Science.gov

Sample records for pressure range

  1. Determination of Phonation Instability Pressure and Phonation Pressure Range in Excised Larynges

    ERIC Educational Resources Information Center

    Zhang, Yu; Reynders, William J.; Jiang, Jack J.; Tateya, Ichiro

    2007-01-01

    Purpose: The present study was a methodological study designed to reveal the dynamic mechanisms of phonation instability pressure (PIP) using bifurcation analysis. Phonation pressure range (PPR) was also proposed for assessing the pressure range of normal vocal fold vibrations. Method: The authors first introduced the concept of bifurcation on the…

  2. Ozone formation in pulsed SDBD in a wide pressure range

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  3. Peristaltic pump-based low range pressure sensor calibration system

    NASA Astrophysics Data System (ADS)

    Vinayakumar, K. B.; Naveen Kumar, G.; Nayak, M. M.; Dinesh, N. S.; Rajanna, K.

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  4. Peristaltic pump-based low range pressure sensor calibration system

    SciTech Connect

    Vinayakumar, K. B.; Naveen Kumar, G.; Rajanna, K. E-mail: krajanna2011@gmail.com; Nayak, M. M.; Dinesh, N. S.

    2015-11-15

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  5. Peristaltic pump-based low range pressure sensor calibration system.

    PubMed

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  6. FEA of CMUTs Suitable for Wide Gas Pressure Range Applications.

    PubMed

    Ho, Min-Chieh; Kupnik, Mario; Khuri-Yakub, Butrus T

    2010-10-11

    The ability of ultrasound transducers to operate over a wide and varying pressure range is essential in applications such as ultrasonic flow metering (UFM) of flare gas. We propose a new operational mode for capacitive micromachined ultrasonic transducers (CMUTs), in which the plate is in permanent contact with the bottom of the cavity, even at zero DC bias and 1 atm pressure. Finite element analysis (FEA) software was used to investigate the performance of these CMUTs within the pressure range of 1 to 20 atm. First, we performed a static analysis to determine the plate deflection and, thus, the gap height. Further, from the static analysis, we obtained the static and free capacitances for calculating the coupling efficiency, and a modal analysis identified possible design geometries for frequencies lower than ~ 300 kHz. Our calculations show that conventionally operated CMUTs have huge changes in static operational point at different pressures, while our proposed mode exhibits an acceptable frequency range (73 - 340 kHz) over 1 - 20 atm pressure and an improved coupling efficiency at lower dc bias voltages. A donut shape partial electrode further allows us to tune the coupling efficiency, which translates into a better performance, especially at the higher pressure range. FEA shows that our proposed operation mode is a promising solution for flare gas metering applications.

  7. Long-range scaling behaviours of human colonic pressure activities

    NASA Astrophysics Data System (ADS)

    Yan, Rongguo; Yan, Guozheng; Zhang, Wenqiang; Wang, Long

    2008-11-01

    The long-range scaling behaviours of human colonic pressure activities under normal physiological conditions are studied by using the method of detrended fluctuation analysis (DFA). The DFA is an effective period representation with a single quantitative scaling exponent α to accurately quantify long-range correlations naturally presented in a complex non-stationary time series. The method shows that the colonic activities of the healthy subjects exhibit long-range power-law correlations; however such correlations either will be destroyed if we randomly shuffle the original data or will cease to be of a power-law form if we chop some high-amplitude spikes off. These facts indicate that the colonic tissue or enteric nervous system (ENS) with a good functional motility has a good memory to its past behaviours and generates well-organized colonic spikes; however such good memory becomes too long to be remembered for the colonic activity of the slow transit constipation (STC) patient and colonic dysmotility occurs.

  8. A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range

    PubMed Central

    Tian, He; Shu, Yi; Wang, Xue-Feng; Mohammad, Mohammad Ali; Bie, Zhi; Xie, Qian-Yi; Li, Cheng; Mi, Wen-Tian; Yang, Yi; Ren, Tian-Ling

    2015-01-01

    Pressure sensors are a key component in electronic skin (e-skin) sensing systems. Most reported resistive pressure sensors have a high sensitivity at low pressures (<5 kPa) to enable ultra-sensitive detection. However, the sensitivity drops significantly at high pressures (>5 kPa), which is inadequate for practical applications. For example, actions like a gentle touch and object manipulation have pressures below 10 kPa, and 10–100 kPa, respectively. Maintaining a high sensitivity in a wide pressure range is in great demand. Here, a flexible, wide range and ultra-sensitive resistive pressure sensor with a foam-like structure based on laser-scribed graphene (LSG) is demonstrated. Benefitting from the large spacing between graphene layers and the unique v-shaped microstructure of the LSG, the sensitivity of the pressure sensor is as high as 0.96 kPa−1 in a wide pressure range (0 ~ 50 kPa). Considering both sensitivity and pressure sensing range, the pressure sensor developed in this work is the best among all reported pressure sensors to date. A model of the LSG pressure sensor is also established, which agrees well with the experimental results. This work indicates that laser scribed flexible graphene pressure sensors could be widely used for artificial e-skin, medical-sensing, bio-sensing and many other areas. PMID:25721159

  9. Quartz technology allows for wider downhole pressure testing range

    SciTech Connect

    Dennis, J.R. ); Zeller, V.P. )

    1991-03-01

    This paper presents a quartz-thickness shear-mode transducer for use in a borehole environment. The pressure sensor is a direct-conversion device that uses a noncylindrical shell to convert and to transmit forces to the quartz-crystal resonator. A brief conceptual description of the transducer is given. Laboratory and field examples illustrate the exceptional performance of the quartz-thickness shear-mode transducer.

  10. Review of the STM range of pressure distribution products.

    PubMed

    Moody, M

    STM Healthcare is a division of the Recticel Group which has been actively involved in the production and use of polyurethane foams for the past 40 years, and is now one of Europe's leading manufacturers of polyurethane foam for insulation, packaging, filtration, aerospace, the automotive and furniture industries, domestic and specialist bedding and seating products. STM Healthcare is able to draw upon the wealth of experience and expertise of the manufacturing facilities, enabling products to be developed using the latest environmentally friendly specification foams best suited to the requirements of pressure-reduction technology. All STM Healthcare mattresses, cushions and Linknurse mattresses are manufactured with Safeguard combustion modified high resilience foams. (Linknurse is a licensed product name; products are manufactured by Recticel and distributed by STM).

  11. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  12. Laboratory investigation of high pressure survival in Shewanella oneidensis MR-1 into the gigapascal pressure range

    PubMed Central

    Hazael, Rachael; Foglia, Fabrizia; Kardzhaliyska, Liya; Daniel, Isabelle; Meersman, Filip; McMillan, Paul

    2014-01-01

    The survival of Shewanella oneidensis MR-1 at up to 1500 MPa was investigated by laboratory studies involving exposure to high pressure followed by evaluation of survivors as the number (N) of colony forming units (CFU) that could be cultured following recovery to ambient conditions. Exposing the wild type (WT) bacteria to 250 MPa resulted in only a minor (0.7 log N units) drop in survival compared with the initial concentration of 108 cells/ml. Raising the pressure to above 500 MPa caused a large reduction in the number of viable cells observed following recovery to ambient pressure. Additional pressure increase caused a further decrease in survivability, with approximately 102 CFU/ml recorded following exposure to 1000 MPa (1 GPa) and 1.5 GPa. Pressurizing samples from colonies resuscitated from survivors that had been previously exposed to high pressure resulted in substantially greater survivor counts. Experiments were carried out to examine potential interactions between pressure and temperature variables in determining bacterial survival. One generation of survivors previously exposed to 1 GPa was compared with WT samples to investigate survival between 37 and 8°C. The results did not reveal any coupling between acquired high pressure resistance and temperature effects on growth. PMID:25452750

  13. Wide Pressure Range Measurement due to the Exchange of Heater Driving of the Temperature Difference Sensor

    NASA Astrophysics Data System (ADS)

    Takashima, Noriaki; Kimura, Mitsuteru

    We have extended measurable pressure range of the thin film Pirani vacuum sensor that is still sensitive above 1×105 Pa (1 atmosphere). In our thin film Pirani vacuum sensor, our proposed temperature difference sensor of the short circuit Seebeck-current detection type thermocouple is used in order to get extremely high sensitivity, especially both in very low pressure range and in higher pressure range than 1×104 Pa. In our new pressure sensor the cantilever type sensing region, in which a microheater and two thermocouples are formed to measure the temperature difference, is adopted. Therefore, we can use the null method to measure very small pressure accurately in the high vacuum range (low pressure range). On the other hand in the higher pressure than 1×104 Pa., we could expand the pressure range by adoption of the vibration of the sensing cantilever based on the sudden heating due to the exchange of heater driving. We have achieved much wider measurable pressure range over 8 digits by use of our new simple thin film Pirani vacuum sensor than that of the traditional one.

  14. Wide-pressure-range coplanar dielectric barrier discharge: Operational characterisation of a versatile plasma source

    NASA Astrophysics Data System (ADS)

    Čech, J.; Bonaventura, Z.; SÅ¥ahel, P.; Zemánek, M.; Dvořáková, H.; Černák, M.

    2017-01-01

    Many plasma applications could benefit from the versatile plasma source operable at a wide-pressure-range, e.g., from the fraction of Pa to the super-atmospheric conditions. In this paper, the basic characteristics of wide-pressure-range plasma source based on the coplanar dielectric barrier discharge is given. The operational characteristics of this plasma source were measured in nitrogen at pressures ranging from 101 Pa (resp. 10-4 Pa) to 105 Pa. Measurements of the plasma geometry, breakdown voltage, and micro-discharges' behaviour revealed three operational regimes of this plasma source: "high pressure," "transitional" and "low-pressure" with vague boundaries at the pressures of approx. 10 kPa and 1 kPa. It was found that the plasma layer of coplanar dielectric barrier discharge could be expanded up to several centimetres to the half-space above the planar dielectric barrier when the gas pressure is reduced below 1 kPa, which provides an outstanding space to tailor the source for the specific applications. The proposed model of an effective gap distance in the Paschen breakdown criterion enabled us to explain the discharge behaviour fitting the experimental breakdown voltage data in the whole studied pressure range. Under the filament-forming conditions, i.e., at the pressure range from approx. 1-100 kPa, the active plasma volume could be varied through the micro-discharges' lateral thickness scaling with the inverse of the square-root of the gas pressure.

  15. Computational Flow Analysis of Ultra High Pressure Firefighting Technology with Application to Long Range Nozzle Design

    DTIC Science & Technology

    2010-03-01

    Dynamic (CFD) modeling study analyzes Ultra High Pressure ( UHP ) jet stream characteristics as a function of nozzle flow conditions and fluid...community. ultra high pressure ( UHP ), throw distance, nozzle, turbulent fluctuations, polymer modifiers, co-flow air stream air flows, spiral 2...53 iv LIST OF FIGURES Figure Page 1 UHP Stream Range as a Function of Agent Flow Rate

  16. Development of a Piezoelectric Vacuum Sensing Component for a Wide Pressure Range

    PubMed Central

    Wang, Bing-Yu; Hsieh, Fan-Chun; Lin, Che-Yu; Chen, Shao-En; Chen, Fong-Zhi; Wu, Chia-Che

    2014-01-01

    In this study, we develop a clamped–clamped beam-type piezoelectric vacuum pressure sensing element. The clamped–clamped piezoelectric beam is composed of a PZT layer and a copper substrate. A pair of electrodes is set near each end. An input voltage is applied to a pair of electrodes to vibrate the piezoelectric beam, and the output voltage is measured at the other pair. Because the viscous forces on the piezoelectric beam vary at different air pressures, the vibration of the beam depends on the vacuum pressure. The developed pressure sensor can sense a wide range of pressure, from 6.5 × 10−6 to 760 Torr. The experimental results showed that the output voltage is inversely proportional to the gas damping ratio, and thus, the vacuum pressure was estimated from the output voltage. PMID:25421736

  17. EUROMET Intercomparison in the Pressure Range 100 MPa to 700 (1000) MPa

    NASA Astrophysics Data System (ADS)

    Legras, J. C.; Jäger, J.; Molinar, G. F.; Palomino, S.; Quintas, J.; White, M. R.

    1994-01-01

    As part of the intercomparison decided upon by the CCM High Pressure Working Group in the pressure range 100 MPa to 700 MPa, an intercomparison has been carried out in the Western European countries. This paper gives the general results of the work. The standards intercompared were piston pressure balances of different types or pressure multipliers. The claimed relative uncertainties at the 1 standard deviation level were between 11 × 10-6 and 93 × 10-6 at 100 MPa, and between 27 × 10-6 and 216 × 10-6 at 700 MPa. Demonstrating a very good agreement, the observed relative differences of the measured pressures were inside +/- 50 × 10-6 at 100 MPa and +/- 170 × 10-6 at 700 MPa.

  18. Human pressures predict species' geographic range size better than biological traits.

    PubMed

    Di Marco, Moreno; Santini, Luca

    2015-06-01

    Geographic range size is the manifestation of complex interactions between intrinsic species traits and extrinsic environmental conditions. It is also a fundamental ecological attribute of species and a key extinction risk correlate. Past research has primarily focused on the role of biological and environmental predictors of range size, but macroecological patterns can also be distorted by human activities. Here, we analyse the role of extrinsic (biogeography, habitat state, climate, human pressure) and intrinsic (biology) variables in predicting range size of the world's terrestrial mammals. In particular, our aim is to compare the predictive ability of human pressure vs. species biology. We evaluated the ability of 19 intrinsic and extrinsic variables in predicting range size for 4867 terrestrial mammals. We repeated the analyses after excluding restricted-range species and performed separate analyses for species in different biogeographic realms and taxonomic groups. Our model had high predictive ability and showed that climatic variables and human pressures are the most influential predictors of range size. Interestingly, human pressures predict current geographic range size better than biological traits. These findings were confirmed when repeating the analyses on large-ranged species, individual biogeographic regions and individual taxonomic groups. Climatic and human impacts have determined the extinction of mammal species in the past and are the main factors shaping the present distribution of mammals. These factors also affect other vertebrate groups globally, and their influence on range size may be similar as well. Measuring climatic and human variables can allow to obtain approximate range size estimations for data-deficient and newly discovered species (e.g. hundreds of mammal species worldwide). Our results support the need for a more careful consideration of the role of climate change and human impact - as opposed to species biological

  19. New apparatus for calibrations in the range of 2 kPa absolute pressure

    NASA Astrophysics Data System (ADS)

    Woo, S. Y.; Choi, I. M.

    2005-12-01

    Capacitance diaphragm gauges (CDGs) are precise electromechanical pressure sensors in which the displacement of a stretched thin metal diaphragm is detected by the measurement of a capacitance. These are very accurate gauges, and are frequently used as transfer gauges. To calibrate such accurate low-pressure gauges, precise mercury manometers have been used. However, complexity, concern about mercury vapour, and cost of mercury manometers have made it difficult to use these manometers in many industrial calibration laboratories. As a substitute, gas-operated piston gauges can be used for the calibration of such low-pressure gauges. However, the minimum pressure that is necessary to balance the tare weight, which generally corresponds to a pressure of several kilopascals, is a major obstacle. To reduce this minimum operating pressure, we adopted a variable bell-jar pressure method. To realize this method effectively, we developed a new mass-handling device that makes it possible to add or remove weights up to 200 g easily, with a resolution of 10 g, without breaking the vacuum during the calibration. This calibration system can be used to measure pressures from 100 Pa to 2 kPa in the absolute mode. In this paper, we also present the calibration results for two types of CDGs with full-scale ranges of 1330 Pa and 1000 Pa, respectively.

  20. Pressure gradient sensors for bearing determination in shallow water tracking ranges

    NASA Astrophysics Data System (ADS)

    Stein, Peter J.; Euerle, Steven E.; Menoche, Richard K.; Janiesch, Robert E.

    1996-04-01

    Underwater acoustic tracking has traditionally used only the arrival time of tracking pings to localize targets. This implies that the ping transmitted from a target must be received at a minimum of three separate nodes (receiver locations) in order to determine the position. For deep water ranges this was acceptable. In shallow water, where propagation ranges are limited, this requires a large number of nodes. This makes shallow water ranges very costly. An effort is underway to use pressure gradient hydrophones as receivers and measure the bearing of the ping arrival along with arrival time, thereby locating the target using only one tracking node. This allows for increased node spacing and greatly reduced cost. However, the accuracy required for training ranges is on the order of 1 degree. Further, the directional receiver must be housed so as to withstand impacts from fishing operations. Research including design, fabrication, and testing of conventional and unconventional pressure gradient hydrophones, the housing, and signal processing methods are discussed. Extensive testing has already been conducted using a 1″ diameter by 5″ long multimode hydrophone. A shallow water tracking test was conducted at the NUWC Lake Seneca test facility. The results demonstrate the feasibility of tracking using a single pressure gradient hydrophone with an accuracy of 50 yds out to 2 kyds. The effects of multiple paths and scattering are also discussed.

  1. Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range

    SciTech Connect

    Zolotukhin, D. B.; Tyunkov, A. V.; Yushkov, Yu. G.; Oks, E. M.

    2015-12-15

    The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons.

  2. Tuning the sensing range of silicon pressure sensor by trench etching technology

    NASA Astrophysics Data System (ADS)

    Chou, Yu-Tuan; Lin, Hung-Yi; Hu, Hsin-Hua

    2006-01-01

    The silicon pressure sensor has been developed for over thirty years and widely used in automobiles, medical instruments, commercial electronics, etc. There are many different specifications of silicon pressure sensors that cover a very large sensing range, from less than 1 psi to as high as 1000 psi. The key elements of the silicon pressure sensor are a square membrane and the piezoresistive strain gages near the boundary of the membrane. The dimensions of the membrane determine the full sensing range and the sensitivity of the silicon sensor, including thickness and in-plane length. Unfortunately, in order to change the sensing range, the manufacturers need to order a customized epi wafer to get the desired thickness. All masks (usually six) have to be re-laid and re-fabricated for different membrane sizes. The existing technology requires at least three months to deliver the prototype for specific customer requests or the new application market. This research proposes a new approach to dramatically reduce the prototyping time from three months to one week. The concept is to tune the rigidity of the sensing membrane by modifying the boundary conditions without changing the plenary size. An extra mask is utilized to define the geometry and location of deep-RIE trenches and all other masks remain the same. Membranes with different depths and different patterns of trenches are designed for different full sensing ranges. The simulation results show that for a 17um thick and 750um wide membrane, the adjustable range by tuning trench depth is about 45% (from 5um to 10um), and can go to as high as 100% by tuning both the pattern and depth of the trenches. Based on an actual test in a product fabrication line, we verified that the total delivery time can be minimized to one week to make the prototyping very effective and cost-efficient.

  3. Marvin: MARtian Vehicular INvestigator A Proposal for a Long-Range Pressurized Rover

    NASA Astrophysics Data System (ADS)

    1999-01-01

    NASA is planning manned missions to Mars in the near future. In order to fully exploit the available time on the surface for exploration, a roving vehicle is necessary. A nine-member student design team from the Wichita State University Department of Aerospace Engineering developed the MARtian Vehicular INvestigator (MARVIN) a manned, pressurized, long distance rover. In order to meet the unique requirements for successful operation in the harsh Martian environment a four wheeled, rover was designed with a composite pressure vessel six meters long and 2.5 meters in diameter. The rover is powered by twin proton exchange membrane fuel cells which provide electricity to the drive motors and onboard systems. The MARVIN concept is expected to have a 1500 km range with a maximum speed of 25 km/hr and a 14-day endurance.

  4. High sensitive/wide dynamic range, field emission pressure sensor based on fully embedded CNTs

    NASA Astrophysics Data System (ADS)

    Taak, S.; Rajabali, S.; Darbari, S.; Mohajerzadeh, S.

    2014-01-01

    The formation of high sensitivity-wide dynamic range field emission pressure sensors based on carbon nanotubes (CNTs) is reported. In this work, CNTs are grown inside an array of micromachined holes in order to ensure a high sensitivity and a wide dynamic range by allowing anode-cathode proximity while preventing anode-cathode direct contact simultaneously. External pressure is applied to a Si-based flexible anode, which results in consequent variations in emission current, due to electric field changes. Microcavities in this structure have been formed by a Si deep vertical etching process, while the CNTs have been grown by direct current plasma-enhanced chemical vapour deposition. Also, it is demonstrated that a similar fabrication process can be applied to implement a device with an electrically controllable emission current. A high sensitivity of 1.5-13.7 µA kPa-1 (with Vanode/cathode < 100 V) within a dynamic range from around 0.1 to 1 GPa, is measured in this experiment.

  5. Polynomial approximations of thermodynamic properties of arbitrary gas mixtures over wide pressure and density ranges

    NASA Technical Reports Server (NTRS)

    Allison, D. O.

    1972-01-01

    Computer programs for flow fields around planetary entry vehicles require real-gas equilibrium thermodynamic properties in a simple form which can be evaluated quickly. To fill this need, polynomial approximations were found for thermodynamic properties of air and model planetary atmospheres. A coefficient-averaging technique was used for curve fitting in lieu of the usual least-squares method. The polynomials consist of terms up to the ninth degree in each of two variables (essentially pressure and density) including all cross terms. Four of these polynomials can be joined to cover, for example, a range of about 1000 to 11000 K and 0.00001 to 1 atmosphere (1 atm = 1.0133 x 100,000 N/m sq) for a given thermodynamic property. Relative errors of less than 1 percent are found over most of the applicable range.

  6. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  7. Foot posture, range of motion and plantar pressure characteristics in obese and non-obese individuals.

    PubMed

    Butterworth, Paul A; Urquhart, Donna M; Landorf, Karl B; Wluka, Anita E; Cicuttini, Flavia M; Menz, Hylton B

    2015-02-01

    Obesity is a world-wide health problem and is strongly associated with musculoskeletal disorders of the lower limb. The aim of this study was to evaluate plantar loading patterns in obese and non-obese individuals, while accounting for the contribution of foot structure, range of motion and walking speed. Sixty-eight participants (mean±SD age, 52.6±8.0 years), including 47 females (69%), underwent assessments of body mass index, foot pain and foot structure. Plantar pressures were also obtained, using a floor-mounted resistive sensor mat system. Multiple regression analysis was used to determine which variables were most strongly associated with plantar loading patterns. Obese individuals exhibited flatter feet, reduced inversion-eversion range of motion, and higher peak plantar pressures when walking. After accounting for foot structure and walking speed, bodyweight was found to be significantly associated with elevated loading of the foot, particularly the forefoot and midfoot. These findings suggest that obesity increases the stresses applied to the foot directly, via increased bodyweight, and indirectly, via alterations to foot structure, which may partly explain the link between obesity and the development of foot pain. Clinicians dealing with foot problems should consider the effect of increased bodyweight on plantar loading in obese patients.

  8. A 100 μm diameter capacitive pressure sensor with 50 MPa dynamic range

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Gianchandani, Yogesh B.

    2016-04-01

    This paper presents fully sealed absolute capacitive pressure sensors for high-pressure applications in hydraulic environments. The sensors have a ø100 μm diaphragm and a nominal interelectrode gap of 3 μm. The interiors of the cavities are electrically isolated, allowing the sensors to operate at the high end of the pressure range with the center of the diaphragm in contact with the substrate beneath it. The sensors are monolithically fabricated using a combination of surface micromachining and through-wafer isolated bulk-silicon lead transfer for backside contacts. This structure allows the device footprints to be reduced to about 150  ×  150 μm2, and simplifies system integration. Fabricated sensors with diaphragm thicknesses of 3 μm (C100t3) and 5 μm (C100t5) are tested in an oil environment at pressures up to 20 MPa and 50 MPa, respectively. The average sensitivities are 7200 ppm MPa-1 (3.1 fF MPa-1) for C100t3, and 3400 ppm MPa-1 (1.6 fF MPa-1) for C100t5 in the non-contact mode. In the contact mode, the average sensitivities are 9900 ppm MPa-1 (5.3 fF MPa-1) for C100t3, and 3100 ppm MPa-1 (1.6 fF MPa-1) for C100t5. A multiphysics finite element analysis approach that accommodates contact mode simulations is also presented.

  9. Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2003-09-02

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  10. Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2002-07-23

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  11. Methane storage in nanoporous material at supercritical temperature over a wide range of pressures

    NASA Astrophysics Data System (ADS)

    Wu, Keliu; Chen, Zhangxin; Li, Xiangfang; Dong, Xiaohu

    2016-09-01

    The methane storage behavior in nanoporous material is significantly different from that of a bulk phase, and has a fundamental role in methane extraction from shale and its storage for vehicular applications. Here we show that the behavior and mechanisms of the methane storage are mainly dominated by the ratio of the interaction between methane molecules and nanopores walls to the methane intermolecular interaction, and a geometric constraint. By linking the macroscopic properties of the methane storage to the microscopic properties of a system of methane molecules-nanopores walls, we develop an equation of state for methane at supercritical temperature over a wide range of pressures. Molecular dynamic simulation data demonstrates that this equation is able to relate very well the methane storage behavior with each of the key physical parameters, including a pore size and shape and wall chemistry and roughness. Moreover, this equation only requires one fitted parameter, and is simple, reliable and powerful in application.

  12. Methane storage in nanoporous material at supercritical temperature over a wide range of pressures

    PubMed Central

    Wu, Keliu; Chen, Zhangxin; Li, Xiangfang; Dong, Xiaohu

    2016-01-01

    The methane storage behavior in nanoporous material is significantly different from that of a bulk phase, and has a fundamental role in methane extraction from shale and its storage for vehicular applications. Here we show that the behavior and mechanisms of the methane storage are mainly dominated by the ratio of the interaction between methane molecules and nanopores walls to the methane intermolecular interaction, and a geometric constraint. By linking the macroscopic properties of the methane storage to the microscopic properties of a system of methane molecules-nanopores walls, we develop an equation of state for methane at supercritical temperature over a wide range of pressures. Molecular dynamic simulation data demonstrates that this equation is able to relate very well the methane storage behavior with each of the key physical parameters, including a pore size and shape and wall chemistry and roughness. Moreover, this equation only requires one fitted parameter, and is simple, reliable and powerful in application. PMID:27628747

  13. The Association Between Blood Pressure and Normal Range Thyroid Function Tests in a Population Based Tehran Thyroid Study.

    PubMed

    Amouzegar, A; Heidari, M; Gharibzadeh, S; Mehran, L; Tohidi, M; Azizi, F

    2016-03-01

    Several studies have shown an association between overt hypothyroidism and diastolic hypertension. Association between subclinical hypothyroidism and hypertension is a matter of debate. The aim of this study was to examine the association of systolic and diastolic blood pressure, pulse pressure and mean arterial blood pressure with serum thyroid hormones levels in euthyroid subjects.Data from 4 756 individuals of the Tehran Thyroid study (TTS) without any previously known thyroid disease were analyzed. We divided participants based on TSH tertiles. Serum TSH and free T4 (FT4) concentration, systolic blood pressure (SBP), diastolic blood pressure (BPD) body mass index (BMI) were measured in all subjects.Among 5 786 individuals participated, 4 985 were euthyroid. After implementing exclusion criteria, 4 756 individuals remained of whom 2 122 (44.6%) were male and 2 634 (55.4%) were female. Multiple linear regression analysis revealed no association between TSH levels within reference ranges and blood pressure profile. No significant relationship was observed between TSH levels and systolic or diastolic blood pressure or the mean arterial pressure or pulse pressure in each tertile of TSH. There was a negative association between pulse pressure and TSH in the second tertile (r=- 0.066, p=0.009). Regression analysis showed that FT4 was significantly associated with systolic blood pressure, diastolic blood pressure, pulse pressure and mean arterial pressure.No association was found between serum TSH and blood pressure profile in euthyroid subjects. Serum FT4 levels showed a positive association with blood pressure profiles.

  14. Circadian rhythms in blood pressure in free-ranging three-toed sloths (Bradypus variegatus).

    PubMed

    Duarte, D P F; Silva, V L; Jaguaribe, A M; Gilmore, D P; Da Costa, C P

    2003-02-01

    Blood pressure (BP) profiles were monitored in nine free-ranging sloths (Bradypus variegatus) by coupling one common carotid artery to a BP telemetry transmitter. Animals moved freely in an isolated and temperature-controlled room (24 degrees C) with 12/12-h artificial light-dark cycles and behaviors were observed during resting, eating and moving. Systolic (SBP) and diastolic (DBP) blood pressures were sampled for 1 min every 15 min for 24 h. BP rhythm over 24 h was analyzed by the cosinor method and the mesor, amplitude, acrophase and percent rhythm were calculated. A total of 764 measurements were made in the light cycle and 721 in the dark cycle. Twenty-four-hour values (mean +/- SD) were obtained for SBP (121 +/- 22 mmHg), DBP (86 +/- 17 mmHg), mean BP (MBP, 98 +/- 18 mmHg) and heart rate (73 +/- 16 bpm). The SBP, DBP and MBP were significantly higher (unpaired Student t-test) during the light period (125 +/- 21, 88 +/- 15 and 100 +/- 17 mmHg, respectively) than during the dark period (120 +/- 21, 85 +/- 17 and 97 +/- 17 mmHg, respectively) and the acrophase occurred between 16:00 and 17:45 h. This circadian variation is similar to that observed in cats, dogs and marmosets. The BP decreased during "behavioral sleep" (MBP down from 110 +/- 19 to 90 +/- 19 mmHg at 21:00 to 8:00 h). Both feeding and moving induced an increase in MBP (96 +/- 17 to 119 +/- 17 mmHg at 17:00 h and 97 +/- 19 to 105 +/- 12 mmHg at 15:00 h, respectively). The results show that conscious sloths present biphasic circadian fluctuations in BP levels, which are higher during the light period and are mainly synchronized with feeding.

  15. Respiratory response of the deep-sea amphipod Stephonyx biscayensis indicates bathymetric range limitation by temperature and hydrostatic pressure.

    PubMed

    Brown, Alastair; Thatje, Sven

    2011-01-01

    Depth zonation of fauna on continental margins is well documented. Whilst increasing hydrostatic pressure with depth has long been considered a factor contributing significantly to this pattern, discussion of the relative significance of decreasing temperature with depth has continued. This study investigates the physiological tolerances of fed and starved specimens of the bathyal lysianassoid amphipod Stephonyx biscayensis at varying temperature to acute pressure exposure by measuring the rate of oxygen consumption. Acclimation to atmospheric pressure is shown to have no significant interaction with temperature and/or pressure effects. Similarly, starvation is shown to have no significant effect on the interaction of temperature and pressure. Subsequently, the effect of pressure on respiration rate is revealed to be dependent on temperature: pressure equivalent to 2000 m depth was tolerated at 1 and 3°C; pressure equivalent to 2500 m depth was tolerated at 5.5°C; at 10°C pressure equivalent to 3000 m depth was tolerated. The variation in tolerance is consistent with the natural distribution range reported for this species. There are clear implications for hypotheses relating to the observed phenomenon of a biodiversity bottleneck between 2000 and 3000 metres, and for the potential for bathymetric range shifts in response to global climate change.

  16. Cost and Performance Report - Validation of the Low-Range Differential Pressure (LRDP) Leak Detection System

    NASA Astrophysics Data System (ADS)

    2002-03-01

    The Naval Facilities Engineering Service Center (NFESC) Port Hueneme, California, and its industrial partners, Vista Research, Inc., and Vista Engineering Technologies, L.L.C., have demonstrated and validated (DEM/VAL) an innovative mass-based leak detection system for bulk fuel underground storage tanks (USTs). The Low-Range Differential Pressure (LRDP) system is a computer-controlled system that can reliably detect small leaks in bulk USTs ranging in size from 50,000 gal to 12,500,000 gal. As part of this project, it has been evaluated for performance by an independent third party in a l22.5-ft diameter, 2,100,000-gal tank following EPA's standard test procedures. The LRDP meets monthly monitoring and annual precision (tightness) test regulatory compliance requirements using either a 10-h (overnight) or 24-h test. The LRDP has several significant cost advantages over the internal and external technologies. The cost advantages are realized because of the extremely high performance of the LRDP and the probability of false alarm, the on-line monitoring capability of the LRDP when pennanently installed in a tank, the capability of the system to conduct a short test (an overnight test), and the low recurring costs associated with testing. The cost of a tracer method is expensive because of the high recurring cost of testing. The cost of other mass-based methods is high because of lower performance and the inability to meet both the monthly monitoring and annual precision regulatory requirements with an online system. In addition, the LRDP has the potential to save DOD many hundreds of millions of dollars in terms of clean-up and tank replacement cost avoidance.

  17. Relationship between a range of sedentary behaviours and blood pressure during early adolescence.

    PubMed

    Gopinath, B; Baur, L A; Hardy, L L; Kifley, A; Rose, K A; Wong, T Y; Mitchell, P

    2012-06-01

    Very few studies have explored links between physical activity, sedentary behaviours and blood pressure (BP) in early adolescence. We aimed to assess the association between a range of sedentary activities (screen time, television (TV) viewing, computer usage, video game usage and time spent in homework or reading) and BP in schoolchildren. Eligible year-7 students (2353/3144, mean age 12.7 years) from a random cluster sample of 21 Sydney schools were examined during 2003-2005. Parents and children completed detailed questionnaires of activity. BP was measured using a standard protocol and high BP was defined using published guidelines. Height and weight were measured, and body mass index (BMI) calculated. After adjusting for age, sex, ethnicity, parental education, height, BMI and time spent in physical activity, each hour per day spent in screen time, watching TV and playing video games was associated with a significant increase in diastolic BP of 0.44 (P=0.0001), 0.99 (P<0.0001) and 0.64 mm Hg (P=0.04), respectively. In contrast, each hour per day spent reading was associated with a decrease of 0.91 (P=0.01) and 0.69 mm Hg (P=0.02) in systolic and diastolic BP, respectively. Our results indicate that addressing different types of sedentary activities could be a potentially important strategy to reduce the prevalence of elevated BP in children.

  18. The nature of functional variability in plantar pressure during a range of controlled walking speeds

    PubMed Central

    Pataky, Todd C.; Crompton, Robin H.; Savage, Russell; Bates, Karl T.

    2016-01-01

    During walking, variability in step parameters allows the body to adapt to changes in substrate or unexpected perturbations that may occur as the feet interface with the environment. Despite a rich literature describing biomechanical variability in step parameters, there are as yet no studies that consider variability at the body–environment interface. Here, we used pedobarographic statistical parametric mapping (pSPM) and two standard measures of variability, mean square error (m.s.e.) and the coefficient of variation (CV), to assess the magnitude and spatial variability in plantar pressure across a range of controlled walking speeds. Results by reduced major axis, and pSPM regression, revealed no consistent linear relationship between m.s.e. and speed or m.s.e. and Froude number. A positive linear relationship, however, was found between CV and walking speed and CV and Froude number. The spatial distribution of variability was highly disparate when assessed by m.s.e. and CV: relatively high variability was consistently confined to the medial and lateral forefoot when measured by m.s.e., while the forefoot and heel show high variability when measured by CV. In absolute terms, variability by CV was universally low (less than 2.5%). From these results, we determined that variability as assessed by m.s.e. is independent of speed, but dependent on speed when assessed by CV. PMID:27853618

  19. Pressure distribution on a vectored-thrust V/STOL fighter in the transition-speed range. [wind tunnel tests to measure pressure distribution on body and wing

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.; Margason, R. J.

    1974-01-01

    A wind-tunnel investigation has been conducted in the Langley V/STOL tunnel with a vectored-thrust V/STOL fighter configuration to obtain detailed pressure measurements on the body and on the wing in the transition-speed range. The vectored-thrust jet exhaust induced a region of negative pressure coefficients on the lower surface of the wing and on the bottom of the fuselage. The location of the jet exhaust relative to the wing was a major factor in determining the extent of the region of negative pressure coefficients.

  20. The Influence of Fundamental Frequency and Sound Pressure Level Range on Breathing Patterns in Female Classical Singing

    ERIC Educational Resources Information Center

    Collyer, Sally; Thorpe, C. William; Callaghan, Jean; Davis, Pamela J.

    2008-01-01

    Purpose: This study investigated the influence of fundamental frequency (F0) and sound pressure level (SPL) range on respiratory behavior in classical singing. Method: Five trained female singers performed an 8-s messa di voce (a crescendo and decrescendo on one F0) across their musical F0 range. Lung volume (LV) change was estimated, and…

  1. Pressure effect on the long-range order in CeB6

    NASA Astrophysics Data System (ADS)

    Sera, M.; Ikeda, S.; Iwakubo, H.; Uwatoko, Y.; Hane, S.; Kosaka, M.; Kunii, S.

    2006-08-01

    The pressure effect of CeB6 was investigated. The pressure dependence of the Néel temperature, TN and the critical field from the antiferro-magnetic phase III to antiferro-quadrupolar phase II, HcIII-II of CeB6 exhibits the unusual pressure dependence that the suppression rate of HcIII-II is much larger than that of TN. In order to explain this unusual result, we have performed the mean field calculation for the 4-sublattice model assuming that the pressure dependence of TN, the antiferro-octupolar and quadrupolar temperatures, Toct and TQ as follows; dTN/dP<0, dToct/dP>dTQ/dP>0 and could explain the unusual pressure dependence of TN and HcIII-II.

  2. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell

    SciTech Connect

    Hong, X.; Newville, M.; Prakapenka, V.B.; Rivers, M.L.; Sutton, S.R.

    2009-07-31

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within {+-}3{sup o} relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO{sub 2} recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO{sub 2} glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO{sub 2} glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.

  3. Miniature diamond anvil cell for broad range of high pressure measurements.

    PubMed

    Gavriliuk, A G; Mironovich, A A; Struzhkin, V V

    2009-04-01

    A miniature versatile nonmagnetic diamond anvil cell for diverse physical property measurement under cryogenic environments and high magnetic fields at high pressure has been developed. Several such cells have been manufactured and tested in the Physical Properties Measurement System (PPMS) by Quantum Design at high pressures and low temperatures. The cells have good pressure stability during temperature scans down to helium temperatures and back to room temperature. The cells have been tested in strong magnetic fields and demonstrated excellent nonmagnetic properties. The wide-angle side openings give the possibility to use this cell as a "panoramic cell" in synchrotron experiments requiring large angle off-axis access. The possible experiments, which may use this cell, include spectroscopic experiments (optical, synchrotron Mossbauer, Raman, x-ray emission, etc.), different types of x-ray diffraction experiments, transport measurements (resistivity, magnetoresistivity, thermoelectromotive force, etc.), measurements of susceptibility, and many other conventional and synchrotron experiments at very low temperatures and in strong magnetic fields.

  4. Calculation of the density of solutions (sunflower oil + n-hexane) over a wide range of temperatures and pressure

    NASA Astrophysics Data System (ADS)

    Safarov, M. M.; Abdukhamidova, Z.

    1995-09-01

    We present the results from an experimental investigation of the density of the sunflower oil system as a function of the mass concentration of n-hexane in the ranges of temperatures T=290 520 K and pressures P=0.101 98.1 MPa. A method of hydrostatic weighing was used to measure the density of the solutions under study.

  5. Reduced state relationship for limiting electrical conductances of aqueous ions over wide ranges of temperature and pressure

    NASA Astrophysics Data System (ADS)

    Marshall, William L.

    1987-09-01

    A reduced state relationship for limiting electrical conductances of aqueous ions to high temperatures and pressures is presented in which ionic conductance is a simple function of solvent density. Walden's rule is not observed. Specific parameters for 13 ions are included that can be used to calculate ionic conductances by the relationship. From these values, limiting equivalent conductances of many single and mixed aqueous electrolyte systems may be obtained over temperature-pressure ranges of 0-800 °C and up to 400 MPa (4000 bar), with reasonable estimates to 1000 °C and 1000 MPa.

  6. Tin phase transition in terapascal pressure range described accurately with Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Nazarov, Roman; Hood, Randolph; Morales, Miguel

    The accurate prediction of phase transitions is one of the most important research areas in modern materials science. The main workhorse for such calculations, Density functional theory (DFT), employs different forms of approximate exchange-correlation functionals which may lead to overstabilization of one phase compared to another, therefore, predict incorrectly phase transition pressures. A recent example of such deficiency has been demonstrated in Sn: no bcc to hcp phase transition has been observed in Sn when dynamically compressed to 1.2 TPa while DFT predicts a transition to occur at 0.16-0.2 TPa. To overcome the limitations of DFT, we have employed diffusion quantum Monte Carlo (DMC) method which treats the many body electron problem directly. In order to get highly accurate results we systematically assess the effect of controllable approximations of DMC such as fixed node approximation, finite-size effects and the use of pseudopotentials. Based on metrologically accurate DMC equation of states we construct the pressure-temperature phase diagram and demonstrate its good agreement with experiment in contrast to DFT calculations.

  7. APT: An Autonomous Tool for Measuring Acceleration, Pressure, and Temperature with Large Dynamic Range and Bandwidth

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Davis, E. E.

    2015-12-01

    We describe a new tool developed to facilitate the study of inter-related geodetic, geodynamic, seismic, and oceanographic phenomena. It incorporates a novel tri-axial accelerometer developed by Quartz Seismic Sensors, Inc, a pressure sensor developed by Paroscientific Inc., and a low-power, high-precision frequency counter and data logger built by RBR, Ltd. The sensors, counters, and loggers are housed in a 7 cm o.d., 70 cm long pressure case designed for use in up to 12 km of water. Sampling intervals are programmable from 0.1 s to 1 hr; standard memory can store up to 30 million samples; total power consumption is roughly 115 mW when operating continuously (1 s.p.s. or higher) and proportionately lower when operating intermittently (e.g., 2 mW at 1 sample per min.). Serial and USB communications protocols allow a variety of download and cable-connection options. Measurement precision of the order of 10-8 of full scale (e.g., 4000 m water depth, 1 g) allows observations of pressure and acceleration variations of 0.4 Pa and 0.1 μm s-2. Long-term variations in vertical acceleration are sensitive to displacement through the gravity gradient at a level of roughly 2 cm; long-term variations in horizontal acceleration are sensitive to tilt at a level of 0.01 μRad. With these sensitivities and the broad bandwidth (5 Hz to DC), ground motion associated with microseisms and seismic waves, tidal loading, and slow and rapid geodynamic deformation normally studied by disparate instruments can be observed with a single tool. The first c. 1-year deployment with the instrument connected to the Ocean Networks Canada NEPTUNE observatory cable is underway to study interseismic deformation of the Cascadia subduction zone. It will then be deployed at the Hikurangi subduction zone to study episodic slow slip. Deployment of the tool for the initial test was accomplished by pushing the tool vertically below the seafloor with the remotely operated vehicle Jason, with no profile

  8. Structure and growth kinetics of the oxidation process of Fe(001) whisker surfaces over a 10-decade pressure range

    NASA Astrophysics Data System (ADS)

    Ferrer, Salvador; Robach, Odile; Balmes, Olivier; Isern, Helena; Popa, Iona; Ackerman, Marcelo

    2010-10-01

    Fe(001) surfaces of whiskers of good crystalline quality were oxidized in a pressure range from 10 - 7 mbar to 1 bar at different temperatures. Epitaxial Fe 3O 4 and FeO thin films with negligible strain were grown depending on the oxidation temperatures. The kinetics of the oxide thickness growth was measured and compared with the predictions of the Fromhold-Cook theory for oxidation of metals. Some discrepancies were found and a possible explanation is presented.

  9. Direct Numerical Simulation and Theories of Wall Turbulence with a Range of Pressure Gradients

    NASA Technical Reports Server (NTRS)

    Coleman, G. N.; Garbaruk, A.; Spalart, P. R.

    2014-01-01

    A new Direct Numerical Simulation (DNS) of Couette-Poiseuille flow at a higher Reynolds number is presented and compared with DNS of other wall-bounded flows. It is analyzed in terms of testing semi-theoretical proposals for universal behavior of the velocity, mixing length, or eddy viscosity in pressure gradients, and in terms of assessing the accuracy of two turbulence models. These models are used in two modes, the traditional one with only a dependence on the wall-normal coordinate y, and a newer one in which a lateral dependence on z is added. For pure Couette flow and the Couette-Poiseuille case considered here, this z-dependence allows some models to generate steady streamwise vortices, which generally improves the agreement with DNS and experiment. On the other hand, it complicates the comparison between DNS and models.

