Bidirectional Pressure-Regulator System
NASA Technical Reports Server (NTRS)
Burke, Kenneth; Miller, John R.
2008-01-01
A bidirectional pressure-regulator system has been devised for use in a regenerative fuel cell system. The bidirectional pressure-regulator acts as a back-pressure regulator as gas flows through the bidirectional pressure-regulator in one direction. Later, the flow of gas goes through the regulator in the opposite direction and the bidirectional pressure-regulator operates as a pressure- reducing pressure regulator. In the regenerative fuel cell system, there are two such bidirectional regulators, one for the hydrogen gas and another for the oxygen gas. The flow of gases goes from the regenerative fuel cell system to the gas storage tanks when energy is being stored, and reverses direction, flowing from the storage tanks to the regenerative fuel cell system when the stored energy is being withdrawn from the regenerative fuel cell system. Having a single bidirectional regulator replaces two unidirectional regulators, plumbing, and multiple valves needed to reverse the flow direction. The term "bidirectional" refers to both the bidirectional nature of the gas flows and capability of each pressure regulator to control the pressure on either its upstream or downstream side, regardless of the direction of flow.
Electrical Pressurization Concept for the Orion MPCV European Service Module Propulsion System
NASA Technical Reports Server (NTRS)
Meiss, Jan-Hendrik; Weber, Jorg; Ierardo, Nicola; Quinn, Frank D.; Paisley, Jonathan
2015-01-01
The paper presents the design of the pressurization system of the European Service Module (ESM) of the Orion Multi-Purpose Crew Vehicle (MPCV). Being part of the propulsion subsystem, an electrical pressurization concept is implemented to condition propellants according to the engine needs via a bang-bang regulation system. Separate pressurization for the oxidizer and the fuel tank permits mixture ratio adjustments and prevents vapor mixing of the two hypergolic propellants during nominal operation. In case of loss of pressurization capability of a single side, the system can be converted into a common pressurization system. The regulation concept is based on evaluation of a set of tank pressure sensors and according activation of regulation valves, based on a single-failure tolerant weighting of three pressure signals. While regulation is performed on ESM level, commanding of regulation parameters as well as failure detection, isolation and recovery is performed from within the Crew Module, developed by Lockheed Martin Space System Company. The overall design and development maturity presented is post Preliminary Design Review (PDR) and reflects the current status of the MPCV ESM pressurization system.
Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactantmore » fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.« less
Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
2015-08-11
Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.
Optimal pressure regulation of the pneumatic ventricular assist device with bellows-type driver.
Lee, Jung Joo; Kim, Bum Soo; Choi, Jaesoon; Choi, Hyuk; Ahn, Chi Bum; Nam, Kyoung Won; Jeong, Gi Seok; Lim, Choon Hak; Son, Ho Sung; Sun, Kyung
2009-08-01
The bellows-type pneumatic ventricular assist device (VAD) generates pneumatic pressure with compression of bellows instead of using an air compressor. This VAD driver has a small volume that is suitable for portable devices. However, improper pneumatic pressure setup can not only cause a lack of adequate flow generation, but also cause durability problems. In this study, a pneumatic pressure regulation system for optimal operation of the bellows-type VAD has been developed. The optimal pneumatic pressure conditions according to various afterload conditions aiming for optimal flow rates were investigated, and an afterload estimation algorithm was developed. The developed regulation system, which consists of a pressure sensor and a two-way solenoid valve, estimates the current afterload and regulates the pneumatic pressure to the optimal point for the current afterload condition. Experiments were performed in a mock circulation system. The afterload estimation algorithm showed sufficient performance with the standard deviation of error, 8.8 mm Hg. The flow rate could be stably regulated with a developed system under various afterload conditions. The shortcoming of a bellows-type VAD could be handled with this simple pressure regulation system.
Intraocular pressure reduction and regulation system
NASA Technical Reports Server (NTRS)
Baehr, E. F.; Burnett, J. E.; Felder, S. F.; Mcgannon, W. J.
1979-01-01
An intraocular pressure reduction and regulation system is described and data are presented covering performance in: (1) reducing intraocular pressure to a preselected value, (2) maintaining a set minimum intraocular pressure, and (3) reducing the dynamic increases in intraocular pressure resulting from external loads applied to the eye.
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2011-01-01
An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also be used with NASA's advanced nonflow-through fuel cell power systems by simply incorporating a jet nozzle with an appropriate nozzle diameter.
49 CFR 192.741 - Pressure limiting and regulating stations: Telemetering or recording gauges.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Pressure limiting and regulating stations... STANDARDS Maintenance § 192.741 Pressure limiting and regulating stations: Telemetering or recording gauges. (a) Each distribution system supplied by more than one district pressure regulating station must be...
Design and develop speed/pressure regulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasanul Basher, A.M.
1993-09-01
The Physics Division at Oak Ridge National Laboratory has several recirculating water cooling systems. One of them supplies deionized water at 150 psi, which is mainly used for cooling magnet windings at the Oak Ridge Isochronous Cyclotron (ORIC). The system has three 125-hp water pumps, each of which is capable of supplying water at the rate of 1000 gpm. One of the major requirements of this water supply system is that the supply pressure must be kept constant. An adjustable-frequency speed controller was recently installed to control the speed of one of the pump motors. A servo-system was provided withmore » the adjustable-frequency controller for regulating motor speed and, subsequently, the water pressure. After unsuccessful attempts to operate the servo, it was concluded that the regulator may not work for the existing system. Prior to installation of the variable-frequency controller, pressure regulation was accomplished with a pneumatically controlled load by-pass valve. To maintain constant pressure in the system, it is necessary to run always at full load, even if full load is not on the system. Hence, there is a waste of energy when full load is not connected to the system. So, designing and implementing one regulator that works at any load condition has become necessary. This report discusses the design of such a pressure regulator.« less
Pressurization, Pneumatic, and Vent Subsystems of the X-34 Main Propulsion System
NASA Technical Reports Server (NTRS)
Hedayat, A.; Steadman, T. E.; Brown, T. M.; Knight, K. C.; White, C. E., Jr.; Champion, R. H., Jr.
1998-01-01
In pressurization systems, regulators and orifices are use to control the flow of the pressurant. For the X-34 Main Propulsion System, three pressurization subsystem design configuration options were considered. In the first option, regulators were used while in the other options, orifices were considered. In each design option, the vent/relief system must be capable of relieving the pressurant flow without allowing the tank pressure to rise above proof, therefore, impacts on the propellant tank vent system were investigated and a trade study of the pressurization system was conducted. The analysis indicated that design option using regulators poses least risk. Then, a detailed transient thermal/fluid analysis of the recommended pressurization system was performed. Helium usage, thermodynamic conditions, and overpressurization of each propellant tank were evaluated. The pneumatic and purge subsystem is used for pneumatic valve actuation, Inter-Propellant Seal purges, Engine Spin Start, and engine purges at the required interface pressures, A transient analysis of the pneumatic and purge subsystem provided helium usage and flow rates to Inter-Propellant Seal and engine interfaces. Fill analysis of the helium bottles of pressurization and pneumatic subsystems during ground operation was performed. The required fill time and the stored
NASA Astrophysics Data System (ADS)
Hao, Xuejun; An, Xaioran; Wu, Bo; He, Shaoping
2018-02-01
In the gas pipeline system, safe operation of a gas regulator determines the stability of the fuel gas supply, and the medium-low pressure gas regulator of the safety precaution system is not perfect at the present stage in the Beijing Gas Group; therefore, safety precaution technique optimization has important social and economic significance. In this paper, according to the running status of the medium-low pressure gas regulator in the SCADA system, a new method for gas regulator safety precaution based on the support vector machine (SVM) is presented. This method takes the gas regulator outlet pressure data as input variables of the SVM model, the fault categories and degree as output variables, which will effectively enhance the precaution accuracy as well as save significant manpower and material resources.
Precision Adjustable Liquid Regulator (ALR)
NASA Astrophysics Data System (ADS)
Meinhold, R.; Parker, M.
2004-10-01
A passive mechanical regulator has been developed for the control of fuel or oxidizer flow to a 450N class bipropellant engine for use on commercial and interplanetary spacecraft. There are several potential benefits to the propulsion system, depending on mission requirements and spacecraft design. This system design enables more precise control of main engine mixture ratio and inlet pressure, and simplifies the pressurization system by transferring the function of main engine flow rate control from the pressurization/propellant tank assemblies, to a single component, the ALR. This design can also reduce the thermal control requirements on the propellant tanks, avoid costly Qualification testing of biprop engines for missions with more stringent requirements, and reduce the overall propulsion system mass and power usage. In order to realize these benefits, the ALR must meet stringent design requirements. The main advantage of this regulator over other units available in the market is that it can regulate about its nominal set point to within +/-0.85%, and change its regulation set point in flight +/-4% about that nominal point. The set point change is handled actively via a stepper motor driven actuator, which converts rotary into linear motion to affect the spring preload acting on the regulator. Once adjusted to a particular set point, the actuator remains in its final position unpowered, and the regulator passively maintains outlet pressure. The very precise outlet regulation pressure is possible due to new technology developed by Moog, Inc. which reduces typical regulator mechanical hysteresis to near zero. The ALR requirements specified an outlet pressure set point range from 225 to 255 psi, and equivalent water flow rates required were in the 0.17 lb/sec range. The regulation output pressure is maintained at +/-2 psi about the set point from a P (delta or differential pressure) of 20 to over 100 psid. Maximum upstream system pressure was specified at 320 psi. The regulator is fault tolerant in that it was purposely designed with no shutoff capability, such that the minimum flow position of the poppet still allows the subsystem to provide adequate flow to the main engine for basic operation.
Blood Pressure Regulation: Every Adaptation is an Integration?
Joyner, Michael J.; Limberg, Jacqueline K.
2013-01-01
This focused review serves to explore relevant issues in regard to blood pressure regulation and by doing so, provides the initial stimulus paper for the Thematic Review series “Blood Pressure Regulation” to be published in the European Journal of Applied Physiology over the coming months. In this introduction, we highlight how variable normal blood pressure can be and challenge the reader to take another look at some key concepts related to blood pressure regulation. We point out that there is frequently an underappreciated balance between peripheral vasodilation and systemic blood pressure regulation and ask the question: Are changes in blood pressure, in effect, reasonable and integrated adaptations to the physiological challenge at hand? We conclude with the idea that blood pressure regulatory systems are both flexible and redundant; ensuring a wide variety of activities associated with life can be accompanied by a perfusion pressure that can serve multiple masters. PMID:23558925
System Would Regulate Low Gas Pressure
NASA Technical Reports Server (NTRS)
Frazer, Robert E.
1994-01-01
System intended to maintain gases in containers at pressures near atmospheric. Includes ballast volume in form of underinflated balloon that communicates with working volume. Balloon housed in rigid chamber not subjected to extremes of temperature of working volume. Pressure in chamber surrounding balloon regulated at ambient atmospheric pressure or at constant small differential pressure above or below ambient. Expansion and contraction of balloon accommodates expansion or contraction of gas during operational heating or cooling in working volume, maintaining pressure in working volume at ambient or constant differential above or below ambient. Gas lost from system due to leakage or diffusion, low-pressure sensor responds, signaling valve actuators to supply more gas to working volume. If pressure rises too high, overpressure relief valve opens before excessive pressure damages system.
Miniaturized pressurization system
Whitehead, John C.; Swink, Don G.
1991-01-01
The invention uses a fluid stored at a low pressure and provides the fluid at a high pressure. The invention allows the low pressure fluid to flow to a fluid bore of a differential pump and from the pump to a fluid pressure regulator. After flowing through the regulator the fluid is converted to a gas which is directed to a gas bore of the differential pump. By controlling the flow of gas entering and being exhausted from the gas bore, the invention provides pressure to the fluid. By setting the regulator, the high pressure fluid can be set at predetermined values. Because the invention only needs a low pressure fluid, the inventive apparatus has a low mass, and therefore would be useful in rocket propulsion systems.
Self-Organization of Blood Pressure Regulation: Experimental Evidence
Fortrat, Jacques-Olivier; Levrard, Thibaud; Courcinous, Sandrine; Victor, Jacques
2016-01-01
Blood pressure regulation is a prime example of homeostatic regulation. However, some characteristics of the cardiovascular system better match a non-linear self-organized system than a homeostatic one. To determine whether blood pressure regulation is self-organized, we repeated the seminal demonstration of self-organized control of movement, but applied it to the cardiovascular system. We looked for two distinctive features peculiar to self-organization: non-equilibrium phase transitions and hysteresis in their occurrence when the system is challenged. We challenged the cardiovascular system by means of slow, 20-min Tilt-Up and Tilt-Down tilt table tests in random order. We continuously determined the phase between oscillations at the breathing frequency of Total Peripheral Resistances and Heart Rate Variability by means of cross-spectral analysis. We looked for a significant phase drift during these procedures, which signed a non-equilibrium phase transition. We determined at which head-up tilt angle it occurred. We checked that this angle was significantly different between Tilt-Up and Tilt-Down to demonstrate hysteresis. We observed a significant non-equilibrium phase transition in nine healthy volunteers out of 11 with significant hysteresis (48.1 ± 7.5° and 21.8 ± 3.9° during Tilt-Up and Tilt-Down, respectively, p < 0.05). Our study shows experimental evidence of self-organized short-term blood pressure regulation. It provides new insights into blood pressure regulation and its related disorders. PMID:27065880
A role for AT1 receptor-associated proteins in blood pressure regulation.
Castrop, Hayo
2015-04-01
The renin angiotensin-system is one of the most important humoral regulators of blood pressure. The recently discovered angiotensin receptor-associated proteins serve as local modulators of the renin angiotensin-system. These proteins interact with the AT1 receptor in a tissue-specific manner and regulate the sensitivity of the target cell for angiotensin II. The predominant effect of the AT1 receptor-associated proteins on angiotensin II-induced signaling is the modulation of the surface expression of the AT1 receptor. This review provides an overview of our current knowledge with respect to the relevance of AT1 receptor-associated proteins for blood pressure regulation. Two aspects of blood pressure regulation will be discussed in detail: angiotensin II-dependent volume homoeostasis and vascular resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Engine control system having pressure-based timing
Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL
2011-10-04
A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.
Rankine cycle condenser pressure control using an energy conversion device bypass valve
Ernst, Timothy C; Nelson, Christopher R; Zigan, James A
2014-04-01
The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.
An Evaluation of Ultra-High Pressure Regulator for Robotic Lunar Landing Spacecraft
NASA Technical Reports Server (NTRS)
Burnside, Christopher; Trinh, Huu; Pedersen, Kevin
2011-01-01
The Robotic Lunar Lander Development (RLLD) Project Office at NASA Marshall Space Flight Center (MSFC) has studied several lunar surface science mission concepts. These missions focus on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface. Initial trade studies of launch vehicle options for these mission concepts indicate that the spacecraft design will be significantly mass-constrained. To minimize mass and facilitate efficient packaging, the notional propulsion system for these landers has a baseline of an ultra-high pressure (10,000 psig) helium pressurization system that has been used on Defense missiles. The qualified regulator is capable of short duration use; however, the hardware has not been previously tested at NASA spacecraft requirements with longer duration. Hence, technical risks exist in using this missile-based propulsion component for spacecraft applications. A 10,000-psig helium pressure regulator test activity is being carried out as part of risk reduction testing for MSFC RLLD project. The goal of the test activity is to assess the feasibility of commercial off-the-shelf ultra-high pressure regulator by testing with a representative flight mission profile. Slam-start, gas blowdown, water expulsion, lock-up, and leak tests are also performed on the regulator to assess performance under various operating conditions. The preliminary test results indicated that the regulator can regulate helium to a stable outlet pressure of 740 psig within the +/- 5% tolerance band and maintain a lock-up pressure less than +5% for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for internal seat leakage at lock-up and less than10-5 SCCS for external leakage through the regulator ambient reference cavity. The successful tests have shown the potential for 10,000 psig helium systems in NASA spacecraft and have reduced risk associated with hardware availability and hardware ability to meet RLL mission requirements.
Regulation of Blood Pressure and Salt Homeostasis by Endothelin
KOHAN, DONALD E.; ROSSI, NOREEN F.; INSCHO, EDWARD W.; POLLOCK, DAVID M.
2011-01-01
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension. PMID:21248162
HIF isoforms in the skin differentially regulate systemic arterial pressure
Cowburn, Andrew S.; Takeda, Norihiko; Boutin, Adam T.; Kim, Jung-Whan; Sterling, Jane C.; Nakasaki, Manando; Southwood, Mark; Goldrath, Ananda W.; Jamora, Colin; Nizet, Victor; Chilvers, Edwin R.; Johnson, Randall S.
