparable to measurements in H2-fueled pulsed detonation engines (PDEs). The injection and detonation frequency for this new experimental case was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the device and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 pounds per cubic inch, and compares favorably with other experiments, which typically have thrust-per-unit-volume of order 0.01 pound per cubic inch. This much higher volumetric efficiency results in a potentially much more practical device than the typical PDE, for a wide range of potential applications, including high-speed boundary layer separation control, for example in hypersonic engine inlets, and propulsion for small aircraft and missiles.

  5. Positional circulatory control in the sleeping infant and toddler: role of the inner ear and arterial pulse pressure.

    PubMed

    Cohen, Gary; Vella, Silvano; Jeffery, Heather; Lagercrantz, Hugo; Katz-Salamon, Miriam

    2012-08-01

    Heart rate (HR) and arterial blood pressure (BP) are rapidly and reflexively adjusted as body position and the force/direction of gravity alters. Anomalies in these mechanisms may predispose to circulatory failure during sleep. We analysed the development of two key reflexes involved by undertaking a longitudinal (birth–1 year) comparison of instantaneous HR and BP changes evoked by abrupt upright, sideways or horizontal repositioning. Each manoeuvre triggered an identical rise in HR (tachycardia) followed by a slower rise in diastolic blood pressure (DBP)/systolic blood pressure (SBP) and variable pulse pressure (PP) change. We show that tachycardia is triggered by acceleration (vestibular) sensors located in the inner ear and slight changes in the pulsatile component of BP then signal to the arterial baroreceptors to reinforce or oppose these actions as needed. We also identified a PP anomaly in sleeping 1-year-olds of smokers that prematurely slows HR and is associated with mild positional hypotension. We conclude that positional circulatory compensation is initiated pre-emptively in a feed-forward manner and that feedback changes in vago-sympathetic drive to the heart (and perhaps blood vessels) by PP exert a slower but powerful modulating effect. An anomaly in either or both mechanisms may weaken positional compensation in some sleeping infants. PMID:22586212

  6. Pressure signature and evaluation of hammer pulses during underwater implosion in confining environments.

    PubMed

    Gupta, Sachin; Matos, Helio; Shukla, Arun; LeBlanc, James M

    2016-08-01

    The fluid structure interaction phenomenon occurring in confined implosions is investigated using high-speed three-dimensional digital image correlation (DIC) experiments. Aluminum tubular specimens are placed inside a confining cylindrical structure that is partially open to a pressurized environment. These specimens are hydrostatically loaded until they naturally implode. The implosion event is viewed, and recorded, through an acrylic window on the confining structure. The velocities captured through DIC are synchronized with the pressure histories to understand the effects of confining environment on the implosion process. Experiments show that collapse of the implodable volume inside the confining tube leads to strong oscillating water hammer waves. The study also reveals that the increasing collapse pressure leads to faster implosions. Both peak and average structural velocities increase linearly with increasing collapse pressure. The effects of the confining environment are better seen in relatively lower collapse pressure implosion experiments in which a long deceleration phase is observed following the peak velocity until wall contact initiates. Additionally, the behavior of the confining environment can be viewed and understood through classical water hammer theory. A one-degree-of-freedom theoretical model was created to predict the impulse pressure history for the particular problem studied. PMID:27586733

  7. Analysis of intracranial pressure pulse waveform and brain capillary morphology in type 2 diabetes mellitus rats.

    PubMed

    Onodera, Hidetaka; Oshio, Kotaro; Uchida, Masashi; Tanaka, Yuichiro; Hashimoto, Takuo

    2012-06-15

    Diabetes mellitus in neurosurgical patients is known to be a disease with high risks and severe outcomes. However, the mechanism by which diabetes mellitus induces dysfunction of brain tissue is not well known. The hypothesis of this study was that the damage to brain microvasculature in diabetes mellitus results in impaired compliance of the brain. Pathological changes associated with type II diabetes were investigated using a rat model. Pathophysiological changes in diabetic brain tissue were also investigated to confirm cerebral compliance by analyzing intracranial pressure waveforms. Pathologic findings revealed thickening of the basement membrane and fibrous collagen infiltration into the inner basement membrane of the brain microvasculature in diabetes mellitus. Analysis of intracranial pressure waveforms revealed that the P2 portion increased in diabetic rats compared to the control and was increased further with the increase in intracranial pressure. Analysis of the differential pressure curve, with respect to time, demonstrated that intracranial elasticity showed a concomitant increase. Pathologic findings and intracranial pressure waveforms were consistent with changes in brain microvasculature in diabetes mellitus. The increase of elasticity of brain tissue in diabetes mellitus may exacerbate the damage of intracranial disease.

  8. Opposite predictive value of pulse pressure and aortic pulse wave velocity on heart failure with reduced left ventricular ejection fraction: insights from an Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) substudy.

    PubMed

    Regnault, Veronique; Lagrange, Jérémy; Pizard, Anne; Safar, Michel E; Fay, Renaud; Pitt, Bertram; Challande, Pascal; Rossignol, Patrick; Zannad, Faiez; Lacolley, Patrick

    2014-01-01

    Although hypertension contributes significantly to worsen cardiovascular risk, blood pressure increment in subjects with heart failure is paradoxically associated with lower risk. The objective was to determine whether pulse pressure and pulse wave velocity (PWV) remain prognostic markers, independent of treatment in heart failure with reduced left ventricular function. The investigation involved 6632 patients of the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study. All subjects had acute myocardial infarction with left ventricular ejection fraction <40% and signs/symptoms of heart failure. Carotid-femoral PWV was measured in a subpopulation of 306 subjects. In the overall population, baseline mean arterial pressure <90 mm Hg was associated with higher all-cause death (hazard ratio, 1.14 [95% confidence interval, 1.00-1.30]; P<0.05), whereas higher left ventricular ejection fraction or pulse pressure was associated with lower rates of all-cause death, cardiovascular death/hospitalization, and cardiovascular death. In the subpopulation, increased baseline PWV was associated with worse outcomes (all-cause death: 1.16 [1.03-1.30]; P<0.05 and cardiovascular deaths: 1.16 [1.03-1.31]; P<0.05), independent of age and left ventricular ejection fraction. Using multiple regression analysis, systolic blood pressure and age were the main independent factors positively associated with pulse pressure or PWV, both in the entire population or in the PWV substudy. In heart failure and low ejection fraction, our results suggest that pulse pressure, being negatively associated with outcome, is more dependent on left ventricular function and thereby no longer a marker of aortic elasticity. In contrast, increased aortic stiffness, assessed by PWV, contributes significantly to cardiovascular death.

  9. Amplitude-temporal characteristics of a supershort avalanche electron beam generated during subnanosecond breakdown in air and nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Beloplotov, D. V.; Burachenko, A. G.; Lomaev, M. I.

    2016-04-01

    The amplitude-temporal characteristics of a supershort avalanche electron beam (SAEB) with an amplitude of up to 100 A, as well as of the breakdown voltage and discharge current, are studied experimentally with a picosecond time resolution. The waveforms of discharge and SAEB currents are synchronized with those of the voltage pulses. It is shown that the amplitude-temporal characteristics of the SAEB depend on the gap length and the designs of the gas diode and cathode. The mechanism for the generation of runaway electron beams in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

  10. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire—KrF laser. Part 1. Regenerative amplification of subpicosecond pulses in a wide-aperture electron beam pumped KrF amplifier

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, Andrei A.; Levchenko, A. O.; Mesyats, Gennadii A.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, Igor V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.

    2013-04-01

    Regenerative amplification of single and multiple ultrashort subpicosecond UV pulses in a wide-aperture KrF amplifier with an unstable confocal resonator was investigated on the GARPUN-MTW hybrid laser system. Amplitude-modulated 100-ns long UV radiation pulses with an energy of several tens of joules were obtained at the output of the system. The pulses were a combination of a quasi-stationary oscillation pulse and a train of amplified ultrashort pulses (USPs) with a peak power of 0.2-0.3 TW, which exceeded the power of free-running lasing pulse by three orders of magnitude. The population inversion recovery time in the active KrF laser medium was estimated: τc <= 2.0 ns. Trains of USPs spaced at an interval Δt ≈ τc were shown to exhibit the highest amplification efficiency. The production of amplitude-modulated UV pulses opens up the way to the production and maintenance of extended plasma channels in atmospheric air.

  11. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire-KrF laser. Part 1. Regenerative amplification of subpicosecond pulses in a wide-aperture electron beam pumped KrF amplifier

    SciTech Connect

    Zvorykin, V D; Ionin, Andrei A; Levchenko, A O; Mesyats, Gennadii A; Seleznev, L V; Sinitsyn, D V; Smetanin, Igor V; Sunchugasheva, E S; Ustinovskii, N N; Shutov, A V

    2013-04-30

    Regenerative amplification of single and multiple ultrashort subpicosecond UV pulses in a wide-aperture KrF amplifier with an unstable confocal resonator was investigated on the GARPUN-MTW hybrid laser system. Amplitude-modulated 100-ns long UV radiation pulses with an energy of several tens of joules were obtained at the output of the system. The pulses were a combination of a quasi-stationary oscillation pulse and a train of amplified ultrashort pulses (USPs) with a peak power of 0.2-0.3 TW, which exceeded the power of free-running lasing pulse by three orders of magnitude. The population inversion recovery time in the active KrF laser medium was estimated: {tau}{sub c} {<=} 2.0 ns. Trains of USPs spaced at an interval {Delta}t Almost-Equal-To {tau}{sub c} were shown to exhibit the highest amplification efficiency. The production of amplitude-modulated UV pulses opens up the way to the production and maintenance of extended plasma channels in atmospheric air. (extreme light fields and their applications)

  12. Ignition and afterglow dynamics of a high pressure nanosecond pulsed helium micro-discharge: II. Rydberg molecules kinetics

    NASA Astrophysics Data System (ADS)

    Carbone, Emile A. D.; Schregel, Christian-Georg; Czarnetzki, Uwe

    2016-10-01

    In this paper, we discuss the experimental results presented in Schregel et al (2016 Plasma Sources Sci. Technol. 25 054003) on a high pressure micro-discharge operated in helium and driven by nanosecond voltage pulses. A simple global plasma chemistry model is developed to describe the ions, excited atomic and molecular species dynamics in the ignition and early afterglow regimes. The existing experimental data on high pressure helium kinetics is reviewed and critically discussed. It is highlighted that several inconsistencies in the branching ratio of neutral assisted associative and dissociative processes currently exist in the literature and need further clarification. The model allows to pinpoint the mechanisms responsible for the large amounts of Rydberg molecules produced in the discharge and for the helium triplet metastable state in the afterglow. The main losses of electrons are also identified. The fast quenching of excited He (n  >  3) states appears to be a significant source of Rydberg molecules which has been previously neglected. The plasma model finally draws a simplified, but still accurate description of high pressure helium discharges based on available experimental data for ion and neutral helium species.

  13. Simulation of subnanosecond streamers in atmospheric-pressure air: Effects of polarity of applied voltage pulse

    NASA Astrophysics Data System (ADS)

    Babaeva, N. Yu.; Naidis, G. V.

    2016-08-01

    Results of simulation of subnanosecond streamer propagation in corona gap configuration, obtained in the framework of 2D fluid model, are presented. Effects related with the polarity of a voltage pulse applied to the stressed electrode are discussed. It is argued that these effects (dependence of the discharge current and propagation velocity on the polarity of applied voltage) observed in experiments can be attributed to the difference in initial (preceding the streamer formation) distributions of charged species inside the gap. This difference can be caused by preionization (at negative polarity) of the gas inside the discharge gap by runaway electrons. Calculated streamers have large widths (up to 1 cm) and move with velocities in the range of 109-1010 cm s-1, similar to experimental data.

  14. Amplitude sorting of oscillatory burst signals by sampling

    DOEpatents

    Davis, Thomas J.

    1977-01-01

    A method and apparatus for amplitude sorting of oscillatory burst signals is described in which the burst signal is detected to produce a burst envelope signal and an intermediate or midportion of such envelope signal is sampled to provide a sample pulse output. The height of the sample pulse is proportional to the amplitude of the envelope signal and to the maximum burst signal amplitude. The sample pulses are fed to a pulse height analyzer for sorting. The present invention is used in an acoustic emission testing system to convert the amplitude of the acoustic emission burst signals into sample pulse heights which are measured by a pulse height analyzer for sorting the pulses in groups according to their height in order to identify the material anomalies in the test material which emit the acoustic signals.

  15. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    PubMed

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-01

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ. PMID:27137045

  16. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    PubMed

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-01

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ.

  17. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  18. Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference.

    PubMed

    Gao, Mingwu; Olivier, N Bari; Mukkamala, Ramakrishna

    2016-05-01

    Pulse transit time (PTT) measured as the time delay between invasive proximal and distal blood pressure (BP) or flow waveforms (invasive PTT [I-PTT]) tightly correlates with BP PTT estimated as the time delay between noninvasive proximal and distal arterial waveforms could therefore permit cuff-less BP monitoring. A popular noninvasive PTT estimate for this application is the time delay between ECG and photoplethysmography (PPG) waveforms (pulse arrival time [PAT]). Another estimate is the time delay between proximal and distal PPG waveforms (PPG-PTT). PAT and PPG-PTT were assessed as markers of BP over a wide physiologic range using I-PTT as a reference. Waveforms for determining I-PTT, PAT, and PPG-PTT through central arteries were measured from swine during baseline conditions and infusions of various hemodynamic drugs. Diastolic, mean, and systolic BP varied widely in each subject (group average (mean ± SE) standard deviation between 25 ± 2 and 36 ± 2 mmHg). I-PTT correlated well with all BP levels (group average R(2) values between 0.86 ± 0.03 and 0.91 ± 0.03). PPG-PTT also correlated well with all BP levels (group average R(2) values between 0.81 ± 0.03 and 0.85 ± 0.02), and its R(2) values were not significantly different from those of I-PTT PAT correlated best with systolic BP (group average R(2) value of 0.70 ± 0.04), but its R(2) values for all BP levels were significantly lower than those of I-PTT (P < 0.005) and PPG-PTT (P < 0.02). The pre-ejection period component of PAT was responsible for its inferior correlation with BP In sum, PPG-PTT was not different from I-PTT and superior to the popular PAT as a marker of BP.

  19. Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference.

    PubMed

    Gao, Mingwu; Olivier, N Bari; Mukkamala, Ramakrishna

    2016-05-01

    Pulse transit time (PTT) measured as the time delay between invasive proximal and distal blood pressure (BP) or flow waveforms (invasive PTT [I-PTT]) tightly correlates with BP PTT estimated as the time delay between noninvasive proximal and distal arterial waveforms could therefore permit cuff-less BP monitoring. A popular noninvasive PTT estimate for this application is the time delay between ECG and photoplethysmography (PPG) waveforms (pulse arrival time [PAT]). Another estimate is the time delay between proximal and distal PPG waveforms (PPG-PTT). PAT and PPG-PTT were assessed as markers of BP over a wide physiologic range using I-PTT as a reference. Waveforms for determining I-PTT, PAT, and PPG-PTT through central arteries were measured from swine during baseline conditions and infusions of various hemodynamic drugs. Diastolic, mean, and systolic BP varied widely in each subject (group average (mean ± SE) standard deviation between 25 ± 2 and 36 ± 2 mmHg). I-PTT correlated well with all BP levels (group average R(2) values between 0.86 ± 0.03 and 0.91 ± 0.03). PPG-PTT also correlated well with all BP levels (group average R(2) values between 0.81 ± 0.03 and 0.85 ± 0.02), and its R(2) values were not significantly different from those of I-PTT PAT correlated best with systolic BP (group average R(2) value of 0.70 ± 0.04), but its R(2) values for all BP levels were significantly lower than those of I-PTT (P < 0.005) and PPG-PTT (P < 0.02). The pre-ejection period component of PAT was responsible for its inferior correlation with BP In sum, PPG-PTT was not different from I-PTT and superior to the popular PAT as a marker of BP. PMID:27233300

  20. Researches regarding a pressure pulse generator as a segment of model for a weighing in motion system

    NASA Astrophysics Data System (ADS)

    Mardare, I.; Tiţa, I.; Pelin, R. I.

    2016-08-01

    There are many types of weighing in motion systems: with strain gauges, piezoelectric type, with optical fibre, capacitive etc. Although one of them proved to be reliable, many research teams all over the world are interested in finding new types or improving the existing ones. In this paper is presented a hydraulic Weigh-In-Motion sensor composed of a metal vessel filled with hydraulic oil connected to an accumulator through a pipe. Vehicle tires press on the deformable upper wall and pressure pulses generated in this way provides information about the load. In this paper are presented: a structure for an experimental model, the block diagram for numerical simulation, experimental model and some experimental results.

  1. An atmospheric-pressure plasma brush driven by sub-microsecond voltage pulses

    NASA Astrophysics Data System (ADS)

    Lu, X.; Wu, S.; Chu, Paul K.; Liu, D.; Pan, Y.

    2011-12-01

    An atmospheric-pressure room-temperature plasma brush, which can deliver uniform surface treatment effects, is reported. The plasma structure, which includes the negative glow, Faraday dark space and positive column, is clearly visible to the naked eye. The width of the Faraday dark space diminishes with decreasing gap distance and this phenomenon is different from that observed from low-pressure glow discharge plasmas. High-speed photographs taken at an exposure time of 2.5 ns show that the plasma propagates from the nozzle to the object in about 100 ns and 10 ns for gap distances of 6 mm and 2 mm, respectively, and the results are consistent with electric measurements. The emission spectra reveal N2(B-A) bands in addition to those of O, N_2^+ , N2(C-B) and He, indicating that the plasma source is reactive and suitable for applications such as surface modification and materials processing.

  2. Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Mraihi, A.; Merbahi, N.; Yousfi, M.; Abahazem, A.; Eichwald, O.

    2011-12-01

    This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV-visible-NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.

  3. The non-linear response of bubble clouds to pressure excitations

    NASA Astrophysics Data System (ADS)

    Fuster, D.; Bergamasco, L.

    2015-12-01

    In this article we numerically investigate the non-linear response of a bubble cloud against a periodic pressure excitation. By exciting a planar bubble curtain with an external acoustic pulse of given amplitude and frequency, we characterize the global dynamic response of the system using phase diagrams representing the void fraction against the excitation pressure. Even in the absence of mass transfer, the void fraction around which the system oscillates increases when increasing the excitation amplitude. We show how the maximum pressures reached during the collapse of bubbles are higher in polydisperse bubble clouds than in monodisperse clouds for strong pressure pulses.

  4. Pulsed Phase Lock Loop Device for Monitoring Intracranial Pressure During Space Flight

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    We have developed an ultrasonic device to monitor ICP waveforms non-invasively from cranial diameter oscillations using a NASA-developed pulsed phase lock loop (PPLL) technique. The purpose of this study was to attempt to validate the PPLL device for reliable recordings of ICP waveforms and analysis of ICP dynamics in vivo. METHODS: PPLL outputs were recorded in patients during invasive ICP monitoring at UCSD Medical Center (n=10). RESULTS: An averaged linear regression coefficient between ICP and PPLL waveform data during one cardiac cycle in all patients is 0.88 +/- 0.02 (mean +/- SE). Coherence function analysis indicated that ICP and PPLL waveforms have high correlation in the lst, 2nd, and 3rd harmonic waves associated with a cardiac cycle. CONCLUSIONS: PPLL outputs represent ICP waveforms in both frequency and time domains. PPLL technology enables in vivo evaluation of ICP dynamics non-invasively, and can acquire continuous ICP waveforms during spaceflight because of compactness and non-invasive nature.

