Science.gov

Sample records for pressure range

  1. Pressure effects on icosahedral short range order in undercooled copper

    NASA Astrophysics Data System (ADS)

    Celino, Massimo; Coppari, Federica; Di Cicco, Andrea

    2010-02-01

    There is not a wide consensus on the role played by the icosahedral short range order on the stability of undercooled simple metals. The scenario is even less clear for undercooled metals under external pressure. Classical molecular dynamics simulations are performed to explain experimental results recently obtained on liquid and undercooled liquid copper under pressure. The atomic configurations are characterized by a common neighbor analysis to reveal the icosahedral short range order and its relation with external pressure. External pressure increases the probability to find atomic bonds with icosahedral symmetry both in the liquid and in the undercooled copper.

  2. Determination of Phonation Instability Pressure and Phonation Pressure Range in Excised Larynges

    ERIC Educational Resources Information Center

    Zhang, Yu; Reynders, William J.; Jiang, Jack J.; Tateya, Ichiro

    2007-01-01

    Purpose: The present study was a methodological study designed to reveal the dynamic mechanisms of phonation instability pressure (PIP) using bifurcation analysis. Phonation pressure range (PPR) was also proposed for assessing the pressure range of normal vocal fold vibrations. Method: The authors first introduced the concept of bifurcation on the…

  3. Determination of Phonation Instability Pressure and Phonation Pressure Range in Excised Larynges

    ERIC Educational Resources Information Center

    Zhang, Yu; Reynders, William J.; Jiang, Jack J.; Tateya, Ichiro

    2007-01-01

    Purpose: The present study was a methodological study designed to reveal the dynamic mechanisms of phonation instability pressure (PIP) using bifurcation analysis. Phonation pressure range (PPR) was also proposed for assessing the pressure range of normal vocal fold vibrations. Method: The authors first introduced the concept of bifurcation on the…

  4. Ozone formation in pulsed SDBD in a wide pressure range

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  5. Peristaltic pump-based low range pressure sensor calibration system

    SciTech Connect

    Vinayakumar, K. B.; Naveen Kumar, G.; Rajanna, K. E-mail: krajanna2011@gmail.com; Nayak, M. M.; Dinesh, N. S.

    2015-11-15

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  6. Peristaltic pump-based low range pressure sensor calibration system

    NASA Astrophysics Data System (ADS)

    Vinayakumar, K. B.; Naveen Kumar, G.; Nayak, M. M.; Dinesh, N. S.; Rajanna, K.

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  7. Peristaltic pump-based low range pressure sensor calibration system.

    PubMed

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  8. FEA of CMUTs Suitable for Wide Gas Pressure Range Applications.

    PubMed

    Ho, Min-Chieh; Kupnik, Mario; Khuri-Yakub, Butrus T

    2010-10-11

    The ability of ultrasound transducers to operate over a wide and varying pressure range is essential in applications such as ultrasonic flow metering (UFM) of flare gas. We propose a new operational mode for capacitive micromachined ultrasonic transducers (CMUTs), in which the plate is in permanent contact with the bottom of the cavity, even at zero DC bias and 1 atm pressure. Finite element analysis (FEA) software was used to investigate the performance of these CMUTs within the pressure range of 1 to 20 atm. First, we performed a static analysis to determine the plate deflection and, thus, the gap height. Further, from the static analysis, we obtained the static and free capacitances for calculating the coupling efficiency, and a modal analysis identified possible design geometries for frequencies lower than ~ 300 kHz. Our calculations show that conventionally operated CMUTs have huge changes in static operational point at different pressures, while our proposed mode exhibits an acceptable frequency range (73 - 340 kHz) over 1 - 20 atm pressure and an improved coupling efficiency at lower dc bias voltages. A donut shape partial electrode further allows us to tune the coupling efficiency, which translates into a better performance, especially at the higher pressure range. FEA shows that our proposed operation mode is a promising solution for flare gas metering applications.

  9. Wide vacuum pressure range monitoring by Pirani SAW sensor.

    PubMed

    Nicolay, Pascal; Elmazria, Omar; Sarry, Frederic; Bouvot, Laurent; Kambara, Hisanori; Singh, Kanwar J; Alnot, Patrick

    2010-03-01

    A new kind of surface acoustic wave (SAW) sensor has been developed to measure sub-atmospheric pressure below 100 mtorr with accuracy better than 0.1 mtorr. It provides an efficient measuring solution in the pressure range inaccessible in past by conventional diaphragm-based SAW sensors. Indeed, because of the small bending force in lower pressure and limited sensitivity, diaphragm-based SAW sensors are only suited to monitor relatively high pressure with a precision hardly better than 0.5 torr. To reach precision level better than 1 mtorr at sub-atmospheric pressure for vacuum technology applications, a radically different SAW-based solution is necessary. Our device aims to measure sub-atmospheric pressure less than 100 mtorr with a threshold resolution better than 0.1 mtorr. The concept is similar to the one used by Pirani pressure gauges. However, it is claimed that a heated and suspended SAW device should have better sensitivity. A theoretical model based on the basic concepts of gas kinetic theory and thermodynamics is presented. The validity of the model is checked by comparison between theoretical and experimental results.

  10. The nanogap Pirani—a pressure sensor with superior linearity in an atmospheric pressure range

    NASA Astrophysics Data System (ADS)

    Khosraviani, Kourosh; Leung, Albert M.

    2009-04-01

    We have designed and fabricated a surface micromachined Pirani pressure sensor with an extremely narrow gap between its heater and heatsink (substrate) with superior output linearity in the atmospheric pressure range. The gap size of the device has been reduced to 50 nm by using a layer of PECVD amorphous silicon as a sacrificial layer and a xenon difluoride (XeF2) gas phase etching technique. Such a narrow gap pushes the transition from molecular to continuum heat conduction to pressures beyond 200 kPa. The higher transition pressure increases the measurement range and sensitivity of the gauge in atmospheric pressures. The gas phase etching of the sacrificial layer eliminates stiction problems related to a wet etching process. The active area of the sensor is only a 6 × 50 µm2 microbridge anchored to the substrate at both ends. An innovative fabrication technique was developed which resulted in a virtually flat microbridge with improved mechanical robustness. This process enabled us to have a very well-controlled gap between the microbridge and the substrate. The device was tested in a constant heater temperature mode with pressure ranges from 0.1 to 720 kPa. The heater power was only 3 mW at 101 kPa (atmospheric pressure), which increased to about 8 mW at 720 kPa. The output sensitivity and nonlinearity of the device were 0.55% per kPa at 101 kPa and ±13% of the output full scale, respectively.

  11. Long-range scaling behaviours of human colonic pressure activities

    NASA Astrophysics Data System (ADS)

    Yan, Rongguo; Yan, Guozheng; Zhang, Wenqiang; Wang, Long

    2008-11-01

    The long-range scaling behaviours of human colonic pressure activities under normal physiological conditions are studied by using the method of detrended fluctuation analysis (DFA). The DFA is an effective period representation with a single quantitative scaling exponent α to accurately quantify long-range correlations naturally presented in a complex non-stationary time series. The method shows that the colonic activities of the healthy subjects exhibit long-range power-law correlations; however such correlations either will be destroyed if we randomly shuffle the original data or will cease to be of a power-law form if we chop some high-amplitude spikes off. These facts indicate that the colonic tissue or enteric nervous system (ENS) with a good functional motility has a good memory to its past behaviours and generates well-organized colonic spikes; however such good memory becomes too long to be remembered for the colonic activity of the slow transit constipation (STC) patient and colonic dysmotility occurs.

  12. High-Pressure Range Shock Wave Data for Syntactic Foams

    NASA Astrophysics Data System (ADS)

    Ribeiro, J.; Mendes, R.; Plaksin, I.; Campos, J.; Capela, C.

    2009-12-01

    Syntactic foams [SF] are a porous composite material resulting from the mixture of Hollow Glass Micro Spheres [HGMS] with a polymeric binder. Beyond a set of technological advantages over the polymer considered alone, SF present as an essential feature the possibility to control in wide limits the amount, the shape and the size of the pores and for that reason are being used for benchmarking in the area of shock wave [SW] behavior of porous materials. In this paper, SW loading experiments of SF samples were performed in order to assess the high-pressure range Hugoniot equation of state as a function of the SF initial density. Hugoniot data were assessed coupling the SW velocity within the SF samples with the SW velocity in a reference material or with manganin gauge results. The results obtained present a significant variation with the initial specific mass and can be described with appreciable precision by the Thouvenin/Hofmann Plate Gap model, while the concordance between the experimental results and the Grüneisen model seems to be very dependent on the Grüneisen coefficient values.

  13. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ~3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  14. A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range

    NASA Astrophysics Data System (ADS)

    Tian, He; Shu, Yi; Wang, Xue-Feng; Mohammad, Mohammad Ali; Bie, Zhi; Xie, Qian-Yi; Li, Cheng; Mi, Wen-Tian; Yang, Yi; Ren, Tian-Ling

    2015-02-01

    Pressure sensors are a key component in electronic skin (e-skin) sensing systems. Most reported resistive pressure sensors have a high sensitivity at low pressures (<5 kPa) to enable ultra-sensitive detection. However, the sensitivity drops significantly at high pressures (>5 kPa), which is inadequate for practical applications. For example, actions like a gentle touch and object manipulation have pressures below 10 kPa, and 10-100 kPa, respectively. Maintaining a high sensitivity in a wide pressure range is in great demand. Here, a flexible, wide range and ultra-sensitive resistive pressure sensor with a foam-like structure based on laser-scribed graphene (LSG) is demonstrated. Benefitting from the large spacing between graphene layers and the unique v-shaped microstructure of the LSG, the sensitivity of the pressure sensor is as high as 0.96 kPa-1 in a wide pressure range (0 ~ 50 kPa). Considering both sensitivity and pressure sensing range, the pressure sensor developed in this work is the best among all reported pressure sensors to date. A model of the LSG pressure sensor is also established, which agrees well with the experimental results. This work indicates that laser scribed flexible graphene pressure sensors could be widely used for artificial e-skin, medical-sensing, bio-sensing and many other areas.

  15. A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range

    PubMed Central

    Tian, He; Shu, Yi; Wang, Xue-Feng; Mohammad, Mohammad Ali; Bie, Zhi; Xie, Qian-Yi; Li, Cheng; Mi, Wen-Tian; Yang, Yi; Ren, Tian-Ling

    2015-01-01

    Pressure sensors are a key component in electronic skin (e-skin) sensing systems. Most reported resistive pressure sensors have a high sensitivity at low pressures (<5 kPa) to enable ultra-sensitive detection. However, the sensitivity drops significantly at high pressures (>5 kPa), which is inadequate for practical applications. For example, actions like a gentle touch and object manipulation have pressures below 10 kPa, and 10–100 kPa, respectively. Maintaining a high sensitivity in a wide pressure range is in great demand. Here, a flexible, wide range and ultra-sensitive resistive pressure sensor with a foam-like structure based on laser-scribed graphene (LSG) is demonstrated. Benefitting from the large spacing between graphene layers and the unique v-shaped microstructure of the LSG, the sensitivity of the pressure sensor is as high as 0.96 kPa−1 in a wide pressure range (0 ~ 50 kPa). Considering both sensitivity and pressure sensing range, the pressure sensor developed in this work is the best among all reported pressure sensors to date. A model of the LSG pressure sensor is also established, which agrees well with the experimental results. This work indicates that laser scribed flexible graphene pressure sensors could be widely used for artificial e-skin, medical-sensing, bio-sensing and many other areas. PMID:25721159

  16. Quartz technology allows for wider downhole pressure testing range

    SciTech Connect

    Dennis, J.R. ); Zeller, V.P. )

    1991-03-01

    This paper presents a quartz-thickness shear-mode transducer for use in a borehole environment. The pressure sensor is a direct-conversion device that uses a noncylindrical shell to convert and to transmit forces to the quartz-crystal resonator. A brief conceptual description of the transducer is given. Laboratory and field examples illustrate the exceptional performance of the quartz-thickness shear-mode transducer.

  17. Review of the STM range of pressure distribution products.

    PubMed

    Moody, M

    STM Healthcare is a division of the Recticel Group which has been actively involved in the production and use of polyurethane foams for the past 40 years, and is now one of Europe's leading manufacturers of polyurethane foam for insulation, packaging, filtration, aerospace, the automotive and furniture industries, domestic and specialist bedding and seating products. STM Healthcare is able to draw upon the wealth of experience and expertise of the manufacturing facilities, enabling products to be developed using the latest environmentally friendly specification foams best suited to the requirements of pressure-reduction technology. All STM Healthcare mattresses, cushions and Linknurse mattresses are manufactured with Safeguard combustion modified high resilience foams. (Linknurse is a licensed product name; products are manufactured by Recticel and distributed by STM).

  18. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  19. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    PubMed Central

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-01-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics. PMID:28361867

  20. Laboratory investigation of high pressure survival in Shewanella oneidensis MR-1 into the gigapascal pressure range

    PubMed Central

    Hazael, Rachael; Foglia, Fabrizia; Kardzhaliyska, Liya; Daniel, Isabelle; Meersman, Filip; McMillan, Paul

    2014-01-01

    The survival of Shewanella oneidensis MR-1 at up to 1500 MPa was investigated by laboratory studies involving exposure to high pressure followed by evaluation of survivors as the number (N) of colony forming units (CFU) that could be cultured following recovery to ambient conditions. Exposing the wild type (WT) bacteria to 250 MPa resulted in only a minor (0.7 log N units) drop in survival compared with the initial concentration of 108 cells/ml. Raising the pressure to above 500 MPa caused a large reduction in the number of viable cells observed following recovery to ambient pressure. Additional pressure increase caused a further decrease in survivability, with approximately 102 CFU/ml recorded following exposure to 1000 MPa (1 GPa) and 1.5 GPa. Pressurizing samples from colonies resuscitated from survivors that had been previously exposed to high pressure resulted in substantially greater survivor counts. Experiments were carried out to examine potential interactions between pressure and temperature variables in determining bacterial survival. One generation of survivors previously exposed to 1 GPa was compared with WT samples to investigate survival between 37 and 8°C. The results did not reveal any coupling between acquired high pressure resistance and temperature effects on growth. PMID:25452750

  1. Wide Pressure Range Measurement due to the Exchange of Heater Driving of the Temperature Difference Sensor

    NASA Astrophysics Data System (ADS)

    Takashima, Noriaki; Kimura, Mitsuteru

    We have extended measurable pressure range of the thin film Pirani vacuum sensor that is still sensitive above 1×105 Pa (1 atmosphere). In our thin film Pirani vacuum sensor, our proposed temperature difference sensor of the short circuit Seebeck-current detection type thermocouple is used in order to get extremely high sensitivity, especially both in very low pressure range and in higher pressure range than 1×104 Pa. In our new pressure sensor the cantilever type sensing region, in which a microheater and two thermocouples are formed to measure the temperature difference, is adopted. Therefore, we can use the null method to measure very small pressure accurately in the high vacuum range (low pressure range). On the other hand in the higher pressure than 1×104 Pa., we could expand the pressure range by adoption of the vibration of the sensing cantilever based on the sudden heating due to the exchange of heater driving. We have achieved much wider measurable pressure range over 8 digits by use of our new simple thin film Pirani vacuum sensor than that of the traditional one.

  2. Full Dynamic-Range Pressure Sensor Matrix Based on Optical and Electrical Dual-Mode Sensing.

    PubMed

    Wang, Xiandi; Que, Miaoling; Chen, Mengxiao; Han, Xun; Li, Xiaoyi; Pan, Caofeng; Wang, Zhong Lin

    2017-04-01

    A pressure-sensor matrix (PSM) with full dynamic range can accurately detect and spatially map pressure profiles. A 100 × 100 large-scale PSM gives both electrical and optical signals by itself without applying an external power source. The device represents a major step toward digital imaging, and the visible display of the pressure distribution covers a large dynamic range. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Wide-pressure-range coplanar dielectric barrier discharge: Operational characterisation of a versatile plasma source

    NASA Astrophysics Data System (ADS)

    Čech, J.; Bonaventura, Z.; SÅ¥ahel, P.; Zemánek, M.; Dvořáková, H.; Černák, M.

    2017-01-01

    Many plasma applications could benefit from the versatile plasma source operable at a wide-pressure-range, e.g., from the fraction of Pa to the super-atmospheric conditions. In this paper, the basic characteristics of wide-pressure-range plasma source based on the coplanar dielectric barrier discharge is given. The operational characteristics of this plasma source were measured in nitrogen at pressures ranging from 101 Pa (resp. 10-4 Pa) to 105 Pa. Measurements of the plasma geometry, breakdown voltage, and micro-discharges' behaviour revealed three operational regimes of this plasma source: "high pressure," "transitional" and "low-pressure" with vague boundaries at the pressures of approx. 10 kPa and 1 kPa. It was found that the plasma layer of coplanar dielectric barrier discharge could be expanded up to several centimetres to the half-space above the planar dielectric barrier when the gas pressure is reduced below 1 kPa, which provides an outstanding space to tailor the source for the specific applications. The proposed model of an effective gap distance in the Paschen breakdown criterion enabled us to explain the discharge behaviour fitting the experimental breakdown voltage data in the whole studied pressure range. Under the filament-forming conditions, i.e., at the pressure range from approx. 1-100 kPa, the active plasma volume could be varied through the micro-discharges' lateral thickness scaling with the inverse of the square-root of the gas pressure.

  4. Regulation of pressure anisotropy in the solar wind: processes within inertial range of turbulence

    NASA Astrophysics Data System (ADS)

    Strumik, M.; Schekochihin, A. A.; Squire, J.; Bale, S. D.

    2016-12-01

    Dynamics of weakly collisional plasmas may lead to thermal pressure anisotropies that are driven by velocity shear, plasma expansion/compression or temperature gradients. The pressure anisotropies can provide free energy for the growth of micro-scale instabilities, like the mirror of firehose instabilities, that are commonly believed to constrain the pressure anisotropy in the solar wind if appropriate thresholds are exceeded. We discuss possible alternative mechanisms of regulation of the pressure anisotropy in the inertial range of solar wind turbulence that provide β-dependent constraints on the amplitude of fluctuations of pressure components and other quantities. In particular it is shown that double-adiabatic (CGL) closure for magnetohydrodynamic regime leads to 1/β scaling of the amplitude of the pressure component fluctuations and the pressure anisotropy. Both freely decaying and forced turbulence are discussed based on results of 3D numerical simulations and analytical theoretical predictions. The theoretical results are contrasted with WIND spacecraft measurements.

  5. Ultra-low-pressure sputtering to improve exchange bias and tune linear ranges in spin valves

    NASA Astrophysics Data System (ADS)

    Tang, XiaoLi; Yu, You; Liu, Ru; Su, Hua; Zhang, HuaiWu; Zhong, ZhiYong; Jing, YuLan

    2017-05-01

    A series of CoFe/IrMn exchange bilayers was grown by DC-sputtering at different ultra-low argon pressures ranging from 0.008 to 0.1 Pa. This pressure range was one to two orders lower than the normal sputtering pressure. Results revealed that the exchange bias increased from 140 to 250 Oe in CoFe(10 nm)/IrMn (15 nm) bilayers of fixed thickness because of the improved crystalline structure and morphological uniformity of films. Since ferromagnetic /antiferromagnetic (FM/AF) bilayers are always used in linear magnetic sensors as detection layers, the varying exchange bias can successfully achieve tunable linear range in a crossed pinning spin valve. The linear range could be adjustable from -80 Oe - +80 Oe to -150 Oe - +150 Oe on the basis of giant magnetoresistance responses. Therefore, this method provides a simple method to tune the operating range of magnetic field sensors.

  6. Evaluation of an Intervention to Maintain Endotracheal Tube Cuff Pressure Within Therapeutic Range

    PubMed Central

    Sole, Mary Lou; Su, Xiaogang; Talbert, Steve; Penoyer, Daleen Aragon; Kalita, Samar; Jimenez, Edgar; Ludy, Jeffery E.; Bennett, Melody

    2012-01-01

    Background Endotracheal tube cuff pressure must be kept within an optimal range that ensures ventilation and prevents aspiration while maintaining tracheal perfusion. Objectives To test the effect of an intervention (adding or removing air) on the proportion of time that cuff pressure was between 20 and 30 cm H2O and to evaluate changes in cuff pressure over time. Methods A repeated-measure crossover design was used to study 32 orally intubated patients receiving mechanical ventilation for two 12-hour shifts (randomized control and intervention conditions). Continuous cuff pressure monitoring was initiated, and the pressure was adjusted to a minimum of 22 cm H2O. Caregivers were blinded to cuff pressure data, and usual care was provided during the control condition. During the intervention condition, cuff pressure alarm or clinical triggers guided the intervention. Results Most patients were men (mean age, 61.6 years). During the control condition, 51.7% of cuff pressure values were out of range compared with 11.1% during the intervention condition (P < .001). During the intervention, a mean of 8 adjustments were required, mostly to add air to the endotracheal tube cuff (mean 0.28 [SD, 0.13] mL). During the control condition, cuff pressure decreased over time (P < .001). Conclusions The intervention was effective in maintaining cuff pressure within an optimal range, and cuff pressure decreased over time without intervention. The effect of the intervention on outcomes such as ventilator-associated pneumonia and tracheal damage requires further study. PMID:21362715

  7. Development of a Piezoelectric Vacuum Sensing Component for a Wide Pressure Range

    PubMed Central

    Wang, Bing-Yu; Hsieh, Fan-Chun; Lin, Che-Yu; Chen, Shao-En; Chen, Fong-Zhi; Wu, Chia-Che

    2014-01-01

    In this study, we develop a clamped–clamped beam-type piezoelectric vacuum pressure sensing element. The clamped–clamped piezoelectric beam is composed of a PZT layer and a copper substrate. A pair of electrodes is set near each end. An input voltage is applied to a pair of electrodes to vibrate the piezoelectric beam, and the output voltage is measured at the other pair. Because the viscous forces on the piezoelectric beam vary at different air pressures, the vibration of the beam depends on the vacuum pressure. The developed pressure sensor can sense a wide range of pressure, from 6.5 × 10−6 to 760 Torr. The experimental results showed that the output voltage is inversely proportional to the gas damping ratio, and thus, the vacuum pressure was estimated from the output voltage. PMID:25421736

  8. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling

    2017-03-01

    In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.

  9. EUROMET Intercomparison in the Pressure Range 100 MPa to 700 (1000) MPa

    NASA Astrophysics Data System (ADS)

    Legras, J. C.; Jäger, J.; Molinar, G. F.; Palomino, S.; Quintas, J.; White, M. R.

    1994-01-01

    As part of the intercomparison decided upon by the CCM High Pressure Working Group in the pressure range 100 MPa to 700 MPa, an intercomparison has been carried out in the Western European countries. This paper gives the general results of the work. The standards intercompared were piston pressure balances of different types or pressure multipliers. The claimed relative uncertainties at the 1 standard deviation level were between 11 × 10-6 and 93 × 10-6 at 100 MPa, and between 27 × 10-6 and 216 × 10-6 at 700 MPa. Demonstrating a very good agreement, the observed relative differences of the measured pressures were inside +/- 50 × 10-6 at 100 MPa and +/- 170 × 10-6 at 700 MPa.

  10. Human pressures predict species' geographic range size better than biological traits.

    PubMed

    Di Marco, Moreno; Santini, Luca

    2015-06-01

    Geographic range size is the manifestation of complex interactions between intrinsic species traits and extrinsic environmental conditions. It is also a fundamental ecological attribute of species and a key extinction risk correlate. Past research has primarily focused on the role of biological and environmental predictors of range size, but macroecological patterns can also be distorted by human activities. Here, we analyse the role of extrinsic (biogeography, habitat state, climate, human pressure) and intrinsic (biology) variables in predicting range size of the world's terrestrial mammals. In particular, our aim is to compare the predictive ability of human pressure vs. species biology. We evaluated the ability of 19 intrinsic and extrinsic variables in predicting range size for 4867 terrestrial mammals. We repeated the analyses after excluding restricted-range species and performed separate analyses for species in different biogeographic realms and taxonomic groups. Our model had high predictive ability and showed that climatic variables and human pressures are the most influential predictors of range size. Interestingly, human pressures predict current geographic range size better than biological traits. These findings were confirmed when repeating the analyses on large-ranged species, individual biogeographic regions and individual taxonomic groups. Climatic and human impacts have determined the extinction of mammal species in the past and are the main factors shaping the present distribution of mammals. These factors also affect other vertebrate groups globally, and their influence on range size may be similar as well. Measuring climatic and human variables can allow to obtain approximate range size estimations for data-deficient and newly discovered species (e.g. hundreds of mammal species worldwide). Our results support the need for a more careful consideration of the role of climate change and human impact - as opposed to species biological

  11. Rate of the reaction of atomic hydrogen with propyne over an extended pressure and temperature range

    NASA Technical Reports Server (NTRS)

    Whytock, D. A.; Payne, W. A.; Stief, L. J.

    1976-01-01

    The technique of flash photolysis coupled with time resolved detection of H via resonance fluorescence has been used to obtain rate constants for the reaction of atomic hydrogen with propyne at temperatures from 215 to 460 K and at pressures in the range 5-600 torr. The rate constants are strongly pressure dependent and the high pressure limiting values give rise to the Arrhenius expression K = approximately 6 x 10 to the minus 11th exp(-2450T) cu cm per molecule per sec. The results are discussed and compared with those of previous studies

  12. New apparatus for calibrations in the range of 2 kPa absolute pressure

    NASA Astrophysics Data System (ADS)

    Woo, S. Y.; Choi, I. M.

    2005-12-01

    Capacitance diaphragm gauges (CDGs) are precise electromechanical pressure sensors in which the displacement of a stretched thin metal diaphragm is detected by the measurement of a capacitance. These are very accurate gauges, and are frequently used as transfer gauges. To calibrate such accurate low-pressure gauges, precise mercury manometers have been used. However, complexity, concern about mercury vapour, and cost of mercury manometers have made it difficult to use these manometers in many industrial calibration laboratories. As a substitute, gas-operated piston gauges can be used for the calibration of such low-pressure gauges. However, the minimum pressure that is necessary to balance the tare weight, which generally corresponds to a pressure of several kilopascals, is a major obstacle. To reduce this minimum operating pressure, we adopted a variable bell-jar pressure method. To realize this method effectively, we developed a new mass-handling device that makes it possible to add or remove weights up to 200 g easily, with a resolution of 10 g, without breaking the vacuum during the calibration. This calibration system can be used to measure pressures from 100 Pa to 2 kPa in the absolute mode. In this paper, we also present the calibration results for two types of CDGs with full-scale ranges of 1330 Pa and 1000 Pa, respectively.

  13. Pressure gradient sensors for bearing determination in shallow water tracking ranges

    NASA Astrophysics Data System (ADS)

    Stein, Peter J.; Euerle, Steven E.; Menoche, Richard K.; Janiesch, Robert E.

    1996-04-01

    Underwater acoustic tracking has traditionally used only the arrival time of tracking pings to localize targets. This implies that the ping transmitted from a target must be received at a minimum of three separate nodes (receiver locations) in order to determine the position. For deep water ranges this was acceptable. In shallow water, where propagation ranges are limited, this requires a large number of nodes. This makes shallow water ranges very costly. An effort is underway to use pressure gradient hydrophones as receivers and measure the bearing of the ping arrival along with arrival time, thereby locating the target using only one tracking node. This allows for increased node spacing and greatly reduced cost. However, the accuracy required for training ranges is on the order of 1 degree. Further, the directional receiver must be housed so as to withstand impacts from fishing operations. Research including design, fabrication, and testing of conventional and unconventional pressure gradient hydrophones, the housing, and signal processing methods are discussed. Extensive testing has already been conducted using a 1″ diameter by 5″ long multimode hydrophone. A shallow water tracking test was conducted at the NUWC Lake Seneca test facility. The results demonstrate the feasibility of tracking using a single pressure gradient hydrophone with an accuracy of 50 yds out to 2 kyds. The effects of multiple paths and scattering are also discussed.

  14. Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range

    SciTech Connect

    Zolotukhin, D. B.; Tyunkov, A. V.; Yushkov, Yu. G.; Oks, E. M.

    2015-12-15

    The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons.

  15. Isentropic expansion of copper plasma in Mbar pressure range at "Luch" laser facility

    NASA Astrophysics Data System (ADS)

    Bel'kov, S. A.; Derkach, V. N.; Garanin, S. G.; Mitrofanov, E. I.; Voronich, I. N.; Fortov, V. E.; Levashov, P. R.; Minakov, D. V.

    2014-01-01

    We present experimental results on thermodynamic properties of dense copper plasma in Mbar pressure range. The laser facility "Luch" with laser intensity 1014 W/cm2 is used to compress copper up to ˜8 Mbar by a strong shock wave; subsequent expansion of copper plasma into Al, Ti, Sn allows us to obtain release isentropes of copper by the impedance-matching method. A theoretical analysis and quantum simulations show that in our experiments strongly coupled quantum plasma is generated.

  16. Transformations in the Medium-Range Order of Fused Silica under High Pressure

    NASA Astrophysics Data System (ADS)

    Dávila, Lílian P.; Caturla, Maria-José; Kubota, Alison; Sadigh, Babak; Díaz de La Rubia, Tomás; Shackelford, James F.; Risbud, Subhash H.; Garofalini, Stephen H.

    2003-11-01

    Molecular dynamics simulations of fused silica at shock pressures reproduce the experimental equation of state of this material and explain its characteristic shape. We demonstrate that shock waves modify the medium-range order of this amorphous system, producing changes that are only clearly revealed by its ring size distribution. The ring size distribution remains practically unchanged during elastic compression but varies continuously after the transition to the plastic regime.

  17. Tuning the sensing range of silicon pressure sensor by trench etching technology

    NASA Astrophysics Data System (ADS)

    Chou, Yu-Tuan; Lin, Hung-Yi; Hu, Hsin-Hua

    2006-01-01

    The silicon pressure sensor has been developed for over thirty years and widely used in automobiles, medical instruments, commercial electronics, etc. There are many different specifications of silicon pressure sensors that cover a very large sensing range, from less than 1 psi to as high as 1000 psi. The key elements of the silicon pressure sensor are a square membrane and the piezoresistive strain gages near the boundary of the membrane. The dimensions of the membrane determine the full sensing range and the sensitivity of the silicon sensor, including thickness and in-plane length. Unfortunately, in order to change the sensing range, the manufacturers need to order a customized epi wafer to get the desired thickness. All masks (usually six) have to be re-laid and re-fabricated for different membrane sizes. The existing technology requires at least three months to deliver the prototype for specific customer requests or the new application market. This research proposes a new approach to dramatically reduce the prototyping time from three months to one week. The concept is to tune the rigidity of the sensing membrane by modifying the boundary conditions without changing the plenary size. An extra mask is utilized to define the geometry and location of deep-RIE trenches and all other masks remain the same. Membranes with different depths and different patterns of trenches are designed for different full sensing ranges. The simulation results show that for a 17um thick and 750um wide membrane, the adjustable range by tuning trench depth is about 45% (from 5um to 10um), and can go to as high as 100% by tuning both the pattern and depth of the trenches. Based on an actual test in a product fabrication line, we verified that the total delivery time can be minimized to one week to make the prototyping very effective and cost-efficient.

  18. Marvin: MARtian Vehicular INvestigator A Proposal for a Long-Range Pressurized Rover

    NASA Astrophysics Data System (ADS)

    1999-01-01

    NASA is planning manned missions to Mars in the near future. In order to fully exploit the available time on the surface for exploration, a roving vehicle is necessary. A nine-member student design team from the Wichita State University Department of Aerospace Engineering developed the MARtian Vehicular INvestigator (MARVIN) a manned, pressurized, long distance rover. In order to meet the unique requirements for successful operation in the harsh Martian environment a four wheeled, rover was designed with a composite pressure vessel six meters long and 2.5 meters in diameter. The rover is powered by twin proton exchange membrane fuel cells which provide electricity to the drive motors and onboard systems. The MARVIN concept is expected to have a 1500 km range with a maximum speed of 25 km/hr and a 14-day endurance.

  19. High sensitive/wide dynamic range, field emission pressure sensor based on fully embedded CNTs

    NASA Astrophysics Data System (ADS)

    Taak, S.; Rajabali, S.; Darbari, S.; Mohajerzadeh, S.

    2014-01-01

    The formation of high sensitivity-wide dynamic range field emission pressure sensors based on carbon nanotubes (CNTs) is reported. In this work, CNTs are grown inside an array of micromachined holes in order to ensure a high sensitivity and a wide dynamic range by allowing anode-cathode proximity while preventing anode-cathode direct contact simultaneously. External pressure is applied to a Si-based flexible anode, which results in consequent variations in emission current, due to electric field changes. Microcavities in this structure have been formed by a Si deep vertical etching process, while the CNTs have been grown by direct current plasma-enhanced chemical vapour deposition. Also, it is demonstrated that a similar fabrication process can be applied to implement a device with an electrically controllable emission current. A high sensitivity of 1.5-13.7 µA kPa-1 (with Vanode/cathode < 100 V) within a dynamic range from around 0.1 to 1 GPa, is measured in this experiment.

  20. Isentropic expansion of copper plasma in Mbar pressure range at “Luch” laser facility

    SciTech Connect

    Bel'kov, S. A.; Derkach, V. N.; Garanin, S. G.; Mitrofanov, E. I.; Voronich, I. N.; Fortov, V. E.; Levashov, P. R.; Minakov, D. V.

    2014-01-21

    We present experimental results on thermodynamic properties of dense copper plasma in Mbar pressure range. The laser facility “Luch” with laser intensity 10{sup 14} W/cm{sup 2} is used to compress copper up to ∼8 Mbar by a strong shock wave; subsequent expansion of copper plasma into Al, Ti, Sn allows us to obtain release isentropes of copper by the impedance–matching method. A theoretical analysis and quantum simulations show that in our experiments strongly coupled quantum plasma is generated.

  1. Polynomial approximations of thermodynamic properties of arbitrary gas mixtures over wide pressure and density ranges

    NASA Technical Reports Server (NTRS)

    Allison, D. O.

    1972-01-01

    Computer programs for flow fields around planetary entry vehicles require real-gas equilibrium thermodynamic properties in a simple form which can be evaluated quickly. To fill this need, polynomial approximations were found for thermodynamic properties of air and model planetary atmospheres. A coefficient-averaging technique was used for curve fitting in lieu of the usual least-squares method. The polynomials consist of terms up to the ninth degree in each of two variables (essentially pressure and density) including all cross terms. Four of these polynomials can be joined to cover, for example, a range of about 1000 to 11000 K and 0.00001 to 1 atmosphere (1 atm = 1.0133 x 100,000 N/m sq) for a given thermodynamic property. Relative errors of less than 1 percent are found over most of the applicable range.

  2. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  3. Kinetics of the NCN + NO reaction over a broad temperature and pressure range.

    PubMed

    Welz, Oliver; Olzmann, Matthias

    2012-07-12

    Rate coefficients for the reaction (3)NCN + NO → products (R3) were measured in the temperature range 251-487 K at pressures from 10 mbar up to 50 bar with helium as the bath gas. The experiments were carried out in slow-flow reactors by using pulsed excimer laser photolysis of NCN(3) at 193 or 248 nm for the production of NCN. Pseudo-first-order conditions ([NCN](0) ≪ NO) were applied, and NCN was detected time-resolved by resonant laser-induced fluorescence excited near 329 nm. The measurements at the highest pressures yielded values of k(3) ∼ 8 × 10(-12) cm(3) s(-1) virtually independent of temperature and pressure, which indicates a substantially smaller high-pressure limiting value of k(3) than predicted in earlier works. Our experiments at pressures below 1 bar confirm the negative temperature and positive pressure dependence of the rate coefficient k(3) found in previous investigations. The falloff behavior of k(3) was rationalized by a master equation analysis based on a barrierless association step (3)NCN + NO ↔ NCNNO((2)A″) followed by a fast internal conversion NCNNO((2)A″) ↔ NCNNO((2)A'). From 251-487 K and above 30 mbar, the rate coefficient k(3) is well represented by a Troe parametrization for a recombination/dissociation reaction, k(3)(T,P) = k(4)(∞)k(4)(0)[M]F(k(4)(0)[M] + k(4)(∞))(-1), where k(4) represents the rate coefficient for the recombination reaction (3)NCN + NO. The following parameters were determined (30% estimated error of the absolute value of k(3)): k(4)(0)[M=He] = 1.91 × 10(-30)(T/300 K)(-3.3) cm(6) s(-1)[He], k(4)(∞) = 1.12 × 10(-11) exp(-23 K/T) cm(3) s(-1), and F(C) = 0.28 exp(173 K/T).

  4. Foot posture, range of motion and plantar pressure characteristics in obese and non-obese individuals.

    PubMed

    Butterworth, Paul A; Urquhart, Donna M; Landorf, Karl B; Wluka, Anita E; Cicuttini, Flavia M; Menz, Hylton B

    2015-02-01

    Obesity is a world-wide health problem and is strongly associated with musculoskeletal disorders of the lower limb. The aim of this study was to evaluate plantar loading patterns in obese and non-obese individuals, while accounting for the contribution of foot structure, range of motion and walking speed. Sixty-eight participants (mean±SD age, 52.6±8.0 years), including 47 females (69%), underwent assessments of body mass index, foot pain and foot structure. Plantar pressures were also obtained, using a floor-mounted resistive sensor mat system. Multiple regression analysis was used to determine which variables were most strongly associated with plantar loading patterns. Obese individuals exhibited flatter feet, reduced inversion-eversion range of motion, and higher peak plantar pressures when walking. After accounting for foot structure and walking speed, bodyweight was found to be significantly associated with elevated loading of the foot, particularly the forefoot and midfoot. These findings suggest that obesity increases the stresses applied to the foot directly, via increased bodyweight, and indirectly, via alterations to foot structure, which may partly explain the link between obesity and the development of foot pain. Clinicians dealing with foot problems should consider the effect of increased bodyweight on plantar loading in obese patients.

  5. A 100 μm diameter capacitive pressure sensor with 50 MPa dynamic range

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Gianchandani, Yogesh B.

    2016-04-01

    This paper presents fully sealed absolute capacitive pressure sensors for high-pressure applications in hydraulic environments. The sensors have a ø100 μm diaphragm and a nominal interelectrode gap of 3 μm. The interiors of the cavities are electrically isolated, allowing the sensors to operate at the high end of the pressure range with the center of the diaphragm in contact with the substrate beneath it. The sensors are monolithically fabricated using a combination of surface micromachining and through-wafer isolated bulk-silicon lead transfer for backside contacts. This structure allows the device footprints to be reduced to about 150  ×  150 μm2, and simplifies system integration. Fabricated sensors with diaphragm thicknesses of 3 μm (C100t3) and 5 μm (C100t5) are tested in an oil environment at pressures up to 20 MPa and 50 MPa, respectively. The average sensitivities are 7200 ppm MPa-1 (3.1 fF MPa-1) for C100t3, and 3400 ppm MPa-1 (1.6 fF MPa-1) for C100t5 in the non-contact mode. In the contact mode, the average sensitivities are 9900 ppm MPa-1 (5.3 fF MPa-1) for C100t3, and 3100 ppm MPa-1 (1.6 fF MPa-1) for C100t5. A multiphysics finite element analysis approach that accommodates contact mode simulations is also presented.

  6. Knee arthritis pain is reduced and range of motion is increased following moderate pressure massage therapy.

    PubMed

    Field, Tiffany; Diego, Miguel; Gonzalez, Gladys; Funk, C G

    2015-11-01

    The literature on massage therapy effects on knee pain suggests that pain was reduced based on self-report, but little is known about range of motion (ROM) effects. Medical School staff and faculty who had knee arthritis pain were randomly assigned to a moderate pressure massage therapy or a waitlist control group (24 per group). Self-reports included the WOMAC (pain, stiffness and function) and the Pittsburgh Sleep Quality Index. ROM and ROM-related pain were assessed before and after the last sessions. The massage group showed an immediate post-massage increase in ROM and a decrease in ROM-associated pain. On the last versus the first day of the study, the massage group showed greater increases in ROM and decreases in ROM-related pain as well as less self-reported pain and sleep disturbances than the waitlist control group. These data highlight the effectiveness of moderate pressure massage therapy for increasing ROM and lessening ROM-related pain and long-term pain and sleep disturbances. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2003-09-02

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  8. Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2002-07-23

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  9. Methane storage in nanoporous material at supercritical temperature over a wide range of pressures

    PubMed Central

    Wu, Keliu; Chen, Zhangxin; Li, Xiangfang; Dong, Xiaohu

    2016-01-01

    The methane storage behavior in nanoporous material is significantly different from that of a bulk phase, and has a fundamental role in methane extraction from shale and its storage for vehicular applications. Here we show that the behavior and mechanisms of the methane storage are mainly dominated by the ratio of the interaction between methane molecules and nanopores walls to the methane intermolecular interaction, and a geometric constraint. By linking the macroscopic properties of the methane storage to the microscopic properties of a system of methane molecules-nanopores walls, we develop an equation of state for methane at supercritical temperature over a wide range of pressures. Molecular dynamic simulation data demonstrates that this equation is able to relate very well the methane storage behavior with each of the key physical parameters, including a pore size and shape and wall chemistry and roughness. Moreover, this equation only requires one fitted parameter, and is simple, reliable and powerful in application. PMID:27628747

  10. Raman spectroscopic characterization of CH4 density over a wide range of temperature and pressure

    USGS Publications Warehouse

    Shang, Linbo; Chou, I-Ming; Burruss, Robert; Hu, Ruizhong; Bi, Xianwu

    2014-01-01

    The positions of the CH4 Raman ν1 symmetric stretching bands were measured in a wide range of temperature (from −180 °C to 350 °C) and density (up to 0.45 g/cm3) using high-pressure optical cell and fused silica capillary capsule. The results show that the Raman band shift is a function of both methane density and temperature; the band shifts to lower wavenumbers as the density increases and the temperature decreases. An equation representing the observed relationship among the CH4 ν1 band position, temperature, and density can be used to calculate the density in natural or synthetic CH4-bearing inclusions.

  11. Methane storage in nanoporous material at supercritical temperature over a wide range of pressures

    NASA Astrophysics Data System (ADS)

    Wu, Keliu; Chen, Zhangxin; Li, Xiangfang; Dong, Xiaohu

    2016-09-01

    The methane storage behavior in nanoporous material is significantly different from that of a bulk phase, and has a fundamental role in methane extraction from shale and its storage for vehicular applications. Here we show that the behavior and mechanisms of the methane storage are mainly dominated by the ratio of the interaction between methane molecules and nanopores walls to the methane intermolecular interaction, and a geometric constraint. By linking the macroscopic properties of the methane storage to the microscopic properties of a system of methane molecules-nanopores walls, we develop an equation of state for methane at supercritical temperature over a wide range of pressures. Molecular dynamic simulation data demonstrates that this equation is able to relate very well the methane storage behavior with each of the key physical parameters, including a pore size and shape and wall chemistry and roughness. Moreover, this equation only requires one fitted parameter, and is simple, reliable and powerful in application.

  12. The Association Between Blood Pressure and Normal Range Thyroid Function Tests in a Population Based Tehran Thyroid Study.

    PubMed

    Amouzegar, A; Heidari, M; Gharibzadeh, S; Mehran, L; Tohidi, M; Azizi, F

    2016-03-01

    Several studies have shown an association between overt hypothyroidism and diastolic hypertension. Association between subclinical hypothyroidism and hypertension is a matter of debate. The aim of this study was to examine the association of systolic and diastolic blood pressure, pulse pressure and mean arterial blood pressure with serum thyroid hormones levels in euthyroid subjects.Data from 4 756 individuals of the Tehran Thyroid study (TTS) without any previously known thyroid disease were analyzed. We divided participants based on TSH tertiles. Serum TSH and free T4 (FT4) concentration, systolic blood pressure (SBP), diastolic blood pressure (BPD) body mass index (BMI) were measured in all subjects.Among 5 786 individuals participated, 4 985 were euthyroid. After implementing exclusion criteria, 4 756 individuals remained of whom 2 122 (44.6%) were male and 2 634 (55.4%) were female. Multiple linear regression analysis revealed no association between TSH levels within reference ranges and blood pressure profile. No significant relationship was observed between TSH levels and systolic or diastolic blood pressure or the mean arterial pressure or pulse pressure in each tertile of TSH. There was a negative association between pulse pressure and TSH in the second tertile (r=- 0.066, p=0.009). Regression analysis showed that FT4 was significantly associated with systolic blood pressure, diastolic blood pressure, pulse pressure and mean arterial pressure.No association was found between serum TSH and blood pressure profile in euthyroid subjects. Serum FT4 levels showed a positive association with blood pressure profiles. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Circadian rhythms in blood pressure in free-ranging three-toed sloths (Bradypus variegatus).

    PubMed

    Duarte, D P F; Silva, V L; Jaguaribe, A M; Gilmore, D P; Da Costa, C P

    2003-02-01

    Blood pressure (BP) profiles were monitored in nine free-ranging sloths (Bradypus variegatus) by coupling one common carotid artery to a BP telemetry transmitter. Animals moved freely in an isolated and temperature-controlled room (24 degrees C) with 12/12-h artificial light-dark cycles and behaviors were observed during resting, eating and moving. Systolic (SBP) and diastolic (DBP) blood pressures were sampled for 1 min every 15 min for 24 h. BP rhythm over 24 h was analyzed by the cosinor method and the mesor, amplitude, acrophase and percent rhythm were calculated. A total of 764 measurements were made in the light cycle and 721 in the dark cycle. Twenty-four-hour values (mean +/- SD) were obtained for SBP (121 +/- 22 mmHg), DBP (86 +/- 17 mmHg), mean BP (MBP, 98 +/- 18 mmHg) and heart rate (73 +/- 16 bpm). The SBP, DBP and MBP were significantly higher (unpaired Student t-test) during the light period (125 +/- 21, 88 +/- 15 and 100 +/- 17 mmHg, respectively) than during the dark period (120 +/- 21, 85 +/- 17 and 97 +/- 17 mmHg, respectively) and the acrophase occurred between 16:00 and 17:45 h. This circadian variation is similar to that observed in cats, dogs and marmosets. The BP decreased during "behavioral sleep" (MBP down from 110 +/- 19 to 90 +/- 19 mmHg at 21:00 to 8:00 h). Both feeding and moving induced an increase in MBP (96 +/- 17 to 119 +/- 17 mmHg at 17:00 h and 97 +/- 19 to 105 +/- 12 mmHg at 15:00 h, respectively). The results show that conscious sloths present biphasic circadian fluctuations in BP levels, which are higher during the light period and are mainly synchronized with feeding.

  14. Respiratory response of the deep-sea amphipod Stephonyx biscayensis indicates bathymetric range limitation by temperature and hydrostatic pressure.

    PubMed

    Brown, Alastair; Thatje, Sven

    2011-01-01

    Depth zonation of fauna on continental margins is well documented. Whilst increasing hydrostatic pressure with depth has long been considered a factor contributing significantly to this pattern, discussion of the relative significance of decreasing temperature with depth has continued. This study investigates the physiological tolerances of fed and starved specimens of the bathyal lysianassoid amphipod Stephonyx biscayensis at varying temperature to acute pressure exposure by measuring the rate of oxygen consumption. Acclimation to atmospheric pressure is shown to have no significant interaction with temperature and/or pressure effects. Similarly, starvation is shown to have no significant effect on the interaction of temperature and pressure. Subsequently, the effect of pressure on respiration rate is revealed to be dependent on temperature: pressure equivalent to 2000 m depth was tolerated at 1 and 3°C; pressure equivalent to 2500 m depth was tolerated at 5.5°C; at 10°C pressure equivalent to 3000 m depth was tolerated. The variation in tolerance is consistent with the natural distribution range reported for this species. There are clear implications for hypotheses relating to the observed phenomenon of a biodiversity bottleneck between 2000 and 3000 metres, and for the potential for bathymetric range shifts in response to global climate change.

  15. Cost and Performance Report - Validation of the Low-Range Differential Pressure (LRDP) Leak Detection System

    NASA Astrophysics Data System (ADS)

    2002-03-01

    The Naval Facilities Engineering Service Center (NFESC) Port Hueneme, California, and its industrial partners, Vista Research, Inc., and Vista Engineering Technologies, L.L.C., have demonstrated and validated (DEM/VAL) an innovative mass-based leak detection system for bulk fuel underground storage tanks (USTs). The Low-Range Differential Pressure (LRDP) system is a computer-controlled system that can reliably detect small leaks in bulk USTs ranging in size from 50,000 gal to 12,500,000 gal. As part of this project, it has been evaluated for performance by an independent third party in a l22.5-ft diameter, 2,100,000-gal tank following EPA's standard test procedures. The LRDP meets monthly monitoring and annual precision (tightness) test regulatory compliance requirements using either a 10-h (overnight) or 24-h test. The LRDP has several significant cost advantages over the internal and external technologies. The cost advantages are realized because of the extremely high performance of the LRDP and the probability of false alarm, the on-line monitoring capability of the LRDP when pennanently installed in a tank, the capability of the system to conduct a short test (an overnight test), and the low recurring costs associated with testing. The cost of a tracer method is expensive because of the high recurring cost of testing. The cost of other mass-based methods is high because of lower performance and the inability to meet both the monthly monitoring and annual precision regulatory requirements with an online system. In addition, the LRDP has the potential to save DOD many hundreds of millions of dollars in terms of clean-up and tank replacement cost avoidance.