  10. EURAMET.M.P-S9: comparison in the negative gauge pressure range -950 to 0 hPa

    NASA Astrophysics Data System (ADS)

    Saxholm, S.; Otal, P.; AltintaS, A.; Bermanec, L. G.; Durgut, Y.; Hanrahan, R.; Kocas, I.; Lefkopoulos, A.; Pražák, D.; Sandu, I.; Åetina, J.; Spohr, I.; Steindl, D.; Tammik, K.; Testa, N.

    2016-01-01

    A comparison in the negative gauge pressure range was arranged in the period 2011 - 2012. A total of 14 laboratories participated in this comparison: BEV (Austria), CMI (Czech Republic), DANIAmet-FORCE (Denmark), EIM (Greece), HMI/FSB-LPM (Croatia), INM (Romania), IPQ (Portugal), LNE (France), MCCAA (Malta), METROSERT (Estonia), MIKES (Finland), MIRS/IMT/LMT (Slovenia), NSAI (Ireland) and UME (Turkey). The project was divided into two loops: Loop1, piloted by MIKES, and Loop2, piloted by LNE. The results of the two loops are reported separately: Loop1 results are presented in this paper. The transfer standard was Beamex MC5 no. 25516865 with internal pressure module INT1C, resolution 0.01 hPa. The nominal pressure range of the INT1C is -1000 hPa to +1000 hPa. The nominal pressure points for the comparison were 0 hPa, -200 hPa, -400 hPa, -600 hPa, -800 hPa and -950 hPa. The reference values and their uncertainties as well as the difference uncertainty between the laboratory results and the reference values were determined from the measurement data by Monte Carlo simulations. Stability uncertainty of the transfer standard was included in the final difference uncertainty. Degrees of equivalences and mutual equivalences between the laboratories were calculated. Each laboratory reported results for all twelve measurement points, which means that there were 168 reported values in total. Some 163 of the 168 values (97 %) agree with the reference values within the expanded uncertainties, with a coverage factor k = 2. Among the laboratories, four different methods were used to determine negative gauge pressure. It is concluded that special attention must be paid to the measurements and methods when measuring negative gauge pressures. There might be a need for a technical guide or a workshop that provides information about details and practices related to the measurements of negative gauge pressure, as well as differences between the different methods. The comparison is

  11. Perfusion pressure-dependent recovery of cortical spreading depression is independent of tissue oxygenation over a wide physiologic range.

    PubMed

    Sukhotinsky, Inna; Yaseen, Mohammad A; Sakadzić, Sava; Ruvinskaya, Svetlana; Sims, John R; Boas, David A; Moskowitz, Michael A; Ayata, Cenk

    2010-06-01

    Spreading depression (SD) is a slowly propagating wave of transient neuronal and glial depolarization that develops after stroke, trauma and subarachnoid hemorrhage. In compromised tissue, repetitive SD-like injury depolarizations reduce tissue viability by worsening the mismatch between blood flow and metabolism. Although the mechanism remains unknown, SDs show delayed electrophysiological recovery within the ischemic penumbra. Here, we tested the hypothesis that the recovery rate of SD can be varied by modulating tissue perfusion pressure and oxygenation. Systemic blood pressure and arterial pO(2) were simultaneously manipulated in anesthetized rats under full physiologic monitoring. We found that arterial hypotension doubled the SD duration, whereas hypertension reduced it by a third compared with normoxic normotensive rats. Hyperoxia failed to shorten the prolonged SD durations in hypotensive rats, despite restoring tissue pO(2). Indeed, varying arterial pO(2) (40 to 400 mm Hg) alone did not significantly influence SD duration, whereas blood pressure (40 to 160 mm Hg) was inversely related to SD duration in compromised tissue. These data suggest that cerebral perfusion pressure is a critical determinant of SD duration independent of tissue oxygenation over a wide range of arterial pO(2) levels, and that hypotension may be detrimental in stroke and subarachnoid hemorrhage, where SD-like injury depolarizations have been observed.

  12. A Computational Fluid Dynamics Study of Transitional Flows in Low-Pressure Turbines under a Wide Range of Operating Conditions

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.; Volino, R. J.; Corke, T. C.; Thomas, F. O.; Huang, J.; Lake, J. P.; King, P. I.

    2007-01-01

    A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.

  13. Equation of State of Shock Compressed Gases at Megabar Pressure Range

    NASA Astrophysics Data System (ADS)

    Gryaznov, Victor; Iosilevskiy, Igor; Fortov, Vladimir

    2011-06-01

    The model for equation of state of warm dense matter is developed in frames of ``chemical picture.'' Shock compressed gas is considered as a multi-component strongly interacted mixture of atoms, molecules, ions and electrons. Coulomb interaction of charged particles, short-range repulsion and attraction of heavy particles so as partial degeneracy of free electrons are taken into account. Contribution of repulsion of atoms and molecules to thermodynamic functions is considered in frames of extended soft-sphere model and corresponds to non-empirical atom-atomic approximation. The modified pseudopotential model is used for description of interaction of charged particles.The results of calculation of principal Hugoniots of hydrogen, deuterium and nitrogen together with calculation of thermodynamics for reshock states and third-shock reverberation are presented. The calculation results are compared with gas-gun, explosive, magnetically launched flyer-plate and laser experiments so as with the results of the first principle modeling.

  14. The shock Hugoniot of liquid hydrazine in the pressure range of 3.1 to 21.4 GPa

    SciTech Connect

    Garcia, B.O.; Persson, P-A.

    1996-10-01

    Impedance matching was used; the technique was similar to Richard Dick`s. Shock pressures were produced using a plane wave explosive driver with different explosives and different reference materials against liq. hydrazine. Velocity of shock wave in the liquid and free surface velocity of the reference material were measured using different pin contact techniques. The experimental Hugoniot appears smooth, with no indication of a phase change. The shock Hugoniot of liq. hydrazine was compared against 3 other liquid Hugoniots (liq. NH3, water, CCl4) and is closest to that for water and in between NH3 and CCl4. The hydrazine Hugoniot was also compared to the ``Universal`` Hugoniot for liquids. This universal Hugoniot is not a good approximation for the liq. hydrazine in this pressure range.

  15. The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians.

    PubMed

    Morris, J P; Thatje, S; Cottin, D; Oliphant, A; Brown, A; Shillito, B; Ravaux, J; Hauton, C

    2015-11-01

    Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms' thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shifts.

  16. The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians

    PubMed Central

    Morris, J. P.; Thatje, S.; Cottin, D.; Oliphant, A.; Brown, A.; Shillito, B.; Ravaux, J.; Hauton, C.

    2015-01-01

    Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms’ thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shifts PMID:26716003

  17. Multiphase Binary Mixture Flows in Porous Media in a Wide Pressure and Temperature Range Including Critical Conditions

    NASA Astrophysics Data System (ADS)

    Afanasyev, A.

    2011-12-01

    Multiphase flows in porous media with a transition between sub- and supercritical thermodynamic conditions occur in many natural and technological processes (e.g. in deep regions of geothermal reservoirs where temperature reaches critical point of water or in gas-condensate fields where subject to critical conditions retrograde condensation occurs and even in underground carbon dioxide sequestration processes at high formation pressure). Simulation of these processes is complicated due to degeneration of conservation laws under critical conditions and requires non-classical mathematical models and methods. A new mathematical model is proposed for efficient simulation of binary mixture flows in a wide range of pressures and temperatures that includes critical conditions. The distinctive feature of the model lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. Such approach allows determination not only single-phase states and two-phase states of liquid-gas type as in classical models but also two-phase states of liquid-liquid type and three-phase states. The proposed mixture model was implemented in MUFITS (Multiphase Filtration Transport Simulator) code for hydrodynamic simulations. As opposed to classical approaches pressure, enthalpy and composition variables together with fully implicit method and cascade procedure are used. The code is capable of unstructured grids, heterogeneous porous media, relative permeability and capillary pressure dependence on temperature and pressure, multiphase diffusion, optional number of sink and sources, etc. There is an additional module for mixture properties specification. The starting point for the simulation is a cubic equation of state that is

  18. Pressure dependent stability and structure of carbon dioxide—A density functional study including long-range corrections

    NASA Astrophysics Data System (ADS)

    Gohr, Sebastian; Grimme, Stefan; Söhnel, Tilo; Paulus, Beate; Schwerdtfeger, Peter

    2013-11-01

    First-principles density functional theory (DFT) is used to study the solid-state modifications of carbon dioxide up to pressures of 60 GPa. All known molecular CO2 structures are investigated in this pressure range, as well as three non-molecular modifications. To account for long-range van der Waals interactions, the dispersion corrected DFT method developed by Grimme and co-workers (DFT-D3) is applied. We find that the DFT-D3 method substantially improves the results compared to the uncorrected DFT methods for the molecular carbon dioxide crystals. Enthalpies at 0 K and cohesive energies support only one possibility of the available experimental solutions for the structure of phase IV: the Roverline{3}c modification, proposed by Datchi and co-workers [Phys. Rev. Lett. 103, 185701 (2009)]. Furthermore, comparing bulk moduli with experimental values, we cannot reproduce the quite large—rather typical for covalent crystal structures—experimental values for the molecular phases II and III.

  19. Optimal frequency ranges for extracting information on cardiovascular autonomic control from the blood pressure and pulse interval spectrograms in mice.

    PubMed

    Baudrie, Véronique; Laude, Dominique; Elghozi, Jean-Luc

    2007-02-01

    The analysis of blood pressure (BP) and heart rate (HR) variability by spectral methods has proven a useful tool in many animal species for the assessment of the vagal and sympathetic contributions to oscillations of BP and HR. Continuous BP measurements obtained in mice by telemetry were used to characterize the spectral bandwidths of autonomic relevance by using an approach with no a priori. The paradigm was based on the autonomic blockades obtained with conventional drugs (atropine, prazosin, atenolol). The spectral changes were estimated in all of the combinations of spectral bandwidths. The effect of hydralazine was also tested using the same systematic analysis, to detect the zones of sympathetic activation resulting reflexly from the vasodilatory action of the drug. Two zones of interest in the study of the autonomic control of BP and HR were observed. The first zone covered the 0.15-0.60 Hz range of the systolic BP spectrum and corresponds to the low-frequency zone (or Mayer waves). This zone reflects sympathetic control since the power spectral density of this zone was significantly reduced with alpha1-adrenoceptor blockade (prazosin), while it was significantly amplified as a result of a reflex sympathetic activation (hydralazine). The second zone covered the 2.5-5.0 Hz range of the pulse interval spectrum and corresponded to the high-frequency zone (respiratory sinus arrhythmia) under vagal control (blocked by atropine). These zones are recommended for testing the autonomic control of circulation in mice.

  20. Atmospheric pressure fluctuations in the far infrasound range and emergency transport events coded as circulatory system diseases

    NASA Astrophysics Data System (ADS)

    Didyk, L. A.; Gorgo, Yu. P.; Dirckx, J. J. J.; Bogdanov, V. B.; Buytaert, J. A. N.; Lysenko, V. A.; Didyk, N. P.; Vershygora, A. V.; Erygina, V. T.

    2008-09-01

    This study examines whether a relation exists between rapid atmospheric pressure fluctuations, attributed to the far infrasound frequency range (APF), and a number of emergency transport events coded as circulatory system diseases (EEC). Over an entire year, the average integral amplitudes of APF in the range of periods from 3 s to 120 s over each hour (HA) were measured. Daily dynamics of HA averaged over the year revealed a wave shape with smooth increase from night to day followed by decrease from day to night. The total daily number of EEC within the city of Kiev, Ukraine, was related to the daily mean of HA (DHA) and to the ratio of HA averaged over the day time to HA averaged over the night time (Rdn), and was checked for confounding effects of classical meteorological variables through non-parametric regression algorithms. The number of EEC were significantly higher on days with high DHA (3.72 11.07 Pa, n = 87) compared to the low DHA (0.7 3.62 Pa, n = 260, p = 0.01), as well at days with low Rdn (0.21 1.64, n = 229) compared to the high Rdn (1.65 7.2, n = 118, p = 0.03). A difference between DHA and Rdn effects on the emergency events related to different categories of circulatory diseases points to a higher sensitivity of rheumatic and cerebro-vascular diseases to DHA, and ischaemic and hypertensive diseases to Rdn. Results suggest that APF could be considered as a meteorotropic factor capable of influencing circulatory system diseases.

  1. Experimental investigation of the dynamics of a vibrating grid in superfluid 4He over a range of temperatures and pressures.

    PubMed

    Charalambous, D; Skrbek, L; Hendry, P C; McClintock, P V E; Vinen, W F

    2006-09-01

    In an earlier paper [Nichol, Phys. Rev. E, 70, 056307 (2004)] some of the present authors presented the results of an experimental study of the dynamics of a stretched grid driven into vibration at or near its resonant frequency in isotopically pure superfluid 4He over a range of pressures at a very low temperature, where the density of normal fluid is negligible. In this paper we present the results of a similar study, based on a different grid, but now including the temperature range where the normal fluid density is no longer insignificant. The new grid is very similar to the old one except for a small difference in the character of its surface roughness. In many respects the results at low temperature are similar to those for the old grid. At low amplitudes the results are somewhat history dependent, but in essence there is no damping greater than that in vacuo. At a critical amplitude corresponding to a velocity of about 50 mms(-1) there is a sudden and large increase in damping, which can be attributed to the generation of new vortex lines. Strange shifts in the resonant frequency at intermediate amplitudes observed with the old grid are no longer seen, however they must therefore have been associated with the different surface roughness, or perhaps were due simply to some artifact of the old grid, the details of which we are currently unable to determine. With the new grid we have studied both the damping at low amplitudes due to excitations of the normal fluid, and the dependence of the supercritical damping on temperature. We present evidence that in helium at low amplitudes there may be some enhancement in the effective mass of the grid in addition to that associated with potential flow of the helium. In some circumstances small satellite resonances are seen near the main fundamental grid resonance, which are attributed to coupling to some other oscillatory system within the experimental cell.

  2. Short range shooting distance estimation using variable pressure SEM images of the surroundings of bullet holes in textiles.

    PubMed

    Hinrichs, Ruth; Frank, Paulo Ricardo Ost; Vasconcellos, M A Z

    2017-03-01

    Modifications of cotton and polyester textiles due to shots fired at short range were analyzed with a variable pressure scanning electron microscope (VP-SEM). Different mechanisms of fiber rupture as a function of fiber type and shooting distance were detected, namely fusing, melting, scorching, and mechanical breakage. To estimate the firing distance, the approximately exponential decay of GSR coverage as a function of radial distance from the entrance hole was determined from image analysis, instead of relying on chemical analysis with EDX, which is problematic in the VP-SEM. A set of backscattered electron images, with sufficient magnification to discriminate micrometer wide GSR particles, was acquired at different radial distances from the entrance hole. The atomic number contrast between the GSR particles and the organic fibers allowed to find a robust procedure to segment the micrographs into binary images, in which the white pixel count was attributed to GSR coverage. The decrease of the white pixel count followed an exponential decay, and it was found that the reciprocal of the decay constant, obtained from the least-square fitting of the coverage data, showed a linear dependence on the shooting distance.

  3. Density measurements of subcooled water in the temperature range of (243 and 283) K and for pressures up to 400 MPa.

    PubMed

    Romeo, Raffaella; Giuliano Albo, P Alberto; Lorefice, Salvatore; Lago, Simona

    2016-02-21

    In this work, accurate density measurements of subcooled water (freshly double-distilled water) were performed along eight constant-mass curves in the temperature range of (243 to 283) K and in the pressure range of (140 to 400) MPa, by a pseudo-isochoric method. The experimental apparatus mainly consisted of a high pressure vessel, especially designed for this experiment, of known volume as a function of temperature and pressure, used to perform measurements in the T-p range under study. The density of subcooled water was obtained by measuring the equilibrium pressure at different temperatures, keeping the mass constant. All terms contributing to the uncertainty of subcooled water density measurements were considered; the estimated relative uncertainty, in the investigated temperature and pressure range, is about 0.07%. The experimental results were compared with the literature densities. In particular, the trend of density versus temperature for a constant mass of sample observed experimentally differs from the trend calculated by the equation provided by the International Association for Properties of Water and Steam (IAPWS-95) outside the range of validity, i.e., in the metastable region.

  4. Final report on EURAMET.M.P-S12 — Bilateral supplementary comparison of the national pressure standards of CMI and INRIM in the range 300 Pa to 15 kPa of negative gauge pressure

    NASA Astrophysics Data System (ADS)

    Krajícek, Zdenek; Bergoglio, Mercede; Pražák, Dominik; Pasqualin, Stefano

    2014-01-01

    This report describes a EURAMET bilateral supplementary comparison between Czech CMI and Italian INRIM in low negative gauge pressure in gas (nitrogen), denoted as EURAMET.M.P-S12. The digital non-rotating pressure balance FPG8601 manufactured by Fluke/DH-Instruments, USA is normally used for gauge and absolute pressures in the range from 1 Pa to 15 kPa, but with some modifications it can be used also for the negative gauge pressures in the same range. During the preparation of the visit of INRIM at CMI for the last comparison within the framework of EURAMET.M.P-K4.2010, it was agreed to also perform an additional comparison in the range from 300 Pa to 15 kPa of negative gauge pressure. The measurements were performed in October 2012. Both institutes successfully proved their equivalence in all the tested points in the range from 300 Pa to 15 kPa of negative gauge pressure in a comparison that had, so far, been unique. . Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2001-01-01

    A new high-pressure phase of methane hydrate has been identified based on its high optical relief, distinct pressure-temperature phase relations, and Raman spectra. In-situ optical observations were made in a hydrothermal diamond-anvil cell at temperatures between -40?? and 60 ??C and at pressures up to 900 MPa. Two new invariant points were located at -8.7 ??C and 99 MPa for the assemblage consisting of the new phase, structure I methane hydrate, ice Ih, and water, and at 35.3 ??C and 137 MPa for the new phase-structure I methane hydrate-water-methane vapor. Existence of the new phase is critical for understanding the phase relations among the hydrates at low to moderate pressures, and may also have important implications for understanding the hydrogen bonding in H2O and the behavior of water in the planetary bodies, such as Europa, of the outer solar system.

  6. Final report on APMP.M.P-S4: Results of the bilateral supplementary comparison on pressure measurements in the range (60 to 350) kPa of gauge pressure in gas media

    NASA Astrophysics Data System (ADS)

    Priruenrom, T.; Sabuga, W.; Konczak, T.

    2013-01-01

    The bilateral supplementary comparison APMP.M.P-S4 on pressure measurements in the range (60 to 350) kPa of gauge pressure in gas media was organized by National Institute of Metrology of Thailand, NIMT, as the pilot laboratory, comparing with Physikalisch-Technische Bundesanstalt of Germany, PTB. The objective of this comparison is to check equivalence of gas pressure standards between NIMT and PTB. The period of measurement covered November to December 2012. NIMT provided a transfer standard, which was a WC-WC piston-cylinder assembly (PCA) with a nominal effective area of 10 cm2 manufactured by Fluke Corporation, DHI. The measurements were performed at pressures (60, 100, 150, 200, 250, 300 and 350) kPa. The NIMT laboratory standard used was a pressure balance with a PCA of 10 cm2 manufactured by DHI and identified by serial number 0693. The PTB laboratory standard used was a pressure balance with a PCA of 10 cm2 manufactured by Desgranges et Huot (DH) and identified by serial number 288. The results of this comparison show that the relative difference of the effective area values obtained by NIMT and PTB is not larger than 4.3 ppm, which corresponds to En = 0.26. Therefore, it confirms that the gas pressure standards maintained by the two institutes, NIMT and PTB, in the pressure range (60 to 350) kPa in gauge mode are equivalent under their uncertainties claimed. The result of this comparison is essential to support the calibration and measurement capabilities (CMC) of NIMT in this pressure range. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the APMP, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. A bossed diaphragm piezoresistive pressure sensor with a peninsula-island structure for the ultra-low-pressure range with high sensitivity

    NASA Astrophysics Data System (ADS)

    Zhao, Libo; Xu, Tingzhong; Hebibul, Rahman; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Guo, Xin; Xu, Yu; Wang, Hongyan; Zhao, Yulong

    2016-12-01

    A sensor chip with a bossed diaphragm combined with a peninsula-island structure was developed for a piezoresistive pressure sensor. By introducing a stiffness mutation above the gap position between the peninsula and island structures, the strain energy of the proposed diaphragm was mainly concentrated upon the gap position, which remarkably increased the sensitivity of the sensor chip. A beam-diaphragm coupled model and an optimization method for the novel sensor chip were also developed, which gave guidelines for optimizing the sensor chip structure. Finally, a sensor chip with the bossed diaphragm combined with peninsula-island structure was fabricated and tested. The experimental results showed that the proposed sensor chip was able to measure ultra-low pressure within 500 Pa with high sensitivity.

  8. Large Area One-Step Facile Processing of Microstructured Elastomeric Dielectric Film for High Sensitivity and Durable Sensing over Wide Pressure Range.

    PubMed

    Chen, Sujie; Zhuo, Bengang; Guo, Xiaojun

    2016-08-10

    Once the requirement of sensitivity has been met, to enable a flexible pressure sensor technology to be widely adopted as an economic and convenient way for sensing diverse human body motions, critical factors need to be considered including low manufacturing cost, a large pressure detection range, and low power consumption. In this work, a facile approach is developed for one-step processing of a large area microstructured elastomer film with high density microfeatures of air voids, which can be seamlessly integrated into the process flow for fabricating flexible capacitive sensors. The fabricated sensors exhibit fast response and high sensitivity in the low pressure range to be able to detect very weak pressure down to 1 Pa and perform reliable wrist pulse monitoring. Compared to previous work, more advantageous features of this sensor are relatively high sensitivity being maintained in a wide pressure range up to 250 kPa and excellent durability under heavy load larger than 1 MPa, attributed to the formed dense air voids inside the film. A smart insole made with the sensor can accurately monitor the real-time walking or running behaviors and even a small weight change less than 1 kg under a heavy load of a 70 kg adult. For both application examples of wrist pulse monitoring and smart insole, the sensors are operated in a 3.3 V electronic system powered by a Li-ion battery, showing the potential for power-constrained wearable applications.

  9. Kinetic study on the photoabsorption process of gaseous O 2 dimol at 630 nm in a wide pressure range

    NASA Astrophysics Data System (ADS)

    Ida, Akira; Furui, Eiji; Akai, Nobuyuki; Kawai, Akio; Shibuya, Kazuhiko

    2010-03-01

    The visible light absorption of gaseous O 2 dimol at 630 nm was measured in the pressure region of 0.04-90 atm. The intensities measured at high pressures did not agree with the values extrapolated from the data obtained at low pressures. A kinetic analysis assuming the equilibrium between the dimol and free O 2 monomers was performed. All the data are well reproduced by the model using the 630 nm absorption cross-section of (5.6 ± 3.3) × 10 -24 cm 2 molecule -1 and the dissociation equilibrium constant of (6.8 ± 4.2) × 10 21 molecules cm -3. The critical distance between the O 2 molecules in the dimol is discussed on the basis of the equilibrium constant determined.

  10. Simultaneous and in situ analysis of thermal and volumetric properties of starch gelatinization over wide pressure and temperature ranges.

    PubMed

    Randzio, Stanislaw L; Orlowska, Marta

    2005-01-01

    A method for simultaneous and in situ analysis of thermal and volumetric properties of starch gelatinization from 0.1 to 100 MPa and from 283 to 430 K is described. The temperature of a very sensitive calorimetric detector containing a starch-water emulsion at a selected pressure is programmed to rise at a slow rate; volume variations are performed automatically to keep the selected pressure constant while the heat exchange rate and the volume are recorded. The method is demonstrated with a novel investigation of pressure effects on a sequence of three phase transitions in an aqueous emulsion of wheat starch (56 wt % water). The volume changes during the main endothermic transition (M), associated with melting of the crystalline part of the starch granules and a helix-coil transformation in amylopectin, but also with an important swelling, were separated into a volume increase associated with swelling and a volume decrease associated with the transition itself. Thermodynamic parameters for this transition together with their pressure dependencies have been obtained from four independent experiments at each pressure. The data are thermodynamically consistent, but are poorly described by the Clapeyron equation. The negative volume change of the slow exothermic transition (A) appearing just after the main endothermic transition (M) is small, spread out over a wide temperature interval, and occurs at higher temperatures with increasing pressures. This transition is probably associated with reassociation of the unwound helixes of amylopectin with parts of amylopectin molecules other than their original helix duplex partner. The positive volume change of the high-temperature, endothermic transition (N) with a small enthalpy change is probably associated with a nematic-isotropic transformation ending the formation of a homogeneous SOL phase (in the sense of Flory), and is also pushed to higher temperatures with increasing pressures. Knowledge of the state of wheat starch

  11. Blast Pressures Induced by the Impact of Kinetic Energy Penetrators on Steel Targets in an Enclosed Range.

    DTIC Science & Technology

    1981-02-01

    heat of detonation of pentolite is Sl k.J/g, so the kinetic energy of the tungsten penetrators is equal to the heat of detonation of...the heat of detonation of pentolite, 5.11 kJ/g. Then the scaled distance curves 3 can be used to predict blast pressure at the instrumented position for...kinetic and chemical energy is 11.8 MJ which equals the heat of detonation of 2.3 kg of pentolite. This would produce a reflected blast pressure of

  12. Ozone sonde measurements aboard long-range boundary-layer pressurized balloons over the western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Gheusi, François; Barret, Brice; Verdier, Nicolas; Dulac, François; Durand, Pierre; Jambert, Corinne

    Since few years, the French space agency CNES has developed boundary-layer pressurized balloons (BLPBs) with the capability to transport scientific payloads at isopicnic level over very long distances and durations (up to several weeks in absence of navigation limits). However, the autonomy of conventional electro-chemical cell (ECC) ozone sondes, that are widely used for tropospheric and stratospheric soundings, is limited to few hours due to power consumption and electrolyte evaporation (due to air bubbling in the cathode solution). In collaboration with the French research community, CNES has developed a new ozone payload suited for long duration flights aboard BLPBs. The mechanical elements (Teflon pump and motor) and the electro-chemical cell of conventional ECC sondes have been kept but the electronic implementation is entirely new. The main feature is the possibility of programming periodic measurement sequences -- with possible remote control during the flight. To increase the ozone sonde autonomy, the strategy has been adopted of short measurement sequences (typically 3 min) regularly spaced in time (e.g. every 15 min, which is usually sufficient for air quality studies). The rest of the time, the sonde is left at rest (pump motor off). The response time of an ECC sonde to an ozone concentration step is below one minute. Therefore, the typical measurement sequence is composed of a one-minute spin-up period after the pump has been turned on, followed by a two-minute acquisition period. (Note that the time intervals given here are indicative. All can be adjusted before and during the flight.) Results of a preliminary ground-based test in spring 2012 will be first presented. The sonde provided correct ozone concentrations against a reference UV analyzer every 15 minutes during 4 days. Then, we will illustrate results from 16 BLBP flights launched in the low troposphere over the Mediterranean during the three summer field campaings of the coordinated project

  13. Effect of dispersive long-range corrections to the pressure tensor: the vapour-liquid interfacial properties of the Lennard-Jones system revisited.

    PubMed

    Martínez-Ruiz, F J; Blas, F J; Mendiboure, B; Moreno-Ventas Bravo, A I

    2014-11-14

    We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264-6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r(c) = 2.5, 3, 4, and 5σ. In addition, we have also considered cutoff distances r(c) = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness

  14. Effect of dispersive long-range corrections to the pressure tensor: The vapour-liquid interfacial properties of the Lennard-Jones system revisited

    SciTech Connect

    Martínez-Ruiz, F. J.; Blas, F. J.; Mendiboure, B.; Moreno-Ventas Bravo, A. I.

    2014-11-14

    We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264–6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r{sub c} = 2.5, 3, 4, and 5σ. In addition, we have also considered cutoff distances r{sub c} = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial

  15. Vapor pressures and calculated heats of vaporization of concentrated nitric acid solutions in the composition range 71 to 89 percent nitrogen dioxide, 1 to 10 percent water, and in the temperature range 10 to 60 degrees C

    NASA Technical Reports Server (NTRS)

    Mckeown, A B; Belles, Frank E

    1954-01-01

    Total vapor pressures were measured for 16 acid mixtures of the ternary system nitric acid, nitrogen dioxide, and water within the temperature range 10 degrees to 60 degrees Celsius, and with the composition range 71 to 89 weight percent nitric acid, 7 to 20 weight percent nitrogen dioxide, and 1 to 10 weight percent water. Heats of vaporization were calculated from the vapor pressure measurements for each sample for the temperatures 25, 40, and 60 degrees Celsius. The ullage of the apparatus used for the measurements was 0.46. Ternary diagrams showing isobars as a function of composition of the system were constructed from experimental and interpolated data for the temperatures 25, 40, 45, and 60 degrees C and are presented herein.

  16. Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa

    SciTech Connect

    Cao, Xiuxia; Li, Jiabo; Li, Jun; Li, Xuhai; Xu, Liang; Wang, Yuan; Zhu, Wenjun; Meng, Chuanmin; Zhou, Xianming

    2014-09-07

    High-pressure refractive index of optical window materials not only can provide information on electronic polarizability and band-gap structure, but also is important for velocity correction in particle-velocity measurement with laser interferometers. In this work, the refractive index of r-cut sapphire window at 1550 nm wavelength was measured under shock pressures of 5–65 GPa. The refractive index (n) decreases linearly with increasing shock density (ρ) for shock stress above the Hugoniot elastic limit (HEL): n = 2.0485 (± 0.0197) − 0.0729 (± 0.0043)ρ, while n remains nearly a constant for elastic shocks. This behavior is attributed to the transition from elastic (below HEL) to heterogeneous plastic deformation (above HEL). Based on the obtained refractive index-density relationship, polarizability of the shocked sapphire was also obtained.

  17. Final report on regional key comparison COOMET.M.P-K2: Hydraulic gauge pressure in the range 10 MPa to 100 MPa

    NASA Astrophysics Data System (ADS)

    Dapkeviciene, K.; Sabuga, W.; Waller, B.; Farar, P.; Kiselev, Yu; Saczuk, K.; Sandu, I.

    2011-01-01

    This report describes a COOMET key comparison of hydraulic pressure standards of seven national metrology institutes that was carried out in the period from June 2005 to July 2008 in order to determine their degrees of equivalence in the range 10 MPa to 100 MPa of the gauge pressure. The pilot laboratory was VMT/VMC. The pressure standards of the participating NMIs were pressure balances of different design, equipped with piston-cylinder assemblies. The transfer standard was a pressure balance, equipped with a 9.8 mm2 piston-cylinder assembly, manufactured by SMU. The participants reported the pressure-dependent effective areas of the transfer standard at specified pressures. The reference values were calculated as the weighted means of PTB, NPL, SMU and VNIIM, which have primary pressure standards. The results by all participants agree with the reference values and with each other within the expanded uncertainties calculated with a coverage factor (k = 2). At the level of standard uncertainties there is a full agreement between 10 MPa and 100 MPa. The results of this comparison were linked to those of key comparison CCM.P-K7. Degrees of equivalence and expanded (k = 2) uncertainties between the COOMET and laboratories having participated in other KCs: CCM.P-K7, APMP.M.P-K7, EUROMET.M.P-K4 and APM.M.P-K7.1 at measured pressure points are presented in the final report. The results of the comparison demonstrate equivalence of the laboratory standards and, for laboratories the CMCs of which are not yet presented in the KCDB, this comparison provides a basis for submission in the range from 10 MPa to 100 MPa of hydraulic gauge pressure. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  18. Change in serum TSH levels within the reference range was associated with variation of future blood pressure: a 5-year follow-up study.

    PubMed

    Jiang, F; Liu, A; Lai, Y; Yu, X; Li, C; Han, C; Zhang, Y; Wang, X; Wang, Z; Bao, S; Lv, N; Jin, M; Yang, F; Fan, Y; Jin, T; Zhao, W; Shan, Z; Teng, W

    2017-04-01

    Controversy exists on the relationship between serum thyrotropin (TSH) and blood pressure, and only a few prospective studies are available up to now. The study aimed to investigate the association between serum TSH within the reference range and blood pressure through a 5-year follow-up study. A total of 623 subjects with normal TSH were followed up for 5 years, including the measurement of demographic data, blood pressure, height, weight and serum TSH. Finally, 531 subjects were included in this prospective study. Body mass index (BMI), prevalence of hypertension, and systolic and diastolic blood pressure were all higher at follow-up than at baseline. Adjusted for age, gender, smoking status, BMI and homoeostasis model assessment of insulin resistance (HOMA-IR) at baseline, multiple linear regression analyses found no relationship between serum TSH at baseline and levels of blood pressure at follow-up, but the changes in serum TSH levels during follow-up was positively associated with the changes in systolic blood pressure (B=2.134, P<0.05), which became more significant in women but not significant in men. The change of systolic blood pressure in group of TSH increase >0.5 mIU l(-1) was significantly higher than in group of TSH decrease >0.5 mIU l(-1) within reference, after adjusting for age, gender, smoking status, BMI and HOMA-IR at baseline. This result became more significant in women, but no statistical significance was observed in men. Co-variation with serum TSH levels and blood pressure was observed during 5-year follow-up among people with normal TSH.

  19. New Raman measurements for H2O ice VII in the range of 300 cm-1 to 4000 cm-1 at pressures up to 120 GPa

    NASA Astrophysics Data System (ADS)

    Zha, Chang-Sheng; Tse, John S.; Bassett, William A.

    2016-09-01

    Raman spectroscopic measurements for H2O ice VII have been conducted to 120 GPa at 300 K in the spectroscopic range of 300-4000 cm-1. Both moissanite and diamond anvils were used for the experiments. This overcomes the problems of overlapping spectra between the diamond anvil and sample, which had prevented the observation of the stretching modes at pressures higher than ˜23 GPa in all previous measurements. The new results reveal many bands which have not been reported before. The pressure dependences of the Raman modes show anomalous changes at 13-15, ˜27, ˜44, ˜60, and 90 GPa, implying possible structural changes at these pressures. The new results demonstrate that the predicted symmetric hydrogen bond phase X transition does not occur below 120 GPa.

  20. Standard thermodynamic properties of H3PO4(aq) over a wide range of temperatures and pressures.

    PubMed

    Ballerat-Busserolles, Karine; Sedlbauer, Josef; Majer, Vladimir

    2007-01-11

    The densities and heat capacities of solutions of phosphoric acid, 0.05 to 1 mol kg-1, were measured using flow vibrating tube densitometry and differential Picker-type calorimetry at temperatures up to 623 K and at pressures up to 28 MPa. The standard molar volumes and heat capacities of molecular H3PO4(aq) were obtained, via the apparent molar properties corrected for partial dissociation, by extrapolation to infinite dilution. The data on standard derivative properties were correlated simultaneously with the dissociation constants of phosphoric acid from the literature using the theoretically founded SOCW model. This made it possible to describe the standard thermodynamic properties, particularly the standard chemical potential, of both molecular and ionized phosphoric acid at temperatures up to at least 623 K and at pressures up to 200 MPa. This representation allows one to easily calculate the first-degree dissociation constant of H3PO4(aq). The performance of the SOCW model was compared with the other approaches for calculating the high-temperature dissociation constant of the phosphoric acid. Using the standard derivative properties, sensitively reflecting the interactions between the solute and the solvent, the high-temperature behavior of H3PO4(aq) is compared with that of other weak acids.

  1. Effect of hydrostatic pressure on the conductivity of YBa2Cu3O7-δsingle crystals in a broad range of temperature and oxygen content

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Khadzhai, G. Ya.; Dobrovolskiy, O. V.; Nazyrov, Z. F.; Kamchatnaya, S. N.

    2017-04-01

    The effect of external hydrostatic pressure on the electrical resistance of optimally doped and underdoped YBa2Cu3O7-δ single crystals is investigated in a broad temperature range, which includes the normal state and the region of superconducting fluctuations. The temperature dependences of the resistivity in the normal state are determined by scattering of charge carriers by phonons and defects. The application of pressure leads to significant changes in the electronic structure of the sample and reduces the degree of their defectiveness. This is accompanied by changeû in the lattice characteristics as the sample volume decreases. The fluctuation conductivity only exists within the range of ∼ 0.1Tc . With increasing δ the superconducting characteristics are close to the values typical for conventional low-temperature superconductors.

  2. The eutectic liquid composition in the Fe-Fe3S binary system at the core pressure range

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Hirose, K.; Tateno, S.; Morard, G.; Ohishi, Y.

    2015-12-01

    Sulfur is considered to be an important component in the Earth's core because it is depleted in the crust and mantle compared to other volatile elements and often included in iron meteorites. Here we examine the liquidus phase relations in the Fe-Fe3S binary system between 38 and 138 GPa based on characterization of a sample recovered from a melting experiment at high pressure and temperature in a laser-heated diamond-anvil cell. Both Fe-8wt.%S and Fe-14wt.%S samples were employed as starting materials, which were homogeneous mixtures of fine-grain Fe and FeS (<1 μm) prepared by induction melting and rapid quenching technique [Morard et al., 2011 PCM]. We used a focused ion beam (FIB) equipped with energy dispersive X-ray spectrometry for textural and chemical characterizations of recovered samples. The samples exhibited a melting texture with quenched liquid alloy at the hottest part and solid Fe or Fe3S at its outside. In a couple of samples, the quenched liquid was in direct contact with solid Fe3S, and solid Fe was also present right next to Fe3S, suggesting that the composition of such liquid is close to a eutectic composition (~10 wt.% S at 66 GPa and ~12 wt.% S at 138 GPa). Indeed, this interpretation is consistent with the results of other experiments obtained in this study. Our data demonstrate that the eutectic liquid composition in the Fe-Fe3S binary system decreases its sulfur concentration with increasing pressure, which is in agreement with previous studies [Morard et al., 2008 EPSL; Kamada et al., 2012 EPSL]. The sulfur content in the eutectic liquid composition may be less than 10 wt.% at the inner core boundary pressure. The recent shock-wave study by Huang et al.[2013 GRL] suggested 10 wt.% S in the outer core, but the present study indicates that such liquid alloy with 10 wt.% S crystalizes the B2 phase of Fe-S alloy and thus does not support the sulfur-rich outer core.

  3. Selective epitaxial silicon growth in the 650-1100 °C range in a reduced pressure chemical vapor deposition reactor using dichlorosilane

    NASA Astrophysics Data System (ADS)

    Regolini, J. L.; Bensahel, D.; Scheid, E.; Mercier, J.

    1989-02-01

    Selective epitaxial silicon layers have been grown in a reduced pressure (<2 Torr) reactor in the 650-1100 °C temperature range using only dichlorosilane (DCS) gas diluted in hydrogen. The growth rate plotted in Arrhenius coordinates (log G vs 1/T) shows an activation energy of 59 kcal/mol in the 650-800 °C range. A comparison is made between the DCS system and our previous results concerning the SiH4/HCl/H2 system.

  4. Special Equations of State for Methane, Argon, and Nitrogen for the Temperature Range from 270 to 350 K at Pressures up to 30 MPa

    NASA Astrophysics Data System (ADS)

    Wagner, W.; Span, R.

    1993-07-01

    In order to describe the thermodynamic behavior of methane, argon, and nitrogen in the so-called “natural-gas region,” namely, from 270 to 350 K at pressures up to 30 MPa as accurate as possible with equations of a very simple form, new equations of state for these three substances have been developed. These equations are in the form of a fundamental equation in the dimensionless Helmholtz energy; for calculating the pressure or the density, the corresponding equations explicit in pressure are also given. The residual parts of the Helmholtz function representing the behavior of the real gas contain 12 fitted coefficients for methane, 8 for argon, and 7 for nitrogen. The thermodynamic relations between the Helmholtz energy and the most important thermodynamic properties and the needed derivatives of the equations are explicitly given; to assist the user there is also a table with values for computer-program verification. The uncertainties when calculating the density ρ, the speed of sound w, the isobaric specific heat capacity c p, and the isochoric specific heat capacity c v are estimated as follows. For all three substances it is Δρ/ρ≤±0.02 % for p≤ 12 MPa and Δρ/ρ ≤ ±0.05% for higher pressures. For methane it is Δw/w≤±0.02% for p≤10 MPa and Δw/w≤+-0.1% for higher pressures; for argon it is Δw/w≲-0.1 % for p≤ 7 MPa, Δw/w≤±0.3 % for 7 < p≤30 MPa; and for nitrogen it is Δw/w≤±0.1% for p≤1.5 MPa and Δw/w±0.5% for higher pressures. For all three substances it is Δc p/ c p≤±1 % and ΔC v/ C v≤±1 % in the entire range.

  5. EURAMET.M.P-S9 / EURAMET 1170, LOOP2. Comparison in the negative gauge pressure range -950 to 0 hPa

    NASA Astrophysics Data System (ADS)

    Otal, P.; Boineau, F.; Medina, N.; Pražák, D.; Wüthrich, C.; Saxholm, S.; Sabuga, W.; Kocas, I.; Durgut, Y.

    2017-01-01

    This report gives the results of a comparison of pressure standards of seven European National Metrology institutes in the range of negative gauge pressure from -950 hPa to 0 hPa. This comparison was piloted by LNE and was carried out from January 2011 to March 2012. This work is a part of the EURAMET project 1170 and is registered as a supplementary comparison EURAMET.M.P-S9. The transfer standard used was a pressure monitor RPM4 A160Ks manufactured by DH Instruments Inc., with a resolution of 0.1 Pa. The reference values have been determined from the weighted mean of the deviations reported by the participants for each specified pressure. Seventy-three of the seventy-seven values (96%) reported by the laboratories agree with the reference values within the expanded uncertainties with a coverage factor k = 2. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  6. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Vol. 3: Medium-radius leading edge

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6), 60 x 10(exp 6), and 120 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  7. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 2; Small-Radius Leading Edge

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  8. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Vol. 4: Large-radius leading edge

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  9. Creep- and fatigue-resistant, rapid piezoresistive responses of elastomeric graphene-coated carbon nanotube aerogels over a wide pressure range.

    PubMed

    Tsui, Michelle N; Islam, Mohammad F

    2017-01-19

    Lightweight, flexible piezoresistive materials with wide operational pressure ranges are in demand for applications such as human physical activity and health monitoring, robotics, and for functional interfacing between living systems and wearable electronics. Piezoresistivity of many elastomeric foams of polymers and carbon allotropes satisfies much of the required characteristics for these applications except creep and fatigue resistance due to their viscoelasticity, critically limiting the reliability and lifetime of integrated devices. We report the piezoresistive responses from aerogels of graphene-coated single-walled carbon nanotubes (SWCNTs), made using a facile and versatile sol-gel method. Graphene crosslinks the junctions of the underlying random network of SWCNTs, generating lightweight elastomeric aerogels with a mass density of ≈11 mg mL(-1) (volume fraction ≈7.7 × 10(-3)) and a Young's modulus of ≈0.4 MPa. The piezoresistivity of these aerogels spans wide compressive pressures up to at least 120 kPa with sensitivity that exhibit ultrafast temporal responses of <27 ms and <3% delay ratio over 10(4) compressive loading-unloading cycles at rates between 0.1-10 Hz. Most importantly, the piezoresistive responses do not show any creep at least for 1 hour and 80 kPa of compressive static loading. We suggest that the fatigue- and creep-resistant, ultrafast piezoresistive responses of these elastomeric aerogels are highly attractive for use in dynamic and static lightweight, pressure sensing applications such as human activity monitoring and soft robotics.

  10. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    NASA Astrophysics Data System (ADS)

    Koukoulas, Triantafillos; Piper, Ben

    2015-04-01

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  11. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    SciTech Connect

    Koukoulas, Triantafillos Piper, Ben

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  12. Development of acoustically lined ejector technology for multitube jet noise suppressor nozzles by model and engine tests over a wide range of jet pressure ratios and temperatures

    NASA Technical Reports Server (NTRS)

    Atvars, J.; Paynter, G. C.; Walker, D. Q.; Wintermeyer, C. F.