  5. Pulmonary Capillary Hemorrhage Induced by Fixed-Beam Pulsed Ultrasound.

    PubMed

    Miller, Douglas L; Dou, Chunyan; Raghavendran, Krishnan

    2015-08-01

    The induction of pulmonary capillary hemorrhage (PCH) by pulsed ultrasound was discovered 25 y ago, but early research used fixed-beam systems rather than actual diagnostic ultrasound machines. In this study, results of exposure of rats to fixed-beam focused ultrasound for 5 min at 1.5 and 7.5 MHz were compared with recent research on diagnostic ultrasound. One exposure condition at each frequency used 10-μs pulses delivered at 25-ms intervals. Three conditions involved Gaussian modulation of the pulse amplitudes at 25-ms intervals to simulate diagnostic scanning: 7.5 MHz with 0.3- and 1.5-μs pulses at 100- and 500-μs pulse repetition periods, respectively, and 1.5 MHz with 1.7-μs pulses at 500-μs repetition periods. Four groups were tested for each condition to assess PCH areas at different exposure levels and to determine occurrence thresholds. The conditions with identical pulse timing resulted in smaller PCH areas for the smaller 7.5-MHz beam, but both had thresholds of 0.69-0.75 MPa in situ peak rarefactional pressure amplitude. The Gaussian modulation conditions for both 7.5 MHz with 0.3-μs pulses and 1.5 MHz with 1.7-μs pulses had thresholds of 1.12-1.20 MPa peak rarefactional pressure amplitude, although the relatively long 1.5-μs pulses at 7.5 MHz yielded a threshold of 0.75 MPa. The fixed-beam pulsed ultrasound exposures produced lower thresholds than diagnostic ultrasound. There was no clear tendency for thresholds to increase with increasing ultrasonic frequency when pulse timing conditions were similar.

  6. Analysis of Self-Terminated Pressure-Driven Quantum Point Contacts with Ultrafast Optical Pulses

    NASA Astrophysics Data System (ADS)

    Soltani, Fatemeh; Wlasenko, Alex; Steeves, Geoff

    2009-05-01

    A self-terminated electrochemical method was used to fabricate atomic-scale contacts between two Au electrodes in a microfluidic channel. The conductance of the contacts varies in a stepwise fashion. The mechanism works by a pressure-driven flow parallel with a pair of Au electrodes with a 100 μm gap in an electrolyte of HCl. Without applied flow, dendrite growth and dense branching morphology were typically observed at the cathode. The addition of applied pressure-driven flow resulted in a densely packed gold structure that filled the channel. The electrochemical fabrication approach introduces large variance in the formation and location of individual junctions. Understanding and controlling this process will enable the precise positioning of reproducible geometries into nano-electronic devices. To investigate the high speed behaviour of a QPC, it can be integrated with a transmission line structure patterned on a photoconductive GaAs substrate. The nonlinear conductance of the QPC (due to the finite density of states of the conductors) can be examined and compared with recent theoretical studies. Samples are fabricated in situ using an electrochemical procedure to produce QPCs along the transmission line structure. This method may provide insight into Terahertz Optoelectronic devices and ultrafast communication systems.

  7. An experimental study on discharge characteristics in a pulsed-dc atmospheric pressure CH3OH/Ar plasma jet

    NASA Astrophysics Data System (ADS)

    Qian, Muyang; Liu, Sanqiu; Yang, Congying; Pei, Xuekai; Lu, Xinpei; Zhang, Jialiang; Wang, Dezhen

    2016-10-01

    Recently, C/H/Ar plasma discharges found enormous potential and possibility in carbonaceous compounds conversion and production. In this work, a pulsed-dc CH3OH/Ar plasma jet generated at atmospheric pressure is investigated by means of optical and electrical diagnosis concerning the variation of its basic parameters, absolute concentration of OH radicals, and plasma temperature with different CH3OH/Ar volume ratios, in the core region of discharge with needle-to-ring electrode configuration. The voltage-current characteristics are also measured at different CH3OH/Ar ratios. Laser-induced fluorescence (LIF) results here show that only small amounts of added methanol vapor to argon plasma (about 0.05% CH3OH/Ar volume ratio) is favorable for the production of OH radicals. The optical emission lines of CH, CN, and C2 radicals have been detected in the CH3OH/Ar plasma. And, the plasma temperatures increase with successive amount of added methanol vapor to the growth plasma. Moreover, qualitative discussions are presented regarding the mechanisms for methanol dissociation and effect of the CH3OH component on the Ar plasma discharge at atmospheric pressure.

  8. Acute effects of supramaximal exercise on carotid artery compliance and pulse pressure in young men and women.

    PubMed

    Rossow, Lindy; Fahs, Christopher A; Guerra, Myriam; Jae, Sae Young; Heffernan, Kevin S; Fernhall, Bo

    2010-11-01

    The purpose of this study was to determine the cumulative effects of repeated cycling sprints (Wingate tests) on carotid compliance and blood pressure (BP). Fourteen young, healthy men and women completed this study. Vascular and hemodynamic measurements were taken at rest, 5 min following a first Wingate test, 25 min following the first Wingate test, 5 min following a second Wingate test, and 25 min following the second Wingate test. At each time point, the measurements taken included brachial and carotid pulse pressure (PP), heart rate, carotid artery maximum and minimum diameters, and carotid compliance. Carotid BP was obtained with applanation tonometry. Carotid diameters were obtained using ultrasonography and compliance was calculated from carotid diameters and BP. Carotid and brachial PP increased significantly (P < 0.05) 5 min after each Wingate test and returned to near baseline 25 min after each Wingate test. No cumulative PP effects were seen. A cumulative effect was seen for carotid compliance: 5 min following the second sprint, carotid arterial compliance decreased significantly more than 5 min following the first sprint (P < 0.05). A single cycling sprint reduces carotid artery compliance immediately after exercise. Performance of a second identical cycling sprint further compounds this vascular change, reducing carotid artery compliance beyond levels seen following a single cycling sprint.

  9. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  10. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    NASA Technical Reports Server (NTRS)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  11. Basic requirements for monitoring sedated patients: blood pressure, pulse oximetry, and EKG.

    PubMed

    Maurer, Walter G; Walsh, Michael; Viazis, Nikos

    2010-01-01

    The American Society of Anesthesiologists published monitoring requirements for non-anesthesia providers performing sedation and analgesia in 2002. This manuscript covered not only the monitoring of patients under sedation and analgesia but pre-procedure evaluation and preparation, personnel availability and training, emergency equipment availability, use of supplemental oxygen, sedative-analgesic agents, and discharge criteria. Current recommendations for monitoring include patient responsiveness, blood pressure, respiratory rate, heart rate, and oxygen saturation. Oxygen saturation is a critical vital sign, but there can be a significant delay between inadequate ventilation and desaturation. Supplemental oxygen can dangerously increase this disconnect. Thus, one must monitor adequacy of ventilation by direct observation, auscultation, and/or end-tidal CO(2) monitoring. The most important admonition is that 'ventilation' and 'oxygenation' are not the same.

  12. The Effects of Sa-am Acupuncture Simpo-jeongkyeok Treatment on the Blood Pressure, Pulse Rate, and Body Temperature

    PubMed Central

    Choi, Woo-Jin; Cho, Yoon-Young; Sun, Seung-Ho

    2015-01-01

    Objectives: The present study evaluated the effects of sa-am acupuncture (SAA) simpo-jeongkyeok (SPJK) treatment on the blood pressure (BP), pulse rate (PR), and body temperature (BT) of patients with hwa byung (HB). Methods: This patient assessor blind, randomized, placebo controlled trial included 50 volunteers, divided randomly into two groups. The treatment group underwent SPJK (PC9, LR1, PC3, KI10) while the control (sham) group received minimal needle insertion at non acupoints. The BP in both arms, PR, and BT at several acupoints were measured before and after treatment at the 1st, 2nd, 3rd, and 4th visits and before treatment at the follow-up visit. We analyzed data by using the repeated measured analysis of variance (RM ANOVA), Mann-Whitney U, and wilcoxon signed rank tests; differences at P < 0.05 were considered significant. Results: No significant differences in the systolic blood pressure (SBP), diastolic blood pressure (DBP) and PR between the treatment and control group were observed at each visit. However, the decrease in the SBP for the treatment group before and after each visit was significantly higher than it was in the control group. The SBP in both arms in the treatment group was decreased between visits 1 and 2, 1 and 3, 1 and 4, and 1 and follow-up. The DBP in both arms and in the right arm between visits 1 and 3 in the treatment group showed decreases. A minimal BT increase for treatment at CV06 and CV12 and a minimal BT decrease for treatment at CV17 and (Ex) Yintang were found. Patients in the treatment group who visited more frequently experienced a greater decrease in the PR, but that effect was not maintained. Conclusion: The results suggest that SAA SPJK treatment has instant positive effects on the BP, PR, and BT in patients with HB, but the effects on the BP and PR are not maintained. PMID:26120486

  13. Feed-forward digital phase and amplitude correction system

    DOEpatents

    Yu, David U. L.; Conway, Patrick H.

    1994-01-01

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The Phase and amplitude of subsequent are modified by output signals from the correction system.

  14. Feed-forward digital phase and amplitude correction system

    DOEpatents

    Yu, D.U.L.; Conway, P.H.

    1994-11-15

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The phase and amplitude of subsequent are modified by output signals from the correction system. 11 figs.

  15. Relation of pulse pressure to long-distance gait speed in community-dwelling older adults: Findings from the LIFE-P study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduced long-distance gait speed, a measure of physical function, is associated with falls, late-life disability, hospitalization/institutionalization and cardiovascular morbidity and mortality. Aging is also accompanied by a widening of pulse pressure (PP) that contributes to ventricular-vascular ...

  16. Applicability of Pulse Pressure Variation during Unstable Hemodynamic Events in the Intensive Care Unit: A Five-Day Prospective Multicenter Study

    PubMed Central

    Delannoy, Bertrand; Wallet, Florent; Maucort-Boulch, Delphine; Page, Mathieu; Kaaki, Mahmoud; Schoeffler, Mathieu; Alexander, Brenton; Desebbe, Olivier

    2016-01-01

    Pulse pressure variation can predict fluid responsiveness in strict applicability conditions. The purpose of this study was to describe the clinical applicability of pulse pressure variation during episodes of patient hemodynamic instability in the intensive care unit. We conducted a five-day, seven-center prospective study that included patients presenting with an unstable hemodynamic event. The six predefined inclusion criteria for pulse pressure variation applicability were as follows: mechanical ventilation, tidal volume >7 mL/kg, sinus rhythm, no spontaneous breath, heart rate/respiratory rate ratio >3.6, absence of right ventricular dysfunction, or severe valvulopathy. Seventy-three patients presented at least one unstable hemodynamic event, with a total of 163 unstable hemodynamic events. The six predefined criteria for the applicability of pulse pressure variation were completely present in only 7% of these. This data indicates that PPV should only be used alongside a strong understanding of the relevant physiology and applicability criteria. Although these exclusion criteria appear to be profound, they likely represent an absolute contraindication of use for only a minority of critical care patients. PMID:27127648

  17. Radical modification of the wetting behavior of textiles coated with ZnO thin films and nanoparticles when changing the ambient pressure in the pulsed laser deposition process

    NASA Astrophysics Data System (ADS)

    Popescu, A. C.; Duta, L.; Dorcioman, G.; Mihailescu, I. N.; Stan, G. E.; Pasuk, I.; Zgura, I.; Beica, T.; Enculescu, I.; Ianculescu, A.; Dumitrescu, I.

    2011-09-01

    Cotton/polyester woven fabrics were functionalized with ZnO thin films or nanoparticles by pulsed laser deposition, using a KrF* excimer laser source. Depending on the number of applied laser pulses, well-separated nanoparticles (for 10 pulses) or compact thin films (for 100 pulses) were deposited. The synthesized nanostructures were evaluated morphologically by scanning electron microscopy and atomic force microscopy, physico-chemically by x-ray diffraction and functionally by the contact angle method. By modifying the ambient gas nature and pressure in the deposition chamber, hydrophilic or hydrophobic surfaces were obtained. When using an oxygen flux, both the deposited thin films and nanoparticles were hydrophilic. After deposition in vacuum, the nanoparticles were hydrophobic, but the thin films were super-hydrophobic. This radical modification of wetting behavior was assigned to the differences in microstructure features and surface electrical charging in the two cases.

  18. Thermoelectric Properties of Cu-doped Bi2Te2.85Se0.15 Prepared by Pulse-Current Sintering Under Cyclic Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Kitagawa, Hiroyuki; Mimura, Naoki; Takimura, Kodai; Morito, Shigekazu; Kikuchi, Kotaro

    2016-03-01

    N-type Cu-doped Bi2Te2.85Se0.15 thermoelectric materials were prepared by pulse-current sintering under cyclic uniaxial pressure, and the effect of the cyclic uniaxial pressure on texture and thermoelectric properties was investigated. Cu x Bi2Te2.85Se0.15 ( x = 0-0.03) powder prepared by mechanical alloying was sintered at 673 K using pulse-current heating under 100 MPa of cyclic uniaxial pressure. X-ray diffraction patterns and electron backscattered diffraction analyses showed that the cyclic uniaxial pressure was effective for texture control. The flattened crystal grains were stacked in the thickness direction of the sintered materials and the hexagonal c-plane strongly tended to align in the direction perpendicular to the uniaxial pressure. As a result of this crystal alignment, the electrical resistivity in the direction perpendicular to the uniaxial pressure became smaller than that of equivalent samples prepared with a constant uniaxial pressure. The smaller resistivity led to a larger power factor, and the figure of merit was improved by the application of cyclic uniaxial pressure.

  19. Convoluted effect of laser fluence and pulse duration on the property of a nanosecond laser-induced plasma into an argon ambient gas at the atmospheric pressure

    SciTech Connect

    Bai Xueshi; Ma Qianli; Motto-Ros, Vincent; Yu Jin; Sabourdy, David; Nguyen, Luc; Jalocha, Alain

    2013-01-07

    We studied the behavior of the plasma induced by a nanosecond infrared (1064 nm) laser pulse on a metallic target (Al) during its propagation into argon ambient gas at the atmospheric pressure and especially over the delay interval ranging from several hundred nanoseconds to several microseconds. In such interval, the plasma is particularly interesting as a spectroscopic emission source for laser-induced plasma spectroscopy (LIBS). We show a convoluted effect between laser fluence and pulse duration on the structure and the emission property of the plasma. With a relatively high fluence of about 160 J/cm{sup 2} where a strong plasma shielding effect is observed, a short pulse of about 4 ns duration is shown to be significantly more efficient to excite the optical emission from the ablation vapor than a long pulse of about 25 ns duration. While with a lower fluence of about 65 J/cm{sup 2}, a significantly more efficient excitation is observed with the long pulse. We interpret our observations by considering the post-ablation interaction between the generated plume and the tailing part of the laser pulse. We demonstrate that the ionization of the layer of ambient gas surrounding the ablation vapor plays an important role in plasma shielding. Such ionization is the consequence of laser-supported absorption wave and directly dependent on the laser fluence and the pulse duration. Further observations of the structure of the generated plume in its early stage of expansion support our explanations.

  20. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    NASA Astrophysics Data System (ADS)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    In the framework of its research on the deep disposal of radioactive waste in shale formations, the French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a large array of in situ programs concerning the confining properties of shales in their underground research laboratory at Tournemire (SW France). One of its aims is to evaluate the occurrence and processes controlling radionuclide migration through the host rock, from the disposal system to the biosphere. Past research programs carried out at Tournemire covered mechanical, hydro-mechanical and physico-chemical properties of the Tournemire shale as well as water chemistry and long-term behaviour of the host rock. Studies show that fluid circulations in the undisturbed matrix are very slow (hydraulic conductivity of 10-14 to 10-15 m.s-1). However, recent work related to the occurrence of small scale fractures and clay-rich fault gouges indicate that fluid circulations may have been significantly modified in the vicinity of such features. To assess the transport properties associated with such faults, IRSN designed a series of in situ and laboratory experiments to evaluate the contribution of both diffusive and advective process on water and solute flux through a clay-rich fault zone (fault core and damaged zone) and in an undisturbed shale formation. As part of these studies, Modular Mini-Packer System (MMPS) hydraulic testing was conducted in multiple boreholes to characterize hydraulic conductivities within the formation. Pressure data collected during the hydraulic tests were analyzed using the nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code to estimate hydraulic conductivity and formation pressures of the tested intervals. Preliminary results indicate hydraulic conductivities of 5.10-12 m.s-1 in the fault core and damaged zone and 10-14 m.s-1 in the adjacent undisturbed shale. Furthermore, when compared with neutron porosity data from borehole

  1. 24-hour central aortic systolic pressure and 24-hour central pulse pressure are related to diabetic complications in type 1 diabetes – a cross-sectional study

    PubMed Central

    2013-01-01

    Background Non-invasive measurements of 24 hour ambulatory central aortic systolic pressure (24 h-CASP) and central pulse pressure (24 h-CPP) are now feasible. We evaluate the relationship between 24 h central blood pressure and diabetes-related complications in patients with type 1 diabetes. Methods The study was cross-sectional, including 715 subjects: 86 controls (C), 69 patients with short diabetes duration (< 10 years), normoalbuminuria (< 30 mg/24 h) without receiving antihypertensive treatment (SN), 211 with longstanding diabetes (≥ 10 years) and normoalbuminuria (LN), 163 with microalbuminuria (30-299 mg/24 h) (Mi) and 186 with macroalbuminuria (> 300 mg/24 h) (Ma). 24 h-CASP and 24 h-CPP was measured using a tonometric wrist-watch-like device (BPro, HealthStats, Singapore) and derived using N-point moving average. Results In C, SN, LN, Mi and Ma mean ± SD 24 h-CASP was: 114 ± 17, 115 ± 13, 121 ± 13, 119 ± 16 and 121 ± 13 mmHg (p < 0.001); and 24 h-CPP: 38 ± 8, 38 ± 7, 44 ± 10, 46 ± 11 and 46 ± 11 mmHg, (p < 0.001). Following rigorous adjustment (24 h mean arterial pressure and conventional risk factors), 24 h-CASP and 24 h-CPP increased with diabetes, albuminuria degree, previous cardiovascular disease (CVD), retinopathy and autonomic dysfunction (p ≤ 0.031). Odds ratios per 1 standard deviation increase in 24 h-CASP, 24 h-CPP and 24 h systolic blood pressure (24 h-SBP) were for CVD: 3.19 (1.68-6.05), 1.43 (1.01-2.02) and 2.39 (1.32-4.33), retinopathy: 4.41 (2.03-9.57), 1.77 (1.17-2.68) and 3.72 (1.85-7.47) and autonomic dysfunction: 3.25 (1.65-6.41), 1.64 (1.12-2.39) and 2.89 (1.54-5.42). Conclusions 24 h-CASP and 24 h-CPP was higher in patients vs. controls and increased with diabetic complications independently of covariates. Furthermore, 24 h-CASP was stronger associated to complications than 24 h-SBP. The prognostic significance of 24 h-CASP and 24 h-CPP needs to be determined in follow-up studies. Trial

  2. Ignition and afterglow dynamics of a high pressure nanosecond pulsed helium micro-discharge: I. Electron, Rydberg molecules and He (23S) densities

    NASA Astrophysics Data System (ADS)

    Schregel, Christian-Georg; Carbone, Emile A. D.; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2016-10-01

    This work presents the results of Thomson scattering measurements, optical emission spectroscopy and laser absorption spectroscopy applied to a high pressure nanosecond pulsed helium micro-discharge. All data are recorded with high temporal resolution, giving an insight into the processes determining the discharge dynamics. From Thomson scattering measurements, the electron velocity distribution function is determined. Photo-ionization of helium Rydberg molecules presents a complication for the direct measurement of the electron density by Thomson scattering. Laser pulse energy variation measurements however allow to obtain absolute Rydberg state densities to be obtained. For the first time, the electron velocity distribution function and total Rydberg molecules density for a high-pressure pure helium discharge are reported in this paper. These measurements provide new insights into high pressure pure helium discharge chemical pathways.

  3. All about Heart Rate (Pulse)

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More All About Heart Rate (Pulse) Updated:Apr 19,2016 ... Sodium and Salt 3 Low Blood Pressure 4 All About Heart Rate (Pulse) 5 How to Eat ...