  16. Relationship between a range of sedentary behaviours and blood pressure during early adolescence.

    PubMed

    Gopinath, B; Baur, L A; Hardy, L L; Kifley, A; Rose, K A; Wong, T Y; Mitchell, P

    2012-06-01

    Very few studies have explored links between physical activity, sedentary behaviours and blood pressure (BP) in early adolescence. We aimed to assess the association between a range of sedentary activities (screen time, television (TV) viewing, computer usage, video game usage and time spent in homework or reading) and BP in schoolchildren. Eligible year-7 students (2353/3144, mean age 12.7 years) from a random cluster sample of 21 Sydney schools were examined during 2003-2005. Parents and children completed detailed questionnaires of activity. BP was measured using a standard protocol and high BP was defined using published guidelines. Height and weight were measured, and body mass index (BMI) calculated. After adjusting for age, sex, ethnicity, parental education, height, BMI and time spent in physical activity, each hour per day spent in screen time, watching TV and playing video games was associated with a significant increase in diastolic BP of 0.44 (P=0.0001), 0.99 (P<0.0001) and 0.64 mm Hg (P=0.04), respectively. In contrast, each hour per day spent reading was associated with a decrease of 0.91 (P=0.01) and 0.69 mm Hg (P=0.02) in systolic and diastolic BP, respectively. Our results indicate that addressing different types of sedentary activities could be a potentially important strategy to reduce the prevalence of elevated BP in children.

  17. The nature of functional variability in plantar pressure during a range of controlled walking speeds

    PubMed Central

    Pataky, Todd C.; Crompton, Robin H.; Savage, Russell; Bates, Karl T.

    2016-01-01

    During walking, variability in step parameters allows the body to adapt to changes in substrate or unexpected perturbations that may occur as the feet interface with the environment. Despite a rich literature describing biomechanical variability in step parameters, there are as yet no studies that consider variability at the body–environment interface. Here, we used pedobarographic statistical parametric mapping (pSPM) and two standard measures of variability, mean square error (m.s.e.) and the coefficient of variation (CV), to assess the magnitude and spatial variability in plantar pressure across a range of controlled walking speeds. Results by reduced major axis, and pSPM regression, revealed no consistent linear relationship between m.s.e. and speed or m.s.e. and Froude number. A positive linear relationship, however, was found between CV and walking speed and CV and Froude number. The spatial distribution of variability was highly disparate when assessed by m.s.e. and CV: relatively high variability was consistently confined to the medial and lateral forefoot when measured by m.s.e., while the forefoot and heel show high variability when measured by CV. In absolute terms, variability by CV was universally low (less than 2.5%). From these results, we determined that variability as assessed by m.s.e. is independent of speed, but dependent on speed when assessed by CV. PMID:27853618

  18. Pressure distribution on a vectored-thrust V/STOL fighter in the transition-speed range. [wind tunnel tests to measure pressure distribution on body and wing

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.; Margason, R. J.

    1974-01-01

    A wind-tunnel investigation has been conducted in the Langley V/STOL tunnel with a vectored-thrust V/STOL fighter configuration to obtain detailed pressure measurements on the body and on the wing in the transition-speed range. The vectored-thrust jet exhaust induced a region of negative pressure coefficients on the lower surface of the wing and on the bottom of the fuselage. The location of the jet exhaust relative to the wing was a major factor in determining the extent of the region of negative pressure coefficients.

  19. The Influence of Fundamental Frequency and Sound Pressure Level Range on Breathing Patterns in Female Classical Singing

    ERIC Educational Resources Information Center

    Collyer, Sally; Thorpe, C. William; Callaghan, Jean; Davis, Pamela J.

    2008-01-01

    Purpose: This study investigated the influence of fundamental frequency (F0) and sound pressure level (SPL) range on respiratory behavior in classical singing. Method: Five trained female singers performed an 8-s messa di voce (a crescendo and decrescendo on one F0) across their musical F0 range. Lung volume (LV) change was estimated, and…

  20. The Influence of Fundamental Frequency and Sound Pressure Level Range on Breathing Patterns in Female Classical Singing

    ERIC Educational Resources Information Center

    Collyer, Sally; Thorpe, C. William; Callaghan, Jean; Davis, Pamela J.

    2008-01-01

    Purpose: This study investigated the influence of fundamental frequency (F0) and sound pressure level (SPL) range on respiratory behavior in classical singing. Method: Five trained female singers performed an 8-s messa di voce (a crescendo and decrescendo on one F0) across their musical F0 range. Lung volume (LV) change was estimated, and…

  1. Pressure effect on the long-range order in CeB6

    NASA Astrophysics Data System (ADS)

    Sera, M.; Ikeda, S.; Iwakubo, H.; Uwatoko, Y.; Hane, S.; Kosaka, M.; Kunii, S.

    2006-08-01

    The pressure effect of CeB6 was investigated. The pressure dependence of the Néel temperature, TN and the critical field from the antiferro-magnetic phase III to antiferro-quadrupolar phase II, HcIII-II of CeB6 exhibits the unusual pressure dependence that the suppression rate of HcIII-II is much larger than that of TN. In order to explain this unusual result, we have performed the mean field calculation for the 4-sublattice model assuming that the pressure dependence of TN, the antiferro-octupolar and quadrupolar temperatures, Toct and TQ as follows; dTN/dP<0, dToct/dP>dTQ/dP>0 and could explain the unusual pressure dependence of TN and HcIII-II.

  2. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell

    SciTech Connect

    Hong, X.; Newville, M.; Prakapenka, V.B.; Rivers, M.L.; Sutton, S.R.

    2009-07-31

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within {+-}3{sup o} relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO{sub 2} recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO{sub 2} glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO{sub 2} glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.

  3. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell

    PubMed Central

    Hong, Xinguo; Newville, Matthew; Prakapenka, Vitali B.; Rivers, Mark L.; Sutton, Stephen R.

    2009-01-01

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within ±3° relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO2 recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO2 glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO2 glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures. PMID:19655966

  4. Miniature diamond anvil cell for broad range of high pressure measurements.

    PubMed

    Gavriliuk, A G; Mironovich, A A; Struzhkin, V V

    2009-04-01

    A miniature versatile nonmagnetic diamond anvil cell for diverse physical property measurement under cryogenic environments and high magnetic fields at high pressure has been developed. Several such cells have been manufactured and tested in the Physical Properties Measurement System (PPMS) by Quantum Design at high pressures and low temperatures. The cells have good pressure stability during temperature scans down to helium temperatures and back to room temperature. The cells have been tested in strong magnetic fields and demonstrated excellent nonmagnetic properties. The wide-angle side openings give the possibility to use this cell as a "panoramic cell" in synchrotron experiments requiring large angle off-axis access. The possible experiments, which may use this cell, include spectroscopic experiments (optical, synchrotron Mossbauer, Raman, x-ray emission, etc.), different types of x-ray diffraction experiments, transport measurements (resistivity, magnetoresistivity, thermoelectromotive force, etc.), measurements of susceptibility, and many other conventional and synchrotron experiments at very low temperatures and in strong magnetic fields.

  5. Calculation of the density of solutions (sunflower oil + n-hexane) over a wide range of temperatures and pressure

    NASA Astrophysics Data System (ADS)

    Safarov, M. M.; Abdukhamidova, Z.

    1995-09-01

    We present the results from an experimental investigation of the density of the sunflower oil system as a function of the mass concentration of n-hexane in the ranges of temperatures T=290 520 K and pressures P=0.101 98.1 MPa. A method of hydrostatic weighing was used to measure the density of the solutions under study.

  6. Habitat, dispersal and propagule pressure control exotic plant infilling within an invaded range

    Treesearch

    Robert J. Warren; T. Ursell; A.D. Keiser; M.A. Bradford

    2013-01-01

    Deep in the heart of a longstanding invasion, an exotic grass is still invading. Range infilling potentially has the greatest impact on native communities and ecosystem processes, but receives much less attention than range expansion. ‘Snapshot’ studies of invasive plant dispersal, habitat and propagule limitations cannot determine whether a landscape is saturated or...

  7. Do current methods for endotracheal tube cuff inflation create pressures above the recommended range? A review of the evidence.

    PubMed

    Grant, Thomas

    2013-12-01

    Inflation and measurement of endotracheal (ET) tube cuff pressure is often not seen as a critical aspect of care in surgical patients. The morbidity associated by an overinflated cuff has been regularly highlighted in literature, for example mucosal ulceration (Combes et al 2001) and vocal cord paralysis (Holley & Gildea 1971). This article will outline techniques for the methods of inflation based on the latest scientific evidence. The author will seek to examine if intraoperative cuff assessment and monitoring should become routine for the anaesthetic practitioner and if current practice for inflating cuffs creates pressures outside the safe range.

  8. Reduced state relationship for limiting electrical conductances of aqueous ions over wide ranges of temperature and pressure

    NASA Astrophysics Data System (ADS)

    Marshall, William L.

    1987-09-01

    A reduced state relationship for limiting electrical conductances of aqueous ions to high temperatures and pressures is presented in which ionic conductance is a simple function of solvent density. Walden's rule is not observed. Specific parameters for 13 ions are included that can be used to calculate ionic conductances by the relationship. From these values, limiting equivalent conductances of many single and mixed aqueous electrolyte systems may be obtained over temperature-pressure ranges of 0-800 °C and up to 400 MPa (4000 bar), with reasonable estimates to 1000 °C and 1000 MPa.

  9. Changing the "Normal Range" for Blood Pressure from 140/90 to 130/Any Improves Risk Assessment.

    PubMed

    Fulks, Michael; Stout, Robert L; Dolan, Vera F

    2015-01-01

    Objective .- Redefine the "normal" reference range for blood pressure from <140/90 to one that more effectively identifies individuals with increased mortality risk. Method .- Data from the recently published 2014 CRL blood pressure study was used. It includes 2,472,706 life insurance applicants tested by Clinical Reference Laboratory from 1993 to 2007 with follow-up for vital status using the September 2011 Social Security Death Master File. Various upper limits of blood pressure (BP in mm Hg) were evaluated to determine if any was superior to the current, commonly used limit of 140/90 in identifying individuals with increased mortality risk. Results .- An alternative reference range using a systolic BP (SBP) <130 with any diastolic BP (DBP) included 84% of life insurance applicants. It had a lower mortality rate and narrower range of relative risk than <140/90, including 89% as many applicants but only 68% as many deaths. This pattern of lives and deaths was consistent across age and sex. Conclusion .- Switching to a "normal" reference range of SBP <130 offers superior risk assessment relative to using BP <140/90 while still including a sufficient percentage of the population.

  10. Tin phase transition in terapascal pressure range described accurately with Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Nazarov, Roman; Hood, Randolph; Morales, Miguel

    The accurate prediction of phase transitions is one of the most important research areas in modern materials science. The main workhorse for such calculations, Density functional theory (DFT), employs different forms of approximate exchange-correlation functionals which may lead to overstabilization of one phase compared to another, therefore, predict incorrectly phase transition pressures. A recent example of such deficiency has been demonstrated in Sn: no bcc to hcp phase transition has been observed in Sn when dynamically compressed to 1.2 TPa while DFT predicts a transition to occur at 0.16-0.2 TPa. To overcome the limitations of DFT, we have employed diffusion quantum Monte Carlo (DMC) method which treats the many body electron problem directly. In order to get highly accurate results we systematically assess the effect of controllable approximations of DMC such as fixed node approximation, finite-size effects and the use of pseudopotentials. Based on metrologically accurate DMC equation of states we construct the pressure-temperature phase diagram and demonstrate its good agreement with experiment in contrast to DFT calculations.

  11. Simulation of non-ionic surfactant micelle formation across a range of temperature and pressure

    NASA Astrophysics Data System (ADS)

    Custer, Gregory; Das, Payel; Matysiak, Silvina

    Non-ionic surfactants can, at certain concentrations and thermodynamic conditions, aggregate into micelles due to their amphiphilic nature. Our work looks at the formation and behavior of micelles at extremes of temperature and pressure. Due to the large system size and simulation time required to study micelle formation, we have developed a coarse-grained (CG) model of our system. This CG model represents each heavy atom with a single CG bead. We use the multibody Stillinger-Weber potential, which adds a three-body angular penalty to a two-body potential, to emulate hydrogen bonds in the system. We simulate the linear surfactant C12E5 , which has a nonpolar domain of 12 carbons and a polar domain of 5 ethers. Our CG model has been parameterized to match structural properties from all-atom simulations of single and dimer surfactant systems. Simulations were performed using a concentration above the experimental critical micelle concentration at 300K and 1atm. We observe an expected region of stable micelle formation at intermediate temperature, with a breakdown at high and low temperature, as well as at high pressure. The driving forces behind the destabilization of micelles and the mechanism of micelle formation at different thermodynamic conditions will be discussed.

  12. Prevalence and predictors of out-of-range cuff pressure of endotracheal and tracheostomy tubes: a prospective cohort study in mechanically ventilated patients.

    PubMed

    Alzahrani, Amer R; Al Abbasi, Shatha; Abahoussin, Othman Khalid; Al Shehri, Tariq Othman; Al-Dorzi, Hasan M; Tamim, Hani M; Sadat, Musharaf; Arabi, Yaseen M

    2015-10-15

    Maintaining the cuff pressure of endotracheal tubes (ETTs) within 20-30 cmH2O is a standard practice. The aim of the study was to evaluate the effectiveness of standard practice in maintaining cuff pressure within the target range. This was a prospective observational study conducted in a tertiary-care intensive care unit, in which respiratory therapists (RTs) measured the cuff pressure 6 hourly by a handheld manometer. In this study, a research RT checked cuff pressure 2-4 h after the clinical RT measurement. Percentages of patients with cuff pressure levels above and below the target range were calculated. We identified predictors of low-cuff pressure. We analyzed 2120 cuff-pressure measurements. The mean cuff pressure was 27 ± 2 cmH2O by the clinical RT and 21 ± 5 cmH2O by the research RT (p < 0.0001). The clinical RT documented that 98.0 % of cuff pressures were within the normal range. The research RT found the cuff pressures to be within the normal range in only 41.5 %, below the range in 53 % and above the range in 5.5 %. Low cuff pressure was found more common with lower ETT size (OR, 0.34 per 0.5 unit increase in ETT size; 95 % CI, 0.15-0.79) and with lower peak airway pressure (OR per one cm H2O increment, 0.93; 95 % CI, 0.87-0.99) on multivariate analysis. Cuff pressure is frequently not maintained within the target range with low-cuff pressure being very common approximately 3 h after routine measurements. Low cuff pressure was associated with lower ETT size and lower peak airway pressure. There is a need to redesign the process for maintaining cuff pressure within the target range.

  13. Long-range correlations of microseism-band pressure fluctuations in the ocean

    NASA Astrophysics Data System (ADS)

    Ball, Justin S.; Godin, Oleg A.; Evers, Läslo G.; Lv, Cheng

    2016-08-01

    We investigate the spatial coherence of underwater ambient noise using a yearlong time-series measured off Ascension Island. Qualitative agreement with observed cross-correlations is achieved using a simple range-dependent model, constrained by earlier, active tomographic studies in the area. In particular, the model correctly predicts the existence of two weakly dispersive normal modes in the microseism frequency range, with the group speed of one of the normal modes being smaller than the sound speed in water. The agreement justifies our interpretation of the peaks of the measured cross-correlation function of ambient noise as modal arrivals, with dispersion that is sensitive to crustal velocity structure. Our observations are consistent with Scholte to Moho head wave coupled propagation, with double mode conversion occurring due to the bathymetric variations between receivers. We thus demonstrate the feasibility of interrogating crustal properties using noise interferometry of moored hydrophone data at ranges in excess of 120 km.

  14. APT: An Autonomous Tool for Measuring Acceleration, Pressure, and Temperature with Large Dynamic Range and Bandwidth

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Davis, E. E.

    2015-12-01

    We describe a new tool developed to facilitate the study of inter-related geodetic, geodynamic, seismic, and oceanographic phenomena. It incorporates a novel tri-axial accelerometer developed by Quartz Seismic Sensors, Inc, a pressure sensor developed by Paroscientific Inc., and a low-power, high-precision frequency counter and data logger built by RBR, Ltd. The sensors, counters, and loggers are housed in a 7 cm o.d., 70 cm long pressure case designed for use in up to 12 km of water. Sampling intervals are programmable from 0.1 s to 1 hr; standard memory can store up to 30 million samples; total power consumption is roughly 115 mW when operating continuously (1 s.p.s. or higher) and proportionately lower when operating intermittently (e.g., 2 mW at 1 sample per min.). Serial and USB communications protocols allow a variety of download and cable-connection options. Measurement precision of the order of 10-8 of full scale (e.g., 4000 m water depth, 1 g) allows observations of pressure and acceleration variations of 0.4 Pa and 0.1 μm s-2. Long-term variations in vertical acceleration are sensitive to displacement through the gravity gradient at a level of roughly 2 cm; long-term variations in horizontal acceleration are sensitive to tilt at a level of 0.01 μRad. With these sensitivities and the broad bandwidth (5 Hz to DC), ground motion associated with microseisms and seismic waves, tidal loading, and slow and rapid geodynamic deformation normally studied by disparate instruments can be observed with a single tool. The first c. 1-year deployment with the instrument connected to the Ocean Networks Canada NEPTUNE observatory cable is underway to study interseismic deformation of the Cascadia subduction zone. It will then be deployed at the Hikurangi subduction zone to study episodic slow slip. Deployment of the tool for the initial test was accomplished by pushing the tool vertically below the seafloor with the remotely operated vehicle Jason, with no profile

  15. Direct Numerical Simulation and Theories of Wall Turbulence with a Range of Pressure Gradients

    NASA Technical Reports Server (NTRS)

    Coleman, G. N.; Garbaruk, A.; Spalart, P. R.

    2014-01-01

    A new Direct Numerical Simulation (DNS) of Couette-Poiseuille flow at a higher Reynolds number is presented and compared with DNS of other wall-bounded flows. It is analyzed in terms of testing semi-theoretical proposals for universal behavior of the velocity, mixing length, or eddy viscosity in pressure gradients, and in terms of assessing the accuracy of two turbulence models. These models are used in two modes, the traditional one with only a dependence on the wall-normal coordinate y, and a newer one in which a lateral dependence on z is added. For pure Couette flow and the Couette-Poiseuille case considered here, this z-dependence allows some models to generate steady streamwise vortices, which generally improves the agreement with DNS and experiment. On the other hand, it complicates the comparison between DNS and models.

  16. Structure and growth kinetics of the oxidation process of Fe(001) whisker surfaces over a 10-decade pressure range

    NASA Astrophysics Data System (ADS)

    Ferrer, Salvador; Robach, Odile; Balmes, Olivier; Isern, Helena; Popa, Iona; Ackerman, Marcelo

    2010-10-01

    Fe(001) surfaces of whiskers of good crystalline quality were oxidized in a pressure range from 10 - 7 mbar to 1 bar at different temperatures. Epitaxial Fe 3O 4 and FeO thin films with negligible strain were grown depending on the oxidation temperatures. The kinetics of the oxide thickness growth was measured and compared with the predictions of the Fromhold-Cook theory for oxidation of metals. Some discrepancies were found and a possible explanation is presented.

  17. Inertial-range kinetic turbulence in pressure-anisotropic astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Kunz, M. W.; Schekochihin, A. A.; Chen, C. H. K.; Abel, I. G.; Cowley, S. C.

    2015-10-01

    > A theoretical framework for low-frequency electromagnetic (drift-)kinetic turbulence in a collisionless, multi-species plasma is presented. The result generalises reduced magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihin et al., Astrophys. J. Suppl. Ser., vol. 182, 2009, pp. 310-377) to the case where the mean distribution function of the plasma is pressure-anisotropic and different ion species are allowed to drift with respect to each other - a situation routinely encountered in the solar wind and presumably ubiquitous in hot dilute astrophysical plasmas such as the intracluster medium. Two main objectives are achieved. First, in a non-Maxwellian plasma, the relationships between fluctuating fields (e.g. the Alfvén ratio) are order-unity modified compared to the more commonly considered Maxwellian case, and so a quantitative theory is developed to support quantitative measurements now possible in the solar wind. Beyond these order-unity corrections, the main physical feature of low-frequency plasma turbulence survives the generalisation to non-Maxwellian distributions: Alfvénic and compressive fluctuations are energetically decoupled, with the latter passively advected by the former; the Alfvénic cascade is fluid, satisfying RMHD equations (with the Alfvén speed modified by pressure anisotropy and species drifts), whereas the compressive cascade is kinetic and subject to collisionless damping (and for a bi-Maxwellian plasma splits into three independent collisionless cascades). Secondly, the organising principle of this turbulence is elucidated in the form of a conservation law for the appropriately generalised kinetic free energy. It is shown that non-Maxwellian features in the distribution function reduce the rate of phase mixing and the efficacy of magnetic stresses, and that these changes influence the partitioning of free energy amongst the various cascade channels. As the firehose or mirror instability thresholds are approached, the dynamics

  18. EURAMET.M.P-S9: comparison in the negative gauge pressure range -950 to 0 hPa

    NASA Astrophysics Data System (ADS)

    Saxholm, S.; Otal, P.; AltintaS, A.; Bermanec, L. G.; Durgut, Y.; Hanrahan, R.; Kocas, I.; Lefkopoulos, A.; Pražák, D.; Sandu, I.; Åetina, J.; Spohr, I.; Steindl, D.; Tammik, K.; Testa, N.

    2016-01-01

    A comparison in the negative gauge pressure range was arranged in the period 2011 - 2012. A total of 14 laboratories participated in this comparison: BEV (Austria), CMI (Czech Republic), DANIAmet-FORCE (Denmark), EIM (Greece), HMI/FSB-LPM (Croatia), INM (Romania), IPQ (Portugal), LNE (France), MCCAA (Malta), METROSERT (Estonia), MIKES (Finland), MIRS/IMT/LMT (Slovenia), NSAI (Ireland) and UME (Turkey). The project was divided into two loops: Loop1, piloted by MIKES, and Loop2, piloted by LNE. The results of the two loops are reported separately: Loop1 results are presented in this paper. The transfer standard was Beamex MC5 no. 25516865 with internal pressure module INT1C, resolution 0.01 hPa. The nominal pressure range of the INT1C is -1000 hPa to +1000 hPa. The nominal pressure points for the comparison were 0 hPa, -200 hPa, -400 hPa, -600 hPa, -800 hPa and -950 hPa. The reference values and their uncertainties as well as the difference uncertainty between the laboratory results and the reference values were determined from the measurement data by Monte Carlo simulations. Stability uncertainty of the transfer standard was included in the final difference uncertainty. Degrees of equivalences and mutual equivalences between the laboratories were calculated. Each laboratory reported results for all twelve measurement points, which means that there were 168 reported values in total. Some 163 of the 168 values (97 %) agree with the reference values within the expanded uncertainties, with a coverage factor k = 2. Among the laboratories, four different methods were used to determine negative gauge pressure. It is concluded that special attention must be paid to the measurements and methods when measuring negative gauge pressures. There might be a need for a technical guide or a workshop that provides information about details and practices related to the measurements of negative gauge pressure, as well as differences between the different methods. The comparison is

  19. Perfusion pressure-dependent recovery of cortical spreading depression is independent of tissue oxygenation over a wide physiologic range.

    PubMed

    Sukhotinsky, Inna; Yaseen, Mohammad A; Sakadzić, Sava; Ruvinskaya, Svetlana; Sims, John R; Boas, David A; Moskowitz, Michael A; Ayata, Cenk

    2010-06-01

    Spreading depression (SD) is a slowly propagating wave of transient neuronal and glial depolarization that develops after stroke, trauma and subarachnoid hemorrhage. In compromised tissue, repetitive SD-like injury depolarizations reduce tissue viability by worsening the mismatch between blood flow and metabolism. Although the mechanism remains unknown, SDs show delayed electrophysiological recovery within the ischemic penumbra. Here, we tested the hypothesis that the recovery rate of SD can be varied by modulating tissue perfusion pressure and oxygenation. Systemic blood pressure and arterial pO(2) were simultaneously manipulated in anesthetized rats under full physiologic monitoring. We found that arterial hypotension doubled the SD duration, whereas hypertension reduced it by a third compared with normoxic normotensive rats. Hyperoxia failed to shorten the prolonged SD durations in hypotensive rats, despite restoring tissue pO(2). Indeed, varying arterial pO(2) (40 to 400 mm Hg) alone did not significantly influence SD duration, whereas blood pressure (40 to 160 mm Hg) was inversely related to SD duration in compromised tissue. These data suggest that cerebral perfusion pressure is a critical determinant of SD duration independent of tissue oxygenation over a wide range of arterial pO(2) levels, and that hypotension may be detrimental in stroke and subarachnoid hemorrhage, where SD-like injury depolarizations have been observed.

  20. A Computational Fluid Dynamics Study of Transitional Flows in Low-Pressure Turbines under a Wide Range of Operating Conditions

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.; Volino, R. J.; Corke, T. C.; Thomas, F. O.; Huang, J.; Lake, J. P.; King, P. I.

    2007-01-01

    A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.

  1. Equation of State of Shock Compressed Gases at Megabar Pressure Range

    NASA Astrophysics Data System (ADS)

    Gryaznov, Victor; Iosilevskiy, Igor; Fortov, Vladimir

    2011-06-01

    The model for equation of state of warm dense matter is developed in frames of ``chemical picture.'' Shock compressed gas is considered as a multi-component strongly interacted mixture of atoms, molecules, ions and electrons. Coulomb interaction of charged particles, short-range repulsion and attraction of heavy particles so as partial degeneracy of free electrons are taken into account. Contribution of repulsion of atoms and molecules to thermodynamic functions is considered in frames of extended soft-sphere model and corresponds to non-empirical atom-atomic approximation. The modified pseudopotential model is used for description of interaction of charged particles.The results of calculation of principal Hugoniots of hydrogen, deuterium and nitrogen together with calculation of thermodynamics for reshock states and third-shock reverberation are presented. The calculation results are compared with gas-gun, explosive, magnetically launched flyer-plate and laser experiments so as with the results of the first principle modeling.

  2. Unified one-dimensional model of bounded plasma with nonzero ion temperature in a broad pressure range

    SciTech Connect

    Palacio Mizrahi, J. H.; Gurovich, V. Tz.; Krasik, Ya. E.

    2013-03-15

    A one-dimensional model for steady state plasmas bounded either between large parallel walls, or by a cylinder or a sphere, valid in a wide range of gas pressures, is considered. The model includes nonzero ion temperature, inertial terms in the ion momentum equations, and allows one to calculate the plasma electron temperature and ion current density reaching the wall, as well as the spatial distributions of the ion fluid velocity, plasma density, and plasma potential in the plasma bulk. In addition, the effect of electron inertia is analyzed. The model includes as particular cases several earlier models that were based on a similar set of differential equations, but that are restricted to a specific pressure regime (low, intermediate, or high). Analytical solution is found in planar geometry, and numerical solution is given in cylindrical and spherical geometry. The results obtained are compared with those of earlier models and the differences are analyzed.

  3. The shock Hugoniot of liquid hydrazine in the pressure range of 3.1 to 21.4 GPa

    SciTech Connect

    Garcia, B.O.; Persson, P-A.

    1996-10-01

    Impedance matching was used; the technique was similar to Richard Dick`s. Shock pressures were produced using a plane wave explosive driver with different explosives and different reference materials against liq. hydrazine. Velocity of shock wave in the liquid and free surface velocity of the reference material were measured using different pin contact techniques. The experimental Hugoniot appears smooth, with no indication of a phase change. The shock Hugoniot of liq. hydrazine was compared against 3 other liquid Hugoniots (liq. NH3, water, CCl4) and is closest to that for water and in between NH3 and CCl4. The hydrazine Hugoniot was also compared to the ``Universal`` Hugoniot for liquids. This universal Hugoniot is not a good approximation for the liq. hydrazine in this pressure range.

  4. The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians

    PubMed Central

    Morris, J. P.; Thatje, S.; Cottin, D.; Oliphant, A.; Brown, A.; Shillito, B.; Ravaux, J.; Hauton, C.

    2015-01-01

    Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms’ thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shifts PMID:26716003

  5. The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians.

    PubMed

    Morris, J P; Thatje, S; Cottin, D; Oliphant, A; Brown, A; Shillito, B; Ravaux, J; Hauton, C

    2015-11-01

    Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms' thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shifts.

  6. The study of pressure measurement techniques and devices in the range of 10(exp -1) to 10(exp -5) torr (2 millipsi to 0.2 micropsi)

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.

    1990-01-01

    The atmospheric pressure range was studied in a region where conventional pressure sensing devices do not provide meaningful measurements. However, a hot filament gauge was developed and miniaturized which will measure the pressure in the 10(exp -1) to 10(exp -5) torr (2 millipsi to 0.2 micropsi) region, hence the name Micropsi gauge. Laboratory studies were made comparing the currently available devices with the newly developed miniature low power 'Micropsi' pressure sensor.

  7. Multiphase Binary Mixture Flows in Porous Media in a Wide Pressure and Temperature Range Including Critical Conditions

    NASA Astrophysics Data System (ADS)

    Afanasyev, A.

    2011-12-01

    Multiphase flows in porous media with a transition between sub- and supercritical thermodynamic conditions occur in many natural and technological processes (e.g. in deep regions of geothermal reservoirs where temperature reaches critical point of water or in gas-condensate fields where subject to critical conditions retrograde condensation occurs and even in underground carbon dioxide sequestration processes at high formation pressure). Simulation of these processes is complicated due to degeneration of conservation laws under critical conditions and requires non-classical mathematical models and methods. A new mathematical model is proposed for efficient simulation of binary mixture flows in a wide range of pressures and temperatures that includes critical conditions. The distinctive feature of the model lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. Such approach allows determination not only single-phase states and two-phase states of liquid-gas type as in classical models but also two-phase states of liquid-liquid type and three-phase states. The proposed mixture model was implemented in MUFITS (Multiphase Filtration Transport Simulator) code for hydrodynamic simulations. As opposed to classical approaches pressure, enthalpy and composition variables together with fully implicit method and cascade procedure are used. The code is capable of unstructured grids, heterogeneous porous media, relative permeability and capillary pressure dependence on temperature and pressure, multiphase diffusion, optional number of sink and sources, etc. There is an additional module for mixture properties specification. The starting point for the simulation is a cubic equation of state that is

  8. Pressure dependent stability and structure of carbon dioxide—A density functional study including long-range corrections

    NASA Astrophysics Data System (ADS)

    Gohr, Sebastian; Grimme, Stefan; Söhnel, Tilo; Paulus, Beate; Schwerdtfeger, Peter

    2013-11-01

    First-principles density functional theory (DFT) is used to study the solid-state modifications of carbon dioxide up to pressures of 60 GPa. All known molecular CO2 structures are investigated in this pressure range, as well as three non-molecular modifications. To account for long-range van der Waals interactions, the dispersion corrected DFT method developed by Grimme and co-workers (DFT-D3) is applied. We find that the DFT-D3 method substantially improves the results compared to the uncorrected DFT methods for the molecular carbon dioxide crystals. Enthalpies at 0 K and cohesive energies support only one possibility of the available experimental solutions for the structure of phase IV: the Roverline{3}c modification, proposed by Datchi and co-workers [Phys. Rev. Lett. 103, 185701 (2009)]. Furthermore, comparing bulk moduli with experimental values, we cannot reproduce the quite large—rather typical for covalent crystal structures—experimental values for the molecular phases II and III.

  9. A low-power tool for measuring acceleration, pressure, and temperature (APT) with wide dynamic range and bandwidth

    NASA Astrophysics Data System (ADS)

    Heesemann, Martin; Davis, Earl E.; Paros, Jerome; Johnson, Greg; Meldrum, Robert; Scherwath, Martin; Mihaly, Steven

    2017-04-01

    We present a new tool that facilitates the study of inter-related geodetic, geodynamic, seismic, and oceanographic phenomena. It incorporates a temperature compensated tri-axial accelerometer developed by Quartz Seismic Sensors, Inc., a pressure sensor built by Paroscientific Inc., and a low-power, high-precision frequency counter developed by Bennest Enterprises Ltd. and built by RBR, Ltd. The sensors are housed in a 7 cm o.d. titanium pressure case designed for use to full ocean depths (withstands more than 20 km of water pressure). Sampling intervals are programmable from 0.08 s to 1 hr; standard memory can store up to 130 million samples; total power consumption is roughly 115 mW when operating continuously and proportionately lower when operating intermittently (e.g., 2 mW average at 1 sample per min). Serial and USB communications protocols allow a variety of autonomous and cable-connection options. Measurement precision of the order of 10-8 of full scale (e.g., pressure equivalent to 4000 m water depth, acceleration = +/- 3 g) allows observations of pressure and acceleration variations of 0.4 Pa and 0.3 μm s-2. Long-term variations in vertical acceleration are sensitive to displacement through the gravity gradient down to a level of roughly 2 cm, and variations in horizontal acceleration are sensitive to tilt down to a level of 0.03 μrad. With the large dynamic ranges, high sensitivities and broad bandwidth (6 Hz to DC), ground motion associated with microseisms, strong and weak seismic ground motion, tidal loading, and slow and rapid geodynamic deformation - all normally studied using disparate instruments - can be observed with a single tool. Installation in the marine environment is accomplished by pushing the tool roughly 1 m vertically below the seafloor with a submersible or remotely operated vehicle, with no profile remaining above the seafloor to cause current-induced noise. The weight of the tool is designed to match the sediment it displaces to

  10. Factors influencing the echocardiographic estimate of right ventricular systolic pressure in normal patients and clinically relevant ranges according to age.

    PubMed

    Armstrong, David W J; Tsimiklis, Georgios; Matangi, Murray F

    2010-02-01

    Previous studies have shown that in the absence of underlying cardiac pathology, the echocardiographic estimate of right ventricular systolic pressure (RVSP) increases progressively and normally with age. There are limited data in patients older than 60 years of age. To define the ranges of RVSP according to age and to include more elderly patients than have previously been reported. All patients undergoing echocardiography since May 26, 1999, at the Kingston Heart Clinic (Kingston, Ontario) have had their data entered into a locally designed cardiology database (CARDIOfile; Registered trademark, Kingston Heart Clinic). RVSP was calculated from the peak tricuspid regurgitant jet velocity (V) using the modified Bernoulli equation (RVSP = 4V2 + RAP), with the mean right atrial pressure (RAP) estimated to be 10 mmHg. Of the 22,628 patients who had undergone echocardiography, 10,905 had RVSP measured. All abnormal echocardiograms were excluded, leaving 1559 echocardiograms for analysis. Patient age ranged from 15 to 93 years. The mean age was 49 years. RVSP increased significantly only after the age of 50 years. The mean (+/- SD) RVSP for those younger than 50 years, 50 to 75 years, and older than 75 years of age was 27.3+/-5.7 mmHg, 30.2+/-7.6 mmHg and 34.8+/-8.7 mmHg, respectively (P<0.0001 among all age groups). The normal range (95% CI) of RVSP in those younger than 50 years, 50 to 75 years, and older than 75 years of age was 16 mmHg to 39 mmHg, 15 mmHg to 45 mmHg, and 17 mmHg to 52 mmHg, respectively. Multivariate analysis indicated that age, mitral diastolic early-to-late filling velocity ratio, ejection fraction, aortic size and early mitral filling velocity/ early diastolic mitral annular velocity were the only significant independent variables. There were significant changes in diastolic function with increasing age, which may have been responsible for the changes in RVSP. RVSP remains stable in both men and women until the age of 50 years. Thereafter, RVSP

  11. A pressurized ion chamber monitoring system for environmental radiation measurements utilizing a wide-range temperature-compensated electrometer

    SciTech Connect

    Stevenick, W. Van . Environmental Measurements Lab.)

    1994-08-01

    The performance of a complete pressurized ion chamber (PIC) radiation monitoring system is described. The design incorporates an improved temperature-compensated electrometer which is stable to [+-]3 [center dot] 10[sup [minus]16] A over the environmental range of temperature ([minus]40 to +40 C). Using a single 10[sup 11] [Omega] feed-back resistor, the electrometer accurately measures currents over a range from 3 [center dot] 10[sup [minus]15] A to 3 [center dot] 10[sup [minus]11] A. While retaining the sensitivity of the original PIC system (the instrument responds readily to small background fluctuations on the order of 0.1 [mu]R h[sup [minus]1]), the new system measures radiation levels up to the point where the collection efficiency of the ion chamber begins to drop off, typically [approximately]27 pA at 1 mR h[sup [minus]1]. A data recorder and system controller was designed using the Tattletale[trademark] Model 4A computer. Digital data is stored on removable solid-state, credit-card style memory cards.

  12. Optimal frequency ranges for extracting information on cardiovascular autonomic control from the blood pressure and pulse interval spectrograms in mice.

    PubMed

    Baudrie, Véronique; Laude, Dominique; Elghozi, Jean-Luc

    2007-02-01

    The analysis of blood pressure (BP) and heart rate (HR) variability by spectral methods has proven a useful tool in many animal species for the assessment of the vagal and sympathetic contributions to oscillations of BP and HR. Continuous BP measurements obtained in mice by telemetry were used to characterize the spectral bandwidths of autonomic relevance by using an approach with no a priori. The paradigm was based on the autonomic blockades obtained with conventional drugs (atropine, prazosin, atenolol). The spectral changes were estimated in all of the combinations of spectral bandwidths. The effect of hydralazine was also tested using the same systematic analysis, to detect the zones of sympathetic activation resulting reflexly from the vasodilatory action of the drug. Two zones of interest in the study of the autonomic control of BP and HR were observed. The first zone covered the 0.15-0.60 Hz range of the systolic BP spectrum and corresponds to the low-frequency zone (or Mayer waves). This zone reflects sympathetic control since the power spectral density of this zone was significantly reduced with alpha1-adrenoceptor blockade (prazosin), while it was significantly amplified as a result of a reflex sympathetic activation (hydralazine). The second zone covered the 2.5-5.0 Hz range of the pulse interval spectrum and corresponded to the high-frequency zone (respiratory sinus arrhythmia) under vagal control (blocked by atropine). These zones are recommended for testing the autonomic control of circulation in mice.

  13. Atmospheric pressure fluctuations in the far infrasound range and emergency transport events coded as circulatory system diseases

    NASA Astrophysics Data System (ADS)

    Didyk, L. A.; Gorgo, Yu. P.; Dirckx, J. J. J.; Bogdanov, V. B.; Buytaert, J. A. N.; Lysenko, V. A.; Didyk, N. P.; Vershygora, A. V.; Erygina, V. T.

    2008-09-01

    This study examines whether a relation exists between rapid atmospheric pressure fluctuations, attributed to the far infrasound frequency range (APF), and a number of emergency transport events coded as circulatory system diseases (EEC). Over an entire year, the average integral amplitudes of APF in the range of periods from 3 s to 120 s over each hour (HA) were measured. Daily dynamics of HA averaged over the year revealed a wave shape with smooth increase from night to day followed by decrease from day to night. The total daily number of EEC within the city of Kiev, Ukraine, was related to the daily mean of HA (DHA) and to the ratio of HA averaged over the day time to HA averaged over the night time (Rdn), and was checked for confounding effects of classical meteorological variables through non-parametric regression algorithms. The number of EEC were significantly higher on days with high DHA (3.72 11.07 Pa, n = 87) compared to the low DHA (0.7 3.62 Pa, n = 260, p = 0.01), as well at days with low Rdn (0.21 1.64, n = 229) compared to the high Rdn (1.65 7.2, n = 118, p = 0.03). A difference between DHA and Rdn effects on the emergency events related to different categories of circulatory diseases points to a higher sensitivity of rheumatic and cerebro-vascular diseases to DHA, and ischaemic and hypertensive diseases to Rdn. Results suggest that APF could be considered as a meteorotropic factor capable of influencing circulatory system diseases.

  14. Short range shooting distance estimation using variable pressure SEM images of the surroundings of bullet holes in textiles.

    PubMed

    Hinrichs, Ruth; Frank, Paulo Ricardo Ost; Vasconcellos, M A Z

    2017-03-01

    Modifications of cotton and polyester textiles due to shots fired at short range were analyzed with a variable pressure scanning electron microscope (VP-SEM). Different mechanisms of fiber rupture as a function of fiber type and shooting distance were detected, namely fusing, melting, scorching, and mechanical breakage. To estimate the firing distance, the approximately exponential decay of GSR coverage as a function of radial distance from the entrance hole was determined from image analysis, instead of relying on chemical analysis with EDX, which is problematic in the VP-SEM. A set of backscattered electron images, with sufficient magnification to discriminate micrometer wide GSR particles, was acquired at different radial distances from the entrance hole. The atomic number contrast between the GSR particles and the organic fibers allowed to find a robust procedure to segment the micrographs into binary images, in which the white pixel count was attributed to GSR coverage. The decrease of the white pixel count followed an exponential decay, and it was found that the reciprocal of the decay constant, obtained from the least-square fitting of the coverage data, showed a linear dependence on the shooting distance.

  15. Density measurements of subcooled water in the temperature range of (243 and 283) K and for pressures up to 400 MPa.

    PubMed

    Romeo, Raffaella; Giuliano Albo, P Alberto; Lorefice, Salvatore; Lago, Simona

    2016-02-21

    In this work, accurate density measurements of subcooled water (freshly double-distilled water) were performed along eight constant-mass curves in the temperature range of (243 to 283) K and in the pressure range of (140 to 400) MPa, by a pseudo-isochoric method. The experimental apparatus mainly consisted of a high pressure vessel, especially designed for this experiment, of known volume as a function of temperature and pressure, used to perform measurements in the T-p range under study. The density of subcooled water was obtained by measuring the equilibrium pressure at different temperatures, keeping the mass constant. All terms contributing to the uncertainty of subcooled water density measurements were considered; the estimated relative uncertainty, in the investigated temperature and pressure range, is about 0.07%. The experimental results were compared with the literature densities. In particular, the trend of density versus temperature for a constant mass of sample observed experimentally differs from the trend calculated by the equation provided by the International Association for Properties of Water and Steam (IAPWS-95) outside the range of validity, i.e., in the metastable region.

  16. Final report on EURAMET.M.P-S12 — Bilateral supplementary comparison of the national pressure standards of CMI and INRIM in the range 300 Pa to 15 kPa of negative gauge pressure

    NASA Astrophysics Data System (ADS)

    Krajícek, Zdenek; Bergoglio, Mercede; Pražák, Dominik; Pasqualin, Stefano

    2014-01-01

    This report describes a EURAMET bilateral supplementary comparison between Czech CMI and Italian INRIM in low negative gauge pressure in gas (nitrogen), denoted as EURAMET.M.P-S12. The digital non-rotating pressure balance FPG8601 manufactured by Fluke/DH-Instruments, USA is normally used for gauge and absolute pressures in the range from 1 Pa to 15 kPa, but with some modifications it can be used also for the negative gauge pressures in the same range. During the preparation of the visit of INRIM at CMI for the last comparison within the framework of EURAMET.M.P-K4.2010, it was agreed to also perform an additional comparison in the range from 300 Pa to 15 kPa of negative gauge pressure. The measurements were performed in October 2012. Both institutes successfully proved their equivalence in all the tested points in the range from 300 Pa to 15 kPa of negative gauge pressure in a comparison that had, so far, been unique. . Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  17. Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2001-01-01

    A new high-pressure phase of methane hydrate has been identified based on its high optical relief, distinct pressure-temperature phase relations, and Raman spectra. In-situ optical observations were made in a hydrothermal diamond-anvil cell at temperatures between -40?? and 60 ??C and at pressures up to 900 MPa. Two new invariant points were located at -8.7 ??C and 99 MPa for the assemblage consisting of the new phase, structure I methane hydrate, ice Ih, and water, and at 35.3 ??C and 137 MPa for the new phase-structure I methane hydrate-water-methane vapor. Existence of the new phase is critical for understanding the phase relations among the hydrates at low to moderate pressures, and may also have important implications for understanding the hydrogen bonding in H2O and the behavior of water in the planetary bodies, such as Europa, of the outer solar system.

  18. Effect of Water Vapor Pressure on Fatigue Crack Growth in Al-Zn-Cu-Mg Alloy Over Wide-Range Stress Intensity Factor Loading

    DTIC Science & Technology

    2014-05-07

    Lee United States Air Force Academy Title: Effect of Water Vapor Pressure on Fatigue Crack Growth in Al-Zn-Cu- Mg Alloy Over Wide-range Stress...Al- li-Cu- Mg alloys in vacuum, Metall Trans A, 24 (1993) 1807-1817. [46] R.D. Carter, E.W. Lee, E.A. Starke, C.J. Beevers, The Effect of...Vapor Pressure on Fatigue Crack Growth in Al-Zn-Cu- Mg Alloy Over Wide-range Stress Intensity Factor Loading J.T. Bums1, R.W. Bush2, J. Ai1, J.L Jones1

  19. Final report on APMP.M.P-S4: Results of the bilateral supplementary comparison on pressure measurements in the range (60 to 350) kPa of gauge pressure in gas media

    NASA Astrophysics Data System (ADS)

    Priruenrom, T.; Sabuga, W.; Konczak, T.

    2013-01-01

    The bilateral supplementary comparison APMP.M.P-S4 on pressure measurements in the range (60 to 350) kPa of gauge pressure in gas media was organized by National Institute of Metrology of Thailand, NIMT, as the pilot laboratory, comparing with Physikalisch-Technische Bundesanstalt of Germany, PTB. The objective of this comparison is to check equivalence of gas pressure standards between NIMT and PTB. The period of measurement covered November to December 2012. NIMT provided a transfer standard, which was a WC-WC piston-cylinder assembly (PCA) with a nominal effective area of 10 cm2 manufactured by Fluke Corporation, DHI. The measurements were performed at pressures (60, 100, 150, 200, 250, 300 and 350) kPa. The NIMT laboratory standard used was a pressure balance with a PCA of 10 cm2 manufactured by DHI and identified by serial number 0693. The PTB laboratory standard used was a pressure balance with a PCA of 10 cm2 manufactured by Desgranges et Huot (DH) and identified by serial number 288. The results of this comparison show that the relative difference of the effective area values obtained by NIMT and PTB is not larger than 4.3 ppm, which corresponds to En = 0.26. Therefore, it confirms that the gas pressure standards maintained by the two institutes, NIMT and PTB, in the pressure range (60 to 350) kPa in gauge mode are equivalent under their uncertainties claimed. The result of this comparison is essential to support the calibration and measurement capabilities (CMC) of NIMT in this pressure range. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the APMP, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Survival of fossilised diatoms and forams in hypervelocity impacts with peak shock pressures in the 1-19 GPa range

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Harriss, K. H.; Price, M. C.; Yolland, L.

    2017-07-01

    Previously it has been shown that diatom fossils embedded in ice could survive impacts at speeds of up to 5 km s-1 and peak shock pressures up to 12 GPa. Here we confirm these results using a different technique, with diatoms carried in liquid water suspensions at impact speeds of 2-6 km s-1. These correspond to peak shock pressures of 3.8-19.8 GPa. We also report on the results of similar experiments using forams, at impact speeds of 4.67 km s-1 (when carried in water) and 4.73 km s-1 (when carried in ice), corresponding to peak shock pressures of 11.6 and 13.1 GPa respectively. In all cases we again find survival of recognisable fragments, with mean fragment size of order 20-25 μm. We compare our results to the peak shock pressures that ejecta from giant impacts on the Earth would experience if it subsequently impacted the Moon. We find that 98% of impacts of terrestrial ejecta on the Moon would have experienced peak pressures less than 20 GPa if the ejecta were a soft rock (sandstone). This falls to 82% of meteorites if the ejecta were a hard rock (granite). This assumes impacts on a solid lunar surface. If we approximate the surface as a loose regolith, over 99% of the impacts involve peak shock pressures below 20 GPa. Either way, the results show that a significant fraction of terrestrial meteorites impacting the Moon will do so with peak shock pressures which in our experiments permit the survival of recognisable fossil fragments.

  1. A bossed diaphragm piezoresistive pressure sensor with a peninsula-island structure for the ultra-low-pressure range with high sensitivity

    NASA Astrophysics Data System (ADS)

    Zhao, Libo; Xu, Tingzhong; Hebibul, Rahman; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Guo, Xin; Xu, Yu; Wang, Hongyan; Zhao, Yulong

    2016-12-01

    A sensor chip with a bossed diaphragm combined with a peninsula-island structure was developed for a piezoresistive pressure sensor. By introducing a stiffness mutation above the gap position between the peninsula and island structures, the strain energy of the proposed diaphragm was mainly concentrated upon the gap position, which remarkably increased the sensitivity of the sensor chip. A beam-diaphragm coupled model and an optimization method for the novel sensor chip were also developed, which gave guidelines for optimizing the sensor chip structure. Finally, a sensor chip with the bossed diaphragm combined with peninsula-island structure was fabricated and tested. The experimental results showed that the proposed sensor chip was able to measure ultra-low pressure within 500 Pa with high sensitivity.

  2. Large Area One-Step Facile Processing of Microstructured Elastomeric Dielectric Film for High Sensitivity and Durable Sensing over Wide Pressure Range.

    PubMed

    Chen, Sujie; Zhuo, Bengang; Guo, Xiaojun

    2016-08-10

    Once the requirement of sensitivity has been met, to enable a flexible pressure sensor technology to be widely adopted as an economic and convenient way for sensing diverse human body motions, critical factors need to be considered including low manufacturing cost, a large pressure detection range, and low power consumption. In this work, a facile approach is developed for one-step processing of a large area microstructured elastomer film with high density microfeatures of air voids, which can be seamlessly integrated into the process flow for fabricating flexible capacitive sensors. The fabricated sensors exhibit fast response and high sensitivity in the low pressure range to be able to detect very weak pressure down to 1 Pa and perform reliable wrist pulse monitoring. Compared to previous work, more advantageous features of this sensor are relatively high sensitivity being maintained in a wide pressure range up to 250 kPa and excellent durability under heavy load larger than 1 MPa, attributed to the formed dense air voids inside the film. A smart insole made with the sensor can accurately monitor the real-time walking or running behaviors and even a small weight change less than 1 kg under a heavy load of a 70 kg adult. For both application examples of wrist pulse monitoring and smart insole, the sensors are operated in a 3.3 V electronic system powered by a Li-ion battery, showing the potential for power-constrained wearable applications.