    1974-01-01

    An experimental program comprising model nozzle and full-scale engine tests was undertaken to acquire parametric data for acoustically lined ejectors applied to primary jet noise suppression. Ejector lining design technology and acoustical scaling of lined ejector configurations were the major objectives. Ground static tests were run with a J-75 turbojet engine fitted with a 37-tube, area ratio 3.3 suppressor nozzle and two lengths of ejector shroud (L/D = 1 and 2). Seven ejector lining configurations were tested over the engine pressure ratio range of 1.40 to 2.40 with corresponding jet velocities between 305 and 610 M/sec. One-fourth scale model nozzles were tested over a pressure ratio range of 1.40 to 4.0 with jet total temperatures between ambient and 1088 K. Scaling of multielement nozzle ejector configurations was also studied using a single element of the nozzle array with identical ejector lengths and lining materials. Acoustic far field and near field data together with nozzle thrust performance and jet aerodynamic flow profiles are presented.

  13. A dose ranging study of atenolol in hypertension: fall in blood pressure and plasma renin activity, beta-blockade and steady-state pharmacokinetics.

    PubMed Central

    Ishizaki, T; Oyama, Y; Suganuma, T; Sasaki, T; Nakaya, H; Shibuya, T; Sato, T

    1983-01-01

    The relationship between the oral dosage and plasma concentration of the long-acting cardioselective beta-adrenoceptor blocker atenolol and the antihypertensive response to the the degree of beta-adrenoceptor blockade and change in plasma renin activity (PRA) was evaluated in patients with mild-to-moderate essential hypertension in a double-blind, randomized, between-patient, dose-ranging (25, 50 or 100 mg once daily for 4 weeks) study. The optimum, or minimum, daily dose of atenolol to treat patients with mild-to-moderate hypertension was not clearly identified in this study. A between-treatment comparison did not demonstrate that all blood pressure falls were always less in the 25 mg group than in the other two groups. Calculation of beta-error or the power for the negative results between doses suggested that a large sample size is required to draw a conclusion that no dose-antihypertensive relationship of atenolol exists in the treatment of mild-to-moderate hypertension. A relatively flat plasma concentration-antihypertensive response relationship was observed. Steady-state plasma concentrations of atenolol were dose-related and renal drug clearance was well correlated with individual creatinine clearance. beta-adrenoceptor blockade was better correlated with plasma atenolol concentration. Correlations which were less strong were between plasma drug concentration and change in various blood pressures and between blood pressure falls and beta-adrenoceptor blockade. There was no relationship between the fall in blood pressure and change in PRA. Atenolol appeared to suppress PRA in an all-or-none fashion. PMID:6349668

  14. Solubility Measurements and Predictions of Gypsum, Anhydrite, and Calcite Over Wide Ranges of Temperature, Pressure, and Ionic Strength with Mixed Electrolytes

    NASA Astrophysics Data System (ADS)

    Dai, Zhaoyi; Kan, Amy T.; Shi, Wei; Zhang, Nan; Zhang, Fangfu; Yan, Fei; Bhandari, Narayan; Zhang, Zhang; Liu, Ya; Ruan, Gedeng; Tomson, Mason B.

    2017-02-01

    Today's oil and gas production from deep reservoirs permits exploitation of more oil and gas reserves but increases risks due to conditions of high temperature and high pressure. Predicting mineral solubility under such extreme conditions is critical for mitigating scaling risks, a common and costly problem. Solubility predictions use solubility products and activity coefficients, commonly from Pitzer theory virial coefficients. However, inaccurate activity coefficients and solubility data have limited accurate mineral solubility predictions and applications of the Pitzer theory. This study measured gypsum solubility under its stable phase conditions up to 1400 bar; it also confirmed the anhydrite solubility reported in the literature. Using a novel method, the virial coefficients for Ca2+ and {{SO}}4^{2 - } (i.e., β_{{{{CaSO}}4 }}^{(0)} ,β_{{{{CaSO}}4 }}^{(2)} ,C_{{{{CaSO}}4 }}^{φ }) were calculated over wide ranges of temperature and pressure (0-250 °C and 1-1400 bar). The determination of this set of virial coefficients widely extends the applicable temperature and pressure ranges of the Pitzer theory in Ca2+ and SO 4 2- systems. These coefficients can be applied to improve the prediction of calcite solubility in the presence of high concentrations of Ca2+ and SO 4 2- ions. These new virial coefficients can also be used to predict the solubilities of gypsum and anhydrite accurately. Moreover, based on the derived β_{{{{CaSO}}4 }}^{(2)} values in this study, the association constants of {{CaSO}}4^{( 0 )} at 1 bar and 25 °C can be estimated by K_{{assoc}} = - 2β_{{{{CaSO}}4 }}^{(2)}. These values match very well with those reported in the literature based on other methods.

  15. An Investigation of the Drag and Pressure Recovery of a Submerged Inlet and a Nose Inlet in the Transonic Flight Range with Free-fall Models

    NASA Technical Reports Server (NTRS)

    Selna, James; Schlaff, Bernard A

    1951-01-01

    The drag and pressure recovery of an NACA submerged-inlet model and an NACA series I nose-inlet model were investigated in the transonic flight range. The tests were conducted over a mass-flow-ratio range of 0.4 to 0.8 and a Mach number range of about 0.8 to 1.10 employing large-scale recoverable free-fall models. The results indicate that the Mach number of drag divergence of the inlet models was about the same as that of a basic model without inlets. The external drag coefficients of the nose-inlet model were less than those of the submerged-inlet model throughout the test range. The difference in drag coefficient based on the maximum cross-sectional area of the models was about 0.02 at supersonic speeds and about 0.015 at subsonic speeds. For a hypothetical airplane with a ratio of maximum fuselage cross-sectional area to wing area of 0.06, the difference in airplane drag coefficient would be relatively small, about 0.0012 at supersonic speeds and about 0.0009 at subsonic speeds. Additional drag comparisons between the two inlet models are made considering inlet incremental and additive drag.

  16. Thermodynamic and Structural Properties of liquid Mg2SiO4 at high temperatures and pressure in the range 0-150 GPa from Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Martin, B.; Spera, F.; Nevins, D.

    2006-12-01

    Growing interest in the dynamics of magma oceans and melting within the terrestrial planets highlights the need for developing equations of state (EOS) and transport properties of molten silicate multicomponent solutions at high temperature and pressure. We report Molecular Dynamics simulations of liquid Mg2SiO4, an important component of the upper mantle. An interatomic effective pair potential that includes Coulomb forces, Born exponential electron repulsion and van der Waals dipolar attractive forces was used with parameters from Matsui (Mineral. Mag, 58A, 571-572, 1994). 50 state points were studied in the NEV microcanonical ensemble with 8001 particles (1143 formula units) each for 50 ps (1 fs timestep). Liquid densities range from 2750 kg/m3 to 4500 kg/m3 with temperature and pressure in the range 2000- 4500 K and 0-150 GPa, respectively. Atom trajectories were post-processed to obtain a comprehensive view of nearest neighbor coordination statistics, internal energy, isochoric heat capacity, and tracer diffusivities of Mg, Si and O at all state points. Computed potential energies scale linearly in T^{3/5} along isochors facilitating EOS development by allowing robust interpolation. First nearest neighbor coordination statistics show a continuous decrease in ^{[4]}Si and increase in ^{[5]}Si and ^{[6]}Si with increasing pressure along an isotherm. In distinction, the abundance of ^{[1]}O (O with one nearest Si neighbor) is roughly constant at about 70%, with ^{[0]}O and ^{[2]}O both at about 15% as pressure increases along an isotherm. Oxygen tracer diffusivity is ~6.7x10-9 m2/s at 9.8 GPa and 3088 K. Mg and Si tracer diffusivities 1.7 and 0.8 that of oxygen, respectively. Using the Stokes-Einstein and Eyring relations between shear viscosity and oxygen tracer diffusivity, a shear viscosity of ~2.1x10-3 Pa s is estimated for molten Mg2SiO4 at 10 GPa and 3100 K. Liquid density computed by MD compares very well with liquid density inferred from experimental

  17. Final report on EURAMET.M.P-K4.2010: Key and supplementary comparison of national pressure standards in the range 1 Pa to 15 kPa of absolute and gauge pressure

    NASA Astrophysics Data System (ADS)

    Krajíček, Zdeněk; Bergoglio, Mercede; Jousten, Karl; Otal, Pierre; Sabuga, Wladimir; Saxholm, Sari; Pražák, Dominik; Vičar, Martin

    2014-01-01

    This report describes a EURAMET comparison of five European National Metrology Institutes in low gauge and absolute pressure in gas (nitrogen), denoted as EURAMET.M.P-K4.2010. Its main intention is to state equivalence of the pressure standards, in particular those based on the technology of force-balanced piston gauges such as e.g. FRS by Furness Controls, UK and FPG8601 by DHI-Fluke, USA. It covers the range from 1 Pa to 15 kPa, both gauge and absolute. The comparison in absolute mode serves as a EURAMET Key Comparison which can be linked to CCM.P-K4 and CCM.P-K2 via PTB. The comparison in gauge mode is a supplementary comparison. The comparison was carried out from September 2008 till October 2012. The participating laboratories were the following: CMI, INRIM, LNE, MIKES, PTB-Berlin (absolute pressure 1 kPa and below) and PTB-Braunschweig (absolute pressure 1 kPa and above and gauge pressure). CMI was the pilot laboratory and provided a transfer standard for the comparison. This transfer standard was also the laboratory standard of CMI at the same time, which resulted in a unique and logistically difficult star comparison. Both in gauge and absolute pressures all the participating institutes successfully proved their equivalence with respect to the reference value and all also proved mutual bilateral equivalences in all the points. All the participating laboratories are also equivalent with the reference values of CCM.P-K4 and CCM.P-K2 in the relevant points. The comparison also proved the ability of FPG8601 to serve as a transfer standard. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. Shock Tube and Modeling Study of the H + O2 = OH + O Reaction over a Wide Range of Composition, Pressure, and Temperature

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Rabinowitz, Martin Jay

    1995-01-01

    The rate coefficient of the reaction H + 02 = OH + 0 was determined using OH laser absorption spectroscopy behind reflected shock waves over the temperature range 1050-2500 K and the pressure range 0.7-4.0 atm. Eight mixtures and three stoichiometries were used. Two distinct and independent criteria were employed in the evaluation of k(sub 1). Our recommended expression for k(sub 1) is k(sub 1) = 7.13 x 10(exp 13)exp(-6957 K/T) cm(exp 3)mol(exp -1)s(exp -1) with a statistical uncertainty of 6%. A critical review of recent evaluations of k(sub 1) yields a consensus expression given by k(sub 1) = 7.82 x 10(exp 13)exp(-7105 K/7) cm(exp 3)mol(exp -1)s(exp -1) over the temperature range 960-5300 K. We do not support a non-Arrhenius rate coefficient expression, nor do we find evidence of composition dependence upon the determination of k(sub 1).

  19. Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure-temperature-deformation-time constraints on orogenic models

    NASA Astrophysics Data System (ADS)

    Kali, E.; Leloup, P. H.; Arnaud, N.; MahéO, G.; Liu, Dunyi; Boutonnet, E.; van der Woerd, J.; Liu, Xiaohan; Liu-Zeng, Jing; Li, Haibing

    2010-04-01

    The Ama Drime range located at the transition between the high Himalayan range and south Tibet is a N-S active horst that offsets the South Tibetan Detachment System (STDS). Within the horst, a paragneissic unit, possibly attributed to the upper Himalayan crystalline series, overly the lower Himalayan crystalline series Ama Drime orthogneissic unit containing large metabasite layers and pods that have experienced pressure ≥1.4 GPa. Combining structural analysis with new and published pressure-temperature (P-T) estimates as well as U-Th/Pb, 39Ar/40Ar and (U-Th)/He ages, the P-T-deformation-time (P-T-D-t) paths of the main units within and on both sides of the horst are reconstructed. They imply that N-S normal faults initiated prior to 11 Ma and have accounted for a total exhumation ≤0.6 GPa (22 km) that probably occurred in two phases: the first one until ˜9 Ma and the second one since 6 to 4 Ma at a rate of ˜1 mm/yr. In the Ama Drime unit, 1 to 1.3 GPa (37 to 48 km) of exhumation occurred after partial melting since ˜30 Ma until ˜13 Ma, above the Main Central Trust (MCT) and below the STDS when these two fault systems were active together. The switch from E-W (STDS) to N-S (Ama Drime horst) normal faulting between 13 and 12 Ma occurs at the time of propagation of thrusting from the MCT to the Main Boundary Thrust. These data are in favor of a wedge extrusion or thrust system rather than a crustal flow model for the building of the Himalaya. We propose that the kinematics of south Tibet Cenozoic extension phases is fundamentally driven by the direction and rate of India underthrusting.

  20. Correlation and prediction of thermodynamic properties of nonelectrolytes at infinite dilution in water over very wide temperature and pressure ranges (2000 K and 10 GPa)

    NASA Astrophysics Data System (ADS)

    Plyasunov, Andrey V.

    2015-11-01

    Thermodynamic modeling of natural processes involving deep aqueous fluids requires the knowledge of the values of chemical potentials (the Gibbs energy) of aqueous species. An accurate prediction of thermodynamic properties at high T and P is a strong challenge. It is shown that geochemical models, including the well-known HKF-model, cannot be recommended for an indiscriminate use at supercritical temperatures to predict chemical potentials of nonelectrolytes at infinite dilution in water. Nevertheless, sufficiently accurate predictions of ϕ2∞ (the fugacity coefficients at infinite dilution in water) of aqueous nonelectrolytes up to 2000 K and water densities up to 1500 kg m-3, i.e. pressure up to 10-12 GPa, can be made relying on known theoretical relations valid at various parts of the phase diagram of water. In essence, the method, proposed in this work, consists in the interpolation of properties between two known limits: the first one, at low water densities, is defined by the values of the second virial coefficients for water-solute interactions, and the second, at high water densities - by predictions of the theory of a mixture of hard spheres. The interpolation at moderate temperatures (700-1300 K) and water densities (500-900 kg m-3) is simplified by sufficiently accurate predictions of properties using a semiempirical variant of a corresponding-states principle. Presented examples of the prediction of fugacity coefficients of "gases" at infinite dilution in water and of an aqueous solubility of corundum over very wide ranges of water densities/pressures demonstrate the potential and generality of the proposed methods of evaluating the thermodynamic properties of aqueous neutral compounds.

  1. An in situ experimental study of Zr4+ transport capacity of water-rich fluids in the temperature and pressure range of the deep crust and upper mantle

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn

    2015-12-01

    Throughout the Earth's history, mass transport involved fluids. In order to address the circumstances under which Zr4+ may have been transported in this manner, its solubility behavior in aqueous fluid with and without NaOH and SiO2 in equilibrium with crystalline ZrO2 was determined from 550 to 950 °C and 60 to 1200 MPa. The measurements were carried out in situ while the samples were at the temperatures and pressures of interest. In ZrO2-H2O and ZrO2-SiO2-H2O fluids, the Zr4+ concentration ranges from ≤10 to ~70 ppm with increasing temperature and pressure. Addition of SiO2 to the ZrO2-H2O system does not affect these values appreciably. In these two environments, Zr4+ forms simple oxide complexes in the H2O fluid with ∆H ~ 40 kJ/mol for the solution equilibrium, ZrO2(solid) = ZrO2(fluid). The Zr4+ concentration in aqueous fluid increases about an order of magnitude upon addition of 1 M NaOH, which reflects the formation of zirconate complexes. The principal solution mechanism is ZrO2 + 4NaOH = Na4ZrO4 + 2H2O with ∆H ~ 200 kJ/mol. Addition of both SiO2 and NaOH to ZrO2-H2O enhances the Zr4+ by an additional factor of about 5 with the formation of partially protonated alkali zircon silicate complexes in the fluid. The principal solution mechanism is 2ZrO2 + 2NaOH + 2SiO2 = Na2Zr2Si2O9 + H2O with ∆H ~ 40 kJ/mol. These results, in combination with other published experimental data, imply that fluid released during high-temperature/high-pressure dehydration of hydrous mineral assemblages in the Earth's interior under some circumstances may carry significant concentrations of Zr and probably other high field strength elements (HFSEs). This suggestion is consistent with the occurrence of Zr-rich veins in high-grade metamorphic eclogite and granulite terranes. Moreover, aqueous fluids transported from dehydrating oceanic crust into overlying mantle source rocks of partial melting also may carry high-abundance HFSE of fluids released from dehydrating slabs and

  2. Melting diagrams of Fe-rich alloys determined from synchrotron in situ measurements in the 15-23 GPa pressure range

    NASA Astrophysics Data System (ADS)

    Andrault, D.; Bolfan-Casanova, N.; Ohtaka, O.; Fukui, H.; Arima, H.; Fialin, M.; Funakoshi, K.

    2009-05-01

    We report in situ observations of the melting behaviour of iron alloyed with 10-20 at.% C, O, S, or Si at pressures between 15 and 24 GPa, using X-ray diffraction in a multi-anvil press (SPring8). The degree of partial melting of the iron alloys has been quantified from analysis of the intensity of diffuse X-ray scattering of molten iron as a function for decreasing temperature with a 50° step. Coupled with microanalysis of recovered samples, the in situ observations bring direct constraints on shape and positions of liquidus and solidus curves in the melting diagrams. For the Fe-S system, our results are in good agreement with previous works. We observe that the eutectic temperature increases from 1023 K at 15 GPa to 1123 K at 20.6 GPa and that the eutectic composition decreases with increases pressure. Concerning the Fe-C system the eutectic temperature of 1460 K at 20.7 GPa falls slightly below a linear extrapolation of the previous work. In the case of the Fe-Ni-Si system and the Fe-O system, we find eutectic temperatures significantly lower than previously reported. For the two systems, both eutectic temperature and composition increase with increasing pressure in the 15-20 GPa range. Compare to previous work, we observe eutectic compositions (a) richer in light elements in the Fe-O system, with 9.0 and 10.5 wt% O at 16.5 and 20.5 GPa, respectively, and (b) poorer in the Fe-Ni-Si system with 11.5 wt% Si at 16.9 GPa. We confirm very high solubility of Si and C with solid iron, and report a Si partitioning coefficient of 1.3(2) at 16.9 GPa. The S and O solubility in solid iron appears very small. Therefore, both S and/or O could explain density jumps between liquid outer and solid inner parts of planetary cores, at least up to ˜25 GPa.

  3. Speed-of-Sound Measurements in (Argon + Carbon Dioxide) over the Temperature Range from (275 to 500) K at Pressures up to 8 MPa.

    PubMed

    Wegge, Robin; McLinden, Mark O; Perkins, Richard A; Richter, Markus; Span, Roland

    2016-08-01

    The speed of sound of two (argon + carbon dioxide) mixtures was measured over the temperature range from (275 to 500) K with pressures up to 8 MPa utilizing a spherical acoustic resonator. The compositions of the gravimetrically prepared mixtures were (0.50104 and 0.74981) mole fraction carbon dioxide. The vibrational relaxation of pure carbon dioxide led to high sound absorption, which significantly impeded the sound-speed measurements on carbon dioxide and its mixtures; pre-condensation may have also affected the results for some measurements near the dew line. Thus, in contrast to the standard operating procedure for speed-of-sound measurements with a spherical resonator, non-radial resonances at lower frequencies were taken into account. Still, the data show a comparatively large scatter, and the usual repeatability of this general type of instrument could not be realized with the present measurements. Nonetheless, the average relative combined expanded uncertainty (k = 2) in speed of sound ranged from (0.042 to 0.056)% for both mixtures, with individual state-point uncertainties increasing to 0.1%. These uncertainties are adequate for our intended purpose of evaluating thermodynamic models. The results are compared to a Helmholtz energy equation of state for carbon capture and storage applications; relative deviations of (-0.64 to 0.08)% for the (0.49896 argon + 0.50104 carbon dioxide) mixture, and of (-1.52 to 0.77)% for the (0.25019 argon + 0.74981 carbon dioxide) mixture were observed.

  4. Report on key comparison COOMET.AUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 Hz to 10 kHz

    NASA Astrophysics Data System (ADS)

    Dobrowolska, D.; Kosterov, A.

    2016-01-01

    This is the final report for regional key comparison COOMET.AUV.A-K5 on the pressure calibration of laboratory standard microphones in the frequency range from 2 Hz to 10 kHz. Two laboratories—Central Office of Measures (GUM)—the national metrology institute for Poland and the State Enterprise Scientific-Research Institute for Metrology of Measurement and Control Systems (DP NDI Systema)— the designated institute for acoustics in Ukraine took part in this comparison with the GUM as a pilot. One travelling type LS1P microphone was circulated to the participants and results in the form of regular calibration certificates were collected. The results of the DP NDI Systema obtained in this comparison were linked to the CCAUV.A-K5 key comparison through the joint participation of the GUM. The degrees of equivalence were computed for DP NDI Systema with respect to the CCAUV.A-K5 key comparison reference value. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Final report on key comparison CCAUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 Hz to 10 kHz

    NASA Astrophysics Data System (ADS)

    Avison, Janine; Barham, Richard

    2014-01-01

    This document and the accompanying spreadsheets constitute the final report for key comparison CCAUV.A-K5 on the pressure calibration of laboratory standard microphones in the frequency range from 2 Hz to 10 kHz. Twelve national measurement institutes took part in the key comparison and the National Physical Laboratory piloted the project. Two laboratory standard microphones IEC type LS1P were circulated to the participants and results in the form of regular calibration certificates were collected throughout the project. One of the microphones was subsequently deemed to have compromised stability for the purpose of deriving a reference value. Consequently the key comparison reference value (KCRV) has been made based on the weighted mean results for sensitivity level and for sensitivity phase from just one of the microphones. Corresponding degrees of equivalence (DoEs) have also been calculated and are presented. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  6. Pressurized liquid extraction with water as a tool for chemical and toxicological screening of soil samples at army live-fire training ranges.

    PubMed

    Ragnvaldsson, D; Brochu, S; Wingfors, H

    2007-04-02

    Significant discrepancies in the results of risk assessments based on chemical and toxicity analyses of soils may arise through differences in the efficiency of the extraction or leaching methods used. A rapid technique that may be used in the screening phase of live-fire training ranges and suitable for extracting explosive residues is pressurized liquid extraction (PLE) with water. Therefore, PLE and the commonly used batch leaching method EN-124 57-2 were compared for their utility to extract specific residues from soil samples collected from the Canadian Forces Base (CFB) Petawawa, Ontario. After extraction the cytotoxicity of the samples were assessed in the L-929 growth inhibition assay. The PLE method yielded extracts suitable for direct use in the toxicity assay within 20 min as compared to 24h for the batch leaching method. Analysis of the extracts showed that the PLE water extracts tended to give higher recoveries of explosive residues and the resulting exposure concentrations were confirmed by higher cytotoxicities. Furthermore, gas chromatography-mass spectrometry analyses showed that the samples contained significant amounts of several munition-related stabilizers and plasticizers of toxicological significance in addition to the analysed explosive residues. In conclusion, PLE using water is a promising extraction technique for both chemical and toxicological screening of soil samples from areas that may be contaminated with explosive residues.

  7. Studies of local and intermediate range structure in crystalline and amorphouse materials at high pressure using high-energy x-rays.

    SciTech Connect

    Ehm, L.; Antao, M.; Chen, J.; Locke, D. R.; Michel, F. M.; Martin, C. D.; Yu, T.; Lee, P. L.; Chupas, P. J.; Shastri, S. D.; Guo, Q.; Parise, J. B.; Stony Brook Univ.; BNL

    2007-06-01

    The method of high-energy total elastic X-ray scattering to determine the atomic structure of nanocrystalline, highly disordered, and amorphous materials is presented. The current state of the technique, its potential, and limitations are discussed with two successful studies on the pressure induced phase transition in mackinawite (FeS) and the high-pressure behavior of liquid gallium.

  8. Studies of Local and Intermediate Range Structure in Crystalline and Amorphous Materials at High Pressure Using High-Energy X-rays

    SciTech Connect

    Ehm,L.; Antao, S.; Chen, J.; Locke, D.; Michel, F.; Martin, D.; Yu, T.; Parise, J.; Lee, P.; et al.

    2007-01-01

    The method of high-energy total elastic X-ray scattering to determine the atomic structure of nanocrystalline, highly disordered, and amorphous materials is presented. The current state of the technique, its potential, and limitations are discussed with two successful studies on the pressure induced phase transition in mackinawite (FeS) and the high-pressure behavior of liquid gallium.

  9. Phase diagram of the selenium-sulfur system in the pressure range 1 × 10-5-1 × 10-1 MPa

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Burabaeva, N. M.; Trebukhov, S. A.; Ersaiynova, A. A.

    2016-11-01

    The partial pressures of the components in the saturated vapor of the Se-S system were determined and presented as the temperature-concentration dependences. Based on these data, the boundaries of the melt-vapor phase transition at atmospheric pressure and in vacuum (1350, 100, and 10 Pa) were calculated. A complete phase diagram was constructed, which included the vapor-liquid equilibrium fields at atmospheric and low pressures, whose boundaries allowed us to determine the behavior of sulfur and selenium during distillation separation.

  10. Identification of low and high frequency ranges for heart rate variability and blood pressure variability analyses using pharmacological autonomic blockade with atropine and propranolol in swine.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding autonomic nervous system functioning, which mediates behavioral and physiological responses to stress, offers great potential for evaluation of farm animal stress and welfare. Evaluation of heart rate variability (HRV) and blood pressure variability (BPV), using time and frequency doma...

  11. Aqueous solubility (in the range between 298.15 and 338.15 K), vapor pressures (in the range between 10(-5) and 80 Pa) and Henry's law constant of 1,2,3,4-dibenzanthracene and 1,2,5,6-dibenzanthracene.

    PubMed

    Abou-Naccoul, Ramy; Mokbel, Ilham; Bassil, Georgio; Saab, Joseph; Stephan, Khaled; Jose, Jacques

    2014-01-01

    Aqueous solubility and vapor pressures of 1,2,3,4-dibenzanthracene and 1,2,5,6-dibenzanthracene were determined using dynamic saturation methods. For the two isomers, aqueous solubility is in the range between 10(-10) and 10(-2) in molar fraction corresponding to temperature between 298.15 and 338.15K. Vapor pressures of the pure solutes range from 10(-5) to 80 Pa. Prior to the study of the two dibenzanthracenes and in order to check the experimental procedures, solubility of fluoranthene (between 298 and 338 K) and vapor pressures of phenanthrene and fluoranthene (between 300 and 470 K) were measured. From aqueous solubility data coupled with the vapor pressures of the pure solutes, partition coefficient air-water, KAW, and Henry's constant, KH, of environmental relevance were calculated.

  12. Final report on key comparison EURAMET.M.P-K13 in the range 50 MPa to 500 MPa of hydraulic gauge pressure

    NASA Astrophysics Data System (ADS)

    Kocas, I.; Sabuga, W.; Bergoglio, M.; Eltaweel, A.; Korasie, C.; Farar, P.; Setina, J.; Waller, B.; Durgut, Y.

    2015-01-01

    The regional key comparison EURAMET.M.P-K13 for pressure measurements in liquid media from 50 MPa to 500 MPa was piloted by the TÜBİTAK UME Pressure Group Laboratories, Turkey. The transfer standard was a DH-Budenberg pressure balance with a free deformation piston-cylinder unit of 2 mm2 nominal effective area. Six laboratories from the EURAMET region, namely PTB, INRIM, SMU, IMT, NPL and UME, and two laboratories from the AFRIMETS region, NIS and NMISA participated in this comparison. Participant laboratories and countries are given in the bottom of the page. PTB participated in this comparison to provide a link to corresponding 500 MPa CCM key comparison CCM.P-K13. The results of all participants excepting NMISA and NPL were found to be consistent with the reference value of the actual comparison and of CCM.P-K13 within their claimed uncertainties (k = 2), at all pressures. Compared in pairs all laboratories with exception of NPL and NMISA demonstrate their agreement with each other within the expanded uncertainties (k = 2) at all pressures. The results are therefore considered to be satisfactory. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. A range-free method to determine antoine vapor-pressure heat transfer-related equation coefficients using the Boubaker polynomial expansion scheme

    NASA Astrophysics Data System (ADS)

    Koçak, H.; Dahong, Z.; Yildirim, A.

    2011-05-01

    In this study, a range-free method is proposed in order to determine the Antoine constants for a given material (salicylic acid). The advantage of this method is mainly yielding analytical expressions which fit different temperature ranges.

  14. Measurement of the viscosity of HFC 134a in the temperature range 213-423 K and at pressures up to 30 MPa. [HCF 134a (1,1,1,2-tetrafluoroethane)

    SciTech Connect

    Okubo, T.; Hasuo, T.; Nagashima, A. )

    1992-01-01

    The viscosity of HFC 134a was measured over the range of temperatures from 213 to 423 K and pressures up to 30 MPa. The experimental method was that of the capillary flow and a closed-circuit high-pressure viscometer was used. The sample fluid was circulated through a stainless-steel capillary from a high-pressure plunger system. The constant of the capillary was calibrated against the reference standard, pure water. The viscosity of the sample was calculated from the flow rate, the pressure drop at the capillary, and the capillary constant using the Hagen-Poiseuille equation. Measurements were made at a total of 39 points on eight isotherms. The measurement uncertainty of the viscosities was estimated as [+-] 1.3%. Based on the present results, an empirical equation for the viscosity of HFC 134a has been correlated. The viscosity on the saturation line calculated by the equation compares with experimental viscosity data in other previous studies. There are rather considerable differences among these measurements. Comparisons of the data for HFC 134a with those for CFC 12 show that the viscosity of HFC 134a is similar in magnitude to that of CFC 12 at temperatures around 300 K but is higher at lower temperatures and lower at higher temperatures. The pressure gradients for these two corresponding substances are similar over the entire temperature range. 8 refs., 7 figs., 1 tab.

  15. Intercomparison of Primary Manometers in the Range 30 kPa to 110 kPa: Pressure Balance at the LNE and Mercury Manometer at the VNIIFTRI

    NASA Astrophysics Data System (ADS)

    Astrov, D. N.; Guillemot, J.; Legras, J. C.; Zakharov, A. A.

    1994-01-01

    An intercomparison between the primary pressure balance of the LNE and a mercury manometer developed at the All-Russian Research Institute for Physical, Technical and Radio-Technical Measurements (VNIIFTRI) for purposes of temperature measurement was undertaken in 1990. A short description of the two standards is given. The transfer standard was a pressure balance equipped with a piston-cylinder assembly that has the same characteristics as the standard of the Laboratoire National d'Essais (LNE). The results obtained from 30 kPa to 110 kPa showed a systematic relative difference of 12 parts in 106 between the two standards. This difference is significant, as the combined relative uncertainty at 1 σ level is estimated to be 4,2 parts in 106. These results are analysed in this paper.

  16. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range

    NASA Astrophysics Data System (ADS)

    Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  17. Pressure activated stability-bypass-control valves to increase the stable airflow range of a Mach 2.5 inlet with 40 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Sanders, B. W.

    1974-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. The inlet stable airflow range provided by various stability-bypass entrance configurations in alternate combination with several stability-bypass exit controls was determined for both steady-state conditions and internal transient pulses. Transient results were also obtained for the inlet with a choke point at the diffuser exit. Instart angles of attack were determined for the various stability-bypass entrance configurations. The response of the inlet-coldpipe system to internal and external oscillating disturbances was determined. Poppet valves at the stability-bypass exit provided an inlet stable airflow range of 28 percent or greater at all static and transient conditions.

  18. Effects of Pressure on the Short-range Structure and Speciation of Fluid phases in Silicate Melts: Insights from Multi-nuclear NMR and X-ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Kim, E.; Fei, Y.; Tschauner, O. D.; Mosenfelder, J. L.; Asimow, P. D.; Lee, S.

    2013-12-01

    The atomic structures of fluid-bearing silicate liquids at high pressure are essential to understand the changes in the melt properties in earth's interior and to yield insights into the deep carbon-hydrogen cycle. Despite the importance, structural changes in silicate liquids (with/without fluid phases) under compression have not been fully understood. The recent breakthroughs in NMR and X-ray Raman scattering (XRS) allowed us to explore the detailed effect of pressure on the degree of melt polymerization and speciation of fluid phases in oxide glasses with varying composition (e.g. Lee, Rev. Min. Geochem. 2013 accepted; Proc. Nat. Aca. Sci. 2011, 108 6847; Kim and Lee, Geochim. Cosmochim Acta. In press; Lee et al. Geophys. Res. Letts. 2012, 39 5306). Here, we present the key recent results of structure of silicate glasses under compression. In contrast to an expected complex composition-dependence in melt-densification, the experimental results of diverse silicate melts demonstrate a simple trend in pressure-induced decreases in non-bridging oxygen content that can be modeled with a narrow range of network flexibility upon compression. NMR results of model basaltic glasses showed that both dynamic and static compression lead to an increase in the fraction of highly coordinated Al: whereas statically compressed basaltic glass at 5 GPa leads to the formation of ~40% [5,6]Al, dynamically compressed basaltic glass at peak pressure of ~ 20 GPa consists only of ~3-4% of [5]Al. The threshold pressure for Al coordination transformation in the basaltic glass upon dynamic compression is estimated to ~ 15 GPa, providing a path-dependent Al-coordination transformation. The first high-resolution 13C MAS NMR spectrum for carbon-bearing enstatite at 1.5 GPa revealed the presence of molecular CO2 in the lattice, providing a new solubility mechanism of carbon into chain silicates. 13C NMR spectra for albite glasses quenched from melts at high pressure up to 6 GPa showed that

  19. A multipurpose ultra-high vacuum-compatible chamber for in situ X-ray surface scattering studies over a wide range of temperature and pressure environment conditions

    NASA Astrophysics Data System (ADS)

    Ferrer, P.; Rubio-Zuazo, J.; Heyman, C.; Esteban-Betegón, F.; Castro, G. R.

    2013-03-01

    A low/high temperature (60-1000K) and pressure (10-10-3x103 mbar) "baby chamber", specially adapted to the grazing-incidence X-ray scattering station, has been designed, developed and installed at the Spanish CRG BM25 SpLine beamline at European Synchrotron Radiation Facility. The chamber has a cylindrical form with 100 mm of diameter, built on a 360° beryllium nipple of 150 mm height. The UHV equipment and a turbo pump are located on the upper part of the chamber to leave a wide solid angle for exploring reciprocal space. The chamber features 4 CF16 and 5 CF40 ports for electrical feed through and leak valves, ion gun, etc. The heat exchanger is a customized compact LN2 (or LHe) continuous flow cryostat. The sample is mounted on a Mo support on the heat exchanger, which has in the back side a BORALECTRIC® Heater Elements. Experiments of surfaces/interfaces/ multilayer materials, thin films or single crystals in a huge variety of environments can be performed, also in situ studies of growth or evolution of the samples. Data measurement can be collected with a punctual and a bi-dimensional detector, being possible to simultaneously use them.

  20. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10−6 g m−2 day−1 range

    PubMed Central

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-01-01

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10−6 g m−2 day−1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element. PMID:27748431

  1. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10(-6) g m(-2) day(-1) range.

    PubMed

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-10-17

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10(-6) g m(-2) day(-1) that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

  2. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10‑6 g m‑2 day‑1 range

    NASA Astrophysics Data System (ADS)

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-10-01

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10‑6 g m‑2 day‑1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

  3. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    SciTech Connect

    Curry, J. J.; Henins, A.; Hardis, J. E.; Estupinan, E. G.; Lapatovich, W. P.; Shastri, S. D.

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  4. Detection of dimethylamine in the low pptv range using nitrate chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry

    NASA Astrophysics Data System (ADS)

    Simon, Mario; Heinritzi, Martin; Herzog, Stephan; Leiminger, Markus; Bianchi, Federico; Praplan, Arnaud; Dommen, Josef; Curtius, Joachim; Kürten, Andreas

    2016-05-01

    Amines are potentially important for atmospheric new particle formation, but their concentrations are usually low with typical mixing ratios in the pptv range or even smaller. Therefore, the demand for highly sensitive gas-phase amine measurements has emerged in the last several years. Nitrate chemical ionization mass spectrometry (CIMS) is routinely used for the measurement of gas-phase sulfuric acid in the sub-pptv range. Furthermore, extremely low volatile organic compounds (ELVOCs) can be detected with a nitrate CIMS. In this study we demonstrate that a nitrate CIMS can also be used for the sensitive measurement of dimethylamine (DMA, (CH3)2NH) using the NO3-•(HNO3)1 - 2• (DMA) cluster ion signal. Calibration measurements were made at the CLOUD chamber during two different measurement campaigns. Good linearity between 0 and ˜ 120 pptv of DMA as well as a sub-pptv detection limit of 0.7 pptv for a 10 min integration time are demonstrated at 278 K and 38 % RH.

  5. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 1; Sharp Leading Edge; [conducted in the Langley National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 36 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at a Reynolds number of 6 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  6. Technical note: Detection of dimethylamine in the low pptv range using nitrate Chemical Ionization-Atmospheric Pressure interface-Time Of Flight (CI-APi-TOF) mass spectrometry

    NASA Astrophysics Data System (ADS)

    Simon, M.; Heinritzi, M.; Herzog, S.; Leiminger, M.; Bianchi, F.; Praplan, A.; Dommen, J.; Curtius, J.; Kürten, A.

    2015-12-01

    Amines are potentially important for atmospheric new particle formation and therefore the demand for highly sensitive gas phase amine measurements has emerged in the last several years. Nitrate Chemical Ionization Mass Spectrometry (CIMS) is routinely used for the measurement of gas phase-sulfuric acid in the sub-pptv range. Furthermore, Extremely Low Volatile Organic Compounds (ELVOCs) can be detected with a nitrate CIMS. In this study we demonstrate that a nitrate CIMS can also be used for the sensitive measurement of dimethylamine ((CH3)2NH, DMA) using the NO3-(HNO3)1-2(DMA) cluster ion signals. This observation was made at the CLOUD aerosol chamber, which was also used for calibration measurements. Good linearity between 0 and ~120 pptv of DMA as well as a sub-pptv detection limit of 0.7 pptv for a 10 min integration time are demonstrated at 278 K and 38 % RH.

  7. Validation of the A&D BP UA-651 device with a wide-range cuff for home blood pressure measurement according to the European Society of Hypertension International Protocol revision 2010.

    PubMed

    Benetti, Elisabetta; Fania, Claudio; Palatini, Paolo

    2015-06-01

    The aim of this study was to determine the accuracy of the A&D BP UA-651 device coupled to a wide-range cuff for home blood pressure (BP) measurement according to the International Protocol of the European Society of Hypertension. The device was evaluated in 33 patients. The mean age of the patients was 56.5±15.1 years. The mean systolic BP was 144.3±23.8 mmHg (range 88 : 196), the mean diastolic BP was 87.5±15.8 mmHg (range 38 : 132), and the mean arm circumference was 29.0±3.4 cm (range 22 : 36). The protocol requirements were followed precisely. The device passed all requirements, fulfilling the standards of the protocol. On average, the device overestimated the systolic BP by 0.7±3.4 mmHg and underestimated the diastolic BP by 0.8±3.6 mmHg. The measurement error was unrelated to the patient's arm circumference. These data show that the A&D BP UA-651 device coupled to a wide-range cuff fulfilled the requirements for validation by the International Protocol over a wide range of arm circumferences and can be recommended for clinical use in the adult population.

  8. Final report of supplementary comparison AFRIMETS.AUV.A-S1: primary pressure calibration of LS2aP microphones according to IEC 61094-2, over the frequency range 1 Hz to 31.5 kHz.

    NASA Astrophysics Data System (ADS)

    Nel, R.; Barrera-Figueroa, S.; Dobrowolska, D.; Defilippo Soares, Z. M.; Maina, A. K.; Hof, C.

    2016-01-01

    This is the final report of the AFRIMETS.AUV-S1 comparison of the pressure sensitivity, modulus and phase, of LS2aP microphones in the frequency range 1 Hz to 31.5 kHz in accordance with IEC 61094-2. Six national metrology institutes from three different regional metrology organisations participated in the comparison for which two LS2aP microphones were circulated simultaneously to all the participants in a hybrid-star configuration. The comparison reference values were calculated as the weighted mean for modulus and phase for each individual microphone. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Passive Ranging

    DTIC Science & Technology

    1988-08-01

    1981). 5. R. Courant and D. Hilbert, Methods of Mathematical Physics , Vol. I, English ed., * Interscience, New York, 1953. 32 32 APPENDIX A CALCULATION...K Courant and D. Hilbert, Methods of Mathematical Physics , Vol. I, English ed., * Interscience, New York, 1953. A-8 APPENDIX B * RANGING ACCURACY IN

  10. Thermodynamic description of equilibria in mixed fluids (H 2O-non-polar gas) over a wide range of temperature (25-700°C) and pressure (1-5000 bars)

    NASA Astrophysics Data System (ADS)

    Akinfiev, Nikolai; Zotov, Alexander

    1999-07-01

    A new method for computing complicated equilibria in hydrothermal mixed fluids, H 2O-non-polar gas, is proposed. The computation algorithm is based on the electrostatic approach for the interaction between aqueous species and H 2O. The approach uses the SUPCRT92 database and the HKF format and may be considered as an application of the revised HKF model for mixed H 2O-non-polar gas fluids. Thermodynamic properties of dissolved gases at high temperatures and pressures are calculated using the Redlich-Kwong approach. Dielectric permittivity of the mixed solvent is estimated by the modified Kirkwood equation. The proposed approach is validated using available experimental data on the dissociation constants of H 2O and NaCl and the solubility of both covalent and ion crystals (SiO 2, AgCl, Ag 2SO 4, Ca(OH) 2, CaCO 3) in H 2O-non-polar component (dioxane, Ar, CO 2) mixtures. Predicted and experimental data are in close agreement over a wide range of P- T- xgas conditions (up to 500°C, 4 kbar and 0.25-0.3 mole fraction of non-polar gas). It is also shown how the computation method can be applied to estimate the Born parameters of aqueous species. The proposed approach enables not only examination of isolated reactions, but the study of equilibria of whole systems. Thus, it allows modelling of mixed natural fluids.

  11. Long-range magnetic order in the Heisenberg pyrochlore antiferromagnets G d2G e2O7 and G d2P t2O7 synthesized under high pressure

    NASA Astrophysics Data System (ADS)

    Li, X.; Cai, Y. Q.; Cui, Q.; Lin, C. J.; Dun, Z. L.; Matsubayashi, K.; Uwatoko, Y.; Sato, Y.; Kawae, T.; Lv, S. J.; Jin, C. Q.; Zhou, J.-S.; Goodenough, J. B.; Zhou, H. D.; Cheng, J.-G.

    2016-12-01

    G d2S n2O7 and G d2T i2O7 have been regarded as good experimental realizations of the classical Heisenberg pyrochlore antiferromagnet with dipolar interaction. The former was found to adopt the Palmer-Chalker state via a single, first-order transition at TN≈1 K , while the latter enters a distinct, partially ordered state through two successive transitions at TN 1≈1 K and TN 2= 0.75 K . To shed more light on their distinct magnetic ground states, we have synthesized two more gadolinium-based pyrochlore oxides, G d2G e2O7 and G d2P t2O7 , under high-pressure conditions and performed detailed characterizations via x-ray powder diffraction, dc and ac magnetic susceptibility, and specific heat measurements down to 100 mK. We found that both compounds enter a long-range antiferromagnetically ordered state through a single, first-order transition at TN= 1.4 K for G d2G e2O7 and TN= 1.56 K for G d2P t2O7 , with the specific heat anomaly similar to that of G d2S n2O7 rather than G d2T i2O7 . Interestingly, the low-temperature magnetic specific heat values of both G d2G e2O7 and G d2P t2O7 were found to follow nicely the T3 dependence as expected for a three-dimensional antiferromagnet with gapless spin-wave excitations. We have rationalized the enhancement of TN in terms of the reduced Gd-Gd distances for the chemically pressurized G d2G e2O7 and the addition of extra superexchange pathways through the empty Pt -eg orbitals for G d2P t2O7 . Our current study has expanded the family of gadolinium-based pyrochlores and permits us to achieve a better understanding of their distinct magnetic properties in a more comprehensive perspective.

  12. Neonatal Pressure Ulcer Prevention.

    PubMed

    Scheans, Patricia

    2015-01-01

    The incidence of pressure ulcers in acutely ill infants and children ranges up to 27 percent in intensive care units, with a range of 16-19 percent in NICUs. Anatomic, physiologic, and developmental factors place ill and preterm newborns at risk for skin breakdown. Two case studies illustrate these factors, and best practices for pressure ulcer prevention are described.

  13. Dynamic Pressure Calibration Standard

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Cate, K. H.; Young, S. D.