  4. Dry Electrodes for ECG and Pulse Transit Time for Blood Pressure: A Wearable Sensor and Smartphone Communication Approach

    NASA Astrophysics Data System (ADS)

    Shyamkumar, Prashanth

    -invasive, cuff-less Blood pressure estimation based on Pulse Transit Time with multiple synchronized sensor nodes, is implemented with e-nanoflex and the results are discussed.

  5. Blunted reduction of pulse pressure during nighttime is associated with left ventricular hypertrophy in elderly hypertensive patients.

    PubMed

    Iida, Takashi; Kohno, Isao; Fujioka, Daisuke; Ichigi, Yoshihide; Kawabata, Ken-ichi; Obata, Jun-ei; Osada, Mitsuru; Takano, Hajime; Umetani, Ken; Kugiyama, Kiyotaka

    2004-08-01

    Increased pulse pressure (PP) is recognized as a risk factor for cardiovascular disease, especially in elderly patients. However, blood pressure (BP) is known to have a circadian variation. Therefore, this study asked whether or not PP has a circadian variation and, if so, whether a circadian variation of PP has clinical importance. Ambulatory BP monitoring (every 30 min for 48 h) was performed in 255 patients with untreated essential hypertension (24 to 82 years old; mean: 52+/-12 years). Left ventricular mass index (LVMI) was estimated from M-mode echocardiography. PP was decreased during nighttime (10+/-11% reduction from daytime PP). Multivariate linear regression analysis showed that, among four variables-the degree of nighttime PP reduction, daytime PP, 48-h systolic BP, and nondipper hypertension-the degree of nighttime PP reduction had the strongest (inverse) correlation with LVMI in a subgroup of elderly patients (> or =60 years old, n =67) (standardized regression coefficient=-0.32, p =0.02), whereas this association was not significant in the whole patient population unclassified by age. Furthermore, a blunted reduction of nighttime PP in combination with nondipper hypertension was an incremental risk for increase in LVMI in the elderly patients. In conclusion, PP is reduced during nighttime, but the degree of reduction varies among patients. The blunted reduction of nighttime PP is a risk for left ventricular hypertrophy, an established predictor of hypertension-induced cardiovascular events, and it may thus play a role in cardiovascular complications, especially in elderly patients with nondipper hypertension. PMID:15492477

  6. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2-, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  7. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  8. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2‑, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  9. Influence of pulsed nanosecond volume discharge in atmospheric-pressure air on the electrical characteristics of MCT epitaxial films

    NASA Astrophysics Data System (ADS)

    Grigoryev, Denis V.; Voitsekhovskii, Alexandr V.; Lozovoy, Kirill A.; Nesmelov, Sergey N.; Dzyadukh, Stanislav M.; Tarasenko, Viktor F.; Shulepov, Michail A.; Dvoretskii, Sergei A.

    2015-12-01

    The purpose of this paper was investigating the effect of volume nanosecond discharge in air at atmospheric pressure on the electro-physical properties of the HgCdTe (MCT) epitaxial films grown by molecular beam epitaxy. Hall measurements of electro-physical parameters of MCT samples after irradiation have shown that there is a layer of epitaxial films exhibiting n-type conductivity that is formed in the near-surface area. After more than 600 pulses of influence parameters and thickness of the resulting n-layer is such that the measured field dependence of Hall coefficient corresponds to the material of n-type conductivity. Also it is shown that the impact of the discharge leads to significant changes in electro-physical characteristics of MIS structures. This fact is demonstrated by increase in density of positive fixed charge, change in the hysteresis type of the capacitance-voltage characteristic, an increase in density of surface states. The preliminary results show that it is possible to use such actions in the development of technologies of the controlled change in the properties of MCT.

  10. Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production.

    PubMed

    Nielsen, Henriette Boel; Sonne, Anne-Mette; Grunert, Klaus G; Banati, Diana; Pollák-Tóth, Annamária; Lakner, Zoltán; Olsen, Nina Veflen; Zontar, Tanja Pajk; Peterman, Marjana

    2009-02-01

    The success of new food processing technologies is highly dependent on consumers' acceptance. The purpose of this paper is to study consumers' perceptions of two new processing technologies and food products produced by means of these novel technologies. To accomplish this, a qualitative study on consumer attitudes towards high-pressure processing (HPP) and pulsed electric field (PEF) processing of food was carried out. In all 97 adults between 20 and 71 years of age participated in 12 focus groups conducted in Slovenia, Hungary, Serbia, Slovakia, Norway and Denmark using a common guideline. Participants were introduced to the HPP and PEF technologies and then to the effect of the two new technologies on two specific product categories: juice and baby food. The transcribed data was content analysed and the coded data was transformed into diagrams using UCINET 5 and NETDRAW. The results show that consumers perceived the main advantages of HPP and PEF products to be the products' naturalness, improved taste and their high nutritional value, whereas the main disadvantage was the lack of information about the PEF and HPP products. The results of the participants' evaluation of the PEF and HPP processes showed that environmental friendliness and the more natural products were seen as the main advantages, while they were concerned about body and health, the higher price of the products, the lack of information about the technologies and a general scepticism. The study also shows that North European participants were a bit more sceptical towards PEF and HPP products than the East European participants.

  11. Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han

    2012-03-01

    Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.

  12. An empirical model of magnetospheric chorus amplitude using solar wind and geomagnetic indices

    NASA Astrophysics Data System (ADS)

    Golden, D. I.; Spasojevic, M.; Li, W.; Nishimura, Y.

    2012-12-01

    Magnetospheric chorus is an Extremely Low Frequency/Very Low Frequency (ELF/VLF, 0.3-30 kHz) electromagnetic wave phenomenon which plays an important role in the acceleration and loss of energetic electrons in the Earth's radiation belts. One must therefore possess accurate estimates of chorus amplitudes in order to model radiation belt dynamics. The goal of this study is to design an empirical model of chorus amplitude, the output of which can be used as input to models of radiation belt dynamics. In pursuit of this goal, we compare two related empirical models of chorus amplitude that we have developed based on THEMIS data from June 2008 through December 2011 which use multiple regression to predict equatorial chorus amplitudes as a function of L and MLT. One model uses only AE* and Kp as model inputs, and the other model utilizes solar wind measurements and geomagnetic indices. The models perform similarly, with each one achieving a median RMS prediction error of 0.39 log10 pT (a factor of 2.5 in amplitude). The coefficients of determination of chorus amplitude for the full model and the AE*/Kp model are 0.034 and 0.026, respectively, meaning that these models explain 3.4 and 2.6 percent of the variance of chorus amplitude. We present a parametric analysis, showing the expected effects on chorus amplitude from a modeled substorm and solar wind pressure pulse, as well as modeled chorus amplitude over the course of the month of September 2008. The model outputs give important insight into the global evolution of equatorial chorus amplitude as a function of geomagnetic storm and substorm phase.

  13. Calculating scattering amplitudes efficiently

    SciTech Connect

    Dixon, L.

    1996-01-01

    We review techniques for more efficient computation of perturbative scattering amplitudes in gauge theory, in particular tree and one- loop multi-parton amplitudes in QCD. We emphasize the advantages of (1) using color and helicity information to decompose amplitudes into smaller gauge-invariant pieces, and (2) exploiting the analytic properties of these pieces, namely their cuts and poles. Other useful tools include recursion relations, special gauges and supersymmetric rearrangements. 46 refs., 11 figs.

  14. MULTICHANNEL PULSE-HEIGHT ANALYZER

    DOEpatents

    Russell, J.T.; Lefevre, H.W.

    1958-01-21

    This patent deals with electronic computing circuits and more particularly to pulse-height analyzers used for classifying variable amplitude pulses into groups of different amplitudes. The device accomplishes this pulse allocation by by converting the pulses into frequencies corresponding to the amplitudes of the pulses, which frequencies are filtered in channels individually pretuned to a particular frequency and then detected and recorded in the responsive channel. This circuit substantially overcomes the disadvantages of prior annlyzers incorporating discriminators pre-set to respond to certain voltage levels, since small variation in component values is not as critical to satisfactory circuit operation.

  15. Prognostic Significance of Central Pulse Pressure for Mortality in Patients With Coronary Artery Disease Receiving Repeated Percutaneous Coronary Intervention

    PubMed Central

    Lin, Mao-Jen; Chen, Chun-Yu; Lin, Hau-De; Lin, Chung-Sheng; Wu, Han-Ping

    2016-01-01

    Abstract Coronary artery disease (CAD) is a life-threatening medical emergency which needs urgent medical attention. Percutaneous coronary intervention (PCI) is common and necessary for patients with CAD, but it has not completely evaluated in cases with repeated PCI. Therefore, the aim of this study was to examine the risk factors and prognosis in patients with CAD requiring repeated PCI. This is a prospective observational study. A total of 1126 patients with CAD requiring PCI took part in this study. Clinical parameters including baseline characteristics, hemodynamic data, location of vascular lesions, SYNTAX score, left ventricular ejection fraction, central pulse pressure (CPP), central aortic systolic pressure (CSP), risk factors, and invasive strategies were analyzed to identify the risk factors for patients requiring repeated PCI. We further analyzed the prognosis, including risk for myocardial infarction (MI), cardiovascular (CV) mortality, and all-cause mortality, in patients with repeated PCI. Among patients with PCI, 276 received repeated PCI. Patients in the repeated PCI group had a higher CPP (66.7 vs 62.5 mm Hg; P = 0.006), CSP (139.9 vs 135.9 mm Hg; P = 0.017), and male preponderance (P = 0.012). Drugs including diuretics, beta-blockers (BBs), angiotensin-converting enzyme inhibitors (ACEIs), and aspirin were all used more frequently in the repeated PCI group (all P < 0.05). Freedom from MI was lower in the repeated PCI group than in the single PCI group (P < 0.001). Logistic regression revealed that CPP, CSP, number of diseased vessels, male sex, usage of diuretics, BBs, ACEIs, and MI were all predictors for requiring repeated PCI (all P < 0.05). In addition, CPP was a predictor for MI attack, CV mortality, and all-cause mortality in the repeated PCI group (P = 0.010, P = 0.041, P = 0.004, respectively). Elevated CPP, CSP, male sex, multiple diseased vessels, and the usage of diuretics, BBs, ACEIs, and MI

  16. Statistical Investigations on Solar Wind Dynamic Pressure Pulses:Basic features and Their Impacts on Geosynchronous Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Zuo, Pingbing; Feng, Xueshang

    2016-07-01

    Solar wind dynamic pressure pulse (DPP) structures, across which the dynamic pressure abruptly changes over timescales from a few seconds to several minutes, are often observed in the near-Earth space environment. Recently we have developed a novel procedure that is able to rapidly identify the DPPs from the plasma data stream, and simultaneously define the transition region and smartly select the upstream and downstream region for analysis. The plasma data with high time-resolution from 3DP instrument on board the WIND spacecraft are inspected with this automatic DPP-searching code, and a complete list of solar wind DPPs of historic WIND observations are built up. We perform a statistical survey on the properties of DPPs near 1 AU based on this event list. It is found that overwhelming majority of DPPs are associated with the solar wind disturbances including the CME-related flows, the corotating interaction regions, as well as the complex ejecta. The annual variations of the averaged occurrence rate of DPPs are roughly in phase with the solar activities. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears no systematic investigations on the response of GMFs to negative DPPs. Here we also study the decompression/compression effects of very strong negative/positive DPPs on GMFs under northward IMFs. In response to the decompression of strong negative DPPs, GMFs on dayside, near the dawn and dusk on nightside are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of events when GOES is located at the midnight sector, GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that on certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Statistically, both the decompression effect of

  17. Prognostic Significance of Central Pulse Pressure for Mortality in Patients With Coronary Artery Disease Receiving Repeated Percutaneous Coronary Intervention.

    PubMed

    Lin, Mao-Jen; Chen, Chun-Yu; Lin, Hau-De; Lin, Chung-Sheng; Wu, Han-Ping

    2016-03-01

    Coronary artery disease (CAD) is a life-threatening medical emergency which needs urgent medical attention. Percutaneous coronary intervention (PCI) is common and necessary for patients with CAD, but it has not completely evaluated in cases with repeated PCI. Therefore, the aim of this study was to examine the risk factors and prognosis in patients with CAD requiring repeated PCI. This is a prospective observational study. A total of 1126 patients with CAD requiring PCI took part in this study. Clinical parameters including baseline characteristics, hemodynamic data, location of vascular lesions, SYNTAX score, left ventricular ejection fraction, central pulse pressure (CPP), central aortic systolic pressure (CSP), risk factors, and invasive strategies were analyzed to identify the risk factors for patients requiring repeated PCI. We further analyzed the prognosis, including risk for myocardial infarction (MI), cardiovascular (CV) mortality, and all-cause mortality, in patients with repeated PCI. Among patients with PCI, 276 received repeated PCI. Patients in the repeated PCI group had a higher CPP (66.7 vs 62.5 mm Hg; P = 0.006), CSP (139.9 vs 135.9 mm Hg; P = 0.017), and male preponderance (P = 0.012). Drugs including diuretics, beta-blockers (BBs), angiotensin-converting enzyme inhibitors (ACEIs), and aspirin were all used more frequently in the repeated PCI group (all P < 0.05). Freedom from MI was lower in the repeated PCI group than in the single PCI group (P < 0.001). Logistic regression revealed that CPP, CSP, number of diseased vessels, male sex, usage of diuretics, BBs, ACEIs, and MI were all predictors for requiring repeated PCI (all P < 0.05). In addition, CPP was a predictor for MI attack, CV mortality, and all-cause mortality in the repeated PCI group (P = 0.010, P = 0.041, P = 0.004, respectively). Elevated CPP, CSP, male sex, multiple diseased vessels, and the usage of diuretics, BBs, ACEIs, and MI were

  18. Pulse Arrival Time Based Cuff-Less and 24-H Wearable Blood Pressure Monitoring and its Diagnostic Value in Hypertension.

    PubMed

    Zheng, Yali; Poon, Carmen C Y; Yan, Bryan P; Lau, James Y W

    2016-09-01

    Ambulatory blood pressure monitoring (ABPM) has become an essential tool in the diagnosis and management of hypertension. Current standard ABPM devices use an oscillometric cuff-based method which can cause physical discomfort to the patients with repeated inflations and deflations, especially during nighttime leading to sleep disturbance. The ability to measure ambulatory BP accurately and comfortably without a cuff would be attractive. This study validated the accuracy of a cuff-less approach for ABPM using pulse arrival time (PAT) measurements on both healthy and hypertensive subjects for potential use in hypertensive management, which is the first of its kind. The wearable cuff-less device was evaluated against a standard cuff-based device on 24 subjects of which 15 have known hypertension. BP measurements were taken from each subject over a 24-h period by the cuff-less and cuff-based devices every 15 to 30 minutes during daily activities. Mean BP of each subject during daytime, nighttime and over 24-h were calculated. Agreement between mean nighttime systolic BP (SBP) and diastolic (DBP) measured by the two devices evaluated using Bland-Altman plot were -1.4 ± 6.6 and 0.4 ± 6.7 mmHg, respectively. Receiver operator characteristics (ROC) statistics was used to assess the diagnostic accuracy of the cuff-less approach in the detection of BP above the hypertension threshold during nighttime (>120/70 mmHg). The area under ROC curves were 0.975/0.79 for nighttime. The results suggest that PAT-based approach is accurate and promising for ABPM without the issue of sleep disturbances associated with cuff-based devices. PMID:27447469

  19. Diagnostics of atmospheric-pressure pulsed-dc discharge with metal and liquid anodes by multiple laser-aided methods

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Shirai, Naoki; Tomita, Kentaro; Akiyama, Tsuyoshi; Murakami, Tomoyuki

    2016-08-01

    The density and temperature of electrons and key heavy particles were measured in an atmospheric-pressure pulsed-dc helium discharge plasma with a nitrogen molecular impurity generated using system with a liquid or metal anode and a metal cathode. To obtain these parameters, we conducted experiments using several laser-aided methods: Thomson scattering spectroscopy to obtain the spatial profiles of electron density and temperature, Raman scattering spectroscopy to obtain the neutral molecular nitrogen rotational temperature, phase-modulated dispersion interferometry to determine the temporal variation of the electron density, and time-resolved laser absorption spectroscopy to analyze the temporal variation of the helium metastable atom density. The electron density and temperature measured by Thomson scattering varied from 2.4  ×  1014 cm-3 and 1.8 eV at the center of the discharge to 0.8  ×  1014 cm-3 and 1.5 eV near the outer edge of the plasma in the case of the metal anode, respectively. The electron density obtained with the liquid anode was approximately 20% smaller than that obtained with the metal anode, while the electron temperature was not significantly affected by the anode material. The molecular nitrogen rotational temperatures were 1200 K with the metal anode and 1650 K with the liquid anode at the outer edge of the plasma column. The density of helium metastable atoms decreased by a factor of two when using the liquid anode.

  20. Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production.

    PubMed

    Nielsen, Henriette Boel; Sonne, Anne-Mette; Grunert, Klaus G; Banati, Diana; Pollák-Tóth, Annamária; Lakner, Zoltán; Olsen, Nina Veflen; Zontar, Tanja Pajk; Peterman, Marjana

    2009-02-01

    The success of new food processing technologies is highly dependent on consumers' acceptance. The purpose of this paper is to study consumers' perceptions of two new processing technologies and food products produced by means of these novel technologies. To accomplish this, a qualitative study on consumer attitudes towards high-pressure processing (HPP) and pulsed electric field (PEF) processing of food was carried out. In all 97 adults between 20 and 71 years of age participated in 12 focus groups conducted in Slovenia, Hungary, Serbia, Slovakia, Norway and Denmark using a common guideline. Participants were introduced to the HPP and PEF technologies and then to the effect of the two new technologies on two specific product categories: juice and baby food. The transcribed data was content analysed and the coded data was transformed into diagrams using UCINET 5 and NETDRAW. The results show that consumers perceived the main advantages of HPP and PEF products to be the products' naturalness, improved taste and their high nutritional value, whereas the main disadvantage was the lack of information about the PEF and HPP products. The results of the participants' evaluation of the PEF and HPP processes showed that environmental friendliness and the more natural products were seen as the main advantages, while they were concerned about body and health, the higher price of the products, the lack of information about the technologies and a general scepticism. The study also shows that North European participants were a bit more sceptical towards PEF and HPP products than the East European participants. PMID:18845196

  1. Diagnostics of atmospheric-pressure pulsed-dc discharge with metal and liquid anodes by multiple laser-aided methods

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Shirai, Naoki; Tomita, Kentaro; Akiyama, Tsuyoshi; Murakami, Tomoyuki

    2016-08-01

    The density and temperature of electrons and key heavy particles were measured in an atmospheric-pressure pulsed-dc helium discharge plasma with a nitrogen molecular impurity generated using system with a liquid or metal anode and a metal cathode. To obtain these parameters, we conducted experiments using several laser-aided methods: Thomson scattering spectroscopy to obtain the spatial profiles of electron density and temperature, Raman scattering spectroscopy to obtain the neutral molecular nitrogen rotational temperature, phase-modulated dispersion interferometry to determine the temporal variation of the electron density, and time-resolved laser absorption spectroscopy to analyze the temporal variation of the helium metastable atom density. The electron density and temperature measured by Thomson scattering varied from 2.4  ×  1014 cm‑3 and 1.8 eV at the center of the discharge to 0.8  ×  1014 cm‑3 and 1.5 eV near the outer edge of the plasma in the case of the metal anode, respectively. The electron density obtained with the liquid anode was approximately 20% smaller than that obtained with the metal anode, while the electron temperature was not significantly affected by the anode material. The molecular nitrogen rotational temperatures were 1200 K with the metal anode and 1650 K with the liquid anode at the outer edge of the plasma column. The density of helium metastable atoms decreased by a factor of two when using the liquid anode.