2013-01-01
Vascular flow through tissues is regulated via a number of homeostatic mechanisms. Localized control of tissue blood flow, or autoregulation, is a key factor in regulating tissue perfusion and oxygenation. We show here that the net balance between two hypoxia-inducible factor (HIF) transcription factor isoforms, HIF-1α and HIF-2α, is an essential mechanism regulating both local and systemic blood flow in the skin of mice. We also show that balance of HIF isoforms in keratinocyte-specific mutant mice affects thermal adaptation, exercise capacity, and systemic arterial pressure. The two primary HIF isoforms achieve these effects in opposing ways that are associated with HIF isoform regulation of nitric oxide production. We also show that a correlation exists between altered levels of HIF isoforms in the skin and the degree of idiopathic hypertension in human subjects. Thus, the balance between HIF-1α and HIF-2α expression in keratinocytes is a control element of both tissue perfusion and systemic arterial pressure, with potential implications in human hypertension. PMID:24101470
Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics
NASA Astrophysics Data System (ADS)
Dvořák, Lukáš; Fojtášek, Kamil
2015-05-01
Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.
Rankine cycle waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2016-05-10
This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.
Rankine cycle waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2014-08-12
This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.
49 CFR 192.197 - Control of the pressure of gas delivered from high-pressure distribution systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Control of the pressure of gas delivered from high-pressure distribution systems. 192.197 Section 192.197 Transportation Other Regulations Relating to... STANDARDS Design of Pipeline Components § 192.197 Control of the pressure of gas delivered from high...
2010-04-01
Water Kit (dry system) installed as standard Abyss second stage with integrated 30-inch braided intermediate pressure hose as standard No user...diaphragm system) installed as standard Abyss second stage with integrated 30-inch braided intermediate pressure hose as standard No user adjustments...1st Stage Regulator with Abyss 2nd Stage and Integrated Intermediate Pressure Hose ..………………………….. A-2 A3 Modified Mares Proton Ice Extreme V32
Controlled differential pressure system for an enhanced fluid blending apparatus
Hallman, Jr., Russell Louis
2009-02-24
A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.
Flow-rate independent gas-mixing system for drift chambers, using solenoid valves
NASA Astrophysics Data System (ADS)
Sugano, K.
1991-03-01
We describe an inexpensive system for mixing argon and ethane gas for drift chambers which was used for an experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow-rate independent without readjustments. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running.
Passive containment cooling system with drywell pressure regulation for boiling water reactor
Hill, Paul R.
1994-01-01
A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.
Multi-bottle, no compressor, mean pressure control system for a Stirling engine
Corey, John A.
1990-01-01
The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.
Fuel system for rotary distributor fuel injection pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopfer, K.H.; Kelly, W.W.
1993-06-01
In a fuel injection pump having a drive shaft, a pump rotor driven by the drive shaft, reciprocating pumping means with periodic intake and pumping strokes to periodically receive an intake charge of fuel and deliver fuel at high pressure for fuel injection is described; a distributor head with a plurality of angularly spaced distributor outlets, the pump rotor providing a distributor rotor with a distributor port connected to the pumping means, the distributor rotor being rotatably mounted in the distributor head for sequential registration of the distributor port with the distributor outlets for distributing said high pressure delivery ofmore » fuel thereto; a fuel system for supplying fuel to the pumping means, having an end chamber at one end of the pump rotor and a fuel supply pump driven by the drive shaft and having an inlet and outlet, the supply pump outlet being connected to the end chamber for supplying fuel thereto, and a pressure regulator for regulating the fuel pressure in the end chamber; and a control valve connected between the pumping means and the end chamber and selectively opened during the intake strokes to supply fuel to the pumping means from the end chamber and during the pumping strokes to spill fuel from the pumping means into the end chamber to terminate said high pressure delivery of fuel; the improvement wherein the fuel system comprises a fuel return passage connected in series with the end chamber downstream thereof, wherein the pressure regulator is mounted in the return passage for regulating the upstream fuel pressure, including the upstream fuel pressure within the end chamber, and is connected for conducting excess fuel for return to the supply pump inlet, and wherein the supply pump is driven by the drive shaft to supply fuel at a rate exceeding the rate of said high pressure delivery of fuel for fuel injection and to provide excess fuel flow continuously through the end chamber and return passage to the pressure regulator.« less
Simulation of a Cold Gas Thruster System and Test Data Correlation
NASA Technical Reports Server (NTRS)
Hauser, Daniel M.; Quinn, Frank D.
2012-01-01
During developmental testing of the Ascent Abort 1 (AA-1) cold gas thruster system, unexpected behavior was detected. Upon further review the design as it existed may not have met the requirements. To determine the best approach for modifying the design, the system was modeled with a dynamic fluid analysis tool (EASY5). The system model consisted of the nitrogen storage tank, pressure regulator, thruster valve, nozzle, and the associated interconnecting line lengths. The regulator and thruster valves were modeled using a combination of the fluid and mechanical modules available in EASY5. The simulation results were then compared against actual system test data. The simulation results exhibited behaviors similar to the test results, such as the pressure regulators response to thruster firings. Potential design solutions were investigated using the analytical model parameters, including increasing the volume downstream of the regulator and increasing the orifice area. Both were shown to improve the regulator response.
Ramage, R.W.
1962-05-01
A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)
NASA Technical Reports Server (NTRS)
Sullivan, J. L.
1975-01-01
The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.
Passive containment cooling system with drywell pressure regulation for boiling water reactor
Hill, P.R.
1994-12-27
A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.
49 CFR 192.181 - Distribution line valves.
Code of Federal Regulations, 2010 CFR
2010-10-01
... line valves. (a) Each high-pressure distribution system must have valves spaced so as to reduce the... pressure, the size of the mains, and the local physical conditions. (b) Each regulator station controlling the flow or pressure of gas in a distribution system must have a valve installed on the inlet piping...
Devereux, Diana; Ikomi-Kumm, Julie
2013-03-01
The regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia is a hypothesis, which proposes an inherent operative system in homo sapiens that allows central nervous system and endocrine-mediated vascular system adaption to variables in partial pressure of oxygen, pH and body composition, while maintaining sufficient oxygen saturation for the immune system and ensuring protection of major organs in hypoxic and suboptimal conditions. While acknowledging the importance of the Henderson-Hasselbalch equation in the regulation of acid base balance, the hypothesis seeks to define the specific neuroendocrine/vascular mechanisms at work in regulating acid base balance in hypoxia and infection. The SIA (serotonin-immune-adrenergic) system is proposed as a working model, which allows central nervous system and endocrine-mediated macro- and micro vascular 'fine tuning'. The neurotransmitter serotonin serves as a 'hypoxic sensor' in concert with other operators to orchestrate homeostatic balance in normal and pathological states. The SIA system finely regulates oxygen, fuel and metabolic buffering systems at local sites to ensure optimum conditions for the immune response. The SIA system is fragile and its operation may be affected by infection, stress, diet, environmental toxins and lack of exercise. The hypothesis provides new insight in the area of neuro-gastroenterology, and emphasizes the importance of diet and nutrition as a complement in the treatment of infection, as well as the normalization of intestinal flora following antibiotic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.
An Evaluation of a High Pressure Regulator for NASA's Robotic Lunar Lander Spacecraft
NASA Technical Reports Server (NTRS)
Burnside, Christopher G.; Trinh, Huu P.; Pedersen, Kevin W.
2013-01-01
The Robotic Lunar Lander (RLL) development project office at NASA Marshall Space Flight Center is currently studying several lunar surface science mission concepts. The focus is on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface or other air-less bodies in the solar system. Initial trade studies of launch vehicle options indicate the spacecraft will be significantly mass and volume constrained. Because of the investment by the DOD in low mass, highly volume efficient components, NASA has investigated the potential integration of some of these technologies in space science applications. A 10,000 psig helium pressure regulator test activity has been conducted as part of the overall risk reduction testing for the RLL spacecraft. The regulator was subjected to typical NASA acceptance testing to assess the regulator response to the expected RLL mission requirements. The test results show the regulator can supply helium at a stable outlet pressure of 740 psig within a +/- 5% tolerance band and maintain a lock-up pressure less than the +5% above nominal outlet pressure for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for the internal seat leakage at lock-up and less than 10-5 SCCS for external leakage through the regulator body. The successful test has shown the potential for 10,000 psig helium systems in NASA spacecraft and has reduced risk associated with hardware availability and hardware ability to meet RLL mission requirements.
30 CFR 250.616 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... drills. 250.616 Section 250.616 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND... drills. (a) BOP pressure tests. When you pressure test the BOP system you must conduct a low-pressure... engaged in well-workover operations shall participate in a weekly BOP drill to familiarize crew members...
46 CFR 38.05-25 - Refrigerated systems-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... atmospheric temperature under the requirements of § 38.05-3(f) or § 38.05-4, maintenance of the tank pressure below the maximum allowable pressure shall be provided by one or more of the following means: (1) A refrigeration or liquefication system which regulates the pressure in the tanks. A standby compressor or...
Flow and pressure regulation in the cardiovascular system. [engineering systems model
NASA Technical Reports Server (NTRS)
Iberall, A.
1974-01-01
Principles and descriptive fragments which may contribute to a model of the regulating chains in the cardiovascular system are presented. Attention is given to the strain sensitivity of blood vessels, the law of the autonomy of the heart beat oscillator, the law of the encapsulation of body fluids, the law of the conservation of protein, the law of minimum 'arterial' pressure, the design of the 'mammalian' kidney, questions of homeokinetic organization, and the development of self-regulatory chains. Details concerning the development program for the heart muscle are considered along with the speed of response of the breathing rate and the significance of the pulmonary vascular pressure-flow characteristics.
Neural Control of the Circulation: How Sex and Age Differences Interact in Humans
Joyner, Michael J.; Barnes, Jill N.; Hart, Emma C.; Wallin, B. Gunnar; Charkoudian, Nisha
2015-01-01
The autonomic nervous system is a key regulator of cardiovascular system. In this review we focus on how sex and aging influence autonomic regulation of blood pressure in humans in an effort to understand general issues related to how the autonomic nervous system regulates blood pressure, and the cardiovascular system as a whole. Younger women generally have lower blood pressure and sympathetic activity than younger men. However, both sexes show marked inter-individual variability across age groups with significant overlap seen. Additionally, while men across the lifespan show a clear relationship between markers of whole body sympathetic activity and vascular resistance, such a relationship is not seen in young women. In this context, the ability of the sympathetic nerves to evoke vasoconstriction is lower in young women likely as a result of concurrent β2 mediated vasodilation that offsets α-adrenergic vasoconstriction. These differences reflect both central sympatho-inhibitory effects of estrogen and also its influence on peripheral vasodilation at the level of the vascular smooth muscle and endothelium. By contrast post-menopausal women show a clear relationship between markers of whole body sympathetic traffic and vascular resistance, and sympathetic activity rises progressively in both sexes with aging. These central findings in humans are discussed in the context of differences in population-based trends in blood pressure and orthostatic intolerance. The many areas where there is little sex-specific data on how the autonomic nervous system participates in the regulation of the human cardiovascular system are highlighted. PMID:25589269
Kenney, W. Larry; Stanhewicz, Anna E.; Bruning, Rebecca S.; Alexander, Lacy M.
2013-01-01
When prolonged intense exercise is performed at high ambient temperatures, cardiac output must meet dual demands for increased blood flow to contracting muscle and to the skin. The literature has commonly painted this scenario as a fierce competition, wherein one circulation preserves perfusion at the expense of the other, with the regulated maintenance of blood pressure as the ultimate goal. This review redefines this scenario as commensalism, an integrated balance of regulatory control where one circulation benefits with little functional effect on the other. In young, healthy subjects, arterial pressure rarely falls to any great extent during either extreme passive heating or prolonged dynamic exercise in the heat. Nor does body temperature rise disproportionately due to a compromised skin blood flow. Rather, it often takes the superimposition of additional stressors – e.g., dehydration or simulated hemorrhage – upon heat stress to substantially impact blood pressure regulation. PMID:23636697
Kenney, W Larry; Stanhewicz, Anna E; Bruning, Rebecca S; Alexander, Lacy M
2014-03-01
When prolonged intense exercise is performed at high ambient temperatures, cardiac output must meet dual demands for increased blood flow to contracting muscle and to the skin. The literature has commonly painted this scenario as a fierce competition, wherein one circulation preserves perfusion at the expense of the other, with the regulated maintenance of blood pressure as the ultimate goal. This review redefines this scenario as commensalism, an integrated balance of regulatory control where one circulation benefits with little functional effect on the other. In young, healthy subjects, arterial pressure rarely falls to any great extent during either extreme passive heating or prolonged dynamic exercise in the heat, nor does body temperature rise disproportionately due to a compromised skin blood flow. Rather, it often takes the superimposition of additional stressors--e.g., dehydration or simulated hemorrhage--upon heat stress to substantially impact blood pressure regulation.
Flow compensating pressure regulator
NASA Technical Reports Server (NTRS)
Baehr, E. F. (Inventor)
1978-01-01
An apparatus for regulating pressure of treatment fluid during ophthalmic procedures is described. Flow sensing and pressure regulating diaphragms are used to modulate a flow control valve. The pressure regulating diaphragm is connected to the flow control valve to urge the valve to an open position due to pressure being applied to the diaphragm by bias means such as a spring. The flow sensing diaphragm is mechanically connected to the flow control valve and urges it to an opened position because of the differential pressure on the diaphragm generated by a flow of incoming treatment fluid through an orifice in the diaphragm. A bypass connection with a variable restriction is connected in parallel relationship to the orifice to provide for adjusting the sensitivity of the flow sensing diaphragm. A multiple lever linkage system is utilized between the center of the second diaphragm and the flow control valve to multiply the force applied to the valve by the other diaphragm and reverse the direction of the force.
Neural mechanisms of volume regulation.
DiBona, G F
1983-05-01
Under steady-state conditions, urinary sodium excretion matches dietary sodium intake. Because extracellular fluid osmolality is tightly regulated, the quantity of sodium in the extracellular fluid determines the volume of this compartment. The left atrial volume receptor mechanism is an example of a neural mechanism of volume regulation. The left atrial mechanoreceptor, which functions as a sensor in the low-pressure vascular system, has a well-defined compliance relating intravascular volume to filling pressure and responds to changes in wall tension by discharging into afferent vagal fibers. These fibers have appropriate central nervous system representation whose related efferent neurohumoral mechanisms regulate thirst, renal excretion of water and sodium, and the redistribution of the extracellular fluid volume.
NASA Requirements for Ground-Based Pressure Vessels and Pressurized Systems (PVS). Revision C
NASA Technical Reports Server (NTRS)
Greulich, Owen Rudolf
2017-01-01
The purpose of this document is to ensure the structural integrity of PVS through implementation of a minimum set of requirements for ground-based PVS in accordance with this document, NASA Policy Directive (NPD) 8710.5, NASA Safety Policy for Pressure Vessels and Pressurized Systems, NASA Procedural Requirements (NPR) 8715.3, NASA General Safety Program Requirements, applicable Federal Regulations, and national consensus codes and standards (NCS).
The Role of Neural Reflexes in Control of the Cardiovascular System during Stress.
1984-02-01
cold block increase arterial pressure but did not alter plasma renin activity or renin secretory rate in dogs with normal or high sodium diet...also found that these afferents may play a keen role in the regulation of renin scretoary rate during conditions which may alter cardiopulmonary blood ...important hormone in -. the regulation of arterial pressure . However, the role of the nervous system in controlling the release of vasopressin has not been
Low-Cost Cold-Gas RCS for the Sloshsat Small Satellite
NASA Astrophysics Data System (ADS)
Adler, S.; Warshavsky, A.; Peretz, A.