    1986-01-01

    Vibrating columns of fluid used to calibrate transducers. Dynamic pressure calibration standard developed for calibrating flush diaphragm-mounted pressure transducers. Pressures up to 20 kPa (3 psi) accurately generated over frequency range of 50 to 1,800 Hz. System includes two conically shaped aluminum columns one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with viscous fluid. Each column mounted on armature of vibration exciter, which imparts sinusoidally varying acceleration to fluid column. Signal noise low, and waveform highly dependent on quality of drive signal in vibration exciter.

  14. Simplified manual fabrication of cubic-zirconia gem anvils for extended energy-range spectroscopic studies to routine high pressures of 100-150 kbar (10-15 GPa)

    NASA Astrophysics Data System (ADS)

    Jackson, N. R.; Erasmus, R. M.; Hearne, G. R.

    2010-07-01

    Methodology has been developed so as to attain routine extreme conditions as high as 10-15 GPa in a gem anvil optical pressure cell using hand (manual) processed gem anvils. The anvils polished by a simplified hand held tool are inexpensive single crystal cubic zirconia (CZ) gems that have various optical advantages over diamond anvils. Appreciable pressures are attained with culet and corresponding sample cavity dimensions that are relatively convenient to load with sample material. Some technical details are provided as regards the simplified manual fabrication process, thus emphasizing the relative ease and cost effectiveness of the hand polishing technique for fabricating such high pressure anvils. Raman spectroscopy measurements, in triple subtractive mode with a confocal pinhole geometry, are used to exemplify the usefulness of the CZ gem anvil cell methodology in pressure tuning experiments. This is particularly convenient for conventional low wave-number (lattice mode regime) Raman high pressure studies, which have not been reported previously in this context. Various other applications of such anvils are suggested.

  15. Peer Pressure

    MedlinePlus

    ... Surgery? A Week of Healthy Breakfasts Shyness Peer Pressure KidsHealth > For Teens > Peer Pressure A A A ... for the school play. previous continue When the Pressure's On Sometimes, though, the stresses in your life ...

  16. Blood pressure

    MedlinePlus Videos and Cool Tools

    Normal blood pressure is important for proper blood flow to the body's organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart ...

  17. Final report on the key comparison, CCM.P-K15 in the pressure range from 1.0 × 10-4 Pa to 1.0 Pa

    NASA Astrophysics Data System (ADS)

    Wuethrich, Christian; Arai, Kenta; Bergoglio, Mercede; Fedchak, James A.; Jousten, Karl; Hong, Seung Soo; Torres Guzman, Jorge

    2017-01-01

    The comparison CCM.P-K15 is a key comparison in pressure involving six laboratories in three regional metrological organizations (RMO). The measurand of the comparison is the accommodation coefficient of two spinning rotating gauge characterized in nitrogen from 0.1 mPa up to 1.0 Pa. The two transfer standards were circulated from November 2009 until March 2011. The circulation consisted of three loops, one for each RMO, and a new calibration by the pilot be-tween each loop. The stability of one of the transfer standards was poor and was worse than expected based on the previous history of the transfer standard while the other transfer standard demonstrated good stability while circulated in Europe and America and a fair stability while circulated in Asia. All the participants demonstrated equivalence to the definition of pressure in their respective primary standards. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. Force and pressure characteristics for a series of nose inlets at Mach numbers from 1.59 to 1.99 V : analysis and comparison on basis of ram-jet aircraft range and operational characteristics

    NASA Technical Reports Server (NTRS)

    Howard, E; Luidens, R W; Allen, J L

    1951-01-01

    Performance of four experimentally investigated axially symmetric spike-type nose inlets is compared on basis of ram-jet-engine aircraft range and operational problems. At design conditions, calculated peak engine efficiencies varied 25 percent from the highest value which indicates importance of inlet design. Calculations for a typical supersonic aircraft indicate possible increase in range if engine is flown at moderate angle of attack and result in engine lift utilized. For engines with fixed exhaust nozzle, propulsive thrust increases with increasing heat addition in subcritical flow region in spite of increasing additive drag. For the perforated inlet there is a range of increasing total-temperature ratios in subcritical flow region that does not yield an increase in propulsive thrust. Effects of inlet characteristics on speed stability of a typical aircraft for three types of fuel control is discussed.

  19. Pressure Sores

    MedlinePlus

    Pressure sores are areas of damaged skin caused by staying in one position for too long. They ... wheelchair, or are unable to change your position. Pressure sores can cause serious infections, some of which ...

  20. Barometric pressure

    NASA Technical Reports Server (NTRS)

    Billings, C. E.

    1973-01-01

    The effects of alterations in barometric pressure on human beings are described. Human tolerances for gaseous environments and low and high barometric pressure are discussed, including effects on specific areas, such as the ear, lungs, teeth, and sinuses. Problems due to trapped gas within the body, high dynamic pressures on the body, and blasts are also considered.

  1. Mesoscale Molecular Dynamics of Geomaterials: the Glass Transition, Long-Range Structure of Amorphous Silicates and Relation between Structure, Dynamics and Properties of geomaterials at elevated Temperature and Pressure

    SciTech Connect

    Frank Spera

    2006-07-31

    Objectives: Our aims were (1) Large particle-number Molecular Dynamics (MD) simulations of molten silicate and aluminosilicate geomaterials (e.g., CaAl{sub 2}Si{sub 2}O{sub 8}, MgSiO{sub 3}, Mg{sub 2}SiO{sub 4}) with emphasis on understanding the connection between atomic structure and properties at temperatures and pressures characteristic of Earth's mantle (2) Study of the transport properties and equations of state for silicate liquids based on the MD results (3) Development of geochemical models for the evolution of crustal magma bodies undergoing simultaneous assimilation, fractional crystallization, periodic recharge and periodic eruption and application to magmatic systems (4) Study of current-day rates of generation and eruption of magma on earth.

  2. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  3. Final report on the supplementary comparison, EURAMET.M.P-S7 (EURAMET project 1040) in the pressure range from 1.10-4 Pa to 0.9 Pa

    NASA Astrophysics Data System (ADS)

    Wüthrich, C.; Alisic, S.; Bergoglio, M.; Saxholm, S.; Lefkopoulos, A.; Pražák, D.; Setina, J.

    2016-01-01

    Many laboratories within EURAMET started a calibration service in medium and high vacuum recently and did not have the opportunity to take part to a comparison before. In order to assess the uncertainty budget and the quality of the measurement of these laboratories, an intercomparison, EURAMET 1040 registered as EURAMET.M.P-S7, from 0.1 mPa to 0.9 Pa has been organised. The participants are the CMI (Czech republic), EIM (Greece), IMT (Slovenia), INRIM (Italy), IMBIH (Bosnia Herzegovinia) and MIKES (Finland) while METAS (Switzerland) is pilot laboratory. Three laboratories (INRIM, CMI and METAS) involved in this work have a primary definition of the pressure. Two spinning rotor gauges and a control electronic are used as transfer standard. The circulation of the transfer standard is organised as a succession of loops with a measurement by the pilot between each participant. A reference value has been determined based on a weighted mean of the results of the primary laboratories. All the participants have demonstrated their equivalence in the definition of the pressure. This comparison has been used as pilot comparison for the CCM.P-K14 project which covers the same scope with similar transfer standards. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. Assessment of Modeled Received Sound Pressure Levels and Movements of Satellite-Tagged Odontocetes Exposed to Mid-Frequency Active Sonar at the Pacific Missile Range Facility: February 2011 Through February 2013

    DTIC Science & Technology

    2014-05-30

    PMRF so that animal movements and diving behavior could be measured both before and during sonar use. PMRF PAM data and tag data were used in this...initial analysis to estimate exposure levels for tagged animals and determine whether any large-scale movements of these animals may have occurred in...range hydrophones), ship positions at time of transmissions (provided by PMRF) and animal locations (determined from satellite tag positions) allowed

  5. Solubility of sulfur dioxide in aqueous solutions of acetic acid, sodium acetate, and ammonium acetate in the temperature range from 313 to 393 K at pressures up to 3.3 MPa: Experimental results and comparison with correlations/predictions

    SciTech Connect

    Xia, J.; Rumpf, B.; Maurer, G.

    1999-03-01

    In many chemical plants, for example in coal gasification processes or desulfurization equipment, sour gas absorption columns and sour water strippers are used to remove weak electrolyte gases like sulfur dioxide, hydrogen cyanide, hydrogen sulfide or carbon dioxide from aqueous solutions. The basic design of such equipment requires physico-chemical models to describe the phase equilibrium as well as the caloric properties of such mixtures. New experimental results for the solubility of sulfur dioxide in aqueous solutions of single solutes acetic acid, sodium acetate and ammonium acetate at temperatures from 313 to 393 K and total pressures up to 3.3 MPa are reported. Similar to the system sulfur dioxide-water, also in such systems with acetic acid and sodium or ammonium acetate a second (sulfur dioxide rich) liquid phase is observed at high sulfur dioxide concentrations. A model to describe the phase equilibrium is presented and calculated (i.e., predicted as well as correlated) phase equilibria are compared to the new experimental data.

  6. Fluid pressure balanced seal

    NASA Technical Reports Server (NTRS)

    Marsh, H. W. (Inventor)

    1966-01-01

    A seal which increases in effectiveness with increasing pressure is presented. The seal's functional capability throughout both static and dynamic operation makes it particularly useful for sealing ball valve ports. Other features of the seal include the ability to seal two opposed surfaces simultaneously, tolerance of small misalignments, tolerance of wide temperature ranges, ability to maintain positive sealing contact under conditions of internal or external pressurization, and ability to conform to slight irregularities in seal or surface contours.

  7. Measuring pressure under burns pressure garments using the Oxford Pressure Monitor.

    PubMed

    Harries, C A; Pegg, S P

    1989-06-01

    Pressure garments are used extensively in the treatment of hypertrophic scarring following burn injuries. The Oxford Pressure Monitor was used to measure garment-scar interface pressure (mmHg) using a number of fabric types over various body parts. The results indicate a wide range of pressure values between different garments and body parts with the greatest pressures found over the dorsum of hands and feet. The problems of achieving 'optimal pressure' over hypertrophic scarring are discussed with emphasis on the need for more accurate measuring equipment.

  8. Pressure gauge

    SciTech Connect

    Morita, S.

    1985-04-02

    A pressure receiving element for receiving an external pressure is attached to one end of a body and a temperature compensating diaphragm is attached to the other end of the body. A coupling shaft disposed in the body is fixed at both ends to the pressure receiving element and the diaphragm, respectively. A liquid is sealed in the body and means is provided for detecting displacement or force applied to the coupling shaft in accordance with a pressure received by the pressure receiving element. The diaphragm has corrugations of concentric circles and the crests of a plurality of them are made flat and one of the flat crests is fixed to the body. The effective area of the diaphragm inside of the flat crest that is fixed to the body is selected substantially to be equal to the effective area of the pressure receiving element.

  9. The Effect of Different Materials on the Accuracy of the HYDRA Optical-Fiber-Coupled Coherent Range/Pressure Measurement System and the Development of the Health Care Database System at Old Dominion University

    NASA Technical Reports Server (NTRS)

    Johnson, Kimberly D.

    1995-01-01

    The objective of the first project involving the HYDRA laser system was to determine what effects, if any, could been seen in the system's measurements when testing was done with objects composed of different materials. Ideally we would like to have seen that the range of measurements were all within the accepted 0.4 millimeter accuracy of the system. Unfortunately our results were not as we had hoped, and there did appear to be some significant difference in the measurements made on objects composed of different materials. The second project is a continuing project at Old Dominion University. The ultimate goal is to develop a medical database that allows a doctor or hospital to keep medical records on line. The current data of the system consisted of one patient whose medical data had been hard coded to allow for a demonstration of the potentials of the system. The short term goal for this summer was to add additional patients to the system for testing, and to eliminate the hard coding of data by creating a database where data could be stored and queried to produce the results seen in the current state.

  10. RANGE INCREASER FOR PNEUMATIC GAUGES

    DOEpatents

    Fowler, A.H.; Seaborn, G.B. Jr.

    1960-09-27

    An improved pneumatic gage is offered in which the linear range has been increased without excessive air consumption. This has been accomplished by providing an expansible antechamber connected to the nozzle of the gage so that the position of the nozzle with respect to the workpiece is varied automatically by variation in pressure within the antechamber. This arrangement ensures that the nozzle-to-workpiece clearance is maintained within certain limits, thus obtaining a linear relation of air flow to nozzle-to-workpiece clearance over a wider range.

  11. Nonlinear optomechanical pressure

    NASA Astrophysics Data System (ADS)

    Conti, Claudio; Boyd, Robert

    2014-03-01

    A transparent material exhibits ultrafast optical nonlinearity and is subject to optical pressure if irradiated by a laser beam. However, the effect of nonlinearity on optical pressure is often overlooked, even if a nonlinear optical pressure may be potentially employed in many applications, such as optical manipulation, biophysics, cavity optomechanics, quantum optics, and optical tractors, and is relevant in fundamental problems such as the Abraham-Minkoswky dilemma or the Casimir effect. Here, we show that an ultrafast nonlinear polarization gives indeed a contribution to the optical pressure that also is negative in certain spectral ranges; the theoretical analysis is confirmed by first-principles simulations. An order-of-magnitude estimate shows that the effect can be observable by measuring the deflection of a membrane made by graphene.

  12. Pressure Drop

    NASA Technical Reports Server (NTRS)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  13. Pressure sensor

    DOEpatents

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2015-09-29

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  14. Pressure regulator

    DOEpatents

    Ebeling, Jr., Robert W.; Weaver, Robert B.

    1979-01-01

    The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.

  15. PRESSURE TRANSDUCER

    DOEpatents

    Sander, H.H.

    1959-10-01

    A pressure or mechanical force transducer particularly adaptable to miniature telemetering systems is described. Basically the device consists of a transistor located within a magnetic field adapted to change in response to mechanical force. The conduction characteristics of the transistor in turn vary proportionally with changes in the magnetic flux across the transistor such that the output (either frequency of amplitude) of the transistor circuit is proportional to mechanical force or pressure.

  16. Pressure garment design tool to monitor exerted pressures.

    PubMed

    Macintyre, Lisa; Ferguson, Rhona

    2013-09-01

    Pressure garments are used in the treatment of hypertrophic scarring following serious burns. The use of pressure garments is believed to hasten the maturation process, reduce pruritus associated with immature hypertrophic scars and prevent the formation of contractures over flexor joints. Pressure garments are normally made to measure for individual patients from elastic fabrics and are worn continuously for up to 2 years or until scar maturation. There are 2 methods of constructing pressure garments. The most common method, called the Reduction Factor method, involves reducing the patient's circumferential measurements by a certain percentage. The second method uses the Laplace Law to calculate the dimensions of pressure garments based on the circumferential measurements of the patient and the tension profile of the fabric. The Laplace Law method is complicated to utilise manually and no design tool is currently available to aid this process. This paper presents the development and suggested use of 2 new pressure garment design tools that will aid pressure garment design using the Reduction Factor and Laplace Law methods. Both tools calculate the pressure garment dimensions and the mean pressure that will be exerted around the body at each measurement point. Monitoring the pressures exerted by pressure garments and noting the clinical outcome would enable clinicians to build an understanding of the implications of particular pressures on scar outcome, maturation times and patient compliance rates. Once the optimum pressure for particular treatments is known, the Laplace Law method described in this paper can be used to deliver those average pressures to all patients. This paper also presents the results of a small scale audit of measurements taken for the fabrication of pressure garments in two UK hospitals. This audit highlights the wide range of pressures that are exerted using the Reduction Factor method and that manual pattern 'smoothing' can dramatically

  17. Low pressure EGR system having full range capability

    DOEpatents

    Easley, Jr. William Lanier; Milam, David Michael; Roozenboom, Stephan Donald; Bond, Michael Steven; Kapic, Amir

    2009-09-22

    An exhaust treatment system for an engine is disclosed and may have an air induction circuit, an exhaust circuit, and an exhaust recirculation circuit. The air induction circuit may be configured to direct air into the engine. The exhaust circuit may be configured to direct exhaust from the engine and include a turbine driven by the exhaust, a particulate filter disposed in series with and downstream of the turbine, and a catalytic device disposed in series with and downstream of the particulate filter. The exhaust recirculation circuit may be configured to selectively redirect at least some of the exhaust from between the particulate filter and the catalytic device to the air induction circuit. The catalytic device is selected to create backpressure within the exhaust circuit sufficient to ensure that, under normal engine operating conditions above low idle, exhaust can flow into the air induction circuit without throttling of the air.

  18. The vapor pressures of explosives

    SciTech Connect

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  19. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  20. High Blood Pressure

    MedlinePlus

    ... this page please turn Javascript on. High Blood Pressure What Is High Blood Pressure? High blood pressure is a common disease in ... at higher than normal pressures. What Is Blood Pressure? Click for more information Blood pressure is the ...

  1. Blood pressure measurement

    MedlinePlus

    ... reading; Measuring blood pressure; Hypertension - blood pressure measurement; High blood pressure - blood pressure measurement ... High blood pressure has no symptoms so you may not know if you have this problem. High blood pressure ...

  2. The transmission of gas pressure to xylem fluid pressure when plants are inside a pressure bomb.

    PubMed

    Wei, C; Tyree, M T; Bennink, J P

    2000-02-01

    In earlier work tobacco leaves were placed in a Scholander-Hammel pressure bomb and the end of the petiole sealed with a pressure transducer in order to measure pressure transmission from the compressed gas (Pg) in the bomb to the xylem fluid (Px). Pressure bomb theory would predict a 1:1 relationship for Pg:Px when tobacco leaves start at a balance pressure of zero. Failure to observe the expected 1:1 relationship has cast doubt on the pressure-bomb technique in the measurement of the xylem pressure of plants. The experimental and theoretical relationship between Px and Pg was investigated in Tsuga canadensis (L) branches and Nicotiana rustica (L) leaves in this paper. It is concluded that the non 1:1 outcome was due to the compression of air bubbles in embolized xylem vessels, evaporation of water from the tissue, and the expansion of the sealed stem segment (or petiole) protruding beyond the seal of the pressure bomb. The expected 1:1 relationship could be obtained when xylem embolism was eliminated and stem expansion prevented. It is argued that the non 1:1 relationship in the positive pressure range does not invalidate the Scholander pressure bomb method of measuring xylem pressure in plants because Px never reaches positive values during the determination of the balance pressure.

  3. Range Reference Notebook

    DTIC Science & Technology

    2006-10-15

    rifle grenade (inert), tin can lid, 15” tent peg 3 Table FRD-7. Fort Ritchie Sector 3 Representative Examples of Non-MEC Clutter Description 1/2...Appendix B—Indirect Fire Range Examples SITES ( ADI ) Adak Naval Air Facility, AK, Mitt Lake Mortar Range (FRI) Fort Ritchie...example range. B- ADI -1 Indirect-Fire Range,: Adak, AK, Mitt Lake Mortar Range Impact Area Site-Specific References – Adak NAF Foster Wheeler

  4. A Long-Range Precision Ranging System

    NASA Technical Reports Server (NTRS)

    Easterling, Mahlon

    1961-01-01

    A technique is presented that may be used for precision real-time continuous range measuring at long ranges. The technique uses a carrier that is phase modulated by a pseudo-random binary sequence. The characteristics of the sequence that make it acquirable are discussed. The general form of a receiver capable of tracking the carrier is given and is shown to be a kind of phase-locked loop. A two-loop system capable of tracking a pseudo-random sequence and its clock is given. The combination of the receiver and the sequence tracking system form a ranging receiver. The power division necessary between the carrier and the sidebands is shown to be determined by the noise bandwidths of the two tracking systems. The bandwidths necessary for tracking space probes and Earth satellites are given and some experiments in radar-tracking Earth satellites are described. Based on these experiments, estimates are made of the useful range of such a system in tracking space probes.

  5. A dynamic pressure source for the calibration of pressure transducers

    NASA Technical Reports Server (NTRS)

    Vezzetti, C. F.; Hilten, J. S.; Mayo-Wells, J. F.; Lederer, P. S.

    1976-01-01

    A dynamic pressure source is described for producing sinusoidally varying pressures of up to 34 kPa zero to peak, over the frequency range of approximately 50 Hz to 2 kHz. The source is intended for the dynamic calibration of pressure transducers. The transducer to be calibrated is mounted near the base of the thick walled aluminum tube forming the vessel so that the pressure sensitive element is in contact with the liquid in the tube. A section of the tube is filled with small steel balls to damp the motion of the 10-St dimethyl siloxane working fluid in order to extend the useful frquency range to higher frequencies than would be provided by an undamped system. The dynamic response of six transducers provided by the sponsor was evaluated using the pressure sources; the results of these calibrations are given.

  6. A Microwave Pressure Sounder

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.

    1978-01-01

    An instrument to measure atmospheric pressure at the earth's surface from an orbiting satellite would be a valuable addition to the expanding inventory of remote sensors. The subject of this report is such an instrument - the Microwave Pressure Sounder (MPS). It is shown that global-ocean coverage is attainable with sufficient accuracy, resolution and observational frequency for meteorological, oceanographic and climate research applications. Surface pressure can be deduced from a measurement of the absorption by an atmospheric column at a frequency in the wing of the oxygen band centered on 60 GHz. An active multifrequency instrument is needed to make this measurement with sufficient accuracy. The selection of optimum operating frequencies is based upon accepted models of surface reflection, oxygen, water vapor and cloud absorption. Numerical simulation using a range of real atmospheres defined by radiosonde observations were used to validate the frequency selection procedure. Analyses are presented of alternative system configurations that define the balance between accuracy and achievable resolution.

  7. Passive infrared ranging

    NASA Astrophysics Data System (ADS)

    Leonpacher, N. K.

    1983-12-01

    The range of an infrared source was estimated by analyzing the atmospheric absorption by CO2 in several wavelength intervals of its spectrum. These bandpasses were located at the edge of the CO2 absorption band near 2300 1/cm (4.3 micron). A specific algorithm to predict range was determined based on numerous computer generated spectra. When tested with these spectra, range estimates within 0.8 km were obtained for ranges between 0 and 18 km. Accuracy decreased when actual source spectra were tested. Although actual spectra were available only for ranges to 5 km, 63% of these spectra resulted in range estimates that were within 1.6 km of the actual range. Specific spectral conditions that affected the range predictions were found. Methods to correct the deficiencies were discussed. Errors from atmospheric variations, and the effects of background noise, were also investigated. Limits on accuracy and range resolution were determined.

  8. Nimbus 3 alternating-pressure replacement mattress.

    PubMed

    Young, T

    Alternating-pressure surfaces have been shown to reduce the incidence of pressure sores compared with standard hospital mattresses and pressure-reducing (constant low-pressure) surfaces. Huntleigh Healthcare has recently introduced the Nimbus 3 to its range of alternating-pressure mattress replacement systems. This product has been developed according to new medical device regulations and is indicated for the treatment of patients with all grades of pressure sores and for prevention in patients who are at very high risk of developing pressure sores.

  9. Cascade Mountain Range in Oregon

    USGS Publications Warehouse

    Sherrod, David R.

    2016-01-01

    Along its Oregon segment, the Cascade Range is almost entirely volcanic in origin. The volcanoes and their eroded remnants are the visible magmatic expression of the Cascadia subduction zone, where the offshore Juan de Fuca tectonic plate is subducted beneath North America. Subduction occurs as two lithospheric plates collide, and an underthrusted oceanic plate is commonly dragged into the mantle by the pull of gravity, carrying ocean-bottom rock and sediment down to where heat and pressure expel water. As this water rises, it lowers the melting temperature in the overlying hot mantle rocks, thereby promoting melting. The molten rock supplies the volcanic arcs with heat and magma. Cascade Range volcanoes are part of the Ring of Fire, a popular term for the numerous volcanic arcs that encircle the Pacific Ocean.

  10. Pressure Alopecia

    PubMed Central

    Davies, Kate E; Yesudian, PD

    2012-01-01

    Postoperative or pressure alopecia (PA) is an infrequently reported group of scarring and non-scarring alopecias. It has been reported after immobilization of the head during surgery and following prolonged stays on intensive care units, and may be analogous to a healed pressure ulcer. This review presents a summary of cases published in pediatrics and after cardiac, gynecological, abdominal and facial surgeries. PA may manifest as swelling, tenderness, and ulceration of the scalp in the first few postoperative days; in other cases, the alopecia may be the presenting feature with a history of scalp immobilization in the previous four weeks. The condition may cause considerable psychological distress in the long term. Regular head turning schedules and vigilance for the condition should be used as prophylaxis to prevent permanent alopecia. A multi-center study in high-risk patients would be beneficial to shed further light on the etiology of the condition. PMID:23180911

  11. Pressure Ulcer Prevention

    PubMed Central

    2009-01-01

    Executive Summary In April 2008, the Medical Advisory Secretariat began an evidence-based review of the literature concerning pressure ulcers. Please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/tech/tech_mn.html to review these titles that are currently available within the Pressure Ulcers series. Pressure ulcer prevention: an evidence based analysis The cost-effectiveness of prevention strategies for pressure ulcers in long-term care homes in Ontario: projections of the Ontario Pressure Ulcer Model (field evaluation) Management of chronic pressure ulcers: an evidence-based analysis (anticipated pubicstion date - mid-2009) Purpose A pressure ulcer, also known as a pressure sore, decubitus ulcer, or bedsore, is defined as a localized injury to the skin/and or underlying tissue occurring most often over a bony prominence and caused by pressure, shear, or friction, alone or in combination. (1) Those at risk for developing pressure ulcers include the elderly and critically ill as well as persons with neurological impairments and those who suffer conditions associated with immobility. Pressure ulcers are graded or staged with a 4-point classification system denoting severity. Stage I represents the beginnings of a pressure ulcer and stage IV, the severest grade, consists of full thickness tissue loss with exposed bone, tendon, and or muscle. (1) In a 2004 survey of Canadian health care settings, Woodbury and Houghton (2) estimated that the prevalence of pressure ulcers at a stage 1 or greater in Ontario ranged between 13.1% and 53% with nonacute health care settings having the highest prevalence rate (Table 1). Executive Summary Table 1: Prevalence of Pressure Ulcers* Setting Canadian Prevalence,% (95% CI) Ontario Prevalence,Range % (n) Acute care 25 (23.8–26.3) 23.9–29.7 (3418) Nonacute care† 30 (29.3–31.4) 30.0–53.3 (1165) Community care 15 (13.4–16.8) 13.2 (91) Mixed health care‡ 22 (20.9

  12. Pressure transducer

    DOEpatents

    Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Gunchin, Elmer R.

    1989-01-01

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output.

  13. Pressure transducer

    DOEpatents

    Anderson, T.T.; Roop, C.J.; Schmidt, K.J.; Gunchin, E.R.

    1987-02-13

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output. 7 figs.

  14. Pressurized hopper

    SciTech Connect

    Densley, P.J.; Goldmann, L.H. Jr.

    1980-04-01

    A Secure Automated Fuel Fabrication Line is being developed to reduce personnel exposure and to improve safeguards. Fertile and fissile fuel powders are blended in the line for making fuel pellets. A pressurized hopper was developed for use not only as a blender, but also as a storage and feeding device. It works with or without injection tubes to produce a well-blended powder with reduced agglomerate population. Results of blending experiments using dry Kaolin clay and Tempra pigment are given. (DLC)

  15. RADIO RANGING DEVICE

    DOEpatents

    Nieset, R.T.

    1961-05-16

    A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

  16. Tau ranging revisited

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1987-01-01

    It is shown that a ranging receiver with a sufficient and reasonable number of correlators is competitive with the current sequential component ranging system by some 1.5 to 2.5 dB. The optimum transmitter code, the optimum receiver, and a near-maximum-lilelihood range-estimation algorithm are presented.

  17. Long Range Technology Planning.

    ERIC Educational Resources Information Center

    Ambron, Sueann, Ed.

    1986-01-01

    This summary of a meeting of the Apple Education Advisory Council, on long range technology plans at the state, county, district, and school levels, includes highlights from group discussions on future planning, staff development, and curriculum. Three long range technology plans at the state level are provided: Long Range Educational Technology…

  18. Steam Oxidation at High Pressure

    SciTech Connect

    Holcomb, Gordon R.; Carney, Casey

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  19. Telemetry Ranging: Signal Processing

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2016-02-01

    This article describes the details of the signal processing used in a telemetry ranging system in which timing information is extracted from the downlink telemetry signal in order to compute spacecraft range. A previous article describes telemetry ranging concepts and architecture, which are a slight variation of a scheme published earlier. As in that earlier work, the telemetry ranging concept eliminates the need for a dedicated downlink ranging signal to communicate the necessary timing information. The present article describes the operation and performance of the major receiver functions on the spacecraft and the ground --- many of which are standard tracking loops already in use in JPL's flight and ground radios --- and how they can be used to provide the relevant information for making a range measurement. It also describes the implementation of these functions in software, and performance of an end-to-end software simulation of the telemetry ranging system.

  20. Telemetry-Based Ranging

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Vilnrotter, Victor A.; Andrews, Kenneth S.; Shambayati, Shervin

    2011-01-01

    A telemetry-based ranging scheme was developed in which the downlink ranging signal is eliminated, and the range is computed directly from the downlink telemetry signal. This is the first Deep Space Network (DSN) ranging technology that does not require the spacecraft to transmit a separate ranging signal. By contrast, the evolutionary ranging techniques used over the years by NASA missions, including sequential ranging (transmission of a sequence of sinusoids) and PN-ranging (transmission of a pseudo-noise sequence) whether regenerative (spacecraft acquires, then regenerates and retransmits a noise-free ranging signal) or transparent (spacecraft feeds the noisy demodulated uplink ranging signal into the downlink phase modulator) relied on spacecraft power and bandwidth to transmit an explicit ranging signal. The state of the art in ranging is described in an emerging CCSDS (Consultative Committee for Space Data Systems) standard, in which a pseudo-noise (PN) sequence is transmitted from the ground to the spacecraft, acquired onboard, and the PN sequence is coherently retransmitted back to the ground, where a delay measurement is made between the uplink and downlink signals. In this work, the telemetry signal is aligned with the uplink PN code epoch. The ground station computes the delay between the uplink signal transmission and the received downlink telemetry. Such a computation is feasible because symbol synchronizability is already an integral part of the telemetry design. Under existing technology, the telemetry signal cannot be used for ranging because its arrival-time information is not coherent with any Earth reference signal. By introducing this coherence, and performing joint telemetry detection and arrival-time estimation on the ground, a high-rate telemetry signal can provide all the precision necessary for spacecraft ranging.

  1. High Blood Pressure

    MedlinePlus

    ... the NHLBI on Twitter. Description of High Blood Pressure Español High blood pressure is a common disease ... arteries) at higher than normal pressures. Measuring Blood Pressure Blood pressure is the force of blood pushing ...

  2. An accuracy statement for a facility used to calibrate static pressure transducers and differential pressure transducers at high base pressure

    NASA Astrophysics Data System (ADS)

    Sindt, C. F.; Labrecque, J. F.

    1982-06-01

    A facility was developed to calibrate pressure transducers that are used in a gas mass flow facility. Both static and differential pressure transducers can be calibrated. An air dead weight tester is the standard for static transducers in the range from 3.8 to 4.5 MPa. An air dead weight tester is also the standard for the differential pressure transducers in the range of 2.5 kPa to 50 MPa; a cistern manometer. This, plus the uncertainties in the high pressure corrections to the cistern manometer and measurement of the mercury temperature, contributes plus or minus 690 ppm to the uncertainty of the differential pressure transducer calibrations.

  3. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  4. Compressive laser ranging.

    PubMed

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  5. Improved ranging systems

    NASA Technical Reports Server (NTRS)

    Young, Larry E.

    1989-01-01

    Spacecraft range measurements have provided the most accurate tests, to date, of some relativistic gravitational parameters, even though the measurements were made with ranging systems having error budgets of about 10 meters. Technology is now available to allow an improvement of two orders of magnitude in the accuracy of spacecraft ranging. The largest gains in accuracy result from the replacement of unstable analog components with high speed digital circuits having precisely known delays and phase shifts.

  6. Automatic range selector

    DOEpatents

    McNeilly, Clyde E.

    1977-01-04

    A device is provided for automatically selecting from a plurality of ranges of a scale of values to which a meter may be made responsive, that range which encompasses the value of an unknown parameter. A meter relay indicates whether the unknown is of greater or lesser value than the range to which the meter is then responsive. The rotatable part of a stepping relay is rotated in one direction or the other in response to the indication from the meter relay. Various positions of the rotatable part are associated with particular scales. Switching means are sensitive to the position of the rotatable part to couple the associated range to the meter.

  7. Pressure Inactivation of Bacillus Endospores

    PubMed Central

    Margosch, Dirk; Gänzle, Michael G.; Ehrmann, Matthias A.; Vogel, Rudi F.

    2004-01-01

    The inactivation of bacterial endospores by hydrostatic pressure requires the combined application of heat and pressure. We have determined the resistance of spores of 14 food isolates and 5 laboratory strains of Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis to treatments with pressure and temperature (200 to 800 MPa and 60 to 80°C) in mashed carrots. A large variation in the pressure resistance of spores was observed, and their reduction by treatments with 800 MPa and 70°C for 4 min ranged from more than 6 log units to no reduction. The sporulation conditions further influenced their pressure resistance. The loss of dipicolinic acid (DPA) from spores that varied in their pressure resistance was determined, and spore sublethal injury was assessed by determination of the detection times for individual spores. Treatment of spores with pressure and temperature resulted in DPA-free, phase-bright spores. These spores were sensitive to moderate heat and exhibited strongly increased detection times as judged by the time required for single spores to grow to visible turbidity of the growth medium. The role of DPA in heat and pressure resistance was further substantiated by the use of the DPA-deficient mutant strain B. subtilis CIP 76.26. Taken together, these results indicate that inactivation of spores by combined pressure and temperature processing is achieved by a two-stage mechanism that does not involve germination. At a pressure between 600 and 800 MPa and a temperature greater than 60°C, DPA is released predominantly by a physicochemical rather than a physiological process, and the DPA-free spores are inactivated by moderate heat independent of the pressure level. Relevant target organisms for pressure and temperature treatment of foods are proposed, namely, strains of B. amyloliquefaciens, which form highly pressure-resistant spores. PMID:15574932

  8. Tropospheric range error parameters: Further studies

    NASA Technical Reports Server (NTRS)

    Hopfield, H. S.

    1972-01-01

    Improved parameters are presented for predicting the tropospheric effect on electromagnetic range measurements from surface meteorological data. More geographic locations have been added to the earlier list. Parameters are given for computing the dry component of the zenith radio range effect from surface pressure alone with an rms error of 1 to 2 mm, or the total range effect from the dry and wet components of the surface refractivity and a two-part quartic profile model. The new parameters are obtained, as before, from meteorological balloon data but with improved procedures, including the conversion of the geopotential heights of the balloon data to actual or geometric heights before using the data. The revised values of the parameter k (dry component of vertical radio range effect per unit pressure at the surface) show more latitude variation than is accounted for by the variation of g, the acceleration of gravity.

  9. Agriculture, Forestry, Range Resources

    NASA Technical Reports Server (NTRS)

    Crea, W. J., Jr.

    1973-01-01

    Significant results obtained from ERTS-1 observations of agriculture, forestry, and range resources are summarized. Four major parts are covered: (1) crop classification and mensuration; (2) timber and range resources survey and classification; (3) soil survey and mapping; and (4) subdiscipline areas.

  10. Laser ranging data analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Near real-time Lageos laser ranging data are analyzed in terms of range bias, time bias, and internal precision, and estimates for earth orientation parameters X(sub p), Y(sub p), and UT1 are obtained. The results of these analyses are reported in a variety of formats. Copies of monthly summaries from November, 1986 through November, 1987 are included.

  11. Long Range Facilities Planning

    DTIC Science & Technology

    1982-04-01

    Richard Muther range facilities Many alterna- analysis indi- cated that if NASSCO ever expected to surpass its output of the last several years, current...Marine Engineers (SNAME) SP-1 Panel Meeting. The Maritime Administration had Richard Muther (an authority on long range facility planning) address a

  12. Electronic structure of Ca, Sr, and Ba under pressure.

    NASA Technical Reports Server (NTRS)

    Animalu, A. O. E.; Heine, V.; Vasvari, B.

    1967-01-01

    Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure

  13. Home range and travels

    USGS Publications Warehouse

    Stickel, L.F.; King, John A.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  14. Range Safety Systems

    NASA Technical Reports Server (NTRS)

    Schrock, Kenneth W.; Humphries, Ricky H. (Technical Monitor)

    2002-01-01

    The high kinetic and potential energy of a launch vehicle mandates there be a mechanism to minimize possible damage to provide adequate safety for the launch facilities, range, and, most importantly, the general public. The Range Safety System, sometimes called the Flight Termination System or Flight Safety System, provides the required level of safety. The Range Safety System section of the Avionics chapter will attempt to describe how adequate safety is provided, the system's design, operation, and it's interface with the rest of the launch vehicle.

  15. Chaos in blood pressure control.

    PubMed

    Wagner, C D; Nafz, B; Persson, P B

    1996-03-01

    A number of control mechanisms are comprised within blood pressure regulation, ranging from events on the cellular level up to circulating hormones. Despite their vast number, blood pressure fluctuations occur preferably within a certain range (under physiological conditions). A specific class of dynamic systems has been extensively studied over the past several years: nonlinear coupled systems, which often reveal a characteristic form of motion termed "chaos". The system is restricted to a certain range in phase space, but the motion is never periodic. The attractor the system moves on has a non-integer dimension. What all chaotic systems have in common is their sensitive dependence on initial conditions. The question arises as to whether blood pressure regulation can be explained by such models. Many efforts have been made to characterise heart rate variability and EEG dynamics by parameters of chaos theory (e.g., fractal dimensions and Lyapunov exponents). These method were successfully applied to dynamics observed in single organs, but very few studies have dealt with blood pressure dynamics. This mini-review first gives an overview on the history of blood pressure dynamics and the methods suitable to characterise the dynamics by means of tools derived from the field of nonlinear dynamics. Then applications to systemic blood pressure are discussed. After a short survey on heart rate variability, which is indirectly reflected in blood pressure variability, some dynamic aspects of resistance vessels are given. Intriguingly, systemic blood pressure reveals a change in fractal dimensions and Lyapunov exponents, when the major short-term control mechanism--the arterial baroreflex--is disrupted. Indeed it seems that cardiovascular time series can be described by tools from nonlinear dynamics [66]. These methods allow a novel description of some important aspects of biological systems. Both the linear and the nonlinear tools complement each other and can be useful in

  16. Preliminary error budget for an optical ranging system: Range, range rate, and differenced range observables

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Finger, M. H.

    1990-01-01

    Future missions to the outer solar system or human exploration of Mars may use telemetry systems based on optical rather than radio transmitters. Pulsed laser transmission can be used to deliver telemetry rates of about 100 kbits/sec with an efficiency of several bits for each detected photon. Navigational observables that can be derived from timing pulsed laser signals are discussed. Error budgets are presented based on nominal ground stations and spacecraft-transceiver designs. Assuming a pulsed optical uplink signal, two-way range accuracy may approach the few centimeter level imposed by the troposphere uncertainty. Angular information can be achieved from differenced one-way range using two ground stations with the accuracy limited by the length of the available baseline and by clock synchronization and troposphere errors. A method of synchronizing the ground station clocks using optical ranging measurements is presented. This could allow differenced range accuracy to reach the few centimeter troposphere limit.

  17. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  18. Improvement of a large-amplitude sinusoidal pressure generator for dynamic calibration of pressure transducers

    NASA Technical Reports Server (NTRS)

    Robinson, R. E.

    1972-01-01

    Results of research on the improvement of a sinusoidal pressure generator are presented. The generator is an inlet-area-modulated, gas-flow-through device (siren type) which was developed to dynamically calibrate pressure transducers and pressure probes. Tests were performed over a frequency range of 100 Hz to 20 kHz at average chamber pressures (bias pressure) between 30 and 50 psia (21 and 35 N/sq cm abs) and between 150 and 300 psia (104 and 207 N/sq cm abs). Significant improvements in oscillation pressure waveform were obtained but with reduction in available generator oscillation pressure amplitude range. Oscillation pressure amplitude, waveform, and waveform spectral content are given as functions of frequency for the two bias pressure conditions. The generator and instrumentation for frequency, amplitude, and spectrum measurements are described.

  19. Range Reference Atmosphere, Nellis

    DTIC Science & Technology

    1990-12-01

    mecan to the intercept ol a given probability ellipse, equation 43 is also applicable. 2.7 Statistical Parameters for Non-Standard Orthogonal Axes...clockw ise fronti true north. Rotation of the mecans through (X (legrees: X, Xcos ~(90 -) W + sin (90 - () (44) ’ s (go - o.) u in (90 - (X) (45) Rotation...8217TABLE 3-1. Primary Physical Constants Used in RRA Production. P0 Standard atmospheric pressure at sea level (1.0 13250 X 10 Newton /in 2 ) (2116.22 Ib

  20. Low Blood Pressure

    MedlinePlus

    ... a problem. Sometimes blood pressure that is too low can also cause problems. Blood pressure is the ... reading is 90/60 or lower, you have low blood pressure. Some people have low blood pressure ...

  1. PRESSURE TRANSDUCER RESEARCH.

    DTIC Science & Technology

    PIEZOELECTRIC TRANSDUCERS, PRESSURE), UNDERGROUND EXPLOSIONS, ELECTRICAL RESISTANCE, SEEBECK EFFECT , PRESSURE GAGES, SHOCK WAVES, STRESSES, COMPUTER PROGRAMMING, NUCLEAR EXPLOSIONS, NUCLEAR RADIATION.

  2. Laser Ranging Simulation Program

    NASA Technical Reports Server (NTRS)

    Piazolla, Sabino; Hemmati, Hamid; Tratt, David

    2003-01-01

    Laser Ranging Simulation Program (LRSP) is a computer program that predicts selected aspects of the performances of a laser altimeter or other laser ranging or remote-sensing systems and is especially applicable to a laser-based system used to map terrain from a distance of several kilometers. Designed to run in a more recent version (5 or higher) of the MATLAB programming language, LRSP exploits the numerical and graphical capabilities of MATLAB. LRSP generates a graphical user interface that includes a pop-up menu that prompts the user for the input of data that determine the performance of a laser ranging system. Examples of input data include duration and energy of the laser pulse, the laser wavelength, the width of the laser beam, and several parameters that characterize the transmitting and receiving optics, the receiving electronic circuitry, and the optical properties of the atmosphere and the terrain. When the input data have been entered, LRSP computes the signal-to-noise ratio as a function of range, signal and noise currents, and ranging and pointing errors.

  3. Satellite Laser Ranging operations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.

    1994-01-01

    Satellite Laser Ranging (SLR) is currently providing precision orbit determination for measurements of: 1) Ocean surface topography from satellite borne radar altimetry, 2) Spatial and temporal variations of the gravity field, 3) Earth and ocean tides, 4) Plate tectonic and regional deformation, 5) Post-glacial uplift and subsidence, 6) Variations in the Earth's center-of-mass, and 7) Variations in Earth rotation. SLR also supports specialized programs in time transfer and classical geodetic positioning, and will soon provide precision ranging to support experiments in relativity.

  4. Broad host range plasmids.

    PubMed

    Jain, Aayushi; Srivastava, Preeti

    2013-11-01

    Plasmids are and will remain important cloning vehicles for biotechnology. They have also been associated with the spread of a number of diseases and therefore are a subject of environmental concern. With the advent of sequencing technologies, the database of plasmids is increasing. It will be of immense importance to identify the various bacterial hosts in which the plasmid can replicate. The present review article describes the features that confer broad host range to the plasmids, the molecular basis of plasmid host range evolution, and applications in recombinant DNA technology and environment.

  5. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  6. Low Power, Wide Dynamic Range Carbon Nanotube Vacuum Gauges

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-01-01

    This slide presentation presents carbon nanotube vacuum pressure sensor gauges that operate at low power and exhibit a wide-dynamic range based on microelectromechanical systems (MEMS) technology. The fabrication facility, and the formation process are shown. Pressure sensitivity was found to increase rapidly as the bias power was increased. In addition, by etching part of the thermal SiO2 beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward lower pressures. Results are compared to a conventional thin film meander resistor, which was fabricated and whose pressure response was also measured for comparative purposes.