  2. Continuum emission-based electron diagnostics for atmospheric pressure plasmas and characteristics of nanosecond-pulsed argon plasma jets

    NASA Astrophysics Data System (ADS)

    Park, Sanghoo; Choe, Wonho; Kim, Holak; Park, Joo Young

    2015-06-01

    Electron diagnostics based on electron-neutral atom (e-a) bremsstrahlung in the UV and visible range emitted from atmospheric pressure plasmas is presented. Since the spectral emissivity of the e-a bremsstrahlung is determined by electron density (ne) and mean electron temperature (Te) representing the Maxwellian electron energy distribution, their diagnostics is possible. As an example, emission spectra measured from capacitive discharges are presented, which show good agreement with the theoretically calculated emissivity of the e-a bremsstrahlung. For a single pin electrode nanosecond-pulsed plasma jet (n-PPJ) in argon, we investigate the electron properties and the temporal behavior of the positive streamers. Streamers with many branches are clearly observed inside the dielectric tube, while a few main streamers propagate outside the tube along the jet axis. A two-dimensional (2D) measurement of the time-averaged Te distribution was developed using a commercial digital camera and optical band pass filters based on the emissivity ratio of two wavelengths of the e-a bremsstrahlung. The viable measurement range of Te is 0.5-7 eV for the choice of two wavelengths of 300s and 900s nm and 0.5-4 eV for two wavelengths of 400s and 900s nm, which are uncontaminated by the atomic and/or molecular spectra. The 2D Te distribution obtained using 514.5 and 632.8 nm emissions helps to reveal the role of electrons in streamer characteristics in the argon n-PPJ. Time-averaged Te of 2.0 eV and 1.0 eV inside and outside the tube, respectively, were measured. The streamer dynamics of the n-PPJ is shown to be dependent on Te.

  3. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure.

    PubMed

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C(3)Πu→B(3)Πg 1-3) and N2 (C(3)Πu→B(3)Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material.

  4. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C3Πu → B3Πg 1-3) and N2 (C3Πu → B3Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material.

  5. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure.

    PubMed

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C(3)Πu→B(3)Πg 1-3) and N2 (C(3)Πu→B(3)Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material. PMID:23673240

  6. Method of optical self-mixing for pulse wave transit time in comparison with other methods and correlation with blood pressure

    NASA Astrophysics Data System (ADS)

    Meigas, Kalju; Lass, Jaanus; Kattai, Rain; Karai, Deniss; Kaik, Juri

    2004-07-01

    This paper is a part of research to develop convenient method for continuous monitoring of arterial blood pressure by non-invasive and non-oscillometric way. A simple optical method, using self-mixing in a diode laser, is used for detection of skin surface vibrations near the artery. These vibrations, which can reveal the pulsate propagation of blood pressure waves along the vasculature, are used for pulse wave registration. The registration of the Pulse Wave Transit Time (PWTT) is based on computing the time delay in different regions of the human body using an ECG as a reference signal. In this study, the comparison of method of optical self-mixing with other methods as photoplethysmographic (PPG) and bioimpedance (BI) for PWTT is done. Also correlation of PWTT, obtained with different methods, with arterial blood pressure is calculated. In our study, we used a group of volunteers (34 persons) who made the bicycle exercise test. The test consisted of cycling sessions of increasing workloads during which the HR changed from 60 to 180 beats per minute. In addition, a blood pressure (NIBP) was registered with standard sphygmomanometer once per minute during the test and all NIBP measurement values were synchronized to other signals to find exact time moments where the systolic blood pressure was detected (Korotkoff sounds starting point). Computer later interpolated the blood pressure signal in order to get individual value for every heart cycle. The other signals were measured continuously during all tests. At the end of every session, a recovery period was included until person's NIBP and heart rate (HR) normalized. As a result of our study it turned out that time intervals that were calculated from plethysmographic (PPG) waveforms were in the best correlation with systolic blood pressure. The diastolic pressure does not correlate with any of the parameters representing PWTT. The pulse wave signals measured by laser and piezoelectric transducer are very similar

  7. Femtosecond-pulsed laser micromachining of a 4H SiC wafer for MEMS pressure sensor diaphragms and via holes

    NASA Astrophysics Data System (ADS)

    Dong, Yuanyuan; Nair, Rajeev; Molian, Raathai; Molian, Pal

    2008-03-01

    The challenging issues in conventional microfabrication of SiC pressure sensor diaphragms from bulk wafers are low etch rates, thicker (>40 µm) diaphragms, low spatial resolutions, rough surfaces and substantial contamination. In via hole drilling of SiC, the critical concern is the low drilling speed (nm per minute). In this work, femtosecond (fs)-pulsed laser ablation was conducted to overcome some of these deficiencies. Circular diaphragms (0.5 to 1 mm) by trepanning mode and via holes (30-50 µm) by percussion drilling mode were micromachined in 250 µm thick 4H-SiC single crystals using an 800 nm wavelength, 120 fs, 1 mJ Ti:sapphire laser. Pulse energy, number of pulses and scan rate were varied to obtain a high etch rate and high quality features. Results showed that the etch rates are 2-10 µm per pulse, diaphragm thicknesses are 20-200 µm, surface roughness is 1-2 µm Ra and via hole drilling speeds are up to 25 µm per second. The etch depth control was well within ± 1%. High aspect ratio features with excellent spatial resolutions were obtained due to the absence of thermal damages such as a recast layer and contamination. Thus, femtosecond-pulsed laser ablation by virtue of its unique characteristics such as multiphoton ionization and the absence of lattice heating offers high speed, precision and accuracy in micromachining 4H-SiC wafers.

  8. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  9. Effect of steaming, blanching, and high temperature/high pressure processing on the amino Acid contents of commonly consumed korean vegetables and pulses.

    PubMed

    Kim, Su-Yeon; Kim, Bo-Min; Kim, Jung-Bong; Shanmugavelan, Poovan; Kim, Heon-Woong; Kim, So-Young; Kim, Se-Na; Cho, Young-Sook; Choi, Han-Seok; Park, Ki-Moon

    2014-09-01

    In the present report, the effects of blanching, steaming, and high temperature/high pressure processing (HTHP) on the amino acid contents of commonly consumed Korean root vegetables, leaf vegetables, and pulses were evaluated using an Automatic Amino Acid Analyzer. The total amino acid content of the samples tested was between 3.38 g/100 g dry weight (DW) and 21.32 g/100 g DW in raw vegetables and between 29.36 g/100 g DW and 30.55 g/100 g DW in raw pulses. With HTHP, we observed significant decreases in the lysine and arginine contents of vegetables and the lysine, arginine, and cysteine contents of pulses. Moreover, the amino acid contents of blanched vegetables and steamed pulses were more similar than the amino acid contents of the HTHP vegetables and HTHP pulses. Interestingly, lysine, arginine, and cysteine were more sensitive to HTHP than the other amino acids. Partial Least Squares-Discriminate Analyses were also performed to discriminate the clusters and patterns of amino acids.

  10. X-ray and runaway electron generation in repetitive pulsed discharges in atmospheric pressure air with a point-to-plane gap

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Shut'ko, Yuliya V.; Yan, Ping

    2011-05-01

    In this paper, using two repetitive nanosecond generators, x-rays were detected in atmospheric air with a highly inhomogeneous electric field by a point-to- plane gap. The rise times of the generators were about 15 and 1 ns. The x-rays were directly measured by various dosimeters and a NaI scintillator with a photomultiplier tube. X-rays were detected in the continuous mode at pulse repetition frequency up to 1 kHz and a voltage pulse rise time of ˜15 ns. It is shown that the maximum x-ray intensity is attainable at different pulse repetition frequencies depending on the voltage pulse parameters and cathode design. In atmospheric pressure air the x-ray intensity is found to increase with increasing the pulse repetition frequency up to 1 kHz. It is confirmed that the maximum x-ray intensity is attained in a diffuse discharge in a point-to-plane gap.

  11. X-ray and runaway electron generation in repetitive pulsed discharges in atmospheric pressure air with a point-to-plane gap

    SciTech Connect

    Shao Tao; Yan Ping; Tarasenko, Victor F.; Shut'ko, Yuliya V.; Zhang Cheng

    2011-05-15

    In this paper, using two repetitive nanosecond generators, x-rays were detected in atmospheric air with a highly inhomogeneous electric field by a point-to- plane gap. The rise times of the generators were about 15 and 1 ns. The x-rays were directly measured by various dosimeters and a NaI scintillator with a photomultiplier tube. X-rays were detected in the continuous mode at pulse repetition frequency up to 1 kHz and a voltage pulse rise time of {approx}15 ns. It is shown that the maximum x-ray intensity is attainable at different pulse repetition frequencies depending on the voltage pulse parameters and cathode design. In atmospheric pressure air the x-ray intensity is found to increase with increasing the pulse repetition frequency up to 1 kHz. It is confirmed that the maximum x-ray intensity is attained in a diffuse discharge in a point-to-plane gap.

  12. [Waveform caused by raised intracranial pressure--application of spectral analysis in the study of waveform].

    PubMed

    Takizawa, H

    1987-02-01

    Changes in spectrum of the intracranial pressure (ICP) pulse wave were studied while ICP was raised by the epidural balloon inflation. ICP and systemic blood pressure were estimated in the lateral ventricle and thoracic aorta, respectively. Transmission of pulsation from arterial pressure to ICP was estimated by the amplitude transfer function (TFa). Waveform of ICP pulse was also evaluated by distortion factor to represent how ICP pulse is different form a pure sine wave. The spectra of ICP and arterial pressure showed basically the same pattern; they consisted of fundamental wave (FW) and three harmonic waves (HW 2, HW 3, HW 4). Amplitude and values of TFa of each spectral component were increased as ICP was raised and revealed significant correlation. FW and HW 2 components showed break points when ICP was raised up to 35 mmHg, thereafter increments of amplitude and TFa became more remarkable in the range of higher ICP. TFa and amplitude of each spectral component of ICP pulse revealed significant correlation. These findings proved that changes of ICP pulse were the results of changed efficiency of pulse transmission from arterial pressure to CSF. It was already reported that the cerebrovascular tonus had decisive influences on the transmission of pulsation from arterial pressure to ICP because lowered vascular tonus would diminish the damping effect by arterial wall and facilitate the transmission of arterial pressure pulse to ICP. The break point of amplitude and TFa were considered to indicate that tonus of cerebral artery was remarkably lowered and the autoregulation of cerebral blood flow was exhausted.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Dependence of the absorption of pulsed CO{sub 2}-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    SciTech Connect

    Blazejowski, J.; Gruzdiewa, L.; Rulewski, J.; Lampe, F.W.

    1995-05-15

    The absorption of three lines [{ital P}(20), 944.2 cm{sup {minus}1}; {ital P}(14), 949.2 cm{sup {minus}1}; and {ital R}(24), 978.5 cm{sup {minus}1}] of the pulsed CO{sub 2} laser (00{sup 0}1--10{sup 0}0 transition) by SiH{sub 4} was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO{sub 2} laser. The experimental dependencies show deviations from the phenomenological Beer--Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer--Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials.

  14. Secondary atomization by high amplitude pressure waves

    NASA Astrophysics Data System (ADS)

    Eastes, T. W.; Samuelsen, G. S.

    1992-07-01

    Secondary atomization or (drop breakup) can occur in at least three different manners in liquid rocket engine combustion chambers: (1) in the high velocity shearing flowfield in the near injector region of a shear coaxial injector, (2) as gases expand and accelerate in the reaction zone, and (3) during combustion instability. In all of these situations the convective flow relative to the droplet can be quite high and easily simulated in the laboratory by a shock tube. This paper presents preliminary activity in the undertaking of a set of experiments designed to investigate drop breakup by the convective flowfield associated with the passing of a shock. Topics to be covered include the background, previous work, the apparatus, the diagnostic technique, scaling to actual rocket engine conditions, and preliminary results.

  15. Effect of pressure pulses at the interface valve on the stability of second dimension columns in online comprehensive two-dimensional liquid chromatography.

    PubMed

    Talus, Eric S; Witt, Klaus E; Stoll, Dwight R

    2015-01-23

    Users of online comprehensive two-dimensional liquid chromatography (LCxLC) frequently acknowledge that the mechanical instability of HPLC columns installed in these systems, particularly in the second dimension, is a significant impediment to its use. Such instability is not surprising given the strenuous operating environment to which these columns are subjected, including the large number (thousands per day) of fast and large pressure pulses resulting from interface valve switches (on the timescale of tens of milliseconds) associated with very fast second dimension separations. There appear to be no published reports of systematic studies of the relationship between second dimension column lifetime and any of these variables. In this study we focused on the relationship between the lifetimes of commercially available columns and the pressure pulses observed at the inlet of the second dimension column that occur during the switching of the valve that interfaces the two dimensions of a LCxLC system. We find that the magnitude of the pressure drop at the inlet of the second dimension column during the valve switch, which may vary between 10 and 95% of the column inlet pressure, is dependent on valve switching speed and design, and has a dramatic impact on column lifetime. In the worst case, columns fail within the first few hours of use in an LCxLC system. In the best case, using a valve that exhibits much smaller pressure pulses, the same columns exhibit much improved lifetimes and have been used continuously under LCxLC conditions for several days with no degradation in performance. This result represents a first step in understanding the factors that affect second dimension column lifetime, and will significantly improve the usability of the LCxLC technique in general.

  16. Aerovalve pulse combustion: Technical note

    SciTech Connect

    Richards, G.A.; Gemmen, R.S.; Narayanaswami, L.

    1994-07-01

    The authors present a mathematical model and an experimental investigation of aerodynamically valved pulse combustion. The model uses a control-volume approach to solve conservation laws in several regions of a pulse combustor. Mixing between the fresh charge and combustion products is modeled as a two-step process, with the mixing occurring slowly for a specified eddy time during each cycle, and then changing to a higher rate. Results of model simulations demonstrate that eddy time plays a significant role in determining the frequency and amplitude of combustion oscillation. The authors show that short eddy times produce steady, rather than pulsating, combustion. And they show that changes to the mixing process alter the temperature-species history of combustion gases in a manner that could prevent or promote the formation of nitrogen oxides, depending on specific mixing rates. The relatively simple control-volume approach used in this model allows rapid investigation of a wide range of geometric and operating parameters, and also defines characteristic length and time scales relevant to aerovalve pulse combustion. Experimental measurements compare favorably to model predictions. The authors place particular emphasis on time-averaged pressure differences through the combustor, which act as an indicator of pressure gain performance. They investigate both operating conditions and combustor geometry, and they show that a complex interaction between the inlet and exit flows of a combustor makes it difficult to produce general correlations among the various parameters. They use a scaling rule to produce a combustor geometry capable of producing pressure gain.

  17. Pump out the volume--The effect of tracheal and subelytral pressure pulses on convective gas exchange in a dung beetle, Circellium bacchus (Fabricus).

    PubMed

    Duncan, Frances D; Förster, Thomas D; Hetz, Stefan K

    2010-05-01

    Many flightless beetles like the large apterous dung beetle Circellium bacchus, possess a subelytral cavity (SEC) providing an extra air space below the elytra which connects to the tracheal system (TS) via metathoracic and abdominal spiracles. By measuring subelytral and intratracheal pressure as well as body movements and gas exchange simultaneously in a flow-through setup, we investigated the contribution of convection on Circellium respiratory gas exchange. No constriction phase was observed. TS and SEC pressures were always around atmospheric values. During interburst phase open abdominal spiracles and a leaky SEC led to small CO(2)-peaks on a continuous CO(2) baseline, driven by intermittent positive tracheal pressure peaks in anti-phase with small negative subelytral pressure peaks caused by dorso-ventral tergite action. Spiracle opening was accompanied by two types of body movements. Higher frequency telescoping body movements at the beginning of opening resulted in high amplitude SEC and TS pressure peaks. High frequency tergite movements caused subelytral pressure peaks and led to a saw tooth like CO(2) release pattern in a burst. We propose that during the burst open mesothoracic spiracles increase the compliance of the subelytral cavity allowing big volumes of tracheal air being pulled out by convection. PMID:19481765

  18. Experimental and numerical investigations of air plasmas induced by multi-MeV pulsed X-ray from low to atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Maulois, Mélissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Pouzalgues, Romain; Garrigues, Alain; Delbos, Christophe; Azaïs, Bruno

    2016-09-01

    This research work is devoted to the experimental and theoretical analysis of air plasmas induced by multi-MeV pulsed X-ray for a large pressure range of humid air background gas varying from 20 mbar to atmospheric pressure. The time evolution of the electron density of the air plasma is determined by electromagnetic wave absorption measurements. The measurements have uncertainties of about ±30%, taking into account the precision of the dose measurement and also the shot to shot fluctuations of the generator. The experimental electron density is obtained by comparing the measurements of the transmitted microwave signals to the calculated ones. The calculations need the knowledge of the time evolution of the electron mean energy, which is determined by a chemical kinetic model based on a reaction scheme involving 39 species interacting following 265 reactions. During the X-ray pulse, a good agreement is obtained between time evolution of the electron density obtained from absorption measurements and calculations based on the kinetic model. The relative deviation on the maximum electron density and the corresponding plasma frequency is always lower than 10%. The maximum electron density varies from 4 × 1011 to 3.5 × 1013 cm-3 between 30 mbar to atmospheric pressure, while the peak of the electron mean energy decreases from 5.64 eV to 4.27 eV in the same pressure range.

  19. Variation of bandgap with oxygen ambient pressure in Mg xZn 1- xO thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Misra, P.; Bhattacharya, P.; Mallik, K.; Rajagopalan, S.; Kukreja, L. M.; Rustagi, K. C.

    2001-03-01

    Thin films of Mg xZn 1- xO were grown by pulsed laser deposition technique at various oxygen background pressures in the range of 10 -2-10 -5 Torr on single crystal (0001) alumina substrates. The films were found to be c-axis oriented with a high crystalline quality having FWHM of rocking curve of about 0.16°. The bandgap of Mg xZn 1- xO thin films was found to increase from 3.45 to 3.78 eV with decrease of oxygen pressure from 10 -2 to 10 -5 Torr during the deposition. This has been attributed to the increase in the Mg concentration in the films on decreasing the O 2 pressure.

  20. Spatially coherent high-order harmonics generated at optimal high gas pressure with high-intensity one- or two-color laser pulses

    NASA Astrophysics Data System (ADS)

    Jin, Cheng; Lin, C. D.

    2016-10-01

    We investigate the gas-pressure dependence of macroscopic harmonic spectra generated in a high-ionization medium using intense 800-nm laser pulses. The harmonics obtained at the optimal pressure show good spatial coherence with small divergence (less than 2 mrad) in the far field. By analyzing the evolution of the laser's electric field as it propagates, we find that dynamic phase matching conditions are fulfilled in the second half of the gas cell and that harmonic yields do not depend on the position of the gas cell with respect to the focusing position. We also demonstrate that harmonic yields at the optimal pressure can be further enhanced by increasing input laser energy or by adding a few percent of second or third harmonic to the fundamental.

  1. Photoconductive circuit element pulse generator

    DOEpatents

    Rauscher, Christen

    1989-01-01

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  2. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media. [CO/sub 2/ laser oscillator and pulse smoother

    DOEpatents

    McLellan, E.J.

    1980-10-17

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode and cathode to below breakdown voltage using a dc voltage source. An array of resistors or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO/sub 2/ laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  3. Effect of pulse polarity on the temporal and spatial emission of an atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Wang, Ruixue; Zhang, Kai; Shen, Yuan; Zhang, Cheng; Zhu, Weidong; Shao, Tao

    2016-02-01

    A single needle-electrode plasma jet driven by a home-made microsecond pulse power supply is studied. The electrical characteristics and optical emissions of the plasma jets driven by positive- and negative-polarity pulses are compared. With the same magnitude of applied voltage, the plasma jet driven by positive pulses shows a higher discharge current, a higher optical emission intensity and travels to a longer distance. The temporal-spatially resolved He (706.5 nm), N2 (337.1 nm) and \\text{N}2+ (391.4 nm) emissions behave differently in the plasma jets driven by different polarity pulses: They appear to be discrete emission packets in the positive plasma jet, but continuous emission in the negative plasma jet (under the time resolution in this study). The emission front propagates at a faster speed in the positive plasma jet than in the negative plasma jet. The different behavior of the plasma jets is attributed to the electric field distribution under different polarity pulses.