2002-01-01
Cold gas thrusters usually provide an inexpensive, highly reliable, low-power consuming, non contaminating, and safe auxiliary propulsion means for small spacecraft. A low-cost cold-gas Reaction Control System (RCS) has been designed and developed to provide linear acceleration and rotation control of the SLOSHSAT satellite for liquid-slosh experimentation. This ESA-sponsored mini-spacecraft will be launched by the Space Shuttle and ejected into space from its hitchhiker bay. The RCS was designed and developed according to man rated safety standards, as required by NASA. The RCS comprises four identical spherical carbon/epoxy-wound stainless steel tanks, which store 1.6 kg of nitrogen at 600 bars, corresponding to a maximum rated temperature of 70°C. The relatively high pressure enables economic utilization of the limited space available in small satellites. The tanks are of a "leak before burst" design, which was subjected to a comprehensive finite-element stress analysis. They were developed and tested in accordance with MIL-STD-1522A, with a proof pressure and a minimum burst pressure of 1000 and 1700 bars, respectively. Each tank has an internal volume of 0.97 l, and is equipped with an attached accessories assembly, that includes a pyrovalve and a filter. The RCS was supplied with the tanks prepressurized and sealed to 473 bars (at 20°C). The whole system is pressurized only after the satellite is in its orbit, by activating the tank's pyrovalve. This unique approach enables to supply a sealed RCS system and propellant loading activities are not necessary before launch. Additionally, this approach has safety advantages that were meaningful to meet the NASA safety requirements. The pyrovalve includes a RAFAEL-developed initiator, which complies with MIL-STD-1576, and passed all required testing, including ESD tests with the resistor removed, as demanded by NASA for approval. The pyrovalve is of a "self seal" design, which includes a sealing mechanism, that seals the system from contamination during the pyrovalve actuation. The test port valve allows proof-pressure and leakage testing of the assembled system. The tanks and their accessories were subjected to extensive qualification testing and met the requirements of a stringent acceptance test procedure. The N2 propellant is supplied to twelve 0.8-N thrusters, at a steady regulated pressure of 15.5 bars. Accurate regulated pressure is obtained by a two stage regulating system, which accepts pressure input range of 600 to 40 bar. The thrusters were especially developed to meet the specific program requirements. They will normally be operated in pairs. For safety reasons and redundancy two relief valves are mounted downstream of the regulators. Each valve can handle the total flow with a minimum pressure rise, which defines the Maximum Operating Pressure (MEOP) in the low-pressure section of the system. The pressure surge phenomenon that follows the pyrovalve actuation was precisely analyzed, and tested in simulated conditions. A surge damper is successfully applied to the gas pipeline, significantly lowering the pressure surge. The sensitivity of the regulated pressure to the pulse modulation of the thrusters was examined. Due to the lock pressure of the regulators, and the difference between the static and dynamic regulated pressure levels, the average pressure was found to depend on the pulse duty cycle. This phenomenon was investigated and a model that predicts the pressure level according to the mass flow rate and pulse modulation was established. A breadboard test system, that completely simulates the pneumatic nature of the SLOSHSAT RCS, was constructed and used for ground test evaluation of the RCS performance in various modes of operation (continuous and pulses of various duty cycles). Computerized data acquisition and data reduction was used for pressure, temperature and mass flow measurements at several locations in the system. The breadboard system was also used for development experiments and investigation of various transient and steady state phenomena to enable successful performance prediction for operation in space. In order to establish appropriate assembly procedures for the RCS in the limited space allocated for it in the SLOSHSAT, a mock-up of the final satellite configuration, an Assembly and Testing System (ATS), was constructed. The complete RCS integrated in the ATS was subjected to vibration tests, followed by proof pressure, leakage and performance tests, as a part of the RCS qualification. All RCS components, except for the thrusters, are off-the-shelf items, adapted for space application by meeting stringent NASA/ESA man-rated mission requirements. A cooperative effort between FOKKER-SPACE and NLR of the Netherlands and RAFAEL of Israel enabled a very efficient RCS architecture that satisfies the limiting volume constraints. This approach made it possible to attain a man-rated, space-qualified cold-gas propulsion system with low-cost and safety and high- reliability attributes.
Development and evaluation of a self-regulating alternating pressure air cushion.
Nakagami, Gojiro; Sanada, Hiromi; Sugama, Junko
2015-03-01
To investigate the effect of alternating air cells of a newly developed dynamic cushion on interface pressure and tissue oxygenation levels. This cross-over experimental study included 19 healthy volunteers. The dynamic cushion used has an automatic self-regulating alternating pressure air-cell system with 35 small and four large air cells for maintaining posture while seated. This cushion also has 17 bottoming-out detectors that automatically inflate the air cells to release a high interface pressure. To assess the effect of this alternating system, participants sat on the new cushion with an alternating system or static system for 30 min and then performed push-ups. The interface pressure was monitored by pressure-sensitive and conductive ink film sensors and tissue oxygenation levels were monitored by near-infrared spectroscopy. A reactive hyperaemia indicator was calculated using tissue oxygenation levels as an outcome measure. The peak interface pressure was not significantly different between the groups. The reactive hyperaemia indicator was significantly higher in the static group than in the alternating group. An alternating system has beneficial effects on blood oxygenation levels without increasing interface pressure. Therefore, our new cushion is promising for preventing pressure ulcers with patients with limited ability to perform push-ups. Implications for Rehabilitation A dynamic cushion was developed, which consists of a uniquely-designed air-cell layout, detectors for bottoming out, and an alternating system with multiple air-cell lines. The alternating system did not increase interface pressure and it significantly reduced reactive hyperaemia after 30 min of sitting in healthy volunteers. This cushion is a new option for individuals who require stable posture but have limitations in performing scheduled push-ups for prevention of pressure ulcers.
Parasitic load control system for exhaust temperature control
Strauser, Aaron D.; Coleman, Gerald N.; Coldren, Dana R.
2009-04-28
A parasitic load control system is provided. The system may include an exhaust producing engine and a fuel pumping mechanism configured to pressurize fuel in a pressure chamber. The system may also include an injection valve configured to cause fuel pressure to build within the pressure chamber when in a first position and allow injection of fuel from the pressure chamber into one or more combustion chambers of the engine when in a second position. The system may further include a controller configured to independently regulate the pressure in the pressure chamber and the injection of fuel into the one or more combustion chambers, to increase a load on the fuel pumping mechanism, increasing parasitic load on the engine, thereby increasing a temperature of the exhaust produced by the engine.
Regulation of the pulmonary circulation
Lee, G. de J.
1971-01-01
Factors regulating pressure and flow in the lungs are reviewed with particular emphasis on their role in regulating blood flow velocity and distribution within the lung capillaries. The behaviour of the pulmonary arterial, system, alveolar capillaries, and pulmonary venous system are considered individually. The effect of heart disease on lung capillary blood flow is examined. PMID:4929437
Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens
Gao, Junyuan; Sun, Xiurong; White, Thomas W.; Delamere, Nicholas A.; Mathias, Richard T.
2015-01-01
In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. PMID:26536260
Xu, Quanbin; Jensen, Dane D.; Peng, Hua; Feng, Yumei
2016-01-01
The systemic renin–angiotensin system (RAS) has long been recognized as a critically important system in blood pressure (BP) regulation. However, extensive evidence has shown that a majority of RAS components are also present in many tissues and play indispensable roles in BP regulation. Here, we review evidence that RAS components, notably including the newly identified (pro)renin receptor (PRR), are present in the brain and are essential for the central regulation of BP. Binding of the PRR to its ligand, prorenin or renin, increases BP and promotes progression of cardiovascular diseases in an angiotensin II-dependent and -independent manner, establishing the PRR a promising antihypertensive drug target. We also review the existing PRR blockers, including handle region peptide and PRO20, and propose a rationale for blocking prorenin/PRR activation as a therapeutic approach that does not affect the actions of the PRR in vacuolar H+-ATPase and development. Finally, we summarize categories of currently available antihypertensive drugs and consider future perspectives. PMID:27113409
Vestibular activation of sympathetic nerve activity
NASA Technical Reports Server (NTRS)
Ray, C. A.; Carter, J. R.
2003-01-01
AIM: The vestibulosympathetic reflex refers to sympathetic nerve activation by the vestibular system. Animal studies indicate that the vestibular system assists in blood pressure regulation during orthostasis. Although human studies clearly demonstrate activation of muscle sympathetic nerve activity (MSNA) during engagement of the otolith organs, the role of the vestibulosympathetic reflex in maintaining blood pressure during orthostasis is not well-established. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes indicates that it is a powerful and independent reflex. Ageing, which is associated with an increased risk for orthostatic hypotension, attenuates the vestibulosympathetic reflex. The attenuated reflex is associated with a reduction in arterial pressure. CONCLUSION: These findings suggest that the vestibulosympathetic reflex assists in blood pressure regulation in humans, but future studies examining this reflex in other orthostatically intolerant populations are necessary to address this hypothesis.
A Hydraulic Blowdown Servo System For Launch Vehicle
NASA Astrophysics Data System (ADS)
Chen, Anping; Deng, Tao
2016-07-01
This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.
A whole-body mathematical model for intracranial pressure dynamics.
Lakin, William D; Stevens, Scott A; Tranmer, Bruce I; Penar, Paul L
2003-04-01
Most attempts to study intracranial pressure using lumped-parameter models have adopted the classical "Kellie-Monro Doctrine," which considers the intracranial space to be a closed system that is confined within the nearly-rigid skull, conserves mass, and has equal inflow and outflow. The present work revokes this Doctrine and develops a mathematical model for the dynamics of intracranial pressures, volumes, and flows that embeds the intracranial system in extensive whole-body physiology. The new model consistently introduces compartments representing the tissues and vasculature of the extradural portions of the body, including both the thoracic region and the lower extremities. In addition to vascular connections, a spinal-subarachnoid cerebrospinal fluid (CSF) compartment bridges intracranial and extracranial physiology allowing explict buffering of intracranial pressure fluctuations by the spinal theca. The model contains cerebrovascular autoregulation, regulation of systemic vascular pressures by the sympathetic nervous system, regulation of CSF production in the choroid plexus, a lymphatic system, colloid osmotic pressure effects, and realistic descriptions of cardiac output. To validate the model in situations involving normal physiology, the model's response to a realistic pulsatile cardiac output is examined. A well-known experimentally-derived intracranial pressure-volume relationship is recovered by using the model to simulate CSF infusion tests, and the effect on cerebral blood flow of a change in body position is also examined. Cardiac arrest and hemorrhagic shock are simulated to demonstrate the predictive capabilities of the model in pathological conditions.
Nishi, Erika E; Bergamaschi, Cássia T; Campos, Ruy R
2015-04-20
What is the topic of this review? This review describes the role of renal nerves as the key carrier of signals from the kidneys to the CNS and vice versa; the brain and kidneys communicate through this carrier to maintain homeostasis in the body. What advances does it highlight? Whether renal or autonomic dysfunction is the predominant contributor to systemic hypertension is still debated. In this review, we focus on the role of the renal nerves in a model of renovascular hypertension. The sympathetic nervous system influences the renal regulation of arterial pressure and body fluid composition. Anatomical and physiological evidence has shown that sympathetic nerves mediate changes in urinary sodium and water excretion by regulating the renal tubular water and sodium reabsorption throughout the nephron, changes in the renal blood flow and the glomerular filtration rate by regulating the constriction of renal vasculature, and changes in the activity of the renin-angiotensin system by regulating the renin release from juxtaglomerular cells. Additionally, renal sensory afferent fibres project to the autonomic central nuclei that regulate blood pressure. Hence, renal nerves play a key role in the crosstalk between the kidneys and the CNS to maintain homeostasis in the body. Therefore, the increased sympathetic nerve activity to the kidney and the renal afferent nerve activity to the CNS may contribute to the outcome of diseases, such as hypertension. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
Rindler, Tara N.; Lasko, Valerie M.; Nieman, Michelle L.; Okada, Motoi; Lorenz, John N.
2013-01-01
The α2-isoform of the Na,K-ATPase (α2) is the minor isoform of the Na,K-ATPase expressed in the cardiovascular system and is thought to play a critical role in the regulation of cardiovascular hemodynamics. However, the organ system/cell type expressing α2 that is required for this regulation has not been fully defined. The present study uses a heart-specific knockout of α2 to further define the tissue-specific role of α2 in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model using the Cre/loxP system to generate a tissue-specific knockout of α2 in the heart using β-myosin heavy chain Cre. We have achieved a 90% knockout of α2 expression in the heart of the knockout mice. Interestingly, the heart-specific knockout mice exhibit normal basal cardiac function and systolic blood pressure, and in addition, these mice develop ACTH-induced hypertension in response to ACTH treatment similar to control mice. Surprisingly, the heart-specific knockout mice display delayed onset of cardiac dysfunction compared with control mice in response to pressure overload induced by transverse aortic constriction; however, the heart-specific knockout mice deteriorated to control levels by 9 wk post-transverse aortic constriction. These results suggest that heart expression of α2 does not play a role in the regulation of basal cardiovascular function or blood pressure; however, heart expression of α2 plays a role in the hypertrophic response to pressure overload. This study further emphasizes that the tissue localization of α2 determines its unique roles in the regulation of cardiovascular function. PMID:23436327
Remotely operated high pressure valve protects test personnel
NASA Technical Reports Server (NTRS)
Howland, B. T.
1967-01-01
High pressure valve used in testing certain spacecraft systems is safely opened and closed by a remotely stationed operator. The valve is self-regulating in that if the incoming pressure drops below a desired value the valve will automatically close, warning the operator that the testing pressure has dropped to an undesired level.
Mechanical model for simulating the conditioning of air in the respiratory tract.
Bergonse Neto, Nelson; Von Bahten, Luiz Carlos; Moura, Luís Mauro; Coelho, Marlos de Souza; Stori Junior, Wilson de Souza; Bergonse, Gilberto da Fontoura Rey
2007-01-01
To create a mechanical model that could be regulated to simulate the conditioning of inspired and expired air with the same normal values of temperature, pressure, and relative humidity as those of the respiratory system of a healthy young man on mechanical ventilation. Using several types of materials, a mechanical device was built and regulated using normal values of vital capacity, tidal volume, maximal inspiratory pressure, positive end-expiratory pressure, and gas temperature in the system. The device was submitted to mechanical ventilation for a period of 29.8 min. The changes in the temperature of the air circulating in the system were recorded every two seconds. The statistical analysis of the data collected revealed that the device was approximately as efficient in the conditioning of air as is the respiratory system of a human being. By the study endpoint, we had developed a mechanical device capable of simulating the conditioning of air in the respiratory tract. The device mimics the conditions of temperature, pressure, and relative humidity seen in the respiratory system of healthy individuals.
Intraocular pressure reduction and regulation
NASA Technical Reports Server (NTRS)
Baehr, E. F.; Mcgannon, W. J.
1979-01-01
System designed to reduce intraocular pressure hydraulically to any level desired by physician over set time and in controlled manner has number of uses in ophthalmology. Device may be most immediately useful in treatment of glaucoma.
Gene delivery by direct injection (microinjection) using a controlled-flow system.
Dean, David A
2006-12-01
INTRODUCTIONThis protocol describes a method for constant-flow microinjection using the Pneumatic PicoPump (World Precision Instruments). This type of system is very simple and can be assembled on a relatively low budget. In this method, a constant flow of sample is delivered from the tip of the pipette, and the amount of sample injected into the cell is determined by how long the pipette remains in the cell. A typical system is composed of a pressure regulator that can be adjusted for two pressures (back pressure and injection pressure), a capillary holder, and a coarse and fine micromanipulator.
Numerical modeling of dynamics of heart rate and arterial pressure during passive orthostatic test
NASA Astrophysics Data System (ADS)
Ishbulatov, Yu. M.; Kiselev, A. R.; Karavaev, A. S.
2018-04-01
A model of human cardiovascular system is proposed to describe the main heart rhythm, influence of autonomous regulation on frequency and strength of heart contractions and resistance of arterial vessels; process of formation of arterial pressure during systolic and diastolic phases; influence of respiration; synchronization between loops of autonomous regulation. The proposed model is used to simulate the dynamics of heart rate and arterial pressure during passive transition from supine to upright position. Results of mathematical modeling are compared to original experimental data.
Internal voltage control of hydrogen-oxygen fuel cells: Feasibility study
NASA Technical Reports Server (NTRS)
Prokopius, P. R.
1975-01-01
An experimental study was conducted to assess the feasibility of internal voltage regulation of fuel cell systems. Two methods were tested. In one, reactant partial pressure was used as the voltage control parameter and in the other reactant total pressure was used for control. Both techniques were breadboarded and tested on a single alkaline-electrolyte fuel cell. Both methods were found to be possible forms of regulation, however, of the two the total pressure technique would be more efficient, simpler to apply and would provide better transient characteristics.
Ufnal, Marcin; Skrzypecki, Janusz
2014-04-01
Accumulating evidence suggests that blood borne hormones modulate brain mechanisms regulating blood pressure. This appears to be mediated by the circumventricular organs which are located in the walls of the brain ventricular system and lack the blood-brain barrier. Recent evidence shows that neurons of the circumventricular organs express receptors for the majority of cardiovascular hormones. Intracerebroventricular infusions of hormones and their antagonists is one approach to evaluate the influence of blood borne hormones on the neural mechanisms regulating arterial blood pressure. Interestingly, there is no clear correlation between peripheral and central effects of cardiovascular hormones. For example, angiotensin II increases blood pressure acting peripherally and centrally, whereas peripherally acting pressor catecholamines decrease blood pressure when infused intracerebroventricularly. The physiological role of such dual hemodynamic responses has not yet been clarified. In the paper we review studies on hemodynamic effects of catecholamines, neuropeptide Y, angiotensin II, aldosterone, natriuretic peptides, endothelins, histamine and bradykinin in the context of their role in a cross-talk between peripheral and brain mechanisms involved in the regulation of arterial blood pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Topaz, Moris
2012-05-01
Regulated negative pressure-assisted wound therapy (RNPT) should be regarded as a state-of-the-art technology in wound treatment and the most important physical, nonpharmaceutical, platform technology developed and applied for wound healing in the last two decades. RNPT systems maintain the treated wound's environment as a semi-closed, semi-isolated system applying external physical stimulations to the wound, leading to biological and biochemical effects, with the potential to substantially influence wound-host interactions, and when properly applied may enhance wound healing. RNPT is a simple, safe, and affordable tool that can be utilized in a wide range of acute and chronic conditions, with reduced need for complicated surgical procedures, and antibiotic treatment. This technology has been shown to be effective and safe, saving limbs and lives on a global scale. Regulated, oxygen-enriched negative pressure-assisted wound therapy (RO-NPT) is an innovative technology, whereby supplemental oxygen is concurrently administered with RNPT for their synergistic effect on treatment and prophylaxis of anaerobic wound infection and promotion of wound healing. Understanding the basic science, modes of operation and the associated risks of these technologies through their fundamental clinical mechanisms is the main objective of this review.