  3. Kinetic study on the photoabsorption process of gaseous O 2 dimol at 630 nm in a wide pressure range

    NASA Astrophysics Data System (ADS)

    Ida, Akira; Furui, Eiji; Akai, Nobuyuki; Kawai, Akio; Shibuya, Kazuhiko

    2010-03-01

    The visible light absorption of gaseous O 2 dimol at 630 nm was measured in the pressure region of 0.04-90 atm. The intensities measured at high pressures did not agree with the values extrapolated from the data obtained at low pressures. A kinetic analysis assuming the equilibrium between the dimol and free O 2 monomers was performed. All the data are well reproduced by the model using the 630 nm absorption cross-section of (5.6 ± 3.3) × 10 -24 cm 2 molecule -1 and the dissociation equilibrium constant of (6.8 ± 4.2) × 10 21 molecules cm -3. The critical distance between the O 2 molecules in the dimol is discussed on the basis of the equilibrium constant determined.

  4. Blast Pressures Induced by the Impact of Kinetic Energy Penetrators on Steel Targets in an Enclosed Range.

    DTIC Science & Technology

    1981-02-01

    heat of detonation of pentolite is Sl k.J/g, so the kinetic energy of the tungsten penetrators is equal to the heat of detonation of...the heat of detonation of pentolite, 5.11 kJ/g. Then the scaled distance curves 3 can be used to predict blast pressure at the instrumented position for...kinetic and chemical energy is 11.8 MJ which equals the heat of detonation of 2.3 kg of pentolite. This would produce a reflected blast pressure of

  5. Simultaneous and in situ analysis of thermal and volumetric properties of starch gelatinization over wide pressure and temperature ranges.

    PubMed

    Randzio, Stanislaw L; Orlowska, Marta

    2005-01-01

    A method for simultaneous and in situ analysis of thermal and volumetric properties of starch gelatinization from 0.1 to 100 MPa and from 283 to 430 K is described. The temperature of a very sensitive calorimetric detector containing a starch-water emulsion at a selected pressure is programmed to rise at a slow rate; volume variations are performed automatically to keep the selected pressure constant while the heat exchange rate and the volume are recorded. The method is demonstrated with a novel investigation of pressure effects on a sequence of three phase transitions in an aqueous emulsion of wheat starch (56 wt % water). The volume changes during the main endothermic transition (M), associated with melting of the crystalline part of the starch granules and a helix-coil transformation in amylopectin, but also with an important swelling, were separated into a volume increase associated with swelling and a volume decrease associated with the transition itself. Thermodynamic parameters for this transition together with their pressure dependencies have been obtained from four independent experiments at each pressure. The data are thermodynamically consistent, but are poorly described by the Clapeyron equation. The negative volume change of the slow exothermic transition (A) appearing just after the main endothermic transition (M) is small, spread out over a wide temperature interval, and occurs at higher temperatures with increasing pressures. This transition is probably associated with reassociation of the unwound helixes of amylopectin with parts of amylopectin molecules other than their original helix duplex partner. The positive volume change of the high-temperature, endothermic transition (N) with a small enthalpy change is probably associated with a nematic-isotropic transformation ending the formation of a homogeneous SOL phase (in the sense of Flory), and is also pushed to higher temperatures with increasing pressures. Knowledge of the state of wheat starch

  6. Ozone sonde measurements aboard long-range boundary-layer pressurized balloons over the western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Gheusi, François; Barret, Brice; Verdier, Nicolas; Dulac, François; Durand, Pierre; Jambert, Corinne

    Since few years, the French space agency CNES has developed boundary-layer pressurized balloons (BLPBs) with the capability to transport scientific payloads at isopicnic level over very long distances and durations (up to several weeks in absence of navigation limits). However, the autonomy of conventional electro-chemical cell (ECC) ozone sondes, that are widely used for tropospheric and stratospheric soundings, is limited to few hours due to power consumption and electrolyte evaporation (due to air bubbling in the cathode solution). In collaboration with the French research community, CNES has developed a new ozone payload suited for long duration flights aboard BLPBs. The mechanical elements (Teflon pump and motor) and the electro-chemical cell of conventional ECC sondes have been kept but the electronic implementation is entirely new. The main feature is the possibility of programming periodic measurement sequences -- with possible remote control during the flight. To increase the ozone sonde autonomy, the strategy has been adopted of short measurement sequences (typically 3 min) regularly spaced in time (e.g. every 15 min, which is usually sufficient for air quality studies). The rest of the time, the sonde is left at rest (pump motor off). The response time of an ECC sonde to an ozone concentration step is below one minute. Therefore, the typical measurement sequence is composed of a one-minute spin-up period after the pump has been turned on, followed by a two-minute acquisition period. (Note that the time intervals given here are indicative. All can be adjusted before and during the flight.) Results of a preliminary ground-based test in spring 2012 will be first presented. The sonde provided correct ozone concentrations against a reference UV analyzer every 15 minutes during 4 days. Then, we will illustrate results from 16 BLBP flights launched in the low troposphere over the Mediterranean during the three summer field campaings of the coordinated project

  7. Vapor pressures and calculated heats of vaporization of concentrated nitric acid solutions in the composition range 71 to 89 percent nitrogen dioxide, 1 to 10 percent water, and in the temperature range 10 to 60 degrees C

    NASA Technical Reports Server (NTRS)

    Mckeown, A B; Belles, Frank E

    1954-01-01

    Total vapor pressures were measured for 16 acid mixtures of the ternary system nitric acid, nitrogen dioxide, and water within the temperature range 10 degrees to 60 degrees Celsius, and with the composition range 71 to 89 weight percent nitric acid, 7 to 20 weight percent nitrogen dioxide, and 1 to 10 weight percent water. Heats of vaporization were calculated from the vapor pressure measurements for each sample for the temperatures 25, 40, and 60 degrees Celsius. The ullage of the apparatus used for the measurements was 0.46. Ternary diagrams showing isobars as a function of composition of the system were constructed from experimental and interpolated data for the temperatures 25, 40, 45, and 60 degrees C and are presented herein.

  8. Effect of dispersive long-range corrections to the pressure tensor: the vapour-liquid interfacial properties of the Lennard-Jones system revisited.

    PubMed

    Martínez-Ruiz, F J; Blas, F J; Mendiboure, B; Moreno-Ventas Bravo, A I

    2014-11-14

    We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264-6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r(c) = 2.5, 3, 4, and 5σ. In addition, we have also considered cutoff distances r(c) = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness

  9. Effect of dispersive long-range corrections to the pressure tensor: The vapour-liquid interfacial properties of the Lennard-Jones system revisited

    SciTech Connect

    Martínez-Ruiz, F. J.; Blas, F. J.; Mendiboure, B.; Moreno-Ventas Bravo, A. I.

    2014-11-14

    We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264–6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r{sub c} = 2.5, 3, 4, and 5σ. In addition, we have also considered cutoff distances r{sub c} = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial

  10. Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa

    SciTech Connect

    Cao, Xiuxia; Li, Jiabo; Li, Jun; Li, Xuhai; Xu, Liang; Wang, Yuan; Zhu, Wenjun; Meng, Chuanmin; Zhou, Xianming

    2014-09-07

    High-pressure refractive index of optical window materials not only can provide information on electronic polarizability and band-gap structure, but also is important for velocity correction in particle-velocity measurement with laser interferometers. In this work, the refractive index of r-cut sapphire window at 1550 nm wavelength was measured under shock pressures of 5–65 GPa. The refractive index (n) decreases linearly with increasing shock density (ρ) for shock stress above the Hugoniot elastic limit (HEL): n = 2.0485 (± 0.0197) − 0.0729 (± 0.0043)ρ, while n remains nearly a constant for elastic shocks. This behavior is attributed to the transition from elastic (below HEL) to heterogeneous plastic deformation (above HEL). Based on the obtained refractive index-density relationship, polarizability of the shocked sapphire was also obtained.

  11. On the pressure difference ranges which assure a specified gap size for semiconductor crystals grown in terrestrial dewetted Bridgman

    NASA Astrophysics Data System (ADS)

    Braescu, L.

    2010-04-01

    The complexity of the dewetting phenomenon on the ground consists mainly in the presence of the hydrostatic pressure which should be counterbalanced by a supplementary gas pressure difference ΔP=Pc-Ph between the cold and hot sides of the sample. The experiments have shown that using uncoated and coated crucibles, detached and partially detached growth can be obtained; dewetting became unsuccessful when the liquid-solid interface changed its shape—phenomenon which proved connection between the meniscus shape, pressure difference and stable dewetting. Because the interest is to grow crystals with specified gap size, the ΔP limits and the corresponding menisci shapes for which dewetting is feasible are first established, on the base of the theoretical and computational investigations. Then, for the obtained menisci, the static stability via the conjugate point criterion of the calculus of variations is studied in the cases of the classical semiconductors grown in (i) uncoated crucibles (i.e., the wetting angle θc and growth angle αe satisfy the inequality θc+αe<180∘) and (ii) coated crucibles or pollution ( θc+αe≥180∘). In this way, gap thickness limitations for which the menisci are physically realizable are obtained. Numerical results are performed for InSb crystal grown in uncoated ampoule, and for Ge crystal grown in coated ampoule.

  12. Partial discharges and breakdown in SF6 in the pressure range 25-150 kPa in non-uniform background fields

    NASA Astrophysics Data System (ADS)

    Seeger, M.; Clemen, M.

    2014-01-01

    The partial discharge (PD) and electric breakdown mechanisms in SF6 at a plug contact in the pressure range 25-150 kPa were investigated at ambient temperature in a plug-plate arrangement. This parameter range has similar particle number densities as in the previous investigation of the dielectric recovery in a high-voltage circuit breaker (Seeger et al 2012 J. Phys. D: Appl. Phys. 45 395204), where optical access was limited and the relevant parameters of pressure and temperature could only be determined indirectly by computational fluid dynamic simulations. The present investigation did not have these limitations, since the pressure and temperature were well defined. Optical observation by an image intensified high speed camera in combination with a photo multiplier tube allowed an understanding of the various mechanisms for the PDs and breakdown to be gained. The breakdown fields and PD parameters could be well described by a simple leader model in the pressure range 75-150 kPa for negative polarity and above 25 kPa for positive polarity. Discrepancies with the model are observed below 75 kPa for negative polarity and at 25 kPa for positive polarity. This could be explained by a slow, repetitive heating mechanism which has not been reported so far.

  13. Final report on regional key comparison COOMET.M.P-K2: Hydraulic gauge pressure in the range 10 MPa to 100 MPa

    NASA Astrophysics Data System (ADS)

    Dapkeviciene, K.; Sabuga, W.; Waller, B.; Farar, P.; Kiselev, Yu; Saczuk, K.; Sandu, I.

    2011-01-01

    This report describes a COOMET key comparison of hydraulic pressure standards of seven national metrology institutes that was carried out in the period from June 2005 to July 2008 in order to determine their degrees of equivalence in the range 10 MPa to 100 MPa of the gauge pressure. The pilot laboratory was VMT/VMC. The pressure standards of the participating NMIs were pressure balances of different design, equipped with piston-cylinder assemblies. The transfer standard was a pressure balance, equipped with a 9.8 mm2 piston-cylinder assembly, manufactured by SMU. The participants reported the pressure-dependent effective areas of the transfer standard at specified pressures. The reference values were calculated as the weighted means of PTB, NPL, SMU and VNIIM, which have primary pressure standards. The results by all participants agree with the reference values and with each other within the expanded uncertainties calculated with a coverage factor (k = 2). At the level of standard uncertainties there is a full agreement between 10 MPa and 100 MPa. The results of this comparison were linked to those of key comparison CCM.P-K7. Degrees of equivalence and expanded (k = 2) uncertainties between the COOMET and laboratories having participated in other KCs: CCM.P-K7, APMP.M.P-K7, EUROMET.M.P-K4 and APM.M.P-K7.1 at measured pressure points are presented in the final report. The results of the comparison demonstrate equivalence of the laboratory standards and, for laboratories the CMCs of which are not yet presented in the KCDB, this comparison provides a basis for submission in the range from 10 MPa to 100 MPa of hydraulic gauge pressure. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  14. Change in serum TSH levels within the reference range was associated with variation of future blood pressure: a 5-year follow-up study.

    PubMed

    Jiang, F; Liu, A; Lai, Y; Yu, X; Li, C; Han, C; Zhang, Y; Wang, X; Wang, Z; Bao, S; Lv, N; Jin, M; Yang, F; Fan, Y; Jin, T; Zhao, W; Shan, Z; Teng, W

    2017-04-01

    Controversy exists on the relationship between serum thyrotropin (TSH) and blood pressure, and only a few prospective studies are available up to now. The study aimed to investigate the association between serum TSH within the reference range and blood pressure through a 5-year follow-up study. A total of 623 subjects with normal TSH were followed up for 5 years, including the measurement of demographic data, blood pressure, height, weight and serum TSH. Finally, 531 subjects were included in this prospective study. Body mass index (BMI), prevalence of hypertension, and systolic and diastolic blood pressure were all higher at follow-up than at baseline. Adjusted for age, gender, smoking status, BMI and homoeostasis model assessment of insulin resistance (HOMA-IR) at baseline, multiple linear regression analyses found no relationship between serum TSH at baseline and levels of blood pressure at follow-up, but the changes in serum TSH levels during follow-up was positively associated with the changes in systolic blood pressure (B=2.134, P<0.05), which became more significant in women but not significant in men. The change of systolic blood pressure in group of TSH increase >0.5 mIU l(-1) was significantly higher than in group of TSH decrease >0.5 mIU l(-1) within reference, after adjusting for age, gender, smoking status, BMI and HOMA-IR at baseline. This result became more significant in women, but no statistical significance was observed in men. Co-variation with serum TSH levels and blood pressure was observed during 5-year follow-up among people with normal TSH.

  15. Isotropic Negative Area Compressibility over Large Pressure Range in Potassium Beryllium Fluoroborate and its Potential Applications in Deep Ultraviolet Region.

    PubMed

    Jiang, Xingxing; Luo, Siyang; Kang, Lei; Gong, Pifu; Yao, Wenjiao; Huang, Hongwei; Li, Wei; Huang, Rongjin; Wang, Wei; Li, Yanchun; Li, Xiaodong; Wu, Xiang; Lu, Peixiang; Li, Laifeng; Chen, Chuangtian; Lin, Zheshuai

    2015-09-02

    Isotropic negative area compressibility, which is very rare, is observed in KBBF and the related mechanism is investigated by combined high-pressure X-ray diffraction (XRD) experiments and first-principles calculations. The strong mechanical anisotropy leads to a large Poisson's ratio and high figure of merit for the acoustic-optics effect, giving KBBF potential applications as smart strain converters and deep-ultraviolet (DUV) acoustic-optic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. New Raman measurements for H2O ice VII in the range of 300 cm-1 to 4000 cm-1 at pressures up to 120 GPa

    NASA Astrophysics Data System (ADS)

    Zha, Chang-Sheng; Tse, John S.; Bassett, William A.

    2016-09-01

    Raman spectroscopic measurements for H2O ice VII have been conducted to 120 GPa at 300 K in the spectroscopic range of 300-4000 cm-1. Both moissanite and diamond anvils were used for the experiments. This overcomes the problems of overlapping spectra between the diamond anvil and sample, which had prevented the observation of the stretching modes at pressures higher than ˜23 GPa in all previous measurements. The new results reveal many bands which have not been reported before. The pressure dependences of the Raman modes show anomalous changes at 13-15, ˜27, ˜44, ˜60, and 90 GPa, implying possible structural changes at these pressures. The new results demonstrate that the predicted symmetric hydrogen bond phase X transition does not occur below 120 GPa.

  17. New Raman measurements for H2O ice VII in the range of 300 cm(-1) to 4000 cm(-1) at pressures up to 120 GPa.

    PubMed

    Zha, Chang-Sheng; Tse, John S; Bassett, William A

    2016-09-28

    Raman spectroscopic measurements for H2O ice VII have been conducted to 120 GPa at 300 K in the spectroscopic range of 300-4000 cm(-1). Both moissanite and diamond anvils were used for the experiments. This overcomes the problems of overlapping spectra between the diamond anvil and sample, which had prevented the observation of the stretching modes at pressures higher than ∼23 GPa in all previous measurements. The new results reveal many bands which have not been reported before. The pressure dependences of the Raman modes show anomalous changes at 13-15, ∼27, ∼44, ∼60, and 90 GPa, implying possible structural changes at these pressures. The new results demonstrate that the predicted symmetric hydrogen bond phase X transition does not occur below 120 GPa.

  18. Constraining the Depth of a Martian Magma Ocean through Metal-Silicate Partitioning Experiments: The Role of Different Datasets and the Range of Pressure and Temperature Conditions

    NASA Technical Reports Server (NTRS)

    Righter, K.; Chabot, N.L.

    2009-01-01

    Mars accretion is known to be fast compared to Earth. Basaltic samples provide a probe into the interior and allow reconstruction of siderophile element contents of the mantle. These estimates can be used to estimate conditions of core formation, as for Earth. Although many assume that Mars went through a magma ocean stage, and possibly even complete melting, the siderophile element content of Mars mantle is consistent with relatively low pressure and temperature (PT) conditions, implying only shallow melting, near 7 GPa and 2073 K. This is a pressure range where some have proposed a change in siderophile element partitioning behavior. We will examine the databases used for parameterization and split them into a low and higher pressure regime to see if the methods used to reach this conclusion agree for the two sets of data.

  19. Standard thermodynamic properties of H3PO4(aq) over a wide range of temperatures and pressures.

    PubMed

    Ballerat-Busserolles, Karine; Sedlbauer, Josef; Majer, Vladimir

    2007-01-11

    The densities and heat capacities of solutions of phosphoric acid, 0.05 to 1 mol kg-1, were measured using flow vibrating tube densitometry and differential Picker-type calorimetry at temperatures up to 623 K and at pressures up to 28 MPa. The standard molar volumes and heat capacities of molecular H3PO4(aq) were obtained, via the apparent molar properties corrected for partial dissociation, by extrapolation to infinite dilution. The data on standard derivative properties were correlated simultaneously with the dissociation constants of phosphoric acid from the literature using the theoretically founded SOCW model. This made it possible to describe the standard thermodynamic properties, particularly the standard chemical potential, of both molecular and ionized phosphoric acid at temperatures up to at least 623 K and at pressures up to 200 MPa. This representation allows one to easily calculate the first-degree dissociation constant of H3PO4(aq). The performance of the SOCW model was compared with the other approaches for calculating the high-temperature dissociation constant of the phosphoric acid. Using the standard derivative properties, sensitively reflecting the interactions between the solute and the solvent, the high-temperature behavior of H3PO4(aq) is compared with that of other weak acids.

  20. An Investigation Into the Range of Sea State Conditions Necessary for the Generation of Seafloor Pressures and Secondary Microseisms in the Northeast Atlantic, West of Ireland

    NASA Astrophysics Data System (ADS)

    Donne, S. E.; Bean, C. J.; Dias, F.; Christodoulides, P.

    2016-12-01

    Ocean generated microseisms propagate mainly as Rayleigh and Love waves and are a result of the mechanical coupling between the ocean and the solid earth. There are two types of microseism, primary and secondary. Primary microseisms are generated when a travelling ocean wave enters shallow water or coastal regions and the associated pressure profile, which decays exponentially with depth, is non zero at the seafloor. Secondary microseisms on the other hand are generated by the second order non linear effect associated with a standing wave, through ocean wave- wave interactions. Secondary microseisms can therefore be generated in any water depth. The conditions required to generate secondary microseisms through wave- wave interactions are presented in Longuet-Higgins (1950) through the interaction of two travelling waves with the same wave period at an angle of 180 degrees. Equivalent surface pressure density (p2l) is modelled within the numerical ocean wave model, Wavewatch III and is the microseism source term. This work investigates the theoretical pressures associated with the interaction of two travelling waves with varying wave periods and wave amplitude at a range of incident angles. Theoretical seafloor pressures are calculated off the Southwest coast of Ireland and are compared with terrestrially recorded microseism data as well as oceanographic parameters and measured seafloor pressures. The results indicate that a broad range of sea state conditions can generate second order pressures at the seafloor which are consistent with measured seafloor measurements in the same location. While secondary microseism amplitudes may be used to infer ocean wave parameters this work has implications for doing so and these will be presented. Local seismic arrays in Ireland allow us to monitor and track the spatiotemporal evolution of these microseism source regions.

  1. The eutectic liquid composition in the Fe-Fe3S binary system at the core pressure range

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Hirose, K.; Tateno, S.; Morard, G.; Ohishi, Y.

    2015-12-01

    Sulfur is considered to be an important component in the Earth's core because it is depleted in the crust and mantle compared to other volatile elements and often included in iron meteorites. Here we examine the liquidus phase relations in the Fe-Fe3S binary system between 38 and 138 GPa based on characterization of a sample recovered from a melting experiment at high pressure and temperature in a laser-heated diamond-anvil cell. Both Fe-8wt.%S and Fe-14wt.%S samples were employed as starting materials, which were homogeneous mixtures of fine-grain Fe and FeS (<1 μm) prepared by induction melting and rapid quenching technique [Morard et al., 2011 PCM]. We used a focused ion beam (FIB) equipped with energy dispersive X-ray spectrometry for textural and chemical characterizations of recovered samples. The samples exhibited a melting texture with quenched liquid alloy at the hottest part and solid Fe or Fe3S at its outside. In a couple of samples, the quenched liquid was in direct contact with solid Fe3S, and solid Fe was also present right next to Fe3S, suggesting that the composition of such liquid is close to a eutectic composition (~10 wt.% S at 66 GPa and ~12 wt.% S at 138 GPa). Indeed, this interpretation is consistent with the results of other experiments obtained in this study. Our data demonstrate that the eutectic liquid composition in the Fe-Fe3S binary system decreases its sulfur concentration with increasing pressure, which is in agreement with previous studies [Morard et al., 2008 EPSL; Kamada et al., 2012 EPSL]. The sulfur content in the eutectic liquid composition may be less than 10 wt.% at the inner core boundary pressure. The recent shock-wave study by Huang et al.[2013 GRL] suggested 10 wt.% S in the outer core, but the present study indicates that such liquid alloy with 10 wt.% S crystalizes the B2 phase of Fe-S alloy and thus does not support the sulfur-rich outer core.

  2. Effect of hydrostatic pressure on the conductivity of YBa2Cu3O7-δsingle crystals in a broad range of temperature and oxygen content

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Khadzhai, G. Ya.; Dobrovolskiy, O. V.; Nazyrov, Z. F.; Kamchatnaya, S. N.

    2017-04-01

    The effect of external hydrostatic pressure on the electrical resistance of optimally doped and underdoped YBa2Cu3O7-δ single crystals is investigated in a broad temperature range, which includes the normal state and the region of superconducting fluctuations. The temperature dependences of the resistivity in the normal state are determined by scattering of charge carriers by phonons and defects. The application of pressure leads to significant changes in the electronic structure of the sample and reduces the degree of their defectiveness. This is accompanied by changeû in the lattice characteristics as the sample volume decreases. The fluctuation conductivity only exists within the range of ∼ 0.1Tc . With increasing δ the superconducting characteristics are close to the values typical for conventional low-temperature superconductors.

  3. Pressure-induced Crossover from Variable Range Hopping to Electron-Electron Interaction in the Organic Conductor (DOET)2BF4

    NASA Astrophysics Data System (ADS)

    Yasuzuka, Syuma; Murata, Keizo; Shimotori, Masahiro; Fujimoto, Tsutomu; Yamada, Jun‑ichi; Kikuchi, Koichi

    2006-02-01

    This paper reports the pressure effect on resistivity in the quasi two-dimensional (2D) organic conductor (DOET)2BF4 with orientational disorder of BF4 anions. At ambient pressure, the resistivity shows metal-insulator transition at 80 K and 2D variable range hopping (VRH) conduction below 80 K. The insulating behavior is suppressed by applying pressure and the temperature dependence of the resistivity shows the crossover from the 2D VRH to the logarithmic divergence as applied pressure increases. From the observation of the positive magnetoresistance, the logarithmic divergence of the resistivity is not attributed to the Anderson localization, but to the effect of the electron-electron interaction. This crossover is simply understood in terms of the screening effect on the random potential by increase of bandwidth due to applied pressure. It is found that a value of sheet conductance at low temperatures above 8 kbar, where the insulating state is almost suppressed, approaches to the minimum conductivity for a metallic state, σmin=e2/h=1/(25.8 kΩ), first proposed by Mott.

  4. Selective epitaxial silicon growth in the 650-1100 °C range in a reduced pressure chemical vapor deposition reactor using dichlorosilane

    NASA Astrophysics Data System (ADS)

    Regolini, J. L.; Bensahel, D.; Scheid, E.; Mercier, J.

    1989-02-01

    Selective epitaxial silicon layers have been grown in a reduced pressure (<2 Torr) reactor in the 650-1100 °C temperature range using only dichlorosilane (DCS) gas diluted in hydrogen. The growth rate plotted in Arrhenius coordinates (log G vs 1/T) shows an activation energy of 59 kcal/mol in the 650-800 °C range. A comparison is made between the DCS system and our previous results concerning the SiH4/HCl/H2 system.

  5. The dependence on pressure of the plastic flow of rocksalt in the temperature range 25-250° C: implications for the rate controlling mechanism

    NASA Astrophysics Data System (ADS)

    Muhammad, Nawaz; Spiers, Chris; De Bresser, Hans; Peach, Colin

    2014-05-01

    Despite the large body of data that already exists, the question what microphysical mechanisms govern plastic flow of natural rocksalt at in situ conditions has not yet been answered to full satisfaction. In particular, the exact mechanism controlling dislocation motion at relatively low temperature is still insufficiently understood. As a result, uncertainties exist regarding the appropriate mechanism-based flow-law for low temperature, hampering reliable extrapolation of lab creep data to in situ strain rates. Such extrapolation is required for the modelling of the long term behaviour of salt for geomechanical purposes (e.g. subsidence prognosis). Several dislocation models have been proposed to control plastic flow of rocksalt, such as dislocation climb, cross-slip and (impurity-controlled) glide, but none of these have been rigorously verified. One way to test which model is appropriate is by investigating the pressure dependence of flow of rocksalt. Dislocation glide is expected to be hardly affected by pressure, cross slip (controlled by constriction of partial dislocations) will become easier with increasing pressure, and dislocation climb will become more difficult. We performed conventional axi-symmetric compression tests on synthetic polycrystalline salt samples with an average grain size of 300 μm. The samples were dry, in order to eliminate the possible influence of pressure solution creep. The experiments were carried out at temperatures in the range 25-250° C, i.e. 0.28-0.48Tm, and at pressure ranging 50-600 MPa, which is a range not previously covered for polycrystalline rocksalt. Argon gas was used as the pressure medium. With confining pressure increasing from 50 to 600 MPa, the rocksalt remained of the same strength at RT, but became about 60% stronger at 125oC and about 80% stronger at 250oC at strain rate 10-6 s-1 (at 15% strain). Using a conventional (Dorn-type) power law to describe the mechanical behaviour, stress exponents (n) were found

  6. Experimental study of the dehydration reactions gypsum-bassanite and bassanite-anhydrite at high pressure: Indication of anomalous behavior of H2O at high pressure in the temperature range of 50-300 °C

    NASA Astrophysics Data System (ADS)

    Mirwald, Peter W.

    2008-02-01

    The system CaSO4-H2O, characterized by the three dehydration reactions gypsum-anhydrite, gypsum-bassanite, and bassanite-anhydrite, was reexamined by in situ differential pressure analysis in the temperature range of 60-350°C up to 3.5GPa pressure. The investigation revealed a fine structure in the dehydration boundaries of gypsum-bassanite and bassanite-anhydrite, each characterized by three inflections at 0.9-1.0, 1.9-2.0, and 2.6-28GPa. In addition, the phase transition of anhydrite high pressure anhydrite (monazite structure) was established for the first time at high P-T conditions intersecting the bassanite-anhydrite dehydration boundary at 2.15GPa /250°C. Furthermore, the triple point gypsum-bassanite-anhydrite was redetermined with 235MPa/80.5°C. The evaluation of the gypsum-bassanite dehydration boundary with respect to the volume and entropy change of the reaction, ΔVreact and ΔSreact, by means of the Clausius-Clapeyron relation yields for the entropy parameter an unusually large increase over the range of the noted inflections. This is interpreted as anomalous entropy behavior of H2O related presumably to a dramatic increase in fluctuations of the hydrogen network of the liquid leading possibly into a new structural state. The effect is strongly related to the three noted pressure levels of 0.9-1.0, 1.9-2.0, and 2.6-28GPa. In a synopsis of data including also a previous high pressure study in the temperature range between 0 and 80°C, a tentative P-T diagram of H2O is proposed.

  7. Effect of Dry Needling on Spasticity, Shoulder Range of Motion, and Pressure Pain Sensitivity in Patients With Stroke: A Crossover Study.

    PubMed

    Mendigutia-Gómez, Ana; Martín-Hernández, Carolina; Salom-Moreno, Jaime; Fernández-de-Las-Peñas, César

    2016-06-01

    The purpose of this study was to determine the effects of the inclusion of deep dry needling (DDN) in spastic shoulder muscles into a rehabilitation program on spasticity, pressure pain sensitivity, and shoulder range of motion in subjects who had experienced a stroke. A controlled, repeated-measures, crossover, double-blinded, randomized trial was conducted. Twenty patients who have had a stroke were randomly assigned to receive rehabilitation alone or rehabilitation combined with DDN over the upper trapezius, infraspinatus, subscapularis, and pectoralis mayor muscles on the spastic shoulder. Subjects received both interventions separated at least 15 days apart. Each intervention was applied once per week over 3 weeks. Spasticity (Modified Ashworth Scale), pressure pain thresholds over the deltoid and infraspinatus muscles and C5-C6 zygapophyseal joint, and shoulder range of motion were collected 1 week before and 1 week after each intervention by a blinded assessor. Reduction in spasticity was similar after both conditions for the upper trapezius, pectoralis major, and subscapularis muscles. A greater number of individuals receiving DDN exhibited decreased spasticity within the infraspinatus muscle. The analysis of covariance showed that all pressure pain thresholds, shoulder abduction, and external rotation of the shoulder increased significantly more after DNN intervention (P < .05). Shoulder flexion showed similar changes after both conditions. Our results suggest that inclusion of DDN into a multimodal rehabilitation program was effective for decreasing localized pressure sensitivity and improving shoulder range of motion in individuals who had experienced stroke; however, we did not observe significant differences in muscle spasticity. Copyright © 2016. Published by Elsevier Inc.

  8. Special Equations of State for Methane, Argon, and Nitrogen for the Temperature Range from 270 to 350 K at Pressures up to 30 MPa

    NASA Astrophysics Data System (ADS)

    Wagner, W.; Span, R.

    1993-07-01

    In order to describe the thermodynamic behavior of methane, argon, and nitrogen in the so-called “natural-gas region,” namely, from 270 to 350 K at pressures up to 30 MPa as accurate as possible with equations of a very simple form, new equations of state for these three substances have been developed. These equations are in the form of a fundamental equation in the dimensionless Helmholtz energy; for calculating the pressure or the density, the corresponding equations explicit in pressure are also given. The residual parts of the Helmholtz function representing the behavior of the real gas contain 12 fitted coefficients for methane, 8 for argon, and 7 for nitrogen. The thermodynamic relations between the Helmholtz energy and the most important thermodynamic properties and the needed derivatives of the equations are explicitly given; to assist the user there is also a table with values for computer-program verification. The uncertainties when calculating the density ρ, the speed of sound w, the isobaric specific heat capacity c p, and the isochoric specific heat capacity c v are estimated as follows. For all three substances it is Δρ/ρ≤±0.02 % for p≤ 12 MPa and Δρ/ρ ≤ ±0.05% for higher pressures. For methane it is Δw/w≤±0.02% for p≤10 MPa and Δw/w≤+-0.1% for higher pressures; for argon it is Δw/w≲-0.1 % for p≤ 7 MPa, Δw/w≤±0.3 % for 7 < p≤30 MPa; and for nitrogen it is Δw/w≤±0.1% for p≤1.5 MPa and Δw/w±0.5% for higher pressures. For all three substances it is Δc p/ c p≤±1 % and ΔC v/ C v≤±1 % in the entire range.

  9. Discharge physics and influence of the modulation on helium DBD modes in the medium-frequency range at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Boisvert, Jean-Sébastien; Margot, Joëlle; Massines, Françoise

    2017-04-01

    In this paper the recently reported hybrid mode (a dielectric barrier discharge (DBD) excited by an electric field oscillating at about 1 MHz) is investigated using space and time-resolved imaging together with electrical measurements. In contrast with the helium low-frequency DBD, at 1.6 MHz the light emission is desynchronized with the discharge current. It rather depends on the enhanced rate of stepwise excitation resulting from the massive secondary emission occurring 0.15Ƭ after the discharge current maximum (Ƭ is the excitation wave period). The consequence of ion impacts on the dielectric surfaces is a higher gas and dielectric temperatures as compared to typical helium DBDs. The electrical behavior and the gas temperature of a pulsed dielectric-barrier discharge operated at 1.6 MHz are also described in this paper as a function of the repetition rate (varying from 1 Hz to 10 kHz). The gas temperature is reduced when repetition rates higher or equal to 10 Hz is used. This is related to the gas renewal rate of 8.3 Hz, i.e., gas residence time of 120 ms in our conditions. In addition, due to the memory effect in the gas, the gas gap voltage decreases as the repetition rate increases. However, beyond 100 Hz, the power decreases and the gas gap voltage increases again. As a consequence, for a given power density, the optimal repetition rate is 100 Hz which minimizes the gas temperature without reducing the power density. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  10. EURAMET.M.P-S9 / EURAMET 1170, LOOP2. Comparison in the negative gauge pressure range -950 to 0 hPa

    NASA Astrophysics Data System (ADS)

    Otal, P.; Boineau, F.; Medina, N.; Pražák, D.; Wüthrich, C.; Saxholm, S.; Sabuga, W.; Kocas, I.; Durgut, Y.

    2017-01-01

    This report gives the results of a comparison of pressure standards of seven European National Metrology institutes in the range of negative gauge pressure from -950 hPa to 0 hPa. This comparison was piloted by LNE and was carried out from January 2011 to March 2012. This work is a part of the EURAMET project 1170 and is registered as a supplementary comparison EURAMET.M.P-S9. The transfer standard used was a pressure monitor RPM4 A160Ks manufactured by DH Instruments Inc., with a resolution of 0.1 Pa. The reference values have been determined from the weighted mean of the deviations reported by the participants for each specified pressure. Seventy-three of the seventy-seven values (96%) reported by the laboratories agree with the reference values within the expanded uncertainties with a coverage factor k = 2. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  11. The Impact of Azilsartan Medoxomil Treatment (Capsule Formulation) at Doses Ranging From 10 to 80 mg: Significant, Rapid Reductions in Clinic Diastolic and Systolic Blood Pressure.

    PubMed

    Perez, Alfonso; Cao, Charlie

    2017-03-01

    In this phase 2, multicenter, parallel-group, double-blind, dose-ranging study, hypertensive adults (n=449) were randomized to receive one of five doses of a capsule formulation of azilsartan medoxomil (AZL-M; 5, 10, 20, 40, 80 mg), olmesartan medoxomil (OLM) 20 mg, or placebo once daily. The primary endpoint was change in trough clinic diastolic blood pressure (DBP) at week 8. AZL-M provided rapid statistically and clinically significant reductions in DBP and systolic blood pressure (SBP) vs placebo at all doses except 5 mg. Placebo-subtracted changes were greatest with the 40 mg dose (DBP, -5.7 mm Hg; SBP, -12.3 mm Hg). Clinic changes with AZL-M (all doses) were statistically indistinguishable vs OLM, although there were greater reductions with AZL-M 40 mg using 24-hour ambulatory blood pressure. Adverse event frequency was similar in the AZL-M and placebo groups. Based on these and other findings, subsequent trials investigated the commercial AZL-M tablet in the dose range of 20 to 80 mg/d. ©2016 Wiley Periodicals, Inc.

  12. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Vol. 4: Large-radius leading edge

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  13. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Vol. 3: Medium-radius leading edge

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6), 60 x 10(exp 6), and 120 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  14. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 2; Small-Radius Leading Edge

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  15. COMPARISON OF VIDEO-GUIDED, LIVE INSTRUCTED, AND SELF-GUIDED FOAM ROLL INTERVENTIONS ON KNEE JOINT RANGE OF MOTION AND PRESSURE PAIN THRESHOLD: A RANDOMIZED CONTROLLED TRIAL.

    PubMed

    Cheatham, Scott W; Kolber, Morey J; Cain, Matt

    2017-04-01

    The use of foam rollers to provide tissue massage is a commonly used intervention by rehabilitation professionals for their patients and clients. Currently, there is no consensus on the optimal foam rolling treatment approach. Of particular interest are the effects of different instructional methods of foam rolling, as individuals ultimately perform these interventions independently outside of formal care. Finding the optimal instructional method may help improve the individual's understanding of the technique, allowing for a safe and effective intervention. The purpose of this study was to compare the effects of video-guided, live instructed, and self-guided foam roll interventions on knee flexion Range of Motion (ROM) and pressure pain thresholds. Forty-five healthy adults were recruited and randomly allocated to one of three intervention groups: video-guided, live-instructed, and self-guided. Each foam roll intervention lasted a total of 2 minutes. Dependent variables included knee flexion ROM and pressure pain threshold of the left quadriceps. Statistical analysis included subject demographic calculations and appropriate parametric and non-parametric tests to measure changes within and between intervention groups. Each intervention group showed significant gains in knee flexion ROM (p ≤ 0.003) and pressure pain thresholds (p < 0.001). An approximate 5 degree increase of knee flexion and a 150 kPa increase in pressure pain threshold was observed at the posttest measure for all groups. There was no significant difference (p=0.25) found between intervention groups. All three foam roll interventions showed short-term increases in knee flexion ROM and pressure pain thresholds. The two instructional methods (video and live instruction) and the self-guided method produced similar outcomes and can be used interchangeably. Individuals can benefit from various types of instruction and in cases of limited resources video may offer an alternative or adjunct to

  16. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    NASA Astrophysics Data System (ADS)

    Koukoulas, Triantafillos; Piper, Ben

    2015-04-01

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  17. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    SciTech Connect

    Koukoulas, Triantafillos Piper, Ben

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  18. Creep- and fatigue-resistant, rapid piezoresistive responses of elastomeric graphene-coated carbon nanotube aerogels over a wide pressure range.

    PubMed

    Tsui, Michelle N; Islam, Mohammad F

    2017-01-19

    Lightweight, flexible piezoresistive materials with wide operational pressure ranges are in demand for applications such as human physical activity and health monitoring, robotics, and for functional interfacing between living systems and wearable electronics. Piezoresistivity of many elastomeric foams of polymers and carbon allotropes satisfies much of the required characteristics for these applications except creep and fatigue resistance due to their viscoelasticity, critically limiting the reliability and lifetime of integrated devices. We report the piezoresistive responses from aerogels of graphene-coated single-walled carbon nanotubes (SWCNTs), made using a facile and versatile sol-gel method. Graphene crosslinks the junctions of the underlying random network of SWCNTs, generating lightweight elastomeric aerogels with a mass density of ≈11 mg mL(-1) (volume fraction ≈7.7 × 10(-3)) and a Young's modulus of ≈0.4 MPa. The piezoresistivity of these aerogels spans wide compressive pressures up to at least 120 kPa with sensitivity that exhibit ultrafast temporal responses of <27 ms and <3% delay ratio over 10(4) compressive loading-unloading cycles at rates between 0.1-10 Hz. Most importantly, the piezoresistive responses do not show any creep at least for 1 hour and 80 kPa of compressive static loading. We suggest that the fatigue- and creep-resistant, ultrafast piezoresistive responses of these elastomeric aerogels are highly attractive for use in dynamic and static lightweight, pressure sensing applications such as human activity monitoring and soft robotics.

  19. Development of acoustically lined ejector technology for multitube jet noise suppressor nozzles by model and engine tests over a wide range of jet pressure ratios and temperatures

    NASA Technical Reports Server (NTRS)

    Atvars, J.; Paynter, G. C.; Walker, D. Q.; Wintermeyer, C. F.

    1974-01-01

    An experimental program comprising model nozzle and full-scale engine tests was undertaken to acquire parametric data for acoustically lined ejectors applied to primary jet noise suppression. Ejector lining design technology and acoustical scaling of lined ejector configurations were the major objectives. Ground static tests were run with a J-75 turbojet engine fitted with a 37-tube, area ratio 3.3 suppressor nozzle and two lengths of ejector shroud (L/D = 1 and 2). Seven ejector lining configurations were tested over the engine pressure ratio range of 1.40 to 2.40 with corresponding jet velocities between 305 and 610 M/sec. One-fourth scale model nozzles were tested over a pressure ratio range of 1.40 to 4.0 with jet total temperatures between ambient and 1088 K. Scaling of multielement nozzle ejector configurations was also studied using a single element of the nozzle array with identical ejector lengths and lining materials. Acoustic far field and near field data together with nozzle thrust performance and jet aerodynamic flow profiles are presented.

  20. A dose ranging study of atenolol in hypertension: fall in blood pressure and plasma renin activity, beta-blockade and steady-state pharmacokinetics.

    PubMed Central

    Ishizaki, T; Oyama, Y; Suganuma, T; Sasaki, T; Nakaya, H; Shibuya, T; Sato, T

    1983-01-01

    The relationship between the oral dosage and plasma concentration of the long-acting cardioselective beta-adrenoceptor blocker atenolol and the antihypertensive response to the the degree of beta-adrenoceptor blockade and change in plasma renin activity (PRA) was evaluated in patients with mild-to-moderate essential hypertension in a double-blind, randomized, between-patient, dose-ranging (25, 50 or 100 mg once daily for 4 weeks) study. The optimum, or minimum, daily dose of atenolol to treat patients with mild-to-moderate hypertension was not clearly identified in this study. A between-treatment comparison did not demonstrate that all blood pressure falls were always less in the 25 mg group than in the other two groups. Calculation of beta-error or the power for the negative results between doses suggested that a large sample size is required to draw a conclusion that no dose-antihypertensive relationship of atenolol exists in the treatment of mild-to-moderate hypertension. A relatively flat plasma concentration-antihypertensive response relationship was observed. Steady-state plasma concentrations of atenolol were dose-related and renal drug clearance was well correlated with individual creatinine clearance. beta-adrenoceptor blockade was better correlated with plasma atenolol concentration. Correlations which were less strong were between plasma drug concentration and change in various blood pressures and between blood pressure falls and beta-adrenoceptor blockade. There was no relationship between the fall in blood pressure and change in PRA. Atenolol appeared to suppress PRA in an all-or-none fashion. PMID:6349668

  1. Solubility Measurements and Predictions of Gypsum, Anhydrite, and Calcite Over Wide Ranges of Temperature, Pressure, and Ionic Strength with Mixed Electrolytes

    NASA Astrophysics Data System (ADS)

    Dai, Zhaoyi; Kan, Amy T.; Shi, Wei; Zhang, Nan; Zhang, Fangfu; Yan, Fei; Bhandari, Narayan; Zhang, Zhang; Liu, Ya; Ruan, Gedeng; Tomson, Mason B.

    2017-02-01

    Today's oil and gas production from deep reservoirs permits exploitation of more oil and gas reserves but increases risks due to conditions of high temperature and high pressure. Predicting mineral solubility under such extreme conditions is critical for mitigating scaling risks, a common and costly problem. Solubility predictions use solubility products and activity coefficients, commonly from Pitzer theory virial coefficients. However, inaccurate activity coefficients and solubility data have limited accurate mineral solubility predictions and applications of the Pitzer theory. This study measured gypsum solubility under its stable phase conditions up to 1400 bar; it also confirmed the anhydrite solubility reported in the literature. Using a novel method, the virial coefficients for Ca2+ and {{SO}}4^{2 - } (i.e., β_{{{{CaSO}}4 }}^{(0)} ,β_{{{{CaSO}}4 }}^{(2)} ,C_{{{{CaSO}}4 }}^{φ }) were calculated over wide ranges of temperature and pressure (0-250 °C and 1-1400 bar). The determination of this set of virial coefficients widely extends the applicable temperature and pressure ranges of the Pitzer theory in Ca2+ and SO 4 2- systems. These coefficients can be applied to improve the prediction of calcite solubility in the presence of high concentrations of Ca2+ and SO 4 2- ions. These new virial coefficients can also be used to predict the solubilities of gypsum and anhydrite accurately. Moreover, based on the derived β_{{{{CaSO}}4 }}^{(2)} values in this study, the association constants of {{CaSO}}4^{( 0 )} at 1 bar and 25 °C can be estimated by K_{{assoc}} = - 2β_{{{{CaSO}}4 }}^{(2)}. These values match very well with those reported in the literature based on other methods.

  2. An Investigation of the Drag and Pressure Recovery of a Submerged Inlet and a Nose Inlet in the Transonic Flight Range with Free-fall Models

    NASA Technical Reports Server (NTRS)

    Selna, James; Schlaff, Bernard A

    1951-01-01

    The drag and pressure recovery of an NACA submerged-inlet model and an NACA series I nose-inlet model were investigated in the transonic flight range. The tests were conducted over a mass-flow-ratio range of 0.4 to 0.8 and a Mach number range of about 0.8 to 1.10 employing large-scale recoverable free-fall models. The results indicate that the Mach number of drag divergence of the inlet models was about the same as that of a basic model without inlets. The external drag coefficients of the nose-inlet model were less than those of the submerged-inlet model throughout the test range. The difference in drag coefficient based on the maximum cross-sectional area of the models was about 0.02 at supersonic speeds and about 0.015 at subsonic speeds. For a hypothetical airplane with a ratio of maximum fuselage cross-sectional area to wing area of 0.06, the difference in airplane drag coefficient would be relatively small, about 0.0012 at supersonic speeds and about 0.0009 at subsonic speeds. Additional drag comparisons between the two inlet models are made considering inlet incremental and additive drag.

  3. Thermodynamic and Structural Properties of liquid Mg2SiO4 at high temperatures and pressure in the range 0-150 GPa from Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Martin, B.; Spera, F.; Nevins, D.

    2006-12-01

    Growing interest in the dynamics of magma oceans and melting within the terrestrial planets highlights the need for developing equations of state (EOS) and transport properties of molten silicate multicomponent solutions at high temperature and pressure. We report Molecular Dynamics simulations of liquid Mg2SiO4, an important component of the upper mantle. An interatomic effective pair potential that includes Coulomb forces, Born exponential electron repulsion and van der Waals dipolar attractive forces was used with parameters from Matsui (Mineral. Mag, 58A, 571-572, 1994). 50 state points were studied in the NEV microcanonical ensemble with 8001 particles (1143 formula units) each for 50 ps (1 fs timestep). Liquid densities range from 2750 kg/m3 to 4500 kg/m3 with temperature and pressure in the range 2000- 4500 K and 0-150 GPa, respectively. Atom trajectories were post-processed to obtain a comprehensive view of nearest neighbor coordination statistics, internal energy, isochoric heat capacity, and tracer diffusivities of Mg, Si and O at all state points. Computed potential energies scale linearly in T^{3/5} along isochors facilitating EOS development by allowing robust interpolation. First nearest neighbor coordination statistics show a continuous decrease in ^{[4]}Si and increase in ^{[5]}Si and ^{[6]}Si with increasing pressure along an isotherm. In distinction, the abundance of ^{[1]}O (O with one nearest Si neighbor) is roughly constant at about 70%, with ^{[0]}O and ^{[2]}O both at about 15% as pressure increases along an isotherm. Oxygen tracer diffusivity is ~6.7x10-9 m2/s at 9.8 GPa and 3088 K. Mg and Si tracer diffusivities 1.7 and 0.8 that of oxygen, respectively. Using the Stokes-Einstein and Eyring relations between shear viscosity and oxygen tracer diffusivity, a shear viscosity of ~2.1x10-3 Pa s is estimated for molten Mg2SiO4 at 10 GPa and 3100 K. Liquid density computed by MD compares very well with liquid density inferred from experimental

  4. Final report on EURAMET.M.P-K4.2010: Key and supplementary comparison of national pressure standards in the range 1 Pa to 15 kPa of absolute and gauge pressure

    NASA Astrophysics Data System (ADS)

    Krajíček, Zdeněk; Bergoglio, Mercede; Jousten, Karl; Otal, Pierre; Sabuga, Wladimir; Saxholm, Sari; Pražák, Dominik; Vičar, Martin

    2014-01-01

    This report describes a EURAMET comparison of five European National Metrology Institutes in low gauge and absolute pressure in gas (nitrogen), denoted as EURAMET.M.P-K4.2010. Its main intention is to state equivalence of the pressure standards, in particular those based on the technology of force-balanced piston gauges such as e.g. FRS by Furness Controls, UK and FPG8601 by DHI-Fluke, USA. It covers the range from 1 Pa to 15 kPa, both gauge and absolute. The comparison in absolute mode serves as a EURAMET Key Comparison which can be linked to CCM.P-K4 and CCM.P-K2 via PTB. The comparison in gauge mode is a supplementary comparison. The comparison was carried out from September 2008 till October 2012. The participating laboratories were the following: CMI, INRIM, LNE, MIKES, PTB-Berlin (absolute pressure 1 kPa and below) and PTB-Braunschweig (absolute pressure 1 kPa and above and gauge pressure). CMI was the pilot laboratory and provided a transfer standard for the comparison. This transfer standard was also the laboratory standard of CMI at the same time, which resulted in a unique and logistically difficult star comparison. Both in gauge and absolute pressures all the participating institutes successfully proved their equivalence with respect to the reference value and all also proved mutual bilateral equivalences in all the points. All the participating laboratories are also equivalent with the reference values of CCM.P-K4 and CCM.P-K2 in the relevant points. The comparison also proved the ability of FPG8601 to serve as a transfer standard. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Shock Tube and Modeling Study of the H + O2 = OH + O Reaction over a Wide Range of Composition, Pressure, and Temperature

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Rabinowitz, Martin Jay

    1995-01-01

    The rate coefficient of the reaction H + 02 = OH + 0 was determined using OH laser absorption spectroscopy behind reflected shock waves over the temperature range 1050-2500 K and the pressure range 0.7-4.0 atm. Eight mixtures and three stoichiometries were used. Two distinct and independent criteria were employed in the evaluation of k(sub 1). Our recommended expression for k(sub 1) is k(sub 1) = 7.13 x 10(exp 13)exp(-6957 K/T) cm(exp 3)mol(exp -1)s(exp -1) with a statistical uncertainty of 6%. A critical review of recent evaluations of k(sub 1) yields a consensus expression given by k(sub 1) = 7.82 x 10(exp 13)exp(-7105 K/7) cm(exp 3)mol(exp -1)s(exp -1) over the temperature range 960-5300 K. We do not support a non-Arrhenius rate coefficient expression, nor do we find evidence of composition dependence upon the determination of k(sub 1).