  4. Numerical simulation of the main characteristics of a high-pressure DF – CO{sub 2} laser for amplification of picosecond laser pulses

    SciTech Connect

    Agroskin, V Ya; Bravy, B G; Vasiliev, G K; Kashtanov, S A; Makarov, E F; Sotnichenko, S A; Chernyshev, Yu A

    2013-12-31

    The gain characteristics of the medium of a pulsed DF – CO{sub 2} laser in the ten-micron region at the working gas pressures from 1 to 2.5 atm, which were experimentally determined in [4], are numerically simulated using a scheme that includes the main chemical and relaxation processes. It is shown that the chosen scheme of processes makes it possible (i) to numerically describe the experimental data on the temporal behaviour of gains; (ii) to explain the reason for early degradation of gains (at the degree of D{sub 2} transformation of about 20%); (iii) from comparison of experimental and calculated temporal gain profiles, to determine the degree of photodissociation of F{sub 2} molecules, which is an important parameter determining the operation of pulsed chemical DF – CO{sub 2} lasers; and (iv) to predict the gain characteristics of working mixtures depending on their composition and pressure and on the initiation parameters. The predicted gains in the mixtures of the optimal composition at a pressure of 2.5 atm, a degree of dissociation of F{sub 2} molecules per flash ∼1%, and a flash duration at half-width of ∼3 μs are ∼7 m{sup -1}. (lasers)

  5. Pulse testing in the presence of wellbore storage and skin effects

    SciTech Connect

    Ogbe, D.O.; Brigham, W.E.

    1984-08-01

    A pulse test is conducted by creating a series of short-time pressure transients in an active (pulsing) well and recording the observed pressure response at an observation (responding) well. Using the pressure response and flow rate data, the transmissivity and storativity of the tested formation can be determined. Like any other pressure transient data, the pulse-test response is significantly influenced by wellbore storage and skin effects. The purpose of this research is to examine the influence of wellbore storage and skin effects on interference testing in general and on pulse-testing in particular, and to present the type curves and procedures for designing and analyzing pulse-test data when wellbore storage and skin effects are active at either the responding well or the pulsing well. A mathematical model for interference testing was developed by solving the diffusivity equation for radial flow of a single-phase, slightly compressible fluid in an infinitely large, homogeneous reservoir. When wellbore storage and skin effects are present in a pulse test, the observed response amplitude is attenuated and the time lag is inflated. Consequently, neglecting wellbore storage and skin effects in a pulse test causes the calculated storativity to be over-estimated and the transmissivity to be under-estimated. The error can be as high as 30%. New correlations and procedures are developed for correcting the pulse response amplitude and time lag for wellbore storage effects. Using these correlations, it is possible to correct the wellbore storage-dominated response amplitude and time lag to within 3% of their expected values without wellbore storage, and in turn to calculate the corresponding transmissivity and storativity. Worked examples are presented to illustrate how to use the new correction techniques. 45 references.

  6. PULSED INDICATOR CIRCUIT

    DOEpatents

    Linlor, W.I.; Kerns, Q.A.

    1960-11-15

    A system is given for detecting incremental changes in a transducer impedance terminating a transmission line. Principal novelty resides in the transducer impedance terminating the line in a mismatch and a pulse generator being provided to apply discrete pulses to the input end of the line. The amplitudes of the pulses reflected to the input end of the line from the mismatched transducer impedance are then observed as a very accurate measure of the instantaneous value of the latter.

  7. Cross-Channel Amplitude Sweeps Are Crucial to Speech Intelligibility

    ERIC Educational Resources Information Center

    Prendergast, Garreth; Green, Gary G. R.

    2012-01-01

    Classical views of speech perception argue that the static and dynamic characteristics of spectral energy peaks (formants) are the acoustic features that underpin phoneme recognition. Here we use representations where the amplitude modulations of sub-band filtered speech are described, precisely, in terms of co-sinusoidal pulses. These pulses are…

  8. Effect of oxygen pressure on microstructure and magnetic properties of strontium hexaferrite (SrFe 12O 19) film prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2012-04-01

    The effects of oxygen pressure during deposition on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) films grown on Si (100) substrate with Pt (111) underlayer by pulsed laser deposition have been investigated. X-ray diffraction pattern confirms that the films have c-axis perpendicular orientation. The c-axis dispersion (Δθ50) increases and c-axis lattice parameter decreases with increasing oxygen pressure. The films have hexagonal shape grains with diameter of 150-250 nm as determined by atomic force microscopy. The coercivities in perpendicular direction are higher than those in in-plane direction, which shows the films have perpendicular magnetic anisotropy. The saturation magnetization and anisotropy field for the film deposited in oxygen pressure of 0.13 mbar are comparable to those of the bulk strontium hexaferrite. Higher oxygen pressure leads to the films having higher coercivity and squareness. The coercivity in perpendicular and in-plane directions of the film deposited in oxygen pressure of 0.13 mbar are 2520 Oe and 870 Oe, respectively.

  9. Effect of sputtering pressure on crystalline quality and residual stress of AlN films deposited at 823 K on nitrided sapphire substrates by pulsed DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Makoto; Takeuchi, Hiroto; Fukuyama, Hiroyuki

    2016-05-01

    Aluminum nitride (AlN) is a promising material for use in applications such as deep-ultraviolet light-emitting diodes (UV-LEDs) and surface acoustic wave (SAW) devices. In the present study, the effect of sputtering pressure on the surface morphology, crystalline quality, and residual stress of AlN films deposited at 823 K on nitrided a-plane sapphire substrates, which have high-crystalline-quality c-plane AlN thin layers, by pulsed DC reactive sputtering was investigated. The c-axis-oriented AlN films were homoepitaxially grown on nitrided sapphire substrates at sputtering pressures of 0.4–1.5 Pa. Surface damage of the AlN sputtered films increased with increasing sputtering pressure because of arcing (abnormal electrical discharge) during sputtering. The sputtering pressure affected the crystalline quality and residual stress of AlN sputtered films because of a change in the number and energy of Ar+ ions and Al sputtered atoms. The crystalline quality of AlN films was improved by deposition with lower sputtering pressure.

  10. Quasi-monoenergetic ion generation by hole-boring radiation pressure acceleration in inhomogeneous plasmas using tailored laser pulses

    SciTech Connect

    Weng, S. M. Murakami, M.; Azechi, H.; Wang, J. W.; Tasoko, N.; Chen, M.; Sheng, Z. M.; Mulser, P.; Yu, W.; Shen, B. F.

    2014-01-15

    It is proposed that laser hole-boring at a steady speed in inhomogeneous overdense plasma can be realized by the use of temporally tailored intense laser pulses, producing high-fluence quasi-monoenergetic ion beams. A general temporal profile of such laser pulses is formulated for arbitrary plasma density distribution. As an example, for a precompressed deuterium-tritium fusion target with an exponentially increasing density profile, its matched laser profile for steady hole-boring is given theoretically and verified numerically by particle-in-cell simulations. Furthermore, we propose to achieve fast ignition by the in-situ hole-boring accelerated ions using a tailored laser pulse. Simulations show that the effective energy fluence, conversion efficiency, energy spread, and collimation of the resulting ion beam can be significantly improved as compared to those found with un-tailored laser profiles. For the fusion fuel with an areal density of 1.5 g cm{sup –2}, simulation indicates that it is promising to realize fast ion ignition by using a tailored driver pulse with energy about 65 kJ.

  11. Thermal cracking and amplitude dependent attenuation

    SciTech Connect

    Johnston, D.H.; Toksoez, M.N.

    1980-02-10

    The role of crack and grain boundary contacts in determining seismic wave attenuation in rock is investigated by examining Q as a function of thermal cycling (cracking) and wave strain amplitude. Q values are obtained using a longitudinal resonant bar technique in the 10- to 20-kHz range for maximum strain amplitudes varying from roughly 10/sup -8/ to 10/sup -5/. The samples studied include the Berea and Navajo sandstones, Plexiglas, Westerly granite, Solenhofen limestone, and Frederick diabase, the latter two relatively crack free in their virgin state. Measurements were made at room temperature and pressure in air. Q values for both sandstones are constant at low strains (<10/sup -6/) but decrease rapidly with amplitude at higher strains. There is no hysteresis of Q with amplitude. Q values for Plexiglas show no indication of amplitude dependent behavior. The granite, limestone, and diabase are thermally cycled at both fast and slow heating rates in order to induce cracking. Samples slowly cycled at 400/sup 0/C show a marked increase in Q that cannot be entirely explained by outgassing of volatiles. Cycling may also widen thin cracks and grain boundaries, reducing contact areas. Samples heated beyond 400/sup 0/C, or rapidly heated, result in generally decreasing Q values. The amplitude dependence of Q is found to be coupled to the effects of thermal cycling. For rock slowly cycled 400)C or less, the transition from low-amplitude contant Q to high-amplitude variable Q behavior decreases to lower amplitudes as a function of maximum temperature. Above 400/sup 0/C, and possibly in th rapidly heated samples also, the transition moves to higher amplitudes.

  12. Reinforcing Saccadic Amplitude Variability

    ERIC Educational Resources Information Center

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  13. Asymmetric Ultrasonic Pulse Radiation Using Electromagnetic-Induction Transducer and PZT(Pb(Zr-Ti)O3) Transducer with Wave Synthesis Method

    NASA Astrophysics Data System (ADS)

    Endoh, Nobuyuki; Yamamoto, Koji

    1993-05-01

    In medical applications, especially in urology, we use a fragmentation calculus technique with shock waves. This technique is very profitable because of no abdominal surgery for a human being. Large negative sound amplitude pulses, however, can cause problems such as internal hemorrhage or pain in the human body. The final goal of this study is to develop a means to project an intense positive unipolar pulse without negative sound pressure. We improved a composite transducer consisting of an electromagnetic-induction-type (EMI) transducer and PZT (Pb(Zr-Ti)O3) transducers. An EMI transducer consisting of a metal coil and vibration membrane can project intense sound pulses into water. In order to suppress its negative sound pressure, we project a compensation pulse with PZT transducers using an inverse filtering method. An asymmetric pulse whose P+ to P- amplitude ratio was very high was projected in water.

  14. Radar transponder operation with compensation for distortion due to amplitude modulation

    SciTech Connect

    Ormesher, Richard C.; Tise, Bertice L.; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  15. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  16. Multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an intense solar wind dynamic pressure pulse

    DOE PAGES

    Xiang, Zheng; Ni, Binbin; Zhou, Chen; Zou, Zhengyang; Gu, Xudong; Zhao, Zhengyu; Zhang, Xianguo; Zhang, Xiaoxin; Zhang, Shenyi; Li, Xinlin; et al

    2016-05-03

    Radiation belt electron flux dropouts are a kind of drastic variation in the Earth's magnetosphere, understanding of which is of both scientific and societal importance. We report multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an event of intense solar wind dynamic pressure pulse, using electron flux data from a group of 14 satellites. Moreover, when the pulse occurred, magnetopause and atmospheric loss could take effect concurrently contributing to the electron flux dropout. Losses through the magnetopause were observed to be efficient and significant at L ≳ 5, owing to the magnetopause intrusion into Lmore » ~6 and outward radial diffusion associated with sharp negative gradient in electron phase space density. Losses to the atmosphere were directly identified from the precipitating electron flux observations, for which pitch angle scattering by plasma waves could be mainly responsible. While the convection and substorm injections strongly enhanced the energetic electron fluxes up to hundreds of keV, they could delay other than avoid the occurrence of electron flux dropout at these energies. Finally, we demonstrate that the pulse-time radiation belt electron flux dropout depends strongly on the specific interplanetary and magnetospheric conditions and that losses through the magnetopause and to the atmosphere and enhancements of substorm injection play an essential role in combination, which should be incorporated as a whole into future simulations for comprehending the nature of radiation belt electron flux dropouts.« less

  17. Multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an intense solar wind dynamic pressure pulse

    NASA Astrophysics Data System (ADS)

    Xiang, Zheng; Ni, Binbin; Zhou, Chen; Zou, Zhengyang; Gu, Xudong; Zhao, Zhengyu; Zhang, Xianguo; Zhang, Xiaoxin; Zhang, Shenyi; Li, Xinlin; Zuo, Pingbing; Spence, Harlan; Reeves, Geoffrey

    2016-05-01

    Radiation belt electron flux dropouts are a kind of drastic variation in the Earth's magnetosphere, understanding of which is of both scientific and societal importance. Using electron flux data from a group of 14 satellites, we report multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an event of intense solar wind dynamic pressure pulse. When the pulse occurred, magnetopause and atmospheric loss could take effect concurrently contributing to the electron flux dropout. Losses through the magnetopause were observed to be efficient and significant at L ≳ 5, owing to the magnetopause intrusion into L ˜ 6 and outward radial diffusion associated with sharp negative gradient in electron phase space density. Losses to the atmosphere were directly identified from the precipitating electron flux observations, for which pitch angle scattering by plasma waves could be mainly responsible. While the convection and substorm injections strongly enhanced the energetic electron fluxes up to hundreds of keV, they could delay other than avoid the occurrence of electron flux dropout at these energies. It is demonstrated that the pulse-time radiation belt electron flux dropout depends strongly on the specific interplanetary and magnetospheric conditions and that losses through the magnetopause and to the atmosphere and enhancements of substorm injection play an essential role in combination, which should be incorporated as a whole into future simulations for comprehending the nature of radiation belt electron flux dropouts.

  18. LDV arterial pulse signal: Evidence for local generation in the carotid

    NASA Astrophysics Data System (ADS)

    Casaccia, Sara; Sirevaag, Erik J.; Richter, Edward J.; Casacanditella, Luigi; Scalise, Lorenzo; Rohrbaugh, John W.

    2016-06-01

    The external blood pressure pulse, recorded on a non-contact basis using the method of laser Doppler vibrometry (LDV), has been shown to be a rich source of information regarding cardiac and vascular dynamics. Considerable attention has been directed specifically to the pulse from the neck, overlying the carotid artery, which is of special interest because the carotid pulse is highly similar to the central aortic pressure pulse. The findings presented here are consistent with an interpretation of the signal at the neck as originating in the carotid artery. A detailed mapping study involving a 35 point matrix over the right neck disclosed a focal zone of maximal signal amplitude, with a course consistent with the tract of the underlying carotid. Appreciable individual differences in the 22 examinees were disclosed, particularly at lower sites. In addition to confirming a local source for the LDV carotid pulse, the data highlight the importance of accurate targeting considerations.

  19. Effects of Acupuncture Stimulation on the Radial artery’s Pressure Pulse Wave in Healthy Young Participants: Protocol for a prospective, single-Arm, Exploratory, Clinical Study

    PubMed Central

    Shin, Jae-Young; Lee, Jun-Hwan; Ku, Boncho; Bae, Jang Han; un, Min-Ho; Kim, Jaeuk U.; Kim, Tae-Hun

    2016-01-01

    Introduction: This study aims to investigate the effects of acupuncture stimulation on the radial artery’s pressure pulse wave, along with various hemodynamic parameters, and to explore the possible underlying mechanism of pulse diagnosis in healthy participants in their twenties. Methods and analysis: This study is a prospective, single-arm, exploratory clinical study. A total of 25 healthy participants, without regard to gender, in their twenties will be recruited by physicians. Written informed consent will be obtained from all participants. The participants will receive acupuncture once at ST36 on both sides. The radial arterial pulse waves will be measured on the left arm of the subjects by using an applicable pulse tonometric device (KIOM-PAS). On the right arm (appearing twice), electrocardiogram (ECG), photoplethysmogram (PPG), respiration and cardiac output (CO) signals, will be measured using a physiological data acquisition system (Biopac module), while the velocity of blood flow, and the diameter and the depth of the blood vessel will be measured using an ultrasonogram machine on the right arm (appearing twice). All measurements will be conducted before, during, and after acupuncture. The primary outcome will be the spectral energy at high frequencies above 10 Hz (SE10-30Hz) calculated from the KIOM-PAS device signal. Secondary outcomes will be various variables obtained from the KIOM-PAS device, ECG, PPG, impedance cardiography modules, and an ultrasonogram machine. Discussion: The results of this trial will provide information regarding the physiological and the hemodynamic mechanisms underlying acupuncture stimulation and clinical evidence for the influence of acupuncture on the pressure pulse wave in the radial artery. Ethics and dissemination: This study was approved by the Institutional Review Board (IRB) of Kyung Hee University’s Oriental Medical Center, Seoul, Korea (KOMCIRB-150818-HR-030). The study findings will be published in peer

  20. Effects of Acupuncture Stimulation on the Radial artery’s Pressure Pulse Wave in Healthy Young Participants: Protocol for a prospective, single-Arm, Exploratory, Clinical Study

    PubMed Central

    Shin, Jae-Young; Lee, Jun-Hwan; Ku, Boncho; Bae, Jang Han; un, Min-Ho; Kim, Jaeuk U.; Kim, Tae-Hun

    2016-01-01

    Introduction: This study aims to investigate the effects of acupuncture stimulation on the radial artery’s pressure pulse wave, along with various hemodynamic parameters, and to explore the possible underlying mechanism of pulse diagnosis in healthy participants in their twenties. Methods and analysis: This study is a prospective, single-arm, exploratory clinical study. A total of 25 healthy participants, without regard to gender, in their twenties will be recruited by physicians. Written informed consent will be obtained from all participants. The participants will receive acupuncture once at ST36 on both sides. The radial arterial pulse waves will be measured on the left arm of the subjects by using an applicable pulse tonometric device (KIOM-PAS). On the right arm (appearing twice), electrocardiogram (ECG), photoplethysmogram (PPG), respiration and cardiac output (CO) signals, will be measured using a physiological data acquisition system (Biopac module), while the velocity of blood flow, and the diameter and the depth of the blood vessel will be measured using an ultrasonogram machine on the right arm (appearing twice). All measurements will be conducted before, during, and after acupuncture. The primary outcome will be the spectral energy at high frequencies above 10 Hz (SE10-30Hz) calculated from the KIOM-PAS device signal. Secondary outcomes will be various variables obtained from the KIOM-PAS device, ECG, PPG, impedance cardiography modules, and an ultrasonogram machine. Discussion: The results of this trial will provide information regarding the physiological and the hemodynamic mechanisms underlying acupuncture stimulation and clinical evidence for the influence of acupuncture on the pressure pulse wave in the radial artery. Ethics and dissemination: This study was approved by the Institutional Review Board (IRB) of Kyung Hee University’s Oriental Medical Center, Seoul, Korea (KOMCIRB-150818-HR-030). The study findings will be published in peer

  1. Phase and amplitude control system for Stanford Linear Accelerator

    SciTech Connect

    Yoo, S.J.

    1983-09-26

    The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system.

  2. Coherent combs in ionization by intense and short laser pulses

    NASA Astrophysics Data System (ADS)

    Krajewska, K.; Kamiński, J. Z.

    2016-03-01

    Photoionization of positive ions by a train of intense, short laser pulses is investigated within the relativistic strong field approximation, using the velocity gauge. The formation of broad peak structures in the high-energy domain of photoelectrons is observed and interpreted. The emergence of coherent photoelectron energy combs within these structures is demonstrated, and it is interpreted as the consequence of the Fraunhofer-type interference/diffraction of probability amplitudes of ionization from individual pulses comprising the train. Extensions to the coherent angular combs are also studied, and effects related to the radiation pressure are presented.

  3. Stress pulse phenomena

    SciTech Connect

    McGlaun, M.