Mathematical Model of the Jet Engine Fuel System
NASA Astrophysics Data System (ADS)
Klimko, Marek
2015-05-01
The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.
Comparison of automatic control systems
NASA Technical Reports Server (NTRS)
Oppelt, W
1941-01-01
This report deals with a reciprocal comparison of an automatic pressure control, an automatic rpm control, an automatic temperature control, and an automatic directional control. It shows the difference between the "faultproof" regulator and the actual regulator which is subject to faults, and develops this difference as far as possible in a parallel manner with regard to the control systems under consideration. Such as analysis affords, particularly in its extension to the faults of the actual regulator, a deep insight into the mechanism of the regulator process.
[Pressure control in medical gas distribution systems].
Bourgain, J L; Benayoun, L; Baguenard, P; Haré, G; Puizillout, J M; Billard, V
1997-01-01
To assess whether the pressure gauges at the downstream part of pressure regulators are accurate enough to ensure that pressure in O2 pipeline is always higher than in Air pipeline and that pressure in the latter is higher than pressure in N2O pipeline. A pressure difference of at least 0.4 bar between two medical gas supply systems is recommended to avoid the reflow of either N2O or Air into the O2 pipeline, through a faulty mixer or proportioning device. Prospective technical comparative study. Readings of 32 Bourdon gauges were compared with data obtained with a calibrated reference transducer. Two sets of measurements were performed at a one month interval. Pressure differences between Bourdon gauges and reference transducer were 8% (0.28 bar) in average for a theoretical maximal error less than 2.5%. During the first set of measurements, Air pressure was higher than O2 pressure in one place and N2O pressure higher than Air pressure in another. After an increase in the O2 pipeline pressure and careful setting of pressure regulators, this problem was not observed at the second set of measurements. Actual accuracy of Bourdon gauges was not convenient enough to ensure that O2 pressure was always above Air pressure. Regular controls of these pressure gauges are therefore essential. Replacement of the faulty Bourdon gauges by more accurate transducers should be considered. As an alternative, the increase in pressure difference between O2 and Air pipelines to at least 0.6 bar is recommended.
Simulation Analysis of Computer-Controlled pressurization for Mixture Ratio Control
NASA Technical Reports Server (NTRS)
Alexander, Leslie A.; Bishop-Behel, Karen; Benfield, Michael P. J.; Kelley, Anthony; Woodcock, Gordon R.
2005-01-01
A procedural code (C++) simulation was developed to investigate potentials for mixture ratio control of pressure-fed spacecraft rocket propulsion systems by measuring propellant flows, tank liquid quantities, or both, and using feedback from these measurements to adjust propellant tank pressures to set the correct operating mixture ratio for minimum propellant residuals. The pressurization system eliminated mechanical regulators in favor of a computer-controlled, servo- driven throttling valve. We found that a quasi-steady state simulation (pressure and flow transients in the pressurization systems resulting from changes in flow control valve position are ignored) is adequate for this purpose. Monte-Carlo methods are used to obtain simulated statistics on propellant depletion. Mixture ratio control algorithms based on proportional-integral-differential (PID) controller methods were developed. These algorithms actually set target tank pressures; the tank pressures are controlled by another PID controller. Simulation indicates this approach can provide reductions in residual propellants.
NASA Technical Reports Server (NTRS)
Fuller, C. A.
1985-01-01
The influence of chronic centrifugation upon the homestatic regulation of the circadian timekeeping system was examined. The interactions of body temperature regulation and the behavioral state of arousal were studied by evaluating the influence of cephalic fluid shifts induced by lower body positive air pressure (LBPP), upon these systems. The small diurnal squirrel monkey (Saimiri sciureus) was used as the non-human primate model. Results show that the circadian timekeeping system of these primates is functional in the hyperdynamic environment, however, some of its components appear to be regulated at different homeostatic levels. The LBPP resulted in an approximate 0.7 C decrease in DBT (p 0.01). However, although on video some animals appeared drowsy during LBPP, sleep recording revealed no significant changes in state of arousal. Thus, the physiological mechanisms underlying this lowering of body temperature can be independent of the arousal state.
Liu, Xiaoping; El-Mahdy, Mohamed A.; Boslett, James; Varadharaj, Saradhadevi; Hemann, Craig; Abdelghany, Tamer M.; Ismail, Raed S.; Little, Sean C.; Zhou, Danlei; Thuy, Le Thi Thanh; Kawada, Norifumi; Zweier, Jay L.
2017-01-01
The identity of the specific nitric oxide dioxygenase (NOD) that serves as the main in vivo regulator of O2-dependent NO degradation in smooth muscle remains elusive. Cytoglobin (Cygb) is a recently discovered globin expressed in fibroblasts and smooth muscle cells with unknown function. Cygb, coupled with a cellular reducing system, efficiently regulates the rate of NO consumption by metabolizing NO in an O2-dependent manner with decreased NO consumption in physiological hypoxia. Here we show that Cygb is a major regulator of NO degradation and cardiovascular tone. Knockout of Cygb greatly prolongs NO decay, increases vascular relaxation, and lowers blood pressure and systemic vascular resistance. We further demonstrate that downregulation of Cygb prevents angiotensin-mediated hypertension. Thus, Cygb has a critical role in the regulation of vascular tone and disease. We suggest that modulation of the expression and NOD activity of Cygb represents a strategy for the treatment of cardiovascular disease. PMID:28393874
NASA Astrophysics Data System (ADS)
Liu, Xiaoping; El-Mahdy, Mohamed A.; Boslett, James; Varadharaj, Saradhadevi; Hemann, Craig; Abdelghany, Tamer M.; Ismail, Raed S.; Little, Sean C.; Zhou, Danlei; Thuy, Le Thi Thanh; Kawada, Norifumi; Zweier, Jay L.
2017-04-01
The identity of the specific nitric oxide dioxygenase (NOD) that serves as the main in vivo regulator of O2-dependent NO degradation in smooth muscle remains elusive. Cytoglobin (Cygb) is a recently discovered globin expressed in fibroblasts and smooth muscle cells with unknown function. Cygb, coupled with a cellular reducing system, efficiently regulates the rate of NO consumption by metabolizing NO in an O2-dependent manner with decreased NO consumption in physiological hypoxia. Here we show that Cygb is a major regulator of NO degradation and cardiovascular tone. Knockout of Cygb greatly prolongs NO decay, increases vascular relaxation, and lowers blood pressure and systemic vascular resistance. We further demonstrate that downregulation of Cygb prevents angiotensin-mediated hypertension. Thus, Cygb has a critical role in the regulation of vascular tone and disease. We suggest that modulation of the expression and NOD activity of Cygb represents a strategy for the treatment of cardiovascular disease.
Algorithm of dynamic regulation of a system of duct, for a high accuracy climatic system
NASA Astrophysics Data System (ADS)
Arbatskiy, A. A.; Afonina, G. N.; Glazov, V. S.
2017-11-01
Currently, major part of climatic system, are stationary in projected mode only. At the same time, many modern industrial sites, require constant or periodical changes in technological process. That is 80% of the time, the industrial site is not require ventilation system in projected mode and high precision of climatic parameters must maintain. While that not constantly is in use for climatic systems, which use in parallel for different rooms, we will be have a problem for balance of duct system. For this problem, was created the algorithm for quantity regulation, with minimal changes. Dynamic duct system: Developed of parallel control system of air balance, with high precision of climatic parameters. The Algorithm provide a permanent pressure in main duct, in different a flow of air. Therefore, the ending devises air flow have only one parameter for regulation - flaps open area. Precision of regulation increase and the climatic system provide high precision for temperature and humidity (0,5C for temperature, 5% for relative humidity). Result: The research has been made in CFD-system - PHOENICS. Results for velocity of air in duct, for pressure of air in duct for different operation mode, has been obtained. Equation for air valves positions, with different parameters for climate in room’s, has been obtained. Energy saving potential for dynamic duct system, for different types of a rooms, has been calculated.
Cassinotti, Luis R; Guil, María J; Schöller, Mercedes I; Navarro, Mónica P; Bianciotti, Liliana G; Vatta, Marcelo S
2018-02-27
Overactivity of the sympathetic nervous system and central endothelins (ETs) are involved in the development of hypertension. Besides the well-known brain structures involved in the regulation of blood pressure like the hypothalamus or locus coeruleus, evidence suggests that the olfactory bulb (OB) also modulates cardiovascular function. In the present study, we evaluated the interaction between the endothelinergic and catecholaminergic systems in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Following brain ET receptor type A (ET A ) blockade by BQ610 (selective antagonist), transcriptional, traductional, and post-traductional changes in tyrosine hydroxylase (TH) were assessed in the OB of normotensive and DOCA-salt hypertensive rats. Time course variations in systolic blood pressure and heart rate were also registered. Results showed that ET A blockade dose dependently reduced blood pressure in hypertensive rats, but it did not change heart rate. It also prevented the increase in TH activity and expression (mRNA and protein) in the right OB of hypertensive animals. However, ET A blockade did not affect hemodynamics or TH in normotensive animals. Present results support that brain ET A are not involved in blood pressure regulation in normal rats, but they significantly contribute to chronic blood pressure elevation in hypertensive animals. Changes in TH activity and expression were observed in the right but not in the left OB, supporting functional asymmetry, in line with previous studies regarding cardiovascular regulation. Present findings provide further evidence on the role of ETs in the regulation of catecholaminergic activity and the contribution of the right OB to DOCA-salt hypertension.
Reed Valve Regulates Welding Back-Purge Pressure
NASA Technical Reports Server (NTRS)
Coby, J. Ben, Jr.; Weeks, Jack L.
1991-01-01
Simple modification yields welds of better quality. Reed valve halves fluctuations in pressure in back-purge chamber attached to workpiece undergoing keyhole plasma arc welding. Identical to one used in fuel system of two-cycle gasoline engine. Backbead smoother, and weld penetrates more uniformly.
Nobrega, Antonio C. L.; O'Leary, Donal; Silva, Bruno Moreira; Piepoli, Massimo F.; Crisafulli, Antonio
2014-01-01
During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed. PMID:24818143
Fernandez de Canete, J; Luque, J; Barbancho, J; Munoz, V
2014-04-01
A mathematical model that provides an overall description of both the short- and long-term mechanisms of arterial pressure regulation is presented. Short-term control is exerted through the baroreceptor reflex while renal elimination plays a role in long-term control. Both mechanisms operate in an integrated way over the compartmental model of the cardiovascular system. The whole system was modelled in MODELICA, which uses a hierarchical object-oriented modelling strategy, under the DYMOLA simulation environment. The performance of the controlled system was analysed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data, demonstrating the effectiveness of both regulation mechanisms under physiological and pathological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pneumatic load compensating or controlling system
NASA Technical Reports Server (NTRS)
Rogers, J. R. (Inventor)
1975-01-01
A pneumatic load compensating or controlling system for restraining a load with a predetermined force or applying a predetermined force to the load is described; it includes a source of pressurized air, a one-way pneumatic actuator operatively connected to a load, and a fluid conduit fluidically connecting the actuator with the source of pressurized air. The actuator is of the piston and cylinder type, and the end of the fluid conduit is connected to the upper or lower portion of the cylinder whereby the actuator alternatively and selectively restrains the load with a predetermined force or apply a predetermined force to the load. Pressure regulators are included within the system for variably selectively adjusting the pressurized fluid to predetermined values as desired or required; a pressure amplifier is included within the system for multiplying the pressurized values so as to achieve greater load forces. An accumulator is incorporated within the system as a failsafe operating mechanism, and visual and aural alarm devices, operatively associated with pressure detecting apparatus, readily indicate the proper or improper functioning of the system.
Mass Transport: Circulatory System with Emphasis on Nonendothermic Species.
Crossley, Dane A; Burggren, Warren W; Reiber, Carl L; Altimiras, Jordi; Rodnick, Kenneth J
2016-12-06
Mass transport can be generally defined as movement of material matter. The circulatory system then is a biological example given its role in the movement in transporting gases, nutrients, wastes, and chemical signals. Comparative physiology has a long history of providing new insights and advancing our understanding of circulatory mass transport across a wide array of circulatory systems. Here we focus on circulatory function of nonmodel species. Invertebrates possess diverse convection systems; that at the most complex generate pressures and perform at a level comparable to vertebrates. Many invertebrates actively modulate cardiovascular function using neuronal, neurohormonal, and skeletal muscle activity. In vertebrates, our understanding of cardiac morphology, cardiomyocyte function, and contractile protein regulation by Ca2+ highlights a high degree of conservation, but differences between species exist and are coupled to variable environments and body temperatures. Key regulators of vertebrate cardiac function and systemic blood pressure include the autonomic nervous system, hormones, and ventricular filling. Further chemical factors regulating cardiovascular function include adenosine, natriuretic peptides, arginine vasotocin, endothelin 1, bradykinin, histamine, nitric oxide, and hydrogen sulfide, to name but a few. Diverse vascular morphologies and the regulation of blood flow in the coronary and cerebral circulations are also apparent in nonmammalian species. Dynamic adjustments of cardiovascular function are associated with exercise on land, flying at high altitude, prolonged dives by marine mammals, and unique morphology, such as the giraffe. Future studies should address limits of gas exchange and convective transport, the evolution of high arterial pressure across diverse taxa, and the importance of the cardiovascular system adaptations to extreme environments. © 2017 American Physiological Society. Compr Physiol 7:17-66, 2017. Copyright © 2017 John Wiley & Sons, Inc.
Platania, Chiara Bianca Maria; Leggio, Gian Marco; Drago, Filippo; Salomone, Salvatore; Bucolo, Claudio
2013-11-01
Elevated intraocular pressure (IOP) is the main recognized risk factor of glaucoma. To investigate the contribution of dopaminergic and serotonergic systems in IOP regulation, we used cabergoline, a mixed dopamine and serotonin agonist, in C57BL/6J WT and dopamine D₃ receptor knock-out (D₃R⁻/⁻) mice with normal eye pressure or steroid-induced ocular hypertension. Furthermore, we studied the structural basis of the cabergoline-mediated activation of the dopaminergic and serotonergic systems by molecular modeling. Topical application of cabergoline, significantly decreased, in a dose-dependent manner, the intraocular pressure in WT mice, both in an ocular normotensive group (-9, -5 and -2 mmHg with 5%, 1%, and 0.1%, respectively) and an ocular hypertensive group, with a prolonged effect in this latter group. No change of intraocular pressure was observed after topical application of cabergoline in D₃R⁻/⁻ mice. We modeled and optimized, with molecular dynamics, structures of hD₃, h5HT(1A) and h5HT(2A-C) receptors; thereafter we carried out molecular docking of cabergoline. Docking revealed that binding of cabergoline into D₃ and 5HT(1A) receptors is associated with a better desolvation energy in comparison to 5HT(2A-C) binding. In conclusion, the present study support the hypothesis that dopaminergic system is pivotal to regulate IOP and that D₃R represents an intriguing target in the treatment of glaucoma. Furthermore, the structure-based computational approach adopted in this study is able to build and refine structure models of homologous dopaminergic and serotonergic receptors that may be of interest for structure-based drug discovery of ligands, with dopaminergic selectivity or with multi-pharmacological profile, potentially useful to treat optic neuropathies. Copyright © 2013 Elsevier Inc. All rights reserved.
System Regulates the Water Contents of Fuel-Cell Streams
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Lazaroff, Scott
2005-01-01
An assembly of devices provides for both humidification of the reactant gas streams of a fuel cell and removal of the product water (the water generated by operation of the fuel cell). The assembly includes externally-sensing forward-pressure regulators that supply reactant gases (fuel and oxygen) at variable pressures to ejector reactant pumps. The ejector supply pressures depend on the consumption flows. The ejectors develop differential pressures approximately proportional to the consumption flow rates at constant system pressure and with constant flow restriction between the mixer-outlet and suction ports of the ejectors. For removal of product water from the circulating oxygen stream, the assembly includes a water/gas separator that contains hydrophobic and hydrophilic membranes. The water separator imposes an approximately constant flow restriction, regardless of the quality of the two-phase flow that enters it from the fuel cell. The gas leaving the water separator is nearly 100 percent humid. This gas is returned to the inlet of the fuel cell along with a quantity of dry incoming oxygen, via the oxygen ejector, thereby providing some humidification.
West, Phillip B.; Haefner, Daryl
2004-08-17
Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.
West, Phillip B.; Haefner, Daryl
2005-12-13
Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.
Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.
2013-01-01
Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660
Space shuttle OMS helium regulator design and development
NASA Technical Reports Server (NTRS)
Wichmann, H.; Kelly, T. L.; Lynch, R.
1974-01-01
Analysis, design, fabrication and design verification testing was conducted on the technological feasiblity of the helium pressurization regulator for the space shuttle orbital maneuvering system application. A prototype regulator was fabricated which was a single-stage design featuring the most reliable and lowest cost concept. A tradeoff study on regulator concepts indicated that a single-stage regulator with a lever arm between the valve and the actuator section would offer significant weight savings. Damping concepts were tested to determine the amount of damping required to restrict actuator travel during vibration. Component design parameters such as spring rates, effective area, contamination cutting, and damping were determined by test prior to regulator final assembly. The unit was subjected to performance testing at widely ranging flow rates, temperatures, inlet pressures, and random vibration levels. A test plan for propellant compatibility and extended life tests is included.