  6. Equivalent threshold sound pressure levels for Sennheiser HDA 200 earphone and Etymotic Research ER-2 insert earphone in the frequency range 125 Hz to 16 kHz.

    PubMed

    Han, L A; Poulsen, T

    1998-01-01

    Equivalent Threshold Sound Pressure Levels (ETSPLs) have been determined for the Sennheiser HDA 200 earphone and the Etymotic Research ER-2 insert earphone. Thirty-one young normal-hearing test subjects participated and the thresholds were determined for all recommended frequencies in the frequency range 125 Hz to 16 kHz. The results for the HDA 200 earphone are generally in very good agreement with the results from two other investigations which are available at present. Only at 6 kHz is a 9 dB deviation found and at 8 kHz a 6 dB deviation is found between the three investigations. For ER-2 it has not been possible to find other ETSPL determinations in the literature.

  7. Propagule pressure and colony social organization are associated with the successful invasion and rapid range expansion of fire ants in China.

    PubMed

    Yang, Chin-Cheng; Ascunce, Marina S; Luo, Li-Zhi; Shao, Jing-Guo; Shih, Cheng-Jen; Shoemaker, DeWayne

    2012-02-01

    We characterized patterns of genetic variation in populations of the fire ant Solenopsis invicta in China using mitochondrial DNA sequences and nuclear microsatellite loci to test predictions as to how propagule pressure and subsequent dispersal following establishment jointly shape the invasion success of this ant in this recently invaded area. Fire ants in Wuchuan (Guangdong Province) are genetically differentiated from those found in other large infested areas of China. The immediate source of ants in Wuchuan appears to be somewhere near Texas, which ranks first among the southern USA infested states in the exportation of goods to China. Most colonies from spatially distant, outlying areas in China are genetically similar to one another and appear to share a common source (Wuchuan, Guangdong Province), suggesting that long-distance jump dispersal has been a prevalent means of recent spread of fire ants in China. Furthermore, most colonies at outlier sites are of the polygyne social form (featuring multiple egg-laying queens per nest), reinforcing the important role of this social form in the successful invasion of new areas and subsequent range expansion following invasion. Several analyses consistently revealed characteristic signatures of genetic bottlenecks for S. invicta populations in China. The results of this study highlight the invasive potential of this pest ant, suggest that the magnitude of international trade may serve as a predictor of propagule pressure and indicate that rates and patterns of subsequent range expansion are partly determined by the interplay between species traits and the trade and transportation networks. © Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  8. Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure-temperature-deformation-time constraints on orogenic models

    NASA Astrophysics Data System (ADS)

    Kali, E.; Leloup, P. H.; Arnaud, N.; MahéO, G.; Liu, Dunyi; Boutonnet, E.; van der Woerd, J.; Liu, Xiaohan; Liu-Zeng, Jing; Li, Haibing

    2010-04-01

    The Ama Drime range located at the transition between the high Himalayan range and south Tibet is a N-S active horst that offsets the South Tibetan Detachment System (STDS). Within the horst, a paragneissic unit, possibly attributed to the upper Himalayan crystalline series, overly the lower Himalayan crystalline series Ama Drime orthogneissic unit containing large metabasite layers and pods that have experienced pressure ≥1.4 GPa. Combining structural analysis with new and published pressure-temperature (P-T) estimates as well as U-Th/Pb, 39Ar/40Ar and (U-Th)/He ages, the P-T-deformation-time (P-T-D-t) paths of the main units within and on both sides of the horst are reconstructed. They imply that N-S normal faults initiated prior to 11 Ma and have accounted for a total exhumation ≤0.6 GPa (22 km) that probably occurred in two phases: the first one until ˜9 Ma and the second one since 6 to 4 Ma at a rate of ˜1 mm/yr. In the Ama Drime unit, 1 to 1.3 GPa (37 to 48 km) of exhumation occurred after partial melting since ˜30 Ma until ˜13 Ma, above the Main Central Trust (MCT) and below the STDS when these two fault systems were active together. The switch from E-W (STDS) to N-S (Ama Drime horst) normal faulting between 13 and 12 Ma occurs at the time of propagation of thrusting from the MCT to the Main Boundary Thrust. These data are in favor of a wedge extrusion or thrust system rather than a crustal flow model for the building of the Himalaya. We propose that the kinematics of south Tibet Cenozoic extension phases is fundamentally driven by the direction and rate of India underthrusting.

  9. Towards improved estimation of the unsaturated soil hydraulic conductivity in the near saturated range by a fully automated, pressure controlled unit gradient experiment.

    NASA Astrophysics Data System (ADS)

    Werisch, Stefan; Müller, Marius

    2017-04-01

    Determination of soil hydraulic properties has always been an important part of soil physical research and model applications. While several experiments are available to measure the water retention of soil samples, the determination of the unsaturated hydraulic conductivity is often more complicated, bound to strong assumption and time consuming. Although, the application of unit gradient experiments is recommended since the middle of the last century, as one method towards a (assumption free) direct measurement of the unsaturated hydraulic conductivity, data from unit gradient experiments is seldom to never reported in literature. We developed and build a fully automated, pressure controlled, unit gradient experiment, which allows a precise determination of the unsaturated soil hydraulic conductivity K(h) and water retention VWC(h), especially in the highly dynamic near saturated range. The measurement apparatus applies the concept of hanging water columns and imposes the required soil water pressure by dual porous plates. This concepts allows the simultaneous and direct measurement of water retention and hydraulic conductivity. Moreover, this approach results in a technically less demanding experiment than related flux controlled experiments, and virtually any flux can be measured. Thus, both soil properties can be measured in mm resolution, for wetting and drying processes, between saturation and field capacity for all soil types. Our results show, that it is important to establish separate measurements of the unsaturated hydraulic conductivity in the near saturated range, as the shape of the retention function and hydraulic conductivity curve do not necessarily match. Consequently, the prediction of the hydraulic conductivity curve from measurements of the water retention behavior in combination with a value for the saturated hydraulic conductivity can be misleading. Thus, separate parameterizations of the individual functions might be necessary and are

  10. Identification of low and high frequency ranges for heart rate variability and blood pressure variability analyses using pharmacological autonomic blockade with atropine and propranolol in swine.

    PubMed

    Poletto, Rosangela; Janczak, Andrew M; Marchant-Forde, Ruth M; Marchant-Forde, Jeremy N; Matthews, Donald L; Dowell, Carol A; Hogan, Daniel F; Freeman, Lynetta J; Lay, Donald C

    2011-05-03

    Understanding autonomic nervous system functioning, which mediates behavioral and physiological responses to stress, offers great potential for assessing farm animal stress and welfare. Evaluation of heart rate variability (HRV) and blood pressure variability (BPV), using time and frequency domain analyses may provide a sensitive and reliable measure of affective states and stress-mediated changes in sympathetic and parasympathetic tones. The aim of this research was to define low (LF) and high frequency (HF) power spectral ranges using pharmacological autonomic blockade, and to examine HRV and BPV parameter changes in response to atropine and propranolol in swine. Ten, 13-week old, barrows (n=6) and gilts (n=4) underwent surgery to place an intra-cardiac electrode and a blood pressure catheter attached to a biotelemetric transmitter; pigs had a 3-week recovery period prior to data collection. Each pig was subjected to administration of 4 intravenous (i.v.) drug treatments: a control treatment, 3 mL of saline, and 3 blockade treatments; 0.1 mg/kg of atropine, 1.0 mg/kg of propranolol, and .1 mg/kg of atropine together with 1.0 mg/kg of propranolol. All treatments were delivered by injection in the jugular vein with a minimum of 48 h between individual treatments. Behavior, ECG and blood pressure data were recorded continuously for a total of 1h, from 30 min pre-injection to 30 min post-injection. For data analyses, two 512-beat intervals were selected for each treatment while the pig was lying and inactive. The first interval was selected from the pre-injection period (baseline), and the second was selected between 10 and 30 min post-injection. Time and frequency domain (power spectral density) analyses were performed on each data interval. Subsequent, LF and HF bands from the power spectral densities were defined based on general linear and regression analyses. The HRV and BPV were computed with a covariate (baseline) factorial analysis of treatment by sex

  11. Correlation and prediction of thermodynamic properties of nonelectrolytes at infinite dilution in water over very wide temperature and pressure ranges (2000 K and 10 GPa)

    NASA Astrophysics Data System (ADS)

    Plyasunov, Andrey V.

    2015-11-01

    Thermodynamic modeling of natural processes involving deep aqueous fluids requires the knowledge of the values of chemical potentials (the Gibbs energy) of aqueous species. An accurate prediction of thermodynamic properties at high T and P is a strong challenge. It is shown that geochemical models, including the well-known HKF-model, cannot be recommended for an indiscriminate use at supercritical temperatures to predict chemical potentials of nonelectrolytes at infinite dilution in water. Nevertheless, sufficiently accurate predictions of ϕ2∞ (the fugacity coefficients at infinite dilution in water) of aqueous nonelectrolytes up to 2000 K and water densities up to 1500 kg m-3, i.e. pressure up to 10-12 GPa, can be made relying on known theoretical relations valid at various parts of the phase diagram of water. In essence, the method, proposed in this work, consists in the interpolation of properties between two known limits: the first one, at low water densities, is defined by the values of the second virial coefficients for water-solute interactions, and the second, at high water densities - by predictions of the theory of a mixture of hard spheres. The interpolation at moderate temperatures (700-1300 K) and water densities (500-900 kg m-3) is simplified by sufficiently accurate predictions of properties using a semiempirical variant of a corresponding-states principle. Presented examples of the prediction of fugacity coefficients of "gases" at infinite dilution in water and of an aqueous solubility of corundum over very wide ranges of water densities/pressures demonstrate the potential and generality of the proposed methods of evaluating the thermodynamic properties of aqueous neutral compounds.

  12. Melting diagrams of Fe-rich alloys determined from synchrotron in situ measurements in the 15-23 GPa pressure range

    NASA Astrophysics Data System (ADS)

    Andrault, D.; Bolfan-Casanova, N.; Ohtaka, O.; Fukui, H.; Arima, H.; Fialin, M.; Funakoshi, K.

    2009-05-01

    We report in situ observations of the melting behaviour of iron alloyed with 10-20 at.% C, O, S, or Si at pressures between 15 and 24 GPa, using X-ray diffraction in a multi-anvil press (SPring8). The degree of partial melting of the iron alloys has been quantified from analysis of the intensity of diffuse X-ray scattering of molten iron as a function for decreasing temperature with a 50° step. Coupled with microanalysis of recovered samples, the in situ observations bring direct constraints on shape and positions of liquidus and solidus curves in the melting diagrams. For the Fe-S system, our results are in good agreement with previous works. We observe that the eutectic temperature increases from 1023 K at 15 GPa to 1123 K at 20.6 GPa and that the eutectic composition decreases with increases pressure. Concerning the Fe-C system the eutectic temperature of 1460 K at 20.7 GPa falls slightly below a linear extrapolation of the previous work. In the case of the Fe-Ni-Si system and the Fe-O system, we find eutectic temperatures significantly lower than previously reported. For the two systems, both eutectic temperature and composition increase with increasing pressure in the 15-20 GPa range. Compare to previous work, we observe eutectic compositions (a) richer in light elements in the Fe-O system, with 9.0 and 10.5 wt% O at 16.5 and 20.5 GPa, respectively, and (b) poorer in the Fe-Ni-Si system with 11.5 wt% Si at 16.9 GPa. We confirm very high solubility of Si and C with solid iron, and report a Si partitioning coefficient of 1.3(2) at 16.9 GPa. The S and O solubility in solid iron appears very small. Therefore, both S and/or O could explain density jumps between liquid outer and solid inner parts of planetary cores, at least up to ˜25 GPa.

  13. An in situ experimental study of Zr4+ transport capacity of water-rich fluids in the temperature and pressure range of the deep crust and upper mantle

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn

    2015-12-01

    Throughout the Earth's history, mass transport involved fluids. In order to address the circumstances under which Zr4+ may have been transported in this manner, its solubility behavior in aqueous fluid with and without NaOH and SiO2 in equilibrium with crystalline ZrO2 was determined from 550 to 950 °C and 60 to 1200 MPa. The measurements were carried out in situ while the samples were at the temperatures and pressures of interest. In ZrO2-H2O and ZrO2-SiO2-H2O fluids, the Zr4+ concentration ranges from ≤10 to ~70 ppm with increasing temperature and pressure. Addition of SiO2 to the ZrO2-H2O system does not affect these values appreciably. In these two environments, Zr4+ forms simple oxide complexes in the H2O fluid with ∆H ~ 40 kJ/mol for the solution equilibrium, ZrO2(solid) = ZrO2(fluid). The Zr4+ concentration in aqueous fluid increases about an order of magnitude upon addition of 1 M NaOH, which reflects the formation of zirconate complexes. The principal solution mechanism is ZrO2 + 4NaOH = Na4ZrO4 + 2H2O with ∆H ~ 200 kJ/mol. Addition of both SiO2 and NaOH to ZrO2-H2O enhances the Zr4+ by an additional factor of about 5 with the formation of partially protonated alkali zircon silicate complexes in the fluid. The principal solution mechanism is 2ZrO2 + 2NaOH + 2SiO2 = Na2Zr2Si2O9 + H2O with ∆H ~ 40 kJ/mol. These results, in combination with other published experimental data, imply that fluid released during high-temperature/high-pressure dehydration of hydrous mineral assemblages in the Earth's interior under some circumstances may carry significant concentrations of Zr and probably other high field strength elements (HFSEs). This suggestion is consistent with the occurrence of Zr-rich veins in high-grade metamorphic eclogite and granulite terranes. Moreover, aqueous fluids transported from dehydrating oceanic crust into overlying mantle source rocks of partial melting also may carry high-abundance HFSE of fluids released from dehydrating slabs and

  14. Speed-of-Sound Measurements in (Argon + Carbon Dioxide) over the Temperature Range from (275 to 500) K at Pressures up to 8 MPa

    PubMed Central

    Wegge, Robin; McLinden, Mark O.; Perkins, Richard A.; Richter, Markus; Span, Roland

    2016-01-01

    The speed of sound of two (argon + carbon dioxide) mixtures was measured over the temperature range from (275 to 500) K with pressures up to 8 MPa utilizing a spherical acoustic resonator. The compositions of the gravimetrically prepared mixtures were (0.50104 and 0.74981) mole fraction carbon dioxide. The vibrational relaxation of pure carbon dioxide led to high sound absorption, which significantly impeded the sound-speed measurements on carbon dioxide and its mixtures; pre-condensation may have also affected the results for some measurements near the dew line. Thus, in contrast to the standard operating procedure for speed-of-sound measurements with a spherical resonator, non-radial resonances at lower frequencies were taken into account. Still, the data show a comparatively large scatter, and the usual repeatability of this general type of instrument could not be realized with the present measurements. Nonetheless, the average relative combined expanded uncertainty (k = 2) in speed of sound ranged from (0.042 to 0.056)% for both mixtures, with individual state-point uncertainties increasing to 0.1%. These uncertainties are adequate for our intended purpose of evaluating thermodynamic models. The results are compared to a Helmholtz energy equation of state for carbon capture and storage applications; relative deviations of (−0.64 to 0.08)% for the (0.49896 argon + 0.50104 carbon dioxide) mixture, and of (−1.52 to 0.77)% for the (0.25019 argon + 0.74981 carbon dioxide) mixture were observed. PMID:27458321

  15. Speed-of-Sound Measurements in (Argon + Carbon Dioxide) over the Temperature Range from (275 to 500) K at Pressures up to 8 MPa.

    PubMed

    Wegge, Robin; McLinden, Mark O; Perkins, Richard A; Richter, Markus; Span, Roland

    2016-08-01

    The speed of sound of two (argon + carbon dioxide) mixtures was measured over the temperature range from (275 to 500) K with pressures up to 8 MPa utilizing a spherical acoustic resonator. The compositions of the gravimetrically prepared mixtures were (0.50104 and 0.74981) mole fraction carbon dioxide. The vibrational relaxation of pure carbon dioxide led to high sound absorption, which significantly impeded the sound-speed measurements on carbon dioxide and its mixtures; pre-condensation may have also affected the results for some measurements near the dew line. Thus, in contrast to the standard operating procedure for speed-of-sound measurements with a spherical resonator, non-radial resonances at lower frequencies were taken into account. Still, the data show a comparatively large scatter, and the usual repeatability of this general type of instrument could not be realized with the present measurements. Nonetheless, the average relative combined expanded uncertainty (k = 2) in speed of sound ranged from (0.042 to 0.056)% for both mixtures, with individual state-point uncertainties increasing to 0.1%. These uncertainties are adequate for our intended purpose of evaluating thermodynamic models. The results are compared to a Helmholtz energy equation of state for carbon capture and storage applications; relative deviations of (-0.64 to 0.08)% for the (0.49896 argon + 0.50104 carbon dioxide) mixture, and of (-1.52 to 0.77)% for the (0.25019 argon + 0.74981 carbon dioxide) mixture were observed.

  16. Report on key comparison COOMET.AUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 Hz to 10 kHz

    NASA Astrophysics Data System (ADS)

    Dobrowolska, D.; Kosterov, A.

    2016-01-01

    This is the final report for regional key comparison COOMET.AUV.A-K5 on the pressure calibration of laboratory standard microphones in the frequency range from 2 Hz to 10 kHz. Two laboratories—Central Office of Measures (GUM)—the national metrology institute for Poland and the State Enterprise Scientific-Research Institute for Metrology of Measurement and Control Systems (DP NDI Systema)— the designated institute for acoustics in Ukraine took part in this comparison with the GUM as a pilot. One travelling type LS1P microphone was circulated to the participants and results in the form of regular calibration certificates were collected. The results of the DP NDI Systema obtained in this comparison were linked to the CCAUV.A-K5 key comparison through the joint participation of the GUM. The degrees of equivalence were computed for DP NDI Systema with respect to the CCAUV.A-K5 key comparison reference value. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  17. Final report on key comparison CCAUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 Hz to 10 kHz

    NASA Astrophysics Data System (ADS)

    Avison, Janine; Barham, Richard

    2014-01-01

    This document and the accompanying spreadsheets constitute the final report for key comparison CCAUV.A-K5 on the pressure calibration of laboratory standard microphones in the frequency range from 2 Hz to 10 kHz. Twelve national measurement institutes took part in the key comparison and the National Physical Laboratory piloted the project. Two laboratory standard microphones IEC type LS1P were circulated to the participants and results in the form of regular calibration certificates were collected throughout the project. One of the microphones was subsequently deemed to have compromised stability for the purpose of deriving a reference value. Consequently the key comparison reference value (KCRV) has been made based on the weighted mean results for sensitivity level and for sensitivity phase from just one of the microphones. Corresponding degrees of equivalence (DoEs) have also been calculated and are presented. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. Pressurized liquid extraction with water as a tool for chemical and toxicological screening of soil samples at army live-fire training ranges.

    PubMed

    Ragnvaldsson, D; Brochu, S; Wingfors, H

    2007-04-02

    Significant discrepancies in the results of risk assessments based on chemical and toxicity analyses of soils may arise through differences in the efficiency of the extraction or leaching methods used. A rapid technique that may be used in the screening phase of live-fire training ranges and suitable for extracting explosive residues is pressurized liquid extraction (PLE) with water. Therefore, PLE and the commonly used batch leaching method EN-124 57-2 were compared for their utility to extract specific residues from soil samples collected from the Canadian Forces Base (CFB) Petawawa, Ontario. After extraction the cytotoxicity of the samples were assessed in the L-929 growth inhibition assay. The PLE method yielded extracts suitable for direct use in the toxicity assay within 20 min as compared to 24h for the batch leaching method. Analysis of the extracts showed that the PLE water extracts tended to give higher recoveries of explosive residues and the resulting exposure concentrations were confirmed by higher cytotoxicities. Furthermore, gas chromatography-mass spectrometry analyses showed that the samples contained significant amounts of several munition-related stabilizers and plasticizers of toxicological significance in addition to the analysed explosive residues. In conclusion, PLE using water is a promising extraction technique for both chemical and toxicological screening of soil samples from areas that may be contaminated with explosive residues.

  19. In vitro biomechanical study to quantify range of motion, intradiscal pressure, and facet force of 3-level dynamic stabilization constructs with decreased stiffness.

    PubMed

    Lee, Joseph K; Gomez, Jaime; Michelsen, Christopher; Kim, Yongjung; Moldavsky, Mark; Chinthakunta, Suresh Reddy; Khalil, Saif

    2013-10-15

    An in vitro biomechanical study. To perform in vitro biomechanical testing on a lumbar spine using a 6-degree-of-freedom machine. To compare the range of motion (ROM), intradiscal pressure, and facet force of different 3-level dynamic stabilization constructs with traditional rigid constructs. To determine the effect of decreasing the stiffness of the dynamic construct on the various parameters. Dynamic stabilization systems are a surgical option that may minimize the development of adjacent segment disease. Seven T12-S1 specimens were tested at ± 7.5 Nm in flexion-extension, lateral bending, and axial rotation. The testing sequence was (1) intact, (2) intact with facet sensors, (3) L3-S1 rigid (3R), (4) L3-L4 dynamic and L4-S1 rigid (1D-2R A), (5) L3-L5 dynamic and L5-S1 rigid (2D-1R A), and (6) L3-S1 dynamic (3D A). Constructs 1D-2R A, 2D-1R A, and 3D A were tested again with the specialized designs of B and C of decreased stiffness. ROM, intradiscal pressure, and facet force were measured. In all loading modes there was a trend of increasing motion with decreased stiffness. Significant differences were seen with more dynamic stabilization levels but no significance was seen with only decreasing the stiffness. 3R facet force at the caudal instrumented level significantly decreased compared with intact and dynamic stabilization constructs during axial rotation. Biomechanical testing resulted in a trend of increased ROM across instrumented levels as the stiffness was decreased. Dynamic stabilization increased the ROM across instrumented levels compared with rigid rods. These results suggest that decreasing the stiffness of the construct may lessen the probability of adjacent-level disease. Although the specialized devices are not commercially available, clinical data would be necessary for a clearer understanding of adjacent level effects and to confirm the in vitro biomechanical findings. N/A.

  20. Refractive index and compressibility of LiAlSi{sub 3}O{sub 8} glass in the pressure range up to 6.0 GPa

    SciTech Connect

    Kuryaeva, R.G. Dmitrieva, N.V.; Surkov, N.V.

    2016-02-15

    Highlights: • Refractive index and the compressibility of LiAlSi{sub 3}O{sub 8} glass are obtained. • Among Li(Na,K)AlSi{sub 3}O{sub 8} glasses LiAlSi{sub 3}O{sub 8} glass has the lowest compressibility. • Degree of depolymerization (NBO/T = 0.31) for LiAlSi{sub 3}O{sub 8} glass was calculated. • NBO/T = 0.31 indicates a high content of NBOs atoms and Al in LiAlSi{sub 3}O{sub 8} glass. • Proposed reaction corresponds to the condition of the existence of ∼9% Al. - Abstract: The refractive index and the relative changes in the density for LiAlSi{sub 3}O{sub 8} glass in the pressure range up to 6.0 GPa were obtained using a polarization-interference microscope and an apparatus with diamond anvils. The results were compared with the previous data for the NaAlSi{sub 3}O{sub 8} and KAlSi{sub 3}O{sub 8} glasses. The compressibility of glasses increases in a series of alkali metal cations Li{sup +}, Na{sup +}, K{sup +}. From the previously found dependence of the compressibility (at P = 4.0 GPa) on the degree of depolymerization the value of NBO/T = 0.31 for LiAlSi{sub 3}O{sub 8} glass was calculated. A high degree of depolymerization of the LiAlSi{sub 3}O{sub 8} glass indicates not only a high content of NBOs atoms in the structural network, but also the presence of highly coordinated aluminum (according to the literature data ∼9%). The proposed schematic reaction for the formation of different structural groups corresponds to the condition of the existence of 9% highly coordinated aluminum.

  1. Studies of local and intermediate range structure in crystalline and amorphouse materials at high pressure using high-energy x-rays.

    SciTech Connect

    Ehm, L.; Antao, M.; Chen, J.; Locke, D. R.; Michel, F. M.; Martin, C. D.; Yu, T.; Lee, P. L.; Chupas, P. J.; Shastri, S. D.; Guo, Q.; Parise, J. B.; Stony Brook Univ.; BNL

    2007-06-01

    The method of high-energy total elastic X-ray scattering to determine the atomic structure of nanocrystalline, highly disordered, and amorphous materials is presented. The current state of the technique, its potential, and limitations are discussed with two successful studies on the pressure induced phase transition in mackinawite (FeS) and the high-pressure behavior of liquid gallium.

  2. Studies of Local and Intermediate Range Structure in Crystalline and Amorphous Materials at High Pressure Using High-Energy X-rays

    SciTech Connect

    Ehm,L.; Antao, S.; Chen, J.; Locke, D.; Michel, F.; Martin, D.; Yu, T.; Parise, J.; Lee, P.; et al.

    2007-01-01

    The method of high-energy total elastic X-ray scattering to determine the atomic structure of nanocrystalline, highly disordered, and amorphous materials is presented. The current state of the technique, its potential, and limitations are discussed with two successful studies on the pressure induced phase transition in mackinawite (FeS) and the high-pressure behavior of liquid gallium.

  3. Phase diagram of the selenium-sulfur system in the pressure range 1 × 10-5-1 × 10-1 MPa

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Burabaeva, N. M.; Trebukhov, S. A.; Ersaiynova, A. A.

    2016-11-01

    The partial pressures of the components in the saturated vapor of the Se-S system were determined and presented as the temperature-concentration dependences. Based on these data, the boundaries of the melt-vapor phase transition at atmospheric pressure and in vacuum (1350, 100, and 10 Pa) were calculated. A complete phase diagram was constructed, which included the vapor-liquid equilibrium fields at atmospheric and low pressures, whose boundaries allowed us to determine the behavior of sulfur and selenium during distillation separation.

  4. Identification of low and high frequency ranges for heart rate variability and blood pressure variability analyses using pharmacological autonomic blockade with atropine and propranolol in swine.

    USDA-ARS?s Scientific Manuscript database

    Understanding autonomic nervous system functioning, which mediates behavioral and physiological responses to stress, offers great potential for evaluation of farm animal stress and welfare. Evaluation of heart rate variability (HRV) and blood pressure variability (BPV), using time and frequency doma...

  5. Comparison of a Vibrating Foam Roller and a Non-vibrating Foam Roller Intervention on Knee Range of Motion and Pressure Pain Threshold: A Randomized Controlled Trial.

    PubMed

    Cheatham, Scott W; Stull, Kyle R; Kolber, Morey J

    2017-08-08

    The use of foam rollers to provide soft-tissue massage has become a common intervention among health and fitness professionals. Recently, manufacturers have merged the science of vibration therapy and foam rolling with the development of vibrating foam rollers. To date, no peer reviewed investigations have been published on this technology. The purpose of this study was to compare the effects of a vibrating roller and non-vibrating roller intervention on prone knee flexion passive range of motion (ROM) and pressure pain thresholds (PPT) of the quadriceps musculature. Forty-five recreationally active adults were randomly allocated to one of three groups: vibrating roller, non-vibrating roller, and control. Each roll intervention lasted a total of 2 minutes. The control group did not roll. Dependent variables included prone knee flexion ROM and PPT measures. Statistical analysis included parametric and non-parametric tests to measure changes among groups. The vibrating roller demonstrated the greatest increase in PPT (180kPa, p< 0.001), followed by the non-vibrating roller (112kPa, p< 0.001), and control (61kPa, p<0.001). For knee ROM, the vibrating roller demonstrated the greatest increase in ROM (7 degrees, p< 0.001), followed by the non-vibrating roller (5 degrees, p< 0.001), and control (2 degrees, p<0.001). Between groups, there was significant difference in PPT between the vibrating and non-vibrating roller (p=.03) and vibrating roller and control (p<.001). There was also a significant difference between the non-vibrating roller and control (p<.001). For knee ROM, there was no significant difference between the vibrating and non-vibrating roller (p=.31). A significant difference was found between the vibrating roller and control group (p<.001) and non-vibrating roller and control (p<.001). The results suggest that a vibrating roller may increase an individual's tolerance to pain greater than a non-vibrating roller. This investigation should be considered

  6. Aqueous solubility (in the range between 298.15 and 338.15 K), vapor pressures (in the range between 10(-5) and 80 Pa) and Henry's law constant of 1,2,3,4-dibenzanthracene and 1,2,5,6-dibenzanthracene.

    PubMed

    Abou-Naccoul, Ramy; Mokbel, Ilham; Bassil, Georgio; Saab, Joseph; Stephan, Khaled; Jose, Jacques

    2014-01-01

    Aqueous solubility and vapor pressures of 1,2,3,4-dibenzanthracene and 1,2,5,6-dibenzanthracene were determined using dynamic saturation methods. For the two isomers, aqueous solubility is in the range between 10(-10) and 10(-2) in molar fraction corresponding to temperature between 298.15 and 338.15K. Vapor pressures of the pure solutes range from 10(-5) to 80 Pa. Prior to the study of the two dibenzanthracenes and in order to check the experimental procedures, solubility of fluoranthene (between 298 and 338 K) and vapor pressures of phenanthrene and fluoranthene (between 300 and 470 K) were measured. From aqueous solubility data coupled with the vapor pressures of the pure solutes, partition coefficient air-water, KAW, and Henry's constant, KH, of environmental relevance were calculated.

  7. Final report on key comparison EURAMET.M.P-K13 in the range 50 MPa to 500 MPa of hydraulic gauge pressure

    NASA Astrophysics Data System (ADS)

    Kocas, I.; Sabuga, W.; Bergoglio, M.; Eltaweel, A.; Korasie, C.; Farar, P.; Setina, J.; Waller, B.; Durgut, Y.

    2015-01-01

    The regional key comparison EURAMET.M.P-K13 for pressure measurements in liquid media from 50 MPa to 500 MPa was piloted by the TÜBİTAK UME Pressure Group Laboratories, Turkey. The transfer standard was a DH-Budenberg pressure balance with a free deformation piston-cylinder unit of 2 mm2 nominal effective area. Six laboratories from the EURAMET region, namely PTB, INRIM, SMU, IMT, NPL and UME, and two laboratories from the AFRIMETS region, NIS and NMISA participated in this comparison. Participant laboratories and countries are given in the bottom of the page. PTB participated in this comparison to provide a link to corresponding 500 MPa CCM key comparison CCM.P-K13. The results of all participants excepting NMISA and NPL were found to be consistent with the reference value of the actual comparison and of CCM.P-K13 within their claimed uncertainties (k = 2), at all pressures. Compared in pairs all laboratories with exception of NPL and NMISA demonstrate their agreement with each other within the expanded uncertainties (k = 2) at all pressures. The results are therefore considered to be satisfactory. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. A range-free method to determine antoine vapor-pressure heat transfer-related equation coefficients using the Boubaker polynomial expansion scheme

    NASA Astrophysics Data System (ADS)

    Koçak, H.; Dahong, Z.; Yildirim, A.

    2011-05-01

    In this study, a range-free method is proposed in order to determine the Antoine constants for a given material (salicylic acid). The advantage of this method is mainly yielding analytical expressions which fit different temperature ranges.

  9. Measurement of the viscosity of HFC 134a in the temperature range 213-423 K and at pressures up to 30 MPa. [HCF 134a (1,1,1,2-tetrafluoroethane)

    SciTech Connect

    Okubo, T.; Hasuo, T.; Nagashima, A. )

    1992-01-01

    The viscosity of HFC 134a was measured over the range of temperatures from 213 to 423 K and pressures up to 30 MPa. The experimental method was that of the capillary flow and a closed-circuit high-pressure viscometer was used. The sample fluid was circulated through a stainless-steel capillary from a high-pressure plunger system. The constant of the capillary was calibrated against the reference standard, pure water. The viscosity of the sample was calculated from the flow rate, the pressure drop at the capillary, and the capillary constant using the Hagen-Poiseuille equation. Measurements were made at a total of 39 points on eight isotherms. The measurement uncertainty of the viscosities was estimated as [+-] 1.3%. Based on the present results, an empirical equation for the viscosity of HFC 134a has been correlated. The viscosity on the saturation line calculated by the equation compares with experimental viscosity data in other previous studies. There are rather considerable differences among these measurements. Comparisons of the data for HFC 134a with those for CFC 12 show that the viscosity of HFC 134a is similar in magnitude to that of CFC 12 at temperatures around 300 K but is higher at lower temperatures and lower at higher temperatures. The pressure gradients for these two corresponding substances are similar over the entire temperature range. 8 refs., 7 figs., 1 tab.

  10. Intercomparison of Primary Manometers in the Range 30 kPa to 110 kPa: Pressure Balance at the LNE and Mercury Manometer at the VNIIFTRI

    NASA Astrophysics Data System (ADS)

    Astrov, D. N.; Guillemot, J.; Legras, J. C.; Zakharov, A. A.

    1994-01-01

    An intercomparison between the primary pressure balance of the LNE and a mercury manometer developed at the All-Russian Research Institute for Physical, Technical and Radio-Technical Measurements (VNIIFTRI) for purposes of temperature measurement was undertaken in 1990. A short description of the two standards is given. The transfer standard was a pressure balance equipped with a piston-cylinder assembly that has the same characteristics as the standard of the Laboratoire National d'Essais (LNE). The results obtained from 30 kPa to 110 kPa showed a systematic relative difference of 12 parts in 106 between the two standards. This difference is significant, as the combined relative uncertainty at 1 σ level is estimated to be 4,2 parts in 106. These results are analysed in this paper.

  11. Equivalent threshold sound pressure levels (ETSPL) for Sennheiser HDA 280 supra-aural audiometric earphones in the frequency range 125 Hz to 8000 Hz.

    PubMed

    Poulsen, Torben; Oakley, Sebastian

    2009-05-01

    Hearing threshold sound pressure levels were measured for the Sennheiser HDA 280 audiometric earphone. Hearing thresholds were measured for 25 normal-hearing test subjects at the 11 audiometric test frequencies from 125 Hz to 8000 Hz. Sennheiser HDA 280 is a supra-aural earphone that may be seen as a substitute for the classical Telephonics TDH 39. The results are given as the equivalent threshold sound pressure level (ETSPL) measured in an acoustic coupler specified in IEC 60318-3. The results are in good agreement with an independent investigation from PTB, Braunschweig, Germany. From acoustic laboratory measurements ETSPL values are calculated for the ear simulator specified in IEC 60318-1. Fitting of earphone and coupler is discussed. The data may be used for a future update of the RETSPL standard for supra-aural audiometric earphones, ISO 389-1.

  12. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range

    NASA Astrophysics Data System (ADS)

    Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  13. Spark ignition of flowing gases I : energies to ignite propane-air mixtures in pressure range of 2 to 4 inches mercury absolute

    NASA Technical Reports Server (NTRS)

    Swett, Clyde C , Jr

    1949-01-01

    Ignition studies of flowing gases were made to obtain information applicable to ignition problems in gas-turbine and ram-jet aircraft propulsion systems operating at altitude conditions.Spark energies required for ignition of a flowing propane-air mixture were determined for pressure of 2 to 4 inches mercury absolute, gas velocities of 5.0 to 54.2 feet per second, fuel-air ratios of 0.0607 to 0.1245, and spark durations of 1.5 to 24,400 microseconds. The results showed that at a pressure of 3 inches mercury absolute the minimum energy required for ignition occurred at fuel-air ratios of 0.08 to 0.095. The energy required for ignition increased almost linearly with increasing gas velocity. Shortening the spark duration from approximately 25,000 to 125 microseconds decreased the amount of energy required for ignition. A spark produced by the discharge of a condenser directly into the spark gap and having a duration of 1.5 microseconds required ignition energies larger than most of the long-duration sparks.

  14. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range.

    PubMed

    Çelik, Ümit; Karcı, Özgür; Uysallı, Yiğit; Özer, H Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ∼500 μW, and ∼141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  15. Pressure activated stability-bypass-control valves to increase the stable airflow range of a Mach 2.5 inlet with 40 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Sanders, B. W.

    1974-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. The inlet stable airflow range provided by various stability-bypass entrance configurations in alternate combination with several stability-bypass exit controls was determined for both steady-state conditions and internal transient pulses. Transient results were also obtained for the inlet with a choke point at the diffuser exit. Instart angles of attack were determined for the various stability-bypass entrance configurations. The response of the inlet-coldpipe system to internal and external oscillating disturbances was determined. Poppet valves at the stability-bypass exit provided an inlet stable airflow range of 28 percent or greater at all static and transient conditions.

  16. Short-term changes in neck pain, widespread pressure pain sensitivity, and cervical range of motion after the application of trigger point dry needling in patients with acute mechanical neck pain: a randomized clinical trial.

    PubMed

    Mejuto-Vázquez, María J; Salom-Moreno, Jaime; Ortega-Santiago, Ricardo; Truyols-Domínguez, Sebastián; Fernández-de-Las-Peñas, César

    2014-04-01

    Randomized clinical trial. To determine the effects of trigger point dry needling (TrPDN) on neck pain, widespread pressure pain sensitivity, and cervical range of motion in patients with acute mechanical neck pain and active trigger points in the upper trapezius muscle. TrPDN seems to be effective for decreasing pain in individuals with upper-quadrant pain syndromes. Potential effects of TrPDN for decreasing pain and sensitization in individuals with acute mechanical neck pain are needed. Methods Seventeen patients (53% female) were randomly assigned to 1 of 2 groups: a single session of TrPDN or no intervention (waiting list). Pressure pain thresholds over the C5-6 zygapophyseal joint, second metacarpal, and tibialis anterior muscle; neck pain intensity; and cervical spine range-of-motion data were collected at baseline (pretreatment) and 10 minutes and 1 week after the intervention by an assessor blinded to the treatment allocation of the patient. Mixed-model analyses of variance were used to examine the effects of treatment on each outcome variable. Patients treated with 1 session of TrPDN experienced greater decreases in neck pain, greater increases in pressure pain threshold, and higher increases in cervical range of motion than those who did not receive an intervention at both 10 minutes and 1 week after the intervention (P<.01 for all comparisons). Between-group effect sizes were medium to large immediately after the TrPDN session (standardized mean score differences greater than 0.56) and large at the 1-week follow-up (standardized mean score differences greater than 1.34). The results of the current randomized clinical trial suggest that a single session of TrPDN may decrease neck pain intensity and widespread pressure pain sensitivity, and also increase active cervical range of motion, in patients with acute mechanical neck pain. Changes in pain, pressure pain threshold, and cervical range of motion surpassed their respective minimal detectable change

  17. A multipurpose ultra-high vacuum-compatible chamber for in situ X-ray surface scattering studies over a wide range of temperature and pressure environment conditions

    NASA Astrophysics Data System (ADS)

    Ferrer, P.; Rubio-Zuazo, J.; Heyman, C.; Esteban-Betegón, F.; Castro, G. R.

    2013-03-01

    A low/high temperature (60-1000K) and pressure (10-10-3x103 mbar) "baby chamber", specially adapted to the grazing-incidence X-ray scattering station, has been designed, developed and installed at the Spanish CRG BM25 SpLine beamline at European Synchrotron Radiation Facility. The chamber has a cylindrical form with 100 mm of diameter, built on a 360° beryllium nipple of 150 mm height. The UHV equipment and a turbo pump are located on the upper part of the chamber to leave a wide solid angle for exploring reciprocal space. The chamber features 4 CF16 and 5 CF40 ports for electrical feed through and leak valves, ion gun, etc. The heat exchanger is a customized compact LN2 (or LHe) continuous flow cryostat. The sample is mounted on a Mo support on the heat exchanger, which has in the back side a BORALECTRIC® Heater Elements. Experiments of surfaces/interfaces/ multilayer materials, thin films or single crystals in a huge variety of environments can be performed, also in situ studies of growth or evolution of the samples. Data measurement can be collected with a punctual and a bi-dimensional detector, being possible to simultaneously use them.

  18. Comparison of measurement standards of the acoustic pressure in air in the low frequency range: COOMET.AUV.A-K2

    NASA Astrophysics Data System (ADS)

    Chalyy, V.

    2011-01-01

    A bilateral regional comparison of national microphone standards from 2 Hz to 250 Hz was carried out between the DP NDI 'Systema' (Ukraine) and the VNIIFTRI (Russia) from July to September 2009. The comparison, COOMET.AUV.A-K2, was based on the pressure calibration of laboratory standard microphones type LSIP. The comparison results have been linked to the established key comparison reference value (KCRV) of CCAUV.A-K2. The degrees of equivalence, expressed as the deviation from the established KCRV and its expanded uncertainty (k = 2), have been determined, and the comparison result is in agreement with the KCRV within the estimated uncertainties at all employed frequencies. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  19. Effects of Pressure on the Short-range Structure and Speciation of Fluid phases in Silicate Melts: Insights from Multi-nuclear NMR and X-ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Kim, E.; Fei, Y.; Tschauner, O. D.; Mosenfelder, J. L.; Asimow, P. D.; Lee, S.

    2013-12-01

    The atomic structures of fluid-bearing silicate liquids at high pressure are essential to understand the changes in the melt properties in earth's interior and to yield insights into the deep carbon-hydrogen cycle. Despite the importance, structural changes in silicate liquids (with/without fluid phases) under compression have not been fully understood. The recent breakthroughs in NMR and X-ray Raman scattering (XRS) allowed us to explore the detailed effect of pressure on the degree of melt polymerization and speciation of fluid phases in oxide glasses with varying composition (e.g. Lee, Rev. Min. Geochem. 2013 accepted; Proc. Nat. Aca. Sci. 2011, 108 6847; Kim and Lee, Geochim. Cosmochim Acta. In press; Lee et al. Geophys. Res. Letts. 2012, 39 5306). Here, we present the key recent results of structure of silicate glasses under compression. In contrast to an expected complex composition-dependence in melt-densification, the experimental results of diverse silicate melts demonstrate a simple trend in pressure-induced decreases in non-bridging oxygen content that can be modeled with a narrow range of network flexibility upon compression. NMR results of model basaltic glasses showed that both dynamic and static compression lead to an increase in the fraction of highly coordinated Al: whereas statically compressed basaltic glass at 5 GPa leads to the formation of ~40% [5,6]Al, dynamically compressed basaltic glass at peak pressure of ~ 20 GPa consists only of ~3-4% of [5]Al. The threshold pressure for Al coordination transformation in the basaltic glass upon dynamic compression is estimated to ~ 15 GPa, providing a path-dependent Al-coordination transformation. The first high-resolution 13C MAS NMR spectrum for carbon-bearing enstatite at 1.5 GPa revealed the presence of molecular CO2 in the lattice, providing a new solubility mechanism of carbon into chain silicates. 13C NMR spectra for albite glasses quenched from melts at high pressure up to 6 GPa showed that

  20. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10-6 g m-2 day-1 range

    NASA Astrophysics Data System (ADS)

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-10-01

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10-6 g m-2 day-1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

  1. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    SciTech Connect

    Curry, J. J.; Henins, A.; Hardis, J. E.; Estupinan, E. G.; Lapatovich, W. P.; Shastri, S. D.

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  2. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10−6 g m−2 day−1 range

    PubMed Central

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-01-01

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10−6 g m−2 day−1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element. PMID:27748431

  3. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10(-6) g m(-2) day(-1) range.

    PubMed

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-10-17

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10(-6) g m(-2) day(-1) that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

  4. Detection of dimethylamine in the low pptv range using nitrate chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry

    NASA Astrophysics Data System (ADS)

    Simon, Mario; Heinritzi, Martin; Herzog, Stephan; Leiminger, Markus; Bianchi, Federico; Praplan, Arnaud; Dommen, Josef; Curtius, Joachim; Kürten, Andreas

    2016-05-01

    Amines are potentially important for atmospheric new particle formation, but their concentrations are usually low with typical mixing ratios in the pptv range or even smaller. Therefore, the demand for highly sensitive gas-phase amine measurements has emerged in the last several years. Nitrate chemical ionization mass spectrometry (CIMS) is routinely used for the measurement of gas-phase sulfuric acid in the sub-pptv range. Furthermore, extremely low volatile organic compounds (ELVOCs) can be detected with a nitrate CIMS. In this study we demonstrate that a nitrate CIMS can also be used for the sensitive measurement of dimethylamine (DMA, (CH3)2NH) using the NO3-•(HNO3)1 - 2• (DMA) cluster ion signal. Calibration measurements were made at the CLOUD chamber during two different measurement campaigns. Good linearity between 0 and ˜ 120 pptv of DMA as well as a sub-pptv detection limit of 0.7 pptv for a 10 min integration time are demonstrated at 278 K and 38 % RH.

  5. An inverted metamorphic field gradient in the central Brooks Range, Alaska and implications for exhumation of high-pressure/low-temperature metamorphic rocks

    USGS Publications Warehouse

    Patrick, B.; Till, A.B.; Dinklage, W.S.

    1994-01-01

    During exhumation of the Brooks Range internal zone, amphibolite-facies rocks were emplaced atop the blueschist/greenschist facies schist belt. The resultant inverted metamorphic field gradient is mappable as a series of isograds encountered as one traverses up structural section. Amphibolite-facies metamorphism occurred at ??? 110 Ma as determined from 40Ar 39Ar analysis of hornblende. This contrasts with 40Ar 39Ar phengite cooling ages from the uderlying schist belt, which are clearly older (by 17-22 m.y.). Fabrics in both the amphibolite-facies rocks and schist belt are characterized by repeated cycles of N-vergent crenulation and transposition that was likely associated with out-of-sequence ductile thrusting in the internal zone of the Brooks Range orogen. Contractional deformation occurred in an overall environment of foreland-directed tectonic transport, broadly synchronous with exhumation of the internal zone, and shortening within the thin-skinned fold and thrust belt. These data are inconsistent with a recently postulated mid-Cretaceous episode of lithospheric extension in northern Alaska. ?? 1994.

  6. Technical note: Detection of dimethylamine in the low pptv range using nitrate Chemical Ionization-Atmospheric Pressure interface-Time Of Flight (CI-APi-TOF) mass spectrometry

    NASA Astrophysics Data System (ADS)

    Simon, M.; Heinritzi, M.; Herzog, S.; Leiminger, M.; Bianchi, F.; Praplan, A.; Dommen, J.; Curtius, J.; Kürten, A.

    2015-12-01

    Amines are potentially important for atmospheric new particle formation and therefore the demand for highly sensitive gas phase amine measurements has emerged in the last several years. Nitrate Chemical Ionization Mass Spectrometry (CIMS) is routinely used for the measurement of gas phase-sulfuric acid in the sub-pptv range. Furthermore, Extremely Low Volatile Organic Compounds (ELVOCs) can be detected with a nitrate CIMS. In this study we demonstrate that a nitrate CIMS can also be used for the sensitive measurement of dimethylamine ((CH3)2NH, DMA) using the NO3-(HNO3)1-2(DMA) cluster ion signals. This observation was made at the CLOUD aerosol chamber, which was also used for calibration measurements. Good linearity between 0 and ~120 pptv of DMA as well as a sub-pptv detection limit of 0.7 pptv for a 10 min integration time are demonstrated at 278 K and 38 % RH.

  7. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 1; Sharp Leading Edge; [conducted in the Langley National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 36 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at a Reynolds number of 6 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  8. Validation of the A&D BP UA-651 device with a wide-range cuff for home blood pressure measurement according to the European Society of Hypertension International Protocol revision 2010.