    1993-08-01

    This paper is an introductory discussion of stress pulse phenomena in simple solids and fluids. Stress pulse phenomena is a very rich and complex field that has been studied by many scientists and engineers. This paper describes the behavior of stress pulses in idealized materials. Inviscid fluids and simple solids are realistic enough to illustrate the basic behavior of stress pulses. Sections 2 through 8 deal with the behavior of pressure pulses. Pressure is best thought of as the average stress at a point. Section 9 deals with shear stresses which are most important in studying solids.

  4. Synthesis of super-dense phase of aluminum under extreme pressure and temperature conditions created by femtosecond laser pulses in sapphire

    SciTech Connect

    Mizeikis, Vygantas; Vailionis, Arturas; Gamaly, Eugene G.; Yang, Wenge; Rode, Andrei V.; Juodkazis, Saulius

    2012-06-26

    We describe synthesis of a new super-dense phase of aluminum under extreme pressure and temperature conditions created by laser-induced microexplosions in sapphire. Micro explosions in sub-micrometer sized regions of sapphire were induced by tightly-focused femtosecond laser pulses with a temporal length of {approx} 100 fs and an energy of {approx} 100 nJ. Fast, explosive expansion of photogenerated high-density plasma created strong heating and pressure transients with peak temperature and pressure of {approx} 105 K and 10 TPa, respectively. Partial decomposition of sapphire in the shock-compressed sapphire led to formation of nanocrystalline bcc-Al phase, which is different from ambient fcc-Al phase, and was permanently preserved by fast quenching. The existence of super-dense bcc-Al phase was confirmed using X-ray diffraction technique. This is the first observation of bcc-Al phase, which so far has been only predicted theoretically, and a demonstration that laser-induced micro explosions technique enables simple, safe and cost-efficient access to extreme pressures and temperatures without the tediousness typical to traditional techniques that use diamond anvil cells, gas guns, explosives, or megajoule-class lasers.

  5. Effects of pomegranate juice supplementation on pulse wave velocity and blood pressure in healthy young and middle-aged men and women.

    PubMed

    Lynn, Anthony; Hamadeh, Hiba; Leung, Wing Chi; Russell, Jean M; Barker, Margo E

    2012-09-01

    Pomegranate juice may improve cardiovascular risk because of its content of antioxidant polyphenols. We conducted a randomized placebo-controlled parallel study to examine the effect of pomegranate juice on pulse wave velocity (PWV), blood pressure (BP) and plasma antioxidant status (ferric reducing power; FRAP) in 51 healthy adults (30-50 years). Participants consumed 330 ml/day of pomegranate juice or control drink for four weeks. Measurements were made at baseline and at four weeks. There was no effect of the intervention on PWV (P = 0.694) and plasma FRAP (P = 0.700). However, there was a significant fall in systolic blood pressure (-3.14 mmHg, P < 0.001), diastolic blood pressure (-2.33 mmHg P < 0.001) and mean arterial pressure (-2.60 mmHg, P < 0.001). Change in weight was similar in the two groups over the intervention period (P = 0.379). The fall in BP was not paralleled by changes in concentration of serum angiotensin converting enzyme. We conclude that pomegranate juice supplementation has benefits for BP in the short term, but has no effect on PWV. The mechanism for the effect is uncertain.

  6. The effect of argon gas pressure on structural, morphological and photoluminescence properties of pulsed laser deposited KY3F10:Ho3+ thin films

    NASA Astrophysics Data System (ADS)

    Debelo, N. G.; Dejene, F. B.; Roro, Kittessa; Pricilla, M. P.; Oliphant, Clive

    2016-06-01

    KY3F10:Ho3+ thin films were deposited by a pulsed laser deposition technique with Nd-YAG laser radiation ( λ = 266 nm) on (100) silicon substrate. The XRD and FE-SEM results show improved crystalline structure for the film deposited at a pressure of 1 Torr. The AFM results show that the RMS roughness of the films increases with rise in argon gas pressure. The EDS elemental mapping shows Y-excess for all the films deposited under all pressures, and this is attributed to its higher mass and low volatility as compared to K and F. XPS analysis further confirmed Y-excess in the deposited films. Green PL emission at 540 nm was investigated at three main excitation wavelengths, namely 362, 416 and 454 nm. The PL emission peaks increase with rise in background argon gas pressure for all excitation wavelengths. The highest PL intensity occurred at excitation of 454 nm for all the thin films. In addition, faint red (near infrared) emission was observed at 750 nm for all the excitations. The green emission at 540 nm is ascribed to the 5F4-5I8 and 5S2-5I8 transitions, and the faint red emission at 750 nm is due to the 5F4-5I7 and 5S2-5I7 transitions of Ho3+.

  7. Characteristics of nanosecond pulse needle-to-plane discharges at high pressure: a particle-in-cell Monte Carlo collision simulation

    SciTech Connect

    Sang Chaofeng; Sun Jizhong; Ren Chunsheng; Wang Dezhen

    2009-02-15

    A model of one dimensional in position and three dimensional in velocity space self-consistent particle in cell with Monte Carlo collision technique was employed to simulate the argon discharge between the needle and plane electrodes at high pressure, in which a nanosecond rectangular pulse was applied to the needle electrode. The work focused on the investigation of the spatiotemporal evolution of the discharge versus the needle tip size and working gas pressure. The simulation results showed that the discharge occurred mainly in the region near the needle tip at atmospheric pressure, and that the small radius of the needle tip led to easy discharge. Reducing the gas pressure gave rise to a transition from a corona discharge to a glowlike discharge along the needle-to-plane direction. The microscopic mechanism for the transition can arguably be attributed to the peak of high-energy electrons occurring before the breakdown; the magnitude of the number of these electrons determined whether the breakdown can take place.

  8. Syzygies probing scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Liu, Junyu; Xie, Ruofei; Zhang, Hao; Zhou, Yehao

    2016-09-01

    We propose a new efficient algorithm to obtain the locally minimal generating set of the syzygies for an ideal, i.e. a generating set whose proper subsets cannot be generating sets. Syzygy is a concept widely used in the current study of scattering amplitudes. This new algorithm can deal with more syzygies effectively because a new generation of syzygies is obtained in each step and the irreducibility of this generation is also verified in the process. This efficient algorithm can also be applied in getting the syzygies for the modules. We also show a typical example to illustrate the potential application of this method in scattering amplitudes, especially the Integral-By-Part(IBP) relations of the characteristic two-loop diagrams in the Yang-Mills theory.

  9. Pulsed UV and VUV excilamps

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.; Erofeev, Mikhail V.; Kostyrja, Igor D.; Lomaev, Mikhail I.; Rybka, Dmitri V.

    2008-05-01

    Emission characteristics of a nanosecond discharge in nitrogen, inert gases and its halogenides without preionization of the gap from an auxiliary source have been investigated. A volume discharge, initiated by an avalanche electron beam (VDIAEB) was realized at pressures up to 12 atm. It has been shown that at VDIAEB excitation no less than 90% energy in the 120-850 nm range is emitted by Xe, Kr, Ar dimers. Xenon spectra in the range 120-850 nm and time-amplitude characteristics have been recorded and analyzed for various excitation regimes. In xenon at pressure of 1.2 atm, the energy of spontaneous radiation in the full solid angle was ~ 45 mJ/cm3, and the FWHM of a radiation pulse was ~ 110 ns. The spontaneous radiation power rise in xenon was observed at pressures up to 12 atm. Pulsed power densities of radiation of inert gases halogenides excited by VDIAEB was ~ 4.5 kW/cm2 at efficiency up to 5.5 %.

  10. Electromagnetic solitary pulses in a magnetized electron-positron plasma

    SciTech Connect

    Shukla, P. K.; Eliasson, B.; Stenflo, L.

    2011-03-15

    A theory for large amplitude compressional electromagnetic solitary pulses in a magnetized electron-positron (e-p) plasma is presented. The pulses, which propagate perpendicular to the external magnetic field, are associated with the compression of the plasma density and the wave magnetic field. Here the solitary wave magnetic field pressure provides the restoring force, while the inertia comes from the equal mass electrons and positrons. The solitary pulses are formed due to a balance between the compressional wave dispersion arising from the curl of the inertial forces in Faraday's law and the nonlinearities associated with the divergence of the electron and positron fluxes, the nonlinear Lorentz forces, the advection of the e-p fluids, and the nonlinear plasma current densities. The compressional solitary pulses can exist in a well-defined speed range above the Alfven speed. They can be associated with localized electromagnetic field excitations in magnetized laboratory and space plasmas composed of electrons and positrons.

  11. Effect of geometrical focusing on femtosecond laser filamentation with low pressure

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Jia, Wei; Fan, Chengyu

    2016-03-01

    The influence of geometrical focusing on the filamentation of femtosecond laser pulses at various low pressures (<1 atm) in air has been numerically demonstrated. The main peculiarities, such as filamentation dynamics, spatial-temporal evolution and supercontinuum generation manipulated by external geometrical focusing in the low atmospheric pressure regime, are analyzed by numerically solving a spatial-temporal equation for femtosecond laser pulse propagation in air. The results show that those important characteristics are more sensitive to the focal length than the variation of atmospheric pressure. It indicates that suitable design of the focal length will result in further amplitude uniformity and a lack of temporal aberrations in the compressed pulse. This theoretical modelling of pulse shaping optimization is a step to realization of high-energy femtosecond pulse delivery from the Earth's surface to altitudes of several kilometers up into the atmosphere.

  12. Experimental and modeling study of the oxidation of acetaldehyde in an atmospheric-pressure pulsed corona discharge

    NASA Astrophysics Data System (ADS)

    Klett, C.; Touchard, S.; Vega-Gonzalez, A.; Redolfi, M.; Bonnin, X.; Hassouni, K.; Duten, X.

    2012-08-01

    This paper reports the results obtained for the degradation of acetaldehyde by an atmospheric plasma corona discharge working in a pulsed regime. It was shown that a few hundred ppm of acetaldehyde diluted in a pure N2 gas flow can be removed up to 80% by a discharge fed with an electric power lower than 1 W. Under the same conditions, adding up to 5% of O2 allowed the removal of up to 95% of the initial acetaldehyde. The main identified end products were CO2, CO and methanol. A quasi-homogeneous zero-dimensional chemical model was developed to investigate the respective efficiency of the discharge and post-discharge periods in the global removal of the pollutant. The identified main pathways of acetaldehyde degradation were quenching of N2 metastable states during plasma pulses and oxidation by O and OH radicals during the post-discharge. This latter contribution increased with input power because of ozone accumulation in the gas mixture acting as an additional oxygen reservoir.

  13. Photoacoustic-pulse generation and propagation in a metal vapor.

    PubMed

    Tam, A C; Zapka, W; Chiang, K; Imaino, W

    1982-01-01

    Photoacoustic-pulse generation by breakdown is achieved in dense cesium metal vapors of vapor pressures ranging from 2 to 130 Torr by using a dye laser pulse of energy variable from 10(-6) to 10(-3) J, tuned to the Cs transition at 6010 A. The acoustic-pulse propagation is detected by the transient photorefractive deflection of a cw probe laser beam that is displaced from but parallel to the pulsed laser beam. The temperature-dependent velocity of infinitesimal ultrasonic waves in a corrosive metal vapor is measured for the first time. The supersonic propagation of finite amplitude acoustic pulses (blast waves) obtained with a higher pulse energy is also studied. Our data, with Mach numbers ranging from 2.1 down to below 1.01, agree surprisingly well with the prediction of Vlases and Jones for cylindrical blast waves. This provides a new experimental support for their theoretical trajectory formula for blast waves in the extremely weak amplitude limit. PMID:20372402

  14. Observations of Regular Filamentary Plasma Arrays in High-Pressure Gas Breakdown by 1.5 MW, 110 GHz Gyrotron Pulses

    NASA Astrophysics Data System (ADS)

    Hidaka, Yoshiteru

    2008-11-01

    Formation of regular two-dimensional plasma filamentary arrays has been observed in long open-shuttered images of air breakdown at atmospheric pressure [Y. Hidaka et al., Phys. Rev. Lett. 100, 035003 (2008)]. The breakdown was generated by a focused linearly-polarized Gaussian beam from a 1.5-MW, 110-GHz gyrotron with a 3-microsecond pulse length. Each plasma filament is elongated in the electric field direction and separated roughly one-quarter wavelength from each other in the H-plane. The development of this array structure can be explained as a result of diffraction of the beam around the highly conductive filaments. The diffraction generates a new electric field profile in which a high intensity region emerges about a quarter wavelength upstream from an existing filament. A new plasma filament is likely to appear at the intensified spot. The same process continues and results in the formation of the observed array. Electromagnetic wave simulations that model plasma filaments as metallic posts agree quite well with the hypothesis above. With a nanoseconds-gated ICCD camera, we directly confirmed that only a few rows of the observed array are bright at any one moment, as well as that the light emitting region propagates towards the microwave source. Further experimental breakdown research has been carried out with nitrogen, helium, and SF6 at different pressures. Although each species exhibits qualitatively different structures, in general, a lumpy plasma at high pressures transforms into a more familiar, diffuse plasma as pressure is decreased. The propagation velocity of the ionization front has been also estimated both from the ICCD images and a photodiode array. The velocity is on the order of 10 km/s, and increases as the pressure decreases and the power density increases.

  15. Calibration of oscillometric non-invasive devices for monitoring blood pressure

    NASA Astrophysics Data System (ADS)

    Doh, Il; Lim, Hyun Kyoon; Ahn, Bongyoung

    2015-04-01

    Blood pressure is one of the most important vital signs used to monitor a patient’s medical condition and is widely measured in hospitals and at home. Automatic, non-invasive blood pressure (NIBP) monitoring devices measure systolic and diastolic blood pressures from the analysis of cuff pressure oscillations caused by periodic variations of blood pressure in an artery. Currently, clinical validation by comparing them to the auscultatory reference has been used to verify the performance of NIBP devices. However, there are presently no calibration methods for NIBP devices. Here, we propose an SI-traceable calibration method for oscillometric NIBP devices. The calibration system generates pressure-pulses at pre-determined cuff pressures, and with pre-determined amplitude, to the device-under-test. The uncertainty of each pulse is analyzed and used for the calculation of blood pressure (BP) uncertainty. The maximum uncertainty for systolic and diastolic BP using the newly developed calibration system is (0.74 and 0.60) mmHg (k = 2) depending on the pressure and amplitude of each pulse, as well as the number of pulses applied. The present method can be used for calibration of oscillometric NIBP devices.

  16. CARS study of linewidths of the Q-branch of hydrogen molecules at high temperatures in a pulsed high-pressure H{sub 2}-O{sub 2} combustion chamber

    SciTech Connect

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M

    2005-03-31

    The results of measurements of individual line widths of the Q-branch of a hydrogen molecule and the corresponding coefficients of broadening caused by collisions with water molecules at T = 2700 K in a repetitively pulsed high-pressure (50-200 atm) hydrogen-oxygen combustion chamber are presented. CARS spectra of individual Q{sub 1}-Q{sub 7} hydrogen lines, pressure pulses, and the broadband CARS spectra of the entire Q-branch of hydrogen are recorded simultaneously during a single laser pulse. The shape of line profiles was analysed using a Fabry-Perot interferometer. The temperature in the volume being probed was determined from the 'broadband' CARS spectra. The entire body of the experimental results gives information on the spectral linewidths, temperature and pressure in the combustion chamber during CARS probing. (laser applications and other topics in quantum electronics)

  17. PULSE COLUMN

    DOEpatents

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  18. Pulsed hydrojet

    DOEpatents

    Bohachevsky, I.O.; Torrey, M.D.

    1986-06-10

    An underwater pulsed hydrojet propulsion system is provided for accelerating and propelling a projectile or other vessel. A reactant, such as lithium, is fluidized and injected into a water volume. The resulting reaction produces an energy density in a time effective to form a steam pocket. Thrust flaps or baffles direct the pressure from the steam pocket toward an exit nozzle for accelerating a water volume to create thrust. A control system regulates the dispersion of reactant to control thrust characteristics.

  19. Beat-to-Beat Blood Pressure Monitor

    NASA Technical Reports Server (NTRS)

    Lee, Yong Jin

    2012-01-01

    This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes. Photoplethysmography, which measures changes in arterial blood volume, is commonly used to obtain heart rate and blood oxygen saturation. The digitized PPG signals are used as inputs into the beat-to-beat blood

  20. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications

    NASA Astrophysics Data System (ADS)

    Benard, Nicolas; Zouzou, Nourredine; Claverie, Alain; Sotton, Julien; Moreau, Eric

    2012-02-01

    Flow control consists of manipulating flows in an effective and robust manner to improve the global performances of transport systems or industrial processes. Plasma technologies, and particularly surface dielectric barrier discharge (DBD), can be a good candidate for such purpose. The present experimental study focuses on optical and electrical characterization of plasma sheet formed by applying a pulse of voltage with rising and falling periods of 50 ns for a typical surface DBD geometry. Positive and negative polarities are compared in terms of current behavior, deposited energy, fast-imaging of the plasma propagation, and resulting modifications of the surrounding medium by using shadowgraphy acquisitions. Positive and negative pulses of voltage produce streamers and corona type plasma, respectively. Both of them result in the production of a localized pressure wave propagating in the air with a speed maintained at 343 m/s (measurements at room temperature of 20 °C). This suggests that the produced pressure wave can be considered as a propagating sound wave. The intensity of the pressure wave is directly connected to the dissipated energy at the dielectric wall with a linear increase with the applied voltage amplitude and a strong dependence toward the rising time. At constant voltage amplitude, the pressure wave is reinforced by using a positive pulse. The present investigation also reveals that rising and decaying periods of a single pulse of voltage result in two distinct pressure waves. As a result, superposition or successive pressure wave can be produced by adjusting the width of the pulse.

  1. Absolute calibration of OH density in a nanosecond pulsed plasma filament in atmospheric pressure He-H2O: comparison of independent calibration methods

    NASA Astrophysics Data System (ADS)

    Verreycken, T.; van der Horst, R. M.; Sadeghi, N.; Bruggeman, P. J.

    2013-11-01

    The absolute density of OH radicals generated in a nanosecond pulsed filamentary discharge in atmospheric pressure He +0.84% H2O is measured independently by UV absorption and laser induced fluorescence (LIF) calibrated with Rayleigh scattering. For the calibration of LIF with Rayleigh scattering, two LIF models, with six levels and four levels, are studied to investigate the influence of the rotational and vibrational energy transfers. In addition, a chemical model is used to deduce the OH density in the afterglow from the relative LIF intensity as function of time. The different models show good correspondence and by comparing these different methods, the accuracy and the effect of assumptions on the obtained OH density are discussed in detail. This analysis includes an analysis of the sensitivity to parameters used in the LIF models.

  2. Cantilever stress measurements for pulsed laser deposition of perovskite oxides at 1000 K in an oxygen partial pressure of 10{sup −4} millibars

    SciTech Connect

    Premper, J.; Sander, D.; Kirschner, J.

    2015-03-15

    An in situ stress measurement setup using an optical 2-beam curvature technique is described which is compatible with the stringent growth conditions of pulsed laser deposition (PLD) of perovskite oxides, which involves high substrate temperatures of 1000 K and oxygen partial pressures of up to 1 × 10{sup −4} millibars. The stress measurements are complemented by medium energy electron diffraction (MEED), Auger electron spectroscopy, and additional growth rate monitoring by a quartz microbalance. A shielded filament is used to allow for simultaneous stress and MEED measurements at high substrate temperatures. A computer-controlled mirror scans an excimer laser beam over a stationary PLD target. This avoids mechanical noise originating from rotating PLD targets, and the setup does not suffer from limited lifetime issues of ultra high vacuum (UHV) rotary feedthroughs.

  3. Exploring the polymerization of bioactive nano-cones on the inner surface of an organic tube by an atmospheric pressure pulsed micro-plasma jet

    NASA Astrophysics Data System (ADS)

    Xu, H. M.; Yu, J. S.; Chen, G. L.; Qiu, X. P.; Hu, W.; Chen, W. X.; Bai, H. Y.