Braun, C; Lang, C; Hocher, B; Gretz, N; van der Woude, F J; Rohmeiss, P
1997-01-01
The renal endothelin (ET) system has been claimed to play an important role in the regulation of renal blood flow (RBF) and sodium excretion in primary hypertension. The aim of the present study was to investigate the contribution of the endogenous ET system in the autoregulation of total RBF, cortical blood flow (CBF), pressure-dependent plasma renin activity (PRA) and pressure natriuresis in spontaneously hypertensive rats (SHR) by means of the combined (A/B) ET-receptor antagonist, bosentan. In anesthetized rats, RBF was measured by transit-time flow probes and CBF by laser flow probes. During the experiments, the rats received an intrarenal infusion of either bosentan (1 mg/kg/h) or vehicle. Renal perfusion pressure (RPP) was lowered in pressure steps of 5 mm Hg with a servo-controlled electropneumatic device via an inflatable suprarenal cuff. Bosentan had no effect on resting RPP, CBF, PRA and renal sodium excretion, whereas RBF was lowered by 30% (p < 0.05). Furthermore after bosentan the rats revealed a complete loss of RBF autoregulation. In contrast no changes in autoregulation of CBF, pressure-dependent PRA and pressure natriuresis were observed. Our findings demonstrate a significant impairment in total RBF autoregulatory ability during renal ET-receptor blockade which is not confined to the cortical vessels. These data suggest that the renal ET system plays an important role in the dynamic regulation of renal blood flow in SHR.
Apparatus and method to inject a reductant into an exhaust gas feedstream
Viola, Michael B [Macomb Township, MI
2009-09-22
An exhaust aftertreatment system for an internal combustion engine is provided including an apparatus and method to inject a reductant into the exhaust gas feedstream. Included is a fuel metering device adapted to inject reductant into the exhaust gas feedstream and a controllable pressure regulating device. A control module is operatively connected to the reductant metering device and the controllable pressure regulating device, and, adapted to effect flow of reductant into the exhaust gas feedstream over a controllable flow range.
Putting Safety First in the Sky
NASA Technical Reports Server (NTRS)
2003-01-01
As a result of technology developed at NASA s Kennedy Space Center, pilots now have a hand-held personal safety device to warn them of potentially dangerous or deteriorating cabin pressure altitude conditions before hypoxia becomes a threat. The Personal Cabin Pressure Altitude Monitor and Warning System monitors cabin pressure to determine when supplemental oxygen should be used according to Federal Aviation Regulations. The device benefits both pressurized and nonpressurized aircraft operations - warning pressurized aircraft when the required safe cabin pressure altitude is compromised, and reminding nonpressurized aircraft when supplemental oxygen is needed.
Yano, Masamichi; Akazawa, Hiroshi; Oka, Toru; Yabumoto, Chizuru; Kudo-Sakamoto, Yoko; Kamo, Takehiro; Shimizu, Yu; Yagi, Hiroki; Naito, Atsuhiko T.; Lee, Jong-Kook; Suzuki, Jun-ichi; Sakata, Yasushi; Komuro, Issei
2015-01-01
Nicotinamide phosphoribosyltransferase (Nampt) catalyzes the rate-limiting step in the salvage pathway for nicotinamide adenine dinucleotide (NAD+) biosynthesis, and thereby regulates the deacetylase activity of sirtuins. Here we show accommodative regulation of myocardial NAD+ by monocyte-derived extracellular Nampt (eNampt), which is essential for hemodynamic compensation to pressure overload. Although intracellular Nampt (iNampt) expression was decreased in pressure-overloaded hearts, myocardial NAD+ concentration and Sirt1 activity were preserved. In contrast, iNampt was up-regulated in spleen and monocytes, and circulating eNampt protein and nicotinamide mononucleotide (NMN), a key precursor of NAD+, were significantly increased. Pharmacological inhibition of Nampt by FK866 or depletion of monocytes/macrophages by clodronate liposomes disrupted the homeostatic mechanism of myocardial NAD+ levels and NAD+-dependent Sirt1 activity, leading to susceptibility to cardiomyocyte apoptosis and cardiac decompensation in pressure-overloaded mice. These biochemical and hemodynamic defects were prevented by systemic administration of NMN. Our studies uncover a crucial role of monocyte-derived eNampt in myocardial adaptation to pressure overload, and highlight a potential intervention controlling myocardial NAD+ against heart failure. PMID:26522369
Development of a cuffless blood pressure measurement system.
Shyu, Liang-Yu; Kao, Yao-Lin; Tsai, Wen-Ya; Hu, Weichih
2012-01-01
This study constructs a novel blood pressure measurement device without the air cuff to overcome the problem of discomfort and portability. The proposed device measures the blood pressure through a mechanism that is made of silicon rubber and pressure transducer. The system uses a microcontroller to control the measurement procedure and to perform the necessary computation. To verify the feasibility of the constructed device, ten young volunteers were recruited. Ten blood pressure readings were obtained using the new system and were compared with ten blood pressure readings from bedside monitor (Spacelabs Medical, model 90367). The results indicated that, when all the readings were included, the mean pressure, systolic pressure and diastolic pressure from the new system were all higher than those from bedside monitor. The correlation coefficients between these two were 0.15, 0.18 and 0.29, for mean, systolic and diastolic pressures, respectively. After excluding irregular apparatus utilization, the correlation coefficient increased to 0.71, 0.60 and 0.41 for diastolic pressure, mean pressure and systolic pressure, respectively. We can conclude from these results that the accuracy can be improved effectively by defining the user regulation more precisely. The above mentioned irregular apparatus utilization factors can be identified and eliminated by the microprocessor to provide a reliable blood pressure measurement in practical applications in the future.
Ehret, Georg B; Ferreira, Teresa; Chasman, Daniel I; Jackson, Anne U; Schmidt, Ellen M; Johnson, Toby; Thorleifsson, Gudmar; Luan, Jian'an; Donnelly, Lousie A; Kanoni, Stavroula; Petersen, Ann-Kristin; Pihur, Vasyl; Strawbridge, Rona J; Shungin, Dmitry; Hughes, Maria F; Meirelles, Osorio; Kaakinen, Marika; Bouatia-Naji, Nabila; Kristiansson, Kati; Shah, Sonia; Kleber, Marcus E; Guo, Xiuqing; Lyytikäinen, Leo-Pekka; Fava, Cristiano; Eriksson, Niclas; Nolte, Ilja M; Magnusson, Patrik K; Salfati, Elias L; Rallidis, Loukianos S; Theusch, Elizabeth; Smith, Andrew J P; Folkersen, Lasse; Witkowska, Kate; Pers, Tune H; Joehanes, Roby; Kim, Stuart K; Lataniotis, Lazaros; Jansen, Rick; Johnson, Andrew D; Warren, Helen; Kim, Young Jin; Zhao, Wei; Wu, Ying; Tayo, Bamidele O; Bochud, Murielle; Absher, Devin; Adair, Linda S; Amin, Najaf; Arking, Dan E; Axelsson, Tomas; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Barnes, Michael R; Barroso, Inês; Bevan, Stephen; Bis, Joshua C; Bjornsdottir, Gyda; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Bornstein, Stefan R; Brown, Morris J; Burnier, Michel; Cabrera, Claudia P; Chambers, John C; Chang, I-Shou; Cheng, Ching-Yu; Chines, Peter S; Chung, Ren-Hua; Collins, Francis S; Connell, John M; Döring, Angela; Dallongeville, Jean; Danesh, John; de Faire, Ulf; Delgado, Graciela; Dominiczak, Anna F; Doney, Alex S F; Drenos, Fotios; Edkins, Sarah; Eicher, John D; Elosua, Roberto; Enroth, Stefan; Erdmann, Jeanette; Eriksson, Per; Esko, Tonu; Evangelou, Evangelos; Evans, Alun; Fall, Tove; Farrall, Martin; Felix, Janine F; Ferrières, Jean; Ferrucci, Luigi; Fornage, Myriam; Forrester, Terrence; Franceschini, Nora; Duran, Oscar H Franco; Franco-Cereceda, Anders; Fraser, Ross M; Ganesh, Santhi K; Gao, He; Gertow, Karl; Gianfagna, Francesco; Gigante, Bruna; Giulianini, Franco; Goel, Anuj; Goodall, Alison H; Goodarzi, Mark O; Gorski, Mathias; Gräßler, Jürgen; Groves, Christopher; Gudnason, Vilmundur; Gyllensten, Ulf; Hallmans, Göran; Hartikainen, Anna-Liisa; Hassinen, Maija; Havulinna, Aki S; Hayward, Caroline; Hercberg, Serge; Herzig, Karl-Heinz; Hicks, Andrew A; Hingorani, Aroon D; Hirschhorn, Joel N; Hofman, Albert; Holmen, Jostein; Holmen, Oddgeir Lingaas; Hottenga, Jouke-Jan; Howard, Phil; Hsiung, Chao A; Hunt, Steven C; Ikram, M Arfan; Illig, Thomas; Iribarren, Carlos; Jensen, Richard A; Kähönen, Mika; Kang, Hyun; Kathiresan, Sekar; Keating, Brendan J; Khaw, Kay-Tee; Kim, Yun Kyoung; Kim, Eric; Kivimaki, Mika; Klopp, Norman; Kolovou, Genovefa; Komulainen, Pirjo; Kooner, Jaspal S; Kosova, Gulum; Krauss, Ronald M; Kuh, Diana; Kutalik, Zoltan; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A; Lee, Nanette R; Lee, I-Te; Lee, Wen-Jane; Levy, Daniel; Li, Xiaohui; Liang, Kae-Woei; Lin, Honghuang; Lin, Li; Lindström, Jaana; Lobbens, Stéphane; Männistö, Satu; Müller, Gabriele; Müller-Nurasyid, Martina; Mach, François; Markus, Hugh S; Marouli, Eirini; McCarthy, Mark I; McKenzie, Colin A; Meneton, Pierre; Menni, Cristina; Metspalu, Andres; Mijatovic, Vladan; Moilanen, Leena; Montasser, May E; Morris, Andrew D; Morrison, Alanna C; Mulas, Antonella; Nagaraja, Ramaiah; Narisu, Narisu; Nikus, Kjell; O'Donnell, Christopher J; O'Reilly, Paul F; Ong, Ken K; Paccaud, Fred; Palmer, Cameron D; Parsa, Afshin; Pedersen, Nancy L; Penninx, Brenda W; Perola, Markus; Peters, Annette; Poulter, Neil; Pramstaller, Peter P; Psaty, Bruce M; Quertermous, Thomas; Rao, Dabeeru C; Rasheed, Asif; Rayner, N William N W R; Renström, Frida; Rettig, Rainer; Rice, Kenneth M; Roberts, Robert; Rose, Lynda M; Rossouw, Jacques; Samani, Nilesh J; Sanna, Serena; Saramies, Jouko; Schunkert, Heribert; Sebert, Sylvain; Sheu, Wayne H-H; Shin, Young-Ah; Sim, Xueling; Smit, Johannes H; Smith, Albert V; Sosa, Maria X; Spector, Tim D; Stančáková, Alena; Stanton, Alice; Stirrups, Kathleen E; Stringham, Heather M; Sundstrom, Johan; Swift, Amy J; Syvänen, Ann-Christine; Tai, E-Shyong; Tanaka, Toshiko; Tarasov, Kirill V; Teumer, Alexander; Thorsteinsdottir, Unnur; Tobin, Martin D; Tremoli, Elena; Uitterlinden, Andre G; Uusitupa, Matti; Vaez, Ahmad; Vaidya, Dhananjay; van Duijn, Cornelia M; van Iperen, Erik P A; Vasan, Ramachandran S; Verwoert, Germaine C; Virtamo, Jarmo; Vitart, Veronique; Voight, Benjamin F; Vollenweider, Peter; Wagner, Aline; Wain, Louise V; Wareham, Nicholas J; Watkins, Hugh; Weder, Alan B; Westra, Harm-Jan; Wilks, Rainford; Wilsgaard, Tom; Wilson, James F; Wong, Tien Y; Yang, Tsun-Po; Yao, Jie; Yengo, Loic; Zhang, Weihua; Zhao, Jing Hua; Zhu, Xiaofeng; Bovet, Pascal; Cooper, Richard S; Mohlke, Karen L; Saleheen, Danish; Lee, Jong-Young; Elliott, Paul; Gierman, Hinco J; Willer, Cristen J; Franke, Lude; Hovingh, G Kees; Taylor, Kent D; Dedoussis, George; Sever, Peter; Wong, Andrew; Lind, Lars; Assimes, Themistocles L; Njølstad, Inger; Schwarz, Peter Eh; Langenberg, Claudia; Snieder, Harold; Caulfield, Mark J; Melander, Olle; Laakso, Markku; Saltevo, Juha; Rauramaa, Rainer; Tuomilehto, Jaakko; Ingelsson, Erik; Lehtimäki, Terho; Hveem, Kristian; Palmas, Walter; März, Winfried; Kumari, Meena; Salomaa, Veikko; Chen, Yii-Der I; Rotter, Jerome I; Froguel, Philippe; Jarvelin, Marjo-Riitta; Lakatta, Edward G; Kuulasmaa, Kari; Franks, Paul W; Hamsten, Anders; Wichmann, H-Erich; Palmer, Colin N A; Stefansson, Kari; Ridker, Paul M; Loos, Ruth J F; Chakravarti, Aravinda; Deloukas, Panos; Morris, Andrew P; Newton-Cheh, Christopher; Munroe, Patricia B
2016-10-01
To dissect the genetic architecture of blood pressure and assess effects on target organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry, and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure-associated loci, of which 17 were new; 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target organ damage in multiple tissues but with minor effects in the kidney. Our findings expand current knowledge of blood pressure-related pathways and highlight tissues beyond the classical renal system in blood pressure regulation.