    PubMed

    Benetti, Elisabetta; Fania, Claudio; Palatini, Paolo

    2015-06-01

    The aim of this study was to determine the accuracy of the A&D BP UA-651 device coupled to a wide-range cuff for home blood pressure (BP) measurement according to the International Protocol of the European Society of Hypertension. The device was evaluated in 33 patients. The mean age of the patients was 56.5±15.1 years. The mean systolic BP was 144.3±23.8 mmHg (range 88 : 196), the mean diastolic BP was 87.5±15.8 mmHg (range 38 : 132), and the mean arm circumference was 29.0±3.4 cm (range 22 : 36). The protocol requirements were followed precisely. The device passed all requirements, fulfilling the standards of the protocol. On average, the device overestimated the systolic BP by 0.7±3.4 mmHg and underestimated the diastolic BP by 0.8±3.6 mmHg. The measurement error was unrelated to the patient's arm circumference. These data show that the A&D BP UA-651 device coupled to a wide-range cuff fulfilled the requirements for validation by the International Protocol over a wide range of arm circumferences and can be recommended for clinical use in the adult population.

  9. Comparison of Path Length and Ranges of Movement of the Center of Pressure and Reaction Time and Between Paired-Play and Solo-Play of a Virtual Reality Game.

    PubMed

    Portnoy, Sigal; Hersch, Ayelet; Sofer, Tal; Tresser, Sarit

    2017-06-01

    To test whether paired-play will induce longer path length and ranges of movement of the center of pressure (COP), which reflects on balance performance and stability, compared to solo-play and to test the difference in the path length and ranges of movement of the COP while playing the virtual reality (VR) game with the dominant hand compared to playing it with the nondominant hand. In this cross-sectional study 20 children (age 6.1 ± 0.7 years old) played an arm movement controlled VR game alone and with a peer while each of them stood on a pressure measuring pad to track the path length and ranges of movement of the COP. The total COP path was significantly higher during the paired-play (median 295.8 cm) compared to the COP path during the solo-play (median 189.2 cm). No significant differences were found in the reaction time and the mediolateral and anterior-posterior COP ranges between solo-play and paired-play. No significant differences were found between the parameters extracted during paired-play with the dominant or nondominant hand. Our findings imply that the paired-play is advantageous compared to solo-play since it induces a greater movement for the child, during which, higher COP velocities are reached that may contribute to improving the balance control of the child. Apart from the positive social benefits of paired-play, this positive effect on the COP path length is a noteworthy added value in the clinical setting when treating children with balance disorder.

  10. Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman Rise.

    PubMed

    Dalmasso, Cécile; Oger, Philippe; Selva, Gwendoline; Courtine, Damien; L'Haridon, Stéphane; Garlaschelli, Alexandre; Roussel, Erwan; Miyazaki, Junichi; Reveillaud, Julie; Jebbar, Mohamed; Takai, Ken; Maignien, Lois; Alain, Karine

    2016-10-01

    A novel strictly anaerobic, hyperthermophilic archaeon, designated strain CDGS(T), was isolated from a deep-sea hydrothermal vent in the Cayman Trough at 4964m water depth. The novel isolate is obligate anaerobe and grows chemoorganoheterotrophically with stimulation of growth by sulphur containing compounds. Its growth is optimal at 75°C, pH 6.0 and under a pressure of 50MPa. It possesses the broadest hydrostatic pressure range for growth that has ever been described for a microorganism. Its genomic DNA G+C content is 51.11mol%. The novel isolate belongs to the genus Thermococcus. Phylogenetic analyses indicated that it is most closely related to Thermococcus barossii DSM17882(T) based on its 16S rRNA gene sequence, and to 'Thermococcus onnurineus' NA1 based on its whole genome sequence. The average nucleotide identity scores with these strains are 77.66% for T. barossii and 84.84% for 'T. onnurineus', respectively. Based on the draft whole genome sequence and phenotypic characteristics, strain CDGS(T) is suggested to be separated into a novel species within the genus Thermococcus, with proposed name Thermococcus piezophilus (type strain CDGS(T)=ATCC TSD-33(T)=UBOCC 3296(T)). Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Final report of supplementary comparison AFRIMETS.AUV.A-S1: primary pressure calibration of LS2aP microphones according to IEC 61094-2, over the frequency range 1 Hz to 31.5 kHz.

    NASA Astrophysics Data System (ADS)

    Nel, R.; Barrera-Figueroa, S.; Dobrowolska, D.; Defilippo Soares, Z. M.; Maina, A. K.; Hof, C.

    2016-01-01

    This is the final report of the AFRIMETS.AUV-S1 comparison of the pressure sensitivity, modulus and phase, of LS2aP microphones in the frequency range 1 Hz to 31.5 kHz in accordance with IEC 61094-2. Six national metrology institutes from three different regional metrology organisations participated in the comparison for which two LS2aP microphones were circulated simultaneously to all the participants in a hybrid-star configuration. The comparison reference values were calculated as the weighted mean for modulus and phase for each individual microphone. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. Passive Ranging

    DTIC Science & Technology

    1988-08-01

    1981). 5. R. Courant and D. Hilbert, Methods of Mathematical Physics , Vol. I, English ed., * Interscience, New York, 1953. 32 32 APPENDIX A CALCULATION...K Courant and D. Hilbert, Methods of Mathematical Physics , Vol. I, English ed., * Interscience, New York, 1953. A-8 APPENDIX B * RANGING ACCURACY IN

  13. Thermodynamic description of equilibria in mixed fluids (H 2O-non-polar gas) over a wide range of temperature (25-700°C) and pressure (1-5000 bars)

    NASA Astrophysics Data System (ADS)

    Akinfiev, Nikolai; Zotov, Alexander

    1999-07-01

    A new method for computing complicated equilibria in hydrothermal mixed fluids, H 2O-non-polar gas, is proposed. The computation algorithm is based on the electrostatic approach for the interaction between aqueous species and H 2O. The approach uses the SUPCRT92 database and the HKF format and may be considered as an application of the revised HKF model for mixed H 2O-non-polar gas fluids. Thermodynamic properties of dissolved gases at high temperatures and pressures are calculated using the Redlich-Kwong approach. Dielectric permittivity of the mixed solvent is estimated by the modified Kirkwood equation. The proposed approach is validated using available experimental data on the dissociation constants of H 2O and NaCl and the solubility of both covalent and ion crystals (SiO 2, AgCl, Ag 2SO 4, Ca(OH) 2, CaCO 3) in H 2O-non-polar component (dioxane, Ar, CO 2) mixtures. Predicted and experimental data are in close agreement over a wide range of P- T- xgas conditions (up to 500°C, 4 kbar and 0.25-0.3 mole fraction of non-polar gas). It is also shown how the computation method can be applied to estimate the Born parameters of aqueous species. The proposed approach enables not only examination of isolated reactions, but the study of equilibria of whole systems. Thus, it allows modelling of mixed natural fluids.

  14. The dielectric properties of gaseous cryogen mixtures of He, H2, Ne, and N2 in a temperature range of 50-80 K at pressures up to 2.0 MPa

    NASA Astrophysics Data System (ADS)

    Park, Chanyeop; Graber, Lukas; Pamidi, Sastry

    2017-02-01

    This study investigates the dielectric properties of various mixtures of potential gaseous cryogens containing helium (He), hydrogen (H2), neon (Ne), and nitrogen (N2) under extended temperature and pressure ranges for high-temperature superconducting applications. We present the results of the Boltzmann analysis on a variety of binary and ternary gas mixtures in terms of the electron energy distribution function and the coefficients that represent the electron kinetic process, including the density-reduced ionization coefficient ( α / N ), the density-reduced attachment coefficient ( η / N ), the density-reduced effective ionization coefficient ( ( α - η ) / N ), and the density-reduced critical electric field ( ( E / N ) c r ). The study provides insights into the important characteristics and correlations that lead to the enhanced dielectric strength of gas mixtures and predicts further enhancements in the dielectric strengths of He-H2 mixtures by introducing the ternary mixtures of He-H2-N2. The study results recommend the potential ternary gas mixtures suitable for various cryogenic operating conditions and aid in the development of superconducting applications incorporating gaseous cryogens.

  15. Final report of key comparison AFRIMETS.AUV.A-K5: primary pressure calibration of LS1P microphones according to IEC 61094-2, over the frequency range 2 Hz to 10 kHz.

    NASA Astrophysics Data System (ADS)

    Nel, R.; Avison, J.; Harris, P.; Blabla, M.; Hämäläinen, J.

    2017-01-01

    The degrees of equivalence of the AFRIMETS.AUV.A-K5 regional key comparison are reported here as the final report. The scope of the comparison covered the complex pressure sensitivities of two LS1P microphones over the frequency range 2 Hz to 10 kHz in accordance with IEC 61094-2: 2009. Four national metrology institutes from two different regional metrology organisations participated in the comparison. Two LS1P microphones were circulated simultaneously to all the participants in a circular configuration. One of the microphones sensitivity shifted and all results associated with this microphone were subsequently excluded from further analysis and linking. The AFRIMETS.AUV.A-K5 comparison results were linked to the CCAUV.A-K5 comparison results via dual participation in the CCAUV.A-K5 and AFRIMETS.AUV.A-K5 comparisons. The degrees of equivalence, linked to the CCAUV.A-K5 comparison, were calculated for all participants of this comparison. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  16. Long-range magnetic order in the Heisenberg pyrochlore antiferromagnets G d2G e2O7 and G d2P t2O7 synthesized under high pressure

    NASA Astrophysics Data System (ADS)

    Li, X.; Cai, Y. Q.; Cui, Q.; Lin, C. J.; Dun, Z. L.; Matsubayashi, K.; Uwatoko, Y.; Sato, Y.; Kawae, T.; Lv, S. J.; Jin, C. Q.; Zhou, J.-S.; Goodenough, J. B.; Zhou, H. D.; Cheng, J.-G.

    2016-12-01

    G d2S n2O7 and G d2T i2O7 have been regarded as good experimental realizations of the classical Heisenberg pyrochlore antiferromagnet with dipolar interaction. The former was found to adopt the Palmer-Chalker state via a single, first-order transition at TN≈1 K , while the latter enters a distinct, partially ordered state through two successive transitions at TN 1≈1 K and TN 2= 0.75 K . To shed more light on their distinct magnetic ground states, we have synthesized two more gadolinium-based pyrochlore oxides, G d2G e2O7 and G d2P t2O7 , under high-pressure conditions and performed detailed characterizations via x-ray powder diffraction, dc and ac magnetic susceptibility, and specific heat measurements down to 100 mK. We found that both compounds enter a long-range antiferromagnetically ordered state through a single, first-order transition at TN= 1.4 K for G d2G e2O7 and TN= 1.56 K for G d2P t2O7 , with the specific heat anomaly similar to that of G d2S n2O7 rather than G d2T i2O7 . Interestingly, the low-temperature magnetic specific heat values of both G d2G e2O7 and G d2P t2O7 were found to follow nicely the T3 dependence as expected for a three-dimensional antiferromagnet with gapless spin-wave excitations. We have rationalized the enhancement of TN in terms of the reduced Gd-Gd distances for the chemically pressurized G d2G e2O7 and the addition of extra superexchange pathways through the empty Pt -eg orbitals for G d2P t2O7 . Our current study has expanded the family of gadolinium-based pyrochlores and permits us to achieve a better understanding of their distinct magnetic properties in a more comprehensive perspective.

  17. Range and range rate system

    NASA Technical Reports Server (NTRS)

    Graham, Olin L. (Inventor); Russell, Jim K. (Inventor); Epperly, Walter L. (Inventor)

    1988-01-01

    A video controlled solid state range finding system which requires no radar, high power laser, or sophisticated laser target is disclosed. The effective range of the system is from 1 to about 200 ft. The system includes an opto-electric camera such as a lens CCD array device. A helium neon laser produces a source beam of coherent light which is applied to a beam splitter. The beam splitter applies a reference beam to the camera and produces an outgoing beam applied to a first angularly variable reflector which directs the outgoing beam to the distant object. An incoming beam is reflected from the object to a second angularly variable reflector which reflects the incoming beam to the opto-electric camera via the beam splitter. The first reflector and the second reflector are configured so that the distance travelled by the outgoing beam from the beam splitter and the first reflector is the same as the distance travelled by the incoming beam from the second reflector to the beam splitter. The reference beam produces a reference signal in the geometric center of the camera. The incoming beam produces an object signal at the camera.

  18. Thermodynamic description of equilibria in mixed fluids (H{sub 2}O-non-polar gas) over a wide range of temperature (25--700 C) and pressure (1--5000 bars)

    SciTech Connect

    Akinfiev, N.; Zotov, A. |

    1999-07-01

    A new method for computing complicated equilibria in hydrothermal mixed fluids, H{sub 2}O-non-polar gas, is proposed. The computation algorithm is based on the electrostatic approach for the interaction between aqueous species and H{sub 2}O. The approach uses the SUPCRT92 database and the HKF format and may be considered as an application of the revised HKF model for mixed H{sub 2}O-non-polar gas fluids. Thermodynamic properties of dissolved gases at high temperatures and pressures are calculated using the Redlich-Kwong approach. Dielectric permittivity of the mixed solvent is estimated by the modified Kirkwood equation. The proposed approach is validated using available experimental data on the dissociation constants of H{sub 2}O and NaCl and the solubility of both covalent and ion crystals (SiO{sub 2}, AgCl, Ag{sub 2}SO{sub 4}, Ca(OH){sub 2}, CaCO{sub 3}) in H{sub 2}O-non-polar component (dioxane, Ar, CO{sub 2}) mixtures. Predicted and experimental data are in close agreement over a wide range of P-T-x{sub gas} conditions (up to 500 C, 4 kbar and 0.25--0.3 mole fraction of non-polar gas). It is also shown how the computation method can be applied to estimate the Born parameters of aqueous species. The proposed approach enables not only examination of isolated reactions, but the study of equilibria of whole systems. Thus, it allows modelling of mixed natural fluids.

  19. Neonatal Pressure Ulcer Prevention.

    PubMed

    Scheans, Patricia

    2015-01-01

    The incidence of pressure ulcers in acutely ill infants and children ranges up to 27 percent in intensive care units, with a range of 16-19 percent in NICUs. Anatomic, physiologic, and developmental factors place ill and preterm newborns at risk for skin breakdown. Two case studies illustrate these factors, and best practices for pressure ulcer prevention are described.

  20. Simplified manual fabrication of cubic-zirconia gem anvils for extended energy-range spectroscopic studies to routine high pressures of 100-150 kbar (10-15 GPa)

    NASA Astrophysics Data System (ADS)

    Jackson, N. R.; Erasmus, R. M.; Hearne, G. R.

    2010-07-01

    Methodology has been developed so as to attain routine extreme conditions as high as 10-15 GPa in a gem anvil optical pressure cell using hand (manual) processed gem anvils. The anvils polished by a simplified hand held tool are inexpensive single crystal cubic zirconia (CZ) gems that have various optical advantages over diamond anvils. Appreciable pressures are attained with culet and corresponding sample cavity dimensions that are relatively convenient to load with sample material. Some technical details are provided as regards the simplified manual fabrication process, thus emphasizing the relative ease and cost effectiveness of the hand polishing technique for fabricating such high pressure anvils. Raman spectroscopy measurements, in triple subtractive mode with a confocal pinhole geometry, are used to exemplify the usefulness of the CZ gem anvil cell methodology in pressure tuning experiments. This is particularly convenient for conventional low wave-number (lattice mode regime) Raman high pressure studies, which have not been reported previously in this context. Various other applications of such anvils are suggested.

  1. Dynamic Pressure Calibration Standard

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Cate, K. H.; Young, S. D.

    1986-01-01

    Vibrating columns of fluid used to calibrate transducers. Dynamic pressure calibration standard developed for calibrating flush diaphragm-mounted pressure transducers. Pressures up to 20 kPa (3 psi) accurately generated over frequency range of 50 to 1,800 Hz. System includes two conically shaped aluminum columns one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with viscous fluid. Each column mounted on armature of vibration exciter, which imparts sinusoidally varying acceleration to fluid column. Signal noise low, and waveform highly dependent on quality of drive signal in vibration exciter.

  2. Air pressure measurement

    NASA Technical Reports Server (NTRS)

    Ballard, H. N.

    1978-01-01

    The pressure measurement was made by a Model 830J Rosemont sensor which utilized the principle of a changing pressure to change correspondingly the capacitance of the pressure sensitive element. The sensor's range was stated to be from zero to 100 Torr (14 km); however, the sensor was not activated until an altitude of 20 km (41 Torr) was reached during the balloon ascent. The resolution of the sensor was specified by the manufacturer as infinitesimal; however, associated electronic and pressure readout systems limit the resolution to .044 Torr. Thus in the vicinity of an altitude of 30 km the pressure resolution corresponded to an altitude resolution of approximately 33 meters.

  3. Pressure Sores

    MedlinePlus

    ... night. Pressure sores also are called bedsores or pressure ulcers. The sores change appearance over 4 stages. In ... SeniorsTags: antibiotics, Dermatologic, elderly, higher, older adults, Overview, Pressure Ulcers Family Health, Seniors September 2000 Copyright © American Academy ...

  4. Blood pressure

    MedlinePlus Videos and Cool Tools

    Normal blood pressure is important for proper blood flow to the body's organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart ...

  5. Peer Pressure

    MedlinePlus

    ... Surgery? A Week of Healthy Breakfasts Shyness Peer Pressure KidsHealth > For Teens > Peer Pressure A A A ... for the school play. previous continue When the Pressure's On Sometimes, though, the stresses in your life ...

  6. Final report on the key comparison, CCM.P-K15 in the pressure range from 1.0 × 10(-4) Pa to 1.0 Pa.

    PubMed

    Wuethrich, Christian; Arai, Kenta; Bergoglio, Mercede; Fedchak, James A; Jousten, Karl; Hong, Seung Soo; Guzman, Jorge Torres

    2017-01-01

    The comparison CCM.P-K15 is a key comparison in pressure involving six laboratories in three regional metrological organizations (RMO). The measurand of the comparison is the accommodation coefficient of two spinning rotating gauge characterized in nitrogen from 0.1 mPa up to 1.0 Pa. The two transfer standards were circulated from November 2009 until March 2011. The circulation consisted of three loops, one for each RMO, and a new calibration by the pilot between each loop. The stability of one of the transfer standards was poor and was worse than expected based on the previous history of the transfer standard while the other transfer standard demonstrated good stability while circulated in Europe and America and a fair stability while circulated in Asia. All the participants demonstrated equivalence to the definition of pressure in their respective primary standards.

  7. High pressure gas metering project

    SciTech Connect

    Tripp, L.R.

    1980-07-07

    The initial research and development of a system that uses high pressure helium gas to pressurize vessels over a wide range of pressurization rates, vessel volumes, and maximum test pressures are described. A method of controlling the mass flow rate in a test vessel was developed by using the pressure difference across a capillary tube. The mass flow rate is related to the pressurization rate through a real gas equation of state. The resulting mass flow equation is then used in a control algorithm. Plots of two typical pressurization tests run on a manually operated system are included.

  8. Final report on the key comparison, CCM.P-K15 in the pressure range from 1.0 × 10-4 Pa to 1.0 Pa

    NASA Astrophysics Data System (ADS)

    Wuethrich, Christian; Arai, Kenta; Bergoglio, Mercede; Fedchak, James A.; Jousten, Karl; Hong, Seung Soo; Torres Guzman, Jorge

    2017-01-01

    The comparison CCM.P-K15 is a key comparison in pressure involving six laboratories in three regional metrological organizations (RMO). The measurand of the comparison is the accommodation coefficient of two spinning rotating gauge characterized in nitrogen from 0.1 mPa up to 1.0 Pa. The two transfer standards were circulated from November 2009 until March 2011. The circulation consisted of three loops, one for each RMO, and a new calibration by the pilot be-tween each loop. The stability of one of the transfer standards was poor and was worse than expected based on the previous history of the transfer standard while the other transfer standard demonstrated good stability while circulated in Europe and America and a fair stability while circulated in Asia. All the participants demonstrated equivalence to the definition of pressure in their respective primary standards. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Force and pressure characteristics for a series of nose inlets at Mach numbers from 1.59 to 1.99 V : analysis and comparison on basis of ram-jet aircraft range and operational characteristics

    NASA Technical Reports Server (NTRS)

    Howard, E; Luidens, R W; Allen, J L

    1951-01-01

    Performance of four experimentally investigated axially symmetric spike-type nose inlets is compared on basis of ram-jet-engine aircraft range and operational problems. At design conditions, calculated peak engine efficiencies varied 25 percent from the highest value which indicates importance of inlet design. Calculations for a typical supersonic aircraft indicate possible increase in range if engine is flown at moderate angle of attack and result in engine lift utilized. For engines with fixed exhaust nozzle, propulsive thrust increases with increasing heat addition in subcritical flow region in spite of increasing additive drag. For the perforated inlet there is a range of increasing total-temperature ratios in subcritical flow region that does not yield an increase in propulsive thrust. Effects of inlet characteristics on speed stability of a typical aircraft for three types of fuel control is discussed.

  10. Mesoscale Molecular Dynamics of Geomaterials: the Glass Transition, Long-Range Structure of Amorphous Silicates and Relation between Structure, Dynamics and Properties of geomaterials at elevated Temperature and Pressure

    SciTech Connect

    Frank Spera

    2006-07-31

    Objectives: Our aims were (1) Large particle-number Molecular Dynamics (MD) simulations of molten silicate and aluminosilicate geomaterials (e.g., CaAl{sub 2}Si{sub 2}O{sub 8}, MgSiO{sub 3}, Mg{sub 2}SiO{sub 4}) with emphasis on understanding the connection between atomic structure and properties at temperatures and pressures characteristic of Earth's mantle (2) Study of the transport properties and equations of state for silicate liquids based on the MD results (3) Development of geochemical models for the evolution of crustal magma bodies undergoing simultaneous assimilation, fractional crystallization, periodic recharge and periodic eruption and application to magmatic systems (4) Study of current-day rates of generation and eruption of magma on earth.

  11. Final report on the supplementary comparison, EURAMET.M.P-S7 (EURAMET project 1040) in the pressure range from 1.10-4 Pa to 0.9 Pa

    NASA Astrophysics Data System (ADS)

    Wüthrich, C.; Alisic, S.; Bergoglio, M.; Saxholm, S.; Lefkopoulos, A.; Pražák, D.; Setina, J.

    2016-01-01

    Many laboratories within EURAMET started a calibration service in medium and high vacuum recently and did not have the opportunity to take part to a comparison before. In order to assess the uncertainty budget and the quality of the measurement of these laboratories, an intercomparison, EURAMET 1040 registered as EURAMET.M.P-S7, from 0.1 mPa to 0.9 Pa has been organised. The participants are the CMI (Czech republic), EIM (Greece), IMT (Slovenia), INRIM (Italy), IMBIH (Bosnia Herzegovinia) and MIKES (Finland) while METAS (Switzerland) is pilot laboratory. Three laboratories (INRIM, CMI and METAS) involved in this work have a primary definition of the pressure. Two spinning rotor gauges and a control electronic are used as transfer standard. The circulation of the transfer standard is organised as a succession of loops with a measurement by the pilot between each participant. A reference value has been determined based on a weighted mean of the results of the primary laboratories. All the participants have demonstrated their equivalence in the definition of the pressure. This comparison has been used as pilot comparison for the CCM.P-K14 project which covers the same scope with similar transfer standards. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. Pressure Sores

    MedlinePlus

    Pressure sores are areas of damaged skin caused by staying in one position for too long. They ... wheelchair, or are unable to change your position. Pressure sores can cause serious infections, some of which ...

  13. Assessment of Modeled Received Sound Pressure Levels and Movements of Satellite-Tagged Odontocetes Exposed to Mid-Frequency Active Sonar at the Pacific Missile Range Facility: February 2011 Through February 2013

    DTIC Science & Technology

    2014-05-30

    PMRF so that animal movements and diving behavior could be measured both before and during sonar use. PMRF PAM data and tag data were used in this...initial analysis to estimate exposure levels for tagged animals and determine whether any large-scale movements of these animals may have occurred in...range hydrophones), ship positions at time of transmissions (provided by PMRF) and animal locations (determined from satellite tag positions) allowed

  14. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  15. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  16. Barometric pressure

    NASA Technical Reports Server (NTRS)

    Billings, C. E.

    1973-01-01

    The effects of alterations in barometric pressure on human beings are described. Human tolerances for gaseous environments and low and high barometric pressure are discussed, including effects on specific areas, such as the ear, lungs, teeth, and sinuses. Problems due to trapped gas within the body, high dynamic pressures on the body, and blasts are also considered.

  17. Solubility of sulfur dioxide in aqueous solutions of acetic acid, sodium acetate, and ammonium acetate in the temperature range from 313 to 393 K at pressures up to 3.3 MPa: Experimental results and comparison with correlations/predictions

    SciTech Connect

    Xia, J.; Rumpf, B.; Maurer, G.

    1999-03-01

    In many chemical plants, for example in coal gasification processes or desulfurization equipment, sour gas absorption columns and sour water strippers are used to remove weak electrolyte gases like sulfur dioxide, hydrogen cyanide, hydrogen sulfide or carbon dioxide from aqueous solutions. The basic design of such equipment requires physico-chemical models to describe the phase equilibrium as well as the caloric properties of such mixtures. New experimental results for the solubility of sulfur dioxide in aqueous solutions of single solutes acetic acid, sodium acetate and ammonium acetate at temperatures from 313 to 393 K and total pressures up to 3.3 MPa are reported. Similar to the system sulfur dioxide-water, also in such systems with acetic acid and sodium or ammonium acetate a second (sulfur dioxide rich) liquid phase is observed at high sulfur dioxide concentrations. A model to describe the phase equilibrium is presented and calculated (i.e., predicted as well as correlated) phase equilibria are compared to the new experimental data.

  18. Fluid pressure balanced seal

    NASA Technical Reports Server (NTRS)

    Marsh, H. W. (Inventor)

    1966-01-01

    A seal which increases in effectiveness with increasing pressure is presented. The seal's functional capability throughout both static and dynamic operation makes it particularly useful for sealing ball valve ports. Other features of the seal include the ability to seal two opposed surfaces simultaneously, tolerance of small misalignments, tolerance of wide temperature ranges, ability to maintain positive sealing contact under conditions of internal or external pressurization, and ability to conform to slight irregularities in seal or surface contours.

  19. Measuring pressure under burns pressure garments using the Oxford Pressure Monitor.

    PubMed

    Harries, C A; Pegg, S P

    1989-06-01

    Pressure garments are used extensively in the treatment of hypertrophic scarring following burn injuries. The Oxford Pressure Monitor was used to measure garment-scar interface pressure (mmHg) using a number of fabric types over various body parts. The results indicate a wide range of pressure values between different garments and body parts with the greatest pressures found over the dorsum of hands and feet. The problems of achieving 'optimal pressure' over hypertrophic scarring are discussed with emphasis on the need for more accurate measuring equipment.

  20. Materials at Atomic Pressure

    SciTech Connect

    Hicks, Damien

    2010-06-10

    Atomic units give the scale at which quantum processes operate. As combinations of fundamental constants they concisely encapsulate qualities of the atom, e.g. atomic length and energy scales are given by the Bohr radius and the Hartree (or Rydberg) respectively. Although many of these quantities were probed in the early part of the 20th Century the atomic unit of time, at tens of attoseconds, was first probed in 2001. Today, the only atomic unit that remains to be studied experimentally is the atomic unit of pressure, at 294 Mbar (or 147 Mbar in Rydberg atomic units). This is nature’s definition of the ‘high’ in high-pressure science, and it sets the scale for new physics and chemistry. Among experimental facilities, only the NIF can attain and accurately probe atomic pressures. We propose to directly study material properties at these conditions by examining the short-range ordering of atoms using x-ray absorption fine structure spectroscopy (XAFS) of layers in spherical, ignition-type imploding shells. What happens at atomic pressures? The atomic unit of pressure represents the quantum mechanical pressure exerted by an orbiting electron to prevent collapse into the nucleus. Applying external pressure of this magnitude seriously disrupts orbitals and alters the character of the atom itself. Core electron orbitals overlap and chemical bonds are no longer constrained to occur between valence electron orbitals alone. The most direct probe of bonding requires a short-range order diagnostic such as XAFS.

  1. RANGE INCREASER FOR PNEUMATIC GAUGES

    DOEpatents

    Fowler, A.H.; Seaborn, G.B. Jr.

    1960-09-27

    An improved pneumatic gage is offered in which the linear range has been increased without excessive air consumption. This has been accomplished by providing an expansible antechamber connected to the nozzle of the gage so that the position of the nozzle with respect to the workpiece is varied automatically by variation in pressure within the antechamber. This arrangement ensures that the nozzle-to-workpiece clearance is maintained within certain limits, thus obtaining a linear relation of air flow to nozzle-to-workpiece clearance over a wider range.

  2. Pressure gauge

    SciTech Connect

    Morita, S.

    1985-04-02

    A pressure receiving element for receiving an external pressure is attached to one end of a body and a temperature compensating diaphragm is attached to the other end of the body. A coupling shaft disposed in the body is fixed at both ends to the pressure receiving element and the diaphragm, respectively. A liquid is sealed in the body and means is provided for detecting displacement or force applied to the coupling shaft in accordance with a pressure received by the pressure receiving element. The diaphragm has corrugations of concentric circles and the crests of a plurality of them are made flat and one of the flat crests is fixed to the body. The effective area of the diaphragm inside of the flat crest that is fixed to the body is selected substantially to be equal to the effective area of the pressure receiving element.

  3. The Effect of Different Materials on the Accuracy of the HYDRA Optical-Fiber-Coupled Coherent Range/Pressure Measurement System and the Development of the Health Care Database System at Old Dominion University

    NASA Technical Reports Server (NTRS)

    Johnson, Kimberly D.

    1995-01-01

    The objective of the first project involving the HYDRA laser system was to determine what effects, if any, could been seen in the system's measurements when testing was done with objects composed of different materials. Ideally we would like to have seen that the range of measurements were all within the accepted 0.4 millimeter accuracy of the system. Unfortunately our results were not as we had hoped, and there did appear to be some significant difference in the measurements made on objects composed of different materials. The second project is a continuing project at Old Dominion University. The ultimate goal is to develop a medical database that allows a doctor or hospital to keep medical records on line. The current data of the system consisted of one patient whose medical data had been hard coded to allow for a demonstration of the potentials of the system. The short term goal for this summer was to add additional patients to the system for testing, and to eliminate the hard coding of data by creating a database where data could be stored and queried to produce the results seen in the current state.

  4. Pressurized Sleeve

    NASA Technical Reports Server (NTRS)

    Lerner, Amy

    1988-01-01

    Garment part sustains pressure differential without unduly restricting the user. Sleeve withstands pressure difference of 8 lb/in2 while allowing wearer fairly easy movement. Sleeve consists of low-torque joint hardware, sewn fabric sections, and lengthwise strips of fabric that restrain sections.

  5. Nonlinear optomechanical pressure

    NASA Astrophysics Data System (ADS)

    Conti, Claudio; Boyd, Robert

    2014-03-01

    A transparent material exhibits ultrafast optical nonlinearity and is subject to optical pressure if irradiated by a laser beam. However, the effect of nonlinearity on optical pressure is often overlooked, even if a nonlinear optical pressure may be potentially employed in many applications, such as optical manipulation, biophysics, cavity optomechanics, quantum optics, and optical tractors, and is relevant in fundamental problems such as the Abraham-Minkoswky dilemma or the Casimir effect. Here, we show that an ultrafast nonlinear polarization gives indeed a contribution to the optical pressure that also is negative in certain spectral ranges; the theoretical analysis is confirmed by first-principles simulations. An order-of-magnitude estimate shows that the effect can be observable by measuring the deflection of a membrane made by graphene.

  6. [Myth of optimal pressure].

    PubMed

    van Leeuwen, E J; Maltha, J C

    2000-04-01

    Orthodontic tooth movement always follows the same pattern. Four phases can be distinguished. During the last phase, the linear phase, the tooth moves through the alveolar bone. One could assume that the rate of tooth displacement is related to the magnitude of the force or to the pressure in the periodontal ligament. No consensus exists on the optimal pressure for orthodontic tooth movement. In literature pressures are advocated, ranging from 2 to 30 KPa. Animal experiments show that a large range of force magnitudes results in an equal rate of tooth movement. A dose-response relation is only feasible when forces are used which are far below those used in an everyday practice.

  7. High pressure apparatus for magnetization measurements

    SciTech Connect

    Uwatoko, Y.; Hotta, T.; Mori, H.

    1997-10-01

    A hydrostatic high pressure micro cell for studying heavy-fermion materials in a commercial magnetometer is developed. Experiments of pressures up to 10 kbar and temperature range 2 K {le} T {le} 300 K have been carried out. The sensitivity of measurement of under high pressure is as same as ambient pressure one within experimental error.

  8. Pressure sore prevention in acutely ill patients.

    PubMed

    James, H

    1997-03-01

    A wide range of factors affect the skin's ability to withstand pressure, friction and shear. Clinically validated pressure-relieving equipment is essential to prevent pressure sores in acutely ill patients. A successful pressure sore prevention strategy depends on sufficient resource allocation, appropriate levels and types of preventive equipment and evaluation.

  9. Post-operative cranial pressure monitoring system

    NASA Technical Reports Server (NTRS)

    Fager, C. A., Jr.; Long, L. E.; Trent, R. L.

    1970-01-01

    System for monitoring of fluidic pressures in cranial cavity uses a miniaturized pressure sensing transducer, combined with suitable amplification means, a meter with scale calibrated in terms of pressures between minus 100 and plus 900 millimeters of water, and a miniaturized chart recorder covering similar range of pressures.

  10. Pressure sensor

    DOEpatents

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2015-09-29

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  11. Pressure Drop

    NASA Technical Reports Server (NTRS)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  12. PRESSURE TRANSDUCER

    DOEpatents

    Sander, H.H.

    1959-10-01

    A pressure or mechanical force transducer particularly adaptable to miniature telemetering systems is described. Basically the device consists of a transistor located within a magnetic field adapted to change in response to mechanical force. The conduction characteristics of the transistor in turn vary proportionally with changes in the magnetic flux across the transistor such that the output (either frequency of amplitude) of the transistor circuit is proportional to mechanical force or pressure.

  13. Pressure regulator

    DOEpatents

    Ebeling, Jr., Robert W.; Weaver, Robert B.

    1979-01-01

    The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.

  14. Low pressure EGR system having full range capability

    DOEpatents

    Easley, Jr. William Lanier; Milam, David Michael; Roozenboom, Stephan Donald; Bond, Michael Steven; Kapic, Amir

    2009-09-22

    An exhaust treatment system for an engine is disclosed and may have an air induction circuit, an exhaust circuit, and an exhaust recirculation circuit. The air induction circuit may be configured to direct air into the engine. The exhaust circuit may be configured to direct exhaust from the engine and include a turbine driven by the exhaust, a particulate filter disposed in series with and downstream of the turbine, and a catalytic device disposed in series with and downstream of the particulate filter. The exhaust recirculation circuit may be configured to selectively redirect at least some of the exhaust from between the particulate filter and the catalytic device to the air induction circuit. The catalytic device is selected to create backpressure within the exhaust circuit sufficient to ensure that, under normal engine operating conditions above low idle, exhaust can flow into the air induction circuit without throttling of the air.

  15. Range management visual impacts

    Treesearch

    Bruce R. Brown; David Kissel

    1979-01-01

    Historical overgrazing of western public rangelands has resulted in the passage of the Public Rangeland Improvement Act of 1978. The main purpose of this Act is to improve unsatisfactory range conditions. A contributing factor to unfavorable range conditions is adverse visual impacts. These visual impacts can be identified in three categories of range management: range...

  16. A flexible pressure monitoring system for pressure ulcer prevention.

    PubMed

    Yip, Marcus; Da He, David; Winokur, Eric; Balderrama, Amanda Gaudreau; Sheridan, Robert; Ma, Hongshen

    2009-01-01

    Pressure ulcers are painful sores that arise from prolonged exposure to high pressure points, which restricts blood flow and leads to tissue necrosis. This is a common occurrence among patients with impaired mobility, diabetics and the elderly. In this work, a flexible pressure monitoring system for pressure ulcer prevention has been developed. The prototype consists of 99 capacitive pressure sensors on a 17-cm x 22-cm sheet which is flexible in two dimensions. Due to its low cost, the sensor sheet can be disconnected from the reusable electronics and be disposed of after use, suitable for a clinical setting. Each sensor has a resolution of better than 2-mmHg and a range of 50-mmHg and offset is calibrated in software. Realtime pressure data is displayed on a computer. A maximum sampling rate of 12-Hz allows for continuous monitoring of pressure points.

  17. Range Reference Notebook

    DTIC Science & Technology

    2006-10-15

    rifle grenade (inert), tin can lid, 15” tent peg 3 Table FRD-7. Fort Ritchie Sector 3 Representative Examples of Non-MEC Clutter Description 1/2...Appendix B—Indirect Fire Range Examples SITES ( ADI ) Adak Naval Air Facility, AK, Mitt Lake Mortar Range (FRI) Fort Ritchie...example range. B- ADI -1 Indirect-Fire Range,: Adak, AK, Mitt Lake Mortar Range Impact Area Site-Specific References – Adak NAF Foster Wheeler

  18. A Long-Range Precision Ranging System

    NASA Technical Reports Server (NTRS)

    Easterling, Mahlon

    1961-01-01

    A technique is presented that may be used for precision real-time continuous range measuring at long ranges. The technique uses a carrier that is phase modulated by a pseudo-random binary sequence. The characteristics of the sequence that make it acquirable are discussed. The general form of a receiver capable of tracking the carrier is given and is shown to be a kind of phase-locked loop. A two-loop system capable of tracking a pseudo-random sequence and its clock is given. The combination of the receiver and the sequence tracking system form a ranging receiver. The power division necessary between the carrier and the sidebands is shown to be determined by the noise bandwidths of the two tracking systems. The bandwidths necessary for tracking space probes and Earth satellites are given and some experiments in radar-tracking Earth satellites are described. Based on these experiments, estimates are made of the useful range of such a system in tracking space probes.

  19. Pressure garment design tool to monitor exerted pressures.

    PubMed

    Macintyre, Lisa; Ferguson, Rhona

    2013-09-01

    Pressure garments are used in the treatment of hypertrophic scarring following serious burns. The use of pressure garments is believed to hasten the maturation process, reduce pruritus associated with immature hypertrophic scars and prevent the formation of contractures over flexor joints. Pressure garments are normally made to measure for individual patients from elastic fabrics and are worn continuously for up to 2 years or until scar maturation. There are 2 methods of constructing pressure garments. The most common method, called the Reduction Factor method, involves reducing the patient's circumferential measurements by a certain percentage. The second method uses the Laplace Law to calculate the dimensions of pressure garments based on the circumferential measurements of the patient and the tension profile of the fabric. The Laplace Law method is complicated to utilise manually and no design tool is currently available to aid this process. This paper presents the development and suggested use of 2 new pressure garment design tools that will aid pressure garment design using the Reduction Factor and Laplace Law methods. Both tools calculate the pressure garment dimensions and the mean pressure that will be exerted around the body at each measurement point. Monitoring the pressures exerted by pressure garments and noting the clinical outcome would enable clinicians to build an understanding of the implications of particular pressures on scar outcome, maturation times and patient compliance rates. Once the optimum pressure for particular treatments is known, the Laplace Law method described in this paper can be used to deliver those average pressures to all patients. This paper also presents the results of a small scale audit of measurements taken for the fabrication of pressure garments in two UK hospitals. This audit highlights the wide range of pressures that are exerted using the Reduction Factor method and that manual pattern 'smoothing' can dramatically

  20. The vapor pressures of explosives

    SciTech Connect

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  1. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  2. Cryogenic loading of argon pressure medium in diamond anvil high pressure cells with in situ pressure determination

    NASA Astrophysics Data System (ADS)

    Pugh, E.

    2017-06-01

    A versatile system for cryogenic loading of argon pressure medium into the sample space of a diamond anvil cell has been developed. The system has been designed such that, with suitable adaptors, a wide range of diamond anvil cell designs can be pressurized. The pressure in the cell can be monitored during pressurization using the ruby fluorescence method via optical fiber access into the loading chamber. This enables the precise and accurate setting of the loading pressure in the cell.

  3. Pressure inactivation of microorganisms at moderate temperatures

    NASA Astrophysics Data System (ADS)

    Butz, P.; Ludwig, H.

    1986-05-01

    The inactivation of bacteria, bacterial spores, yeasts and molds by high hydrostatic pressure was investigated over a pressure range up to 3000 bar. Survival curves were measured as a function of temperature and pressure applied on the microorganisms. Conditions are looked for under which heat or radiation sensitive pharmaceutical preparations can be sterilized by high pressure treatment at moderate temperatures. All organisms tested can be inactivated in the range of 2000-2500 bar and between 40-60 degrees.

  4. Negative pressure wound therapy.

    PubMed

    Thompson, James T; Marks, Malcolm W

    2007-10-01

    Negative pressure wound therapy has become an increasingly important part of wound management. Over the last decade, numerous uses for this method of wound management have been reported, ranging from acute and chronic wounds, to closure of open sternal and abdominal wounds, to assistance with skin grafts. The biophysics behind the success of this treatment largely have focused on increased wound blood flow, increased granulation tissue formation, decreased bacterial counts, and stimulation of wound healing pathways through shear stress mechanisms. The overall success of negative pressure wound therapy has led to a multitude of clinical applications, which are discussed in this article.

  5. Cascade Mountain Range in Oregon

    USGS Publications Warehouse

    Sherrod, David R.

    2016-01-01

    Along its Oregon segment, the Cascade Range is almost entirely volcanic in origin. The volcanoes and their eroded remnants are the visible magmatic expression of the Cascadia subduction zone, where the offshore Juan de Fuca tectonic plate is subducted beneath North America. Subduction occurs as two lithospheric plates collide, and an underthrusted oceanic plate is commonly dragged into the mantle by the pull of gravity, carrying ocean-bottom rock and sediment down to where heat and pressure expel water. As this water rises, it lowers the melting temperature in the overlying hot mantle rocks, thereby promoting melting. The molten rock supplies the volcanic arcs with heat and magma. Cascade Range volcanoes are part of the Ring of Fire, a popular term for the numerous volcanic arcs that encircle the Pacific Ocean.

  6. Limited range of motion

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003173.htm Limited range of motion To use the sharing features on this page, please enable JavaScript. Limited range of motion is a term meaning that a joint or ...

  7. Television Tracker Range Equation

    NASA Astrophysics Data System (ADS)

    Huan-Wen, Zhu

    1987-05-01

    The paper gives an approximate television tracker range equation based on the concept of the radiology and signal-to-noise of television system, and describes the physical process and mathematical method of reckoning range equation. The range equation is useful to the desing and development of a system. This paper also discusses the demand and selection standard of the television tracker system to the imaging device and gives some possible approaches to increase the range.

  8. The transmission of gas pressure to xylem fluid pressure when plants are inside a pressure bomb.

    PubMed

    Wei, C; Tyree, M T; Bennink, J P

    2000-02-01

    In earlier work tobacco leaves were placed in a Scholander-Hammel pressure bomb and the end of the petiole sealed with a pressure transducer in order to measure pressure transmission from the compressed gas (Pg) in the bomb to the xylem fluid (Px). Pressure bomb theory would predict a 1:1 relationship for Pg:Px when tobacco leaves start at a balance pressure of zero. Failure to observe the expected 1:1 relationship has cast doubt on the pressure-bomb technique in the measurement of the xylem pressure of plants. The experimental and theoretical relationship between Px and Pg was investigated in Tsuga canadensis (L) branches and Nicotiana rustica (L) leaves in this paper. It is concluded that the non 1:1 outcome was due to the compression of air bubbles in embolized xylem vessels, evaporation of water from the tissue, and the expansion of the sealed stem segment (or petiole) protruding beyond the seal of the pressure bomb. The expected 1:1 relationship could be obtained when xylem embolism was eliminated and stem expansion prevented. It is argued that the non 1:1 relationship in the positive pressure range does not invalidate the Scholander pressure bomb method of measuring xylem pressure in plants because Px never reaches positive values during the determination of the balance pressure.

  9. RADIO RANGING DEVICE

    DOEpatents

    Nieset, R.T.

    1961-05-16

    A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

  10. Long Range Technology Planning.

    ERIC Educational Resources Information Center

    Ambron, Sueann, Ed.

    1986-01-01

    This summary of a meeting of the Apple Education Advisory Council, on long range technology plans at the state, county, district, and school levels, includes highlights from group discussions on future planning, staff development, and curriculum. Three long range technology plans at the state level are provided: Long Range Educational Technology…

  11. Long Range Technology Planning.

    ERIC Educational Resources Information Center

    Ambron, Sueann, Ed.

    1986-01-01

    This summary of a meeting of the Apple Education Advisory Council, on long range technology plans at the state, county, district, and school levels, includes highlights from group discussions on future planning, staff development, and curriculum. Three long range technology plans at the state level are provided: Long Range Educational Technology…

  12. Tau ranging revisited

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1987-01-01

    It is shown that a ranging receiver with a sufficient and reasonable number of correlators is competitive with the current sequential component ranging system by some 1.5 to 2.5 dB. The optimum transmitter code, the optimum receiver, and a near-maximum-lilelihood range-estimation algorithm are presented.

  13. Pressure-induced metallization in Erbium trihydride

    NASA Astrophysics Data System (ADS)

    Kuzovnikov, M. A.; Eremets, M. I.; Drozdov, A. P.; Tkacz, M.

    2017-09-01

    Electrical resistivity and Raman spectra of ErH3 were studied in a diamond anvil cell under high pressure up to 140 GPa in the temperature range 4-300 K. A crossover from a semiconductor-like to a metallic temperature dependence of resistivity at fixed pressures was observed at about 50 GPa. In the pressure range 80-140 GPa a resistivity maximum was observed at the R(T) dependencies. The temperature corresponding to this maximum linearly increased with pressure increase, reaching 26 K at 140 GPa. No superconductivity was observed in the studied pressure-temperature range.

  14. A dynamic pressure source for the calibration of pressure transducers

    NASA Technical Reports Server (NTRS)

    Vezzetti, C. F.; Hilten, J. S.; Mayo-Wells, J. F.; Lederer, P. S.

    1976-01-01

    A dynamic pressure source is described for producing sinusoidally varying pressures of up to 34 kPa zero to peak, over the frequency range of approximately 50 Hz to 2 kHz. The source is intended for the dynamic calibration of pressure transducers. The transducer to be calibrated is mounted near the base of the thick walled aluminum tube forming the vessel so that the pressure sensitive element is in contact with the liquid in the tube. A section of the tube is filled with small steel balls to damp the motion of the 10-St dimethyl siloxane working fluid in order to extend the useful frquency range to higher frequencies than would be provided by an undamped system. The dynamic response of six transducers provided by the sponsor was evaluated using the pressure sources; the results of these calibrations are given.

  15. Telemetry Ranging: Signal Processing

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2016-02-01

    This article describes the details of the signal processing used in a telemetry ranging system in which timing information is extracted from the downlink telemetry signal in order to compute spacecraft range. A previous article describes telemetry ranging concepts and architecture, which are a slight variation of a scheme published earlier. As in that earlier work, the telemetry ranging concept eliminates the need for a dedicated downlink ranging signal to communicate the necessary timing information. The present article describes the operation and performance of the major receiver functions on the spacecraft and the ground --- many of which are standard tracking loops already in use in JPL's flight and ground radios --- and how they can be used to provide the relevant information for making a range measurement. It also describes the implementation of these functions in software, and performance of an end-to-end software simulation of the telemetry ranging system.

  16. Telemetry-Based Ranging

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Vilnrotter, Victor A.; Andrews, Kenneth S.; Shambayati, Shervin

    2011-01-01

    A telemetry-based ranging scheme was developed in which the downlink ranging signal is eliminated, and the range is computed directly from the downlink telemetry signal. This is the first Deep Space Network (DSN) ranging technology that does not require the spacecraft to transmit a separate ranging signal. By contrast, the evolutionary ranging techniques used over the years by NASA missions, including sequential ranging (transmission of a sequence of sinusoids) and PN-ranging (transmission of a pseudo-noise sequence) whether regenerative (spacecraft acquires, then regenerates and retransmits a noise-free ranging signal) or transparent (spacecraft feeds the noisy demodulated uplink ranging signal into the downlink phase modulator) relied on spacecraft power and bandwidth to transmit an explicit ranging signal. The state of the art in ranging is described in an emerging CCSDS (Consultative Committee for Space Data Systems) standard, in which a pseudo-noise (PN) sequence is transmitted from the ground to the spacecraft, acquired onboard, and the PN sequence is coherently retransmitted back to the ground, where a delay measurement is made between the uplink and downlink signals. In this work, the telemetry signal is aligned with the uplink PN code epoch. The ground station computes the delay between the uplink signal transmission and the received downlink telemetry. Such a computation is feasible because symbol synchronizability is already an integral part of the telemetry design. Under existing technology, the telemetry signal cannot be used for ranging because its arrival-time information is not coherent with any Earth reference signal. By introducing this coherence, and performing joint telemetry detection and arrival-time estimation on the ground, a high-rate telemetry signal can provide all the precision necessary for spacecraft ranging.

  17. A Microwave Pressure Sounder

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.

    1978-01-01

    An instrument to measure atmospheric pressure at the earth's surface from an orbiting satellite would be a valuable addition to the expanding inventory of remote sensors. The subject of this report is such an instrument - the Microwave Pressure Sounder (MPS). It is shown that global-ocean coverage is attainable with sufficient accuracy, resolution and observational frequency for meteorological, oceanographic and climate research applications. Surface pressure can be deduced from a measurement of the absorption by an atmospheric column at a frequency in the wing of the oxygen band centered on 60 GHz. An active multifrequency instrument is needed to make this measurement with sufficient accuracy. The selection of optimum operating frequencies is based upon accepted models of surface reflection, oxygen, water vapor and cloud absorption. Numerical simulation using a range of real atmospheres defined by radiosonde observations were used to validate the frequency selection procedure. Analyses are presented of alternative system configurations that define the balance between accuracy and achievable resolution.