  7. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Crea, W. J.

    1974-01-01

    In the area of crop specie identification, it has been found that temporal data analysis, preliminary stratification, and unequal probability analysis were several of the factors that contributed to high identification accuracies. Single data set accuracies on fields of greater than 80,000 sq m (20 acres) are in the 70- to 90-percent range; however, with the use of temporal data, accuracies of 95 percent have been reported. Identification accuracy drops off significantly on areas of less than 80,000 sq m (20 acres) as does measurement accuracy. Forest stratification into coniferous and deciduous areas has been accomplished to a 90- to 95-percent accuracy level. Using multistage sampling techniques, the timber volume of a national forest district has been estimated to a confidence level and standard deviation acceptable to the Forest Service at a very favorable cost-benefit time ratio. Range specie/plant community vegetation mapping has been accomplished at various levels of success (69- to 90-percent accuracy). However, several investigators have obtained encouraging initial results in range biomass (forage production) estimation and range readiness predictions. Soil association map correction and soil association mapping in new area appear to have been proven feasible on large areas; however, testing in a complex soil area should be undertaken.

  8. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1974-01-01

    The necessary elements to perform global inventories of agriculture, forestry, and range resources are being brought together through the use of satellites, sensors, computers, mathematics, and phenomenology. Results of ERTS-1 applications in these areas, as well as soil mapping, are described.

  9. Front Range Branch Officers

    NASA Astrophysics Data System (ADS)

    The Front Range Branch of AGU has installed officers for 1990: Ray Noble, National Center for Atmospheric Research, chair; Sherry Oaks, U.S. Geological Survey, chair-elect; Howard Garcia, NOAA, treasurer; Catharine Skokan, Colorado School of Mines, secretary. JoAnn Joselyn of NOAA is past chair. Members at large are Wallace Campbell, NOAA; William Neff, USGS; and Stephen Schneider, NCAR.

  10. Nonscanning confocal ranging system

    NASA Astrophysics Data System (ADS)

    Sun, P. C.; Arons, E.

    1995-03-01

    We demonstrate a nonscanning confocal ranging system based on spatially incoherent interferometry. Such a system has significant advantages over the conventional confocal imaging system and other interferometric systems. We develop the theory in terms of coherence cells and demonstrate the equivalence of our method to the conventional confocal methods. Experimental results are also provided.

  11. Electric vehicles: Driving range

    NASA Astrophysics Data System (ADS)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  12. RADIO RANGING DEVICE

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

  13. Long Range Plan.

    ERIC Educational Resources Information Center

    Jefferson Coll., Hillsboro, MO.

    This document presents Jefferson College's "Long Range Plan," which is intended to provide the College's governing board, administration, and faculty and staff with a task-oriented blueprint for maximizing the delivery of higher education services to students and the community in a predictable, programmatic, and fiscally sound manner.…

  14. STDN ranging equipment

    NASA Technical Reports Server (NTRS)

    Jones, C. E.

    1975-01-01

    Final results of the Spaceflight Tracking and Data Network (STDN) Ranging Equipment program are summarized. Basic design concepts and final design approaches are described. Theoretical analyses which define requirements and support the design approaches are presented. Design verification criteria are delineated and verification test results are specified.

  15. Agriculture, forest, and range

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The findings and recommendations of the panel for developing a satellite remote-sensing global information system in the next decade are reported. User requirements were identified in five categories: (1) cultivated crops, (2) land resources, (3)water resources, (4)forest management, and (5) range management. The benefits from the applications of satellite data are discussed.

  16. Fact Sheet: Range Complex

    NASA Technical Reports Server (NTRS)

    Cornelson, C.; Fretter, E.

    2004-01-01

    NASA Ames has a long tradition in leadership with the use of ballistic ranges and shock tubes for the purpose of studying the physics and phenomena associated with hypervelocity flight. Cutting-edge areas of research run the gamut from aerodynamics, to impact physics, to flow-field structure and chemistry. This legacy of testing began in the NACA era of the 1940's with the Supersonic Free Flight Tunnel, and evolved dramatically up through the late 1950s with the pioneering work in the Ames Hypersonic Ballistic Range. The tradition continued in the mid-60s with the commissioning of the three newest facilities: the Ames Vertical Gun Range (AVGR) in 1964, the Hypervelocity Free Flight Facility (HFFF) in 1965 and the Electric Arc Shock Tube (EAST) in 1966. Today the Range Complex continues to provide unique and critical testing in support of the Nation's programs for planetary geology and geophysics; exobiology; solar system origins; earth atmospheric entry, planetary entry, and aerobraking vehicles; and various configurations for supersonic and hypersonic aircraft.

  17. Organic electronics based pressure sensor towards intracranial pressure monitoring

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Varadan, Vijay K.

    2010-04-01

    The intra-cranial space, which houses the brain, contains cerebrospinal fluid (CSF) that acts as a fluid suspension medium for the brain. The CSF is always in circulation, is secreted in the cranium and is drained out through ducts called epidural veins. The venous drainage system has inherent resistance to the flow. Pressure is developed inside the cranium, which is similar to a rigid compartment. Normally a pressure of 5-15 mm Hg, in excess of atmospheric pressure, is observed at different locations inside the cranium. Increase in Intra-Cranial Pressure (ICP) can be caused by change in CSF volume caused by cerebral tumors, meningitis, by edema of a head injury or diseases related to cerebral atrophy. Hence, efficient ways of monitoring ICP need to be developed. A sensor system and monitoring scheme has been discussed here. The system architecture consists of a membrane less piezoelectric pressure sensitive element, organic thin film transistor (OTFT) based signal transduction, and signal telemetry. The components were fabricated on flexible substrate and have been assembled using flip-chip packaging technology. Material science and fabrication processes, subjective to the device performance, have been discussed. Capability of the device in detecting pressure variation, within the ICP pressure range, is investigated and applicability of measurement scheme to medical conditions has been argued for. Also, applications of such a sensor-OTFT assembly for logic sensor switching and patient specific-secure monitoring system have been discussed.

  18. Range expansion of mutualists

    NASA Astrophysics Data System (ADS)

    Muller, Melanie J. I.; Korolev, Kirill S.; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    The expansion of a species into new territory is often strongly influenced by the presence of other species. This effect is particularly striking for the case of mutualistic species that enhance each other's proliferation. Examples range from major events in evolutionary history, such as the spread and diversification of flowering plants due to their mutualism with pollen-dispersing insects, to modern examples like the surface colonisation of multi-species microbial biofilms. Here, we investigate the spread of cross-feeding strains of the budding yeast Saccharomyces cerevisiae on an agar surface as a model system for expanding mutualists. Depending on the degree of mutualism, the two strains form distinctive spatial patterns during their range expansion. This change in spatial patterns can be understood as a phase transition within a stepping stone model generalized to two mutualistic species.

  19. Long Range Materials Research

    DTIC Science & Technology

    1974-12-31

    India, also called bulat steels, are known to have high carbon contents, commonly 1.5 to 2.0% carbon. The high quality of these steels is well...gamma-cementite range, essentially all of the cementite is converted to the spheroidized form. However, during transformation...plus additional cementite In non-spheroldlzed form, typically l>iates. As set forth above, It is Important that essentially

  20. Light beam range finder

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  1. Light beam range finder

    DOEpatents

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  2. Long range chromatin organization

    PubMed Central

    Acuña, Luciana I Gómez; Kornblihtt, Alberto R

    2014-01-01

    Splicing is a predominantly co-transcriptional process that has been shown to be tightly coupled to transcription. Chromatin structure is a key factor that mediates this functional coupling. In light of recent evidence that shows the importance of higher order chromatin organization in the coordination and regulation of gene expression, we discuss here the possible roles of long-range chromatin organization in splicing and alternative splicing regulation. PMID:25764333

  3. Photometric Passive Range Sensor

    NASA Astrophysics Data System (ADS)

    Argueta-Diaz, Victor; García-Valenzuela, Augusto

    2008-04-01

    In this paper we present a passive optical ranging method that consists of taking several photometric measurements from the light radiated by an object and deriving the range from these measurements. This passive ranging device uses an iris of radius a, a lens of radius larger than a, and a photodetector of radius p

  4. Front Range Report, Abstracts

    NASA Astrophysics Data System (ADS)

    Spence, William

    The second regional conference of the Front Range Branch, AGU, was attended by more than 80 professionals and some 20 outstanding high school students. The conference included 2 days of interdisciplinary talks, and lots of discussion, that primarily were keyed to geophysical studies of Colorado, Wyoming, and New Mexico. Other talks reported on nonregional, and sometimes global, studies being done by geophypsicists of the Front Range region.Topics included tectonics of the Front Range and the Colorado Plateau, pollution of the Arkansas and Mississippi rivers, and a supreme polluting event that caused the late-Cretaceous extinctions. Other notable talks were on toxic cleanup, microburst (wind shear) detection at U.S. airports, and other meteorological studies. Several talks treated the audience to the excitement of new work and surprise discoveries. The meeting was multimedia, including the playing of two videos through a projection TV and the playing of a fascinating tape between an airport control tower and incoming pilots during a severe microburst event.

  5. High frequency dynamic pressure calibration technique

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Zasimowich, R. F.

    1985-01-01

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  6. High frequency dynamic pressure calibration technique

    NASA Astrophysics Data System (ADS)

    Davis, P. A.; Zasimowich, R. F.

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  7. Lead leaching from pressure cookers.

    PubMed

    Raghunath, R; Nambi, K S

    1998-12-11

    Leachability of lead by tap water and tamarind solution from Indian pressure cookers while cooking with and without a safety valve is studied. Lead contamination of food by cookers is not very high when compared to the daily intake of lead from various food items consumed by the Indian community. However, looking at the very wide range of lead levels leached from various brands of pressure cookers, it certainly seems possible to keep the lead contamination to the minimum by proper choice of the materials used in the manufacture of these pressure cookers. The rubber gasket, which is a very important component of any pressure cooker, contains the maximum lead concentration; the safety valve is another important source leading to lead contamination of cooked food.

  8. Rotor Blade Pressure Measurement in a Rotating Machinery Using Pressure and Temperature Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Torgerson, S.; Liu, T.; Sullivan, J.

    1998-01-01

    Pressure and temperature sensitive paints have been utilized for the measurement of blade surface pressure and temperature distributions in a high speed axial compressor and an Allied Signal F109 gas turbine engine. Alternate blades were painted with temperature sensitive paints and then pressure sensitive paint. This combination allows temperature distributions to be accounted for when determining the blade suction surface pressure distribution. Measurements were taken and pressure maps on the suction surface of a blade were obtained over a range of rotational speeds. Pressure maps of the suction surface show-strong shock waves at the higher speeds.

  9. Eddy current technique for predicting burst pressure

    DOEpatents

    Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.

    2003-01-01

    A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.

  10. Estimated vapor pressure for WTP process streams

    SciTech Connect

    Pike, J.; Poirier, M.

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  11. High pressure synthesis gas conversion. Final report

    SciTech Connect

    Not Available

    1993-05-01

    The purpose of this research project is to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by Clostridium ljungdahlii. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors. A maximum operating pressure of 150 psig has been shown to be possible for C. ljungdahlli with the medium of Phillips et al. This medium was developed for atmospheric pressure operation in the CSTR to yield maximum ethanol concentrations and thus is not best for operation at elevated pressures. It is recommended that a medium development study be performed for C. ljungdahlii at increased pressure. Cell concentration, gas conversion and product concentration profiles were presented for C. ljungdahlii as a function of gas flow rate, the variable which affects bacterium performance the most. This pressure was chosen as a representative pressure over the 0--150 psig operating pressure range for the bacterium. Increased pressure negatively affected ethanol productivity probably due to the fact that medium composition was designed for atmospheric pressure operation. Medium development at increased pressure is necessary for high pressure development of the system.

  12. Laser Range Camera Modeling

    SciTech Connect

    Storjohann, K.

    1990-01-01

    This paper describes an imaging model that was derived for use with a laser range camera (LRC) developed by the Advanced Intelligent Machines Division of Odetics. However, this model could be applied to any comparable imaging system. Both the derivation of the model and the determination of the LRC's intrinsic parameters are explained. For the purpose of evaluating the LRC's extrinsic parameters, i.e., its external orientation, a transformation of the LRC's imaging model into a standard camera's (SC) pinhole model is derived. By virtue of this transformation, the evaluation of the LRC's external orientation can be found by applying any SC calibration technique.

  13. MiniAERCam Ranging

    NASA Technical Reports Server (NTRS)

    Talley, Tom

    2003-01-01

    Johnson Space Center (JSC) is designing a small, remotely controlled vehicle that will carry two color and one black and white video cameras in space. The device will launch and retrieve from the Space Vehicle and be used for remote viewing. Off the shelf cellular technology is being used as the basis for communication system design. Existing plans include using multiple antennas to make simultaneous estimates of the azimuth of the MiniAERCam from several sites on the Space Station and use triangulation to find the location of the device. Adding range detection capability to each of the nodes on the Space Vehicle would allow an estimate of the location of the MiniAERCam to be made at each Communication And Telemetry Box (CATBox) independent of all the other communication nodes. This project will investigate the techniques used by the Global Positioning System (GPS) to achieve accurate positioning information and adapt those strategies that are appropriate to the design of the CATBox range determination system.

  14. Range Process Simulation Tool

    NASA Technical Reports Server (NTRS)

    Phillips, Dave; Haas, William; Barth, Tim; Benjamin, Perakath; Graul, Michael; Bagatourova, Olga

    2005-01-01

    Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions.

  15. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  16. High-Pressure Vibrational Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Pogson, Mark

    1987-09-01

    Available from UMI in association with The British Library. Requires signed TDF. The study of solids at high pressure and variable temperature enables development of accurate interatomic potential functions over wide ranges of interatomic distances. A review of the main models used in the determination of these potentials is given in Chapter one. A discussion of phonon frequency as a variable physical parameter reflecting the interatomic potential is given. A high pressure Raman study of inorganic salts of the types MSCN, (M = K,Rb,Cs & NH_4^+ ) and MNO_2, (M = K,Na) has been completed. The studies have revealed two new phases in KNO_2 and one new phase in NaNO _2 at high pressure. The accurate phonon shift data have enabled the determination of the pure and biphasic stability regions of the phases of KNO _2. A discussion of the B1, B2 relationship of univalent nitrites is also given. In the series of thiocyanates studied new phases have been found in all four materials. In both the potassium and rubidium salts two new phases have been detected, and in the ceasium salt one new phase has been detected, all at high pressure, from accurate phonon shift data. These transitions are discussed in terms of second-order mechanisms with space groups suggested for all phases, based on Landau's theory of second-order phase transitions. In the ammonium salt one new phase has been detected. This new phase transition has been interpreted as a second-order transition. The series of molecular crystals CH_3 HgX, (X = Cl,Br & I) has been studied at high pressure and at variable temperature. In Chapter five, their phase behaviour at high pressure is detailed along with the pressure dependencies of their phonon frequencies. In the chloride and the bromide two new phases have been detected. In the bromide one has been detected at high temperature and one at high pressure, and latter being interpreted as the stopping of the methyl rotation. In the chloride one phase has been found at

  17. Dealing with Peer Pressure

    MedlinePlus

    ... Happens in the Operating Room? Dealing With Peer Pressure KidsHealth > For Kids > Dealing With Peer Pressure A ... talk about how to handle it. Defining Peer Pressure Peers influence your life, even if you don' ...

  18. Dealing with Peer Pressure

    MedlinePlus

    ... Video: Getting an X-ray Dealing With Peer Pressure KidsHealth > For Kids > Dealing With Peer Pressure Print ... talk about how to handle it. Defining Peer Pressure Peers influence your life, even if you don' ...

  19. Yield-pressure determination

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.

    1977-01-01

    Stress/strain relationship of complex-shape vessel is recorded under hydrostatic pressure. Technique is used to test pressurized gas cylinders and tubular transition joints made of dissimilar metals and to determine burst or system-failure pressures.

  20. Intracranial pressure monitoring

    MedlinePlus

    ... head. The monitor senses the pressure inside the skull and sends measurements to a recording device. ... are 3 ways to monitor pressure in the skull (intracranial pressure). INTRAVENTRICULAR CATHETER The intraventricular catheter is ...

  1. High blood pressure medicines

    MedlinePlus

    Hypertension - medicines ... blood vessel diseases. You may need to take medicines to lower your blood pressure if lifestyle changes ... blood pressure to the target level. WHEN ARE MEDICINES FOR HIGH BLOOD PRESSURE USED Most of the ...

  2. Flowmeter for pressure-driven chromatography systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.

    2003-01-01

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  3. Flowmeter for pressure-driven chromatography systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.

    2002-01-01

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  4. Normal pressure tests on unstiffened flat plates

    NASA Technical Reports Server (NTRS)

    Head, Richard M; Sechler, Ernest J

    1944-01-01

    Flat sheet panels of aluminum alloy (all 17S-T except for two specimens of 24S-T) were tested under normal pressures with clamped edge supports in the structures laboratory of the Guggenheim Aeronautical Laboratory, California Institute of Technology. The thicknesses used ranged from 0.010 to 0.080 inch; the panel sizes ranged from 10 by 10 inches to 10 by 40 inches; and the pressure range was from 0 to 60-pounds-per-square-inch gage. Deflection patterns were measured and maximum tensile strains in the center of the panel were determined by electric strain gages. The experimental data are presented by pressure-strain, pressure-maximum-deflection, and pressure-deflection curves. The results of these tests have been compared with the corresponding strains and deflections as calculated by the simple membrane theory and by large deflection theories.

  5. Range imaging laser radar

    DOEpatents

    Scott, M.W.

    1990-06-19

    A laser source is operated continuously and modulated periodically (typically sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream. 2 figs.

  6. Range imaging laser radar

    DOEpatents

    Scott, Marion W.

    1990-01-01

    A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.

  7. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  8. Microplasma jet at atmospheric pressure

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2006-11-27

    A nitrogen microplasma jet operated at atmospheric pressure was developed for treating thermally sensitive materials. For example, the plasma sources in treatment of vulnerable biological materials must operate near the room temperature at the atmospheric pressure, without any risk of arcing or electrical shock. The microplasma jet device operated by an electrical power less than 10 W exhibited a long plasma jet of about 6.5 cm with temperature near 300 K, not causing any harm to human skin. Optical emission measured at the wide range of 280-800 nm indicated various reactive species produced by the plasma jet.

  9. Pressure effect on dissimilatory sulfate reduction

    NASA Astrophysics Data System (ADS)

    Williamson, A. J.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Biosouring is the production of H2S by sulfate reducing microorganisms (SRM) in-situ or in the produced fluids of oil reservoirs. Sulfide is explosive, toxic and corrosive which can trigger equipment and transportation failure, leading to environmental catastrophe. As oil exploration and reservoir development continue, subsequent enhanced recovery is occurring in progressively deeper formations and typical oil reservoir pressures range from 10-50 MPa. Therefore, an understanding of souring control effects will require an accurate understanding of the influence of pressure on SRM metabolism and the efficacy of souring control treatments at high pressure. Considerable work to date has focussed on souring control at ambient pressure; however, the influence of pressure on biogeochemical processes and souring treatments in oil reservoirs is poorly understood. To explore the impact of pressure on SRM, wild type Desulfovibrio alaskensis G20 (isolated from a producing oil well in Ventura County, California) was grown under a range of pressures (0.1-14 MPa) at 30 °C. Complete sulfate reduction occurred in all pressures tested within 3 days, but microbial growth was inhibited with increasing pressure. Bar-seq identified several genes associated with flagella biosynthesis (including FlhB) and assembly as important for survival at elevated pressure and fitness was confirmed using individual transposon mutants. Flagellar genes have previously been implicated with biofilm formation and confocal microscopy on glass slides incubated with wild type D. alaskensis G20 showed more biomass associated with surfaces under pressure, highlighting the link between pressure, flagellar and biofilm formation. To determine the effect of pressure on the efficacy of SRM inhibitors, IC50 experiments were conducted and D. alaskensis G20 showed a greater resistance to nitrate and the antibiotic chloramphenicol, but a lower resistance to perchlorate. These results will be discussed in the context of

  10. Pressure polymerization of polyester

    DOEpatents

    Maurer, Charles J.; Shaw, Gordon; Smith, Vicky S.; Buelow, Steven J.; Tumas, William; Contreras, Veronica; Martinez, Ronald J.

    2000-08-29

    A process is disclosed for the preparation of a polyester polymer or polyester copolymer under superatmospheric pressure conditions in a pipe or tubular reaction under turbannular flow conditions. Reaction material having a glycol equivalents to carboxylic acid equivalents mole ratio of from 1.0:1 to 1.2:1, together with a superatmospheric dense gaseous medium are fed co-currently to the reactor. Dicarboxylic acid and/or diol raw materials may be injected into any of the reaction zones in the process during operation to achieve the overall desired mole ratio balance. The process operates at temperatures of from about 220.degree. C. to about 320.degree. C., with turbannular flow achieved before the polymer product and gas exit the reactor process. The pressure in the reaction zones can be in the range from 15 psia to 2500 psia. A polymer product having a DP of a greater than 40, more preferably at least about 70, is achieved by the transfer of water from the reacting material polymer melt to the gaseous medium in the reactor.

  11. Ratchetting in pressurized pipes

    NASA Astrophysics Data System (ADS)

    Rider, R. J.; Harvey, S. J.; Charles, I. D.

    1994-04-01

    The plastic deformation of thin-walled cylinders has been experimentally examined for the loading conditions of +/- 1% axial strain with hoop stresses of approximately 0, 1/4, 1/2 and 3/4 of the initial uniaxial yield stress. Two materials similar to those used in the pipework of PWR nuclear plant in the U.K. have been tested, namely 304S11 stainless steel and En6 low-carbon steel. The results of the tests were to be compared with the allowable stresses and deformations specified in the ASME Boiler and Pressure Vessel Code, Section III. The code specifies that a prescribed combination of primary stresses must not exceed 1.5S(sub m), where S(sub m) is a stress value defined for each material. The results indicate that the limit of 1.5S(sub m) is excessively low for both materials and that in particular, the stainless steel could tolerate 5S(sub m). Although the En6 steel is more prone to ratchetting than the stainless steel, the results suggest that it too could tolerate a higher primary stress than the code allows. Both materials are shown to satisfy the proposed ASME ratchet strain limit of 5% hoop strain after 10 cycles of +/- 1% axial strain range, for any value of internal pressure.

  12. High pressure ices

    PubMed Central

    Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald

    2012-01-01

    H2O will be more resistant to metallization than previously thought. From computational evolutionary structure searches, we find a sequence of new stable and meta-stable structures for the ground state of ice in the 1–5 TPa (10 to 50 Mbar) regime, in the static approximation. The previously proposed Pbcm structure is superseded by a Pmc21 phase at p = 930 GPa, followed by a predicted transition to a P21 crystal structure at p = 1.3 TPa. This phase, featuring higher coordination at O and H, is stable over a wide pressure range, reaching 4.8 TPa. We analyze carefully the geometrical changes in the calculated structures, especially the buckling at the H in O-H-O motifs. All structures are insulating—chemistry burns a deep and (with pressure increase) lasting hole in the density of states near the highest occupied electronic levels of what might be component metallic lattices. Metallization of ice in our calculations occurs only near 4.8 TPa, where the metallic C2/m phase becomes most stable. In this regime, zero-point energies much larger than typical enthalpy differences suggest possible melting of the H sublattice, or even the entire crystal. PMID:22207625

  13. Cradle and pressure grippers

    DOEpatents

    Muniak, John E.

    2001-01-01

    A gripper that is designed to incorporate the functions of gripping, supporting and pressure tongs into one device. The gripper has two opposing finger sections with interlocking fingers that incline and taper to form a wedge. The interlocking fingers are vertically off-set so that the opposing finger sections may close together allowing the inclined, tapered tips of the fingers to extend beyond the plane defined by the opposing finger section's engagement surface. The range of motion defined by the interlocking relationship of the finger sections allows the gripper to grab, lift and support objects of varying size and shape. The gripper has one stationary and one moveable finger section. Power is provided to the moveable finger section by an actuating device enabling the gripper to close around an object to be lifted. A lifting bail is attached to the gripper and is supported by a crane that provides vertical lift.

  14. Development of the seafloor acoustic ranging system

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Fujimoto, H.

    2007-12-01

    We have developed a seafloor acoustic ranging system, which simulates an operation with the DONET (Development of Dense Ocean-floor Network System for Earthquake and Tsunami) cable, to monitor seafloor crustal movement. The seafloor acoustic ranging system was based on the precise acoustic transponder (PXP). We have a few problems for the improvement of the resolution. One thing is the variation of sound speed. Another is the bending of ray path. A PXP measures horizontal distances on the seafloor from the round trip travel times of acoustic pulses between pairs of PXP. The PXP was equipped with the pressure, temperature gauge and tilt-meter. The variation of sound speed in seawater has a direct effect on the measurement. Therefore we collect the data of temperature and pressure. But we don't collect the data of salinity because of less influence than temperature and pressure. Accordingly a ray path of acoustic wave tends to be bent upward in the deep sea due to the Snell's law. As the acoustic transducer of each PXPs held about 3.0m above the seafloor, the baseline is too long for altitude from the seafloor. In this year we carried out the experiment for the seafloor acoustic ranging system. We deployed two PXPs at about 750m spacing on Kumano-nada. The water depth is about 2050m. We collected the 660 data in this experiment during one day. The round trip travel time show the variation with peak-to-peak amplitude of about 0.03msec. It was confirmed to explain the majority in this change by the change in sound speed according to the temperature and pressure. This results shows the resolution of acoustic measurements is +/-2mm. Acknowledgement This study is supported by 'DONET' of Ministry of Education, Culture, Sports, Science and Technology.

  15. Hypertension (High Blood Pressure)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Hypertension (High Blood Pressure) KidsHealth > For Teens > Hypertension (High Blood Pressure) A ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  16. Automated high pressure cell for pressure jump x-ray diffraction.

    PubMed

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  17. Automated high pressure cell for pressure jump x-ray diffraction

    SciTech Connect

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  18. Constant-pressure Blowers

    NASA Technical Reports Server (NTRS)

    Sorensen, E

    1940-01-01

    The conventional axial blowers operate on the high-pressure principle. One drawback of this type of blower is the relatively low pressure head, which one attempts to overcome with axial blowers producing very high pressure at a given circumferential speed. The Schicht constant-pressure blower affords pressure ratios considerably higher than those of axial blowers of conventional design with approximately the same efficiency.

  19. Determination of extremely high pressure tolerance of brine shrimp larvae by using a new pressure chamber system.

    PubMed

    Seo, Mihye; Koyama, Sumihiro; Toyofuku, Takashi; Kojima, Shigeaki; Watanabe, Hiromi

    2013-11-01

    Hydrostatic pressure is the only one of a range of environmental parameters (water temperature, salinity, light availability, and so on) that increases in proportion with depth. Pressure tolerance is therefore essential to understand the foundation of populations and current diversity of faunal compositions at various depths. In the present study, we used a newly developed pressure chamber system to examine changes in larval activity of the salt-lake crustacean, Artemia franciscana, in response to a range of hydrostatic pressures. We showed that A. franciscana larvae were able to survive for a short period at pressures of ≤ 60 MPa (approximately equal to the pressure of 6000 m deep). At a pressure of > 20 MPa, larval motor ability was suppressed, but not lost. Meanwhile, at a pressure of > 40 MPa, some of the larval motor ability was lost without recovery after decompression. For all experiments, discordance of movement and timing between right and left appendages, was observed at pressures of > 20 MPa. Our results indicate that the limit of pressure for sustaining active behavior of A. franciscana larvae is ∼20 MPa, whereas the limit of pressure for survival is within the range 30-60 MPa. Thus, members of the genus Artemia possess the ability to resist a higher range of pressures than their natural habitat depth. Our findings demonstrated an example of an organism capable of invading deeper environment in terms of physical pressure tolerance, and indicate the need and importance of pressure study as an experimental method.

  20. Melting of Ice under Pressure

    SciTech Connect

    Schwegler, E; Sharma, M; Gygi, F; Galli, G

    2008-07-31

    The melting of ice under pressure is investigated with a series of first principles molecular dynamics simulations. In particular, a two-phase approach is used to determine the melting temperature of the ice-VII phase in the range of 10 to 50 GPa. Our computed melting temperatures are consistent with existing diamond anvil cell experiments. We find that for pressures between 10 to 40 GPa, ice melts as a molecular solid. For pressures above {approx}45 GPa there is a sharp increase in the slope of the melting curve due to the presence of molecular dissociation and proton diffusion in the solid, prior to melting. The onset of significant proton diffusion in ice-VII as a function of increasing temperature is found to be gradual and bears many similarities to that of a type-II superionic solid.

  1. Melting of ice under pressure.

    PubMed

    Schwegler, Eric; Sharma, Manu; Gygi, François; Galli, Giulia

    2008-09-30

    The melting of ice under pressure is investigated with a series of first-principles molecular dynamics simulations. In particular, a two-phase approach is used to determine the melting temperature of the ice-VII phase in the range of 10-50 GPa. Our computed melting temperatures are consistent with existing diamond anvil cell experiments. We find that for pressures between 10 and 40 GPa, ice melts as a molecular solid. For pressures above approximately 45 Gpa, there is a sharp increase in the slope of the melting curve because of the presence of molecular dissociation and proton diffusion in the solid before melting. The onset of significant proton diffusion in ice-VII as a function of increasing temperature is found to be gradual and bears many similarities to that of a type-II superionic solid.

  2. Tropospheric range error parameters: Further studies

    NASA Technical Reports Server (NTRS)

    Hopfield, H. S.

    1972-01-01

    Improved parameters are presented for predicting the tropospheric effect on electromagnetic range measurements from surface meteorological data. Parameters are given for computing the dry component of the zenith radio range effect from surface pressure alone with an rms error of 1 to 2 mm, or the total range effect from the dry and wet components of the surface refractivity, N, and a two-part quartic profile model. The parameters were obtained from meteorological balloon data with improved procedures, including the conversion of the geopotential heights of the balloon data to actual or geometric heights before using the data. The revised values of the parameter k show more latitude variation than is accounted for by the variation of g. This excess variation of k indicates a small latitude variation in the mean molecular weight of air and yields information about the latitude-varying water vapor content of air.

  3. Pressure Dome for High-Pressure Electrolyzer

    NASA Technical Reports Server (NTRS)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  4. Range optimization for a supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Cliff, Eugene M.; Well, Klaus H.

    1991-01-01

    Range optimal trajectories for an aircraft flying in the vertical plane are obtained from Pontryagin's Minimum Principle. Control variables are load factor n which appears nonlinearly in the equations of motion and throttle setting eta, which appears only linearly. Both controls are subject to fixed bounds, namely eta between values of 0 and 1 and absolute value of n not greater than n(max). Additionally, a dynamic pressure limit is imposed, which represents a first-order state-inequality constraint. For fixed flight time, fixed initial coordinates, and partially fixed final coordinates, the effect of the load factor limit absolute value of n not greater than n(max) is studied. Upon varying n(max), six different switching structures are obtained. All trajectories involve singular control along arcs with active dynamic pressure limit.

  5. Pressure-confined Lyman-alpha clouds

    SciTech Connect

    Baron, E.; Carswell, R.F.; Hogan, C.J.; Weymann, R.J.

    1989-02-01

    Results are presented of numerical models of pressure-confined spherical gas clouds which produce absorption resembling the low to intermediate atomic column density lines found in high-redshift QSO spectra. One-dimensional hydrodynamical models including electron conduction are described, and the rate equations are solved to find ionization and excitation states. Results are presented for both static and adiabatically expanding confining media covering a range of initial pressures. It is found that Ly-alpha lines are very similar over a wide range of conditions and that the most promising diagnostic of pressure is to compare the column density in H I to that in He I and He II. No single-pressure model can explain the wide range of observed H I column densities. 18 references.

  6. Laser techniques in high-pressure geophysics

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  7. Combustion of liquid sprays at high pressures

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.

    1977-01-01

    The combustion of pressure atomized fuel sprays in high pressure stagnant air was studied. Measurements were made of flame and spray boundaries at pressures in the range 0.1-9 MPa for methanol and n-pentane. At the higher test pressure levels, critical phenomena are important. The experiments are compared with theoretical predictions based on a locally homogeneous two-phase flow model. The theory correctly predicted the trends of the data, but underestimates flame and spray boundaries by 30-50 percent, indicating that slip is still important for the present experiments (Sauter mean diameters of 30 microns at atmospheric pressure under cold flow conditions). Since the sprays are shorter at high pressures, slip effects are still important even though the density ratio of the phases approach one another as the droplets heat up. The model indicates the presence of a region where condensed water is present within the spray and provides a convenient means of treating supercritical phenomena.

  8. A dynamic pressure generator for checking complete pressure sensing systems installed on an airplane

    NASA Technical Reports Server (NTRS)

    Demarco, D. M.

    1974-01-01

    A portable dynamic pressure generator, how it operates, and a test setup on an airplane are described. The generator is capable of providing a sinusoidal pressure having a peak-to-peak amplitude of 3.5 N/sq cm (5 psi) at frequencies ranging from 100 hertz to 200 hertz. A typical power spectral density plot of data from actual dynamic pressure fluctuation tests within the air inlet of the YF-12 airplane is presented.

  9. Atmospheric Pressure Indicator.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  10. Blood Pressure Quiz

    MedlinePlus

    ... high blood pressure can lead to… stroke. kidney failure. heart attack and heart failure. all of the above. ... high blood pressure can lead to stroke, kidney failure, heart attack and heart failure A is the correct ...

  11. High Blood Pressure Prevention

    MedlinePlus

    ... version of this page please turn Javascript on. High Blood Pressure Prevention Steps You Can Take You can take steps to prevent high blood pressure by adopting these healthy lifestyle habits. Follow a ...

  12. Low blood pressure

    MedlinePlus

    Hypotension; Blood pressure - low; Postprandial hypotension; Orthostatic hypotension; Neurally mediated hypotension; NMH ... Blood pressure varies from one person to another. A drop as little as 20 mmHg, can cause problems for ...

  13. High blood pressure - infants

    MedlinePlus

    ... medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  14. Blood Pressure Test

    MedlinePlus

    ... a minute to complete a single blood pressure measurement. After the procedure The nurse or technician taking ... online record. You can learn your blood pressure measurement as soon as your test is over. A ...

  15. Blood Pressure Medicines

    MedlinePlus

    ... reducing sodium in your diet, you may need medicines. Blood pressure medicines work in different ways to lower blood pressure. ... and widen blood vessels. Often, two or more medicines work better than one. NIH: National Heart, Lung, ...

  16. Pressure Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Bencic, T.; Sullivan, J. P.

    1999-01-01

    This article reviews new advances and applications of pressure sensitive paints in aerodynamic testing. Emphasis is placed on important technical aspects of pressure sensitive paint including instrumentation, data processing, and uncertainty analysis.

  17. Pressure surge attenuator

    DOEpatents

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  18. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  19. Investigating the efficacy of subharmonic aided pressure estimation for portal vein pressures and portal hypertension monitoring.

    PubMed

    Dave, Jaydev K; Halldorsdottir, Valgerdur G; Eisenbrey, John R; Merton, Daniel A; Liu, Ji-Bin; Zhou, Jian-Hua; Wang, Hsin-Kai; Park, Suhyun; Dianis, Scott; Chalek, Carl L; Lin, Feng; Thomenius, Kai E; Brown, Daniel B; Forsberg, Flemming

    2012-10-01

    The efficacy of using subharmonic emissions from Sonazoid microbubbles (GE Healthcare, Oslo, Norway) to track portal vein pressures and pressure changes was investigated in 14 canines using either slow- or high-flow models of portal hypertension (PH). A modified Logiq 9 scanner (GE Healthcare, Milwaukee, WI, USA) operating in subharmonic mode (f(transmit): 2.5 MHz, f(receive): 1.25 MHz) was used to collect radiofrequency data at 10-40% incident acoustic power levels with 2-4 transmit cycles (in triplicate) before and after inducing PH. A pressure catheter (Millar Instruments, Inc., Houston, TX, USA) provided reference portal vein pressures. At optimum insonification, subharmonic signal amplitude changes correlated with portal vein pressure changes; r ranged from -0.82 to -0.94 and from -0.70 to -0.73 for PH models considered separately or together, respectively. The subharmonic signal amplitudes correlated with absolute portal vein pressures (r: -0.71 to -0.79). Statistically significant differences between subharmonic amplitudes, before and after inducing PH, were noted (p ≤ 0.01). Portal vein pressures estimated using subharmonic aided pressure estimation did not reveal significant differences (p > 0.05) with respect to the pressures obtained using the Millar pressure catheter. Subharmonic-aided pressure estimation may be useful clinically for portal vein pressure monitoring.

  20. Pressure-sensitive optrode

    DOEpatents

    Hirschfeld, Tomas B.

    1986-01-01

    An apparatus is provided for sensing changes in pressure and for generating optical signals related to said changes in pressure. Light from a fiber optic illuminates a fluorescent composition causing it to fluoresce. The fluorescent composition is caused to more relative to the end of the fiber optic in response to changes in pressure so that the intensity of fluorescent emissions collected by the same fiber optic used for illumination varies monotonically with pressure.

  1. Pressure-sensitive optrode

    DOEpatents

    Hirschfeld, T.B.

    1986-07-15

    An apparatus is provided for sensing changes in pressure and for generating optical signals related to said changes in pressure. Light from a fiber optic illuminates a fluorescent composition causing it to fluoresce. The fluorescent composition is caused to fluoresce more relative to the end of the fiber optic in response to changes in pressure so that the intensity of fluorescent emissions collected by the same fiber optic used for illumination varies monotonically with pressure. 10 figs.

  2. A control system for maintaining high stability in gas pressure

    SciTech Connect

    Wuest, C.R.; Hendricks, C.D.

    1987-09-01

    A pressure control system has been implemented on an experiment designed to detect the presence of fractional charges in bulk matter. The experiment utilizes a liquid-droplet generation technique requiring high-stability gas-pressure delivery to ensure accurate data collection. The pressure control system consists of a pressurized mercury reservoir containing a low-vapor-pressure, diffusion-pump oil. A commercially available differential pressure transducer, servo-driven valve, and controller sense the pressure fluctuations with respect to a static reference pressure. The system can maintain constant pressure to better than one part in 10,000 at working pressures in the range of 100 to 300 psi. 3 refs., 7 figs.

  3. Brain Pressure Monitoring

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A transducer originally used to measure air pressure in aircraft wind tunnel tests is the basis for a development important in diagnosis and treatment of certain types of brain damage. A totally implantable device, tbe intracranial pressure monitor measures and reports brain pressure by telemetry.

  4. High Blood Pressure (Hypertension)

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure (Hypertension) Share Tweet Linkedin Pin it More sharing options ... En Español Who is at risk? How is high blood pressure treated? Understanding your blood pressure: What do the ...

  5. Understanding Blood Pressure Readings

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More Understanding Blood Pressure Readings Updated:Mar 22,2017 What do your ... it’s too high for blood pressure High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  6. Low Blood Pressure

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More Low Blood Pressure - When Blood Pressure Is Too Low Updated:Dec 13,2016 How ... content was last reviewed October 2016 High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  7. Treating High Blood Pressure

    MedlinePlus

    About High Blood Pressure Many people in the United States die from high blood pressure. This condition usually does not cause symptoms. Most ... until it is too late. A person has high blood pressure when the blood pushes against Visit your doctor ...

  8. A soundproof pressure chamber.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Inoue, S

    1994-01-01

    For neurotological research we designed a soundproof pressure chamber in which pressure can be adjusted +/- 1000 mmH2O at the rate of less than 100 mmH2O per second. Noise in the chamber can be maintained under 30-35 dB while pressure is kept at a given level.

  9. Skin (Pressure) Sores

    MedlinePlus

    ... Treatments and Side Effects Managing Cancer-related Side Effects Skin Problems Pressure Sores A skin or pressure sore ... Content Usage Policy . Skin Problems Dry Skin Itching Skin Color Changes Pressure Sores Scars ... and Paying for Treatment Treatments and Side Effects Survivorship: During and After Treatment Caregivers and Family ...

  10. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  11. Measuring Pressure Has a New Standard

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Force-Balanced Piston Gauge (FPG) tests and calibrates instrumentation operating in the low pressure range. The system provides a traceable, primary calibration standard for measuring pressures in the range of near 0 to 15 kPa (2.2 psi) in both gauge and absolute measurement modes. The hardware combines a large area piston-cylinder with a load cell measuring the force resulting from pressures across the piston. The mass of the piston can be tared out, allowing measurement to start from zero. A pressure higher than the measured pressure, which keeps the piston centered, lubricates an innovative conical gap located between the piston and the cylinder, eliminating the need for piston rotation. A pressure controller based on the control of low gas flow automates the pressure control. DHI markets the FPG as an automated primary standard for very low-gauge and absolute pressures. DHI is selling the FPG to high-end metrology laboratories on a case by case basis, with a full commercial release to follow.

  12. Laser range profile of cones

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-10-01

    technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser

  13. High pressure and anesthesia: pressure stimulates or inhibits bacterial bioluminescence depending upon temperature.

    PubMed

    Nosaka, S; Kamaya, H; Ueda, I

    1988-10-01

    Although high pressure is often viewed as a nonspecific stimulus counteracting anesthesia, pressure can either excite or inhibit biological activity depending on the temperature at application. Temperature and pressure are two independent variables that determine equilibrium quantity, e.g., the state of organisms in terms of activity and anesthesia depth. We used the light intensity of luminous bacteria (Vibrio fischeri) as an activity parameter, and studied the effects of pressure and anesthetics on the bacteria's light intensity at various temperatures. The light intensity was greatest at about 30 degrees C at ambient pressure. When the system was pressurized up to 204 atm, the temperature for maximum light intensity was shifted to higher temperatures. Above the optimal temperature for the maximal light intensity, high pressure increased the light intensity. Below the optimal temperature, pressure decreased light intensity. Pressure only shifts the reaction equilibrium to the lower volume state (Le Chatelier's principle). When the volume of the excited state is larger than the resting state, high pressure inhibits excitation, and vice versa. Halothane 0.008 atm and isoflurane 0.021 atm inhibited the light intensity both above and below the optimal temperature. When pressurized, the light intensity increased in the high temperature range but decreased in the low temperature range, as in the control. Thus, high pressure seemingly potentiated the anesthetic action at low temperatures. When the ratio of the light intensity in bacteria exposed to anesthesia and those not exposed to anesthesia was plotted against the pressure, however, the value approached unity in proportion to the pressure increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Pressure Relief Devices

    NASA Astrophysics Data System (ADS)

    Manha, William D.

    2010-09-01

    Pressure relief devices are used in pressure systems and on pressure vessels to prevent catastrophic rupture or explosion from excessive pressure. Pressure systems and pressure vessels have manufacturers maximum rated operating pressures or maximum design pressures(MDP) for which there are relatively high safety factors and minimum risk of rupture or explosion. Pressure systems and pressure vessels that have a potential to exceed the MDP by being connected to another higher pressure source, a compressor, or heat to water(boiler) are required to have over-pressure protecting devices. Such devices can be relief valves and/or burst discs to safely relieve potentially excessive pressure and prevent unacceptable ruptures and explosions which result in fail-safe pressure systems and pressure vessels. Common aerospace relief valve and burst disc requirements and standards will be presented. This will include the NASA PSRP Interpretation Letter TA-88-074 Fault Tolerance of Systems Using Specially Certified Burst Disks that dictates burst disc requirements for payloads on Shuttle. Two recent undesirable manned space payloads pressure relief devices and practices will be discussed, as well as why these practices should not be continued. One example for discussion is the use of three burst discs that have been placed in series to comply with safety requirements of three controls to prevent a catastrophic hazard of the over-pressurization and rupture of pressure system and/or vessels. The cavities between the burst discs are evacuated and are the reference pressures for activating the two upstream burst discs. If the upstream burst disc leaks into the reference cavity, the reference pressure increases and it can increase the burst disc activating pressure and potentially result in the burst disc assembly being ineffective for over pressure protection. The three burst discs-in-series assembly was found acceptable because the burst discs are designed for minimum risk(DFMR) of

  15. Pressure reducing regulator

    DOEpatents

    Whitehead, J.C.; Dilgard, L.W.

    1995-10-10

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure is disclosed. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes. 10 figs.