Chasman, Daniel I.; Jackson, Anne U.; Schmidt, Ellen M.; Johnson, Toby; Thorleifsson, Gudmar; Luan, Jian'an; Donnelly, Lousie A.; Kanoni, Stavroula; Petersen, Ann-Kristin; Pihur, Vasyl; Strawbridge, Rona J.; Shungin, Dmitry; Hughes, Maria F.; Meirelles, Osorio; Kaakinen, Marika; Bouatia-Naji, Nabila; Kristiansson, Kati; Shah, Sonia; Kleber, Marcus E.; Guo, Xiuqing; Lyytikäinen, Leo-Pekka; Fava, Cristiano; Eriksson, Niclas; Nolte, Ilja M.; Magnusson, Patrik K.; Salfati, Elias L.; Rallidis, Loukianos S.; Theusch, Elizabeth; Smith, Andrew J.P.; Folkersen, Lasse; Witkowska, Kate; Pers, Tune H.; Joehanes, Roby; Kim, Stuart K.; Lataniotis, Lazaros; Jansen, Rick; Johnson, Andrew D.; Warren, Helen; Kim, Young Jin; Zhao, Wei; Wu, Ying; Tayo, Bamidele O.; Bochud, Murielle; Absher, Devin; Adair, Linda S.; Amin, Najaf; Arking, Dan E.; Axelsson, Tomas; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Barnes, Michael R.; Barroso, Inês; Bevan, Stephen; Bis, Joshua C.; Bjornsdottir, Gyda; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Bornstein, Stefan R.; Brown, Morris J.; Burnier, Michel; Cabrera, Claudia P.; Chambers, John C.; Chang, I-Shou; Cheng, Ching-Yu; Chines, Peter S.; Chung, Ren-Hua; Collins, Francis S.; Connell, John M.; Döring, Angela; Dallongeville, Jean; Danesh, John; de Faire, Ulf; Delgado, Graciela; Dominiczak, Anna F.; Doney, Alex S.F.; Drenos, Fotios; Edkins, Sarah; Eicher, John D.; Elosua, Roberto; Enroth, Stefan; Erdmann, Jeanette; Eriksson, Per; Esko, Tonu; Evangelou, Evangelos; Evans, Alun; Fall, Tove; Farrall, Martin; Felix, Janine F.; Ferrières, Jean; Ferrucci, Luigi; Fornage, Myriam; Forrester, Terrence; Franceschini, Nora; Duran, Oscar H. Franco; Franco-Cereceda, Anders; Fraser, Ross M.; Ganesh, Santhi K.; Gao, He; Gertow, Karl; Gianfagna, Francesco; Gigante, Bruna; Giulianini, Franco; Goel, Anuj; Goodall, Alison H.; Goodarzi, Mark O.; Gorski, Mathias; Gräßler, Jürgen; Groves, Christopher; Gudnason, Vilmundur; Gyllensten, Ulf; Hallmans, Göran; Hartikainen, Anna-Liisa; Hassinen, Maija; Havulinna, Aki S.; Hayward, Caroline; Hercberg, Serge; Herzig, Karl-Heinz; Hicks, Andrew A.; Hingorani, Aroon D.; Hirschhorn, Joel N.; Hofman, Albert; Holmen, Jostein; Holmen, Oddgeir Lingaas; Hottenga, Jouke-Jan; Howard, Phil; Hsiung, Chao A.; Hunt, Steven C.; Ikram, M. Arfan; Illig, Thomas; Iribarren, Carlos; Jensen, Richard A.; Kähönen, Mika; Kang, Hyun; Kathiresan, Sekar; Keating, Brendan J.; Khaw, Kay-Tee; Kim, Yun Kyoung; Kim, Eric; Kivimaki, Mika; Klopp, Norman; Kolovou, Genovefa; Komulainen, Pirjo; Kooner, Jaspal S.; Kosova, Gulum; Krauss, Ronald M.; Kuh, Diana; Kutalik, Zoltan; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A; Lee, Nanette R.; Lee, I-Te; Lee, Wen-Jane; Levy, Daniel; Li, Xiaohui; Liang, Kae-Woei; Lin, Honghuang; Lin, Li; Lindström, Jaana; Lobbens, Stéphane; Männistö, Satu; Müller, Gabriele; Müller-Nurasyid, Martina; Mach, François; Markus, Hugh S.; Marouli, Eirini; McCarthy, Mark I.; McKenzie, Colin A.; Meneton, Pierre; Menni, Cristina; Metspalu, Andres; Mijatovic, Vladan; Moilanen, Leena; Montasser, May E.; Morris, Andrew D.; Morrison, Alanna C.; Mulas, Antonella; Nagaraja, Ramaiah; Narisu, Narisu; Nikus, Kjell; O'Donnell, Christopher J.; O'Reilly, Paul F.; Ong, Ken K.; Paccaud, Fred; Palmer, Cameron D.; Parsa, Afshin; Pedersen, Nancy L.; Penninx, Brenda W.; Perola, Markus; Peters, Annette; Poulter, Neil; Pramstaller, Peter P.; Psaty, Bruce M.; Quertermous, Thomas; Rao, Dabeeru C.; Rasheed, Asif; Rayner, N William N.W.R.; Renström, Frida; Rettig, Rainer; Rice, Kenneth M.; Roberts, Robert; Rose, Lynda M.; Rossouw, Jacques; Samani, Nilesh J.; Sanna, Serena; Saramies, Jouko; Schunkert, Heribert; Sebert, Sylvain; Sheu, Wayne H.-H.; Shin, Young-Ah; Sim, Xueling; Smit, Johannes H.; Smith, Albert V.; Sosa, Maria X.; Spector, Tim D.; Stančáková, Alena; Stanton, Alice; Stirrups, Kathleen E.; Stringham, Heather M.; Sundstrom, Johan; Swift, Amy J.; Syvänen, Ann-Christine; Tai, E-Shyong; Tanaka, Toshiko; Tarasov, Kirill V.; Teumer, Alexander; Thorsteinsdottir, Unnur; Tobin, Martin D.; Tremoli, Elena; Uitterlinden, Andre G.; Uusitupa, Matti; Vaez, Ahmad; Vaidya, Dhananjay; van Duijn, Cornelia M.; van Iperen, Erik P.A.; Vasan, Ramachandran S.; Verwoert, Germaine C.; Virtamo, Jarmo; Vitart, Veronique; Voight, Benjamin F.; Vollenweider, Peter; Wagner, Aline; Wain, Louise V.; Wareham, Nicholas J.; Watkins, Hugh; Weder, Alan B.; Westra, Harm-Jan; Wilks, Rainford; Wilsgaard, Tom; Wilson, James F.; Wong, Tien Y.; Yang, Tsun-Po; Yao, Jie; Yengo, Loic; Zhang, Weihua; Zhao, Jing Hua; Zhu, Xiaofeng; Bovet, Pascal; Cooper, Richard S.; Mohlke, Karen L.; Saleheen, Danish; Lee, Jong-Young; Elliott, Paul; Gierman, Hinco J.; Willer, Cristen J.; Franke, Lude; Hovingh, G Kees; Taylor, Kent D.; Dedoussis, George; Sever, Peter; Wong, Andrew; Lind, Lars; Assimes, Themistocles L.; Njølstad, Inger; Schwarz, Peter EH.; Langenberg, Claudia; Snieder, Harold; Caulfield, Mark J.; Melander, Olle; Laakso, Markku; Saltevo, Juha; Rauramaa, Rainer; Tuomilehto, Jaakko; Ingelsson, Erik; Lehtimäki, Terho; Hveem, Kristian; Palmas, Walter; März, Winfried; Kumari, Meena; Salomaa, Veikko; Chen, Yii-Der I.; Rotter, Jerome I.; Froguel, Philippe; Jarvelin, Marjo-Riitta; Lakatta, Edward G.; Kuulasmaa, Kari; Franks, Paul W.; Hamsten, Anders; Wichmann, H.-Erich; Palmer, Colin N.A.; Stefansson, Kari; Ridker, Paul M; Loos, Ruth J.F.; Chakravarti, Aravinda; Deloukas, Panos; Morris, Andrew P.; Newton-Cheh, Christopher; Munroe, Patricia B.
2016-01-01
To dissect the genetic architecture of blood pressure and assess effects on target-organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure loci, of which 17 were novel and 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target-organ damage in multiple tissues, with minor effects in the kidney. Our findings expand current knowledge of blood pressure pathways and highlight tissues beyond the classic renal system in blood pressure regulation. PMID:27618452
Controlling Gas-Flow Mass Ratios
NASA Technical Reports Server (NTRS)
Morris, Brian G.
1990-01-01
Proposed system automatically controls proportions of gases flowing in supply lines. Conceived for control of oxidizer-to-fuel ratio in new gaseous-propellant rocket engines. Gas-flow control system measures temperatures and pressures at various points. From data, calculates control voltages for electronic pressure regulators for oxygen and hydrogen. System includes commercially available components. Applicable to control of mass ratios in such gaseous industrial processes as chemical-vapor depostion of semiconductor materials and in automotive engines operating on compressed natural gas.
Blood-Pressure Measuring System Gives Accurate Graphic Output
NASA Technical Reports Server (NTRS)
1965-01-01
The problem: To develop an instrument that will provide an external (indirect) measurement of arterial blood pressure in the form of an easily interpreted graphic trace that can be correlated with standard clinical blood-pressure measurements. From sphygmograms produced by conventional sphygmographs, it is very difficult to differentiate the systolic and diastolic blood-pressure pulses and to correlate these indices with the standard clinical values. It is nearly impossible to determine these indices when the subject is under physical or emotional stress. The solution: An electronic blood-pressure system, basically similar to conventional ausculatory sphygmomanometers, employing a standard occluding cuff, a gas-pressure source, and a gas-pressure regulator and valve. An electrical output transducer senses cuff pressure, and a microphone positioned on the brachial artery under the occluding cuff monitors the Korotkoff sounds from this artery. The output signals present the conventional systolic and diastolic indices in a clear, graphical display. The complete system also includes an electronic timer and cycle-control circuit.
Pressure Safety Program Implementation at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lower, Mark; Etheridge, Tom; Oland, C. Barry
2013-01-01
The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According tomore » 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply with pressure safety requirements in 10 CFR 851. It also describes actions taken to develop and implement ORNL’s Pressure Safety Program.« less
Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test
NASA Technical Reports Server (NTRS)
Barido, Richard A.
2012-01-01
The Ambient Pressure Integrated Suit Test (APIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. Crew and Thermal Systems Division performed this test in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center. This testing is the first phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. APIST is the first in a series, which will consist of testing development hardware including the Carbon dioxide and Moisture Removal Amine Swing-bed (CAMRAS) and the air revitalization loop fan with human test subjects in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2013, will utilize the CAMRAS and a development regulator with human test subjects in pressure suits at varying cabin and suit pressures. This paper will discuss the results and findings of APIST and will also discuss future testing.
A low power, microvalve regulated architecture for drug delivery systems.
Evans, Allan Thomas; Park, Jong M; Chiravuri, Srinivas; Gianchandani, Yogesh B
2010-02-01
This paper describes an actively-controlled architecture for drug delivery systems that offers high performance and volume efficiency through the use of micromachined components. The system uses a controlled valve to regulate dosing by throttling flow from a mechanically pressurized reservoir, thereby eliminating the need for a pump. To this end, the valve is fabricated from a glass wafer and silicon-on-insulator wafer for sensor integration. The valve draws a maximum power of 1.68 μW| (averaged over time); with the existing packaging scheme, it has a volume of 2.475 cm3. The reservoirs are assembled by compressing polyethylene terephthalate polymer balloons with metal springs. The metal springs are fabricated from Elgiloy® using photochemical etching. The springs pressurize the contents of 37 mLchambers up to 15 kPa. The system is integrated with batteries and a control circuit board within a 113 cm3 metal casing. This system has been evaluated in different control modes to mimic clinical applications. Bolus deliveries of1.5 mL have been regulated as well as continuous flows of 0.15 mL/day with accuracies of 3.22%. The results suggest that this device can be used in an implant to regulate intrathecal drug delivery
NASA Astrophysics Data System (ADS)
Andriushin, A. V.; Zverkov, V. P.; Kuzishchin, V. F.; Ryzhkov, O. S.; Sabanin, V. R.
2017-11-01
The research and setting results of steam pressure in the main steam collector “Do itself” automatic control system (ACS) with high-speed feedback on steam pressure in the turbine regulating stage are presented. The ACS setup is performed on the simulation model of the controlled object developed for this purpose with load-dependent static and dynamic characteristics and a non-linear control algorithm with pulse control of the turbine main servomotor. A method for tuning nonlinear ACS with a numerical algorithm for multiparametric optimization and a procedure for separate dynamic adjustment of control devices in a two-loop ACS are proposed and implemented. It is shown that the nonlinear ACS adjusted with the proposed method with the regulators constant parameters ensures reliable and high-quality operation without the occurrence of oscillations in the transient processes the operating range of the turbine loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bright, G.F.
1974-01-01
A discussion of the increasing activity of natural gas pipeline companies in the analysis of the overpressure protection methods for complying with the provisions of Part 192, Title 49, Code of Federal Regulations ''Transportation of Natural and Other Gas by Pipelines; Minimum Federal Safety Standards'' and with the USAS B31.8 Code covers the basic requirements for protection against accidental overpressure as being essentially the same in both documents, i.e., at the maximum allowable operating overpressure in a gas system can be exceeded either at a compressor station or downstream of a pressure control valve; mandatory use of overpressure protection devicesmore » in these situations, except for those cases which exempt some service regulators because the distribution system pressure is less than 60 psig and six other requirements of design, performance, and size are met; and basic design requirements of a pressure relief or limiting station and the components used.« less
The influence of central command on baroreflex resetting during exercise
NASA Technical Reports Server (NTRS)
Raven, Peter B.; Fadel, Paul J.; Smith, Scott A.
2002-01-01
The arterial baroreflex functions as a negative feedback system regulating blood pressure around an established operating point. Paradoxically, a parallel increase in heart rate and blood pressure manifests during exercise. Experimental evidence suggests these events are caused, in part, by a rapid resetting of the baroreflex by central command.
Gut–Brain Axis in Regulation of Blood Pressure
Yang, Tao; Zubcevic, Jasenka
2017-01-01
Hypertension (HTN) is an escalating health issue worldwide. It is estimated that 1.56 billion people will suffer from high blood pressure (BP) by 2025. Recent studies reported an association between gut dysbiosis and HTN, thus proposing interesting avenues for novel treatments of this condition. The sympathetic nervous system (SNS) and the immune system (IS) play a recognized role in the onset and progression of HTN, while reciprocal communication between gut microbiota and the brain can regulate BP by modulating the interplay between the IS and SNS. This review presents the current state of the science implicating brain-gut connection in HTN, highlighting potential pathways of their interaction in control of BP. PMID:29118721
Bifurcation analysis of nephron pressure and flow regulation
NASA Astrophysics Data System (ADS)
Barfred, Mikael; Mosekilde, Erik; Holstein-Rathlou, Niels-Henrik
1996-09-01
One- and two-dimensional continuation techniques are applied to study the bifurcation structure of a model of renal flow and pressure control. Integrating the main physiological mechanisms by which the individual nephron regulates the incoming blood flow, the model describes the interaction between the tubuloglomerular feedback and the response of the afferent arteriole. It is shown how a Hopf bifurcation leads the system to perform self-sustained oscillations if the feedback gain becomes sufficiently strong, and how a further increase of this parameter produces a folded structure of overlapping period-doubling cascades. Similar phenomena arise in response to increasing blood pressure. The numerical analyses are supported by existing experimental results on anesthetized rats.
Active Aircraft Pylon Noise Control System
NASA Technical Reports Server (NTRS)
Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)
2015-01-01
An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.
Active Aircraft Pylon Noise Control System
NASA Technical Reports Server (NTRS)
Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elmiligui, Alaa A. (Inventor)
2017-01-01
An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.
A computational analysis of the long-term regulation of arterial pressure
Beard, Daniel A.
2013-01-01
The asserted dominant role of the kidneys in the chronic regulation of blood pressure and in the etiology of hypertension has been debated since the 1970s. At the center of the theory is the observation that the acute relationships between arterial pressure and urine production—the acute pressure-diuresis and pressure-natriuresis curves—physiologically adapt to perturbations in pressure and/or changes in the rate of salt and volume intake. These adaptations, modulated by various interacting neurohumoral mechanisms, result in chronic relationships between water and salt excretion and pressure that are much steeper than the acute relationships. While the view that renal function is the dominant controller of arterial pressure has been supported by computer models of the cardiovascular system known as the “Guyton-Coleman model”, no unambiguous description of a computer model capturing chronic adaptation of acute renal function in blood pressure control has been presented. Here, such a model is developed with the goals of: 1. representing the relevant mechanisms in an identifiable mathematical model; 2. identifying model parameters using appropriate data; 3. validating model predictions in comparison to data; and 4. probing hypotheses regarding the long-term control of arterial pressure and the etiology of primary hypertension. The developed model reveals: long-term control of arterial blood pressure is primarily through the baroreflex arc and the renin-angiotensin system; and arterial stiffening provides a sufficient explanation for the etiology of primary hypertension associated with ageing. Furthermore, the model provides the first consistent explanation of the physiological response to chronic stimulation of the baroreflex. PMID:24555102
A computational analysis of the long-term regulation of arterial pressure.
Beard, Daniel A; Pettersen, Klas H; Carlson, Brian E; Omholt, Stig W; Bugenhagen, Scott M
2013-01-01
The asserted dominant role of the kidneys in the chronic regulation of blood pressure and in the etiology of hypertension has been debated since the 1970s. At the center of the theory is the observation that the acute relationships between arterial pressure and urine production-the acute pressure-diuresis and pressure-natriuresis curves-physiologically adapt to perturbations in pressure and/or changes in the rate of salt and volume intake. These adaptations, modulated by various interacting neurohumoral mechanisms, result in chronic relationships between water and salt excretion and pressure that are much steeper than the acute relationships. While the view that renal function is the dominant controller of arterial pressure has been supported by computer models of the cardiovascular system known as the "Guyton-Coleman model", no unambiguous description of a computer model capturing chronic adaptation of acute renal function in blood pressure control has been presented. Here, such a model is developed with the goals of: 1. representing the relevant mechanisms in an identifiable mathematical model; 2. identifying model parameters using appropriate data; 3. validating model predictions in comparison to data; and 4. probing hypotheses regarding the long-term control of arterial pressure and the etiology of primary hypertension. The developed model reveals: long-term control of arterial blood pressure is primarily through the baroreflex arc and the renin-angiotensin system; and arterial stiffening provides a sufficient explanation for the etiology of primary hypertension associated with ageing. Furthermore, the model provides the first consistent explanation of the physiological response to chronic stimulation of the baroreflex.
Low-Pressure Long-Term Xenon Storage for Electric Propulsion
NASA Technical Reports Server (NTRS)
Back, Dwight D.; Ramos, Charlie; Meyer, John A.
2001-01-01
This Phase 2 effort demonstrated an alternative Xe storage and regulation system using activated carbon (AC) as a secondary storage media (ACSFR). This regulator system is nonmechanical, simple, inexpensive, and lighter. The ACSFR system isolates the thruster from the compressed gas tank, and allows independent multiple setpoint thruster operation. The flow using an ACSFR can also be throttled by applying increments in electrical power. Primary storage of Xe by AC is not superior to compressed gas storage with regard to weight, but AC storage can provide volume reduction, lower pressures in space, and potentially in situ Xe purification. With partial fill designs, a primary AC storage vessel for Xe could also eliminate problems with two-phase storage and regulate pressure. AC could also be utilized in long-term large quantity storage of Xe serving as a compact capture site for boil-off. Several Xe delivery ACSFR protocols between 2 and 45 sccm, and 15 min to 7 hr, were tested with an average flow variance of 1.2 percent, average power requirements of 5 W, and repeatability s of about 0.4 percent. Power requirements are affected by ACSFR bed sizing and flow rate/ duration design points, and these flow variances can be reduced by optimizing PID controller parameters.