    2015-12-01

    In this paper, the successful deposition of acrylic acid polymer (PAA) nano-cones on the inner surface of a polyvinyl chloride (PVC) tube using an atmospheric pressure pulsed plasma jet (APPJ) with acrylic acid (AA) monomer is presented. Optical emission spectroscopy (OES) measurements indicated that various reactive radicals, such as rad OH and rad O, existed in the plasma jet. Moreover, the pulsed current proportionally increased with the increase in the applied voltage. The strengthened stretching vibration of the carbonyl group (Cdbnd O) at 1700 cm-1, shown in the ATR-FTIR spectra, clearly indicated that the PAA was deposited on the PVC surface. The maximum height of the PAA nano-cones deposited by this method ranged from 150 to 200 nm. FTIR and XPS results confirmed the enhanced exposure of the carboxyl groups on the modified PVC surface, which was considered highly beneficial for successfully immobilizing a high density of biomolecules. The XPS data showed that the carbon ratios of the Csbnd OH/R and COOH/R groups increased from 7.03% and 2.6% to 18.69% and 6.81%, respectively (more than doubled) when an Ar/O2 plasma with AA monomer was applied to treat the inner surface of the PVC tube. Moreover, the enhanced attachment density of MC3T3-E1 bone cells was observed on the PVC inner surface coated with PAA nano-cones.

  4. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    SciTech Connect

    Teramoto, Yoshiyuki; Ono, Ryo; Oda, Tetsuji

    2012-06-01

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.

  5. Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric-pressure N2 and N2/H2O mixtures

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Verreycken, T.; van Veldhuizen, E. M.; Bruggeman, P. J.

    2012-08-01

    In this contribution, nanosecond pulsed discharges in N2 and N2/0.9% H2O at atmospheric pressure (at 300 K) are studied with time-resolved imaging, optical emission spectroscopy and Rayleigh scattering. A 170 ns high-voltage pulse is applied across two pin-shaped electrodes at a frequency of 1 kHz. The discharge consists of three phases: an ignition phase, a spark phase and a recombination phase. During the ignition phase the emission is mainly caused by molecular nitrogen (N2(C-B)). In the spark and recombination phase mainly atomic nitrogen emission is observed. The emission when H2O is added is very similar, except the small contribution of Hα and the intensity of the molecular N2(C-B) emission is less. The gas temperature during the ignition phase is about 350 K, during the discharge the gas temperature increases and is 1 µs after ignition equal to 750 K. The electron density is obtained by the broadening of the N emission line at 746 nm and, if water is added, the Hα line. The electron density reaches densities up to 4 × 1024 m-3. Addition of water has no significant influence on the gas temperature and electron density. The diagnostics used in this study are described in detail and the validity of different techniques is compared with previously reported results of other groups.

  6. Central blood pressure estimation by using N-point moving average method in the brachial pulse wave.

    PubMed

    Sugawara, Rie; Horinaka, Shigeo; Yagi, Hiroshi; Ishimura, Kimihiko; Honda, Takeharu

    2015-05-01

    Recently, a method of estimating the central systolic blood pressure (C-SBP) using an N-point moving average method in the radial or brachial artery waveform has been reported. Then, we investigated the relationship between the C-SBP estimated from the brachial artery pressure waveform using the N-point moving average method and the C-SBP measured invasively using a catheter. C-SBP using a N/6 moving average method from the scaled right brachial artery pressure waveforms using VaSera VS-1500 was calculated. This estimated C-SBP was compared with the invasively measured C-SBP within a few minutes. In 41 patients who underwent cardiac catheterization (mean age: 65 years), invasively measured C-SBP was significantly lower than right cuff-based brachial BP (138.2 ± 26.3 vs 141.0 ± 24.9 mm Hg, difference -2.78 ± 1.36 mm Hg, P = 0.048). The cuff-based SBP was significantly higher than invasive measured C-SBP in subjects with younger than 60 years old. However, the estimated C-SBP using a N/6 moving average method from the scaled right brachial artery pressure waveforms and the invasively measured C-SBP did not significantly differ (137.8 ± 24.2 vs 138.2 ± 26.3 mm Hg, difference -0.49 ± 1.39, P = 0.73). N/6-point moving average method using the non-invasively acquired brachial artery waveform calibrated by the cuff-based brachial SBP was an accurate, convenient and useful method for estimating C-SBP. Thus, C-SBP can be estimated simply by applying a regular arm cuff, which is greatly feasible in the practical medicine.

  7. Pulsed laser kinetic studies of liquids under high pressure. Progress report, November 29, 1990--November 25, 1991

    SciTech Connect

    Eyring, E.M.

    1991-11-25

    A high pressure apparatus constructed for measuring the rates of reactions in liquids under pressures ranging from 1 atm to 2000 atm has been used to measure the complexation kinetics of molybdenum hexacarbonyl reacting with 2,2-bipyridine, 4,4{prime}-dimethyl-2-2{prime}-bipyridine and 4,4{prime}-diphenyl-2-2{prime} bipyridine in toluene. Pentacarbonyl reaction intermediates are created by a 10 nsec flash of frequency tripled Nd:YAG laser light. Measured activation volumes for chelate ligand ring closure indicate a change in mechanism from associative interchange to dissociative interchange as steric hindrance increases. A similar high pressure kinetics study of molybdenum carbonyl complexation by several substituted phenanthrolines is now well advanced that indicates that with the more rigid phenanthroline ligands steric effects from bulky substituents have less effect on the ring closure mechanism than in the case of the bipyridine ligands. An experimental concentration dependence of the fluorescence quantum yield of cresyl violet has been harmonized with previously published contradictory reports. Fluorescence of cresyl violet in various solvents and in micellar systems has also been systematically explored.

  8. On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering: A global plasma model and experiments

    SciTech Connect

    Zheng, B. C.; Meng, D.; Che, H. L.; Lei, M. K.

    2015-05-28

    The modulated pulsed power magnetron sputtering (MPPMS) discharge processes are numerically modeled and experimentally investigated, in order to explore the effect of the pressure on MPPMS discharges as well as on the microstructure of the deposited thin films. A global plasma model has been developed based on a volume-averaged global description of the ionization region, considering the loss of electrons by cross-B diffusion. The temporal variations of internal plasma parameters at different pressures from 0.1 to 0.7 Pa are obtained by fitting the model to duplicate the experimental discharge data, and Cu thin films are deposited by MPPMS at the corresponding pressures. The surface morphology, grain size and orientation, and microstructure of the deposited thin films are investigated by scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. By increasing the pressure from 0.1 to 0.7 Pa, both the ion bombardment energy and substrate temperature which are estimated by the modeled plasma parameters decrease, corresponding to the observed transition of the deposited thin films from a void free structure with a wide distribution of grain size (zone T) into an underdense structure with a fine fiber texture (zone 1) in the extended structure zone diagram (SZD). The microstructure and texture transition of Cu thin films are well-explained by the extended SZD, suggesting that the primary plasma processes are properly incorporated in the model. The results contribute to the understanding of the characteristics of MPPMS discharges, as well as its correlation with the microstructure and texture of deposited Cu thin films.

  9. Closed string amplitudes as single-valued open string amplitudes

    NASA Astrophysics Data System (ADS)

    Stieberger, Stephan; Taylor, Tomasz R.

    2014-04-01

    We show that the single trace heterotic N-point tree-level gauge amplitude ANHET can be obtained from the corresponding type I amplitude ANI by the single-valued (sv) projection: ANHET=sv(ANI). This projection maps multiple zeta values to single-valued multiple zeta values. The latter represent a subclass of multiple zeta values originating from single-valued multiple polylogarithms at unity. Similar relations between open and closed string amplitudes or amplitudes of different string vacua can be established. As a consequence the α‧-expansion of a closed string amplitude is dictated by that of the corresponding open string amplitude. The combination of single-valued projections, Kawai-Lewellen-Tye relations and Mellin correspondence reveal a unity of all tree-level open and closed superstring amplitudes together with the maximally supersymmetric Yang-Mills and supergravity theories.

  10. Beat-to-Beat Blood Pressure Monitor

    NASA Technical Reports Server (NTRS)

    Lee, Yong Jin

    2012-01-01

    This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes.

  11. Kilovolt Blumlein pulse generator with variable pulse duration and polarity

    NASA Astrophysics Data System (ADS)

    de Angelis, Andrea; Kolb, Juergen F.; Zeni, Luigi; Schoenbach, Karl H.

    2008-04-01

    A Blumlein pulse generator which utilizes the superposition of electrical pulses launched from two individually switched pulse forming lines has been designed and tested. By using a power metal-oxide-semiconductor field-effect transistor as a switch on each end of the Blumlein line, we were able to generate pulses with amplitudes of 1kV across a 100Ω load. Pulse duration and polarity can be controlled by the temporal delay in the triggering of the two switches. Using this technique, we have demonstrated the generation of pulses with durations between 8 and 60ns. The lower limit in pulse duration was determined by the switch closing time and the upper limit by the length of the pulse forming line. A further advantage of the concept is that pulse distortions caused by the non-negligible on-resistance of a line with a single switch can be eliminated by using switches with identical characteristics.

  12. Kilovolt Blumlein pulse generator with variable pulse duration and polarity.

    PubMed

    de Angelis, Andrea; Kolb, Juergen F; Zeni, Luigi; Schoenbach, Karl H

    2008-04-01

    A Blumlein pulse generator which utilizes the superposition of electrical pulses launched from two individually switched pulse forming lines has been designed and tested. By using a power metal-oxide-semiconductor field-effect transistor as a switch on each end of the Blumlein line, we were able to generate pulses with amplitudes of 1 kV across a 100 Omega load. Pulse duration and polarity can be controlled by the temporal delay in the triggering of the two switches. Using this technique, we have demonstrated the generation of pulses with durations between 8 and 60 ns. The lower limit in pulse duration was determined by the switch closing time and the upper limit by the length of the pulse forming line. A further advantage of the concept is that pulse distortions caused by the non-negligible on-resistance of a line with a single switch can be eliminated by using switches with identical characteristics.

  13. STUDENT AWARD FINALIST: Simulation of the ignition of a H2-air mixture at atmospheric pressure by a nanosecond repetitively pulsed discharge

    NASA Astrophysics Data System (ADS)

    Tholin, Fabien; Bourdon, Anne

    2012-10-01

    Nanosecond repetitively Pulsed Discharges (NRPD) have a great potential for many applications at atmospheric pressure due to their ability to produce efficiently many reactive chemical species at a low energy cost. Recent measurements have shown that in the ``spark'' regime of NRP discharges, an ultra-fast local heating of the gas could be obtained. This effect is of great interest for applications as flow control and plasma assisted combustion (PAC). In this work, we have carried out 2D numerical simulations of the coupling of the NRP discharge in air at atmospheric pressure in a point-point geometry with the background air. In particular, we have simulated shock waves generated by the NRPD in the spark regime and we have compared our results with experiments. Then, we have studied the production of active species by the NRP discharge in the spark regime. Finally, for plasma assisted combustion applications, we have simulated the ignition of a flame kernel in a lean H2-air mixture by a spark NRPD. Based on this work, the relative importance for the combustion ignition of gas heating and production of active species by the spark NRP is discussed.

  14. Pressure effect on the magnetization of Sr{sub 2}FeMoO{sub 6} thin films grown by pulsed laser deposition

    SciTech Connect

    Fix, T.; Versini, G.; Loison, J.L.; Colis, S.; Schmerber, G.; Pourroy, G.; Dinia, A.

    2005-01-15

    Thin films of Sr{sub 2}FeMoO{sub 6} (SFMO) are grown on SrTiO{sub 3} (001) substrates by pulsed laser deposition. The best films provide 3.2{mu}{sub B}/f.u. at 5 K, a Curie temperature above 400 K, low roughness, high crystallinity, and low splashing. Therefore, the use of such SFMO electrodes in magnetic tunnel junctions patterned with conventional lithography is promising. Pseudomorphic epitaxial growth is obtained for thicknesses under 50 nm. Above this thickness the films do not relax homogeneously. A coherent and systematic variation of the magnetization with the deposition conditions is obtained, which highlights a high reproducibility. Under a reasonable O{sub 2} partial pressure to avoid parasite phases, the limiting factor for high magnetization is the total pressure or the deposition rate. Therefore, the deposition rate is suspected to have a strong influence on the Fe/Mo ordering. Highly magnetic samples are obtained under a low gas flow of either a 20% O{sub 2}+N{sub 2} or a 0.3% O{sub 2}+Ar.

  15. Dynamic optical arbitrary waveform generation with amplitude controlled by interference of two FBG arrays.

    PubMed

    Zhang, Ailing; Li, Changxiu

    2012-10-01

    In this paper, a novel structure of dynamic optical arbitrary waveform generation (O-AWG) with amplitude controlled by interference of two fiber Bragg grating (FBG) arrays is proposed. The FBG array consists of several FBGs and fiber stretchers (FSs). The amplitude is controlled by FSs through interference of two FBG arrays. The phase is controlled by FSs simultaneously. As a result, optical pulse trains with various waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width in each period are obtained via FSs adjustment to change the phase shift of signal in each array. PMID:23188271

  16. Temporal and spatial profiles of emission intensities in atmospheric pressure helium plasma jet driven by microsecond pulse: Experiment and simulation

    SciTech Connect

    Wang, Ruixue; Zhang, Cheng; Yan, Ping; Shao, Tao; Shen, Yuan; Zhu, Weidong; Babaeva, Natalia Yu.; Naidis, George V.

    2015-09-28

    A needle-circular electrode structure helium plasma jet driven by microsecond pulsed power is studied. Spatially resolved emission results show that the emission intensity of He(3{sup 3}S{sub 1}) line decreases monotonically along the axial direction, while those of N{sub 2}(C{sup 3}Π{sub u}), N{sub 2}{sup +}(B{sup 2}∑{sup +}{sub u}), and O(3p{sup 5}P) reach their maxima at 3 cm, 2.6 cm, and 1.4 cm, respectively. The plasma plume of the four species shows different characteristics: The N{sub 2} emission plume travels at a fast speed along the entire plasma jet; the N{sub 2}{sup +} emission plume is composed of a bright head and relatively weak tail and travels a shorter distance than the N{sub 2} emission plume; the He emission plume travels at a slower speed for only a very short distance; propagation of the O emission plume is not observed. Results of calculation of radiation fluxes emitted by positive streamers propagating along helium plasma jets are presented. It is shown, in agreement with the results of the present experiment and with other available experimental data, that the intensities of radiation of N{sub 2}(C{sup 3}Π{sub u}) molecules and He(3{sup 3}S{sub 1}) atoms vary with time (along the plasma jet) quite differently. The factors resulting in this difference are discussed.

  17. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  18. Pulsed laser kinetic studies of liquids under high pressure. Progress report, November 25, 1991--September 18, 1992

    SciTech Connect

    Eyring, E.M.

    1992-09-22

    A laser flash photolysis kinetic study of 2,2{prime}-bipyridine bidentate chelating ligands with one claw in the first coordination sphere of a molybdenum carbonyl complex has been completed at pressures up to 150 MPa. The reaction mechanism for thermal ring closure is found from activation volumes to change from associative interchange to dissociative interchange as substituents on the 2,2{prime}-bipyridine ligands become bulkier. In a similar study of more rigid, substituted phenanthroline bidentate ligands it was found that substituent bulkiness had little effect on the thermal ring closure mechanism. Stability constants for lithium ion complexes with crown ethers in a room temperature molten salt, fluorescence quantum yields for cresyl violet and several other dyes in solution, and the oxidation of alcohols by OsO{sub 4} have also been investigated.

  19. An integrated instrument for rapidly deforming living cells using rapid pressure pulses and simultaneously monitoring applied strain in near real time

    NASA Astrophysics Data System (ADS)

    Green, M. E.; Goforth, P. B.; Satin, L. S.; Love, B. J.

    2010-12-01

    Because many types of living cells are sensitive to applied strain, different in vitro models have been designed to elucidate the cellular and subcellular processes that respond to mechanical deformation at both the cell and tissue level. Our focus was to improve upon an already established strain system to make it capable of independently monitoring the deflection and applied pressure delivered to specific wells of a commercially available, deformable multiwell culture plate. To accomplish this, we devised a custom frame that was capable of mounting deformable 6 or 24 well plates, a pressurization system that could load wells within the plates, and a camera-based imaging system which was capable of capturing strain responses at a sufficiently high frame rate. The system used a user defined program constructed in Labview® to trigger plate pressurization while simultaneously allowing the deflection of the silicone elastomeric plate bottoms to be imaged in near real time. With this system, up to six wells could be pulsed simultaneously using compressed air or nitrogen. Digital image capture allowed near-real time monitoring of applied strain, strain rate, and the cell loading profiles. Although our ultimate goal is to determine how different strain rates applied to neurons modulates their intrinsic biochemical cascades, the same platform technology could be readily applied to other systems. Combining commercially available, deformable multiwell plates with a simple instrument having the monitoring capabilities described here should permit near real time calculations of stretch-induced membrane strain in multiple wells in real time for a wide variety of applications, including high throughput drug screening.

  20. High Frequency Amplitude Detector for GMI Magnetic Sensors

    PubMed Central

    Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul

    2014-01-01

    A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003

  1. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Xuping; Wang, Guiji; Zhao, Jianheng; Tan, Fuli; Luo, Binqiang; Sun, Chengwei

    2014-05-01

    High velocity flyer plates with good flatness and some thickness have being widely used to the field of shock physics for characterizations of materials under dynamical loading. The techniques of magnetically driven high-velocity flyer plates are further researched based on our pulsed power generators CQ-4 and some good results got on Sandia's Z machine. With large current of several mega-amperes, the loading surface of electrode panel will suffer acute phase transitions caused from magnetic diffusion and Joule heating, and the thickness and flatness of the flyer plates will change with time. In order to obtain the flyer plates with high performances for shock physics, some researches on electrode panels were done by means of LS-DYNA980 software with electro-magnetic package. Two typical configurations for high velocity flyer plates were compared from distribution uniformity of magnetic field in simulation. The results show that the configuration with counter-bore with "notch" and "ear" is better than the other. Then, with the better configuration panels, some experiments were designed and done to validate the simulation results and obtain high velocity flyer plates with good flatness for one-dimensional strain shock experiments on CQ-4. The velocity profiles of the flyer plates were measured by displacement interferometer systems for any reflectors. And the planarity of flyer plates was measured by using the optical fiber pins array for recording the flyer arrival time. The peak velocities of 8.7 km/s with initial dimension of 10 × 7.2 × 0.62 mm for aluminum flyer plates have been achieved. And the flyer plate with initial size of 12 × 9.2 × 0.73 mm was accelerated to velocity of 6.5 km/s with the flatness of less than 11 ns in the central region of 6 mm in diameter and the effective thickness of about 0.220 mm. Based on these work, the symmetrical impact experiments were performed to obtain the high accuracy Hugoniot data of OFHC (oxygen free high conductance

  2. Full one-loop amplitudes from tree amplitudes

    SciTech Connect

    Giele, Walter T.; Kunszt, Zoltan; Melnikov, Kirill; /Hawaii U.

    2008-01-01

    We establish an efficient polynomial-complexity algorithm for one-loop calculations, based on generalized D-dimensional unitarity. It allows automated computations of both cut-constructible and rational parts of one-loop scattering amplitudes from on-shell tree amplitudes. We illustrate the method by (re)-computing all four-, five- and six-gluon scattering amplitudes in QCD at one-loop.

  3. Accumulating sequence of ignitions from a propagating pulse

    SciTech Connect

    Dold, J.W.; Short, M.; Clarke, J.F.; Nikiforakis, N.