  16. Pressure reducing regulator

    DOEpatents

    Whitehead, John C.; Dilgard, Lemoyne W.

    1995-01-01

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes.

  17. Miniaturized pressurization system

    DOEpatents

    Whitehead, John C.; Swink, Don G.

    1991-01-01

    The invention uses a fluid stored at a low pressure and provides the fluid at a high pressure. The invention allows the low pressure fluid to flow to a fluid bore of a differential pump and from the pump to a fluid pressure regulator. After flowing through the regulator the fluid is converted to a gas which is directed to a gas bore of the differential pump. By controlling the flow of gas entering and being exhausted from the gas bore, the invention provides pressure to the fluid. By setting the regulator, the high pressure fluid can be set at predetermined values. Because the invention only needs a low pressure fluid, the inventive apparatus has a low mass, and therefore would be useful in rocket propulsion systems.

  18. Pressure (Or No Royal Road)

    ERIC Educational Resources Information Center

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  19. Pressure locking test results

    SciTech Connect

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D.

    1996-12-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.{close_quotes} Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; the authors will publish the results of their thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.

  20. Palpatory Method of Measuring Diastolic Blood Pressure

    PubMed Central

    Sahu, Dinesh; Bhaskaran, M

    2010-01-01

    Background: Most common method for measuring blood pressure is palpatory but only systolic pressure can be measured with this method. In this study we are describing palpatory method of measuring diastolic blood pressure as well. Patients & Methods: We have studied in 200 patients and compared systolic as well as diastolic blood pressures with two methods, auscutatory and palpatory. Systolic and diastolic blood pressure were measured by one of the authors with new palpatory method and noted down. Then an independent observer, who was blinded to the palpatory method's values, measured blood pressure by auscultatory method and noted down. The values were compared in term of range and percentage. Results: The difference were analysed and found that 102 (51%) patients had systolic and diastolic blood pressure measured by palpatory method, within ± 2 mmHg of auscutatory method, 37 (19%) patients had within ± 4 mmHg, 52 (25%) patients had same readings as with auscutatory method, and in 9 (0.5%) patients it could not be measured. Conclusion: The palpatory method would be very useful where frequent blood pressure measurement are being done manually like in wards, in busy OPD, patient on treadmill and also whenever stethoscope is not available. The blood pressure can be measured in noisy environment too. PMID:21547184

  1. The effect of atmospheric pressure on Snowball Earth deglaciation

    NASA Astrophysics Data System (ADS)

    Edkins, Nicholas; Davies, Roger

    2017-02-01

    The most common explanation for the escape from a Snowball Earth state involves, among other factors, a strong greenhouse effect caused by a large partial pressure of CO2. This leads to an increase in surface pressure, which most models do not account for. With a higher surface pressure, pressure broadening increases, and convection reaches a deeper layer, both of which result in higher surface temperatures. The latter mechanism, which has not previously been reported, is found to be a greater source of warming than pressure broadening in the normal range of CO2 partial pressures at the point of deglaciation.

  2. Investigating the efficacy of subharmonic aided pressure estimation for portal vein pressures and portal hypertension monitoring

    PubMed Central

    Dave, Jaydev K.; Halldorsdottir, Valgerdur G.; Eisenbrey, John R.; Merton, Daniel A.; Liu, Ji-Bin; Zhou, Jian-Hua; Wang, Hsin-Kai; Park, Suhyun; Dianis, Scott; Chalek, Carl L.; Lin, Feng; Thomenius, Kai E.; Brown, Daniel B.; Forsberg, Flemming

    2013-01-01

    The efficacy of using subharmonic emissions from Sonazoid microbubbles (GE Healthcare, Oslo, Norway) to track portal vein pressures and pressure changes was investigated in 14 canines using either slow- or high-flow models of portal hypertension (PH). A modified Logiq 9 scanner (GE Healthcare, Milwaukee, WI) operating in subharmonic mode (ftransmit:2.5MHz, freceive:1.25MHz) was used to collect RF data at 10-40% incident acoustic power levels with 2-4 transmit cycles (in triplicate), before and after inducing PH. A pressure catheter (Millar Instruments, Inc., Houston, TX) provided reference portal vein pressures. At optimum insonification, subharmonic signal amplitude changes correlated with portal vein pressure changes; r ranged from -0.82 to -0.94 and from -0.70 to -0.73 for PH models considered separately or together, respectively. The subharmonic signal amplitudes correlated with absolute portal vein pressures (r: -0.71 to -0.79). Statistically significant differences between subharmonic amplitudes, before and after inducing PH, were noted (p≤0.01). Portal vein pressures estimated using SHAPE did not reveal significant differences (p>0.05) with respect to the pressures obtained using the Millar pressure catheter. Subharmonic aided pressure estimation may be useful clinically for portal vein pressure monitoring. PMID:22920550

  3. Calculating Mass Diffusion in High-Pressure Binary Fluids

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2004-01-01

    A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.

  4. Characterization of a surface micromachined pressure sensor array

    SciTech Connect

    Eaton, W.P.; Smith, J.H.

    1995-08-01

    A surface micromachined pressure sensor array has been designed and fabricated. The sensors are based upon deformable, silicon nitride diaphragms with polysilicon piezoresistors. Absolute pressure is detected by virtue of reference pressure cavities underneath the diaphragms. For this type of sensor, design tradeoffs must be made among allowable diaphragm size, and desirable pressure ranges. Several fabrication issues were observed and addressed. Offset voltage, sensitivity, and nonlinearity of 100 {mu}m diameter sensors were measured.

  5. Sequential ranging: How it works

    NASA Technical Reports Server (NTRS)

    Baugh, Harold W.

    1993-01-01

    This publication is directed to the users of data from the Sequential Ranging Assembly (SRA), and to others who have a general interest in range measurements. It covers the hardware, the software, and the processes used in acquiring range data; it does not cover analytical aspects such as the theory of modulation, detection, noise spectral density, and other highly technical subjects. In other words, it covers how ranging is done, but not the details of why it works. The publication also includes an appendix that gives a brief discussion of PN ranging, a capability now under development.

  6. Sensors, transducers, and systems for blood pressure and intracranial pressure monitoring

    NASA Astrophysics Data System (ADS)

    Juniewicz, Henryk M.; Kedryna, Zbigniew M.

    1997-02-01

    An overview of commercial sensors, transducers, monitors and computer systems for arterial pressure and intracranial pressure monitoring has been made in this paper. Similar technical specifications of the devices (measurement range, sensitivity, accuracy) have been emphasized, as well as a variety of structural solutions influencing their static and dynamic parameters. A computer based test stand for checking dynamic properties of pneumatic pressure transducers is presented. It enables tests in a full range of amplitude and frequency change, visualization and comparative analysis of sensor responses for various supply conditions. Exemplary waveforms are shown and initial conclusions concerning sensor features are drawn.

  7. Discontinuity stresses in metallic pressure vessels

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The state of the art, criteria, and recommended practices for the theoretical and experimental analyses of discontinuity stresses and their distribution in metallic pressure vessels for space vehicles are outlined. The applicable types of pressure vessels include propellant tanks ranging from main load-carrying integral tank structure to small auxiliary tanks, storage tanks, solid propellant motor cases, high pressure gas bottles, and pressurized cabins. The major sources of discontinuity stresses are discussed, including deviations in geometry, material properties, loads, and temperature. The advantages, limitations, and disadvantages of various theoretical and experimental discontinuity analysis methods are summarized. Guides are presented for evaluating discontinuity stresses so that pressure vessel performance will not fall below acceptable levels.

  8. EDC-37 Deflagration Rates at Elevated Pressures

    SciTech Connect

    Maienschein, J L; Koerner, J G

    2008-01-31

    We report deflagration rates on EDC-37 at high pressures. Experiments are conducted using the Lawrence Livermore National Laboratory High Pressure Strand Burner (HPSB) apparatus. The HPSB contains a deflagrating sample in a small volume, high pressure chamber. The sample consists of nine, 6.35 mm diameter, 6.35 mm length cylinders stacked on end, with burn wires placed between cylinders. Sample deflagration is limited to the cross-sectional surface of the cylinder by coating the cylindrical surface of the tower with Halthane 88-2 epoxy. Sample deflagration is initiated on one end of the tower by a B/KNO{sub 3} and HNS igniter train. Simultaneous temporal pressure history and burn front time of arrival measurements yield the laminar deflagration rate for a range of pressures and provide insight into deflagration uniformity. These measurements are one indicator of overall thermal explosion violence. Specific details of the experiment and the apparatus can be found in the literature.

  9. Outwardly Propagating Flames at Elevated Pressures

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Rozenchan, G.; Tse, S. D.; Zhu, D. L.

    2001-01-01

    Spherical, outwardly-propagating flames of CH4-O2-inert and H2-O2-inert mixtures were experimentally studied in a high pressure apparatus. Stretch-free flame speeds and Markstein lengths were extracted for a wide range of pressures and equivalence ratios for spherically-symmetric, smooth flamefronts and compared to numerical computations with detailed chemistry and transport, as well as existing data in the literature. Wrinkle development was examined for propagating flames that were unstable under our experimental conditions. Hydrodynamic cells developed for most H2-air and CH4-air flames at elevated pressures, while thermal-diffusive instabilities were also observed for lean and near-stoichiometric hydrogen flames at pressures above atmospheric. Strategies in suppressing or delaying the onset of cell formation have been assessed. Buoyancy effects affected sufficiently off-stoichiometric CH4 mixtures at high pressures.

  10. Variable pressure ionization detector for gas chromatography

    DOEpatents

    Buchanan, Michelle V.; Wise, Marcus B.

    1988-01-01

    Method and apparatus for differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated at pressures ranging from atmospheric to less than 1 torr. Through variation of the pressure within the ECD cell, the organic compounds are induced to either capture or emit electrons. Differentiation of isomeric compounds can be obtianed when, at a given pressure, one isomer is in the emission mode and the other is in the capture mode. Output of the ECD is recorded by chromatogram. The invention also includes a method for obtaining the zero-crossing pressure of a compound, defined as the pressure at which the competing emission and capture reactions are balanced and which may be correlated to the electron affinity of a compound.

  11. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  12. Factors affecting ranging behaviour in young and adult laying hens.

    PubMed

    Gilani, A-M; Knowles, T G; Nicol, C J

    2014-01-01

    1. A study was conducted to investigate the effect of environment on ranging in 33 flocks reared with (16) or without (17) range access. Ranging was observed at 8, 16 and 35 weeks. Information on house layout, weather conditions and range characteristics was used to create models predicting the percentage of the flock out on the range and the percentage of ranging birds observed away from the house. 2. Three flocks had range access at 8 weeks. The percentage of birds ranging averaged 28%, with 22% of these ranging away from the house. For the 13 flocks with range access at 16 weeks, the percentage of pullets on the range was 12%, with 29% of these ranging away from the house. At 35 weeks, all flocks had range access and the average percentage of birds out on the range was 13%, with 42% of these ranging away from the house. 3. The percentage of birds seen using the range was higher with reduced flock size and stocking density, increased pop hole availability (cm/bird) and light intensity inside the house. More birds ranged on cooler days and on farms located in areas with fewer days of rain per year and lower average rainfall. The percentage of birds ranging varied with season and was lowest in May. More birds ranged away from the house when cover and more artificial structures were present on the range. The proportion of ranging birds located away from the house increased with lower outdoor humidity levels, higher air pressure, and on warmer days. Lastly, birds ranged away from the house more as they got older.

  13. A Micromachined Pressure Sensor with Integrated Resonator Operating at Atmospheric Pressure

    PubMed Central

    Ren, Sen; Yuan, Weizheng; Qiao, Dayong; Deng, Jinjun; Sun, Xiaodong

    2013-01-01

    A novel resonant pressure sensor with an improved micromechanical double-ended tuning fork resonator packaged in dry air at atmospheric pressure is presented. The resonator is electrostatically driven and capacitively detected, and the sensor is designed to realize a low cost resonant pressure sensor with medium accuracy. Various damping mechanisms in a resonator that is vibrating at atmospheric pressure are analyzed in detail, and a formula is developed to predict the overall quality factor. A trade-off has been reached between the quality factor, stress sensitivity and drive capability of the resonator. Furthermore, differential sense elements and the method of electromechanical amplitude modulation are used for capacitive detection to obtain a large signal-to-noise ratio. The prototype sensor chip is successfully fabricated using a micromachining process based on a commercially available silicon-on-insulator wafer and is hermetically encapsulated in a custom 16-pin Kovar package. Preliminary measurements show that the fundamental frequency of the resonant pressure sensor is approximately 34.55 kHz with a pressure sensitivity of 20.77 Hz/kPa. Over the full scale pressure range of 100–400 kPa and the whole temperature range of −20–60 °C, high quality factors from 1,146 to 1,772 are obtained. The characterization of the prototype sensor reveals the feasibility of a resonant pressure sensor packaged at atmospheric pressure.

  14. Centrifugal pump inlet pressure site affects measurement.

    PubMed

    Augustin, Simon; Horton, Alison; Butt, Warwick; Bennett, Martin; Horton, Stephen

    2010-09-01

    During extracorporeal life support (ECLS), blood is exposed to a myriad of unphysiological factors that can affect outcome. One aspect of this is the sub-atmospheric pressure generated by the ECLS pump and imparted to blood elements along the pump inlet line. This pressure can be measured on the inlet line close to the pump head by adding a connector, or at the venous cannula connection site. We compared the two measurement sites located at both points; between the venous cannula-inlet tubing and inlet tubing-pump, with a range of cannulae and flows. We also investigated the effects on inlet pressure from pump afterload and increasing inlet tubing length.

  15. Laser range profile of spheres

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-09-01

    Profile information about a three-dimensional target can be obtained by laser range profile (LRP). A mathematical LRP model from rough sphere is presented. LRP includes laser one-dimensional range profile and laser two-dimensional range profile. A target coordinate system and an imaging coordinate system are established, the mathematical model of the range profile is derived in the imaging coordinate system. The mathematical model obtained has nothing to do with the incidence direction of laser. It is shown that the laser range profile of the sphere is independent of the incidence direction of laser. This is determined by the symmetry of the sphere. The laser range profile can reflect the shape and material properties of the target. Simulations results of LRP about some spheres are given. Laser range profile of sphere, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profile of sphere, whose surface mater with diffuse materials whose retro-reflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser range profiles of different pulse width of sphere are given in this paper. The influences of geometric parameters, pulse width on the range profiles are analyzed.

  16. Blade pressure measurements

    NASA Astrophysics Data System (ADS)

    Chivers, J. W. H.

    Three measurement techniques which enable rotating pressures to be measured during the normal operation of a gas turbine or a component test rig are described. The first technique was developed specifically to provide steady and transient blade surface pressure data to aid both fan flutter research and general fan performance development. This technique involves the insertion of miniature high frequency response pressure transducers into the fan blades of a large civil gas turbine. The other two techniques were developed to measure steady rotating pressures inside and on the surface of engine or rig turbine blades and also rotating pressures in cooling feed systems. These two low frequency response systems are known as the "pressure pineapple' (a name which resulted from the shape of the original prototype) and the rotating scanivalve.

  17. Measurement of endolymphatic pressure.

    PubMed

    Mom, T; Pavier, Y; Giraudet, F; Gilain, L; Avan, P

    2015-04-01

    Endolymphatic pressure measurement is of interest both to researchers in the physiology and pathophysiology of hearing and ENT physicians dealing with Menière's disease or similar conditions. It is generally agreed that endolymphatic hydrops is associated with Menière's disease and is accompanied by increased hydrostatic pressure. Endolymphatic pressure, however, cannot be measured precisely without endangering hearing, making the association between hydrops and increased endolymphatic pressure difficult to demonstrate. Several integrated in vivo models have been developed since the 1960s, but only a few allow measurement of endolymphatic hydrostatic pressure. Models associating measurement of hydrostatic pressure and endolymphatic potential and assessment of cochlear function are of value to elucidate the pathophysiology of endolymphatic hydrops. The present article presents the main types of models and discusses their respective interest.

  18. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  19. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  20. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  1. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  2. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  3. Management of Chronic Pressure Ulcers

    PubMed Central

    2009-01-01

    Executive Summary In April 2008, the Medical Advisory Secretariat began an evidence-based review of the literature concerning pressure ulcers. Please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/tech/tech_mn.html to review these titles that are currently available within the Pressure Ulcers series. Pressure ulcer prevention: an evidence based analysis The cost-effectiveness of prevention strategies for pressure ulcers in long-term care homes in Ontario: projections of the Ontario Pressure Ulcer Model (field evaluation) Management of chronic pressure ulcers: an evidence-based analysis Objective The Medical Advisory Secretariat (MAS) conducted a systematic review on interventions used to treat pressure ulcers in order to answer the following questions: Do currently available interventions for the treatment of pressure ulcers increase the healing rate of pressure ulcers compared with standard care, a placebo, or other similar interventions? Within each category of intervention, which one is most effective in promoting the healing of existing pressure ulcers? Background A pressure ulcer is a localized injury to the skin and/or underlying tissue usually over a bony prominence, as a result of pressure, or pressure in conjunction with shear and/or friction. Many areas of the body, especially the sacrum and the heel, are prone to the development of pressure ulcers. People with impaired mobility (e.g., stroke or spinal cord injury patients) are most vulnerable to pressure ulcers. Other factors that predispose people to pressure ulcer formation are poor nutrition, poor sensation, urinary and fecal incontinence, and poor overall physical and mental health. The prevalence of pressure ulcers in Ontario has been estimated to range from a median of 22.1% in community settings to a median of 29.9% in nonacute care facilities. Pressure ulcers have been shown to increase the risk of mortality among geriatric patients by

  4. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  5. Postoperative permanent pressure alopecia.

    PubMed

    Chang, Zi Yun; Ngian, Jan; Chong, Claudia; Chong, Chin Ted; Liew, Qui Yin

    2016-04-01

    A 49-year-old Chinese female underwent elective laparoscopic assisted Whipple's surgery lasting 12 h. This was complicated by postoperative pressure alopecia at the occipital area of the scalp. Pressure-induced hair loss after general anaesthesia is uncommon and typically temporary, but may be disconcerting to the patient. We report this case of postoperative permanent pressure alopecia due to its rarity in the anaesthesia/local literature, and review the risk factors for its development.

  6. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  7. Nonequilibrium thermodynamics of pressure solution

    NASA Astrophysics Data System (ADS)

    Lehner, F. K.; Bataille, J.

    1984-01-01

    This paper is concerned with the thermodynamic theory of solution and precipitation processes in wet crustal rocks and with the mechanism of steady pressure-solution slip in ‘contact zones,’ such as grain-to-grain contacts, fracture surfaces, and permeable gouge layers, that are infiltrated by a mobile aqueous solution phase. A local dissipation jump condition at the phase boundary is fundamental to identifying the thermodynamic force driving the solution and precipitation process and is used here in setting up linear phenomenological relations to model near-equilibrium phase transformation kinetics. The local thermodynamic equilibrium of a stressed pure solid in contact with its melt or solution phase is governed by Gibbs's relation, which is rederived here, in a manner emphasizing its independence of constitutive assumptions for the solid while neglecting surface tension and diffusion in the solid. Fluid-infiltrated contact zones, such as those formed by rough surfaces, cannot generally be in thermodynamic equilibrium, especially during an ongoing process of pressure-solution slip, and the existing equilibrium formulations are incorrect in overlooking dissipative processes tending to eliminate fluctuations in superficial free energies due to stress concentrations near asperities, defects, or impurities. Steady pressure-solution slip is likely to exhibit a nonlinear dependence of slip rate on shear stress and effective normal stress, due to a dependence of the contact-zone state on the latter. Given that this dependence is negligible within some range, linear relations for pressure-solution slip can be derived for the limiting cases of diffusion-controlled and interface-reaction-controlled rates. A criterion for rate control by one of these mechanisms is set by the magnitude of the dimensionless quantity kδ/2C pD, where k is the interfacial transfer coefficient, δ is the mean diffusion path length, C p is the solubility at pressure p, and D is the mass

  8. Portable dynamic pressure generator for static and dynamic calibration of in situ pressure transducers

    NASA Technical Reports Server (NTRS)

    Bolt, P. A.; Hess, R. W.; Davis, W. T.

    1983-01-01

    A portable dynamic pressure generator was developed to meet the requirements of determining the dynamic sensitivities of in situ pressure transducers at low frequencies. The device is designed to operate in a frequency range of 0 to 100 Hz, although it was only tested up to 30 Hz, and to generate dynamic pressures up to 13.8 kPa (2 psi). A description of the operating characteristics and instrumentation used for pressure, frequency, and displacement measurements is given. The pressure generator was used to statically and dynamically calibrate transducers. Test results demonstrated that a difference an exist between the static and dynamic sensitivity of a transducer, confirming the need for dynamic calibrations of in situ pressure transducers.

  9. Controlling your high blood pressure

    MedlinePlus

    ... ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... blood pressure goes up. When is Your Blood Pressure a Concern? If your blood pressure is high, ...

  10. Attachment Fitting for Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III (Inventor); Carrigan, Robert W. (Inventor)

    2002-01-01

    This invention provides sealed access to the interior of a pressure vessel and consists of a tube. a collar, redundant seals, and a port. The port allows the seals to be pressurized and seated before the pressure vessel becomes pressurized.

  11. Sapphire tube pressure vessel

    SciTech Connect

    Outwater, J.O.

    2000-05-23

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  12. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  13. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  14. Pressure-sensitive optrode

    DOEpatents

    Hirschfeld, T.B.

    1982-09-30

    Apparatus and method for sensing changes in pressure and for generating optical signals related to changes in pressure. Light from a fiber optic is directed to a movable surface which is coated with a light-responsive material, and which moves relative to the end of the fiber optic in response to changes in pressure. The same fiber optic collects a portion of the reflected or emitted light from the movable surface. Changes in pressure are determined by measuring changes in the amount of light collected.

  15. Pressure-sensitive optrode

    DOEpatents

    Hirschfeld, Tomas B.

    1985-01-01

    Apparatus and method for sensing changes in pressure and for generating optical signals related to changes in pressure. Light from a fiber optic is directed to a movable surface which is coated with a light-responsive material, and which moves relative to the end of the fiber optic in response to changes in pressure. The same fiber optic collects a portion of the reflected or emitted light from the movable surface. Changes in pressure are determined by measuring changes in the amount of light collected.

  16. Pressure-sensitive optrode

    DOEpatents

    Hirschfeld, T.B.

    1985-04-09

    An apparatus and method are disclosed for sensing changes in pressure and for generating optical signals related to changes in pressure. Light from a fiber optic is directed to a movable surface which is coated with a light-responsive material, and which moves relative to the end of the fiber optic in response to changes in pressure. The same fiber optic collects a portion of the reflected or emitted light from the movable surface. Changes in pressure are determined by measuring changes in the amount of light collected. 5 figs.

  17. Increased intracranial pressure

    MedlinePlus

    ... brain. Many conditions can increase intracranial pressure. Common causes include: Aneurysm rupture and subarachnoid hemorrhage Brain tumor Encephalitis Head injury Hydrocephalus (increased fluid around ...

  18. Atracurium and intraocular pressure.

    PubMed Central

    Murphy, D F; Eustace, P; Unwin, A; Magner, J B

    1985-01-01

    The effect of atracurium on intraocular pressure was studied by comparing it with pancuronium in a randomised controlled trial. The intraocular pressure was measured in patients undergoing cataract surgery before administration of the muscle relaxant, at 1, 3, and 5 minutes after its administration, and at 1 minute after tracheal intubation. Atracurium was found to decrease intraocular pressure to a significantly greater degree than pancuronium. The intraocular pressure after tracheal intubation was found to be significantly higher than that measured immediately after induction of anaesthesia. The authors conclude that atracurium provides an acceptable alternative to pancuronium for ophthalmic surgery but does not overcome the ocular hypertensive effect of tracheal intubation. PMID:3899166

  19. Blood Pressure Control

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engineering Development Laboratory developed a system for the cardiovascular study of weightless astronauts. This was designed to aid people with congestive heart failure and diabetes. While in space, astronauts' blood pressure rises, heart rate becomes unstable, and there are sometimes postflight lightheadedness or blackouts. The Baro-Cuff studies the resetting of blood pressure. When a silicone rubber chamber is strapped to the neck, the Baro-Cuff stimulates the carotid arteries by electronically controlled pressure application. Blood pressure controls in patients may be studied.

  20. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  1. Electrolytic pressure transduction system

    NASA Astrophysics Data System (ADS)

    Bryant, G. H.

    1985-12-01

    This invention is directed to a Wheatstone bridge circuit for measuring pressure in the distal esophageal sphincter (D.E.S.) as well as in other organs and bodily cavities. A flexible hollow tube having three spaced electrodes is lodged in the esophagus. The tube is partly filled with a saline solution to cover the electrodes, thereby producing two series connected, pressure sensitive resistors. The electrolytic resistors are coupled to two series connected fixed resistors to complete the bridge circuit. Electrical imbalances in the bridge circuit are measured in terms of the pressure corresponding to the pressure applied by the D.E.S.

  2. A Glossary of Range Terminology

    DTIC Science & Technology

    1981-01-01

    GLOSSARY OF RANGE TERMINOLOGY" Final 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(e) S. CONTRACT OR GRANT NUMUER(e) Documentation Group Range Commanders...Council White Sands Missile Range, NM 88002 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS Same...ABSOLUTE ADDRESS -- The label or number permanently assigned to a specific storage location, device or register. binary words together with an origin

  3. Short-range Fundamental forces

    SciTech Connect

    Antoniadis, I; Baessler, Stefan; Buechner, M; Fedorov, General Victor; Hoedl, S.; Lambrecht, A; Nesvizhevsky, V.; Pignol, G; Reynaud, S.; Sobolev, Yu.

    2011-01-01

    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: (1) spin-independent forces; and (2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments.

  4. Ranging Behaviour of Commercial Free-Range Laying Hens

    PubMed Central

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-01-01

    Simple Summary Commercial free-range production has become a significant sector of the fresh egg market due to legislation banning conventional cages and consumer preference for products perceived as welfare friendly, as access to outdoor range can lead to welfare benefits such as greater freedom of movement and enhanced behavioural opportunities. This study investigated dispersal patterns, feather condition and activity of laying hens in three distinct zones of the range area; the apron area near shed; enriched zone 10–50 m from shed; and outer range beyond 50 m, in six flocks of laying hens under commercial free-range conditions varying in size between 4000 and 24,000 hens. Each flock was visited for four days to record number of hens in each zone, their behaviour, feather condition and nearest neighbour distances (NND), as well as record temperature and relative humidity during the visit. Temperature and relative humidity varied across the study period in line with seasonal variations and influenced the use of range with fewer hens out of shed as temperature fell or relative humidity rose. On average, 12.5% of the hens were observed on the range and most of these hens were recorded in the apron zone as hen density decreased rapidly with increasing distance from the shed. Larger flocks appeared to have a lower proportion of hens on range. The hens used the range more in the early morning followed by a progressive decrease through to early afternoon. The NND was greatest in the outer range and decreased towards the shed. Feather condition was generally good and hens observed in the outer range had the best overall feather condition. Standing, pecking, walking and foraging were the most commonly recorded behaviours and of these, standing occurred most in the apron whereas walking and foraging behaviours were recorded most in the outer range. This study supported the findings of previous studies that reported few hens in the range and greater use of areas closer

  5. Multilayer Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2005-01-01

    A method has been devised to enable the fabrication of lightweight pressure vessels from multilayer composite materials. This method is related to, but not the same as, the method described in gMaking a Metal- Lined Composite-Overwrapped Pressure Vessel h (MFS-31814), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 59. The method is flexible in that it poses no major impediment to changes in tank design and is applicable to a wide range of tank sizes. The figure depicts a finished tank fabricated by this method, showing layers added at various stages of the fabrication process. In the first step of the process, a mandrel that defines the size and shape of the interior of the tank is machined from a polyurethane foam or other suitable lightweight tooling material. The mandrel is outfitted with metallic end fittings on a shaft. Each end fitting includes an outer flange that has a small step to accommodate a thin layer of graphite/epoxy or other suitable composite material. The outer surface of the mandrel (but not the fittings) is covered with a suitable release material. The composite material is filament- wound so as to cover the entire surface of the mandrel from the step on one end fitting to the step on the other end fitting. The composite material is then cured in place. The entire workpiece is cut in half in a plane perpendicular to the axis of symmetry at its mid-length point, yielding two composite-material half shells, each containing half of the foam mandrel. The halves of the mandrel are removed from within the composite shells, then the shells are reassembled and bonded together with a belly band of cured composite material. The resulting composite shell becomes a mandrel for the subsequent steps of the fabrication process and remains inside the final tank. The outer surface of the composite shell is covered with a layer of material designed to be impermeable by the pressurized fluid to be contained in the tank. A second step on the outer flange of

  6. Droplet vaporization in supercritical pressure environments

    NASA Astrophysics Data System (ADS)

    Farrell, Patrick V.; Peters, Bruce D.

    For most liquid-fueled combustion systems the behavior of the fuel as it is introduced to the combustion zone, often by spray injection, will have a significant impact on combustion. The subsequent combustion may be affected to a considerable degree by the initial spread of the liquid, break-up of larger fuel sheets and droplets into droplets of various sizes, droplet vaporization, and diffusion of gaseous fuel. Among the many factors which affect spray break-up and droplet vaporization are the environmental conditions into which the spray is introduced. For both diesel engines and rockets the environment pressure and temperature may be above the critical pressure and temperature of the injected fuel. In a compression-ignition internal combustion engine, the environment consists primarily of air, at pressures from 20 to 100 atmospheres and temperatures ranging from 900 to 1500 K. Even higher pressures are encountered in turbocharged diesels. A typical diesel reference fuel, dodecane, has a thermodynamic critical pressure of about 17 atmospheres, and a critical temperature of 600 K. Fuel is injected into a diesel engine environment in which ambient pressures exceed the critical pressure. While droplet temperatures are subcritical at first, they may rise to the critical temperature or higher. This paper will survey current understanding of supercritical pressure droplet vaporization. Specifically, the topics covered will include: liquid phase behavior; vapor phase behavior; thermodynamic and transport properties; droplet distribution and break-up; micro-explosions; and effects of microgravity.

  7. Abnormally high formation pressures, Potwar Plateau, Pakistan

    USGS Publications Warehouse

    Law, B.E.; Shah, S.H.A.; Malik, M.A.

    1998-01-01

    Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.

  8. Spatial resolution in plantar pressure measurement revisited.

    PubMed

    Pataky, Todd C

    2012-08-09

    Plantar pressures are typically measured using sensors of finite area, so the accuracy with which one can measure true maximum pressure is dependent on sensor size. Measurement accuracy has been modeled previously for one patient's metatarsals (Lord, 1997), but has not been modeled either for general subjects or for other parts of the foot. The purposes of this study were (i) to determine whether Lord's (1997) model is also valid for heel and hallux pressures, and (ii) to examine how sensor size relates to measurement accuracy in the context of four factors common to many measurement settings: pressure pulse size, foot positioning, pressure change quantification, and gross pressure redistribution. Lord's (1997) model was first generalized and was then validated using 10 healthy walking subjects, with relatively low RMSE values on the order of 20 kPa. Next, postural data were used to show that gross pressure redistributions can be accurately quantified (p<0.002), even with rather gross sensor sizes of 30 mm. Finally, numerical analyses revealed that the relation between sensor size and measurement accuracy is highly complex, with deep dependency on the measurement context. In particular, the critical sensor widths required to achieve 90% accuracy ranged from 1.7 mm to 17.4 mm amongst the presently investigated scenarios. Since measurement accuracy varies so extensively with so many factors, the current results cannot yield specific recommendations regarding spatial resolution. It is concluded simply that no particular spatial resolution can yield a constant measurement accuracy across common plantar pressure measurement tasks.

  9. Dual shell pressure balanced vessel

    DOEpatents

    Fassbender, Alexander G.

    1992-01-01

    A dual-wall pressure balanced vessel for processing high viscosity slurries at high temperatures and pressures having an outer pressure vessel and an inner vessel with an annular space between the vessels pressurized at a pressure slightly less than or equivalent to the pressure within the inner vessel.

  10. Improved high pressure turbine shroud

    NASA Technical Reports Server (NTRS)

    Bessen, I. I.; Rigney, D. V.; Schwab, R. C.

    1977-01-01

    A new high pressure turbine shroud material has been developed from the consolidation of prealloyed powders of Ni, Cr, Al and Y. The new material, a filler for cast turbine shroud body segments, is called Genaseal. The development followed the identification of oxidation resistance as the primary cause of prior shroud deterioration, since conversion to oxides reduces erosion resistance and increases spalling under thermal cycled engine conditions. The NICrAlY composition was selected in preference to NIAL and FeCRALY alloys, and was formulated to a prescribed density range that offers suitable erosion resistance, thermal conductivity and elastic modulus for improved behavior as a shroud.

  11. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, Robert C.; Schubert, W. Kent

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  12. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  13. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  14. High dynamic range subjective testing

    NASA Astrophysics Data System (ADS)

    Allan, Brahim; Nilsson, Mike

    2016-09-01

    This paper describes of a set of subjective tests that the authors have carried out to assess the end user perception of video encoded with High Dynamic Range technology when viewed in a typical home environment. Viewers scored individual single clips of content, presented in High Definition (HD) and Ultra High Definition (UHD), in Standard Dynamic Range (SDR), and in High Dynamic Range (HDR) using both the Perceptual Quantizer (PQ) and Hybrid Log Gamma (HLG) transfer characteristics, and presented in SDR as the backwards compatible rendering of the HLG representation. The quality of SDR HD was improved by approximately equal amounts by either increasing the dynamic range or increasing the resolution to UHD. A further smaller increase in quality was observed in the Mean Opinion Scores of the viewers by increasing both the dynamic range and the resolution, but this was not quite statistically significant.

  15. Design, fabrication and metrological evaluation of wearable pressure sensors.

    PubMed

    Goy, C B; Menichetti, V; Yanicelli, L M; Lucero, J B; López, M A Gómez; Parodi, N F; Herrera, M C

    2015-04-01

    Pressure sensors are valuable transducers that are necessary in a huge number of medical application. However, the state of the art of compact and lightweight pressure sensors with the capability of measuring the contact pressure between two surfaces (contact pressure sensors) is very poor. In this work, several types of wearable contact pressure sensors are fabricated using different conductive textile materials and piezo-resistive films. The fabricated sensors differ in size, the textile conductor used and/or the number of layers of the sandwiched piezo-resistive film. The intention is to study, through the obtaining of their calibration curves, their metrological properties (repeatability, sensitivity and range) and determine which physical characteristics improve their ability for measuring contact pressures. It has been found that it is possible to obtain wearable contact pressure sensors through the proposed fabrication process with satisfactory repeatability, range and sensitivity; and that some of these properties can be improved by the physical characteristics of the sensors.

  16. Range indices of geomagnetic activity

    USGS Publications Warehouse

    Stuart, W.F.; Green, A.W.

    1988-01-01

    The simplest index of geomagnetic activity is the range in nT from maximum to minimum value of the field in a given time interval. The hourly range R was recommended by IAGA for use at observatories at latitudes greater than 65??, but was superceded by AE. The most used geomagnetic index K is based on the range of activity in a 3 h interval corrected for the regular daily variation. In order to take advantage of real time data processing, now available at many observatories, it is proposed to introduce a 1 h range index and also a 3 h range index. Both will be computed hourly, i.e. each will have a series of 24 per day, the 3 h values overlapping. The new data will be available as the range (R) of activity in nT and also as a logarithmic index (I) of the range. The exponent relating index to range in nT is based closely on the scale used for computing K values. The new ranges and range indices are available, from June 1987, to users in real time and can be accessed by telephone connection or computer network. Their first year of production is regarded as a trial period during which their value to the scientific and commercial communities will be assessed, together with their potential as indicators of regional and global disturbances' and in which trials will be conducted into ways of eliminating excessive bias at quiet times due to the rate of change of the daily variation field. ?? 1988.

  17. Foraging optimally for home ranges

    USGS Publications Warehouse

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  18. Scientific analysis of satellite ranging data

    NASA Technical Reports Server (NTRS)

    Smith, David E.

    1994-01-01

    A network of satellite laser ranging (SLR) tracking systems with continuously improving accuracies is challenging the modelling capabilities of analysts worldwide. Various data analysis techniques have yielded many advances in the development of orbit, instrument and Earth models. The direct measurement of the distance to the satellite provided by the laser ranges has given us a simple metric which links the results obtained by diverse approaches. Different groups have used SLR data, often in combination with observations from other space geodetic techniques, to improve models of the static geopotential, the solid Earth, ocean tides, and atmospheric drag models for low Earth satellites. Radiation pressure models and other non-conservative forces for satellite orbits above the atmosphere have been developed to exploit the full accuracy of the latest SLR instruments. SLR is the baseline tracking system for the altimeter missions TOPEX/Poseidon, and ERS-1 and will play an important role in providing the reference frame for locating the geocentric position of the ocean surface, in providing an unchanging range standard for altimeter calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. However, even with the many improvements in the models used to support the orbital analysis of laser observations, there remain systematic effects which limit the full exploitation of SLR accuracy today.

  19. Makran Mountain Range, Indus River Valley, Pakistan, India

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The enormous geologic pressures exerted by continental drift can be very well illustrated by the long northward curving parallel folded mountain ridges and valleys of the coastal Makran Range of Pakistan (27.0N, 66.0E). As a result of the collision of the northward bound Indian sub-continent into the Asian Continent, the east/west parallel range has been bent in a great northward arc and forming the Indus River valley at the interface of the collision.

  20. Pressure vessel flex joint

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor)

    1992-01-01

    An airtight, flexible joint is disclosed for the interfacing of two pressure vessels such as between the Space Station docking tunnel and the Space Shuttle Orbiter bulkhead adapter. The joint provides for flexibility while still retaining a structural link between the two vessels required due to the loading created by the internal/external pressure differential. The joint design provides for limiting the axial load carried across the joint to a specific value, a function returned in the Orbiter/Station tunnel interface. The flex joint comprises a floating structural segment which is permanently attached to one of the pressure vessels through the use of an inflatable seal. The geometric configuration of the joint causes the tension between the vessels created by the internal gas pressure to compress the inflatable seal. The inflation pressure of the seal is kept at a value above the internal/external pressure differential of the vessels in order to maintain a controlled distance between the floating segment and pressure vessel. The inflatable seal consists of either a hollow torus-shaped flexible bladder or two rolling convoluted diaphragm seals which may be reinforced by a system of straps or fabric anchored to the hard structures. The joint acts as a flexible link to allow both angular motion and lateral displacement while it still contains the internal pressure and holds the axial tension between the vessels.

  1. Pseudophakia and intraocular pressure.

    PubMed

    Radius, R L; Schultz, K; Sobocinski, K; Schultz, R O; Easom, H

    1984-06-01

    We studied the change in intraocular pressure in 373 consecutive eyes undergoing cataract extraction with intraocular lens implantation between Jan. 1, 1981, and May 31, 1982. There was a mean increase in intraocular pressure of 0.1 mm Hg following this surgery. This increase, however, was not statistically significant (P greater than .5). There was a mean rise in pressure of 0.8 mm Hg in the eyes undergoing intracapsular surgery and a mean fall in pressure of 0.6 mm Hg in the eyes undergoing extracapsular surgery (P less than .05). The change in pressure was unrelated to age, surgeon, or lens type. The results of a separate analysis of 16 eyes with a preoperative diagnosis of glaucoma and eight eyes with ocular hypertension were similar.

  2. Streak camera dynamic range optimization

    SciTech Connect

    Wiedwald, J.D.; Lerche, R.A.

    1987-09-01

    The LLNL optical streak camera is used by the Laser Fusion Program in a wide range of applications. Many of these applications require a large recorded dynamic range. Recent work has focused on maximizing the dynamic range of the streak camera recording system. For our streak cameras, image intensifier saturation limits the upper end of the dynamic range. We have developed procedures to set the image intensifier gain such that the system dynamic range is maximized. Specifically, the gain is set such that a single streak tube photoelectron is recorded with an exposure of about five times the recording system noise. This ensures detection of single photoelectrons, while not consuming intensifier or recording system dynamic range through excessive intensifier gain. The optimum intensifier gain has been determined for two types of film and for a lens-coupled CCD camera. We have determined that by recording the streak camera image with a CCD camera, the system is shot-noise limited up to the onset of image intensifier nonlinearity. When recording on film, the film determines the noise at high exposure levels. There is discussion of the effects of slit width and image intensifier saturation on dynamic range. 8 refs.

  3. Combined Effect of Fluid and Pressure on Middle Ear Function

    PubMed Central

    Dai, Chenkai; Wood, Mark W.; Gan, Rong Z.

    2008-01-01

    In our previous studies, the effects of effusion and pressure on sound transmission were investigated separately. The aim of this study is to investigate the combined effect of fluid and pressure on middle ear function. An otitis media with effusion model was created by injecting saline solution and air pressure simultaneously into the middle ear of human temporal bones. Tympanic membrane displacement in response to 90 dB SPL sound input was measured by a laser vibrometer and the compliance of the middle ear was measured by a tympanometer. The movement of the tympanic membrane at the umbo was reduced up to 17 dB by the combination of fluid and pressure in the middle ear over the auditory frequency range. The fluid and pressure effects on the umbo movement in the fluid-pressure combination are not additive. The combined effect of fluid and pressure on the umbo movement is different compared with that of only fluid or pressure change in the middle ear. Negative pressure in fluid-pressure combination had more effect on middle ear function than positive pressure. Tympanometry can detect the middle ear pressure of the fluid-pressure combination. This study provides quantitative information for analysis of the combined effect of fluid and pressure on tympanic membrane movement. PMID:18162348

  4. Pressure-actuated cellular structures.

    PubMed

    Pagitz, M; Lamacchia, E; Hol, J M A M

    2012-03-01

    Shape changing structures will play an important role in future engineering designs since rigid structures are usually only optimal for a small range of service conditions. Hence, a concept for reliable and energy-efficient morphing structures that possess a large strength to self-weight ratio would be widely applicable. We propose a novel concept for morphing structures that is inspired by the nastic movement of plants. The idea is to connect prismatic cells with tailored pentagonal and/or hexagonal cross sections such that the resulting cellular structure morphs into given target shapes for certain cell pressures. An efficient algorithm for computing equilibrium shapes as well as cross-sectional geometries is presented. The potential of this novel concept is demonstrated by several examples that range from a flagellum like propulsion device to a morphing aircraft wing.

  5. GPS test range mission planning

    NASA Astrophysics Data System (ADS)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.

  6. The dynamic range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, J.

    2016-02-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in multi-tonne time-projection chambers, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined to accommodate the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines.

  7. Airborne 2 color ranging experiment

    NASA Technical Reports Server (NTRS)

    Millar, Pamela S.; Abshire, James B.; Mcgarry, Jan F.; Zagwodzki, Thomas W.; Pacini, Linda K.

    1993-01-01

    Horizontal variations in the atmospheric refractivity are a limiting error source for many precise laser and radio space geodetic techniques. This experiment was designed to directly measure horizontal variations in atmospheric refractivity, for the first time, by using 2 color laser ranging measurements to an aircraft. The 2 color laser system at the Goddard Optical Research Facility (GORF) ranged to a cooperative laser target package on a T-39 aircraft. Circular patterns which extended from the southern edge of the Washington D.C. Beltway to the southern edge of Baltimore, MD were flown counter clockwise around Greenbelt, MD. Successful acquisition, tracking, and ranging for 21 circular paths were achieved on three flights in August 1992, resulting in over 20,000 two color ranging measurements.

  8. Digital laser range finder emulator

    NASA Astrophysics Data System (ADS)

    McDowell, Vaughn P.; Holland, Orgal T.; Wilkerson, Christina G.

    1993-05-01

    A digital laser range finder emulator receives N-bits of range-to-target data in a parallel format and generates N-bits of serial data representative of the range-to-target data and an external synchronization pulse whose presence is indicative of valid serial data. First and second clock pulses are generated such that the second clock pulse is delayed with respect to the first clock pulse. Control logic, responsive to the first clock pulse, generates validity logic while control logic, responsive to the second clock pulse, generates transmit logic. The parallel format range-to-target data is converted into the serial data in response to the first clock pulse. The serial data is then output in response to the transmit logic. A gate, responsive to the second clock pulse and the validity logic, generates the synchronization pulse when the second clock pulse and validity logic occupy a common logic state.