Multi-Element Unstructured Analyses of Complex Valve Systems
NASA Technical Reports Server (NTRS)
Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy
2004-01-01
The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.
Quantification of peripheral and central blood pressure variability using a time-frequency method.
Kouchaki, Z; Butlin, M; Qasem, A; Avolio, A P
2016-08-01
Systolic blood pressure variability (BPV) is associated with cardiovascular events. As the beat-to-beat variation of blood pressure is due to interaction of several cardiovascular control systems operating with different response times, assessment of BPV by spectral analysis using the continuous measurement of arterial pressure in the finger is used to differentiate the contribution of these systems in regulating blood pressure. However, as baroreceptors are centrally located, this study considered applying a continuous aortic pressure signal estimated noninvasively from finger pressure for assessment of systolic BPV by a time-frequency method using Short Time Fourier Transform (STFT). The average ratio of low frequency and high frequency power band (LF PB /HF PB ) was computed by time-frequency decomposition of peripheral systolic pressure (pSBP) and derived central aortic systolic blood pressure (cSBP) in 30 healthy subjects (25-62 years) as a marker of balance between cardiovascular control systems contributing in low and high frequency blood pressure variability. The results showed that the BPV assessed from finger pressure (pBPV) overestimated the BPV values compared to that assessed from central aortic pressure (cBPV) for identical cardiac cycles (P<;0.001), with the overestimation being greater at higher power.
[Renin-angiotensin-aldosterone system (RAAS) and its pharmacologic modulation].
Giestas, Anabela; Palma, Isabel; Ramos, Maria Helena
2010-01-01
The renin-angiotensin-aldosterone system (RAAS) is a neuroendocrine complex system that regulates the modulation of salt and water homeostasis, and regulation of blood pressure. Through its multiple interactions it protects the endothelium, heart, brain and kidney. In addition, the RAAS regulates the vascular response to injury and inflammation. Chronic activation/dysregulation of the RAAS leads to hypertension and perpetuates a cascade of proinflammatory, prothrombotic and atherogenic effects associated with endorgan damage (heart, brain, kidney, endothelium). Consequently, the RAAS is an important therapeutic target in these situations. This article presents an overview of physiology, pathophysiology and pharmacologic modulation of the RAAS.
Pressures on the dental care system in the United States.
Wotman, S; Goldman, H
1982-01-01
A number of significant pressures are creating tensions in the dental profession and the dental care delivery system. These pressures may be categorized in five major areas: 1) regulation and deregulation pressures involve changes in the state dental practice acts, court decisions concerning antitrust and advertising, and the inclusion of consumers on State professional regulatory boards; 2) cost of services includes factors involving the out-of-pocket cost of dental care and the growth of dental insurance; 3) dentist-related factors include the increased number of dentists and the indebtedness of dental graduates; 4) the pressures of changes in the American populations include the decline in population growth and the increase in proportion of elderly people; 5) changes in the distribution of dental care are based on new epidemiologic data concerning dental caries and progress in the prevention of periodontal disease. Many of these pressures are inducing competition in the dental care system. It is clear that the dental care system is in the process of change as it responds to these complex pressures. PMID:7091458
Pressures on the dental care system in the United States.
Wotman, S; Goldman, H
1982-07-01
A number of significant pressures are creating tensions in the dental profession and the dental care delivery system. These pressures may be categorized in five major areas: 1) regulation and deregulation pressures involve changes in the state dental practice acts, court decisions concerning antitrust and advertising, and the inclusion of consumers on State professional regulatory boards; 2) cost of services includes factors involving the out-of-pocket cost of dental care and the growth of dental insurance; 3) dentist-related factors include the increased number of dentists and the indebtedness of dental graduates; 4) the pressures of changes in the American populations include the decline in population growth and the increase in proportion of elderly people; 5) changes in the distribution of dental care are based on new epidemiologic data concerning dental caries and progress in the prevention of periodontal disease. Many of these pressures are inducing competition in the dental care system. It is clear that the dental care system is in the process of change as it responds to these complex pressures.
Sutoo, Den'etsu; Akiyama, Kayo
2004-08-06
The mechanism by which music modifies brain function is not clear. Clinical findings indicate that music reduces blood pressure in various patients. We investigated the effect of music on blood pressure in spontaneously hypertensive rats (SHR). Previous studies indicated that calcium increases brain dopamine (DA) synthesis through a calmodulin (CaM)-dependent system. Increased DA levels reduce blood pressure in SHR. In this study, we examined the effects of music on this pathway. Systolic blood pressure in SHR was reduced by exposure to Mozart's music (K.205), and the effect vanished when this pathway was inhibited. Exposure to music also significantly increased serum calcium levels and neostriatal DA levels. These results suggest that music leads to increased calcium/CaM-dependent DA synthesis in the brain, thus causing a reduction in blood pressure. Music might regulate and/or affect various brain functions through dopaminergic neurotransmission, and might therefore be effective for rectification of symptoms in various diseases that involve DA dysfunction.
Gender differences in myogenic regulation along the vascular tree of the gerbil cochlea.
Reimann, Katrin; Krishnamoorthy, Gayathri; Wier, Withrow Gil; Wangemann, Philine
2011-01-01
Regulation of cochlear blood flow is critical for hearing due to its exquisite sensitivity to ischemia and oxidative stress. Many forms of hearing loss such as sensorineural hearing loss and presbyacusis may involve or be aggravated by blood flow disorders. Animal experiments and clinical outcomes further suggest that there is a gender preference in hearing loss, with males being more susceptible. Autoregulation of cochlear blood flow has been demonstrated in some animal models in vivo, suggesting that similar to the brain, blood vessels supplying the cochlea have the ability to control flow within normal limits, despite variations in systemic blood pressure. Here, we investigated myogenic regulation in the cochlear blood supply of the Mongolian gerbil, a widely used animal model in hearing research. The cochlear blood supply originates at the basilar artery, followed by the anterior inferior cerebellar artery, and inside the inner ear, by the spiral modiolar artery and the radiating arterioles that supply the capillary beds of the spiral ligament and stria vascularis. Arteries from male and female gerbils were isolated and pressurized using a concentric pipette system. Diameter changes in response to increasing luminal pressures were recorded by laser scanning microscopy. Our results show that cochlear vessels from male and female gerbils exhibit myogenic regulation but with important differences. Whereas in male gerbils, both spiral modiolar arteries and radiating arterioles exhibited pressure-dependent tone, in females, only radiating arterioles had this property. Male spiral modiolar arteries responded more to L-NNA than female spiral modiolar arteries, suggesting that NO-dependent mechanisms play a bigger role in the myogenic regulation of male than female gerbil cochlear vessels.
Materials to Engineer the Immune System
2010-04-01
presentation of danger signals to regulate the ratio of distinct DC subtypes was next examined by immobilizing TLR-activating, polyethylenimine (PEI...compression molded. The resulting disc was allowed to equilibrate within a high-pressure CO2 environment, and a rapid reduction in pressure causes the...pressure CO2 process to foam macroporous PLG matrices incorporating tumor lysates. To incorporate CpG-ODNs into PLG scaffolds, we first con- densed CpG-ODN
Myocardial pressure overload induces systemic inflammation through endothelial cell IL-33
Chen, Wei-Yu; Hong, Jaewoo; Gannon, Joseph; Kakkar, Rahul; Lee, Richard T.
2015-01-01
Hypertension increases the pressure load on the heart and is associated with a poorly understood chronic systemic inflammatory state. Interleukin 33 (IL-33) binds to membrane-bound ST2 (ST2L) and has antihypertrophic and antifibrotic effects in the myocardium. In contrast, soluble ST2 appears to act as a decoy receptor for IL-33, blocking myocardial and vascular benefits, and is a prognostic biomarker in patients with cardiovascular diseases. Here we report that a highly local intramyocardial IL-33/ST2 conversation regulates the heart’s response to pressure overload. Either endothelial-specific deletion of IL33 or cardiomyocyte-specific deletion of ST2 exacerbated cardiac hypertrophy with pressure overload. Furthermore, pressure overload induced systemic circulating IL-33 as well as systemic circulating IL-13 and TGF-beta1; this was abolished by endothelial-specific deletion of IL33 but not by cardiomyocyte-specific deletion of IL33. Our study reveals that endothelial cell secretion of IL-33 is crucial for translating myocardial pressure overload into a selective systemic inflammatory response. PMID:25941360
A Mechanism for Frequency Modulation in Songbirds Shared with Humans
Margoliash, Daniel
2013-01-01
In most animals that vocalize, control of fundamental frequency is a key element for effective communication. In humans, subglottal pressure controls vocal intensity but also influences fundamental frequency during phonation. Given the underlying similarities in the biomechanical mechanisms of vocalization in humans and songbirds, songbirds offer an attractive opportunity to study frequency modulation by pressure. Here, we present a novel technique for dynamic control of subsyringeal pressure in zebra finches. By regulating the opening of a custom-built fast valve connected to the air sac system, we achieved partial or total silencing of specific syllables, and could modify syllabic acoustics through more complex manipulations of air sac pressure. We also observed that more nuanced pressure variations over a limited interval during production of a syllable concomitantly affected the frequency of that syllable segment. These results can be explained in terms of a mathematical model for phonation that incorporates a nonlinear description for the vocal source capable of generating the observed frequency modulations induced by pressure variations. We conclude that the observed interaction between pressure and frequency was a feature of the source, not a result of feedback control. Our results indicate that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations. Thus, although there are separate brainstem pathways for syringeal and respiratory control of song production, both can affect airflow and frequency. We hypothesize that the control of pressure and frequency is combined holistically at higher levels of the vocalization pathways. PMID:23825417
A mechanism for frequency modulation in songbirds shared with humans.
Amador, Ana; Margoliash, Daniel
2013-07-03
In most animals that vocalize, control of fundamental frequency is a key element for effective communication. In humans, subglottal pressure controls vocal intensity but also influences fundamental frequency during phonation. Given the underlying similarities in the biomechanical mechanisms of vocalization in humans and songbirds, songbirds offer an attractive opportunity to study frequency modulation by pressure. Here, we present a novel technique for dynamic control of subsyringeal pressure in zebra finches. By regulating the opening of a custom-built fast valve connected to the air sac system, we achieved partial or total silencing of specific syllables, and could modify syllabic acoustics through more complex manipulations of air sac pressure. We also observed that more nuanced pressure variations over a limited interval during production of a syllable concomitantly affected the frequency of that syllable segment. These results can be explained in terms of a mathematical model for phonation that incorporates a nonlinear description for the vocal source capable of generating the observed frequency modulations induced by pressure variations. We conclude that the observed interaction between pressure and frequency was a feature of the source, not a result of feedback control. Our results indicate that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations. Thus, although there are separate brainstem pathways for syringeal and respiratory control of song production, both can affect airflow and frequency. We hypothesize that the control of pressure and frequency is combined holistically at higher levels of the vocalization pathways.
“A System for Automatically Maintaining Pressure in a Commercial Truck Tire”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, John
2017-07-07
Under-inflated tires significantly reduce a vehicle’s fuel efficiency by increasing rolling resistance (drag force). The Air Maintenance Technology (“AMT”) system developed through this project replenishes lost air and maintains optimal tire cavity pressure whenever the tire is rolling in service, thus improving overall fuel economy by reducing the tire’s rolling resistance. The system consists of an inlet air filter, an air pump driven by tire deformation during rotation, and a pressure regulating device. Pressurized air in the tire cavity naturally escapes by diffusion through the tire and wheel, leaks in tire seating, and through the filler valve and its seating.more » As a result, tires require constant maintenance to replenish lost air. Since manual tire inflation maintenance is both labor intensive and time consuming, it is frequently overlooked or ignored. By automating the maintenance of optimal tire pressure, the tire’s contribution to the vehicle’s overall fuel economy can be maximized. The work was divided into three phases. The objectives of Phase 1, Planning and Initial Design, resulted in an effective project plan and to create a baseline design. The objectives for Phase 2, Design and Process Optimization, were: to identify finalized design for the pump, regulator and filter components; identify a process to build prototype tires; assemble prototype tires; test prototype tires and document results. The objectives of Phase 3, Design Release and Industrialization, were to finalize system tire assembly, perform release testing and industrialize the assembly process.« less
Hydrostatic fluid pressure in the vestibular organ of the guinea pig.
Park, Jonas J-H; Boeven, Jahn J; Vogel, Stefan; Leonhardt, Steffen; Wit, Hero P; Westhofen, Martin
2012-07-01
Since inner ear hair cells are mechano-electric transducers the control of hydrostatic pressure in the inner ear is crucial. Most studies analyzing dynamics and regulation of inner ear hydrostatic pressure performed pressure measurements in the cochlea. The present study is the first one reporting about absolute hydrostatic pressure values in the labyrinth. Hydrostatic pressure of the endolymphatic system was recorded in all three semicircular canals. Mean pressure values were 4.06 cmH(2)O ± 0.61 in the posterior, 3.36 cmH(2)O ± 0.94 in the anterior and 3.85 cmH(2)O ± 1.38 in the lateral semicircular canal. Overall hydrostatic pressure in the vestibular organ was 3.76 cmH(2)O ± 0.36. Endolymphatic hydrostatic pressure in all three semicircular canals is the same (p = 0.310). With regard to known endolymphatic pressure values in the cochlea from past studies vestibular pressure values are comparable to cochlear values. Until now it is not known whether the reuniens duct and the Bast's valve which are the narrowest passages in the endolymphatic system are open or closed. Present data show that most likely the endolymphatic system is a functionally open entity.
Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System
NASA Astrophysics Data System (ADS)
Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren
2017-11-01
The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.
Intra-ocular pressure normalization technique and equipment
NASA Technical Reports Server (NTRS)
Baehr, E. F. (Inventor)
1979-01-01
A method and apparatus is described for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval. This allows maintenance of normal intraocular pressure during glaucoma surgery. A pressure regulator of the spring-biassed diaphragm type is provided with additional bias by a column of liquid. The hypodermic needle can be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle.
Joyner, Michael J; Casey, Darren P
2015-04-01
This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans. Copyright © 2015 the American Physiological Society.
Joyner, Michael J.; Casey, Darren P.
2015-01-01
This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans. PMID:25834232
Self-Regulating Water-Separator System for Fuel Cells
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; McCurdy, Kerri; Bradley, Karla F.
2007-01-01
proposed system would perform multiple coordinated functions in regulating the pressure of the oxidant gas (usually, pure oxygen) flowing to a fuelcell stack and in removing excess product water that is generated in the normal fuel-cell operation. The system could function in the presence or absence of gravitation, and in any orientation in a gravitational field. Unlike some prior systems for removing product water, the proposed system would not depend on hydrophobicity or hydrophilicity of surfaces that are subject to fouling and, consequently, to gradual deterioration in performance. Also unlike some prior systems, the proposed system would not include actively controlled electric motors for pumping; instead, motive power for separation and pumping away of product water would be derived primarily from the oxidant flow and perhaps secondarily from the fuel flow. The net effect of these and other features would be to make the proposed system more reliable and safer, relative to the prior systems. The proposed system (see figure) would include a pressure regulator and sensor in the oxidant supply just upstream from an ejector reactant pump. The pressure of the oxidant supply would depend on the consumption flow. In one of two control subsystems, the pressure of oxidant flowing from the supply to the ejector would be sensed and used to control the speed of a set of a reciprocating constant-displacement pump so that the volumetric flow of nominally incompressible water away from the system would slightly exceed the rate at which water was produced by the fuel cell(s). The two-phase (gas/liquid water) outlet stream from the fuel cell(s) would enter the water separator, a turbinelike centrifugal separator machine driven primarily by the oxidant gas stream. A second control subsystem would utilize feedback derived from the compressibility of the outlet stream: As the separator was emptied of liquid water, the compressibility of the pumped stream would increase. The compressibility would be sensed, and an increase in compressibility beyond a preset point (signifying a decrease in water content below an optimum low level) would cause the outflow from the reciprocating pump to be diverted back to the separator to recycle some water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson, R.J.; Feltus, M.A.
The low-temperature overpressurization protection system (LTOPS) is designed to protect the reactor pressure vessel (RPV) from brittle failure during startup and cooldown maneuvers in Westinghouse pressurized water reactors. For the Salem power plants, the power-operated relief valves (PORVs) mitigate pressure increases above a setpoint where an operational startup transient may put the RPV in the embrittlement fracture zone. The Title 10, Part 50, Code of Federal Regulations Appendix G limit, given by plant technical specifications, conservatively bounds the maximum pressure allowed during those transients where the RPV can suffer brittle fracture (usually below 350{degrees}F). The Appendix G limit is amore » pressure versus temperature curve that is more restrictive at lower RPV temperatures and allows for higher pressures as the temperature approaches the upper bounding fracture temperature.« less
NASA Astrophysics Data System (ADS)
Durand-Smet, P.; Gauquelin, E.; Chastrette, N.; Boudaoud, A.; Asnacios, A.