  18. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  19. Nimbus 3 alternating-pressure replacement mattress.

    PubMed

    Young, T

    Alternating-pressure surfaces have been shown to reduce the incidence of pressure sores compared with standard hospital mattresses and pressure-reducing (constant low-pressure) surfaces. Huntleigh Healthcare has recently introduced the Nimbus 3 to its range of alternating-pressure mattress replacement systems. This product has been developed according to new medical device regulations and is indicated for the treatment of patients with all grades of pressure sores and for prevention in patients who are at very high risk of developing pressure sores.

  20. Compressive laser ranging.

    PubMed

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  1. Laser Ranging System

    NASA Technical Reports Server (NTRS)

    Russell, J. K.

    1986-01-01

    Laser system points and focuses TV camera. Ranger is modified stock distance-measuring unit mounted on and electrically connected to television camera. Effective over target range of 3 to 500 ft. (approximately 1 to 150m). Developed for television monitoring of nearby objects from Space Shuttle. Super-imposes range and range-rate (speed of approach or recession) data on television image of target. Principle adaptable to applications such as proximity warning and robot control.

  2. Improved ranging systems

    NASA Technical Reports Server (NTRS)

    Young, Larry E.

    1989-01-01

    Spacecraft range measurements have provided the most accurate tests, to date, of some relativistic gravitational parameters, even though the measurements were made with ranging systems having error budgets of about 10 meters. Technology is now available to allow an improvement of two orders of magnitude in the accuracy of spacecraft ranging. The largest gains in accuracy result from the replacement of unstable analog components with high speed digital circuits having precisely known delays and phase shifts.

  3. Raised intracranial pressure and cerebral blood flow

    PubMed Central

    Johnston, I. H.; Rowan, J. O.

    1974-01-01

    Pressure changes within the venous outflow tract from the brain were studied in anaesthetized baboons. Segmental vascular resistance changes were also calculated and the results correlated with the changes in cerebral blood flow, measured by the 133Xenon clearance method. Three different methods were used to raise intracranial pressure: cisterna magna infusion, a supratentorial subdural balloon, and an infratentorial subdural balloon. A close correlation was found between the cortical vein pressure and intracranial pressure with all methods of raising intracranial pressure: the overall correlation coefficient was 0·98. In the majority of animals sagittal sinus pressure showed little change through a wide range of intracranial pressure. In three of the six animals in the cisterna magna infusion group, however, sagittal sinus pressure increased to levels approaching the intracranial pressure during the later stages of intracranial hypertension. Jugular venous pressure showed little change with increasing intracranial pressure. The relationship between cerebral prefusion pressure and cerebral blood flow differed according to the method of increasing intracranial pressure. This was due to differing patterns of change in prevenous vascular resistance as venous resistance increased progressively with increasing pressure in all three groups. The present results confirm, therefore, the validity of the current definition of cerebral perfusion pressure—that is, cerebral perfusion pressure is equal to mean arterial pressure minus mean intracranial pressure—by demonstrating that intracranial pressure does represent the effective cerebral venous outflow pressure. Images PMID:4209160

  4. Pressure Ulcer Prevention

    PubMed Central

    2009-01-01

    Executive Summary In April 2008, the Medical Advisory Secretariat began an evidence-based review of the literature concerning pressure ulcers. Please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/tech/tech_mn.html to review these titles that are currently available within the Pressure Ulcers series. Pressure ulcer prevention: an evidence based analysis The cost-effectiveness of prevention strategies for pressure ulcers in long-term care homes in Ontario: projections of the Ontario Pressure Ulcer Model (field evaluation) Management of chronic pressure ulcers: an evidence-based analysis (anticipated pubicstion date - mid-2009) Purpose A pressure ulcer, also known as a pressure sore, decubitus ulcer, or bedsore, is defined as a localized injury to the skin/and or underlying tissue occurring most often over a bony prominence and caused by pressure, shear, or friction, alone or in combination. (1) Those at risk for developing pressure ulcers include the elderly and critically ill as well as persons with neurological impairments and those who suffer conditions associated with immobility. Pressure ulcers are graded or staged with a 4-point classification system denoting severity. Stage I represents the beginnings of a pressure ulcer and stage IV, the severest grade, consists of full thickness tissue loss with exposed bone, tendon, and or muscle. (1) In a 2004 survey of Canadian health care settings, Woodbury and Houghton (2) estimated that the prevalence of pressure ulcers at a stage 1 or greater in Ontario ranged between 13.1% and 53% with nonacute health care settings having the highest prevalence rate (Table 1). Executive Summary Table 1: Prevalence of Pressure Ulcers* Setting Canadian Prevalence,% (95% CI) Ontario Prevalence,Range % (n) Acute care 25 (23.8–26.3) 23.9–29.7 (3418) Nonacute care† 30 (29.3–31.4) 30.0–53.3 (1165) Community care 15 (13.4–16.8) 13.2 (91) Mixed health care‡ 22 (20.9

  5. Automatic range selector

    DOEpatents

    McNeilly, Clyde E.

    1977-01-04

    A device is provided for automatically selecting from a plurality of ranges of a scale of values to which a meter may be made responsive, that range which encompasses the value of an unknown parameter. A meter relay indicates whether the unknown is of greater or lesser value than the range to which the meter is then responsive. The rotatable part of a stepping relay is rotated in one direction or the other in response to the indication from the meter relay. Various positions of the rotatable part are associated with particular scales. Switching means are sensitive to the position of the rotatable part to couple the associated range to the meter.

  6. Range criterion for separability

    SciTech Connect

    Ha, Kil-Chan

    2010-12-15

    Horodecki formulated a remarkable criterion for separability, which is called the range criterion. This range criterion was mostly used to show that some states with positive partial transpose are entangled. In this Brief Report, we show that the range criterion is also useful to find a convex combination of product states for a separable state. For this purpose, we give an example of density matrix, which is separable in a 2 x 3 system and entangled in a 3 x 2 system at the same time. Then we illustrate the usefulness of the range criterion with this example.

  7. Pressure Alopecia

    PubMed Central

    Davies, Kate E; Yesudian, PD

    2012-01-01

    Postoperative or pressure alopecia (PA) is an infrequently reported group of scarring and non-scarring alopecias. It has been reported after immobilization of the head during surgery and following prolonged stays on intensive care units, and may be analogous to a healed pressure ulcer. This review presents a summary of cases published in pediatrics and after cardiac, gynecological, abdominal and facial surgeries. PA may manifest as swelling, tenderness, and ulceration of the scalp in the first few postoperative days; in other cases, the alopecia may be the presenting feature with a history of scalp immobilization in the previous four weeks. The condition may cause considerable psychological distress in the long term. Regular head turning schedules and vigilance for the condition should be used as prophylaxis to prevent permanent alopecia. A multi-center study in high-risk patients would be beneficial to shed further light on the etiology of the condition. PMID:23180911

  8. Pressurized hopper

    SciTech Connect

    Densley, P.J.; Goldmann, L.H. Jr.

    1980-04-01

    A Secure Automated Fuel Fabrication Line is being developed to reduce personnel exposure and to improve safeguards. Fertile and fissile fuel powders are blended in the line for making fuel pellets. A pressurized hopper was developed for use not only as a blender, but also as a storage and feeding device. It works with or without injection tubes to produce a well-blended powder with reduced agglomerate population. Results of blending experiments using dry Kaolin clay and Tempra pigment are given. (DLC)

  9. Pressure transducer

    DOEpatents

    Anderson, T.T.; Roop, C.J.; Schmidt, K.J.; Gunchin, E.R.

    1987-02-13

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output. 7 figs.

  10. Pressure transducer

    DOEpatents

    Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Gunchin, Elmer R.

    1989-01-01

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output.

  11. Steam Oxidation at High Pressure

    SciTech Connect

    Holcomb, Gordon R.; Carney, Casey

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  12. Agriculture, Forestry, Range Resources

    NASA Technical Reports Server (NTRS)

    Crea, W. J., Jr.

    1973-01-01

    Significant results obtained from ERTS-1 observations of agriculture, forestry, and range resources are summarized. Four major parts are covered: (1) crop classification and mensuration; (2) timber and range resources survey and classification; (3) soil survey and mapping; and (4) subdiscipline areas.

  13. Laser ranging data analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Near real-time Lageos laser ranging data are analyzed in terms of range bias, time bias, and internal precision, and estimates for earth orientation parameters X(sub p), Y(sub p), and UT1 are obtained. The results of these analyses are reported in a variety of formats. Copies of monthly summaries from November, 1986 through November, 1987 are included.

  14. Long Range Facilities Planning

    DTIC Science & Technology

    1982-04-01

    Richard Muther range facilities Many alterna- analysis indi- cated that if NASSCO ever expected to surpass its output of the last several years, current...Marine Engineers (SNAME) SP-1 Panel Meeting. The Maritime Administration had Richard Muther (an authority on long range facility planning) address a

  15. Home range and travels

    USGS Publications Warehouse

    Stickel, L.F.; King, John A.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  16. Tropospheric range error parameters: Further studies

    NASA Technical Reports Server (NTRS)

    Hopfield, H. S.

    1972-01-01

    Improved parameters are presented for predicting the tropospheric effect on electromagnetic range measurements from surface meteorological data. More geographic locations have been added to the earlier list. Parameters are given for computing the dry component of the zenith radio range effect from surface pressure alone with an rms error of 1 to 2 mm, or the total range effect from the dry and wet components of the surface refractivity and a two-part quartic profile model. The new parameters are obtained, as before, from meteorological balloon data but with improved procedures, including the conversion of the geopotential heights of the balloon data to actual or geometric heights before using the data. The revised values of the parameter k (dry component of vertical radio range effect per unit pressure at the surface) show more latitude variation than is accounted for by the variation of g, the acceleration of gravity.

  17. An accuracy statement for a facility used to calibrate static pressure transducers and differential pressure transducers at high base pressure

    NASA Astrophysics Data System (ADS)

    Sindt, C. F.; Labrecque, J. F.

    1982-06-01

    A facility was developed to calibrate pressure transducers that are used in a gas mass flow facility. Both static and differential pressure transducers can be calibrated. An air dead weight tester is the standard for static transducers in the range from 3.8 to 4.5 MPa. An air dead weight tester is also the standard for the differential pressure transducers in the range of 2.5 kPa to 50 MPa; a cistern manometer. This, plus the uncertainties in the high pressure corrections to the cistern manometer and measurement of the mercury temperature, contributes plus or minus 690 ppm to the uncertainty of the differential pressure transducer calibrations.

  18. Range Safety Systems

    NASA Technical Reports Server (NTRS)

    Schrock, Kenneth W.; Humphries, Ricky H. (Technical Monitor)

    2002-01-01

    The high kinetic and potential energy of a launch vehicle mandates there be a mechanism to minimize possible damage to provide adequate safety for the launch facilities, range, and, most importantly, the general public. The Range Safety System, sometimes called the Flight Termination System or Flight Safety System, provides the required level of safety. The Range Safety System section of the Avionics chapter will attempt to describe how adequate safety is provided, the system's design, operation, and it's interface with the rest of the launch vehicle.

  19. Preliminary error budget for an optical ranging system: Range, range rate, and differenced range observables

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Finger, M. H.

    1990-01-01

    Future missions to the outer solar system or human exploration of Mars may use telemetry systems based on optical rather than radio transmitters. Pulsed laser transmission can be used to deliver telemetry rates of about 100 kbits/sec with an efficiency of several bits for each detected photon. Navigational observables that can be derived from timing pulsed laser signals are discussed. Error budgets are presented based on nominal ground stations and spacecraft-transceiver designs. Assuming a pulsed optical uplink signal, two-way range accuracy may approach the few centimeter level imposed by the troposphere uncertainty. Angular information can be achieved from differenced one-way range using two ground stations with the accuracy limited by the length of the available baseline and by clock synchronization and troposphere errors. A method of synchronizing the ground station clocks using optical ranging measurements is presented. This could allow differenced range accuracy to reach the few centimeter troposphere limit.

  20. SNOWY RANGE WILDERNESS, WYOMING.

    USGS Publications Warehouse

    Houston, Robert S.; Bigsby, Philip R.

    1984-01-01

    A mineral survey of the Snowy Range Wilderness in Wyoming was undertaken and was followed up with more detailed geologic and geochemical surveys, culminating in diamond drilling of one hole in the Snowy Range Wilderness. No mineral deposits were identified in the Snowy Range Wilderness, but inasmuch as low-grade uranium and associated gold resources were identified in rocks similar to those of the northern Snowy Range Wilderness in an area about 5 mi northeast of the wilderness boundary, the authors conclude that the northern half of the wilderness has a probable-resource potential for uranium and gold. Closely spaced drilling would be required to completely evaluate this mineral potential. The geologic terrane precludes the occurrence of fossil fuels.

  1. Pressure Inactivation of Bacillus Endospores

    PubMed Central

    Margosch, Dirk; Gänzle, Michael G.; Ehrmann, Matthias A.; Vogel, Rudi F.

    2004-01-01

    The inactivation of bacterial endospores by hydrostatic pressure requires the combined application of heat and pressure. We have determined the resistance of spores of 14 food isolates and 5 laboratory strains of Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis to treatments with pressure and temperature (200 to 800 MPa and 60 to 80°C) in mashed carrots. A large variation in the pressure resistance of spores was observed, and their reduction by treatments with 800 MPa and 70°C for 4 min ranged from more than 6 log units to no reduction. The sporulation conditions further influenced their pressure resistance. The loss of dipicolinic acid (DPA) from spores that varied in their pressure resistance was determined, and spore sublethal injury was assessed by determination of the detection times for individual spores. Treatment of spores with pressure and temperature resulted in DPA-free, phase-bright spores. These spores were sensitive to moderate heat and exhibited strongly increased detection times as judged by the time required for single spores to grow to visible turbidity of the growth medium. The role of DPA in heat and pressure resistance was further substantiated by the use of the DPA-deficient mutant strain B. subtilis CIP 76.26. Taken together, these results indicate that inactivation of spores by combined pressure and temperature processing is achieved by a two-stage mechanism that does not involve germination. At a pressure between 600 and 800 MPa and a temperature greater than 60°C, DPA is released predominantly by a physicochemical rather than a physiological process, and the DPA-free spores are inactivated by moderate heat independent of the pressure level. Relevant target organisms for pressure and temperature treatment of foods are proposed, namely, strains of B. amyloliquefaciens, which form highly pressure-resistant spores. PMID:15574932

  2. Mu-2 ranging

    NASA Technical Reports Server (NTRS)

    Martin, W. L.; Zygielbaum, A. I.

    1977-01-01

    The Mu-II Dual-Channel Sequential Ranging System designed as a model for future Deep Space Network ranging equipment is described. A list of design objectives is followed by a theoretical explanation of the digital demodulation techniques first employed in this machine. Hardware and software implementation are discussed, together with the details relating to the construction of the device. Two appendixes are included relating to the programming and operation of this equipment to yield the maximum scientific data.

  3. Estimating parasite host range.

    PubMed

    Dallas, Tad; Huang, Shan; Nunn, Charles; Park, Andrew W; Drake, John M

    2017-08-30

    Estimating the number of host species that a parasite can infect (i.e. host range) provides key insights into the evolution of host specialism and is a central concept in disease ecology. Host range is rarely estimated in real systems, however, because variation in species relative abundance and the detection of rare species makes it challenging to confidently estimate host range. We applied a non-parametric richness indicator to estimate host range in simulated and empirical data, allowing us to assess the influence of sampling heterogeneity and data completeness. After validating our method on simulated data, we estimated parasite host range for a sparsely sampled global parasite occurrence database (Global Mammal Parasite Database) and a repeatedly sampled set of parasites of small mammals from New Mexico (Sevilleta Long Term Ecological Research Program). Estimation accuracy varied strongly with parasite taxonomy, number of parasite occurrence records, and the shape of host species-abundance distribution (i.e. the dominance and rareness of species in the host community). Our findings suggest that between 20% and 40% of parasite host ranges are currently unknown, highlighting a major gap in our understanding of parasite specificity, host-parasite network structure, and parasite burdens. © 2017 The Author(s).

  4. Range Reference Atmosphere, Nellis

    DTIC Science & Technology

    1990-12-01

    mecan to the intercept ol a given probability ellipse, equation 43 is also applicable. 2.7 Statistical Parameters for Non-Standard Orthogonal Axes...clockw ise fronti true north. Rotation of the mecans through (X (legrees: X, Xcos ~(90 -) W + sin (90 - () (44) ’ s (go - o.) u in (90 - (X) (45) Rotation...8217TABLE 3-1. Primary Physical Constants Used in RRA Production. P0 Standard atmospheric pressure at sea level (1.0 13250 X 10 Newton /in 2 ) (2116.22 Ib

  5. Electronic structure of Ca, Sr, and Ba under pressure.

    NASA Technical Reports Server (NTRS)

    Animalu, A. O. E.; Heine, V.; Vasvari, B.

    1967-01-01

    Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure

  6. Laser Ranging Simulation Program

    NASA Technical Reports Server (NTRS)

    Piazolla, Sabino; Hemmati, Hamid; Tratt, David

    2003-01-01

    Laser Ranging Simulation Program (LRSP) is a computer program that predicts selected aspects of the performances of a laser altimeter or other laser ranging or remote-sensing systems and is especially applicable to a laser-based system used to map terrain from a distance of several kilometers. Designed to run in a more recent version (5 or higher) of the MATLAB programming language, LRSP exploits the numerical and graphical capabilities of MATLAB. LRSP generates a graphical user interface that includes a pop-up menu that prompts the user for the input of data that determine the performance of a laser ranging system. Examples of input data include duration and energy of the laser pulse, the laser wavelength, the width of the laser beam, and several parameters that characterize the transmitting and receiving optics, the receiving electronic circuitry, and the optical properties of the atmosphere and the terrain. When the input data have been entered, LRSP computes the signal-to-noise ratio as a function of range, signal and noise currents, and ranging and pointing errors.

  7. ATS-3 ranging support

    NASA Technical Reports Server (NTRS)

    Brisken, A. F.

    1977-01-01

    The purpose of this effort was to provide NASA-Goddard Space Flight Center with ATS-3 ranging data from ground stations of the VHF network and from an additional ground station installed at the NASA-Goddard Space Flight Center. Ranging measurements to the NASA transponder enabled calculation of the transponder's line-of-position. Installation of an S-band transponder at the same site and the conduct of ranging experiments to this transponder and others via ATS-6 provided a second line-of-position. The NASA S-band transponder was specifically designed for installation aboard spacecraft. Consequently, this program provided NASA an opportunity to compare two different techniques using geostationary satellites in the tracking low orbit satellites.

  8. VENUS Ranging Study

    DTIC Science & Technology

    2014-12-01

    the two dimensional PECan modelling presented in the next section. The seamount at 30 km range from RC to CN has a significant effect on propagation...Gabriola Island there is an apparent ‘ seamount ’ in the bathymetry profiles of CN and EN at a range of 30 km from RC, see Figure 3. The sediment in the...region of the ‘ seamount ’ corresponds to the rock, gravel, and gravel and rock shown in Figure 5 intersecting each track off Gabriola Island. The

  9. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  10. Himalayan Mountain Range, India

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Snow is present the year round in most of the high Himalaya Mountain Range (33.0N, 76.5E). In this view taken at the onset of winter, the continuous snow line can be seen for hundreds of miles along the south face of the range in the Indian states of Punjab and Kashmir. The snow line is at about 12,000 ft. altitude but the deep Cenab River gorge is easily delineated as a break along the south edge of the snow covered mountains. '

  11. Satellite Laser Ranging operations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.

    1994-01-01

    Satellite Laser Ranging (SLR) is currently providing precision orbit determination for measurements of: 1) Ocean surface topography from satellite borne radar altimetry, 2) Spatial and temporal variations of the gravity field, 3) Earth and ocean tides, 4) Plate tectonic and regional deformation, 5) Post-glacial uplift and subsidence, 6) Variations in the Earth's center-of-mass, and 7) Variations in Earth rotation. SLR also supports specialized programs in time transfer and classical geodetic positioning, and will soon provide precision ranging to support experiments in relativity.

  12. Broad host range plasmids.

    PubMed

    Jain, Aayushi; Srivastava, Preeti

    2013-11-01

    Plasmids are and will remain important cloning vehicles for biotechnology. They have also been associated with the spread of a number of diseases and therefore are a subject of environmental concern. With the advent of sequencing technologies, the database of plasmids is increasing. It will be of immense importance to identify the various bacterial hosts in which the plasmid can replicate. The present review article describes the features that confer broad host range to the plasmids, the molecular basis of plasmid host range evolution, and applications in recombinant DNA technology and environment.

  13. Chaos in blood pressure control.

    PubMed

    Wagner, C D; Nafz, B; Persson, P B

    1996-03-01

    A number of control mechanisms are comprised within blood pressure regulation, ranging from events on the cellular level up to circulating hormones. Despite their vast number, blood pressure fluctuations occur preferably within a certain range (under physiological conditions). A specific class of dynamic systems has been extensively studied over the past several years: nonlinear coupled systems, which often reveal a characteristic form of motion termed "chaos". The system is restricted to a certain range in phase space, but the motion is never periodic. The attractor the system moves on has a non-integer dimension. What all chaotic systems have in common is their sensitive dependence on initial conditions. The question arises as to whether blood pressure regulation can be explained by such models. Many efforts have been made to characterise heart rate variability and EEG dynamics by parameters of chaos theory (e.g., fractal dimensions and Lyapunov exponents). These method were successfully applied to dynamics observed in single organs, but very few studies have dealt with blood pressure dynamics. This mini-review first gives an overview on the history of blood pressure dynamics and the methods suitable to characterise the dynamics by means of tools derived from the field of nonlinear dynamics. Then applications to systemic blood pressure are discussed. After a short survey on heart rate variability, which is indirectly reflected in blood pressure variability, some dynamic aspects of resistance vessels are given. Intriguingly, systemic blood pressure reveals a change in fractal dimensions and Lyapunov exponents, when the major short-term control mechanism--the arterial baroreflex--is disrupted. Indeed it seems that cardiovascular time series can be described by tools from nonlinear dynamics [66]. These methods allow a novel description of some important aspects of biological systems. Both the linear and the nonlinear tools complement each other and can be useful in

  14. Pressure Modulator Radiometer (PMR) tests

    NASA Technical Reports Server (NTRS)

    Odell, E. L. G.; Cosmi, F. M.; Kreft, A. E.; Racette, G. W.; Maresca, T. J.; Pancoast, F. O.; Rutecki, D. J.; Yager, W. C.

    1979-01-01

    The pressure modulator technique was evaluated for monitoring pollutant gases in the Earth's atmosphere of altitude levels corresponding to the mid and lower troposphere. Using an experimental set up and a 110 cm sample cell, pressure modulator output signals resulting from a range of gas concentrations in the sample cell were examined. Then a 20 cm sample cell was modified so that trace gas properties in the atmosphere could be simulated in the laboratory. These gas properties were measured using an infrared sensor.

  15. Vapor pressure of germanium precursors

    NASA Astrophysics Data System (ADS)

    Pangrác, J.; Fulem, M.; Hulicius, E.; Melichar, K.; Šimeček, T.; Růžička, K.; Morávek, P.; Růžička, V.; Rushworth, S. A.

    2008-11-01

    The vapor pressure of two germanium precursors tetrakis(methoxy)germanium (Ge(OCH 3) 4, CASRN 992-91-6) and tetrakis(ethoxy)germanium (Ge(OC 2H 5) 4, CASRN 14165-55-0) was determined using a static method in the temperature range 259-303 K. The experimental vapor pressure data were fit with the Antoine equation. The mass spectra before and after degassing by vacuum distillation at low temperature are also reported and discussed.

  16. Agriculture, forest, and range

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The findings and recommendations of the panel for developing a satellite remote-sensing global information system in the next decade are reported. User requirements were identified in five categories: (1) cultivated crops, (2) land resources, (3)water resources, (4)forest management, and (5) range management. The benefits from the applications of satellite data are discussed.

  17. RADIO RANGING DEVICE

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

  18. Institutional Long Range Planning.

    ERIC Educational Resources Information Center

    Caldwell Community Coll. and Technical Inst., Lenoir, NC.

    Long-range institutional planning has been in effect at Caldwell Community College and Technical Institute since 1973. The first step in the process was the identification of planning areas: administration, organization, educational programs, learning resources, student services, faculty, facilities, maintenance/operation, and finances. The major…

  19. Long Range Plan.

    ERIC Educational Resources Information Center

    Jefferson Coll., Hillsboro, MO.

    This document presents Jefferson College's "Long Range Plan," which is intended to provide the College's governing board, administration, and faculty and staff with a task-oriented blueprint for maximizing the delivery of higher education services to students and the community in a predictable, programmatic, and fiscally sound manner.…

  20. Himalayan Mountain Range

    NASA Image and Video Library

    1981-04-14

    STS001-12-350 (12-14 April 1981) --- India and China, the Ladokh and Zaskar Ranges of the Great Himalaya are clearly etched by snow and shadow. A detailed view shows the glaciation process over a wide area. Photo credit: NASA

  1. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Crea, W. J.

    1974-01-01

    In the area of crop specie identification, it has been found that temporal data analysis, preliminary stratification, and unequal probability analysis were several of the factors that contributed to high identification accuracies. Single data set accuracies on fields of greater than 80,000 sq m (20 acres) are in the 70- to 90-percent range; however, with the use of temporal data, accuracies of 95 percent have been reported. Identification accuracy drops off significantly on areas of less than 80,000 sq m (20 acres) as does measurement accuracy. Forest stratification into coniferous and deciduous areas has been accomplished to a 90- to 95-percent accuracy level. Using multistage sampling techniques, the timber volume of a national forest district has been estimated to a confidence level and standard deviation acceptable to the Forest Service at a very favorable cost-benefit time ratio. Range specie/plant community vegetation mapping has been accomplished at various levels of success (69- to 90-percent accuracy). However, several investigators have obtained encouraging initial results in range biomass (forage production) estimation and range readiness predictions. Soil association map correction and soil association mapping in new area appear to have been proven feasible on large areas; however, testing in a complex soil area should be undertaken.

  2. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1974-01-01

    The necessary elements to perform global inventories of agriculture, forestry, and range resources are being brought together through the use of satellites, sensors, computers, mathematics, and phenomenology. Results of ERTS-1 applications in these areas, as well as soil mapping, are described.

  3. Electric vehicles: Driving range

    NASA Astrophysics Data System (ADS)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  4. Front Range Branch Officers

    NASA Astrophysics Data System (ADS)

    The Front Range Branch of AGU has installed officers for 1990: Ray Noble, National Center for Atmospheric Research, chair; Sherry Oaks, U.S. Geological Survey, chair-elect; Howard Garcia, NOAA, treasurer; Catharine Skokan, Colorado School of Mines, secretary. JoAnn Joselyn of NOAA is past chair. Members at large are Wallace Campbell, NOAA; William Neff, USGS; and Stephen Schneider, NCAR.

  5. Nonscanning confocal ranging system

    NASA Astrophysics Data System (ADS)

    Sun, P. C.; Arons, E.

    1995-03-01

    We demonstrate a nonscanning confocal ranging system based on spatially incoherent interferometry. Such a system has significant advantages over the conventional confocal imaging system and other interferometric systems. We develop the theory in terms of coherence cells and demonstrate the equivalence of our method to the conventional confocal methods. Experimental results are also provided.

  6. Fact Sheet: Range Complex

    NASA Technical Reports Server (NTRS)

    Cornelson, C.; Fretter, E.

    2004-01-01

    NASA Ames has a long tradition in leadership with the use of ballistic ranges and shock tubes for the purpose of studying the physics and phenomena associated with hypervelocity flight. Cutting-edge areas of research run the gamut from aerodynamics, to impact physics, to flow-field structure and chemistry. This legacy of testing began in the NACA era of the 1940's with the Supersonic Free Flight Tunnel, and evolved dramatically up through the late 1950s with the pioneering work in the Ames Hypersonic Ballistic Range. The tradition continued in the mid-60s with the commissioning of the three newest facilities: the Ames Vertical Gun Range (AVGR) in 1964, the Hypervelocity Free Flight Facility (HFFF) in 1965 and the Electric Arc Shock Tube (EAST) in 1966. Today the Range Complex continues to provide unique and critical testing in support of the Nation's programs for planetary geology and geophysics; exobiology; solar system origins; earth atmospheric entry, planetary entry, and aerobraking vehicles; and various configurations for supersonic and hypersonic aircraft.

  7. STDN ranging equipment

    NASA Technical Reports Server (NTRS)

    Jones, C. E.

    1975-01-01

    Final results of the Spaceflight Tracking and Data Network (STDN) Ranging Equipment program are summarized. Basic design concepts and final design approaches are described. Theoretical analyses which define requirements and support the design approaches are presented. Design verification criteria are delineated and verification test results are specified.

  8. Mobile satellite ranging

    NASA Technical Reports Server (NTRS)

    Silverberg, E. C.

    1978-01-01

    A brief review of the constraints which have limited satellite ranging hardware and an outline of the steps which are underway to improve the status of the equipment in this area are given. In addition, some suggestions are presented for the utilization of newer instruments and for possible future research and development work in this area.

  9. Space-Based Range

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Space-Based Range (SBR), previously known as Space-Based Telemetry and Range Safety (STARS), is a multicenter NASA proof-of-concept project to determine if space-based communications using NASA's Tracking and Data Relay Satellite System (TDRSS) can support the Range Safety functions of acquiring tracking data and generating flight termination signals, while also providing broadband Range User data such as voice, video, and vehicle/payload data. There was a successful test of the Range Safety system at Wallops Flight Facility (WFF) on December 20, 2005, on a two-stage Terrier-Orion spin-stabilized sounding rocket. SBR transmitted GPS tracking data and maintained links with two TDRSS satellites simultaneously during the 10-min flight. The payload section deployed a parachute, landed in the Atlantic Ocean about 90 miles downrange from the launch site, and was successfully recovered. During the Terrier-Orion tests flights, more than 99 percent of all forward commands and more than 95 percent of all return frames were successfully received and processed. The time latency necessary for a command to travel from WFF over landlines to White Sands Complex and then to the vehicle via TDRSS, be processed onboard, and then be sent back to WFF was between 1.0 s and 1.1 s. The forward-link margins for TDRS-10 (TDRS East [TDE]) were 11 dB to 12 dB plus or minus 2 dB, and for TDRS-4 (TDRS Spare [TDS]) were 9 dB to 10 dB plus or minus 1.5 dB. The return-link margins for both TDE and TDS were 6 dB to 8 dB plus or minus 3 dB. There were 11 flights on an F-15B at Dryden Flight Research Center (DFRC) between November 2006 and February 2007. The Range User system tested a 184-element TDRSS Ku-band (15 GHz) phased-array antenna with data rates of 5 Mbps and 10 Mbps. This data was a combination of black-and-white cockpit video, Range Safety tracking and transceiver data, and aircraft and antenna controller data streams. IP data formatting was used.

  10. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  11. Improvement of a large-amplitude sinusoidal pressure generator for dynamic calibration of pressure transducers

    NASA Technical Reports Server (NTRS)

    Robinson, R. E.

    1972-01-01

    Results of research on the improvement of a sinusoidal pressure generator are presented. The generator is an inlet-area-modulated, gas-flow-through device (siren type) which was developed to dynamically calibrate pressure transducers and pressure probes. Tests were performed over a frequency range of 100 Hz to 20 kHz at average chamber pressures (bias pressure) between 30 and 50 psia (21 and 35 N/sq cm abs) and between 150 and 300 psia (104 and 207 N/sq cm abs). Significant improvements in oscillation pressure waveform were obtained but with reduction in available generator oscillation pressure amplitude range. Oscillation pressure amplitude, waveform, and waveform spectral content are given as functions of frequency for the two bias pressure conditions. The generator and instrumentation for frequency, amplitude, and spectrum measurements are described.

  12. Low Power, Wide Dynamic Range Carbon Nanotube Vacuum Gauges

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-01-01

    This slide presentation presents carbon nanotube vacuum pressure sensor gauges that operate at low power and exhibit a wide-dynamic range based on microelectromechanical systems (MEMS) technology. The fabrication facility, and the formation process are shown. Pressure sensitivity was found to increase rapidly as the bias power was increased. In addition, by etching part of the thermal SiO2 beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward lower pressures. Results are compared to a conventional thin film meander resistor, which was fabricated and whose pressure response was also measured for comparative purposes.

  13. Low Blood Pressure

    MedlinePlus

    ... a problem. Sometimes blood pressure that is too low can also cause problems. Blood pressure is the ... reading is 90/60 or lower, you have low blood pressure. Some people have low blood pressure ...

  14. Blood Pressure Test

    MedlinePlus

    ... blood pressure readings at home. Tracking your blood pressure readings It can be helpful in diagnosing or ... options might work best for you. Low blood pressure Low blood pressure that either doesn't cause ...

  15. Range expansion of mutualists

    NASA Astrophysics Data System (ADS)

    Muller, Melanie J. I.; Korolev, Kirill S.; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    The expansion of a species into new territory is often strongly influenced by the presence of other species. This effect is particularly striking for the case of mutualistic species that enhance each other's proliferation. Examples range from major events in evolutionary history, such as the spread and diversification of flowering plants due to their mutualism with pollen-dispersing insects, to modern examples like the surface colonisation of multi-species microbial biofilms. Here, we investigate the spread of cross-feeding strains of the budding yeast Saccharomyces cerevisiae on an agar surface as a model system for expanding mutualists. Depending on the degree of mutualism, the two strains form distinctive spatial patterns during their range expansion. This change in spatial patterns can be understood as a phase transition within a stepping stone model generalized to two mutualistic species.

  16. Long range chromatin organization

    PubMed Central

    Acuña, Luciana I Gómez; Kornblihtt, Alberto R

    2014-01-01

    Splicing is a predominantly co-transcriptional process that has been shown to be tightly coupled to transcription. Chromatin structure is a key factor that mediates this functional coupling. In light of recent evidence that shows the importance of higher order chromatin organization in the coordination and regulation of gene expression, we discuss here the possible roles of long-range chromatin organization in splicing and alternative splicing regulation. PMID:25764333

  17. Light beam range finder

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  18. Light beam range finder

    DOEpatents

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  19. Photometric Passive Range Sensor

    NASA Astrophysics Data System (ADS)

    Argueta-Diaz, Victor; García-Valenzuela, Augusto

    2008-04-01

    In this paper we present a passive optical ranging method that consists of taking several photometric measurements from the light radiated by an object and deriving the range from these measurements. This passive ranging device uses an iris of radius a, a lens of radius larger than a, and a photodetector of radius p

  20. Front Range Report, Abstracts

    NASA Astrophysics Data System (ADS)

    Spence, William

    The second regional conference of the Front Range Branch, AGU, was attended by more than 80 professionals and some 20 outstanding high school students. The conference included 2 days of interdisciplinary talks, and lots of discussion, that primarily were keyed to geophysical studies of Colorado, Wyoming, and New Mexico. Other talks reported on nonregional, and sometimes global, studies being done by geophypsicists of the Front Range region.Topics included tectonics of the Front Range and the Colorado Plateau, pollution of the Arkansas and Mississippi rivers, and a supreme polluting event that caused the late-Cretaceous extinctions. Other notable talks were on toxic cleanup, microburst (wind shear) detection at U.S. airports, and other meteorological studies. Several talks treated the audience to the excitement of new work and surprise discoveries. The meeting was multimedia, including the playing of two videos through a projection TV and the playing of a fascinating tape between an airport control tower and incoming pilots during a severe microburst event.

  1. PRESSURE TRANSDUCER RESEARCH.

    DTIC Science & Technology

    PIEZOELECTRIC TRANSDUCERS, PRESSURE), UNDERGROUND EXPLOSIONS, ELECTRICAL RESISTANCE, SEEBECK EFFECT , PRESSURE GAGES, SHOCK WAVES, STRESSES, COMPUTER PROGRAMMING, NUCLEAR EXPLOSIONS, NUCLEAR RADIATION.

  2. Laser Range Camera Modeling

    SciTech Connect

    Storjohann, K.

    1990-01-01

    This paper describes an imaging model that was derived for use with a laser range camera (LRC) developed by the Advanced Intelligent Machines Division of Odetics. However, this model could be applied to any comparable imaging system. Both the derivation of the model and the determination of the LRC's intrinsic parameters are explained. For the purpose of evaluating the LRC's extrinsic parameters, i.e., its external orientation, a transformation of the LRC's imaging model into a standard camera's (SC) pinhole model is derived. By virtue of this transformation, the evaluation of the LRC's external orientation can be found by applying any SC calibration technique.

  3. Reotemp Pressure Indicator Local Pressure Indication in the 15 PSIG SCHe System

    SciTech Connect

    MISKA, C.R.

    2000-09-03

    These 0-30 psig range pressure indicators are located in the SCHe supply piping after PCV 5*23 and before PCV 5*27. The pressure indicators provide information on the pressure being maintained between the two PCVs. This design is used for each of the SCHe supply lines.

  4. Monocular visual ranging

    NASA Astrophysics Data System (ADS)

    Witus, Gary; Hunt, Shawn

    2008-04-01

    The vision system of a mobile robot for checkpoint and perimeter security inspection performs multiple functions: providing surveillance video, providing high resolution still images, and providing video for semi-autonomous visual navigation. Mid-priced commercial digital cameras support the primary inspection functions. Semi-autonomous visual navigation is a tertiary function whose purpose is to reduce the burden of teleoperation and free the security personnel for their primary functions. Approaches to robot visual navigation require some form of depth perception for speed control to prevent the robot from colliding with objects. In this paper present the initial results of an exploration of the capabilities and limitations of using a single monocular commercial digital camera for depth perception. Our approach combines complementary methods in alternating stationary and moving behaviors. When the platform is stationary, it computes a range image from differential blur in the image stack collected at multiple focus settings. When the robot is moving, it extracts an estimate of range from the camera auto-focus function, and combines this with an estimate derived from angular expansion of a constellation of visual tracking points.

  5. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  6. Range Process Simulation Tool

    NASA Technical Reports Server (NTRS)

    Phillips, Dave; Haas, William; Barth, Tim; Benjamin, Perakath; Graul, Michael; Bagatourova, Olga

    2005-01-01

    Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions.

  7. MiniAERCam Ranging

    NASA Technical Reports Server (NTRS)

    Talley, Tom

    2003-01-01

    Johnson Space Center (JSC) is designing a small, remotely controlled vehicle that will carry two color and one black and white video cameras in space. The device will launch and retrieve from the Space Vehicle and be used for remote viewing. Off the shelf cellular technology is being used as the basis for communication system design. Existing plans include using multiple antennas to make simultaneous estimates of the azimuth of the MiniAERCam from several sites on the Space Station and use triangulation to find the location of the device. Adding range detection capability to each of the nodes on the Space Vehicle would allow an estimate of the location of the MiniAERCam to be made at each Communication And Telemetry Box (CATBox) independent of all the other communication nodes. This project will investigate the techniques used by the Global Positioning System (GPS) to achieve accurate positioning information and adapt those strategies that are appropriate to the design of the CATBox range determination system.

  8. Organic electronics based pressure sensor towards intracranial pressure monitoring

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Varadan, Vijay K.

    2010-04-01

    The intra-cranial space, which houses the brain, contains cerebrospinal fluid (CSF) that acts as a fluid suspension medium for the brain. The CSF is always in circulation, is secreted in the cranium and is drained out through ducts called epidural veins. The venous drainage system has inherent resistance to the flow. Pressure is developed inside the cranium, which is similar to a rigid compartment. Normally a pressure of 5-15 mm Hg, in excess of atmospheric pressure, is observed at different locations inside the cranium. Increase in Intra-Cranial Pressure (ICP) can be caused by change in CSF volume caused by cerebral tumors, meningitis, by edema of a head injury or diseases related to cerebral atrophy. Hence, efficient ways of monitoring ICP need to be developed. A sensor system and monitoring scheme has been discussed here. The system architecture consists of a membrane less piezoelectric pressure sensitive element, organic thin film transistor (OTFT) based signal transduction, and signal telemetry. The components were fabricated on flexible substrate and have been assembled using flip-chip packaging technology. Material science and fabrication processes, subjective to the device performance, have been discussed. Capability of the device in detecting pressure variation, within the ICP pressure range, is investigated and applicability of measurement scheme to medical conditions has been argued for. Also, applications of such a sensor-OTFT assembly for logic sensor switching and patient specific-secure monitoring system have been discussed.

  9. Effect of ambient pressure on Leidenfrost temperature

    NASA Astrophysics Data System (ADS)

    Orejon, Daniel; Sefiane, Khellil; Takata, Yasuyuki

    2014-11-01

    The accurate prediction and control of the interaction of liquids with hot surfaces is paramount in numerous areas, including cooling applications. We present results illustrating the effect of ambient pressure on the temperature required for a droplet to levitate over a hot surface, i.e., the Leidenfrost temperature. In the present study the dependence of wetting and levitating temperatures on ambient pressure in a range of subatmospheric pressures is reported. Experimental data indicate that the Leidenfrost temperature decreases with decreasing pressure at subatmospheric pressures. A physical approach for the dependence of Leidenfrost temperature on ambient pressure, based on an analogy with saturation pressure dependence, is proposed. Furthermore, previous literature data for pressures above atmospheric are also included in the analysis to support and validate the proposed approach. In addition, the effect of substrate material, substrate roughness, and type of fluid on the Leidenfrost temperature is discussed.

  10. Effect of ambient pressure on Leidenfrost temperature.

    PubMed

    Orejon, Daniel; Sefiane, Khellil; Takata, Yasuyuki

    2014-11-01

    The accurate prediction and control of the interaction of liquids with hot surfaces is paramount in numerous areas, including cooling applications. We present results illustrating the effect of ambient pressure on the temperature required for a droplet to levitate over a hot surface, i.e., the Leidenfrost temperature. In the present study the dependence of wetting and levitating temperatures on ambient pressure in a range of subatmospheric pressures is reported. Experimental data indicate that the Leidenfrost temperature decreases with decreasing pressure at subatmospheric pressures. A physical approach for the dependence of Leidenfrost temperature on ambient pressure, based on an analogy with saturation pressure dependence, is proposed. Furthermore, previous literature data for pressures above atmospheric are also included in the analysis to support and validate the proposed approach. In addition, the effect of substrate material, substrate roughness, and type of fluid on the Leidenfrost temperature is discussed.

  11. Range imaging laser radar

    DOEpatents

    Scott, M.W.

    1990-06-19

    A laser source is operated continuously and modulated periodically (typically sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream. 2 figs.

  12. Range imaging laser radar

    DOEpatents

    Scott, Marion W.

    1990-01-01

    A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.

  13. High frequency dynamic pressure calibration technique

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Zasimowich, R. F.

    1985-01-01

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  14. High frequency dynamic pressure calibration technique

    NASA Astrophysics Data System (ADS)

    Davis, P. A.; Zasimowich, R. F.

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  15. Lead leaching from pressure cookers.

    PubMed

    Raghunath, R; Nambi, K S

    1998-12-11

    Leachability of lead by tap water and tamarind solution from Indian pressure cookers while cooking with and without a safety valve is studied. Lead contamination of food by cookers is not very high when compared to the daily intake of lead from various food items consumed by the Indian community. However, looking at the very wide range of lead levels leached from various brands of pressure cookers, it certainly seems possible to keep the lead contamination to the minimum by proper choice of the materials used in the manufacture of these pressure cookers. The rubber gasket, which is a very important component of any pressure cooker, contains the maximum lead concentration; the safety valve is another important source leading to lead contamination of cooked food.

  16. Rotor Blade Pressure Measurement in a Rotating Machinery Using Pressure and Temperature Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Torgerson, S.; Liu, T.; Sullivan, J.

    1998-01-01

    Pressure and temperature sensitive paints have been utilized for the measurement of blade surface pressure and temperature distributions in a high speed axial compressor and an Allied Signal F109 gas turbine engine. Alternate blades were painted with temperature sensitive paints and then pressure sensitive paint. This combination allows temperature distributions to be accounted for when determining the blade suction surface pressure distribution. Measurements were taken and pressure maps on the suction surface of a blade were obtained over a range of rotational speeds. Pressure maps of the suction surface show-strong shock waves at the higher speeds.

  17. Rotor Blade Pressure Measurement in a Rotating Machinery Using Pressure and Temperature Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Torgerson, S.; Liu, T.; Sullivan, J.

    1998-01-01

    Pressure and temperature sensitive paints have been utilized for the measurement of blade surface pressure and temperature distributions in a high speed axial compressor and an Allied Signal F109 gas turbine engine. Alternate blades were painted with temperature sensitive paints and then pressure sensitive paint. This combination allows temperature distributions to be accounted for when determining the blade suction surface pressure distribution. Measurements were taken and pressure maps on the suction surface of a blade were obtained over a range of rotational speeds. Pressure maps of the suction surface show-strong shock waves at the higher speeds.

  18. Pt resistor thermometry and pressure calibration in a clamped pressure cell with the medium, Daphne 7373

    NASA Astrophysics Data System (ADS)

    Murata, Keizo; Yoshino, Harukazu; Yadav, Hari Om; Honda, Yoshiaki; Shirakawa, Naoki

    1997-06-01

    Calibration of a Pt resistance thermometer (Netsushin) in magnetic fields and under pressure in the range of 1.5-300 K and below 1.5 GPa is presented. With the pressure medium, olefin olygomers, Daphne 7373, the pressure is continuous at its solidification and the pressure drop from 300 to 4.2 K by 0.15-0.17 GPa is constant, irrespective of the initial clamped pressure at 300 K. The applicability of the thermometer and the medium for precise study in field and pressure at low temperature is discussed.

  19. Low-temperature pressure variations in a self-clamping pressure cell

    SciTech Connect

    Thompson, J.D.

    1984-02-01

    A simple method is described that permits a consistent determination of thermally induced pressure variations in a piston-cylinder, self-clamping pressure cell at temperatures less than ambient. Significant pressure changes are found to be present even for T<75 K. It is also shown that the pressure coefficient of resistance of a manganin-wire gauge is, to within experimental uncertainty, independent of temperature over the range 0

  20. Estimated vapor pressure for WTP process streams

    SciTech Connect

    Pike, J.; Poirier, M.

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  1. High pressure synthesis gas conversion. Final report

    SciTech Connect

    Not Available

    1993-05-01

    The purpose of this research project is to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by Clostridium ljungdahlii. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors. A maximum operating pressure of 150 psig has been shown to be possible for C. ljungdahlli with the medium of Phillips et al. This medium was developed for atmospheric pressure operation in the CSTR to yield maximum ethanol concentrations and thus is not best for operation at elevated pressures. It is recommended that a medium development study be performed for C. ljungdahlii at increased pressure. Cell concentration, gas conversion and product concentration profiles were presented for C. ljungdahlii as a function of gas flow rate, the variable which affects bacterium performance the most. This pressure was chosen as a representative pressure over the 0--150 psig operating pressure range for the bacterium. Increased pressure negatively affected ethanol productivity probably due to the fact that medium composition was designed for atmospheric pressure operation. Medium development at increased pressure is necessary for high pressure development of the system.

  2. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  3. Eddy current technique for predicting burst pressure

    DOEpatents

    Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.

    2003-01-01

    A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.

  4. Raised intracranial pressure and cerebral blood flow. 5. Effects of episodic intracranial pressure waves in primates.

    PubMed Central

    Johnston, I H; Rowan, J O; Park, D M; Rennie, M J

    1975-01-01

    The effects of episodic waves of intracranial pressure on cerebral blood flow were studied in primates. Six pressure waves each of 20 minutes' duration and ranging from 50 to 100 mmHg in magnitude were induced in baboons, at intervals of 30 minutes, in an attempt to simulate clinical plateau waves. With pressure waves up to 75 mmHg, cerebral blood flow remained at control levels despite falling cerebral perfusion pressures. Between the initial pressure waves a marked hyperaemia developed, with cerebral blood flow increasing by as much as 100%, and this appeared to be a means whereby adequate flow was maintained during pressure waves. Later pressure waves, up to 100 mmHg, eventually reduced blood flow below control levels, although moderately high flows were maintained during periods of very low perfusion pressure. Brain metabolism was affected by eht episodic pressure waves, although no consistent change was seen. Images PMID:812960

  5. High-Pressure Vibrational Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Pogson, Mark

    1987-09-01

    Available from UMI in association with The British Library. Requires signed TDF. The study of solids at high pressure and variable temperature enables development of accurate interatomic potential functions over wide ranges of interatomic distances. A review of the main models used in the determination of these potentials is given in Chapter one. A discussion of phonon frequency as a variable physical parameter reflecting the interatomic potential is given. A high pressure Raman study of inorganic salts of the types MSCN, (M = K,Rb,Cs & NH_4^+ ) and MNO_2, (M = K,Na) has been completed. The studies have revealed two new phases in KNO_2 and one new phase in NaNO _2 at high pressure. The accurate phonon shift data have enabled the determination of the pure and biphasic stability regions of the phases of KNO _2. A discussion of the B1, B2 relationship of univalent nitrites is also given. In the series of thiocyanates studied new phases have been found in all four materials. In both the potassium and rubidium salts two new phases have been detected, and in the ceasium salt one new phase has been detected, all at high pressure, from accurate phonon shift data. These transitions are discussed in terms of second-order mechanisms with space groups suggested for all phases, based on Landau's theory of second-order phase transitions. In the ammonium salt one new phase has been detected. This new phase transition has been interpreted as a second-order transition. The series of molecular crystals CH_3 HgX, (X = Cl,Br & I) has been studied at high pressure and at variable temperature. In Chapter five, their phase behaviour at high pressure is detailed along with the pressure dependencies of their phonon frequencies. In the chloride and the bromide two new phases have been detected. In the bromide one has been detected at high temperature and one at high pressure, and latter being interpreted as the stopping of the methyl rotation. In the chloride one phase has been found at

  6. Flowmeter for pressure-driven chromatography systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.

    2003-01-01

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  7. Flowmeter for pressure-driven chromatography systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.