  9. Object Recognition Using Range Images.

    DTIC Science & Technology

    1985-12-01

    background clutter and target rotation on a range image’s correlation coefficient were examined, as well as possible methods of correcting for these effects...Other factors affecting the correlation coefficient that were considered were pixel dropouts and the beam spot size of the laser. Pixel dropouts were...shown to be detrimental to a range image’s correlation coefficient , but could be corrected by using a ’median replacement’ technique. Also shown was

  10. Pressurizer tank upper support

    DOEpatents

    Baker, Tod H.; Ott, Howard L.

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  11. Pressurizer tank upper support

    DOEpatents

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  12. The Thermal Pressure in Low Metallicity Galaxies

    NASA Astrophysics Data System (ADS)

    Wolfire, Mark; McKee, Christopher; Ostriker, Eve C.; Bolatto, Alberto; Jenkins, Edward

    2015-08-01

    The thermal pressure in the diffuse interstellar medium (ISM) is a relatively small fraction of the total ISM pressure yet it is extremely important for the evolution of the ISM phases. A multi-phase medium can exist between a range of thermal pressures Pmin < Pth < Pmax. The phase separation is driven by thermal instability and produces a cold (T ˜ 100 K) neutral atomic gas and a warm (T ˜ 8000 K) neutral atomic gas separated by thermally unstable gas. At thermal pressures greater than Pmax only the cold phase can exist and at thermal pressures less than Pmin only the warm phase can exist. The ISM is also highly turbulent and turbulence can both initiate the thermal phase transition and be produced in a rapid phase transition. Hydrodynamic modeling also points to a strong two-phase distribution (.e.g., Kim et al. 2011; Audit & Hennebelle 2010) with a median thermal pressure in the cold gas very near the expected two-phase pressure. Global, theoretical models including star-formation feedback have been developed for the molecular fraction in galactic disks using, at their core, the paradigm that thermal pressure determines the phase transitions to warm, cold, or multiphase medium (e.g., Krumholz et al. 2009; Ostriker et al. 2010).Here we present a phase diagram for a low metallicity galaxy using the Small Magellanic Clouds as an example. We find that although the heating rates and metallicities can differ by factors of 5 to 10 from the Milky Way, the resulting two-phase pressure and physical conditions of the phases are not very different from Galactic. We also confirm that a widely used fitting function for Pmin presented in Wolfire et al. 2003 provides an accurate prediction for the new results. We demonstrate how the variation in input parameters determine the final pressures and physical conditions.

  13. Design of piezoresistive MEMS absolute pressure sensor

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Pant, B. D.

    2012-10-01

    MEMS pressure sensors are one of the most widely commercialized microsensors in the MEMS industry. They have a plethora of applications in various fields including the automobile, space, biomedical, aviation and military sectors. One of the simplest and most efficient methods in MEMS pressure sensors for measuring pressure is to use the phenomenon of piezoresistance. The piezoresistive effect causes change in the resistance of certain doped materials when they are subjected to stress, as a result of energy band deformation. Piezoresistive pressure sensors consist of piezoresistors placed over a thin diaphragm which deflects under the action of the pressure to be measured. The result of this deflection causes the piezoresistors to change their resistance due to the stress experienced by them. The change is converted into electrical signals and measured in order to find the value of applied pressure. In this work, a high range (30 Bar) pressure sensor is designed based on the principle of piezoresistivity. The inaccuracies in the analytical models that are generally used to model the pressure sensor diaphragm have also been analysed. Thus, the Finite Element Method (FEM) is adopted to optimize the pressure sensor for parameters like sensitivity and linearity. This is achieved by choosing the proper shape of piezoresistor, thickness of diaphragm and the position of the piezoresistor on the pressure sensor diaphragm. For the square diaphragm, sensitivity of 5.18 mV/V/Bar and a linearity error of 0.02% are obtained. For the circular diaphragm, sensitivity of 3.69 mV/V/Bar and a linearity error of 0.011% are obtained.

  14. Measurement of viscosity and elasticity of lubricants at high pressures

    NASA Technical Reports Server (NTRS)

    Rein, R. G., Jr.; Charng, T. T.; Sliepcevich, C. M.; Ewbank, W. J.

    1975-01-01

    The oscillating quartz crystal viscometer has been used to investigate possible viscoelastic behavior in synthetic lubricating fluids and to obtain viscosity-pressure-temperature data for these fluids at temperatures to 300 F and pressures to 40,000 psig. The effect of pressure and temperature on the density of the test fluids was measured concurrently with the viscosity measurements. Viscoelastic behavior of one fluid, di-(2-ethylhexyl) sebacate, was observed over a range of pressures. These data were used to compute the reduced shear elastic (storage) modulus and reduced loss modulus for this fluid at atmospheric pressure and 100 F as functions of reduced frequency.

  15. Development of a high temperature capacitive pressure transducer

    NASA Technical Reports Server (NTRS)

    Egger, R. L.

    1977-01-01

    High temperature pressure transducers capable of continuous operation while exposed to 650 C were developed and evaluated over a full-scale differential pressure range of + or - 69 kPa. The design of the pressure transducers was based on the use of a diaphragm to respond to pressure, variable capacitive elements arranged to operate as a differential capacitor to measure diaphragm response and on the use of fused silica for the diaphragm and its supporting assembly. The uncertainty associated with measuring + or - 69 kPa pressures between 20C and 650C was less than + or - 6%.

  16. [Measuring blood pressure].

    PubMed

    Estrada Reventos, Dolors; Pujol Navarro, Ester

    2008-09-01

    High blood pressure is one of the main factors which lead to cardiovascular cerebral-vascular and kidney diseases; therefore, nursing professionals should have enough basic knowledge to enable them to carry out a precocious diagnosis and correct follow-up procedures. Although students in nursing schools are taught how to correctly measure blood pressure, often this teaching does not meet the recommendations provided by different national and international guidelines. Thus it is important to know how to use the correct methodology to measure blood pressure.

  17. Atmospheric Pressure During Landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This figure shows the variation with time of pressure (dots) measured by the Pathfinder MET instrument during the landing period shown in image PIA00797. The two diamonds indicate the times of bridal cutting and 1st impact. The overall trend in the data is of pressure increasing with time. This is almost certainly due to the lander rolling downhill by roughly 10 m. The spacing of the horizontal dotted lines indicates the pressure change expected from 10 m changes in altitude. Bounces may also be visible in the data.

  18. SENSITIVE PRESSURE GAUGE

    DOEpatents

    Ball, W.P.

    1961-01-01

    An electron multiplier device is described. It has a plurality of dynodes between an anode and cathode arranged to measure pressure, temperature, or other environmental physical conditions that proportionately iinfuences the quantity of gas molecules between the dynodes. The output current of the device is influenced by the reduction in electron multiplication at the dynodes due to energy reducing collisions of the electrons with the gas molecules between the dynodes. More particularly, the current is inversely proportional to the quantity of gas molecules, viz., the gas pressure. The device is, hence, extremely sensitive to low pressures.

  19. Planets under pressure

    NASA Astrophysics Data System (ADS)

    Jeanloz, Raymond

    2009-04-01

    Deep inside the planet Jupiter, diamonds hail down from hydrocarbon clouds as intense atmospheric pressures break methane into its atomic components. Further in - but still only 15% of the way to the planet's centre - the pressure reaches a million times that of the Earth's atmosphere. This is enough to transform hydrogen from the transparent, insulating gas we know at our planet's surface into a metallic fluid that sustains Jupiter's huge magnetic field. Even diamond is not forever: at pressures of 8-10 million atmospheres it is transformed into an opaque, metallic form of carbon, rather than the familiar transparent crystal.

  20. Pancreas tumor interstitial pressure catheter measurement

    NASA Astrophysics Data System (ADS)

    Nieskoski, Michael D.; Gunn, Jason; Marra, Kayla; Trembly, B. Stuart; Pogue, Brian W.

    2016-03-01

    This paper highlights the methodology in measuring interstitial pressure in pancreatic adenocarcinoma tumors. A Millar Mikrotip pressure catheter (SPR-671) was used in this study and a system was built to amplify and filter the output signal for data collection. The Millar pressure catheter was calibrated prior to each experiment in a water column at 37°C, range of 0 to 60 inH2O (112 mmHg), resulting in a calibration factor of 33 mV / 1 inH2O. The interstitial pressures measured in two orthotopically grown pancreatic adenocarcinoma tumor were 57 mmHg and 48 mmHg, respectively. Verteporfin uptake into the pancreatic adenocarcinoma tumor was measured using a probe-based experimental dosimeter.

  1. An instrument for measuring turbulent pressure fluctuations

    NASA Astrophysics Data System (ADS)

    Papadimitrakis, Yiannis Alex; Hsu, En Yu; Street, Robert L.

    1986-04-01

    An instrument is described for laboratory measurements of the fluctuating static pressure in the turbulent boundary layer above progressive water waves. It consists of a disk-shaped sensing head properly designed to minimize the dynamic pressure variation to an acceptable level, a commercially available piezocrystal transducer housed inside a casing, and a forward-bent connecting tube. Pressure fluctuations sampled by the disk are converted into an electrical signal by the piezocrystal transducer. Through low-pass filtering, only the frequency range of interest is retained. The instrument was tested successfully for frequency response, dynamic and mechanical noise sensitivity, and response to spurious pressure fluctuations (produced when operating in a Eulerian wave-following mode) inside a cylindrical chamber and in a wind-wave facility, and some sample results along with the calibration procedures and data analysis are presented.

  2. Pressure-induced metallization of silane.

    PubMed

    Chen, Xiao-Jia; Struzhkin, Viktor V; Song, Yang; Goncharov, Alexander F; Ahart, Muhtar; Liu, Zhenxian; Mao, Ho-Kwang; Hemley, Russell J

    2008-01-08

    There is a great interest in electronic transitions in hydrogen-rich materials under extreme conditions. It has been recently suggested that the group IVa hydrides such as methane (CH(4)), silane (SiH(4)), and germane (GeH(4)) become metallic at far lower pressures than pure hydrogen at equivalent densities because the hydrogen is chemically compressed in group IVa hydride compounds. Here we report measurements of Raman and infrared spectra of silane under pressure. We find that SiH(4) undergoes three phase transitions before becoming opaque at 27-30 GPa. The vibrational spectra indicate the material transforms to a polymeric (framework) structure in this higher pressure range. Room-temperature infrared reflectivity data reveal that the material exhibits Drude-like metallic behavior above 60 GPa, indicating the onset of pressure-induced metallization.

  3. Graphane sheets and crystals under pressure

    PubMed Central

    Wen, Xiao-Dong; Hand, Louis; Labet, Vanessa; Yang, Tao; Hoffmann, Roald; Ashcroft, N. W.; Oganov, Artem R.; Lyakhov, Andriy O.

    2011-01-01

    Eight isomeric two-dimensional graphane sheets are found in a theoretical study. Four of these nets—two built on chair cyclohexanes, two on boat—are more stable thermodynamically than the isomeric benzene, or polyacetylene. Three-dimensional crystals are built up from the two-dimensional sheets, and their hypothetical behavior under pressure (up to 300 GPa) is explored. While the three-dimensional graphanes remain, as expected, insulating or semiconducting in this pressure range, there is a remarkable inversion in stability of the five crystals studied. Two stacking polytypes that are not the most stable at ambient pressure (one based on an unusual chair cyclohexane net, the other on a boat) are significantly stabilized with increasing pressure relative to stackings of simple chair sheets. The explanation may lie in the balance on intra and intersheet contacts in the extended arrays.

  4. Graphanes: Sheets and stacking under pressure

    SciTech Connect

    Wen, Xiao-Dong; Hand, Louis; Labet, Vanessa; Yang, Tao; Hoffmann, Roald; Ashcroft, N. W.; Oganov, Artem R.; Lyakhov, Andriy O.

    2011-04-26

    Eight isomeric two-dimensional graphane sheets are found in a theoretical study. Four of these nets—two built on chair cyclohexanes, two on boat—are more stable thermodynamically than the isomeric benzene, or polyacetylene. Three-dimensional crystals are built up from the two-dimensional sheets, and their hypothetical behavior under pressure (up to 300 GPa) is explored. While the three-dimensional graphanes remain, as expected, insulating or semiconducting in this pressure range, there is a remarkable inversion in stability of the five crystals studied. Two stacking polytypes that are not the most stable at ambient pressure (one based on an unusual chair cyclohexane net, the other on a boat) are significantly stabilized with increasing pressure relative to stackings of simple chair sheets. The explanation may lie in the balance on intra and intersheet contacts in the extended arrays.

  5. Acoustic pressure wound therapy in the treatment of stage II pressure ulcers.

    PubMed

    Thomas, Raenell

    2008-11-01

    Pressure ulcers are localized skin injuries secondary to unrelieved pressure or friction. Patients with immobility issues are at increased risk for developing pressure ulcers. In 2004, stricter federal regulations for prevention and treatment of pressure ulcers in institutional settings--eg, long-term care facilities--were introduced. Effective, low-cost treatments for pressure ulcers are needed; acoustic pressure wound therapy (APWT), a noncontact, low-frequency, therapeutic ultrasound system, is one option. A retrospective case series of six long-term care patients (two men and one woman, age range 61 to 92 years), each with one Stage II pressure ulcer, is presented. Acoustic pressure wound therapy was provided as an adjunct to standard treatment that included balsam of Peru/castor oil/trypsin ointment, hydrogel, hydrocolloid dressings, silver dressings, and offloading. Outcomes (days to healing) were determined through changes in wound dimensions. Study participants each received APWT for 3 to 4 minutes three to four times weekly. In four of the six wounds, the average number of days to healing was 22. One of the two remaining patients discontinued treatment at 95% healed; treatment for the sixth patient was ongoing due to hospitalization that delayed APWT. In a long-term care setting, APWT added to standard of care may accelerate healing of Stage II pressure ulcers.

  6. Performance of wastewater subsurface drip emitters at low and normal pressure.

    PubMed

    Duan, Xiaojing; Lesikar, Bruce J; Kenimer, Ann L; Arnold, Michael A; Persyn, Russell A

    2008-02-01

    Subsurface drip distribution is an important on-site wastewater treatment technique widely used with various soil types and restricted site conditions. This study evaluated the performance of five subsurface wastewater drip products under eight pressures, ranging from 0 to 310 kPa. Results showed that Netafim Bioline pressure-compensating emitters (Netafim Irrigation Inc., Fresno, California) had an application uniformity coefficient of 95% and a coefficient of variance (C(v)) of 4.9%. The average uniformity coefficient of Geoflow Wasteflow products (Geoflow USA, Charlotte, North Carolina) was 94.4%, with a C(v) value of 6.8%. Flowrate and pressure relationships were developed by analyzing low and normal operational pressure ranges, and R-square values ranged from 1.000 to 0.301. Geoflow pressure-compensating products were non-pressure-compensating emitters under low pressure. Netafim pressure-compensating emitters were partially pressure-compensating under low pressures. In normal operational pressure ranges, both Geoflow and Netafim products were fully pressure-compensating. Netafim pressure-compensating products were characterized as pressure-compensating over the full range of operational pressures.

  7. Design guide for high pressure oxygen systems

    NASA Technical Reports Server (NTRS)

    Bond, A. C.; Pohl, H. O.; Chaffee, N. H.; Guy, W. W.; Allton, C. S.; Johnston, R. L.; Castner, W. L.; Stradling, J. S.

    1983-01-01

    A repository for critical and important detailed design data and information, hitherto unpublished, along with significant data on oxygen reactivity phenomena with metallic and nonmetallic materials in moderate to very high pressure environments is documented. This data and information provide a ready and easy to use reference for the guidance of designers of propulsion, power, and life support systems for use in space flight. The document is also applicable to designs for industrial and civilian uses of high pressure oxygen systems. The information presented herein are derived from data and design practices involving oxygen usage at pressures ranging from about 20 psia to 8000 psia equal with thermal conditions ranging from room temperatures up to 500 F.

  8. Pressurized Lunar Rover (PLR)

    NASA Technical Reports Server (NTRS)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; Mcclure, Kerry; Zeinali, Mazyar; Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric

    1992-01-01

    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double

  9. Pressurized Lunar Rover (PLR)

    NASA Astrophysics Data System (ADS)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; McClure, Kerry; Zeinali, Mazyar; Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric

    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double

  10. Dynamics of nanoconfined water under pressure

    NASA Astrophysics Data System (ADS)

    Diallo, S. O.; Jażdżewska, M.; Palmer, J. C.; Mamontov, E.; Gubbins, K. E.; Śliwińska-Bartkowiak, M.

    2013-08-01

    We report a study of the effects of pressure on the diffusivity of water molecules confined in single-wall carbon nanotubes (SWNT) with average mean pore diameter of ˜16 Å. The measurements were carried out using high-resolution neutron scattering, over the temperature range 220≤T≤260 K, and at two pressure conditions: ambient and elevated pressure. The high pressure data were collected at constant volume on cooling, with P varying from ˜1.92 kbar at temperature T=260 K to ˜1.85 kbar at T=220 K. Analysis of the observed dynamic structure factor S(Q,E) reveals the presence of two relaxation processes, a faster diffusion component (FC) associated with the motion of “caged” or restricted molecules, and a slower component arising from the free water molecules diffusing within the SWNT matrix. While the temperature dependence of the slow relaxation time exhibits a Vogel-Fulcher-Tammann law and is non-Arrhenius in nature, the faster component follows an Arrhenius exponential law at both pressure conditions. The application of pressure remarkably slows down the overall molecular dynamics, in agreement with previous observations, but most notably affects the slow relaxation. The faster relaxation shows marginal or no change with pressure within the experimental conditions.

  11. Intracardiac pressures in the human fetus

    PubMed Central

    Johnson, P; Maxwell, D; Tynan, M; Allan, L

    2000-01-01

    OBJECTIVE—To obtain normal values for intracardiac pressures in the human
 fetus.
DESIGN—Intracardiac pressures were measured directly in the four chambers of the human fetal heart during clinically indicated invasive obstetric procedures.
SETTING—Department of fetal medicine in a tertiary referral centre.
PATIENTS—39 fetuses between 16 and 29 weeks of gestation.
RESULTS—The ventricular waveforms obtained were similar to those found in postnatal life. There was an increase in ventricular systolic and end diastolic pressures with advancing gestation. There was no difference between left and right ventricular pressures. Atrial pressures were equal and remained constant in the gestational age range studied.
CONCLUSIONS—Fetal cardiovascular pressure measurements in the normal fetus assist in understanding the fetal circulation, and provide a basis for the assessment of cases of congenital heart disease that may be amenable to intrauterine treatment.


Keywords: fetus; ventricular pressure; congenital heart disease PMID:10862590

  12. Salt, blood pressure, and human health.

    PubMed

    Alderman, M H

    2000-11-01

    The positive relation of sodium intake and blood pressure, first recognized a century ago, has been well established in ecological, epidemiological, and experimental human studies. Equally well established is the association of increasing blood pressure and cardiovascular morbidity and mortality. Indeed, the pharmacological capacity to reduce blood pressure has produced one of the great public health accomplishments of the 20th century. These two facts-the positive relation of blood pressure to strokes and heat attacks and the positive association of sodium intake to blood pressure-underlie the hypothesis that a reduction in sodium intake, by virtue of its hypotensive effect, might prevent strokes and heart attacks. Moreover, even if the effect on blood pressure were in the range of a 1- to 2-mm Hg decline in blood pressure for every 75- to 100-mmol difference in sodium intake, the impact of such a change, applied to the whole population, would be enormous. The problem with this appealing possibility is that a reduction in salt consumption of this magnitude has other-and sometimes adverse-health consequences. The question, therefore, is whether the beneficial hypotensive effects of sodium restriction will outweigh its hazards. Unfortunately, few data link sodium intake to health outcomes, and that which is available is inconsistent. Without knowledge of the sum of the multiple effects of a reduced sodium diet, no single universal prescription for sodium intake can be scientifically justified.

  13. Application of solar energy for the generation and supply of industrial-process low-to intermediate-pressure steam ranging from 300/sup 0/F-550/sup 0/F (high-temperature steam). Final report, September 30, 1978-June 30, 1979

    SciTech Connect

    Matteo, M.; Kull, J.; Luddy, W.; Youngblood, S.

    1980-12-01

    A detailed design was developed for a solar industrial process heat system to be installed at the ERGON, Inc. Bulk Oil Storage Terminal in Mobile, Alabama. The 1874 m/sup 2/ (20160 ft/sup 2/) solar energy collector field will generate industrial process heat at temperatures ranging from 150 to 290/sup 0/C (300 to 550/sup 0/F). The heat will be used to reduce the viscosity of stored No. 6 fuel oil, making it easier to pump from storage to transport tankers. Heat transfer oil is circulated in a closed system, absorbing heat in the collector field and delivering it through immersed heat exchangers to the stored fuel oil. The solar energy system will provide approximately 44 percent of the process heat required.

  14. The effect of pressure on annular flow pressure drop in a small pipe

    SciTech Connect

    de Bertodano, M.A.L.; Beus, S.G.; Shi, Jian-Feng

    1996-09-01

    New experimental data was obtained for pressure drop and entrainment for annular up-flow in a vertical pipe. The 9.5 mm. pipe has an L/D ratio of 440 to insure fully developed annular flow. The pressure ranged from 140 kPa to 660 kPa. Therefore the density ratio was varied by a factor of four approximately. This allows the investigation of the effect of pressure on the interfacial shear models. Gas superficial velocities between 25 and 126 m/s were tested. This extends the range of previous data to higher gas velocities. The data were compared with well known models for interfacial shear that represent the state of the art. Good results were obtained when the model by Asali, Hanratty and Andreussi was modified for the effect of pressure. Furthermore an equivalent model was obtained based on the mixing length theory for rough pipes. It correlates the equivalent roughness to the film thickness.

  15. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect

    Struzhkin, Viktor V.

    2015-03-24

    transitions from magnetic to nonmagnetic phases in a broad pressure-temperature range; using X-ray methods including the newly developed RIXS high-pressure technique to explore pressure-tuned electronic excitations in strongly correlated 3d-materials; and advancing transport and magnetic techniques for measurements on small samples at very high pressures in a wide temperature range, with the application of focused ion beam technology and photolithography tailored to the design of microcircuits down to a nanoscale size, thus expanding the horizon in the search for novel physical phenomena at ultrahigh pressures. Apply new optical magnetic sensing techniques with NV- centers in diamond to detect superconductivity and magnetic transitions with unprecedented spatial resolution.

  16. The Pressure Dependence of the Pyroelectric Response of Poly(Vinylidene Fluoride) Films.

    DTIC Science & Technology

    The pressure dependence of the pyroelectric coefficient, Py, was determined from atmospheric pressure to 7Kbar over a temperature range from -80...pressure is compared to the pressure dependence of the glass transition temperature obtained from dielectric studies. The radio of d(p prime) the

  17. Optical range and range rate estimation for teleoperator systems

    NASA Technical Reports Server (NTRS)

    Shields, N. L., Jr.; Kirkpatrick, M., III; Malone, T. B.; Huggins, C. T.

    1974-01-01

    Range and range rate are crucial parameters which must be available to the operator during remote controlled orbital docking operations. A method was developed for the estimation of both these parameters using an aided television system. An experiment was performed to determine the human operator's capability to measure displayed image size using a fixed reticle or movable cursor as the television aid. The movable cursor was found to yield mean image size estimation errors on the order of 2.3 per cent of the correct value. This error rate was significantly lower than that for the fixed reticle. Performance using the movable cursor was found to be less sensitive to signal-to-noise ratio variation than was that for the fixed reticle. The mean image size estimation errors for the movable cursor correspond to an error of approximately 2.25 per cent in range suggesting that the system has some merit. Determining the accuracy of range rate estimation using a rate controlled cursor will require further experimentation.

  18. Computational analysis of aircraft pressure relief doors

    NASA Astrophysics Data System (ADS)

    Schott, Tyler

    Modern trends in commercial aircraft design have sought to improve fuel efficiency while reducing emissions by operating at higher pressures and temperatures than ever before. Consequently, greater demands are placed on the auxiliary bleed air systems used for a multitude of aircraft operations. The increased role of bleed air systems poses significant challenges for the pressure relief system to ensure the safe and reliable operation of the aircraft. The core compartment pressure relief door (PRD) is an essential component of the pressure relief system which functions to relieve internal pressure in the core casing of a high-bypass turbofan engine during a burst duct over-pressurization event. The successful modeling and analysis of a burst duct event are imperative to the design and development of PRD's to ensure that they will meet the increased demands placed on the pressure relief system. Leveraging high-performance computing coupled with advances in computational analysis, this thesis focuses on a comprehensive computational fluid dynamics (CFD) study to characterize turbulent flow dynamics and quantify the performance of a core compartment PRD across a range of operating conditions and geometric configurations. The CFD analysis was based on a compressible, steady-state, three-dimensional, Reynolds-averaged Navier-Stokes approach. Simulations were analyzed, and results show that variations in freestream conditions, plenum environment, and geometric configurations have a non-linear impact on the discharge, moment, thrust, and surface temperature characteristics. The CFD study revealed that the underlying physics for this behavior is explained by the interaction of vortices, jets, and shockwaves. This thesis research is innovative and provides a comprehensive and detailed analysis of existing and novel PRD geometries over a range of realistic operating conditions representative of a burst duct over-pressurization event. Further, the study provides aircraft

  19. Blood Pressure Checker

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An estimated 30 million people in the United States have high blood pressure, or hypertension. But a great many of them are unaware of it because hypertension, in its initial stages, displays no symptoms. Thus, the simply-operated blood pressure checking devices now widely located in public places are useful health aids. The one pictured above, called -Medimax 30, is a direct spinoff from NASA technology developed to monitor astronauts in space. For manned space flights, NASA wanted a compact, highly-reliable, extremely accurate method of checking astronauts' blood pressure without the need for a physician's interpretive skill. NASA's Johnson Space Center and Technology, Inc., a contractor, developed an electronic sound processor that automatically analyzes blood flow sounds to get both systolic (contracting arteries) and diastolic (expanding arteries) blood pressure measurements. NASA granted a patent license for this technology to Advanced Life Sciences, Inc., New York City, manufacturers of Medimax 30.

  20. Hypertension (High Blood Pressure)

    MedlinePlus

    ... the results of observational studies further strengthened the causal relationship between high blood pressure and CVD, and ... disease, and those who have additional known risk factors for CVD. SPRINT will also provide information on ...

  1. High Blood Pressure (Hypertension)

    MedlinePlus

    ... already been diagnosed with high blood pressure. Try yoga and meditation. Yoga and meditation not only can strengthen your body ... Accessed Sept. 21, 2015. Hu B, et al. Effects of psychological stress on hypertension in middle-aged ...

  2. Low Differential Pressure Generator

    NASA Technical Reports Server (NTRS)

    Stout, Stephen J. (Inventor); Deyoe, Richard T. (Inventor)

    1997-01-01

    A method and apparatus for evaluating low differential pressure transducers includes a pressure generator in the form of a piston-cylinder assembly having a piston that may be manually positioned precisely within the cylinder to change the volume and thus the pressure at respective sides of the piston. At one side of the piston the cylinder communicates with a first chamber and at the other side of the piston the cylinder communicates with a second chamber, the first and second chambers being formed within a common tank by a partition wall. The chambers each communicate with the transducer to be evaluated and a standard pre-calibrated transducer the transducers being connected fluidly in parallel so that a pressure differential between air in the two chambers resulting from movement of the piston within the cylinder is communicated to both the transducer to be evaluated and the standard transducer, and the outputs of the transducers is observed and recorded.

  3. High Blood Pressure (Hypertension)

    MedlinePlus

    ... Neuropathy Foot Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) High Blood Pressure (Hypertension) Stroke Hyperosmolar Hyperglycemic Nonketotic Syndrome (HHNS) Gastroparesis Heart Disease Mental Health Pregnancy Related Conditions donate en -- Make Your Donation Count - ...

  4. Preventing pressure ulcers

    MedlinePlus

    ... skin in this area. If you use a Wheelchair Make sure your wheelchair is the right size for you. Have your ... physical therapist to check how you fit your wheelchair. If you feel pressure anywhere, have your doctor ...

  5. High Blood Pressure (Hypertension)

    MedlinePlus

    ... Practice healthy coping techniques, such as muscle relaxation, deep breathing or meditation. Getting regular physical activity and ... blood pressure at home. Practice relaxation or slow, deep breathing. Practice taking deep, slow breaths to help ...

  6. On Time Performance Pressure

    NASA Technical Reports Server (NTRS)

    Connell, Linda; Wichner, David; Jakey, Abegael

    2013-01-01

    Within many operations, the pressures for on-time performance are high. Each month, on-time statistics are reported to the Department of Transportation and made public. There is a natural tendency for employees under pressure to do their best to meet these objectives. As a result, pressure to get the job done within the allotted time may cause personnel to deviate from procedures and policies. Additionally, inadequate or unavailable resources may drive employees to work around standard processes that are seen as barriers. However, bypassing practices to enable on-time performance may affect more than the statistics. ASRS reports often highlight on-time performance pressures which may result in impact across all workgroups in an attempt to achieve on-time performance. Reporters often provide in-depth insights into their experiences which can be used by industry to identify and focus on the implementation of systemic fixes.

  7. Normal pressure hydrocephalus (NPH)

    MedlinePlus

    ... cerebrospinal fluid (CSF) in the brain that affects brain function. However, the pressure of the fluid is usually ... shunt that does not work well) Loss of brain function ( dementia ) that becomes worse over time Injury from ...

  8. Pressurized Vessel Slurry Pumping

    SciTech Connect

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  9. Internal pressure sensor

    DOEpatents

    Dowalo, James A [Blackfoot, ID

    2010-03-16

    A pressure sensor for sensing changes in pressure in an enclosed vessel may include a first chamber having at least one expandable section therein that allows that first chamber to change in length. A reference member mounted within the first chamber moves as a result of changes in length of the first chamber. A second chamber having an expandable section therein allows the second chamber to change in length in response to changes in pressure in the enclosed vessel. The second chamber is operatively associated with the first chamber so that changes in length of the second chamber result in changes in length of the first chamber. A sensor operatively associated with the reference member detects changes in position of the reference member. Changes in position of the reference member are related to changes in pressure in the enclosed vessel.

  10. Capacitance pressure sensor

    DOEpatents

    Eaton, William P.; Staple, Bevan D.; Smith, James H.

    2000-01-01

    A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

  11. Choosing Blood Pressure Medications

    MedlinePlus

    ... doctor might first suggest diuretics, which remove excess water and sodium from your body. That decreases the amount of fluid flowing through your blood vessels, which reduces pressure on your vessel walls. There are three types of diuretics: thiazide, loop ...

  12. Gasoline Reid Vapor Pressure

    EPA Pesticide Factsheets

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  13. Normal Pressure Hydrocephalus

    MedlinePlus

    ... techniques and neuroimaging, and finding improved treatments and preventions. Information from the National Library of Medicine’s MedlinePlus Normal Pressure Hydrocephalus × What research is being ...

  14. Low Blood Pressure (Hypotension)

    MedlinePlus

    ... Alpha blockers, such as prazosin (Minipress) and labetalol Beta blockers, such as atenolol (Tenormin), propranolol (Inderal, Innopran XL, ... drugs used to treat high blood pressure — diuretics, beta blockers, calcium channel blockers and angiotensin-converting enzyme (ACE) ...

  15. Geographic range limits: achieving synthesis

    PubMed Central

    Gaston, Kevin J.

    2009-01-01

    Understanding of the determinants of species' geographic range limits remains poorly integrated. In part, this is because of the diversity of perspectives on the issue, and because empirical studies have lagged substantially behind developments in theory. Here, I provide a broad overview, drawing together many of the disparate threads, considering, in turn, how influences on the terms of a simple single-population equation can determine range limits. There is theoretical and empirical evidence for systematic changes towards range limits under some circumstances in each of the demographic parameters. However, under other circumstances, no such changes may take place in particular parameters, or they may occur in a different direction, with limitation still occurring. This suggests that (i) little about range limitation can categorically be inferred from many empirical studies, which document change in only one demographic parameter, (ii) there is a need for studies that document variation in all of the parameters, and (iii) in agreement with theoretical evidence that range limits can be formed in the presence or absence of hard boundaries, environmental gradients or biotic interactions, there may be few general patterns as to the determinants of these limits, with most claimed generalities at least having many exceptions. PMID:19324809

  16. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  17. Laser Scanning System for Pressure and Temperature Paints

    NASA Technical Reports Server (NTRS)

    Sullivan, John

    1997-01-01

    Acquiring pressure maps of aerodynamic surfaces is very important for improving and validating the performance of aerospace vehicles. Traditional pressure measurements are taken with pressure taps embedded in the model surface that are connected to transducers. While pressure taps allow highly accurate measurements to be acquired, they do have several drawbacks. Pressure taps do not give good spatial resolution due to the need for individual pressure tubes, compounded by limited space available inside models. Also, building a model proves very costly if taps are needed because of the large amount of labor necessary to drill, connect and test each one. The typical cost to install one tap is about $200. Recently, a new method for measuring pressure on aerodynamic surfaces has been developed utilizing a technology known as pressure sensitive paints (PSP). Using PSP, pressure distributions can be acquired optically with high spatial resolution and simple model preparation. Flow structures can be easily visualized using PSP, but are missed using low spatial resolution arrays of pressure taps. PSP even allows pressure distributions to be found on rotating machinery where previously this has been extremely difficult or even impossible. The goal of this research is to develop a laser scanning system for use with pressure sensitive paints that allows accurate pressure measurements to be obtained on various aerodynamic surfaces ranging from wind tunnel models to high speed jet engine compressor blades.

  18. Mechanistic investigation on pressure dependency of Heckel parameter.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2010-04-15

    This work proposed to study the influence of varying compaction pressure on the plastic energy, elasticity (Young's modulus), particle yield strength, strain hardening, and applied pressures on derived Heckel parameter using material with different densification and deformation mechanisms: ibuprofen (IBN), paracetamol (PCM) (elastic behavior), methyl cellulose (Me-Cel), microcrystalline cellulose (MCC), sodium chloride (NaCl) (plastic behavior), and dicalcium phosphate (DCP) (brittle fracture). Force-displacement data were captured during in-die compaction for all materials having different deformation behavior. The apparent mean yield pressure (Py), plastic energy, Young's moduli, strain hardening parameter and rate of increase in Py were calculated from force-displacement compaction profiles obtained across a pressure range of 65-260 MPa. Materials under confined compression loading showed pressure dependent biphasic behavior in Py upon increasing pressure from 65 MPa to 260 MPa. IBN and PCM showed pressure dependency due to simultaneous elasticity and strain hardening upon increasing applied pressure. Me-Cel, MCC, and NaCl showed lower pressure dependency while DCP showed higher change in Py upon increasing pressure as a result of higher yield strength of DCP particles. Apparent mean yield pressure from Heckel analysis was significantly affected by the applied pressure, viscoelastic behavior, particle yield strength, and strain hardening. The simultaneously occurring events of elastic deformation and strain hardening give a false increase in Py at higher applied pressures.

  19. Radial pressure flange seal

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1989-01-01

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side.

  20. Radial pressure flange seal

    DOEpatents

    Batzer, T.H.; Call, W.R.

    1989-01-24

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side. 5 figs.

  1. Pressure multiplying dispenser

    DOEpatents

    DeFord, Henry S.; Moss, Owen R.

    1986-01-01

    A pressure multiplying dispenser for delivering fluid, preferably as a spray to the atmosphere, from a source of fluid, preferably a spray bottle, is described. The dispenser includes in combination a hollow cylindrical member, a nozzle delivery tube within the cylindrical member and a hollow actuator piston slideable within the cylindrical member which acts to multiply the pressure of a squeeze applied to the spray bottle.

  2. Laser system of extended range

    NASA Technical Reports Server (NTRS)

    Lehr, C. G.

    1972-01-01

    A pulsed laser system was developed for range measurements from the earth to retroreflecting satellites at distances up to that of the moon. The system has a transportable transmitter unit that can be moved from one location to another. This unit consists of a 0.2 m coude refractor and a high radiance, neodymium-glass, frequency doubled laser that operates in a single transverse mode. It can be used for lunar or distant satellite ranging at any observatory that has a telescope with an aperture diameter of about 1.5 m for the detection of the laser return pulses. This telescope is utilized in the same manner customarily employed for the observation of celestial objects. A special photometric package and the associated electronics are provided for laser ranging.

  3. NASA Satellite Laser Ranging Network

    NASA Technical Reports Server (NTRS)

    Carter, David L.

    2004-01-01

    I will be participating in the International Workshop on Laser Ranging. I will be presenting to the International Laser Ranging Service (ILRS) general body meeting on the recent accomplishments and status of the NASA Satellite Laser Ranging (SLR) Network. The recent accomplishments and NASA's future plans will be outlined and the benefits to the scientific community will be addressed. I am member of the ILRS governing board, the Missions working group, and the Networks & Engineering working group. I am the chairman of the Missions Working and will be hosting a meeting during the week of the workshop. I will also represent the NASA SLR program at the ILRS governing board and other working group meetings.

  4. Pressure Core Characterization

    NASA Astrophysics Data System (ADS)

    Santamarina, J. C.

    2014-12-01

    Natural gas hydrates form under high fluid pressure and low temperature, and are found in permafrost, deep lakes or ocean sediments. Hydrate dissociation by depressurization and/or heating is accompanied by a multifold hydrate volume expansion and host sediments with low permeability experience massive destructuration. Proper characterization requires coring, recovery, manipulation and testing under P-T conditions within the stability field. Pressure core technology allows for the reliable characterization of hydrate bearing sediments within the stability field in order to address scientific and engineering needs, including the measurement of parameters used in hydro-thermo-mechanical analyses, and the monitoring of hydrate dissociation under controlled pressure, temperature, effective stress and chemical conditions. Inherent sampling effects remain and need to be addressed in test protocols and data interpretation. Pressure core technology has been deployed to study hydrate bearing sediments at several locations around the world. In addition to pressure core testing, a comprehensive characterization program should include sediment analysis, testing of reconstituted specimens (with and without synthetic hydrate), and in situ testing. Pressure core characterization technology can be used to study other gas-charged formations such as deep sea sediments, coal bed methane and gas shales.

  5. ECN Pressure Test

    SciTech Connect

    Dixon, K.; /Fermilab

    1991-07-18

    This note describes: the rationale for the test pressure of the inner ECN cryostat vessel, the equipment to be used in this test, the test procedure, the status of the vessel prior to the test, the actual test results, and a schematic diagram of the testing set up and the pressure testing permit. The test, performed in the evening of July 17, 1991, was a major success. Based on a neglible pressure drop indicated on the pressure gages (1/4 psi), the vessel appeared to be structurally sound throughout the duration of the test (approx. 1.5 hrs.). No pressure increases were observed on the indicators looking at the beam tube bellows volumes. There was no indication of bubbles form the soap test on the welds and most of the fittings that were checked. There were some slight deviations in the actual procedure used. The UO filter was removed after the vessel had bled down to about 18 psig in order to speed up that aspect of the test. The rationale was that the higher velocity gas had already passed through at the higher pressures and there was no visible traces of the black uo particles. The rate of 4 psi/10 minutes seemed incredibly slow and often that time was reduced to just over half that rate. The testing personnel was allowed to stay in the pit throughout the duration of the test; this was a slight relaxation of the rules.

  6. High-pressure microfluidics

    NASA Astrophysics Data System (ADS)

    Hjort, K.

    2015-03-01

    When using appropriate materials and microfabrication techniques, with the small dimensions the mechanical stability of microstructured devices allows for processes at high pressures without loss in safety. The largest area of applications has been demonstrated in green chemistry and bioprocesses, where extraction, synthesis and analyses often excel at high densities and high temperatures. This is accessible through high pressures. Capillary chemistry has been used since long but, just like in low-pressure applications, there are several potential advantages in using microfluidic platforms, e.g., planar isothermal set-ups, large local variations in geometries, dense form factors, small dead volumes and precisely positioned microstructures for control of reactions, catalysis, mixing and separation. Other potential applications are in, e.g., microhydraulics, exploration, gas driven vehicles, and high-pressure science. From a review of the state-of-art and frontiers of high pressure microfluidics, the focus will be on different solutions demonstrated for microfluidic handling at high pressures and challenges that remain.

  7. Fluctuating shells under pressure

    PubMed Central

    Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.

    2012-01-01

    Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558

  8. The "pressures" of being a ridge

    NASA Astrophysics Data System (ADS)

    Fleeman, K.; Scott, J. L.; Barton, M.

    2015-12-01

    As part of a larger project aimed at understanding the magma plumbing systems and magmatic processes responsible for crust formation at divergent plate margins, we have begun a study of the Galapagos Spreading Center (GSC), an intermediate spreading ridge off the west coast of South America and connected to the East Pacific Rise. This ridge is of interest because it passes close to the Galapagos Islands, allowing the effects of a mantle plume on sub-ridge processes and magma plumbing systems to be examined. In addition, the effects of ridge-ridge intersection, ridge propagation, and ridge offsets by transform faults on magma evolution can be examined. Published compositional data for glasses collected along the ridge were used to calculate pressures of partial crystallization and to examine variations in magma chemistry along the ridge. To aid interpretation of the results, the ridge was divided into 12 segments based on sample distribution and the occurrence of ridge offsets. Calculated pressures for most segments range from 100 and 300 MPa, and indicate depths of partial crystallization of ~3-9 km. This suggests that accretion occurs mostly near the base of the crust. However, the range of pressures for some segments is relatively large with maximum calculated values of 500-750 MPa. For example, near the major transform fault at ~85OW, the calculated maximum pressure is 741 MPa and the average pressure is ~ 300 MPa. We consider it unlikely that the calculated high pressures represent the true pressure of partial crystallization, and suggest that the compositions of some magmas result from processes other than simple crystallization. Correlations between Pressure and MgO, between Na2O and MgO, P2O5 and K2O, and between Na8 and longitude suggest that the processes operating beneath this ridge are complex. Near the transform fault for example, MgO vs Pressure shows a negative correlation with an R2 value of 0.546. Such trends are inconsistent with magma evolution

  9. Pressure derivatives of elastic moduli of fused quartz to 10 kb

    USGS Publications Warehouse

    Peselnick, L.; Meister, R.; Wilson, W.H.

    1967-01-01

    Measurements of the longitudinal and shear moduli were made on fused quartz to 10 kb at 24??5??C. The anomalous behavior of the bulk modulus K at low pressure, ???K ???P 0, at higher pressures. The pressure derivative of the rigidity modulus ???G ???P remains constant and negative for the pressure range covered. A 15-kb hydrostatic pressure vessel is described for use with ultrasonic pulse instrumentation for precise measurements of elastic moduli and density changes with pressure. The placing of the transducer outside the pressure medium, and the use of C-ring pressure seals result in ease of operation and simplicity of design. ?? 1967.

  10. Differential pressure corrections calculated for a tank thermal expansion experiment

    SciTech Connect

    Jones, F.E.; Crawford, J.M.

    1997-12-31

    The data from a tank thermal expansion experiment were treated by applying corrections to bubble tube differential pressure measurements at an initial temperature. The tank had a capacity of 3.55 m{sup 3} and an internal height of about 0.90 m. Water was used as the experimental fluid for four runs. Minimum temperature for the runs ranged from 13.5 C to 37.6 C; maximum temperatures ranged from 48.6 C to 70.4 C. For each run, using an equation appropriate for the ANSI N15.19 tank volume calibration standard, differential pressure was calculated at various temperatures from measured differential pressure at an initial temperature. The calculated differential pressure was compared to the measured differential pressure. The agreement between calculated and measured differential pressure was excellent.

  11. Tip vortex core pressure estimates derived from velocity field measurements

    NASA Astrophysics Data System (ADS)

    Sinding, Kyle; Krane, Michael

    2016-11-01

    We present estimates of tip vortex core pressure derived from velocity field measurements of a high Reynolds number flow over a lifting surface. Tip vortex cavitation decreases propulsor efficiency and contributes to both unwanted noise and surface damage. Coordinated load cell, pressure, and velocity measurements were performed in the 12-inch tunnel at the Applied Research Laboratory at Penn State University, over a range of angles of attack and flow speeds. Stereo PIV imaging planes were oriented normal to the tunnel axis. Pressure estimates in each measurement plane were estimated from the velocity field. Visual cavitation calls were performed over the same range of conditions as the optical velocity measurements, by varying the tunnel pressure until tip vortex cavitation was observed to initiate. The pressure differences between the tip vortex and the tunnel ambient pressure obtained with these two methods were then compared.