    1995-02-01

    Some surprising effects are seen in studying numerically the evolution of a propagating pulse of pressure in a medium reacting via a one-step exothermic Arrhenius reaction. The length and amplitude of the pulse are taken to be large enough for steepening effects to be important and for enhanced reaction to lead to a substantial reduction in ignition time. The evolution proceeds through a repeated sequence of similar stages involving: shock-formation and growth; ignition behind the shock; and the generation of another propagating pressure pulse. Substantial unsteady behavior is seen to be engendered by the entropy released through shock formation. A number of unsteady reignitions are seen to culminate in a pressure-peak, substantially higher than the von Neumann spike of a Chapman-Jouget wave, during the formation of a transient overdriven detonation; this decays subsequently towards a Chapman-Jouget state. It is conjectured that this sort of evolution may well be generic to ignition via a range of pressure-pulses in state-sensitive systems. A saturation of, or relative reduction in, the reaction`s thermal sensitivity ultimately prevents the reignition process after shock-formation from happening quickly enough to continue its repetition. As such, the behavior should be strongly dependent on the nature of the chemical models and is likely to be modified significantly by changes in the chemical mechanism.

  4. NO density and gas temperature measurements in atmospheric pressure nanosecond repetitively pulsed (NRP) discharges by Mid-IR QCLAS

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Stancu, Gabi-Daniel; Laux, Christophe

    2014-10-01

    Nitric oxide is a key species for many processes: in combustion, in human skin physiology... Recently, NO-ground state absolute density measurements produced by atmospheric pressure NRP discharges were carried out in air as a function of the discharge parameters, using Quantum Cascade Laser Absorption Spectroscopy. These measurements were space averaged and performed in the post-discharge region in a large gas volume. Here we present radial profiles of NO density and temperature measured directly in the discharge for different configurations. Small plasma volume and species densities, high temperature and EM noise environment make the absorption diagnostic challenging. For this purpose the QCLAS sensitivity was improved using a two-detector system. We conducted lateral absorbance measurements with a spatial resolution of 300 μm for two absorption features at 1900.076 and 1900.517 cm-1. The radial temperature and NO density distributions were obtained from the Abel inverted lateral measurements. Time averaged NO densities of about 1.E16 cm-3 and gas temperature of about 1000K were obtained in the center of the discharge. PLASMAFLAME Project (Grant No ANR-11-BS09-0025).

  5. Finishing of AT-cut quartz crystal wafer with nanometric thickness uniformity by pulse-modulated atmospheric pressure plasma etching.

    PubMed

    Yamamura, Kazuya; Ueda, Masaki; Shibahara, Masafumi; Zettsu, Nobuyuki

    2011-04-01

    Quartz resonator is a very important device to generate a clock frequency for information and telecommunication system. Improvement of the productivity of the quartz resonator is always required because a huge amount of the resonator is demanded for installing to various electronic devices. Resonance frequency of the quartz resonator is decided by the thickness of the quartz crystal wafer. Therefore, it is necessary to uniform the thickness distribution of the wafer with nanometric level. We have proposed the improvement technique of the thickness distribution of the quartz crystal wafer by numerically controlled correction using atmospheric pressure plasma which is non-contact and chemical removal technique. Heating effects of the quartz wafer in the removal rate and the correction accuracy were investigated. The heating of the substrate and compensate of the scanning speed of the worktable according to the variation of the surface temperature enabled an increase of 50% in the etching rate and 10-nanometric-level accuracy in the correction of the thickness distribution of the quartz wafer, respectively.

  6. Carbon-based micro-ball and micro-crystal deposition using filamentary pulsed atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Pothiraja, Ramasamy; Bibinov, Nikita; Awakowicz, Peter

    2014-08-01

    Thin plasma filaments are produced by the propagation of ionization waves from a spiked driven electrode in a quartz tube in an argon/methane gas mixture (2400 sccm/2 sccm) at atmospheric pressure. The position of the touch point of filaments on the substrate surface is controlled in our experiment by applying various suitable substrate configurations and geometries of the grounded electrode. The gas conditions at the touch point are varied from argon to ambient air. Based on microphotography and discharge current waveforms, the duration of the filament touching the substrate is estimated to be about one microsecond. Carbon-based materials are deposited during this time at the touch points on the substrate surface. Micro-balls are produced if the filament touch points are saved from ambient air by the argon flow. Under an air admixture, micro-crystals are formed. The dimension of both materials is approximately one micrometre (0.5-2 µm) and corresponds to about 1010-1012 carbon atoms. Neither the diffusion of neutral species nor drift of ions can be reason for the formation of such a big micro-material during this short period of filament-substrate interaction. It is possible that charged carbon-based materials are formed in the plasma channel and transported to the surface of the substrate. The mechanism of this transport and characterization of micro-materials, which are formed under different gas conditions in our experiment, will be studied in the future.

  7. Modeling Orifice Pulse Tube Coolers

    NASA Technical Reports Server (NTRS)

    Roach, Kittel P.; Roach, P. R.; Lee, J. M.; Kashani, A.; McCreight, Craig R. (Technical Monitor)

    1996-01-01

    We have developed a calculational model that treats all the components of an orifice pulse tube cooler. We base our analysis on 1-dimensional thermodynamic equations for the regenerator and we assume that all mass flows, pressure oscillations and temperature oscillations are small and sinusoidal. Non-linear pressure drop effects are included in the regenerator to account for finite pressure amplitude effects. The resulting mass flows and pressures are matched at the boundaries with the other components of the cooler: compressor, aftercooler, cold heat exchanger, pulse tube, hot heat exchanger, orifice and reservoir. The results of the calculation are oscillating pressures, mass flows and enthalpy flows in the main components of the cooler. By comparing with the calculations of other available models, we show that our model is very similar to REGEN 3 from NIST and DeltaE from Los Alamos National Lab. Our model is much easier to use than other available models because of its simple graphical interface and the fact that no guesses are required for the operating pressures or mass flows. In addition, the model only requires a few minutes of running time allowing many parameters to be optimized in a reasonable time. A version of the model is available for use over the World Wide Web at http://irtek.arc.nasa.gov. Future enhancements include adding a bypass orifice and including second order terms in steady mass streaming and steady heat transfer. A two-dimensional anelastic approximation of the fluid equations will be used as the basis for the latter analysis. Preliminary results are given in dimensionless numbers appropriate for oscillating compressible flows. The model shows how transverse heat transfer reduces enthalpy flow, particularly for small pulse tubes. The model also clearly shows mass recirculation in the open tube on the order of the tube length. They result from the higher order Reynolds stresses. An interesting result of the linearized approach is that the

  8. Amplitude-modulated ultrasound radiation force combined with phase-sensitive optical coherence tomography for shear wave elastography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2015-03-01

    Tissue stiffness can be measured from the propagation speed of shear waves. Acoustic radiation force (ARF) can generate shear waves by focusing ultrasound in tissue for ~100 μs. Safety considerations and electronics abilities limit ultrasound pressures. We previously presented shear wave elastography combining ARF and phase-sensitive optical coherence tomography (PhS-OCT) [1]. Here, we use amplitude-modulated ARF to enhance shear wave signal-to-noise ratio (SNR) at low pressures. Experiments were performed on tissue-mimicking phantoms. ARF was applied using a single-element transducer, driven by a 7.5 MHz, 3-ms, sine wave modulated in amplitude by a linear-swept frequency (1 to 7 kHz). Pressures between 1 to 3 MPa were tested. Displacements were tracked using PhS-OCT and numerically compressed using pulse compression methods detailed in previous work [2]. SNR was compared to that of 200-μs bursts. Stiffness maps were reconstructed using time-of-flight computations. 200-μs bursts give barely detectable displacements at 1 MPa (3.7 dB SNR). Pulse compression gives 36.2 dB at 1.5 MPa. In all cases with detectable displacements, shear wave speeds were determined in 5%-gelatin and 10%-gelatin phantoms and compared to literature values. Applicability to ocular tissues (cornea, intraocular lens) is under investigation.

  9. Investigation on the reaction mechanisms of generation and loss of oxygen-related species in atmospheric-pressure pulsed dielectric barrier discharge in argon/oxygen mixture

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Tan, Zhenyu; Pan, Guangsheng; Shan, Chunhong; Wang, Xiaolong; Liu, Yadi; Jiang, Jixiang

    2016-07-01

    This work presents a numerical investigation, using a 1-D fluid model, on the generation and loss of oxygen-related species and the spatial-temporal evolutions of the species densities in the atmospheric-pressure pulsed dielectric barrier discharge in the argon/oxygen mixture. The reaction pathways as well as their contributions to the generation and loss of oxygen-related species are given. The considered oxygen-related species include O, O(1D), O2(1Δg), O3, O+, O2+, O-, O2-, and O3-. The following significant results are obtained. O, O(1D), O2(1Δg), and O- are produced mainly via the electron impact with O2. Ar+ plays an essential role in the generation of O+ and O2+. Almost all of O3 derives from the reaction O2 + O2 + O → O3 + O2. The O3-related reactions produce an essential proportion of O2- and O3-. The substantial loss of O-, O2-, and O3- is induced by their reactions with O2+. Loss of O+, O, and O(1D) is mainly due to their reactions with O2, loss of O2(1Δg) due to O2(1Δg) impacts with O3 as well as the de-excitation reactions between O2(1Δg) and e, O2, and O, and loss of O3 due to the reactions between O3 and other neutral species. In addition, the densities of O+ and O(1D) present two obvious peaks at the pulse duration, but the densities of O2+, O, O2(1Δg), and O3 are almost unchanged. The densities of negative oxygen ions increase at the pulse duration and then decline. O- density is obviously large nearby the dielectric surfaces and the densities of O2- and O3- present generally uniform distributions.

  10. Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne

    2016-08-01

    This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.

  11. Amplitude and Frequency Modulations of Spontaneous Otoacoustic Emissions

    NASA Astrophysics Data System (ADS)

    Bian, Lin

    2009-02-01

    It has been speculated that the spontaneous otoacoustic emissions (SOAEs) are associated with the mechanical feedback from the cochlear outer hair cells. In humans, the amplitudes and frequencies of SOAEs could be modulated by a low-frequency bias tone. The effects on the SOAE magnitudes were an amplitude modulation and a suppression. In the spectral domain, there was an upward shift of the SOAE frequencies with the bias tone level. In the time domain, variations of the SOAE amplitudes and frequencies followed the bias tone phase. Increasing the biasing pressure in either direction reduced the SOAE amplitudes and elevated the frequencies. The amplitude modulation pattern was consistent with the first derivative of a sigmoid-shaped nonlinear function representing hair cell transduction. Both amplitude and frequency modulations of SOAEs indicate that the nonlinear transducer characteristics and mechanical properties of the cochlear hair cells can influence the SOAE generation.

  12. Feynman amplitudes with confinement included

    NASA Astrophysics Data System (ADS)

    Simonov, Yu. A.

    2009-07-01

    Amplitudes for any multipoint Feynman diagram are written taking into account vacuum background confining field. Higher order gluon exchanges are treated within background perturbation theory. For amplitudes with hadrons in initial or final states vertices are shown to be expressed by the corresponding wave function with the renormalized z factors. Examples of two-point functions, three-point functions (form factors), and decay amplitudes are explicitly considered.

  13. Statistical modelling of discharge behavior of atmospheric pressure dielectric barrier discharge

    SciTech Connect

    Tay, W. H.; Kausik, S. S.; Wong, C. S. Yap, S. L.; Muniandy, S. V.

    2014-11-15

    In this work, stochastic behavior of atmospheric pressure dielectric barrier discharge (DBD) has been investigated. The experiment is performed in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes powered by a 50 Hz ac high voltage source. Current pulse amplitude distributions for different space gaps and the time separation between consecutive current pulses are studied. A probability distribution function is proposed to predict the experimental distribution function for the current pulse amplitudes and the occurrence of the transition regime of the pulse distribution. Breakdown voltage at different positions on the dielectric surface is suggested to be stochastic in nature. The simulated results based on the proposed distribution function agreed well with the experimental results and able to predict the regime of transition voltage. This model would be useful for the understanding of stochastic behaviors of DBD and the design of DBD device for effective operation and applications.

  14. On the Period-Amplitude and Amplitude-Period Relationships

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    Examined are Period-Amplitude and Amplitude-Period relationships based on the cyclic behavior of the 12-month moving averages of monthly mean sunspot numbers for cycles 0.23, both in terms of Fisher's exact tests for 2x2 contingency tables and linear regression analyses. Concerning the Period-Amplitude relationship (same cycle), because cycle 23's maximum amplitude is known to be 120.8, the inferred regressions (90-percent prediction intervals) suggest that its period will be 131 +/- 24 months (using all cycles) or 131 +/- 18 months (ignoring cycles 2 and 4, which have the extremes of period, 108 and 164 months, respectively). Because cycle 23 has already persisted for 142 months (May 1996 through February 2008), based on the latter prediction, it should end before September 2008. Concerning the Amplitude-Period relationship (following cycle maximum amplitude versus preceding cycle period), because cycle 23's period is known to be at least 142 months, the inferred regressions (90-percent prediction intervals) suggest that cycle 24's maximum amplitude will be about less than or equal to 96.1 +/- 55.0 (using all cycle pairs) or less than or equal to 91.0 +/- 36.7 (ignoring statistical outlier cycle pairs). Hence, cycle 24's maximum amplitude is expected to be less than 151, perhaps even less than 128, unless cycle pair 23/24 proves to be a statistical outlier.

  15. Plasma Sloshing in Pulse-heated Solar and Stellar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Reale, F.

    2016-08-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here, hydrodynamic loop modeling shows that several large amplitude oscillations (˜20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter than the sound crossing time of the flaring loop. The reason for this is that the plasma does not have enough time to reach pressure equilibrium during heating, and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical magnetohydrodynamic (MHD) waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  16. Relationship Between Changes in Pulse Pressure and Frequency Domain Components of Heart Rate Variability During Short-Term Left Ventricular Pacing in Patients with Cardiac Resynchronization Therapy

    PubMed Central

    Urbanek, Bożena; Ruta, Jan; Kudryński, Krzysztof; Ptaszyński, Paweł; Klimczak, Artur; Wranicz, Jerzy Krzysztof

    2016-01-01

    Background The aim of the study was to explore the relationship between changes in pulse pressure (PP) and frequency domain heart rate variability (HRV) components caused by left ventricular pacing in patients with implanted cardiac resynchronization therapy (CRT). Material/Methods Forty patients (mean age 63±8.5 years) with chronic heart failure (CHF) and implanted CRT were enrolled in the study. The simultaneous 5-minute recording of beat-to-beat arterial systolic and diastolic blood pressure (SBP and DBP) by Finometer and standard electrocardiogram with CRT switched off (CRT/0) and left ventricular pacing (CRT/LV) was performed. PP (PP=SBP-DBP) and low- and high-frequency (LF and HF) HRV components were calculated, and the relationship between these parameters was analyzed. Results Short-term CRT/LV in comparison to CRT/0 caused a statistically significant increase in the values of PP (P<0.05), LF (P<0.05), and HF (P<0.05). A statistically significant correlation between ΔPP and ΔHF (R=0.7384, P<0.05) was observed. The ΔHF of 6 ms2 during short-term CRT/LV predicted a PP increase of ≥10% with 84.21% sensitivity and 85.71% specificity. Conclusions During short-term left ventricular pacing in patients with CRT, a significant correlation between ΔPP and ΔHF was observed. ΔHF ≥6 ms2 may serve as a tool in the selection of a suitable site for placement of a left ventricular lead. PMID:27305349

  17. Relationship Between Changes in Pulse Pressure and Frequency Domain Components of Heart Rate Variability During Short-Term Left Ventricular Pacing in Patients with Cardiac Resynchronization Therapy.

    PubMed

    Urbanek, Bożena; Ruta, Jan; Kudryński, Krzysztof; Ptaszyński, Paweł; Klimczak, Artur; Wranicz, Jerzy Krzysztof

    2016-01-01

    BACKGROUND The aim of the study was to explore the relationship between changes in pulse pressure (PP) and frequency domain heart rate variability (HRV) components caused by left ventricular pacing in patients with implanted cardiac resynchronization therapy (CRT). MATERIAL AND METHODS Forty patients (mean age 63±8.5 years) with chronic heart failure (CHF) and implanted CRT were enrolled in the study. The simultaneous 5-minute recording of beat-to-beat arterial systolic and diastolic blood pressure (SBP and DBP) by Finometer and standard electrocardiogram with CRT switched off (CRT/0) and left ventricular pacing (CRT/LV) was performed. PP (PP=SBP-DBP) and low- and high-frequency (LF and HF) HRV components were calculated, and the relationship between these parameters was analyzed. RESULTS Short-term CRT/LV in comparison to CRT/0 caused a statistically significant increase in the values of PP (P<0.05), LF (P<0.05), and HF (P<0.05). A statistically significant correlation between ΔPP and ΔHF (R=0.7384, P<0.05) was observed. The ΔHF of 6 ms2 during short-term CRT/LV predicted a PP increase of ≥10% with 84.21% sensitivity and 85.71% specificity. CONCLUSIONS During short-term left ventricular pacing in patients with CRT, a significant correlation between ΔPP and ΔHF was observed. ΔHF ≥6 ms2 may serve as a tool in the selection of a suitable site for placement of a left ventricular lead. PMID:27305349

  18. Association of long-term blood pressure variability and brachial-ankle pulse wave velocity: a retrospective study from the APAC cohort

    PubMed Central

    Wang, Yang; Yang, Yuling; Wang, Anxin; An, Shasha; Li, Zhifang; Zhang, Wenyan; Liu, Xuemei; Ruan, Chunyu; Liu, Xiaoxue; Guo, Xiuhua; Zhao, Xingquan; Wu, Shouling

    2016-01-01

    We investigated associations between long-term blood pressure variability (BPV) and brachial-ankle pulse wave velocity (baPWV). Within the Asymptomatic Polyvascular Abnormalities Community (APAC) study, we retrospectively collected long-term BPV and baPWV measures. Long-term BPV was calculated using the mean and standard deviation of systolic blood pressure (SBP) across 4 years based on annual values of SBP. In total, 3,994 subjects (2,284 men) were eligible for inclusion in this study. We stratified the study population into four SBP quartiles. Left and right baPWV was higher in participants with long-term SBPV in the fourth quartile compared with the first quartile (left: 1,725 ± 488 vs. 1,461 ± 340 [p < 0.001]; right: 1,722 ± 471 vs. 1,455 ± 341 [p < 0.001], respectively). We obtained the same result for total baPWV (fourth vs. first quartile: 1,772 ± 429 vs. 1,492 ± 350 [p < 0.001]). Furthermore, there was a trend for gradually increased baPWV (≥1,400 cm/s) with increased SBPV (p < 0.001). After multivariable adjustment, baPWV was positively correlated with long-term BPV (p < 0.001). In conclusion, long-term BPV is significantly associated with arterial stiffness as assessed by baPWV. PMID:26892486

  19. Association of long-term blood pressure variability and brachial-ankle pulse wave velocity: a retrospective study from the APAC cohort.

    PubMed

    Wang, Yang; Yang, Yuling; Wang, Anxin; An, Shasha; Li, Zhifang; Zhang, Wenyan; Liu, Xuemei; Ruan, Chunyu; Liu, Xiaoxue; Guo, Xiuhua; Zhao, Xingquan; Wu, Shouling

    2016-02-19

    We investigated associations between long-term blood pressure variability (BPV) and brachial-ankle pulse wave velocity (baPWV). Within the Asymptomatic Polyvascular Abnormalities Community (APAC) study, we retrospectively collected long-term BPV and baPWV measures. Long-term BPV was calculated using the mean and standard deviation of systolic blood pressure (SBP) across 4 years based on annual values of SBP. In total, 3,994 subjects (2,284 men) were eligible for inclusion in this study. We stratified the study population into four SBP quartiles. Left and right baPWV was higher in participants with long-term SBPV in the fourth quartile compared with the first quartile (left: 1,725 ± 488 vs. 1,461 ± 340 [p < 0.001]; right: 1,722 ± 471 vs. 1,455 ± 341 [p < 0.001], respectively). We obtained the same result for total baPWV (fourth vs. first quartile: 1,772 ± 429 vs. 1,492 ± 350 [p < 0.001]). Furthermore, there was a trend for gradually increased baPWV (≥1,400 cm/s) with increase