    2002-01-01

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  8. Normal pressure tests on unstiffened flat plates

    NASA Technical Reports Server (NTRS)

    Head, Richard M; Sechler, Ernest J

    1944-01-01

    Flat sheet panels of aluminum alloy (all 17S-T except for two specimens of 24S-T) were tested under normal pressures with clamped edge supports in the structures laboratory of the Guggenheim Aeronautical Laboratory, California Institute of Technology. The thicknesses used ranged from 0.010 to 0.080 inch; the panel sizes ranged from 10 by 10 inches to 10 by 40 inches; and the pressure range was from 0 to 60-pounds-per-square-inch gage. Deflection patterns were measured and maximum tensile strains in the center of the panel were determined by electric strain gages. The experimental data are presented by pressure-strain, pressure-maximum-deflection, and pressure-deflection curves. The results of these tests have been compared with the corresponding strains and deflections as calculated by the simple membrane theory and by large deflection theories.

  9. Bedsores (Pressure Sores)

    MedlinePlus

    ... Berlowitz D. Treatment of pressure ulcers. http://www.uptodate.com/home. Accessed Nov. 12, 2013. Gestring M. Negative pressure wound therapy. http://www.uptodate.com/home. Accessed Nov. 12, 2013. AskMayoExpert. Pressure ...

  10. Dealing with Peer Pressure

    MedlinePlus

    ... Video: Getting an X-ray Dealing With Peer Pressure KidsHealth > For Kids > Dealing With Peer Pressure Print ... talk about how to handle it. Defining Peer Pressure Peers influence your life, even if you don' ...

  11. Intracranial pressure monitoring

    MedlinePlus

    ... head. The monitor senses the pressure inside the skull and sends measurements to a recording device. ... are 3 ways to monitor pressure in the skull (intracranial pressure). INTRAVENTRICULAR CATHETER The intraventricular catheter is ...

  12. Yield-pressure determination

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.

    1977-01-01

    Stress/strain relationship of complex-shape vessel is recorded under hydrostatic pressure. Technique is used to test pressurized gas cylinders and tubular transition joints made of dissimilar metals and to determine burst or system-failure pressures.

  13. Dealing with Peer Pressure

    MedlinePlus

    ... Happens in the Operating Room? Dealing With Peer Pressure KidsHealth > For Kids > Dealing With Peer Pressure A ... talk about how to handle it. Defining Peer Pressure Peers influence your life, even if you don' ...

  14. High Blood Pressure

    MedlinePlus

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  15. High Blood Pressure (Hypertension)

    MedlinePlus

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  16. High blood pressure

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000468.htm High blood pressure To use the sharing features on this page, ... body. Hypertension is the term used to describe high blood pressure. Blood pressure readings are given as two numbers. ...

  17. High blood pressure medicines

    MedlinePlus

    Hypertension - medicines ... blood vessel diseases. You may need to take medicines to lower your blood pressure if lifestyle changes ... blood pressure to the target level. WHEN ARE MEDICINES FOR HIGH BLOOD PRESSURE USED Most of the ...

  18. Development of the seafloor acoustic ranging system

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Fujimoto, H.

    2007-12-01

    We have developed a seafloor acoustic ranging system, which simulates an operation with the DONET (Development of Dense Ocean-floor Network System for Earthquake and Tsunami) cable, to monitor seafloor crustal movement. The seafloor acoustic ranging system was based on the precise acoustic transponder (PXP). We have a few problems for the improvement of the resolution. One thing is the variation of sound speed. Another is the bending of ray path. A PXP measures horizontal distances on the seafloor from the round trip travel times of acoustic pulses between pairs of PXP. The PXP was equipped with the pressure, temperature gauge and tilt-meter. The variation of sound speed in seawater has a direct effect on the measurement. Therefore we collect the data of temperature and pressure. But we don't collect the data of salinity because of less influence than temperature and pressure. Accordingly a ray path of acoustic wave tends to be bent upward in the deep sea due to the Snell's law. As the acoustic transducer of each PXPs held about 3.0m above the seafloor, the baseline is too long for altitude from the seafloor. In this year we carried out the experiment for the seafloor acoustic ranging system. We deployed two PXPs at about 750m spacing on Kumano-nada. The water depth is about 2050m. We collected the 660 data in this experiment during one day. The round trip travel time show the variation with peak-to-peak amplitude of about 0.03msec. It was confirmed to explain the majority in this change by the change in sound speed according to the temperature and pressure. This results shows the resolution of acoustic measurements is +/-2mm. Acknowledgement This study is supported by 'DONET' of Ministry of Education, Culture, Sports, Science and Technology.

  19. A Range-Shift Technique for TOF Range Image Sensors

    NASA Astrophysics Data System (ADS)

    Sawada, Tomonari; Ito, Kana; Nakayama, Masakatsu; Kawahito, Shoji

    In Time-of-Flight (TOF) range image sensors using periodical pulsed light, there is a trade-off between the maximum range and range resolution. This paper proposes a range-shift technique for improving range resolution of the TOF range image sensor without sacrificing the measurement range. The range-shift operation uses a TOF range imaging pixel with periodical charge draining structure and several time-shifted short pulses. The use of the short pulse can improve the range resolution. The range image using the range-shift technique is synthesized with several sub-frames, each acquires one of the shifted range images. The use of the small duty-ratio pulse leads to reducing the effect of ambient light and improving the range resolution. The range-shift technique is tested with an implemented TOF range image sensor and it is found that the range resolution is improved to 2cm using a 10ns light pulse and 7 overlapped shifted ranges for the measurement range of 0.5m to 4.0m.

  20. Cell design for pressure to 25 kbar.

    PubMed

    Schoutens, J E; Senesac, S S

    1979-11-01

    A cell design is presented for experiments with hydrostatic pressures up to 25 kbar. The pressure-transmitting medium around the sample is candle wax, which is sealed in the cavity with molybdenum disulfide impregnated nylon and aluminum disks. This approach showed no detectable leakage to 25 kbar. Internal cavity pressure is computed from measurements of the applied load on the top piston, the transmitted load to the lower piston, and the frictional forces transmitted by the seals into the pressure vessel and the cell body. Internal pressure thus measured and phase-transition pressure data from RbCl and KBr are all within 9% of each other for the pressure range 3-25 kbar.

  1. Reliability of nocturnal blood pressure dipping.

    PubMed

    Dimsdale, J E; von Känel, R; Profant, J; Nelesen, R; Ancoli-Israel, S; Ziegler, M

    2000-08-01

    Increasing evidence documents the fact that individuals whose blood pressure drops or 'dips' relatively little at night have a higher risk of numerous cardiovascular illnesses. To examine the reliability of various measures of nocturnal blood pressure dipping. This study examined 17 individuals with ambulatory blood pressure monitoring on three 24 h recordings while they pursued a schedule similar to that of in-patients on a clinical research unit. Nocturnal dipping of blood pressure was scored three ways: as the drop in blood pressure between 10 p.m. and 6 a.m. ('clocktime'), as the drop in blood pressure tailored to each individual's reported bedtime ('bedtime'), and as the drop in blood pressure accompanying polysomnographically verified sleep ('sleeptime'). Adequate reliability was obtained for all three measures of dipping. There was, in general, a significant correlation across testing occasions (P<0.05). The correlation coefficient ranged from 0.5 to 0.8, depending on which criterion of dipping was selected and whether the endpoint was systolic blood pressure, diastolic blood pressure, or mean arterial blood pressure. The reliability of systolic blood pressure dipping was somewhat lower than that of diastolic or mean arterial blood pressure dipping. Dipping appears to be a reliable construct. While no one definition of dipping was demonstrably better than another, the most sensible definition of dipping would allow some adjustment for defining 'night' on the basis of each individual's idiosyncratic bed time.

  2. Graphene-Paper Pressure Sensor for Detecting Human Motions.

    PubMed

    Tao, Lu-Qi; Zhang, Kun-Ning; Tian, He; Liu, Ying; Wang, Dan-Yang; Chen, Yuan-Quan; Yang, Yi; Ren, Tian-Ling

    2017-09-26

    Pressure sensors should have an excellent sensitivity in the range of 0-20 kPa when applied in wearable applications. Traditional pressure sensors cannot achieve both a high sensitivity and a large working range simultaneously, which results in their limited applications in wearable fields. There is an urgent need to develop a pressure sensor to make a breakthrough in both sensitivity and working range. In this paper, a graphene-paper pressure sensor that shows excellent performance in the range of 0-20 kPa is proposed. Compared to most reported graphene pressure sensors, this work realizes the optimization of sensitivity and working range, which is especially suitable for wearable applications. We also demonstrate that the pressure sensor can be applied in pulse detection, respiratory detection, voice recognition, as well as various intense motion detections. This graphene-paper pressure sensor will have great potentials for smart wearable devices to achieve health monitoring and motion detection.

  3. Tropospheric range error parameters: Further studies

    NASA Technical Reports Server (NTRS)

    Hopfield, H. S.

    1972-01-01

    Improved parameters are presented for predicting the tropospheric effect on electromagnetic range measurements from surface meteorological data. Parameters are given for computing the dry component of the zenith radio range effect from surface pressure alone with an rms error of 1 to 2 mm, or the total range effect from the dry and wet components of the surface refractivity, N, and a two-part quartic profile model. The parameters were obtained from meteorological balloon data with improved procedures, including the conversion of the geopotential heights of the balloon data to actual or geometric heights before using the data. The revised values of the parameter k show more latitude variation than is accounted for by the variation of g. This excess variation of k indicates a small latitude variation in the mean molecular weight of air and yields information about the latitude-varying water vapor content of air.

  4. Microplasma jet at atmospheric pressure

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2006-11-27

    A nitrogen microplasma jet operated at atmospheric pressure was developed for treating thermally sensitive materials. For example, the plasma sources in treatment of vulnerable biological materials must operate near the room temperature at the atmospheric pressure, without any risk of arcing or electrical shock. The microplasma jet device operated by an electrical power less than 10 W exhibited a long plasma jet of about 6.5 cm with temperature near 300 K, not causing any harm to human skin. Optical emission measured at the wide range of 280-800 nm indicated various reactive species produced by the plasma jet.

  5. Pressure effect on dissimilatory sulfate reduction

    NASA Astrophysics Data System (ADS)

    Williamson, A. J.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Biosouring is the production of H2S by sulfate reducing microorganisms (SRM) in-situ or in the produced fluids of oil reservoirs. Sulfide is explosive, toxic and corrosive which can trigger equipment and transportation failure, leading to environmental catastrophe. As oil exploration and reservoir development continue, subsequent enhanced recovery is occurring in progressively deeper formations and typical oil reservoir pressures range from 10-50 MPa. Therefore, an understanding of souring control effects will require an accurate understanding of the influence of pressure on SRM metabolism and the efficacy of souring control treatments at high pressure. Considerable work to date has focussed on souring control at ambient pressure; however, the influence of pressure on biogeochemical processes and souring treatments in oil reservoirs is poorly understood. To explore the impact of pressure on SRM, wild type Desulfovibrio alaskensis G20 (isolated from a producing oil well in Ventura County, California) was grown under a range of pressures (0.1-14 MPa) at 30 °C. Complete sulfate reduction occurred in all pressures tested within 3 days, but microbial growth was inhibited with increasing pressure. Bar-seq identified several genes associated with flagella biosynthesis (including FlhB) and assembly as important for survival at elevated pressure and fitness was confirmed using individual transposon mutants. Flagellar genes have previously been implicated with biofilm formation and confocal microscopy on glass slides incubated with wild type D. alaskensis G20 showed more biomass associated with surfaces under pressure, highlighting the link between pressure, flagellar and biofilm formation. To determine the effect of pressure on the efficacy of SRM inhibitors, IC50 experiments were conducted and D. alaskensis G20 showed a greater resistance to nitrate and the antibiotic chloramphenicol, but a lower resistance to perchlorate. These results will be discussed in the context of

  6. Evaluation of gastric pressures as an indirect method for measurement of intraabdominal pressures in the horse.

    PubMed

    Munsterman, Amelia S; Hanson, Russell Reid

    2011-02-01

    To develop an indirect method for measurement of intraabdominal pressures in the standing horse using measurement of gastric pressures as a less invasive technique, and to compare this method with direct intraabdominal pressures obtained from the peritoneal cavity. Prospective, experimental study. University-based equine research facility. Ten healthy adult horses, 7 geldings and 3 mares. Gastric pressures were measured using a nasogastric tube with a U-tube manometry technique, while intraperitoneal pressures were measured with a peritoneal cannula. Measurements of intraabdominal pressure were obtained by both methods, simultaneously, and were evaluated using 5 increasing volumes of fluid infused into the stomach (0, 400, 1,000, 2,000, and 3,000 mL). Bias and agreement between the 2 methods were determined using Bland-Altman analysis and Lin's concordance correlation coefficients. Mean gastric pressure was 14.44 ± 4.69 cm H(2)O and ranged from 0 to 25.8 cm H(2)O. Intraperitoneal pressure measurements were generally subatmospheric, and ranged from -6.6 to 3.1 cm H(2) O (mean ± SD, -1.59 ± 2.09 cm H(2)O). Measurements of intraperitoneal pressures were repeatable; however, intra- and interindividual variance was significantly larger for measurements of gastric pressures. The mean and relative bias for comparison between the 2 techniques was 15.9 ± 5.3 cm H(2)O and 244.3 ± 199.2%, respectively. The Lin's concordance correlation coefficient between gastric and intraperitoneal pressures was -0.003 but this was not statistically significant (P=0.75). There was no statistical concordance between measurements of intraabdominal pressure using gastric and intraperitoneal pressure measurement, indicating that gastric pressures cannot be substituted for intraperitoneal pressure measurement. Direct measurement of intraperitoneal pressures may be a more consistent method for comparison of intraabdominal pressures between horses, due to less variability within and between

  7. Ratchetting in pressurized pipes

    NASA Astrophysics Data System (ADS)

    Rider, R. J.; Harvey, S. J.; Charles, I. D.

    1994-04-01

    The plastic deformation of thin-walled cylinders has been experimentally examined for the loading conditions of +/- 1% axial strain with hoop stresses of approximately 0, 1/4, 1/2 and 3/4 of the initial uniaxial yield stress. Two materials similar to those used in the pipework of PWR nuclear plant in the U.K. have been tested, namely 304S11 stainless steel and En6 low-carbon steel. The results of the tests were to be compared with the allowable stresses and deformations specified in the ASME Boiler and Pressure Vessel Code, Section III. The code specifies that a prescribed combination of primary stresses must not exceed 1.5S(sub m), where S(sub m) is a stress value defined for each material. The results indicate that the limit of 1.5S(sub m) is excessively low for both materials and that in particular, the stainless steel could tolerate 5S(sub m). Although the En6 steel is more prone to ratchetting than the stainless steel, the results suggest that it too could tolerate a higher primary stress than the code allows. Both materials are shown to satisfy the proposed ASME ratchet strain limit of 5% hoop strain after 10 cycles of +/- 1% axial strain range, for any value of internal pressure.

  8. High pressure ices

    PubMed Central

    Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald

    2012-01-01

    H2O will be more resistant to metallization than previously thought. From computational evolutionary structure searches, we find a sequence of new stable and meta-stable structures for the ground state of ice in the 1–5 TPa (10 to 50 Mbar) regime, in the static approximation. The previously proposed Pbcm structure is superseded by a Pmc21 phase at p = 930 GPa, followed by a predicted transition to a P21 crystal structure at p = 1.3 TPa. This phase, featuring higher coordination at O and H, is stable over a wide pressure range, reaching 4.8 TPa. We analyze carefully the geometrical changes in the calculated structures, especially the buckling at the H in O-H-O motifs. All structures are insulating—chemistry burns a deep and (with pressure increase) lasting hole in the density of states near the highest occupied electronic levels of what might be component metallic lattices. Metallization of ice in our calculations occurs only near 4.8 TPa, where the metallic C2/m phase becomes most stable. In this regime, zero-point energies much larger than typical enthalpy differences suggest possible melting of the H sublattice, or even the entire crystal. PMID:22207625

  9. Pressure polymerization of polyester

    DOEpatents

    Maurer, Charles J.; Shaw, Gordon; Smith, Vicky S.; Buelow, Steven J.; Tumas, William; Contreras, Veronica; Martinez, Ronald J.

    2000-08-29

    A process is disclosed for the preparation of a polyester polymer or polyester copolymer under superatmospheric pressure conditions in a pipe or tubular reaction under turbannular flow conditions. Reaction material having a glycol equivalents to carboxylic acid equivalents mole ratio of from 1.0:1 to 1.2:1, together with a superatmospheric dense gaseous medium are fed co-currently to the reactor. Dicarboxylic acid and/or diol raw materials may be injected into any of the reaction zones in the process during operation to achieve the overall desired mole ratio balance. The process operates at temperatures of from about 220.degree. C. to about 320.degree. C., with turbannular flow achieved before the polymer product and gas exit the reactor process. The pressure in the reaction zones can be in the range from 15 psia to 2500 psia. A polymer product having a DP of a greater than 40, more preferably at least about 70, is achieved by the transfer of water from the reacting material polymer melt to the gaseous medium in the reactor.

  10. Cradle and pressure grippers

    DOEpatents

    Muniak, John E.

    2001-01-01

    A gripper that is designed to incorporate the functions of gripping, supporting and pressure tongs into one device. The gripper has two opposing finger sections with interlocking fingers that incline and taper to form a wedge. The interlocking fingers are vertically off-set so that the opposing finger sections may close together allowing the inclined, tapered tips of the fingers to extend beyond the plane defined by the opposing finger section's engagement surface. The range of motion defined by the interlocking relationship of the finger sections allows the gripper to grab, lift and support objects of varying size and shape. The gripper has one stationary and one moveable finger section. Power is provided to the moveable finger section by an actuating device enabling the gripper to close around an object to be lifted. A lifting bail is attached to the gripper and is supported by a crane that provides vertical lift.

  11. Range optimization for a supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Cliff, Eugene M.; Well, Klaus H.

    1991-01-01

    Range optimal trajectories for an aircraft flying in the vertical plane are obtained from Pontryagin's Minimum Principle. Control variables are load factor n which appears nonlinearly in the equations of motion and throttle setting eta, which appears only linearly. Both controls are subject to fixed bounds, namely eta between values of 0 and 1 and absolute value of n not greater than n(max). Additionally, a dynamic pressure limit is imposed, which represents a first-order state-inequality constraint. For fixed flight time, fixed initial coordinates, and partially fixed final coordinates, the effect of the load factor limit absolute value of n not greater than n(max) is studied. Upon varying n(max), six different switching structures are obtained. All trajectories involve singular control along arcs with active dynamic pressure limit.

  12. Range optimization for a supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Cliff, Eugene M.; Well, Klaus H.

    1991-01-01

    Range optimal trajectories for an aircraft flying in the vertical plane are obtained from Pontryagin's Minimum Principle. Control variables are load factor n which appears nonlinearly in the equations of motion and throttle setting eta, which appears only linearly. Both controls are subject to fixed bounds, namely eta between values of 0 and 1 and absolute value of n not greater than n(max). Additionally, a dynamic pressure limit is imposed, which represents a first-order state-inequality constraint. For fixed flight time, fixed initial coordinates, and partially fixed final coordinates, the effect of the load factor limit absolute value of n not greater than n(max) is studied. Upon varying n(max), six different switching structures are obtained. All trajectories involve singular control along arcs with active dynamic pressure limit.

  13. Hypertension (High Blood Pressure)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Hypertension (High Blood Pressure) KidsHealth > For Teens > Hypertension (High Blood Pressure) A ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  14. High Blood Pressure

    MedlinePlus

    ... version of this page please turn Javascript on. High Blood Pressure What Is High Blood Pressure? High blood pressure is a common disease in ... the heart, kidneys, brain, and eyes. Types of High Blood Pressure There are two main types of high blood ...

  15. Confusion about Pressure.

    ERIC Educational Resources Information Center

    Kuethe, Dean O.

    1991-01-01

    Listed are errors students make by accepting misconceptions about pressure and precautions teachers might take to avoid fostering those misconceptions. Misconceptions discussed include pressure as a measure of energy per unit volume, fluid flow only from high to low pressure, and the lack of pressures lower than a vacuum. (CW)

  16. Pressurized Submarine Rescue

    DTIC Science & Technology

    1984-06-07

    4 V. PROBLEMS RESULTING FROM PRESSURIZATION A. Mechanical ......................................... 5 B. Decompression...RESULTING FROM PRESSURIZATION The problems resulting from. increased pressure inside the DISUB simplify to three categories: mechanical , decompression...obligation and toxicity of respired gases. Each will be discussed in detail. A. Mechanical Pressurization of the DISUB creates several uniquely mechanical

  17. Automated high pressure cell for pressure jump x-ray diffraction

    SciTech Connect

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  18. Automated high pressure cell for pressure jump x-ray diffraction.

    PubMed

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  19. Determination of extremely high pressure tolerance of brine shrimp larvae by using a new pressure chamber system.

    PubMed

    Seo, Mihye; Koyama, Sumihiro; Toyofuku, Takashi; Kojima, Shigeaki; Watanabe, Hiromi

    2013-11-01

    Hydrostatic pressure is the only one of a range of environmental parameters (water temperature, salinity, light availability, and so on) that increases in proportion with depth. Pressure tolerance is therefore essential to understand the foundation of populations and current diversity of faunal compositions at various depths. In the present study, we used a newly developed pressure chamber system to examine changes in larval activity of the salt-lake crustacean, Artemia franciscana, in response to a range of hydrostatic pressures. We showed that A. franciscana larvae were able to survive for a short period at pressures of ≤ 60 MPa (approximately equal to the pressure of 6000 m deep). At a pressure of > 20 MPa, larval motor ability was suppressed, but not lost. Meanwhile, at a pressure of > 40 MPa, some of the larval motor ability was lost without recovery after decompression. For all experiments, discordance of movement and timing between right and left appendages, was observed at pressures of > 20 MPa. Our results indicate that the limit of pressure for sustaining active behavior of A. franciscana larvae is ∼20 MPa, whereas the limit of pressure for survival is within the range 30-60 MPa. Thus, members of the genus Artemia possess the ability to resist a higher range of pressures than their natural habitat depth. Our findings demonstrated an example of an organism capable of invading deeper environment in terms of physical pressure tolerance, and indicate the need and importance of pressure study as an experimental method.

  20. Space-Based Range Safety and Future Space Range Applications

    NASA Astrophysics Data System (ADS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-12-01

    The National Aeronautics and Space Administration (NASA) Space-Based Telemetry and Range Safety (STARS) study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety [global positioning system (GPS) metric tracking data, flight termination command and range safety data relay] and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California, USA) using the NASA Tracking and Data Relay Satellite System (TDRSS) as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit (RSU) provided real-time video for three days during the historic GlobalFlyer (Scaled Composites, Mojave, California, USA) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This paper discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  1. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety (global positioning system metric tracking data, flight termination command and range safety data relay) and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California) using the NASA Tracking and Data Relay Satellite System as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit provided real-time video for three days during the historic GlobalFlyer (Scaled Composites, Mojave, California) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This report discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  2. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Space-Based Telemetry and Range Safety (STARS) study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety [global positioning system (GPS) metric tracking data, flight termination command and range safety data relay] and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California, USA) using the NASA Tracking and Data Relay Satellite System (TDRSS) as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit (RSU) provided real-time video for three days during the historic Global Flyer (Scaled Composites, Mojave, California, USA) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This paper discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  3. Constant-pressure Blowers

    NASA Technical Reports Server (NTRS)

    Sorensen, E

    1940-01-01

    The conventional axial blowers operate on the high-pressure principle. One drawback of this type of blower is the relatively low pressure head, which one attempts to overcome with axial blowers producing very high pressure at a given circumferential speed. The Schicht constant-pressure blower affords pressure ratios considerably higher than those of axial blowers of conventional design with approximately the same efficiency.

  4. Melting of Ice under Pressure

    SciTech Connect

    Schwegler, E; Sharma, M; Gygi, F; Galli, G

    2008-07-31

    The melting of ice under pressure is investigated with a series of first principles molecular dynamics simulations. In particular, a two-phase approach is used to determine the melting temperature of the ice-VII phase in the range of 10 to 50 GPa. Our computed melting temperatures are consistent with existing diamond anvil cell experiments. We find that for pressures between 10 to 40 GPa, ice melts as a molecular solid. For pressures above {approx}45 GPa there is a sharp increase in the slope of the melting curve due to the presence of molecular dissociation and proton diffusion in the solid, prior to melting. The onset of significant proton diffusion in ice-VII as a function of increasing temperature is found to be gradual and bears many similarities to that of a type-II superionic solid.

  5. Melting of ice under pressure.

    PubMed

    Schwegler, Eric; Sharma, Manu; Gygi, François; Galli, Giulia

    2008-09-30

    The melting of ice under pressure is investigated with a series of first-principles molecular dynamics simulations. In particular, a two-phase approach is used to determine the melting temperature of the ice-VII phase in the range of 10-50 GPa. Our computed melting temperatures are consistent with existing diamond anvil cell experiments. We find that for pressures between 10 and 40 GPa, ice melts as a molecular solid. For pressures above approximately 45 Gpa, there is a sharp increase in the slope of the melting curve because of the presence of molecular dissociation and proton diffusion in the solid before melting. The onset of significant proton diffusion in ice-VII as a function of increasing temperature is found to be gradual and bears many similarities to that of a type-II superionic solid.

  6. Relationship of Intraocular Pressure with Central Aortic Systolic Pressure.

    PubMed

    Tsai, Andrew S H; Aung, Tin; Yip, Wanfen; Wong, Tien Yin; Cheung, Carol Yim-Lui

    2016-01-01

    To examine the relationship between central aortic systolic pressure (CASP) and intraocular pressure (IOP), and to compare the strength of any association with that of peripheral blood pressure and IOP. Adults ranging in age from 40 to 80 years were consecutively recruited from the population-based Singapore Chinese Eye Study. We measured CASP using arterial tonometry (BPro) and IOP using Goldmann applanation tonometry. All participants had a standardized examination including a complete ophthalmic and systemic examination. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured using peripheral blood pressure cuff. Univariable and multiple linear regression analyses were performed to examine the relationship between CASP and IOP. Standardized regression coefficients (sβ) were calculated to compare the associations between CASP and SBP with IOP. A total of 372 consecutive Chinese participants were analyzed. After adjusting for age, gender, body mass index, total cholesterol, use of antihypertensive medication and central corneal thickness, each 10 mmHg increase in CASP was associated with 0.32 mmHg of IOP elevation [95% confidence interval (CI): 0.10-0.53, sβ = 0.160, p value = 0.004]. SBP also had a positive relationship with IOP (β = 0.279, 95% CI: 0.079-0.479, sβ = 0.152, p value = 0.006). Associations between IOP and CASP, SBP and DBP were similar in participants using antihypertensive medication to participant not using antihypertensives. Increased CASP, as measured by arterial tonometry, is associated with higher IOP. Our results strengthen the relationship between systemic blood pressure and IOP.

  7. Foil-like manganin gauges for dynamic high pressure measurements

    NASA Astrophysics Data System (ADS)

    Duan, Zhuoping; Liu, Yan; Pi, Aiguo; Huang, Fenglei

    2011-07-01

    Foil-like manganin gauges with a variety of shapes used in different ranges of pressure for the one-dimensional strain mode and axisymmetric strain mode were designed for measuring the detonation pressures of explosives and high shock pressure in materials. In the stress range of 0-53.5 GPa, the pressure-piezoresistance relationships of the manganin gauges were calibrated by the light gas gun and the planar lens of explosive. The piezoresistance coefficients were obtained in different ranges of pressure. To verify the coefficients, the detonation pressure (CJ pressure) of TNT explosive was measured by the manganin gauges, which give similar CJ pressure values to those reported by Zhang et al (2009 Detonation Physics (Beijing: Ordnance Industry Press)) with the maximum relative deviation being less than 3%.

  8. Research study of pressure instrumentation

    NASA Astrophysics Data System (ADS)

    Hoogenboom, L.; Hull-Allen, G.

    1984-07-01

    To obtain a more vibration resistant pressure sensor for use on the Space Shuttle Main Engine, a proximity probe based, diaphragm type pressure sensor breadboard was developed. A fiber optic proximity probe was selected as the sensor. In combination with existing electronics, a thermal stability evaluation of the entire probe system was made. Based upon the results, a breadboard design of the pressure sensor and electronics was made and fabricated. A brief series of functional experiments was made with the breadboard to calibrate, thermally compensate, and linearize its response. In these experiments, the performance obtained in the temperature range of -320 F (liquid N2) to +200 F was comparable to that of the strain gage based sensor presently in use on the engine. In tests at NASA-Marshall Space Flight Center (MSFC), after some time at or near liquid nitrogen temperatures, the sensor output varied over the entire output range. These large spurious signals were attributed to condensation of air in the sensing gap. In the next phase of development of this sensor, an evaluation of fabrication techniques toward greater thermal and mechanical stability of the fiber probe assembly must be made. In addition to this, a positive optics to metal seal must be developed to withstand the pressure that would result from a diaphragm failure.

  9. Pressure Dome for High-Pressure Electrolyzer

    NASA Technical Reports Server (NTRS)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  10. Pressure-confined Lyman-alpha clouds

    NASA Technical Reports Server (NTRS)

    Baron, E.; Carswell, R. F.; Hogan, C. J.; Weymann, R. J.

    1989-01-01

    Results are presented of numerical models of pressure-confined spherical gas clouds which produce absorption resembling the low to intermediate atomic column density lines found in high-redshift QSO spectra. One-dimensional hydrodynamical models including electron conduction are described, and the rate equations are solved to find ionization and excitation states. Results are presented for both static and adiabatically expanding confining media covering a range of initial pressures. It is found that Ly-alpha lines are very similar over a wide range of conditions and that the most promising diagnostic of pressure is to compare the column density in H I to that in He I and He II. No single-pressure model can explain the wide range of observed H I column densities.

  11. Pressure-confined Lyman-alpha clouds

    SciTech Connect

    Baron, E.; Carswell, R.F.; Hogan, C.J.; Weymann, R.J.

    1989-02-01

    Results are presented of numerical models of pressure-confined spherical gas clouds which produce absorption resembling the low to intermediate atomic column density lines found in high-redshift QSO spectra. One-dimensional hydrodynamical models including electron conduction are described, and the rate equations are solved to find ionization and excitation states. Results are presented for both static and adiabatically expanding confining media covering a range of initial pressures. It is found that Ly-alpha lines are very similar over a wide range of conditions and that the most promising diagnostic of pressure is to compare the column density in H I to that in He I and He II. No single-pressure model can explain the wide range of observed H I column densities. 18 references.

  12. Dynamic pressures in porous media

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-12-01

    Understanding the relationship between fluid pressures and water content (saturation) in soils or other porous media can be important in a wide range of practical areas, including oil recovery, infiltration and flooding during extreme weather events, and environmental remediation. The relationship between fluid pressures and saturation in porous media has been reported to be dynamic—to depend on the flow rate as saturation changes. However, previous studies designed to understand the dynamic component of this relationship have been highly contradictory. To learn more, Hou et al. conducted experiments to quantify the relationship between pressure and rate of saturation change using a small-volume system with highly characterized fluid selective microsensors. Their analyses corrected for two often-overlooked experimental artifacts: gas pressure gradients and sensor response rate. When the researchers applied these corrections, they found that the dependence of pressure on the rate of saturation change may be much less significant than previously thought. (Water Resources Research, doi:10.1029/2012WR012434, 2012)

  13. Laser range profile of cones

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-10-01

    technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser

  14. Combustion of liquid sprays at high pressures

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.

    1977-01-01

    The combustion of pressure atomized fuel sprays in high pressure stagnant air was studied. Measurements were made of flame and spray boundaries at pressures in the range 0.1-9 MPa for methanol and n-pentane. At the higher test pressure levels, critical phenomena are important. The experiments are compared with theoretical predictions based on a locally homogeneous two-phase flow model. The theory correctly predicted the trends of the data, but underestimates flame and spray boundaries by 30-50 percent, indicating that slip is still important for the present experiments (Sauter mean diameters of 30 microns at atmospheric pressure under cold flow conditions). Since the sprays are shorter at high pressures, slip effects are still important even though the density ratio of the phases approach one another as the droplets heat up. The model indicates the presence of a region where condensed water is present within the spray and provides a convenient means of treating supercritical phenomena.

  15. Laser techniques in high-pressure geophysics

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  16. Laser techniques in high-pressure geophysics

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  17. Moment-to-moment characteristics of the relationship between arterial pressure and renal interstitial hydrostatic pressure.

    PubMed

    Komolova, Marina; Adams, Michael A

    2010-10-01

    The kidney is a key controller of the long-term level of arterial pressure, in part through pressure-natriuresis. Although direct coupling of changes in renal arterial pressure to renal interstitial hydrostatic pressure (RIHP) and consequent sodium excretion is well established, few studies have characterized the moment-to-moment aspects of this process. These studies characterized the short-term hemodynamic component of pressure-natriuresis in vivo before and after autonomic nervous system and renin-angiotensin system inhibition. Changes in RIHP were determined over a range of renal arterial pressures in Wistar rats receiving no treatment, a ganglionic blocker (hexamethonium; 20 mg/kg per hour IV), or an angiotensin II type 1 receptor blocker (losartan; 10 mg/kg per hour IV). After a series of changes in renal arterial pressure, a delay of only ≈1 second was found for the onset of RIHP responses that was independent of the stimulus magnitude and neurohumoral manipulation; however, completion of the full RIHP response was within ≈15 seconds for renal arterial pressure changes of ≤30 mm Hg. The overall slope of the renal arterial pressure- RIHP relationship (0.09±0.01) was also not affected by autonomic nervous system and renin-angiotensin system inhibition despite decreasing renal arterial pressure (↓40% and ↓28%, respectively). Separate assessment of this relationship above and below the prevailing arterial pressure revealed that the pressor versus the depressor portion was blunted (P<0.001), a difference that was abolished after autonomic nervous system and renin-angiotensin system inhibition. The results suggest that spontaneous changes in arterial pressure are coupled to moment-to-moment changes in RIHP over a wide range of pressures, emphasizing a likely role for the dynamic component of the renal arterial pressure-RIHP relationship in the modulation of sodium excretion and, hence, arterial pressure.

  18. Evidence-based medicine: pressure sores.

    PubMed

    Cushing, Carolyn A; Phillips, Linda G

    2013-12-01

    After studying this article, the participant should be able to: 1. Cite risk factors for pressure sore development. 2. Detail the pathophysiology of pressure sores. 3. List the types and classification of pressure sores. 4. Consider the various nonsurgical conservative wound management strategies. 5. Describe the appropriate surgical interventions for each pressure sore type. 6. Understand the causes of recurrent pressure sores and methods of avoiding recurrence. Pressure sores are the result of unrelieved pressure, usually over a bony prominence. With an estimated 2.5 million pressure ulcers treated annually in the United States at a cost of $11 billion, pressure sores represent a costly and labor-intensive challenge to the health care system. A comprehensive team approach can address both prevention and treatment of these recalcitrant wounds. Consideration must be given to the patient's medical and socioeconomic condition, as these factors are significantly related to outcomes. Mechanical prophylaxis, nutritional optimization, treatment of underlying infection, and spasm control are essential in management. A variety of pressure sore patterns exist, with surgical approaches directed to maximize future coverage options. A comprehensive approach is detailed in this article to provide the reader with the range of treatment options available.

  19. Raised intracranial pressure and cerebral blood flow

    PubMed Central

    Johnston, I. H.; Rowan, J. O.; Harper, A. M.; Jennett, W. B.

    1973-01-01

    Changes in cerebral blood flow with increasing intracranial pressure were studied in anaesthetized baboons during expansion of a subdural balloon in one of two different sites. With an infratentorial balloon, cerebral blood flow bore no clear relation to intracranial pressure, but was linearly related to cerebral perfusion pressure. Apart from an initial change in some animals, cerebrovascular resistance remained constant with increasing intracranial pressure, and autoregulation appeared to be lost from the outset. With a supratentorial balloon, cerebral blood flow remained constant as intracranial pressure was increased to levels around 60 mm Hg, corresponding to a cerebral perfusion pressure range of approximately 100 to 40 mmHg. Cerebrovascular resistance fell progressively, and autoregulation appeared to be effective during this phase. At higher intracranial pressure levels (lower cerebral perfusion pressure levels), autoregulation was lost and cerebral blood flow became directly dependent on cerebral perfusion pressure. The importance of the cause of the increase in intracranial pressure on the response of the cerebral circulation and the relevance of these findings to the clinical situation are discussed. PMID:4196632

  20. A dynamic pressure generator for checking complete pressure sensing systems installed on an airplane

    NASA Technical Reports Server (NTRS)

    Demarco, D. M.

    1974-01-01

    A portable dynamic pressure generator, how it operates, and a test setup on an airplane are described. The generator is capable of providing a sinusoidal pressure having a peak-to-peak amplitude of 3.5 N/sq cm (5 psi) at frequencies ranging from 100 hertz to 200 hertz. A typical power spectral density plot of data from actual dynamic pressure fluctuation tests within the air inlet of the YF-12 airplane is presented.

  1. High Blood Pressure in Pregnancy

    MedlinePlus

    ... The Health Information Center High Blood Pressure in Pregnancy What Is High Blood Pressure? Blood pressure is ... Are the Effects of High Blood Pressure in Pregnancy? Although many pregnant women with high blood pressure ...

  2. Object Recognition Using Range Images.

    DTIC Science & Technology

    1985-12-01

    Modeling the Dropouts in Range Images 28 Repairing the Pixel Dropouts 33 III. Recognizing Objects from Range Scenes 38 Using Range Geometry for Scene...well as possible methods of correcting for these effects. Other factors af- fecting the correlation coefficient that were considered were pixel dropouts ...and the beam spot size of the laser. Pixel dropouts were shown to be detrimental to a range image’s correlation coefficient, but could be corrected

  3. Pressure Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Bencic, T.; Sullivan, J. P.

    1999-01-01

    This article reviews new advances and applications of pressure sensitive paints in aerodynamic testing. Emphasis is placed on important technical aspects of pressure sensitive paint including instrumentation, data processing, and uncertainty analysis.

  4. Blood pressure measurement

    MedlinePlus

    ... have this problem. High blood pressure is often discovered during a visit to the provider for another ... to develop high blood pressure. If you have diabetes, heart disease, or kidney problems, or if you ...

  5. Low blood pressure

    MedlinePlus

    Hypotension; Blood pressure - low; Postprandial hypotension; Orthostatic hypotension; Neurally mediated hypotension; NMH ... Blood pressure varies from one person to another. A drop as little as 20 mmHg, can cause problems for ...

  6. Blood Pressure Quiz

    MedlinePlus

    ... high blood pressure can lead to… stroke. kidney failure. heart attack and heart failure. all of the above. ... high blood pressure can lead to stroke, kidney failure, heart attack and heart failure A is the correct ...

  7. Atmospheric Pressure Indicator.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  8. Atmospheric Pressure Indicator.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  9. High blood pressure - infants

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  10. High Blood Pressure Prevention

    MedlinePlus

    ... version of this page please turn Javascript on. High Blood Pressure Prevention Steps You Can Take You can take steps to prevent high blood pressure by adopting these healthy lifestyle habits. Follow a ...

  11. Blood Pressure Medicines

    MedlinePlus

    High blood pressure, also called hypertension, usually has no symptoms. But it can cause serious problems such as stroke, ... and kidney failure. If you cannot control your high blood pressure through lifestyle changes such as losing weight and ...

  12. Hypertension (High Blood Pressure)

    MedlinePlus

    ... Visitor Information RePORT NIH Fact Sheets Home > Hypertension (High Blood Pressure) Small Text Medium Text Large Text Hypertension (High Blood Pressure) YESTERDAY Hypertension is a silent killer because it ...

  13. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  14. Pressure surge attenuator

    DOEpatents

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  15. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  16. Investigating the efficacy of subharmonic aided pressure estimation for portal vein pressures and portal hypertension monitoring.

    PubMed

    Dave, Jaydev K; Halldorsdottir, Valgerdur G; Eisenbrey, John R; Merton, Daniel A; Liu, Ji-Bin; Zhou, Jian-Hua; Wang, Hsin-Kai; Park, Suhyun; Dianis, Scott; Chalek, Carl L; Lin, Feng; Thomenius, Kai E; Brown, Daniel B; Forsberg, Flemming

    2012-10-01

    The efficacy of using subharmonic emissions from Sonazoid microbubbles (GE Healthcare, Oslo, Norway) to track portal vein pressures and pressure changes was investigated in 14 canines using either slow- or high-flow models of portal hypertension (PH). A modified Logiq 9 scanner (GE Healthcare, Milwaukee, WI, USA) operating in subharmonic mode (f(transmit): 2.5 MHz, f(receive): 1.25 MHz) was used to collect radiofrequency data at 10-40% incident acoustic power levels with 2-4 transmit cycles (in triplicate) before and after inducing PH. A pressure catheter (Millar Instruments, Inc., Houston, TX, USA) provided reference portal vein pressures. At optimum insonification, subharmonic signal amplitude changes correlated with portal vein pressure changes; r ranged from -0.82 to -0.94 and from -0.70 to -0.73 for PH models considered separately or together, respectively. The subharmonic signal amplitudes correlated with absolute portal vein pressures (r: -0.71 to -0.79). Statistically significant differences between subharmonic amplitudes, before and after inducing PH, were noted (p ≤ 0.01). Portal vein pressures estimated using subharmonic aided pressure estimation did not reveal significant differences (p > 0.05) with respect to the pressures obtained using the Millar pressure catheter. Subharmonic-aided pressure estimation may be useful clinically for portal vein pressure monitoring.

  17. A control system for maintaining high stability in gas pressure

    SciTech Connect

    Wuest, C.R.; Hendricks, C.D.

    1987-09-01

    A pressure control system has been implemented on an experiment designed to detect the presence of fractional charges in bulk matter. The experiment utilizes a liquid-droplet generation technique requiring high-stability gas-pressure delivery to ensure accurate data collection. The pressure control system consists of a pressurized mercury reservoir containing a low-vapor-pressure, diffusion-pump oil. A commercially available differential pressure transducer, servo-driven valve, and controller sense the pressure fluctuations with respect to a static reference pressure. The system can maintain constant pressure to better than one part in 10,000 at working pressures in the range of 100 to 300 psi. 3 refs., 7 figs.

  18. Sequential ranging: How it works

    NASA Technical Reports Server (NTRS)

    Baugh, Harold W.

    1993-01-01

    This publication is directed to the users of data from the Sequential Ranging Assembly (SRA), and to others who have a general interest in range measurements. It covers the hardware, the software, and the processes used in acquiring range data; it does not cover analytical aspects such as the theory of modulation, detection, noise spectral density, and other highly technical subjects. In other words, it covers how ranging is done, but not the details of why it works. The publication also includes an appendix that gives a brief discussion of PN ranging, a capability now under development.

  19. Relative microvascular pressure sensing

    NASA Astrophysics Data System (ADS)

    Choi, Min; Zemp, Roger

    2016-03-01

    Microcirculation may be characterized by the vascular pressure as it is influenced by pressure-driven perfusion. Crosssections of blood vessels can be visualized by photoacoustic imaging and compressing on vessels causes deformation. The photoacoustic signals of blood, when compressed to the point of vessel collapse, may or may not vanish depending on the buckling process it undergoes. We form relative pressure images of microvessels by tracking vessel collapse as a function of externally applied pressure using photoacoustic imaging.

  20. PRESSURE SYSTEM CONTROL

    DOEpatents

    Esselman, W.H.; Kaplan, G.M.

    1961-06-20

    The control of pressure in pressurized liquid systems, especially a pressurized liquid reactor system, may be achieved by providing a bias circuit or loop across a closed loop having a flow restriction means in the form of an orifice, a storage tank, and a pump connected in series. The subject invention is advantageously utilized where control of a reactor can be achieved by response to the temperature and pressure of the primary cooling system.

  1. Pressure-sensitive optrode

    DOEpatents

    Hirschfeld, Tomas B.

    1986-01-01

    An apparatus is provided for sensing changes in pressure and for generating optical signals related to said changes in pressure. Light from a fiber optic illuminates a fluorescent composition causing it to fluoresce. The fluorescent composition is caused to more relative to the end of the fiber optic in response to changes in pressure so that the intensity of fluorescent emissions collected by the same fiber optic used for illumination varies monotonically with pressure.

  2. Pressure-sensitive optrode

    DOEpatents

    Hirschfeld, T.B.

    1986-07-15

    An apparatus is provided for sensing changes in pressure and for generating optical signals related to said changes in pressure. Light from a fiber optic illuminates a fluorescent composition causing it to fluoresce. The fluorescent composition is caused to fluoresce more relative to the end of the fiber optic in response to changes in pressure so that the intensity of fluorescent emissions collected by the same fiber optic used for illumination varies monotonically with pressure. 10 figs.

  3. Understanding Blood Pressure Readings

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More Understanding Blood Pressure Readings Updated:Mar 22,2017 What do your ... it’s too high for blood pressure High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  4. Low Blood Pressure

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More Low Blood Pressure - When Blood Pressure Is Too Low Updated:Dec 13,2016 How ... content was last reviewed October 2016 High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  5. A soundproof pressure chamber.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Inoue, S

    1994-01-01

    For neurotological research we designed a soundproof pressure chamber in which pressure can be adjusted +/- 1000 mmH2O at the rate of less than 100 mmH2O per second. Noise in the chamber can be maintained under 30-35 dB while pressure is kept at a given level.

  6. Brain Pressure Monitoring

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A transducer originally used to measure air pressure in aircraft wind tunnel tests is the basis for a development important in diagnosis and treatment of certain types of brain damage. A totally implantable device, tbe intracranial pressure monitor measures and reports brain pressure by telemetry.

  7. High Blood Pressure (Hypertension)

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure (Hypertension) Share Tweet Linkedin Pin it More sharing ... En Español Who is at risk? How is high blood pressure treated? Understanding your blood pressure: What do the ...

  8. Pressure effects on nonpremixed strained flames

    SciTech Connect

    Pons, Laetitia; Darabiha, Nasser; Candel, Sebastien

    2008-01-15

    This article deals with the effect of pressure on the structure and consumption rate of nonpremixed strained flames. An analysis based on the fast chemistry limit indicates that the flame thickness is inversely proportional to the square root of pressure and that the flame structure may be described in terms of a similarity variable that scales like the product of pressure and the strain rate to the power 1/2. This scaling rule also applies to flames submitted to a time-variable strain rate provided that the frequencies characterizing these changes are low compared to the mean strain rate. It is also confirmed that reactants consumption rates per unit flame surface vary like the square root of pressure and that this rule holds for time-variable strain rates of arbitrary nature. Complex chemistry calculations carried out over a broad range of operating pressures indicate that the pressure dependences deduced analytically are remarkably accurate and can be used for a broad range of strain rates, excluding values in the near vicinity of extinction conditions, where finite rate chemistry effects become important and influence the flame response to pressure. Thus, it appears that the pressure exponent characterizing the heat release rate in nonpremixed strained flames is essentially constant and equal to 1/2. This exponent is independent of finite rate chemistry effects, except when conditions are close to extinction. (author)

  9. Estimation of crystallization pressure of granite intrusions

    NASA Astrophysics Data System (ADS)

    Yang, Xue-Ming

    2017-08-01

    A numerical method is presented to estimate the crystallization pressure of granite intrusions based on two polynomial equations obtained by an analysis of the existing haplogranite ternary phase diagram and associated dataset. The results indicate that the pressure is correlated respectively with normative quartz (Qtz) content and with normative albite (Ab) plus orthoclase (Or) contents of granitic rocks as follows. where P is pressure in MPa, and R denotes correlation coefficient. It is noted that the procedure of normalizing the sum of CIPW norm (quartz, albite, orthoclase) contents to 100% is required before using Eqs. (1) and (2). The difference in pressure calculations between these two equations is ≤ 16 MPa for the range of normative quartz contents from 15 to 40 wt%. An example of how to use these equations to estimate the crystallization pressure of a granite intrusion is also provided to show the validity and convenience of this method. The uncertainty of such pressure estimation is not well known, although it must fall into the uncertainty range of the existing experimental work on pressure constraints. The simplicity of this empirical method is appreciable, although its applicability to natural granitoids needs further test. More experimental work is required to constrain the effects of components, such as CaO, FeO, MgO, F, Cl, CO2, on the granite phase equilibria. These equations, however, can be used for estimating crystallization pressures of water-saturated and quartz-oversaturated granitic systems.

  10. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  11. Measuring Pressure Has a New Standard

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Force-Balanced Piston Gauge (FPG) tests and calibrates instrumentation operating in the low pressure range. The system provides a traceable, primary calibration standard for measuring pressures in the range of near 0 to 15 kPa (2.2 psi) in both gauge and absolute measurement modes. The hardware combines a large area piston-cylinder with a load cell measuring the force resulting from pressures across the piston. The mass of the piston can be tared out, allowing measurement to start from zero. A pressure higher than the measured pressure, which keeps the piston centered, lubricates an innovative conical gap located between the piston and the cylinder, eliminating the need for piston rotation. A pressure controller based on the control of low gas flow automates the pressure control. DHI markets the FPG as an automated primary standard for very low-gauge and absolute pressures. DHI is selling the FPG to high-end metrology laboratories on a case by case basis, with a full commercial release to follow.