  12. Elasticity of orthoenstatite at high-pressure

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Jackson, J. M.; Chen, B.; Zhao, J.; Yan, J.

    2011-12-01

    Orthoenstatite is an abundant yet complex mineral in Earth's upper mantle. Despite its abundance, the properties of orthopyroxene at high pressure remain ambiguous (e.g., Zhang et al. 2011; Jahn 2008; Kung et al. 2004). We explored select properties of a synthetic powdered orthoenstatite (Mg0.8757Fe0.13)2Si2O6 sample by X-ray diffraction (XRD) and nuclear resonance inelastic X-ray scattering (NRIXS) as a function of pressure in a neon pressure medium at 300 K. The XRD measurements were carried out at beamline 12.2.2 of the Advanced Light Source (Berkeley, CA), and the sample was studied up to 34 GPa. NRIXS measurements were carried out at sector 3ID-B of the Advanced Photon Source (Chicago, IL) in the pressure range of 3 to 17 GPa. From the raw NRIXS data, the partial phonon density of states (DOS) was derived (e.g., Sturhahn 2004). The volume (or pressure) dependence of several properties, such as the Lamb-Mössbauer factor, mean force constant, specific heat, vibrational entropy, and vibrational kinetic energy were determined from the DOS. We will discuss our results from these combined studies and the implications for Earth's upper mantle. References Zhang, D., J.M. Jackson, W. Sturhahn, and Y. Xiao (2011): Local structure variations observed in orthoenstatite at high-pressures. American Mineralogist, in press. Jahn, S. (2008) High-pressure phase transitions in MgSiO3 orthoenstatite studied by atomistic computer simulation. American Mineralogist, 93(4), 528-532. Kung, J., Li, B., Uchida, T., Wang, Y., Neuville, D., and Liebermann, R. (2004) In situ measurements of sound velocities and densities across the orthopyroxene high-pressure clinopyroxene transition in MgSiO3 at high pressure. Physics of the Earth and Planetary Interiors, 147(1), 27-44. Sturhahn, W. (2004): Nuclear Resonant Spectroscopy. J. Phys. Condens. Matter, 16, S497-S530.

  13. Pressure Safety Program Implementation at ORNL

    SciTech Connect

    Lower, Mark; Etheridge, Tom; Oland, C. Barry

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According to 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply

  14. Back Home on the Range.

    ERIC Educational Resources Information Center

    Breining, Greg

    1992-01-01

    Presents the history of the buffalo's demise and reemergence in the United States and Canada. Discusses the problems facing herds today caused by a small genetic pool, disease, range concerns, lack of predation, and culling. Points out the benefits of buffalo raising as compared to cattle raising, including the marketing advantages. (MCO)

  15. Reflections on Aircraft Unmask Ranges.

    DTIC Science & Technology

    1981-10-06

    2.5 14 m4 b. In 1953, D.C. Hardison, R.H. Peterson, and A.H. Benvenuto analyzed topographic maps for Northwest Europe’to determine the distances from...areas in Germany and Korea. Con- sistent with the earlier work of Hardison, Peterson, and Benvenuto , the ranges were found to differ widely from area

  16. Anatomy of a Mountain Range.

    ERIC Educational Resources Information Center

    Chew, Berkeley

    1993-01-01

    Provides written tour of Colorado Rockies along San Juan Skyway in which the geological features and formation of the mountain range is explored. Discusses evidence of geologic forces and products such as plate tectonic movement and the Ancestral Rockies; subduction and the Laramide Orogeny; volcanism and calderas; erosion, faulting, land…

  17. Mobile Lunar Laser Ranging Station

    ERIC Educational Resources Information Center

    Intellect, 1977

    1977-01-01

    Harlan Smith, chairman of the University of Texas's Astronomy Department, discusses a mobile lunar laser ranging station which could help determine the exact rates of movement between continents and help geophysicists understand earthquakes. He also discusses its application for studying fundamental concepts of cosmology and physics. (Editor/RK)

  18. Helping Teens Resist Sexual Pressure

    MedlinePlus

    ... Size Email Print Share Helping Teens Resist Sexual Pressure Page Content Article Body Teens are more likely ... time they had intercourse. Helping Teens Resist Sexual Pressure “The pressure on teenagers to have sex is ...

  19. Prevention of High Blood Pressure

    MedlinePlus

    ... the NHLBI on Twitter. Prevention of High Blood Pressure Healthy lifestyle habits, proper use of medicines, and ... blood pressure or its complications. Preventing High Blood Pressure Onset Healthy lifestyle habits can help prevent high ...

  20. Blood pressure monitors for home

    MedlinePlus

    ... type of blood pressure monitor for home use. DIGITAL BLOOD PRESSURE MONITORS A digital device will also have a cuff that wraps ... on its own. The screen will show a digital readout of your systolic and diastolic blood pressure. ...

  1. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  2. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  3. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    NASA Technical Reports Server (NTRS)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  4. Fluctuation of intracranial pressure associated with the cardiac cycle.

    PubMed

    Daley, M L; Gallo, A E; Gehling, G F; Isom, J B; Mauch, W; Kingsley, P D

    1982-11-01

    Within the intensive care setting, a portable microcomputer system was used to extract three parameters from the intracranial pressure fluctuation associated with the cardiac cycle. One parameter, the mean of sampled intracranial pressure, was defined as the average value of pressure for a 1.08-second interval following the R wave of the electrocardiogram. Another parameter, the amplitude of intracranial pressure, was defined as the difference between the mean and the peak value of the sampled intracranial pressure for the interval considered. The third parameter, a latent interval, was defined as the time period between the occurrence of the R wave and the occurrence of the peak value of the subsequent intracranial pressure fluctuation. Six adults and one pediatric patient were monitored. Both the amplitude and the mean of sampled pressure tended to vary inversely with the latent interval. For the adult patients, the latent interval varied between 503 and 804 ms; the mean pressure ranged between 2.4 and 19.0 mm Hg and the amplitude pressure ranged between 0.6 and 7.2 mm Hg. The latent interval for the child was much shorter (ranging between 269 and 325 ms), and both the mean and the amplitude pressures were much higher (ranging between 38.4 and 57.3 mm Hg and 14.2 and 16.5 mm Hg, respectively). Statistical correlation between hourly pulse rates and the latent interval among the adult cases revealed little association (r = -0.20). For all patients considered, the correlation between the amplitude and the mean of sampled intracranial pressure was quite high, with an r value of +0.91. These reported observations support a conceptual model in which blood volume changes associated with the cardiac cycle occurring within the semirigid craniospinal sac are assumed to underlie the fluctuation of intracranial pressure.

  5. Automated Blood Pressure Measurement

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Vital-2 unit pictured is a semi-automatic device that permits highly accurate blood pressure measurement, even by untrained personnel. Developed by Meditron Instrument Corporation, Milford, New Hampshire, it is based in part on NASA technology found in a similar system designed for automatic monitoring of astronauts' blood pressure. Vital-2 is an advancement over the familiar arm cuff, dial and bulb apparatus customarily used for blood pressure checks. In that method, the physician squeezes the bulb to inflate the arm cuff, which restricts the flow of blood through the arteries. As he eases the pressure on the arm, he listens, through a stethoscope, to the sounds of resumed blood flow as the arteries expand and contract. Taking dial readings related to sound changes, he gets the systolic (contracting) and diastolic (expanding) blood pressure measurements. The accuracy of the method depends on the physician's skill in interpreting the sounds. Hospitals sometimes employ a more accurate procedure, but it is "invasive," involving insertion of a catheter in the artery.

  6. Flow compensating pressure regulator

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1978-01-01

    An apparatus for regulating pressure of treatment fluid during ophthalmic procedures is described. Flow sensing and pressure regulating diaphragms are used to modulate a flow control valve. The pressure regulating diaphragm is connected to the flow control valve to urge the valve to an open position due to pressure being applied to the diaphragm by bias means such as a spring. The flow sensing diaphragm is mechanically connected to the flow control valve and urges it to an opened position because of the differential pressure on the diaphragm generated by a flow of incoming treatment fluid through an orifice in the diaphragm. A bypass connection with a variable restriction is connected in parallel relationship to the orifice to provide for adjusting the sensitivity of the flow sensing diaphragm. A multiple lever linkage system is utilized between the center of the second diaphragm and the flow control valve to multiply the force applied to the valve by the other diaphragm and reverse the direction of the force.

  7. Passive blast pressure sensor

    DOEpatents

    King, Michael J.; Sanchez, Roberto J.; Moss, William C.

    2013-03-19

    A passive blast pressure sensor for detecting blast overpressures of at least a predetermined minimum threshold pressure. The blast pressure sensor includes a piston-cylinder arrangement with one end of the piston having a detection surface exposed to a blast event monitored medium through one end of the cylinder and the other end of the piston having a striker surface positioned to impact a contact stress sensitive film that is positioned against a strike surface of a rigid body, such as a backing plate. The contact stress sensitive film is of a type which changes color in response to at least a predetermined minimum contact stress which is defined as a product of the predetermined minimum threshold pressure and an amplification factor of the piston. In this manner, a color change in the film arising from impact of the piston accelerated by a blast event provides visual indication that a blast overpressure encountered from the blast event was not less than the predetermined minimum threshold pressure.

  8. Ultrasonic ranging for the oculometer

    NASA Technical Reports Server (NTRS)

    Guy, W. J.

    1981-01-01

    Ultrasonic tracking techniques are investigated for an oculometer. Two methods are reported in detail. The first is based on measurements of time from the start of a transmit burst to a received echo. Knowing the sound velocity, distance can be calculated. In the second method, a continuous signal is transmitted. Target movement causes phase shifting of the echo. By accumulating these phase shifts, tracking from a set point can be achieved. Both systems have problems with contoured targets, but work well on flat plates and the back of a human head. Also briefly reported is an evaluation of an ultrasonic ranging system. Interface circuits make this system compatible with the echo time design. While the system is consistently accurate, it has a beam too narrow for oculometer use. Finally, comments are provided on a tracking system using the Doppler frequency shift to give range data.

  9. Contrails reduce daily temperature range.

    PubMed

    Travis, David J; Carleton, Andrew M; Lauritsen, Ryan G

    2002-08-08

    The potential of condensation trails (contrails) from jet aircraft to affect regional-scale surface temperatures has been debated for years, but was difficult to verify until an opportunity arose as a result of the three-day grounding of all commercial aircraft in the United States in the aftermath of the terrorist attacks on 11 September 2001. Here we show that there was an anomalous increase in the average diurnal temperature range (that is, the difference between the daytime maximum and night-time minimum temperatures) for the period 11-14 September 2001. Because persisting contrails can reduce the transfer of both incoming solar and outgoing infrared radiation and so reduce the daily temperature range, we attribute at least a portion of this anomaly to the absence of contrails over this period.

  10. Predictability in the extended range

    NASA Technical Reports Server (NTRS)

    Roads, John O.

    1987-01-01

    This paper describes the results of extended range predictability experiments using an efficient two-level spherical quasi-geostrophic model. The experiments have an initial rms doubling time of about two days. This growth rate, along with an initial error of about one-half the initial error of present operational models, produces an rms error equal to the climatological rms error and a correlation of 0.5 on about day 12 of the forecast. On the largest scales, this limiting point is reached shortly thereafter. The error continues to grow at a decreasing rate until at about 30 days the forecast skill is extremely small and comparable to the skill of a persistence forecast. Various time averages at various lags are examined for skill in the extended range. Filters that weighted most strongly in the initial forecast days provide increased skill.

  11. ASTP ranging system mathematical model

    NASA Technical Reports Server (NTRS)

    Ellis, M. R.; Robinson, L. H.

    1973-01-01

    A mathematical model is presented of the VHF ranging system to analyze the performance of the Apollo-Soyuz test project (ASTP). The system was adapted for use in the ASTP. The ranging system mathematical model is presented in block diagram form, and a brief description of the overall model is also included. A procedure for implementing the math model is presented along with a discussion of the validation of the math model and the overall summary and conclusions of the study effort. Detailed appendices of the five study tasks are presented: early late gate model development, unlock probability development, system error model development, probability of acquisition and model development, and math model validation testing.

  12. Evolvable Cryogenics (ECRYO) Pressure Transducer Calibration Test

    NASA Technical Reports Server (NTRS)

    Diaz, Carlos E., Jr.

    2015-01-01

    This paper provides a summary of the findings of recent activities conducted by Marshall Space Flight Center's (MSFC) In-Space Propulsion Branch and MSFC's Metrology and Calibration Lab to assess the performance of current "state of the art" pressure transducers for use in long duration storage and transfer of cryogenic propellants. A brief historical narrative in this paper describes the Evolvable Cryogenics program and the relevance of these activities to the program. This paper also provides a review of three separate test activities performed throughout this effort, including: (1) the calibration of several pressure transducer designs in a liquid nitrogen cryogenic environmental chamber, (2) the calibration of a pressure transducer in a liquid helium Dewar, and (3) the calibration of several pressure transducers at temperatures ranging from 20 to 70 degrees Kelvin (K) using a "cryostat" environmental chamber. These three separate test activities allowed for study of the sensors along a temperature range from 4 to 300 K. The combined data shows that both the slope and intercept of the sensor's calibration curve vary as a function of temperature. This homogeneous function is contrary to the linearly decreasing relationship assumed at the start of this investigation. Consequently, the data demonstrates the need for lookup tables to change the slope and intercept used by any data acquisition system. This ultimately would allow for more accurate pressure measurements at the desired temperature range. This paper concludes with a review of a request for information (RFI) survey conducted amongst different suppliers to determine the availability of current "state of the art" flight-qualified pressure transducers. The survey identifies requirements that are most difficult for the suppliers to meet, most notably the capability to validate the sensor's performance at temperatures below 70 K.

  13. Donor solvent coal liquefaction with bottoms recycle at elevated pressure

    DOEpatents

    Bauman, Richard F.; Taunton, John W.; Anderson, George H.; Trachte, Ken L.; Hsia, Steve J.

    1982-01-01

    An improved process for liquefying solid carbonaceous materials wherein increased naphtha yields are achieved by effecting the liquefaction at a pressure within the range from about 1750 to about 2800 psig in the presence of recycled bottoms and a hydrogen-donor solvent containing at least 0.8 wt % donatable hydrogen. The liquefaction is accomplished at a temperature within the range from about 700.degree. to about 950.degree. F. The coal:bottoms ratio in the feed to liquefaction will be within the range from about 1:1 to about 5:1 and the solvent or diluent to total solids ratio will be at least 1.5:1 and preferably within the range from about 1.6:1 to about 3:1. The yield of naphtha boiling range materials increases as the pressure increases but generally reaches a maximum at a pressure within the range from about 2000 to about 2500 psig.

  14. Pressure-induced gelatinization of starch in excess water.

    PubMed

    Vallons, Katleen J R; Ryan, Liam A M; Arendt, Elke K

    2014-01-01

    High pressure processing is a promising non-thermal technology for the development of fresh-like, shelf-stable foods. The effect of high pressure on starch has been explored by many researchers using a wide range of techniques. In general, heat and pressure have similar effects: if sufficiently high, they both induce gelatinization of starch in excess water, resulting in a transition of the native granular structure to a starch paste or gel. However, there are significant differences in the structural and rheological properties between heated and pressurized starches. These differences offer benefits with respect to new product development. However, in order to implement high-pressure technology to starch and starch-containing products, a good understanding of the mechanism of pressure-induced gelatinization is necessary. Studies that are published in this area are reviewed, and the similarities and differences between starches gelatinized by pressure and by temperature are summarized.

  15. Development of high pressure gas cells at ISIS

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Done, R.; Goodway, C. M.; Kibble, M. G.; Evans, B.; Bowden, Z. A.

    2012-02-01

    High-pressure research is one of the fastest-growing areas of natural science, and one that attracts as diverse communities as those of physics, bio-physics, chemistry, materials science and earth science. In condensed matter physics there are a number of highly topical areas, such as quantum criticality, pressure-induced superconductivity or non-Fermi liquid behaviour, where pressure is a fundamental parameter. Reliable, safe and user-friendly high pressure gas handling systems with gas pressures up to 1GPa should make a significant impact on the range of science possible. The ISIS facility is participating in the NMI3 FP7 sample environment project supported by the European Commission which includes high pressure gas cell development. In this paper the progress in designing, manufacturing and testing a new generation of high pressure gas cells for neutron scattering experiments is discussed.

  16. Test for pressure control capacity of the Eustachian tube.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Izukura, H; Inoue, S

    1994-01-01

    Because of Eustachian tube controls middle ear pressure to maintain the best hearing level, we tested the equilibration capacity of the Eustachian tube by measuring hearing levels in a soundproof pressure chamber. The number of swallows to recover normal hearing after the chamber pressure reached -200 mm H2O (an index of equilibration capacity for the static pressure differences across the eardrum) was less than 9 in normal subjects. The worst level of hearing and the time required to recover normal hearing from the beginning of alteration in the chamber pressure to -700 mm H2O (indexes of equilibration capacity for dynamic pressure differences across the eardrum) were 0-17 dB and within 120s in normal subjects. It was difficult to determine definitive normal ranges of the equilibrium capacity of the Eustachian tube when positive pressure was applied.

  17. The epidemiology of blood pressure and its worldwide management.

    PubMed

    Rahimi, Kazem; Emdin, Connor A; MacMahon, Stephen

    2015-03-13

    Despite the vast amount of evidence on the benefits of blood pressure lowering accumulated to date, elevated blood pressure is still the leading risk factor for disease and disability worldwide. The purpose of this review is to summarize the epidemiological evidence underpinning the association between blood pressure and a range of conditions. This review focuses on the association between systolic and diastolic blood pressures and the risk of cardiovascular and renal disease. Evidence for and against the existence of a J-shaped curve association between blood pressure and cardiovascular risk, and differences in the predictive power of systolic, diastolic, and pulse pressure, are described. In addition, global and regional trends in blood pressure levels and management of hypertension are reviewed.

  18. Direct measurement of capillary blood pressure in the human lip

    NASA Technical Reports Server (NTRS)

    Parazynski, S. E.; Tucker, B. J.; Aratow, M.; Crenshaw, A.; Hargens, A. R.

    1993-01-01

    In this study, we developed and tested a new procedure for measuring microcirculatory blood pressures above heart level in humans. Capillary and postcapillary venule blood pressures were measured directly in 13 human subjects by use of the servonulling micropressure technique adapted for micropuncture of lip capillaries. Pressure waveforms were recorded in 40 separate capillary vessels and 14 separate postcapillary venules over periods ranging from 5 to 64 s. Localization and determination of capillary and postcapillary vessels were ascertained anatomically before pressure measurements. Capillary pressure was 33.2 +/- 1.5 (SE) mm Hg in lips of subjects seated upright. Repeated micropunctures of the same vessel gave an average coefficient of variation of 0.072. Postcapillary venule pressure was 18.9 +/- 1.6 mm Hg. This procedure produces a direct and reproducible means of measuring microvascular blood pressures in a vascular bed above heart level in humans.

  19. Short-range communication system

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2012-01-01

    A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.

  20. Range determination for scannerless imaging

    DOEpatents

    Muguira, Maritza Rosa; Sackos, John Theodore; Bradley, Bart Davis; Nellums, Robert

    2000-01-01

    A new method of operating a scannerless range imaging system (e.g., a scannerless laser radar) has been developed. This method is designed to compensate for nonlinear effects which appear in many real-world components. The system operates by determining the phase shift of the laser modulation, which is a physical quantity related physically to the path length between the laser source and the detector, for each pixel of an image.

  1. Hammersley Range, northern Western Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The oval shaped basin of the sedimentary rocks of the Hammersley Range, northern Western Australia (23.0S, 119.0E) dominates the center of this near nadir view. The Fortescue River is the remarkably straight, fault controlled feature bordering the Hammersley on the north. Sand dunes are the main surface features in the northeast and southwest. Many dry lakebeds can be seen to the east as light grey colored patches along the watercourses.

  2. The low-cost and precise piston gas pressure regulator

    NASA Astrophysics Data System (ADS)

    Kudasik, Mateusz; Skoczylas, Norbert

    2016-03-01

    The present paper discusses the concept and functioning of an innovative instrument for precise stabilization of gas pressure. The piston gas pressure regulator was constructed at the Strata Mechanics Research Institute of the Polish Academy of Sciences. The tests to which the instrument was subjected involved observing the values of stabilized pressure at the level of 10 bar and 3 bar, for various gas flow rates at the outlet of the instrument. The piston gas pressure regulator operates within the range of 0-10 bar and the gas flow range of 0-240 cm3 min-1. The precision of the process of stabilizing the initial pressure is  ±0.005 bar, regardless of the gas pressure value and the flow rate observed at the outlet of the instrument. Although the pressure transducer’s accuracy is 0.25% of the full range, the conducted tests of the regulator demonstrated that the obtained changeability of the stabilized pressure is at least two times lower. Unlike some other gas pressure regulators available on the market, the instrument constructed by the authors of the present paper is highly precise when it comes to the process of stabilization, and inexpensive to build.

  3. High-pressure ignition plasma torch for aerospace testing facilities

    NASA Astrophysics Data System (ADS)

    Yusupov, D. I.; Kulikov, Yu M.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Son, E. E.

    2016-11-01

    The present paper discusses the issues of implementation of high-pressure ignition plasma torch in terms of discharge phenomena in compressed gases, dense nitrogen plasma properties and stable arcing power requirements. Contact ignition has been tested in a pressure range p = 1-25 bar and has proved to be a reliable solution for pilot arc burning.

  4. Prediction of performance of centrifugal pumps during starts under pressure

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1969-01-01

    Method which calculates start-up characteristics of centrifugal pumps reveals a capacity to predict pressure drop characteristics of pumps with vaned diffusers. Calculations are based on pump geometry, design-point flow, speed, and pressure rise, and the pump characteristic within range of approximately ten percent of the design-point flow.

  5. Diaphragm size and sensitivity for fiber optic pressure sensors

    NASA Technical Reports Server (NTRS)

    He, Gang; Cuomo, Frank W.; Zuckerwar, Allan J.

    1991-01-01

    A mechanism which leads to a significant increase in sensitivity and linear operating range in reflective type fiber optic pressure transducers with minute active dimensions is studied. A general theoretical formalism is presented which is in good agreement with the experimental data. These results are found useful in the development of small pressure sensors used in turbulent boundary layer studies and other applications.

  6. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  7. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  8. Pressure suppression containment system

    DOEpatents

    Gluntz, D.M.; Townsend, H.E.

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of-coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto. 6 figures.

  9. Pressure suppression containment system

    DOEpatents

    Gluntz, Douglas M.; Townsend, Harold E.

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto.

  10. Magnetostrictive Pressure Regulating System

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor); Pickens, Herman L. (Inventor)

    2013-01-01

    A magnetostrictive pressure regulating system includes a magnetostrictive valve that incorporates a magnetostrictive actuator with at least one current-carrying coil disposed thereabout. A pressure force sensor, in fluid communication with the fluid exiting the valve, includes (i) a magnetostrictive material, (ii) a magnetic field generator in proximity to the magnetostrictive material for inducing a magnetic field in and surrounding the magnetostrictive material wherein lines of magnetic flux passing through the magnetostrictive material are defined, and (iii) a sensor positioned adjacent to the magnetostrictive material and in the magnetic field for measuring changes in at least one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux. The pressure of the fluid exiting the valve causes the applied force. A controller coupled to the sensor and to the current-carrying coil adjusts a current supplied to the current-carrying coil based on the changes so-measured.

  11. Pressure settling of mesophase

    SciTech Connect

    Romine, H.E.

    1989-05-23

    This patent describes a process for producing mesophase pitch wherein a heavy aromatic hydrocarbon feedstock is heat soaked at a first pressure until a substantial portion of the feedstock has been converted to optically anisotropic material, and in which mesophase pitch is recovered from the heat soaked material by gravity settling, the improvement comprises: subjecting and maintaining for a time of up to about 15 minutes the heat soaked material, prior to recovery of mesophase pitch therefrom, to a second pressure which is at least 30 kPa higher than the first pressure for a time of up to about 15 minutes, whereby boiling of the heat soaked material is reduced and settling of mesophase pitch is enhanced.

  12. Circumferential pressure probe

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K. (Inventor); Moore, Thomas C. (Inventor); Fantl, Andrew J. (Inventor)

    1989-01-01

    A probe for measuring circumferential pressure inside a body cavity is disclosed. In the preferred embodiment, a urodynamic pressure measurement probe for evaluating human urinary sphincter function is disclosed. Along the length of the probe are disposed a multiplicity of deformable wall sensors which typically comprise support tube sections with flexible side wall areas. These are arranged along the length of the probe in two areas, one just proximal to the tip for the sensing of fluid pressure inside the bladder, and five in the sensing section which is positioned within the urethra at the point at which the urinary sphincter constricts to control the flow of urine. The remainder of the length of the probe comprises multiple rigid support tube sections interspersed with flexible support tube sections in the form of bellows to provide flexibility.

  13. PRESSURE SENSING DEVICE

    DOEpatents

    Pope, K.E.

    1959-12-15

    This device is primarily useful as a switch which is selectively operable to actuate in response to either absolute or differential predetermined pressures. The device generally comprises a pressure-tight housing divided by a movable impermeable diaphragm into two chambers, a reference pressure chamber and a bulb chamber containing the switching means and otherwise filled with an incompressible non-conducting fluid. The switch means comprises a normally collapsed bulb having an electrically conductive outer surface and a vent tube leading to the housing exterior. The normally collapsed bulb is disposed such that upon its inflation, respensive to air inflow from the vent, two contacts fixed within the bulb chamber are adapted to be electrically shorted by the conducting outer surface of the bulb.

  14. Pressure driven particulate flows

    SciTech Connect

    Ingher, M.S.; Mondy, L.A.

    1996-03-01

    Numerical simulations of pressure-driven particulate Stokes flows are performed in cylindrical and rectangular conduits using a parallel boundary element code. Spherical particles are randomly placed in the conduits and a pressure drop between the ends of the conduits is imposed by the boundary conditions to induce a Poiseuille-like flow field. The instantaneous velocities of the particles are then calculated, as well as the additional pressure drop necessary to maintain a constant flow rate. Because the results depend on the spatial distribution of the particles, several random configurations of particles are examined for each case. Depending on two different interpretations of the numerical results, the solid phase can be represented as either leading or lagging the fluid phase. Both of the analyses and interpretations are presented.

  15. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  16. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  17. HIGH PRESSURE GAS REGULATOR

    DOEpatents

    Ramage, R.W.

    1962-05-01

    A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)

  18. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    PubMed

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-05

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  19. NASA Helps Industry Relieve Pressure Safely

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In many industrial applications, pressure relief valves (PRV) perform the critical function of safely releasing pressure before potentially damaging build-ups occur. Conventional relief valves, however, have proven unstable, leading to premature wear and devasting consequences. A high-performance pressure relief valve, the PRV95, now being manufactured my Marotta Scientific Controls, Inc., of Montville, NJ, provides the answer to premature wear and instability. Using an improved valve design developed under a NASA Small Business Innovation Research Program (SBIR) contract from John C. Stennis Space Center (SSC), Marotta's PRV95 pressure relief valve provides stability over the entire operational range, from fully closed to fully open. The valve employs upstream control for valve positioning, that makes the valve more stable and affords excellent repeatability with minimal lag time. 'It opens and closes softly, and does not oscillate or generate hard impacts; oscillation can result in a hard impact pressure release, which can lead to an explosion in the presence of oxygen,' says Bill St. Cyr, Chief of Test Technology Branch at Stennis Space Center. Marotta's PRV95 design is also unique in its ability to maintain a seal near the set point of the relief limit. Typically, relief valves seal tightly up to 90% of set point and then reseat when pressure is reduced to 85% of set point. The PRV95 technology maintains seal integrity until 98% of set point and will reseat a 95-97% of set point. This allows the operator to protect his system while not exceeding its limits.

  20. Monitoring Air Circulation Under Reduced Pressures

    NASA Astrophysics Data System (ADS)

    Rygalov, Vadim

    Adequate air circulation is required for controlled environments to maintain uniform temperature and humidity control, and hence the ability to measure air flow accurately is important. Human and associated life support habitats (e.g.,. plant production systems) for future space missions will likely be operated at pressures less than 100 kPa to minimize gas leakage and structural mass. Under such reduced pressures, the outputs from conventional anemometers for monitoring air flow can change and require re-calibration. These effects of atmospheric pressure on different types of air flow measurements are not completely understood; hence we compared the performance of several air flow sensors across a range of hypobaric pressures. Sensors included a propeller type anemometer, a hot-wire anemometer, and a Pitot-tube based device. Theoretical schematics (including mathematical models) underlying these measurements were developed. Results demonstrated that changes in sensor outputs were predictable based on their operating principles, and that corrections could be developed for sensors calibrated under normal Earth atmosphere pressure ( 100 kPa) and then used at different pressures. The potential effects of hypobaric atmospheres and their altered air flows on plant physiology are also discussed.

  1. High-pressure liquid chromatography of aromatic amines

    NASA Technical Reports Server (NTRS)

    Young, P. R.

    1979-01-01

    Analysis made on commercially available liquid chromatograph demonstrates high-pressure liquid chromatographic conditions for separation of approximately 50 aromatic amines ranging from simple aniline derivatives to complex multiring di- and tri-amines.

  2. Laboratory evaluation of the pressure water level data logger manufactured by Infinities USA, Inc.: results of pressure and temperature tests

    USGS Publications Warehouse

    Carnley, Mark V.

    2015-01-01

    The Pressure Water Level Data Logger manufactured by Infinities USA, Inc., was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility for conformance with the manufacturer’s stated accuracy specifications for measuring pressure throughout the device’s operating temperature range and with the USGS accuracy requirements for water-level measurements. The Pressure Water Level Data Logger (Infinities Logger) is a submersible, sealed, water-level sensing device with an operating pressure range of 0 to 11.5 feet of water over a temperature range of −18 to 49 degrees Celsius. For the pressure range tested, the manufacturer’s accuracy specification of 0.1 percent of full scale pressure equals an accuracy of ±0.138 inch of water. Three Infinities Loggers were evaluated, and the testing procedures followed and results obtained are described in this report. On the basis of the test results, the device is poorly compensated for temperature. For the three Infinities Loggers, the mean pressure differences varied from –4.04 to 5.32 inches of water and were not within the manufacturer’s accuracy specification for pressure measurements made within the temperature-compensated range. The device did not meet the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of –18 to 49 degrees Celsius or the USGS accuracy requirements of no more than 0.12 inch of water (0.01 foot of water) or 0.10 percent of reading, whichever is larger. The USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the Hydrologic Instrumentation Facility. The estimated combined measurement uncertainty for the pressure cycling test was ±0.139 inch of water, and for temperature, the cycling test was ±0.127 inch of water for the three Infinities Loggers.

  3. High pressure water jet cutting and stripping

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  4. Method of manufacturing an overwrapped pressure vessel

    NASA Technical Reports Server (NTRS)

    Beck, Emory J. (Inventor)

    1976-01-01

    A pressure vessel of the type wherein a metallic liner in the shape of a cylindrical portion with a dome-shaped portion at each end thereof is overwrapped by a plurality of layers of resin coated, single fiberglass filaments. A four-step wrapping technique reinforces the vessel with overwrap material at the most likely areas for vessel failure. Overwrapping of the vessel is followed by a sizing pressurization cycle which induces a compressive prestress into the liner and thereby permits the liner to deform elastically through an increased strain range.

  5. A multifunctional magnetic material under pressure.

    PubMed

    Rodríguez-Velamazán, J Alberto; Fabelo, Oscar; Beavers, Christine M; Natividad, Eva; Evangelisti, Marco; Roubeau, Olivier

    2014-06-23

    Fe(II)(Metz)6](Fe(III)Br4)2 (Metz = 1-methyltetrazole) is one of the rare systems combining spin-crossover and long-range magnetic ordering. A joint neutron and X-ray diffraction and magnetometry study allows determining its collinear antiferromagnetic structure, and shows an increase of the Néel temperature from 2.4 K at ambient pressure, to 3.9 K at 0.95 GPa. Applied pressure also enables a full high-spin to low-spin switch at ambient temperature.

  6. A pressure scanning Fabry-Perot magnetometer.

    NASA Technical Reports Server (NTRS)

    Fay, T. D.; Wyller, A. A.

    1971-01-01

    Description of an oscillating magnetic analyzer (KDP crystal plus Glan-Thompson prism) coupled to an echelle-interferometer spectrograph, and of single-slit magnetometer which by pressure variations can be made to scan the entire profiles of the circularly and linearly polarized Zeeman components. Freon gas is used as the scanner gas with wavelength displacements of 0.02 A per 0.1 in. Hg pressure change at the NaD lines. The available scan range is 15 A in the visual spectral region.

  7. Domestic atmospheric pressure thermal deaerators

    NASA Astrophysics Data System (ADS)

    Egorov, P. V.; Gimmelberg, A. S.; Mikhailov, V. G.; Baeva, A. N.; Chuprakov, M. V.; Grigoriev, G. V.

    2016-04-01

    Based on many years of experience and proven technical solutions, modern atmospheric pressure deaerators of the capacity of 0.4 to 800 t/h were designed and developed. The construction of such deaerators is based on known and explored technical solutions. A two-stage deaeration scheme is applied where the first stage is a jet dripping level (in a column) and the second one is a bubble level (in a tank). In the design of deaeration columns, low-pressure hydraulic nozzles (Δ p < 0.15 MPa) and jet trays are used, and in deaerator tank, a developed "flooded" sparger is applied, which allows to significantly increase the intensity of the heat and mass exchange processes in the apparatus. The use of the two efficient stages in a column and a "flooded" sparger in a tank allows to reliably guarantee the necessary water heating and deaeration. Steam or "superheated" water of the temperature of t ≥ 125°C can be used as the coolant in the deaerators. The commissioning tests of the new deaerator prototypes of the capacity of 800 and 500 t/h in the HPP conditions showed their sustainable, reliable, and efficient work in the designed range of hydraulic and thermal loads. The content of solved oxygen and free carbon dioxide in make-up water after deaerators meets the requirements of State Standard GOST 16860-88, the operating rules and regulations, and the customer's specifications. Based on these results, the proposals were developed on the structure and the design of deaerators of the productivity of more than 800 t/h for the use in circuits of large heating systems and the preparation of feed water to the TPP at heating and industrial-heating plants. The atmospheric pressure thermal deaerators developed at NPO TsKTI with consideration of the current requirements are recommended for the use in water preparation schemes of various power facilities.

  8. OPTIMAL AIRCRAFT TRAJECTORIES FOR SPECIFIED RANGE

    NASA Technical Reports Server (NTRS)

    Lee, H.

    1994-01-01

    cruise cost is specified, an optimum trajectory can easily be generated; however, the range obtained for a particular optimum cruise cost is not known a priori. For short range flights, the program iteratively varies the optimum cruise cost until the computed range converges to the specified range. For long-range flights, iteration is unnecessary since the specified range can be divided into a cruise segment distance and full climb and descent distances. The user must supply the program with engine fuel flow rate coefficients and an aircraft aerodynamic model. The program currently includes coefficients for the Pratt-Whitney JT8D-7 engine and an aerodynamic model for the Boeing 727. Input to the program consists of the flight range to be covered and the prevailing flight conditions including pressure, temperature, and wind profiles. Information output by the program includes: optimum cruise tables at selected weights, optimal cruise quantities as a function of cruise weight and cruise distance, climb and descent profiles, and a summary of the complete synthesized optimal trajectory. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 100K (octal) of 60 bit words. This aircraft trajectory optimization program was developed in 1979.

  9. Variable pressure washer

    NASA Technical Reports Server (NTRS)

    Smeltzer, III, Stanley S. (Inventor); Estrada, Hector (Inventor)

    2004-01-01

    A variable pressure washer has two interlocking channel rings separated by a channel and retained by a captive set of fasteners. Within the channel between the rings are multiple rows of springs having at least two different spring moduli. The washer is particularly suited for use with a polar boss assembly secured to a bulkhead of a pressure vessel such as of propellent tank dome structure where the washer allows for the substantially uniform deflection of multiple O-rings as affected by the curved structure.

  10. Pressure thermal holograms

    NASA Astrophysics Data System (ADS)

    Toxqui-Lopez, S.; Olivares-Perez, A.; Fuentes-Tapia, I.

    2005-04-01

    A new recorder material with the ability to store information by pressure and temperature parameters, computer phase holograms were obtained whit this material, which it is used a coating of polyester resin mixing with nitrocellulose. The major improvements from our material are: high diffraction efficiency (91.9 %), reduced cost, easily to apply on any substrate and the hologram is making with out develop process, and this does not need carefully controlled environment conditions. In this approach the hologram is formed under pressure and temperature.

  11. Wellbore pressure transducer

    DOEpatents

    Shuck, Lowell Z.

    1979-01-01

    Subterranean earth formations containing energy values are subjected to hydraulic fracturing procedures to enhance the recovery of the energy values. These fractures are induced in the earth formation by pumping liquid into the wellbore penetrating the earth formation until the pressure of the liquid is sufficient to fracture the earth formation adjacent to the wellbore. The present invention is directed to a transducer which is positionable within the wellbore to generate a signal indicative of the fracture initiation useful for providing a timing signal to equipment for seismic mapping of the fracture as it occurs and for providing a measurement of the pressure at which the fracture is initiated.

  12. Blood Pressure Control

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Engineering Development Lab., Inc.'s E-2000 Neck Baro Reflex System was developed for cardiovascular studies of astronauts. It is regularly used on Space Shuttle Missions, and a parallel version has been developed as a research tool to facilitate studies of blood pressure reflex controls in patients with congestive heart failure, diabetes, etc. An advanced version, the PPC-1000, was developed in 1991, and the technology has been refined substantially. The PPC provides an accurate means of generating pressure for a broad array of laboratory applications. An improved version, the E2010 Barosystem, is anticipated.

  13. Krypton oxides under pressure.

    PubMed

    Zaleski-Ejgierd, Patryk; Lata, Pawel M

    2016-02-02

    Under high pressure, krypton, one of the most inert elements is predicted to become sufficiently reactive to form a new class of krypton compounds; krypton oxides. Using modern ab-initio evolutionary algorithms in combination with Density Functional Theory, we predict the existence of several thermodynamically stable Kr/O species at elevated pressures. In particular, our calculations indicate that at approx. 300 GPa the monoxide, KrO, should form spontaneously and remain thermo- and dynamically stable with respect to constituent elements and higher oxides. The monoxide is predicted to form non-molecular crystals with short Kr-O contacts, typical for genuine chemical bonds.

  14. A Resonant Pressure Microsensor Capable of Self-Temperature Compensation

    PubMed Central

    Li, Yinan; Wang, Junbo; Luo, Zhenyu; Chen, Deyong; Chen, Jian

    2015-01-01

    Resonant pressure microsensors are widely used in the fields of aerospace exploration and atmospheric pressure monitoring due to their advantages of quasi-digital output and long-term stability, which, however, requires the use of additional temperature sensors for temperature compensation. This paper presents a resonant pressure microsensor capable of self-temperature compensation without the need for additional temperature sensors. Two doubly-clamped “H” type resonant beams were arranged on the pressure diaphragm, which functions as a differential output in response to pressure changes. Based on calibration of a group of intrinsic resonant frequencies at different pressure and temperature values, the functions with inputs of two resonant frequencies and outputs of temperature and pressure under measurement were obtained and thus the disturbance of temperature variations on resonant frequency shifts was properly addressed. Before compensation, the maximal errors of the measured pressure values were over 1.5% while after compensation, the errors were less than 0.01% of the full pressure scale (temperature range of −40 °C to 70 °C and pressure range of 50 kPa to 110 kPa). PMID:25938197

  15. Method of gettering hydrogen under conditions of low pressure

    DOEpatents

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1983-01-01

    A ternary intermetallic compound having the formula Zr(V.sub.1-x Cr.sub.x).sub.2 where x is in the range of 0.01 to 0.90 is capable of reversibly sorbing hydrogen at temperatures ranging from room temperature to 200.degree. C., at pressures down to 10.sup.-6 Torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  16. Vapor pressures of acetylene at low temperatures

    NASA Technical Reports Server (NTRS)

    Masterson, C. M.; Allen, John E., Jr.; Kraus, G. F.; Khanna, R. K.

    1990-01-01

    The atmospheres of many of the outer planets and their satellites contain a large number of hydrocarbon species. In particular, acetylene (C2H2) has been identified at Jupiter, Saturn and its satellite Titan, Uranus and Neptune. In the lower atmospheres of these planets, where colder temperatures prevail, the condensation and/or freezing of acetylene is probable. In order to obtain accurate models of the acetylene in these atmospheres, it is necessary to have a complete understanding of its vapor pressures at low temperatures. Vapor pressures at low temperatures for acetylene are being determined. The vapor pressures are measured with two different techniques in order to cover a wide range of temperatures and pressures. In the first, the acetylene is placed in a sample tube which is immersed in a low temperature solvent/liquid nitrogen slush bath whose temperature is measured with a thermocouple. The vapor pressure is then measured directly with a capacitance manometer. For lower pressures, a second technique which was called the thin-film infrared method (TFIR) was developed. It involves measuring the disappearance rate of a thin film of acetylene at a particular temperature. The spectra are then analyzed using previously determined extinction coefficient values, to determine the disappearance rate R (where R = delta n/delta t, the number of molecules that disappear per unit time). This can be related to the vapor pressure directly. This technique facilitates measurement of the lower temperatures and pressures. Both techniques have been calibrated using CO2, and have shown good agreement with the existing literature data.

  17. Influence of ambient pressure on the ablation hole in femtosecond laser drilling Cu.

    PubMed

    Wang, Qinxin; Chen, Anmin; Li, Suyu; Qi, Hongxia; Qi, Ying; Hu, Zhan; Jin, Mingxing

    2015-09-20

    The holes were drilled by femtosecond laser pulse (800 nm, 100 fs) on Cu sheets at different ambient pressures. The pressure range was from 1 Pa to atmospheric pressure. The number of pulses to drill through the target, the stable photodiode signal, and the hole diameter were obtained as functions of ambient pressure. The morphology of the hole was observed by a scanning electron microscope (SEM). The result showed that the ambient pressure had significant influence on the morphology of the hole.

  18. High Precision Laser Range Sensor

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge (Inventor); Lay, Oliver P. (Inventor)

    2003-01-01

    The present invention is an improved distance measuring interferometer that includes high speed phase modulators and additional phase meters to generate and analyze multiple heterodyne signal pairs with distinct frequencies. Modulation sidebands with large frequency separation are generated by the high speed electro-optic phase modulators, requiring only a single frequency stable laser source and eliminating the need for a fist laser to be tuned or stabilized relative to a second laser. The combination of signals produced by the modulated sidebands is separated and processed to give the target distance. The resulting metrology apparatus enables a sensor with submicron accuracy or better over a multi- kilometer ambiguity range.

  19. BENTON RANGE ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    McKee, Edwin H.; Rains, Richard L.

    1984-01-01

    On the basis of a mineral survey, two parts of the Benton Range Roadless Area, California are considered to have mineral-resource potential. The central and southern part of the roadless area, near several nonoperating mines, has a probable potential for tungsten and gold-silver mineralization in tactite zones. The central part of the area has a substantiated resource potential for gold and silver in quartz veins. Detailed mapping and geochemical sampling for tungsten, gold, and silver in the central and southern part of the roadless area might indicate targets for shallow drilling exploration.

  20. Wide-range CCD spectrometer

    NASA Astrophysics Data System (ADS)

    Sokolova, Elena A.; Reyes Cortes, Santiago D.

    1996-08-01

    The utilization of wide range spectrometers is a very important feature for the design of optical diagnostics. This paper describes an innovative approach, based on charged coupled device, which allows to analyze different spectral intervals with the same diffraction grating. The spectral interval is varied by changing the position of the entrance slit when the grating is stationary. The optical system can also include a spherical mirror. In this case the geometric position of the mirror is calculated aiming at compensating the first order astigmatism and the meridional coma of the grating. This device is planned to be used in Thomson scattering diagnostic of the TOKAMAK of Instituto Superior Tecnico, Lisbon (ISTTOK).