  12. Microfluidic pressure sensing using trapped air compression

    PubMed Central

    Srivastava, Nimisha; Burns, Mark A.

    2010-01-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid–air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d ~ 50 μm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700–100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions. PMID:17476384

  13. High pressure and anesthesia: pressure stimulates or inhibits bacterial bioluminescence depending upon temperature.

    PubMed

    Nosaka, S; Kamaya, H; Ueda, I

    1988-10-01

    Although high pressure is often viewed as a nonspecific stimulus counteracting anesthesia, pressure can either excite or inhibit biological activity depending on the temperature at application. Temperature and pressure are two independent variables that determine equilibrium quantity, e.g., the state of organisms in terms of activity and anesthesia depth. We used the light intensity of luminous bacteria (Vibrio fischeri) as an activity parameter, and studied the effects of pressure and anesthetics on the bacteria's light intensity at various temperatures. The light intensity was greatest at about 30 degrees C at ambient pressure. When the system was pressurized up to 204 atm, the temperature for maximum light intensity was shifted to higher temperatures. Above the optimal temperature for the maximal light intensity, high pressure increased the light intensity. Below the optimal temperature, pressure decreased light intensity. Pressure only shifts the reaction equilibrium to the lower volume state (Le Chatelier's principle). When the volume of the excited state is larger than the resting state, high pressure inhibits excitation, and vice versa. Halothane 0.008 atm and isoflurane 0.021 atm inhibited the light intensity both above and below the optimal temperature. When pressurized, the light intensity increased in the high temperature range but decreased in the low temperature range, as in the control. Thus, high pressure seemingly potentiated the anesthetic action at low temperatures. When the ratio of the light intensity in bacteria exposed to anesthesia and those not exposed to anesthesia was plotted against the pressure, however, the value approached unity in proportion to the pressure increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. INTRAOCULAR PRESSURE CHANGES DURING VITRECTOMY USING CONSTELLATION VISION SYSTEM'S INTRAOCULAR PRESSURE CONTROL FEATURE.

    PubMed

    Falabella, Paulo; Stefanini, Francisco R; Lue, Jaw-Chyng L; Pfister, Marcel; Reyes-Mckinley, Jahlyn; Koss, Michael J; Teixeira, Anderson; Schor, Paulo; Humayun, Mark S

    2016-07-01

    To evaluate intraocular pressure (IOP) changes during experimental vitrectomy and the efficacy of Constellation Vision System's IOP control (IOPc) feature in reestablishing baseline pressure. Using a pressure transducer in freshly enucleated porcine eyes, a broad range of parameters (baseline pressures, aspiration levels, and cut rates) were tested with 23- and 25-gauge probes and IOPc turned ON versus OFF. IOPc turned ON was significantly more effective than IOPc turned OFF in controlling IOP drop and stabilizing pressure during vitrectomy using a wide range of baseline pressures (20-70 mmHg). The 23-gauge system consistently presented a reduced drop from baseline compared with the 25-gauge system. The overall average drop for the 23- and 25-gauge systems was 12.79 mmHg and 21.17 mmHg, respectively. Both gauge sizes reestablished baseline pressure approximately 1.6 seconds after the initial pressure drop generated at the beginning of aspiration. A peak of IOP (overshooting) was observed when the pressure was returning to baseline using both 23- and 25-gauge systems. Using IOPc feature turned ON, 23- and 25-gauge probes were effective in reestablishing and sustaining baseline infusion pressures, although 23-gauge probes showed less IOP fluctuation than did 25-gauge probes.

  15. Effect of measuring ambulatory blood pressure on sleep and on blood pressure during sleep.

    PubMed Central

    Davies, R. J.; Jenkins, N. E.; Stradling, J. R.

    1994-01-01

    OBJECTIVE--To assess whether recording of ambulatory blood pressure at night causes arousal from sleep and a change in the continuous blood pressure recorded simultaneously. DESIGN--Repeated measurement of blood pressure with two ambulatory blood pressure machines (Oxford Medical ABP and A&D TM2420) during continuous measurement of beat to beat blood pressure and continuous electroencephalography. SETTING--Sleep research laboratory. SUBJECTS--Six normal subjects. MAIN OUTCOME MEASURES--The duration of electroencephalographic arousal and the beat to beat changes in blood pressure produced by the measurement of ambulatory blood pressure; the size of any changes that this arousal and change in blood pressure produced in the blood pressure recorded by the ambulatory machine. RESULTS--Both ambulatory blood pressure machines caused arousal from sleep: the mean duration of arousal was 16 seconds (95% range 0-202) with the ABP and 8 seconds (0-73) with the TM2420. Both also caused a rise in beat to beat blood pressure. During non-rapid eye movement sleep, this rise led to the ABP machine overestimating the true systolic blood pressure during sleep by a mean of 10 (SD 14.8) mm Hg and the TM2420 by a mean of 6.3 (8.2) mm Hg. On average, diastolic pressure was not changed, but measurements in individual subjects changed by up to 23 mm Hg. These changes varied in size among subjects and stages of sleep and were seen after measurements that did not cause any electroencephalographic arousal. CONCLUSIONS--Ambulatory blood pressure machines cause appreciable arousal from sleep and therefore alter the blood pressure that they are trying to record. This effect should be taken into account when recordings of blood pressure at night are interpreted in clinical work and epidemiological research. PMID:8167489

  16. The pressure field of imploding lightbulbs

    NASA Astrophysics Data System (ADS)

    Czechanowski, M.; Ikeda, C.; Duncan, J. H.

    2015-03-01

    The implosion of A19 incandescent lightbulbs in a high-pressure water environment is studied in a 1.77-m-diameter steel tank. Underwater blast sensors are used to measure the dynamic pressure field near the lightbulbs and the implosions are photographed with a high-speed movie camera at a frame rate of 24,000 pps. The movie camera and the pressure signal recording system are synchronized to enable correlation of features in the movie frames with those in the pressure records. It is found that the gross dimensions and weight of the bulbs are very similar from one bulb to another, but the ambient water pressure at which a given bulb implodes (, called the implosion pressure) varies from 6.29 to 11.98 atmospheres, probably due to inconsistencies in the glass wall thickness and perhaps other detailed characteristics of the bulbs. The dynamic pressures (the local pressure minus , as measured by the sensors) first drop during the implosion and then reach a strong positive peak at about the time that the bulb reaches minimum volume. The peak dynamic pressure varies from 3.61 to 28.66 atmospheres. In order to explore the physics of the implosion process, the dynamic pressure signals are compared to calculations of the pressure field generated by the collapse of a spherical bubble in a weakly compressible liquid. The wide range of implosion pressures is used in combination with the calculations to explore the effect of the relative liquid compressibility and the bulb itself on the dynamic pressure field.

  17. Middle ear pressures of children with otitis media with effusion.

    PubMed

    Takahashi, H; Honjo, I; Hayashi, M; Fujita, A; Kurata, K

    1991-06-01

    Middle ear (ME) pressures were measured in 30 children with chronic otitis media with effusion (OME) transtubally with the use of a catheter pressure transducer (Mikro-tip, PC-330F). They were found to range from 40 to -185 mm H2O, the average being mildly negative (-54.33 +/- 59.04 mm H2O). About two thirds of these children had pulsating changes of ME pressure; the range of the pressure change was between 10 and 50 mm H2O. The ME pressure tended to be lower in ears with serous effusion than in those with mucoid effusion, but there was no significant difference between them.

  18. Raised intracranial pressure in Apert syndrome.

    PubMed

    Marucci, Damian D; Dunaway, David J; Jones, Barry M; Hayward, Richard D

    2008-10-01

    Raised intracranial pressure is a well-known complication of Apert syndrome. The current policy in the authors' unit is to monitor these patients and only perform surgery when raised intracranial pressure has been diagnosed. The authors present their experience with this protocol, as it allows a more accurate picture of the natural history of raised intracranial pressure in Apert syndrome. The records of 24 patients, aged between 7 and 14 years, with Apert syndrome who had been managed expectantly (i.e., with no routine "automatic" early surgery) were reviewed. Data were collected on the incidence, timing, and management of raised intracranial pressure. Twenty of 24 patients (83 percent) developed raised intracranial pressure. The average age of the first episode was 18 months (range, 1 month to 4 years 5 months). Raised intracranial pressure was managed with surgery in 18 patients, including two patients who underwent shunt procedures for hydrocephalus. Two patients had their raised intracranial pressure treated successfully by correcting coexisting upper airway obstruction alone. Seven of the 20 patients (35 percent) developed a second episode of raised intracranial pressure, on average 3 years 4 months later (range, 1 year 11 months to 5 years 9 months). In Apert syndrome, there is a high incidence of raised intracranial pressure, which can first occur at any age up to 5 years and may recur despite initial successful treatment. Causes of raised intracranial pressure include craniocerebral disproportion, venous hypertension, upper airway obstruction, and hydrocephalus. Careful clinical, ophthalmologic, respiratory, and radiologic monitoring will allow raised intracranial pressure to be diagnosed accurately when it occurs and then treated most appropriately.

  19. Laser range profile of spheres

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-09-01

    Profile information about a three-dimensional target can be obtained by laser range profile (LRP). A mathematical LRP model from rough sphere is presented. LRP includes laser one-dimensional range profile and laser two-dimensional range profile. A target coordinate system and an imaging coordinate system are established, the mathematical model of the range profile is derived in the imaging coordinate system. The mathematical model obtained has nothing to do with the incidence direction of laser. It is shown that the laser range profile of the sphere is independent of the incidence direction of laser. This is determined by the symmetry of the sphere. The laser range profile can reflect the shape and material properties of the target. Simulations results of LRP about some spheres are given. Laser range profile of sphere, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profile of sphere, whose surface mater with diffuse materials whose retro-reflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser range profiles of different pulse width of sphere are given in this paper. The influences of geometric parameters, pulse width on the range profiles are analyzed.

  20. An experiment in earthquake control at rangely, colorado.

    PubMed

    Raleigh, C B; Healy, J H; Bredehoeft, J D

    1976-03-26

    An experiment in an oil field at Rangely, Colorado, has demonstrated the feasibility of earthquake control. Variations in seismicity were produced by controlled variations in the fluid pressure in a seismically active zone. Precise earthquake locations revealed that the earthquakes clustered about a fault trending through a zone of high pore pressure produced by secondary recovery operations. Laboratory measurements of the frictional properties of the reservoir rocks and an in situ stress measurement made near the earthquake zone were used to predict the fluid pressure required to trigger earthquakes on preexisting fractures. Fluid pressure was controlled by alternately injecting and recovering water from wells that penetrated the seismic zone. Fluid pressure was monitored in observation wells, and a computer model of the reservoir was used to infer the fluid pressure distributions in the vicinity of the injection wells. The results of this experiment confirm the predicted effect of fluid pressure on earthquake activity and indicate that earthquakes can be controlled wherever we can control the fluid pressure in a fault zone.

  1. Pressure Relief Devices

    NASA Astrophysics Data System (ADS)

    Manha, William D.

    2010-09-01

    Pressure relief devices are used in pressure systems and on pressure vessels to prevent catastrophic rupture or explosion from excessive pressure. Pressure systems and pressure vessels have manufacturers maximum rated operating pressures or maximum design pressures(MDP) for which there are relatively high safety factors and minimum risk of rupture or explosion. Pressure systems and pressure vessels that have a potential to exceed the MDP by being connected to another higher pressure source, a compressor, or heat to water(boiler) are required to have over-pressure protecting devices. Such devices can be relief valves and/or burst discs to safely relieve potentially excessive pressure and prevent unacceptable ruptures and explosions which result in fail-safe pressure systems and pressure vessels. Common aerospace relief valve and burst disc requirements and standards will be presented. This will include the NASA PSRP Interpretation Letter TA-88-074 Fault Tolerance of Systems Using Specially Certified Burst Disks that dictates burst disc requirements for payloads on Shuttle. Two recent undesirable manned space payloads pressure relief devices and practices will be discussed, as well as why these practices should not be continued. One example for discussion is the use of three burst discs that have been placed in series to comply with safety requirements of three controls to prevent a catastrophic hazard of the over-pressurization and rupture of pressure system and/or vessels. The cavities between the burst discs are evacuated and are the reference pressures for activating the two upstream burst discs. If the upstream burst disc leaks into the reference cavity, the reference pressure increases and it can increase the burst disc activating pressure and potentially result in the burst disc assembly being ineffective for over pressure protection. The three burst discs-in-series assembly was found acceptable because the burst discs are designed for minimum risk(DFMR) of

  2. Factors affecting ranging behaviour in young and adult laying hens.

    PubMed

    Gilani, A-M; Knowles, T G; Nicol, C J

    2014-01-01

    1. A study was conducted to investigate the effect of environment on ranging in 33 flocks reared with (16) or without (17) range access. Ranging was observed at 8, 16 and 35 weeks. Information on house layout, weather conditions and range characteristics was used to create models predicting the percentage of the flock out on the range and the percentage of ranging birds observed away from the house. 2. Three flocks had range access at 8 weeks. The percentage of birds ranging averaged 28%, with 22% of these ranging away from the house. For the 13 flocks with range access at 16 weeks, the percentage of pullets on the range was 12%, with 29% of these ranging away from the house. At 35 weeks, all flocks had range access and the average percentage of birds out on the range was 13%, with 42% of these ranging away from the house. 3. The percentage of birds seen using the range was higher with reduced flock size and stocking density, increased pop hole availability (cm/bird) and light intensity inside the house. More birds ranged on cooler days and on farms located in areas with fewer days of rain per year and lower average rainfall. The percentage of birds ranging varied with season and was lowest in May. More birds ranged away from the house when cover and more artificial structures were present on the range. The proportion of ranging birds located away from the house increased with lower outdoor humidity levels, higher air pressure, and on warmer days. Lastly, birds ranged away from the house more as they got older.

  3. Blood pressure behaviour during physical activity.

    PubMed

    Palatini, P

    1988-06-01

    Aerobic exercise is currently being recommended in addition to pharmacological therapy for lowering blood pressure levels in hypertensive patients, i.e. in subjects whose resting blood pressure levels exceed 145/90 mm Hg. On the other hand competitive sports are generally contraindicated in hypertensives, who are thought to be at increased risk of morbidity or mortality from their blood pressure levels. The present knowledge of blood pressure behaviour during isotonic physical activity is almost wholly based on the results obtained by means of the ergometric tests. Several maximal and submaximal exercise protocols have been introduced, but none has proved to be superior for diagnostic purposes. There is general agreement that the systolic blood pressure increase determined by isotonic exercise usually ranges from 50 to 70 mm Hg in both normotensive or hypertensive subjects. Diastolic blood pressure shows only minor changes in the normotensives, while in the hypertensives it tends to substantially increase because of their inability to adequately reduce their peripheral resistance. This mechanism may also explain the delay shown by the hypertensives in reaching pre-exercise blood pressure values during the recovery. On average diastolic blood pressure increases to a greater extent during bicycle ergometry than during treadmill, while no differences in exertional systolic blood pressure have been observed between the 2 tests. The results of several studies indicate that the blood pressure response to isotonic exercise is a marker for detection of hypertension earlier in the course of the disease, while resting blood pressure is still normal. According to some authors it is also of value in predicting future hypertension in individuals with borderline pressure levels. There are no conclusive data on the effect of training on blood pressure response to exercise. The majority of the published studies report small exertional pressure reductions after conditioning, which

  4. Influence of pressure on pyrolysis of black liquor: 1. Swelling.

    PubMed

    Whitty, Kevin; Backman, Rainer; Hupa, Mikko

    2008-02-01

    This is the first of two papers concerning the behavior of black liquor during pyrolysis under pressurized conditions. Two industrial kraft liquors were pyrolyzed in a laboratory-scale pressurized single particle reactor and a pressurized grid heater at temperatures ranging from 650 to 1100 degrees C and at pressures between 1 and 20 bar. The dimensions of the chars produced were measured and the specific swollen volume was calculated. Swelling decreased roughly logarithmically over the pressure range 1-20 r. An expression is developed to predict the specific swollen volume at elevated pressure when the volume at 1 bar is known. The bulk density of the char increased with pressure, indicating that liquors will be entrained less easily at higher pressures.

  5. Miniaturized pressurization system

    DOEpatents

    Whitehead, John C.; Swink, Don G.

    1991-01-01

    The invention uses a fluid stored at a low pressure and provides the fluid at a high pressure. The invention allows the low pressure fluid to flow to a fluid bore of a differential pump and from the pump to a fluid pressure regulator. After flowing through the regulator the fluid is converted to a gas which is directed to a gas bore of the differential pump. By controlling the flow of gas entering and being exhausted from the gas bore, the invention provides pressure to the fluid. By setting the regulator, the high pressure fluid can be set at predetermined values. Because the invention only needs a low pressure fluid, the inventive apparatus has a low mass, and therefore would be useful in rocket propulsion systems.

  6. Pressure measuring probe

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr. (Inventor)

    1988-01-01

    The invention is a probe for measuring changes in pressure in a high velocity fluid stream over and adjacent to the surface of an object. The probe is formed of an exterior housing having a closed pressure chamber in which a piezoelectric pressure transducer is mounted. An open connector tube having a probe tip passes a portion of the fluid stream into the closed pressure chamber; any change of pressure within, which requires a settling-time to appear in the closed pressure chamber, is inversely proportional to the cross-sectional area of the connector tube. A cooling chamber formed around the pressure chamber is connected to a source of cooling fluid by means of inlet and outlet tubes.

  7. Pressure reducing regulator

    DOEpatents

    Whitehead, J.C.; Dilgard, L.W.

    1995-10-10

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure is disclosed. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes. 10 figs.

  8. Pressure reducing regulator

    DOEpatents

    Whitehead, John C.; Dilgard, Lemoyne W.

    1995-01-01

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes.

  9. Pressure (Or No Royal Road)

    ERIC Educational Resources Information Center

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  10. Pressure (Or No Royal Road)

    ERIC Educational Resources Information Center

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  11. Fuel droplet burning rates at high pressures.

    NASA Technical Reports Server (NTRS)

    Canada, G. S.; Faeth, G. M.

    1973-01-01

    Combustion of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane was observed in air under natural convection conditions, at pressures up to 100 atm. The droplets were simulated by porous spheres, with diameters in the range from 0.63 to 1.90 cm. The pressure levels of the tests were high enough so that near-critical combustion was observed for methanol and ethanol. Due to the high pressures, the phase-equilibrium models of the analysis included both the conventional low-pressure approach as well as high-pressure versions, allowing for real gas effects and the solubility of combustion-product gases in the liquid phase. The burning-rate predictions of the various theories were similar, and in fair agreement with the data. The high-pressure theory gave the best prediction for the liquid-surface temperatures of ethanol and propanol-1 at high pressure. The experiments indicated the approach of critical burning conditions for methanol and ethanol at pressures on the order of 80 to 100 atm, which was in good agreement with the predictions of both the low- and high-pressure analysis.

  12. Palpatory Method of Measuring Diastolic Blood Pressure

    PubMed Central

    Sahu, Dinesh; Bhaskaran, M

    2010-01-01

    Background: Most common method for measuring blood pressure is palpatory but only systolic pressure can be measured with this method. In this study we are describing palpatory method of measuring diastolic blood pressure as well. Patients & Methods: We have studied in 200 patients and compared systolic as well as diastolic blood pressures with two methods, auscutatory and palpatory. Systolic and diastolic blood pressure were measured by one of the authors with new palpatory method and noted down. Then an independent observer, who was blinded to the palpatory method's values, measured blood pressure by auscultatory method and noted down. The values were compared in term of range and percentage. Results: The difference were analysed and found that 102 (51%) patients had systolic and diastolic blood pressure measured by palpatory method, within ± 2 mmHg of auscutatory method, 37 (19%) patients had within ± 4 mmHg, 52 (25%) patients had same readings as with auscutatory method, and in 9 (0.5%) patients it could not be measured. Conclusion: The palpatory method would be very useful where frequent blood pressure measurement are being done manually like in wards, in busy OPD, patient on treadmill and also whenever stethoscope is not available. The blood pressure can be measured in noisy environment too. PMID:21547184

  13. Short-range Fundamental forces

    SciTech Connect

    Antoniadis, I; Baessler, Stefan; Buechner, M; Fedorov, General Victor; Hoedl, S.; Lambrecht, A; Nesvizhevsky, V.; Pignol, G; Reynaud, S.; Sobolev, Yu.

    2011-01-01

    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: (1) spin-independent forces; and (2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments.

  14. Pressure locking test results

    SciTech Connect

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D.

    1996-12-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.{close_quotes} Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; the authors will publish the results of their thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.

  15. The effect of atmospheric pressure on Snowball Earth deglaciation

    NASA Astrophysics Data System (ADS)

    Edkins, Nicholas; Davies, Roger

    2017-02-01

    The most common explanation for the escape from a Snowball Earth state involves, among other factors, a strong greenhouse effect caused by a large partial pressure of CO2. This leads to an increase in surface pressure, which most models do not account for. With a higher surface pressure, pressure broadening increases, and convection reaches a deeper layer, both of which result in higher surface temperatures. The latter mechanism, which has not previously been reported, is found to be a greater source of warming than pressure broadening in the normal range of CO2 partial pressures at the point of deglaciation.

  16. Current Testing Capabilities at the NASA Ames Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Ramsey, Alvin; Tam, Tim; Bogdanoff, David; Gage, Peter

    1999-01-01

    Capabilities for designing and performing ballistic range tests at the NASA Ames Research Center are presented. Computational tools to assist in designing and developing ballistic range models and to predict the flight characteristics of these models are described. A CFD code modeling two-stage gun performance is available, allowing muzzle velocity, maximum projectile base pressure, and gun erosion to be predicted. Aerodynamic characteristics such as drag and stability can be obtained at speeds ranging from 0.2 km/s to 8 km/s. The composition and density of the test gas can be controlled, which allows for an assessment of Reynolds number and specific heat ratio effects under conditions that closely match those encountered during planetary entry. Pressure transducers have been installed in the gun breech to record the time history of the pressure during launch, and pressure transducers have also been installed in the walls of the range to measure sonic boom effects. To illustrate the testing capabilities of the Ames ballistic ranges, an overview of some of the recent tests is given.

  17. Ranging Behaviour of Commercial Free-Range Laying Hens

    PubMed Central

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-01-01

    Simple Summary Commercial free-range production has become a significant sector of the fresh egg market due to legislation banning conventional cages and consumer preference for products perceived as welfare friendly, as access to outdoor range can lead to welfare benefits such as greater freedom of movement and enhanced behavioural opportunities. This study investigated dispersal patterns, feather condition and activity of laying hens in three distinct zones of the range area; the apron area near shed; enriched zone 10–50 m from shed; and outer range beyond 50 m, in six flocks of laying hens under commercial free-range conditions varying in size between 4000 and 24,000 hens. Each flock was visited for four days to record number of hens in each zone, their behaviour, feather condition and nearest neighbour distances (NND), as well as record temperature and relative humidity during the visit. Temperature and relative humidity varied across the study period in line with seasonal variations and influenced the use of range with fewer hens out of shed as temperature fell or relative humidity rose. On average, 12.5% of the hens were observed on the range and most of these hens were recorded in the apron zone as hen density decreased rapidly with increasing distance from the shed. Larger flocks appeared to have a lower proportion of hens on range. The hens used the range more in the early morning followed by a progressive decrease through to early afternoon. The NND was greatest in the outer range and decreased towards the shed. Feather condition was generally good and hens observed in the outer range had the best overall feather condition. Standing, pecking, walking and foraging were the most commonly recorded behaviours and of these, standing occurred most in the apron whereas walking and foraging behaviours were recorded most in the outer range. This study supported the findings of previous studies that reported few hens in the range and greater use of areas closer

  18. Calculating Mass Diffusion in High-Pressure Binary Fluids

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2004-01-01

    A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.

  19. Characterization of a surface micromachined pressure sensor array

    SciTech Connect

    Eaton, W.P.; Smith, J.H.

    1995-08-01

    A surface micromachined pressure sensor array has been designed and fabricated. The sensors are based upon deformable, silicon nitride diaphragms with polysilicon piezoresistors. Absolute pressure is detected by virtue of reference pressure cavities underneath the diaphragms. For this type of sensor, design tradeoffs must be made among allowable diaphragm size, and desirable pressure ranges. Several fabrication issues were observed and addressed. Offset voltage, sensitivity, and nonlinearity of 100 {mu}m diameter sensors were measured.

  20. Investigating the efficacy of subharmonic aided pressure estimation for portal vein pressures and portal hypertension monitoring

    PubMed Central

    Dave, Jaydev K.; Halldorsdottir, Valgerdur G.; Eisenbrey, John R.; Merton, Daniel A.; Liu, Ji-Bin; Zhou, Jian-Hua; Wang, Hsin-Kai; Park, Suhyun; Dianis, Scott; Chalek, Carl L.; Lin, Feng; Thomenius, Kai E.; Brown, Daniel B.; Forsberg, Flemming

    2013-01-01

    The efficacy of using subharmonic emissions from Sonazoid microbubbles (GE Healthcare, Oslo, Norway) to track portal vein pressures and pressure changes was investigated in 14 canines using either slow- or high-flow models of portal hypertension (PH). A modified Logiq 9 scanner (GE Healthcare, Milwaukee, WI) operating in subharmonic mode (ftransmit:2.5MHz, freceive:1.25MHz) was used to collect RF data at 10-40% incident acoustic power levels with 2-4 transmit cycles (in triplicate), before and after inducing PH. A pressure catheter (Millar Instruments, Inc., Houston, TX) provided reference portal vein pressures. At optimum insonification, subharmonic signal amplitude changes correlated with portal vein pressure changes; r ranged from -0.82 to -0.94 and from -0.70 to -0.73 for PH models considered separately or together, respectively. The subharmonic signal amplitudes correlated with absolute portal vein pressures (r: -0.71 to -0.79). Statistically significant differences between subharmonic amplitudes, before and after inducing PH, were noted (p≤0.01). Portal vein pressures estimated using SHAPE did not reveal significant differences (p>0.05) with respect to the pressures obtained using the Millar pressure catheter. Subharmonic aided pressure estimation may be useful clinically for portal vein pressure monitoring. PMID:22920550

  1. Sensors, transducers, and systems for blood pressure and intracranial pressure monitoring

    NASA Astrophysics Data System (ADS)

    Juniewicz, Henryk M.; Kedryna, Zbigniew M.

    1997-02-01

    An overview of commercial sensors, transducers, monitors and computer systems for arterial pressure and intracranial pressure monitoring has been made in this paper. Similar technical specifications of the devices (measurement range, sensitivity, accuracy) have been emphasized, as well as a variety of structural solutions influencing their static and dynamic parameters. A computer based test stand for checking dynamic properties of pneumatic pressure transducers is presented. It enables tests in a full range of amplitude and frequency change, visualization and comparative analysis of sensor responses for various supply conditions. Exemplary waveforms are shown and initial conclusions concerning sensor features are drawn.

  2. Fiber bundle model under fluid pressure

    NASA Astrophysics Data System (ADS)

    Amitrano, David; Girard, Lucas

    2016-03-01

    Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting.

  3. Discontinuity stresses in metallic pressure vessels

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The state of the art, criteria, and recommended practices for the theoretical and experimental analyses of discontinuity stresses and their distribution in metallic pressure vessels for space vehicles are outlined. The applicable types of pressure vessels include propellant tanks ranging from main load-carrying integral tank structure to small auxiliary tanks, storage tanks, solid propellant motor cases, high pressure gas bottles, and pressurized cabins. The major sources of discontinuity stresses are discussed, including deviations in geometry, material properties, loads, and temperature. The advantages, limitations, and disadvantages of various theoretical and experimental discontinuity analysis methods are summarized. Guides are presented for evaluating discontinuity stresses so that pressure vessel performance will not fall below acceptable levels.

  4. Outwardly Propagating Flames at Elevated Pressures

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Rozenchan, G.; Tse, S. D.; Zhu, D. L.

    2001-01-01

    Spherical, outwardly-propagating flames of CH4-O2-inert and H2-O2-inert mixtures were experimentally studied in a high pressure apparatus. Stretch-free flame speeds and Markstein lengths were extracted for a wide range of pressures and equivalence ratios for spherically-symmetric, smooth flamefronts and compared to numerical computations with detailed chemistry and transport, as well as existing data in the literature. Wrinkle development was examined for propagating flames that were unstable under our experimental conditions. Hydrodynamic cells developed for most H2-air and CH4-air flames at elevated pressures, while thermal-diffusive instabilities were also observed for lean and near-stoichiometric hydrogen flames at pressures above atmospheric. Strategies in suppressing or delaying the onset of cell formation have been assessed. Buoyancy effects affected sufficiently off-stoichiometric CH4 mixtures at high pressures.

  5. Variable pressure ionization detector for gas chromatography

    DOEpatents

    Buchanan, Michelle V.; Wise, Marcus B.

    1988-01-01

    Method and apparatus for differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated at pressures ranging from atmospheric to less than 1 torr. Through variation of the pressure within the ECD cell, the organic compounds are induced to either capture or emit electrons. Differentiation of isomeric compounds can be obtianed when, at a given pressure, one isomer is in the emission mode and the other is in the capture mode. Output of the ECD is recorded by chromatogram. The invention also includes a method for obtaining the zero-crossing pressure of a compound, defined as the pressure at which the competing emission and capture reactions are balanced and which may be correlated to the electron affinity of a compound.

  6. Carbon in iron phases under high pressure

    NASA Astrophysics Data System (ADS)

    Huang, L.; Skorodumova, N. V.; Belonoshko, A. B.; Johansson, B.; Ahuja, R.

    2005-11-01

    The influence of carbon impurities on the properties of iron phases (bcc, hcp, dhcp, fcc) has been studied using the first-principles projector augmented-wave (PAW) method for a wide pressure range. It is shown that the presence of ~6 at. % of interstitial carbon has a little effect on the calculated structural sequence of the iron phases under high pressure. The bcc -> hcp transition both for pure iron and iron containing carbon takes place around 9 GPa. According to the enthalpies comparison, the solubility of carbon into the iron solid is decreased by high pressure. The coexistence of iron carbide (Fe3C) + pure hcp Fe is most stable phase at high pressure compared with other phases. Based on the analysis of the pressure-density dependences for Fe3C and hcp Fe, we suggest that there might be some fraction of iron carbide present in the core.

  7. EDC-37 Deflagration Rates at Elevated Pressures

    SciTech Connect

    Maienschein, J L; Koerner, J G

    2008-01-31

    We report deflagration rates on EDC-37 at high pressures. Experiments are conducted using the Lawrence Livermore National Laboratory High Pressure Strand Burner (HPSB) apparatus. The HPSB contains a deflagrating sample in a small volume, high pressure chamber. The sample consists of nine, 6.35 mm diameter, 6.35 mm length cylinders stacked on end, with burn wires placed between cylinders. Sample deflagration is limited to the cross-sectional surface of the cylinder by coating the cylindrical surface of the tower with Halthane 88-2 epoxy. Sample deflagration is initiated on one end of the tower by a B/KNO{sub 3} and HNS igniter train. Simultaneous temporal pressure history and burn front time of arrival measurements yield the laminar deflagration rate for a range of pressures and provide insight into deflagration uniformity. These measurements are one indicator of overall thermal explosion violence. Specific details of the experiment and the apparatus can be found in the literature.

  8. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  9. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  10. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, Robert C.; Schubert, W. Kent

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  11. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  12. Desert Experimental Range: Annotated bibliography

    Treesearch

    E. Durant McArthur; Stanley G. Kitchen

    2013-01-01

    Entries qualify for inclusion if they were conducted in whole or part at the Desert Experimental Range (DER, also known as the Desert Range Experiment Station) or were based on DER research in whole or part. They do not qualify merely by the author having worked at the DER when the research was performed or prepared. Entries were drawn from the original abstracts or...

  13. High dynamic range subjective testing

    NASA Astrophysics Data System (ADS)

    Allan, Brahim; Nilsson, Mike

    2016-09-01

    This paper describes of a set of subjective tests that the authors have carried out to assess the end user perception of video encoded with High Dynamic Range technology when viewed in a typical home environment. Viewers scored individual single clips of content, presented in High Definition (HD) and Ultra High Definition (UHD), in Standard Dynamic Range (SDR), and in High Dynamic Range (HDR) using both the Perceptual Quantizer (PQ) and Hybrid Log Gamma (HLG) transfer characteristics, and presented in SDR as the backwards compatible rendering of the HLG representation. The quality of SDR HD was improved by approximately equal amounts by either increasing the dynamic range or increasing the resolution to UHD. A further smaller increase in quality was observed in the Mean Opinion Scores of the viewers by increasing both the dynamic range and the resolution, but this was not quite statistically significant.

  14. Foraging optimally for home ranges

    USGS Publications Warehouse

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  15. Range indices of geomagnetic activity

    USGS Publications Warehouse

    Stuart, W.F.; Green, A.W.

    1988-01-01

    The simplest index of geomagnetic activity is the range in nT from maximum to minimum value of the field in a given time interval. The hourly range R was recommended by IAGA for use at observatories at latitudes greater than 65??, but was superceded by AE. The most used geomagnetic index K is based on the range of activity in a 3 h interval corrected for the regular daily variation. In order to take advantage of real time data processing, now available at many observatories, it is proposed to introduce a 1 h range index and also a 3 h range index. Both will be computed hourly, i.e. each will have a series of 24 per day, the 3 h values overlapping. The new data will be available as the range (R) of activity in nT and also as a logarithmic index (I) of the range. The exponent relating index to range in nT is based closely on the scale used for computing K values. The new ranges and range indices are available, from June 1987, to users in real time and can be accessed by telephone connection or computer network. Their first year of production is regarded as a trial period during which their value to the scientific and commercial communities will be assessed, together with their potential as indicators of regional and global disturbances' and in which trials will be conducted into ways of eliminating excessive bias at quiet times due to the rate of change of the daily variation field. ?? 1988.

  16. How Wide Does the Wide Range Achievement Test Really Range?

    ERIC Educational Resources Information Center

    McBeath, Marcia; Marken, Dan

    Local norms for the three scores of the Wide Range Achievement Test (WRAT)--reading, spelling, and arithmetic--were developed on the basis of 1,021 children in the age range of 5 through 7 and 83 more children aged 8 through 11 from a suburban school district near Seattle, Washington. In general, the local group was found to be superior to the…

  17. A Micromachined Pressure Sensor with Integrated Resonator Operating at Atmospheric Pressure

    PubMed Central

    Ren, Sen; Yuan, Weizheng; Qiao, Dayong; Deng, Jinjun; Sun, Xiaodong

    2013-01-01

    A novel resonant pressure sensor with an improved micromechanical double-ended tuning fork resonator packaged in dry air at atmospheric pressure is presented. The resonator is electrostatically driven and capacitively detected, and the sensor is designed to realize a low cost resonant pressure sensor with medium accuracy. Various damping mechanisms in a resonator that is vibrating at atmospheric pressure are analyzed in detail, and a formula is developed to predict the overall quality factor. A trade-off has been reached between the quality factor, stress sensitivity and drive capability of the resonator. Furthermore, differential sense elements and the method of electromechanical amplitude modulation are used for capacitive detection to obtain a large signal-to-noise ratio. The prototype sensor chip is successfully fabricated using a micromachining process based on a commercially available silicon-on-insulator wafer and is hermetically encapsulated in a custom 16-pin Kovar package. Preliminary measurements show that the fundamental frequency of the resonant pressure sensor is approximately 34.55 kHz with a pressure sensitivity of 20.77 Hz/kPa. Over the full scale pressure range of 100–400 kPa and the whole temperature range of −20–60 °C, high quality factors from 1,146 to 1,772 are obtained. The characterization of the prototype sensor reveals the feasibility of a resonant pressure sensor packaged at atmospheric pressure.

  18. Corona discharge ion mobility spectrometry at reduced pressures

    NASA Astrophysics Data System (ADS)

    Tabrizchi, Mahmoud; Rouholahnejad, Fereshteh

    2004-11-01

    Ion mobility spectrometers (IMSs) normally operate at ambient pressure. In this work an IMS cell has been designed and constructed to allow the pressure to be reduced inside the IMS cell. In this cell, corona discharge was employed as the ionization source. Reducing pressure affected both the discharge and the performance of the IMS. The discharge current was observed to increase with reducing pressure while the ignition potential decreased. The ion current received at the collector plate was also increased about 50 times when the pressure was reduced from ambient pressure to 15 Torr. The higher ion current can lead to an extended dynamic range. IMS spectra were recorded at various pressures and the results show that the drift times shift perfectly linear with pressure. This suggests that unlike temperature, pressure correction for ion mobility spectra is as simple as multiplying the drift times by a factor of 760/P.

  19. Home range analysis using a mechanistic home range model

    SciTech Connect

    Moorcroft, P.R. . Dept. of Ecology and Evolutionary Biology); Lewis, M.A. . Dept. of Mathematics) Crabtree, R.L. . Dept. of Fish and Wildlife Resources)

    1999-07-01

    The traditional models used to characterize animal home ranges have no mechanistic basis underlying their descriptions of space use, and as a result, the analysis of animal home ranges has primarily been a descriptive endeavor. In this paper, the authors characterize coyote (Canis latrans) home range patterns using partial differential equations for expected space use that are formally derived from underlying descriptions of individual movement behavior. To the authors' knowledge, this is the first time that mechanistic models have been used to characterize animal home ranges. The results provide empirical support for a model formulation of movement response to scent marks, and suggest that having relocation data for individuals in adjacent groups is necessary to capture the spatial arrangement of home range boundaries. The authors then show how the model fits can be used to obtain predictions for individual movement and scent marking behavior and to predict changes in home range patterns. More generally, the findings illustrate how mechanistic models permit the development of a predictive theory for the relationship between movement behavior and animal spatial distribution.

  20. Centrifugal pump inlet pressure site affects measurement.

    PubMed

    Augustin, Simon; Horton, Alison; Butt, Warwick; Bennett, Martin; Horton, Stephen

    2010-09-01

    During extracorporeal life support (ECLS), blood is exposed to a myriad of unphysiological factors that can affect outcome. One aspect of this is the sub-atmospheric pressure generated by the ECLS pump and imparted to blood elements along the pump inlet line. This pressure can be measured on the inlet line close to the pump head by adding a connector, or at the venous cannula connection site. We compared the two measurement sites located at both points; between the venous cannula-inlet tubing and inlet tubing-pump, with a range of cannulae and flows. We also investigated the effects on inlet pressure from pump afterload and increasing inlet tubing length.

  1. Polymerization of formic acid under high pressure

    SciTech Connect

    Goncharov, A.F.; Manaa, M.R.; Zaug, J.M.; Gee, R.H.; Fried, L.E.; Montgomery, W.B.

    2010-07-19

    We report Raman, infrared, and x-ray diffraction (XRD) measurements, along with ab initio calculations on formic acid (FA) under pressure up to 50 GPa. We find an infinite chain Pna2{sub 1} structure to be a high-pressure phase at room temperature. Our data indicate the symmetrization and a partially covalent character of the intrachain hydrogen bonds above approximately 20 GPa. Raman spectra and XRD patterns indicate a loss of long-range order at pressures above 40 GPa, with a large hysteresis upon decompression. We attribute this behavior to a three-dimensional polymerization of FA.

  2. Scientific analysis of satellite ranging data

    NASA Technical Reports Server (NTRS)

    Smith, David E.

    1994-01-01

    A network of satellite laser ranging (SLR) tracking systems with continuously improving accuracies is challenging the modelling capabilities of analysts worldwide. Various data analysis techniques have yielded many advances in the development of orbit, instrument and Earth models. The direct measurement of the distance to the satellite provided by the laser ranges has given us a simple metric which links the results obtained by diverse approaches. Different groups have used SLR data, often in combination with observations from other space geodetic techniques, to improve models of the static geopotential, the solid Earth, ocean tides, and atmospheric drag models for low Earth satellites. Radiation pressure models and other non-conservative forces for satellite orbits above the atmosphere have been developed to exploit the full accuracy of the latest SLR instruments. SLR is the baseline tracking system for the altimeter missions TOPEX/Poseidon, and ERS-1 and will play an important role in providing the reference frame for locating the geocentric position of the ocean surface, in providing an unchanging range standard for altimeter calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. However, even with the many improvements in the models used to support the orbital analysis of laser observations, there remain systematic effects which limit the full exploitation of SLR accuracy today.

  3. Makran Mountain Range, Indus River Valley, Pakistan, India

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The enormous geologic pressures exerted by continental drift can be very well illustrated by the long northward curving parallel folded mountain ridges and valleys of the coastal Makran Range of Pakistan (27.0N, 66.0E). As a result of the collision of the northward bound Indian sub-continent into the Asian Continent, the east/west parallel range has been bent in a great northward arc and forming the Indus River valley at the interface of the collision.

  4. Blade pressure measurements

    NASA Astrophysics Data System (ADS)

    Chivers, J. W. H.

    Three measurement techniques which enable rotating pressures to be measured during the normal operation of a gas turbine or a component test rig are described. The first technique was developed specifically to provide steady and transient blade surface pressure data to aid both fan flutter research and general fan performance development. This technique involves the insertion of miniature high frequency response pressure transducers into the fan blades of a large civil gas turbine. The other two techniques were developed to measure steady rotating pressures inside and on the surface of engine or rig turbine blades and also rotating pressures in cooling feed systems. These two low frequency response systems are known as the "pressure pineapple' (a name which resulted from the shape of the original prototype) and the rotating scanivalve.

  5. Measurement of endolymphatic pressure.

    PubMed

    Mom, T; Pavier, Y; Giraudet, F; Gilain, L; Avan, P

    2015-04-01

    Endolymphatic pressure measurement is of interest both to researchers in the physiology and pathophysiology of hearing and ENT physicians dealing with Menière's disease or similar conditions. It is generally agreed that endolymphatic hydrops is associated with Menière's disease and is accompanied by increased hydrostatic pressure. Endolymphatic pressure, however, cannot be measured precisely without endangering hearing, making the association between hydrops and increased endolymphatic pressure difficult to demonstrate. Several integrated in vivo models have been developed since the 1960s, but only a few allow measurement of endolymphatic hydrostatic pressure. Models associating measurement of hydrostatic pressure and endolymphatic potential and assessment of cochlear function are of value to elucidate the pathophysiology of endolymphatic hydrops. The present article presents the main types of models and discusses their respective interest.

  6. Streak camera dynamic range optimization

    SciTech Connect

    Wiedwald, J.D.; Lerche, R.A.

    1987-09-01

    The LLNL optical streak camera is used by the Laser Fusion Program in a wide range of applications. Many of these applications require a large recorded dynamic range. Recent work has focused on maximizing the dynamic range of the streak camera recording system. For our streak cameras, image intensifier saturation limits the upper end of the dynamic range. We have developed procedures to set the image intensifier gain such that the system dynamic range is maximized. Specifically, the gain is set such that a single streak tube photoelectron is recorded with an exposure of about five times the recording system noise. This ensures detection of single photoelectrons, while not consuming intensifier or recording system dynamic range through excessive intensifier gain. The optimum intensifier gain has been determined for two types of film and for a lens-coupled CCD camera. We have determined that by recording the streak camera image with a CCD camera, the system is shot-noise limited up to the onset of image intensifier nonlinearity. When recording on film, the film determines the noise at high exposure levels. There is discussion of the effects of slit width and image intensifier saturation on dynamic range. 8 refs.

  7. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  8. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  9. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  10. Management of Chronic Pressure Ulcers

    PubMed Central

    2009-01-01

    Executive Summary In April 2008, the Medical Advisory Secretariat began an evidence-based review of the literature concerning pressure ulcers. Please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/tech/tech_mn.html to review these titles that are currently available within the Pressure Ulcers series. Pressure ulcer prevention: an evidence based analysis The cost-effectiveness of prevention strategies for pressure ulcers in long-term care homes in Ontario: projections of the Ontario Pressure Ulcer Model (field evaluation) Management of chronic pressure ulcers: an evidence-based analysis Objective The Medical Advisory Secretariat (MAS) conducted a systematic review on interventions used to treat pressure ulcers in order to answer the following questions: Do currently available interventions for the treatment of pressure ulcers increase the healing rate of pressure ulcers compared with standard care, a placebo, or other similar interventions? Within each category of intervention, which one is most effective in promoting the healing of existing pressure ulcers? Background A pressure ulcer is a localized injury to the skin and/or underlying tissue usually over a bony prominence, as a result of pressure, or pressure in conjunction with shear and/or friction. Many areas of the body, especially the sacrum and the heel, are prone to the development of pressure ulcers. People with impaired mobility (e.g., stroke or spinal cord injury patients) are most vulnerable to pressure ulcers. Other factors that predispose people to pressure ulcer formation are poor nutrition, poor sensation, urinary and fecal incontinence, and poor overall physical and mental health. The prevalence of pressure ulcers in Ontario has been estimated to range from a median of 22.1% in community settings to a median of 29.9% in nonacute care facilities. Pressure ulcers have been shown to increase the risk of mortality among geriatric patients by

  11. Portable dynamic pressure generator for static and dynamic calibration of in situ pressure transducers

    NASA Technical Reports Server (NTRS)

    Bolt, P. A.; Hess, R. W.; Davis, W. T.

    1983-01-01

    A portable dynamic pressure generator was developed to meet the requirements of determining the dynamic sensitivities of in situ pressure transducers at low frequencies. The device is designed to operate in a frequency range of 0 to 100 Hz, although it was only tested up to 30 Hz, and to generate dynamic pressures up to 13.8 kPa (2 psi). A description of the operating characteristics and instrumentation used for pressure, frequency, and displacement measurements is given. The pressure generator was used to statically and dynamically calibrate transducers. Test results demonstrated that a difference an exist between the static and dynamic sensitivity of a transducer, confirming the need for dynamic calibrations of in situ pressure transducers.

  12. Postoperative permanent pressure alopecia.

    PubMed

    Chang, Zi Yun; Ngian, Jan; Chong, Claudia; Chong, Chin Ted; Liew, Qui Yin

    2016-04-01

    A 49-year-old Chinese female underwent elective laparoscopic assisted Whipple's surgery lasting 12 h. This was complicated by postoperative pressure alopecia at the occipital area of the scalp. Pressure-induced hair loss after general anaesthesia is uncommon and typically temporary, but may be disconcerting to the patient. We report this case of postoperative permanent pressure alopecia due to its rarity in the anaesthesia/local literature, and review the risk factors for its development.

  13. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  14. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  15. GPS test range mission planning

    NASA Astrophysics Data System (ADS)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.

  16. Nonequilibrium thermodynamics of pressure solution

    NASA Astrophysics Data System (ADS)

    Lehner, F. K.; Bataille, J.

    1984-01-01

    This paper is concerned with the thermodynamic theory of solution and precipitation processes in wet crustal rocks and with the mechanism of steady pressure-solution slip in ‘contact zones,’ such as grain-to-grain contacts, fracture surfaces, and permeable gouge layers, that are infiltrated by a mobile aqueous solution phase. A local dissipation jump condition at the phase boundary is fundamental to identifying the thermodynamic force driving the solution and precipitation process and is used here in setting up linear phenomenological relations to model near-equilibrium phase transformation kinetics. The local thermodynamic equilibrium of a stressed pure solid in contact with its melt or solution phase is governed by Gibbs's relation, which is rederived here, in a manner emphasizing its independence of constitutive assumptions for the solid while neglecting surface tension and diffusion in the solid. Fluid-infiltrated contact zones, such as those formed by rough surfaces, cannot generally be in thermodynamic equilibrium, especially during an ongoing process of pressure-solution slip, and the existing equilibrium formulations are incorrect in overlooking dissipative processes tending to eliminate fluctuations in superficial free energies due to stress concentrations near asperities, defects, or impurities. Steady pressure-solution slip is likely to exhibit a nonlinear dependence of slip rate on shear stress and effective normal stress, due to a dependence of the contact-zone state on the latter. Given that this dependence is negligible within some range, linear relations for pressure-solution slip can be derived for the limiting cases of diffusion-controlled and interface-reaction-controlled rates. A criterion for rate control by one of these mechanisms is set by the magnitude of the dimensionless quantity kδ/2C pD, where k is the interfacial transfer coefficient, δ is the mean diffusion path length, C p is the solubility at pressure p, and D is the mass

  17. Attachment Fitting for Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III (Inventor); Carrigan, Robert W. (Inventor)

    2002-01-01

    This invention provides sealed access to the interior of a pressure vessel and consists of a tube. a collar, redundant seals, and a port. The port allows the seals to be pressurized and seated before the pressure vessel becomes pressurized.

  18. Attachment Fitting for Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III (Inventor); Carrigan, Robert W. (Inventor)

    2002-01-01

    This invention provides sealed access to the interior of a pressure vessel and consists of a tube. a collar, redundant seals, and a port. The port allows the seals to be pressurized and seated before the pressure vessel becomes pressurized.

  19. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  20. Atracurium and intraocular pressure.

    PubMed Central

    Murphy, D F; Eustace, P; Unwin, A; Magner, J B

    1985-01-01

    The effect of atracurium on intraocular pressure was studied by comparing it with pancuronium in a randomised controlled trial. The intraocular pressure was measured in patients undergoing cataract surgery before administration of the muscle relaxant, at 1, 3, and 5 minutes after its administration, and at 1 minute after tracheal intubation. Atracurium was found to decrease intraocular pressure to a significantly greater degree than pancuronium. The intraocular pressure after tracheal intubation was found to be significantly higher than that measured immediately after induction of anaesthesia. The authors conclude that atracurium provides an acceptable alternative to pancuronium for ophthalmic surgery but does not overcome the ocular hypertensive effect of tracheal intubation. PMID:3899166