2017-10-01
While plant growth is well known to rely on turgor pressure, it is challenging to quantify the contribution of turgor pressure to plant cell rheology. Here we used a custom-made micro-rheometer to quantify the viscoelastic behavior of isolated plant cells while varying their internal turgor pressure. To get insight into how plant cells adapt their internal pressure to the osmolarity of their medium, we compared the mechanical behavior of single plant cells to that of a simple, passive, pressurized shell: a soccer ball. While both systems exhibited the same qualitative behavior, a simple mechanical model allowed us to quantify turgor pressure regulation at the single cell scale.
Intra-ocular pressure normalization technique and equipment
NASA Technical Reports Server (NTRS)
Mcgannon, W. J. (Inventor)
1980-01-01
A method and apparatus for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval is presented. This allows maintenance of normal intraocular pressure during glaucoma surgery. According to the invention, a pressure regulator of the spring biased diaphragm type is provided with additional bias by a column of liquid. The height of the column of liquid is selected such that the pressure at a hypodermic needle connected to the output of the pressure regulator is equal to the measured pressure of the eye. The hypodermic needle can then be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle. Alternately, a second hypodermic needle may be inserted into the eye to provide a controlled leak off path for excessive pressure and clouded fluid from the anterior chamber.
Circulatory response and autonomic nervous activity during gum chewing.
Hasegawa, Yoko; Sakagami, Joe; Ono, Takahiro; Hori, Kazuhiro; Zhang, Min; Maeda, Yoshinobu
2009-08-01
Mastication has been proven to enhance the systemic circulation, with circulatory responses seeming to be largely regulated by autonomic nervous activity via a more complex regulatory system than those of other activities. However, few studies have examined the relationships between changes in autonomic nervous activity and the systemic circulation that are induced by masticatory movement. We investigated changes in the systemic circulation and autonomic nervous activity during gum chewing to clarify the influence of mastication. Electrocardiograms, arterial blood pressure, and masseter electromyograms were taken while chewing gum continuously as indicators of systemic circulation in 10 healthy subjects with normal dentition. Cardiac sympathetic activity and vagus nervous activity, as well as vasomotor sympathetic nervous activity, were evaluated by fluctuation analysis of heart rate and blood pressure. Repeated analysis of variance and multiple comparisons were performed to determine chronological changes in each indicator during gum chewing. Gum chewing increased the heart rate and the mean arterial pressure. Although cardiac sympathetic activity and vagus nervous activity showed significant changes, vasomotor sympathetic nervous activity did not. These results suggest that changes in the autonomic nervous activity of the heart are mainly involved in the enhancement of systemic circulation with gum chewing. This explains some characteristics of autonomic nervous regulation in masticatory movement.
Neural mechanisms in body fluid homeostasis.
DiBona, G F
1986-12-01
Under steady-state conditions, urinary sodium excretion matches dietary sodium intake. Because extracellular fluid osmolality is tightly regulated, the quantity of sodium in the extracellular fluid determines the volume of this compartment. The left atrial volume receptor mechanism is an example of a neural mechanism of volume regulation. The left atrial mechanoreceptor, which functions as a sensor in the low-pressure vascular system, is located in the left atrial wall, which has a well-defined compliance relating intravascular volume to filling pressure. The left atrial mechanoreceptor responds to changes in wall left atrial tension by discharging into afferent vagal fibers. These fibers have suitable central nervous system representation whose related efferent neurohumoral mechanisms regulate thirst, renal excretion of water and sodium, and redistribution of the extracellular fluid volume. Efferent renal sympathetic nerve activity undergoes appropriate changes to facilitate renal sodium excretion during sodium surfeit and to facilitate renal sodium conservation during sodium deficit. By interacting with other important determinants of renal sodium excretion (e.g., renal arterial pressure), changes in efferent renal sympathetic nerve activity can significantly modulate the final renal sodium excretion response with important consequences in pathophysiological states (e.g., hypertension, edema-forming states).
Cardiovascular regulation during sleep quantified by symbolic coupling traces
NASA Astrophysics Data System (ADS)
Suhrbier, A.; Riedl, M.; Malberg, H.; Penzel, T.; Bretthauer, G.; Kurths, J.; Wessel, N.
2010-12-01
Sleep is a complex regulated process with short periods of wakefulness and different sleep stages. These sleep stages modulate autonomous functions such as blood pressure and heart rate. The method of symbolic coupling traces (SCT) is used to analyze and quantify time-delayed coupling of these measurements during different sleep stages. The symbolic coupling traces, defined as the symmetric and diametric traces of the bivariate word distribution matrix, allow the quantification of time-delayed coupling. In this paper, the method is applied to heart rate and systolic blood pressure time series during different sleep stages for healthy controls as well as for normotensive and hypertensive patients with sleep apneas. Using the SCT, significant different cardiovascular mechanisms not only between the deep sleep and the other sleep stages but also between healthy subjects and patients can be revealed. The SCT method is applied to model systems, compared with established methods, such as cross correlation, mutual information, and cross recurrence analysis and demonstrates its advantages especially for nonstationary physiological data. As a result, SCT proves to be more specific in detecting delays of directional interactions than standard coupling analysis methods and yields additional information which cannot be measured by standard parameters of heart rate and blood pressure variability. The proposed method may help to indicate the pathological changes in cardiovascular regulation and also the effects of continuous positive airway pressure therapy on the cardiovascular system.
Melatonin, mitochondria and hypertension.
Baltatu, Ovidiu C; Amaral, Fernanda G; Campos, Luciana A; Cipolla-Neto, Jose
2017-11-01
Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.
Evidence for a GPR18 Role in Diurnal Regulation of Intraocular Pressure
Miller, Sally; Leishman, Emma; Oehler, Olivia; Daily, Laura; Murataeva, Natalia; Wager-Miller, Jim; Bradshaw, Heather; Straiker, Alex
2016-01-01
Purpose The diurnal cycling of intraocular pressure (IOP) was first described in humans more than a century ago. This cycling is preserved in other species. The physiologic underpinning of this diurnal variation in IOP remains a mystery, even though elevated pressure is indicated in most forms of glaucoma, a common cause of blindness. Once identified, the system that underlies diurnal variation would represent a natural target for therapeutic intervention. Methods Using normotensive mice, we measured the regulation of ocular lipid species by the enzymes fatty acid amide hydrolase (FAAH) and N-arachidonoyl phosphatidylethanolamine phospholipase (NAPE-PLD), mRNA expression of these enzymes, and their functional role in diurnal regulation of IOP. Results We now report that NAPE-PLD and FAAH mice do not exhibit a diurnal cycling of IOP. These enzymes produce and break down acylethanolamines, including the endogenous cannabinoid anandamide. The diurnal lipid profile in mice shows that levels of most N-acyl ethanolamines and, intriguingly, N-arachidonoyl glycine (NAGly), decline at night: NAGly is a metabolite of arachidonoyl ethanolamine and a potent agonist at GPR18 that lowers intraocular pressure. The GPR18 blocker O1918 raises IOP during the day when pressure is low, but not at night. Quantitative PCR analysis shows that FAAH mRNA levels rise with pressure, suggesting that FAAH mediates the changes in pressure. Conclusions Our results support FAAH-dependent NAGly action at GPR18 as the physiologic basis of the diurnal variation of intraocular pressure in mice. PMID:27893106
Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik
2013-01-01
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.
NASA Technical Reports Server (NTRS)
Bard, Steven (Inventor); Wu, Jiunn-Jeng (Inventor); Trimble, Curtis A. (Inventor)
1992-01-01
A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.
NASA Astrophysics Data System (ADS)
Bard, Steven; Wu, Jiunn-Jeng; Trimble, Curtis A.
1992-06-01
A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.
Material Usage in High Pressure Oxygen Systems for the International Space Station
NASA Technical Reports Server (NTRS)
Kravchenko, Michael; Sievers, D. Elliott
2014-01-01
The Nitrogen/Oxygen Recharge System (NORS) for the International Space Station (ISS) Program was required as part of the Space Shuttle retirement efforts to sustain the ISS life support systems. The system is designed around a 7000 psia Oxygen or Nitrogen Recharge Tank Assembly which is able to be utilized both internally and externally to the ISS. Material selection and usage were critical to ensure oxygen compatibility for the design, while taking into consideration toxicity, weldability, brazability and general fabrication and assembly techniques. The system uses unique hardware items such a composite overwrap pressure vessel (COPV), high pressure mechanical gauges, compact regulators and valves, quick disconnects, metal tubing and flexhoses. Numerous challenges and anomalies were encountered due to the exotic nature of this project which will be discussed in detail. The knowledge gained from these anomalies and failure resolutions can be applied to more than space applications, but can also be applicable to industry pressurized systems.
Cornelissen, Véronique A; Fagard, Robert H
2005-10-01
Previous meta-analyses of randomized controlled trials on the effects of chronic dynamic aerobic endurance training on blood pressure reported on resting blood pressure only. Our aim was to perform a comprehensive meta-analysis including resting and ambulatory blood pressure, blood pressure-regulating mechanisms, and concomitant cardiovascular risk factors. Inclusion criteria of studies were: random allocation to intervention and control; endurance training as the sole intervention; inclusion of healthy sedentary normotensive or hypertensive adults; intervention duration of > or =4 weeks; availability of systolic or diastolic blood pressure; and publication in a peer-reviewed journal up to December 2003. The meta-analysis involved 72 trials, 105 study groups, and 3936 participants. After weighting for the number of trained participants and using a random-effects model, training induced significant net reductions of resting and daytime ambulatory blood pressure of, respectively, 3.0/2.4 mm Hg (P<0.001) and 3.3/3.5 mm Hg (P<0.01). The reduction of resting blood pressure was more pronounced in the 30 hypertensive study groups (-6.9/-4.9) than in the others (-1.9/-1.6; P<0.001 for all). Systemic vascular resistance decreased by 7.1% (P<0.05), plasma norepinephrine by 29% (P<0.001), and plasma renin activity by 20% (P<0.05). Body weight decreased by 1.2 kg (P<0.001), waist circumference by 2.8 cm (P<0.001), percent body fat by 1.4% (P<0.001), and the homeostasis model assessment index of insulin resistance by 0.31 U (P<0.01); HDL cholesterol increased by 0.032 mmol/L(-1) (P<0.05). In conclusion, aerobic endurance training decreases blood pressure through a reduction of vascular resistance, in which the sympathetic nervous system and the renin-angiotensin system appear to be involved, and favorably affects concomitant cardiovascular risk factors.
High impact pressure regulator withstands impacts of over 15,000 g
NASA Technical Reports Server (NTRS)
Biles, J. E., Jr.; Floyd, E. L.; Topits, A. N., Jr.
1967-01-01
High impact pressure regulator used with a high impact gas scannograph withstands impacts of over 15,000 g. By the passage of fluid through the first and second chambers of the regulator, the pressure of the scannograph is regulated from a specific input valve to the desired output pressure valve.
Zhuo, Jia L.; Ferrao, Fernanda M.; Zheng, Yun; Li, Xiao C.
2013-01-01
The renin-angiotensin system (RAS) is well-recognized as one of the oldest and most important regulators of arterial blood pressure, cardiovascular, and renal function. New frontiers have recently emerged in the RAS research well beyond its classic paradigm as a potent vasoconstrictor, an aldosterone release stimulator, or a sodium-retaining hormone. First, two new members of the RAS have been uncovered, which include the renin/(Pro)renin receptor (PRR) and angiotensin-converting enzyme 2 (ACE2). Recent studies suggest that prorenin may act on the PRR independent of the classical ACE/ANG II/AT1 receptor axis, whereas ACE2 may degrade ANG II to generate ANG (1–7), which activates the Mas receptor. Second, there is increasing evidence that ANG II may function as an intracellular peptide to activate intracellular and/or nuclear receptors. Third, currently there is a debate on the relative contribution of systemic versus intrarenal RAS to the physiological regulation of blood pressure and the development of hypertension. The objectives of this article are to review and discuss the new insights and perspectives derived from recent studies using novel transgenic mice that either overexpress or are deficient of one key enzyme, ANG peptide, or receptor of the RAS. This information may help us better understand how ANG II acts, both independently or through interactions with other members of the system, to regulate the kidney function and blood pressure in health and disease. PMID:24273531
Novel RAAS agonists and antagonists: clinical applications and controversies.
Romero, Cesar A; Orias, Marcelo; Weir, Matthew R
2015-04-01
The renin-angiotensin-aldosterone system (RAAS) regulates blood pressure homeostasis and vascular injury and repair responses. The RAAS was originally thought to be an endocrine system critically important in regulating blood pressure homeostasis. Yet, important local forms of the RAAS have been described in many tissues, which are mostly independent of the systemic RAAS. These systems have been associated with diverse physiological functions, but also with inflammation, fibrosis and target-organ damage. Pharmacological modulation of the RAAS has brought about important advances in preventing morbidity and mortality associated with cardiovascular disease. Yet, traditional RAAS blockers such as angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) only reduce the risk of disease progression in patients with established cardiovascular or renal disease by ∼20% compared with other therapies. As more components of the RAAS are described, other potential therapeutic targets emerge, which could provide improved cardiovascular and renal protection beyond that provided by an ACE inhibitor or ARB. This Review summarizes the present and future pharmacological manipulation of this important system.
Management methodology for pressure equipment
NASA Astrophysics Data System (ADS)
Bletchly, P. J.
Pressure equipment constitutes a significant investment in capital and a major proportion of potential high-risk plant in many operations and this is particularly so in an alumina refinery. In many jurisdictions pressure equipment is also subject to statutory regulation that imposes obligations on Owners of the equipment with respect to workplace safety. Most modern technical standards and industry codes of practice employ a risk-based approach to support better decision making with respect to pressure equipment. For a management system to be effective it must demonstrate that risk is being managed within acceptable limits.
The Analysis for Regulation Performance of a Variable Thrust Rocket Engine Control System,
1982-06-29
valve: Q,- K .W(t).±K.APN(t) (14) where (15) K-KK (16) ( 17 ) (18) Equations (13) and (14) can be expressed as one equation: . Q(t)-QCt)-Qa(t)-n(" -K:)EQ...Hydraulic pressure when the needle valve starts to rise [g/mm 2 4PH (t)-Hydraulic pressure increment 2 AHHydraulic pressure function area (mm2 B-Needle...rate gain Ke and solenoid valve pressure coefficient K use relatedPH equations (15), (16), ( 17 ) and (18). If we use the parameters of * the exhaust
Szijártó, István András; Markó, Lajos; Filipovic, Milos R; Miljkovic, Jan Lj; Tabeling, Christoph; Tsvetkov, Dmitry; Wang, Ning; Rabelo, Luiza A; Witzenrath, Martin; Diedrich, André; Tank, Jens; Akahoshi, Noriyuki; Kamata, Shotaro; Ishii, Isao; Gollasch, Maik
2018-06-01
Hydrogen sulfide (H 2 S) and NO are important gasotransmitters, but how endogenous H 2 S affects the circulatory system has remained incompletely understood. Here, we show that CTH or CSE (cystathionine γ-lyase)-produced H 2 S scavenges vascular NO and controls its endogenous levels in peripheral arteries, which contribute to blood pressure regulation. Furthermore, eNOS (endothelial NO synthase) and phospho-eNOS protein levels were unaffected, but levels of nitroxyl were low in CTH-deficient arteries, demonstrating reduced direct chemical interaction between H 2 S and NO. Pretreatment of arterial rings from CTH-deficient mice with exogenous H 2 S donor rescued the endothelial vasorelaxant response and decreased tissue NO levels. Our discovery that CTH-produced H 2 S inhibits endogenous endothelial NO bioavailability and vascular tone is novel and fundamentally important for understanding how regulation of vascular tone is tailored for endogenous H 2 S to contribute to systemic blood pressure function. © 2018 American Heart Association, Inc.
Manipulation of norepinephrine metabolism with yohimbine in the treatment of autonomic failure
NASA Technical Reports Server (NTRS)
Biaggioni, I.; Robertson, R. M.; Robertson, D.
1994-01-01
It has been postulated that alpha 2-adrenergic receptors play a modulatory role in the regulation of blood pressure. Activation of alpha 2-receptors located in the central nervous system results in inhibition of sympathetic tone and decrease of blood pressure. This indeed may be the mechanism of action of central sympatholytic antihypertensives such as alpha-methyldopa. Presynaptic alpha 2-receptors also are found in adrenergic nerve terminals. These receptors act as a negative feedback mechanism by inhibiting the release of norepinephrine. The relevance of alpha 2-adrenergic receptors for blood pressure regulation can be explored with yohimbine, a selective antagonist of these receptors. Yohimbine increases blood pressure in resting normal volunteers. This effect is associated with an increase in both sympathetic nerve activity, reflecting an increase in central sympathetic outflow, and in norepinephrine spillover, reflecting potentiation of the release of norepinephrine from adrenergic nerve terminals. These actions, therefore, underscore the importance of alpha 2-adrenergic receptors for blood pressure regulation even under resting conditions. Patients with autonomic failure, even those with severe sympathetic deprivation, are hypersensitive to the pressor effects of yohimbine. This increased responsiveness can be explained by sensitization of adrenergic receptors, analogous to denervation supersensitivity, and by the lack of autonomic reflexes that would normally buffer any increase in blood pressure. Preliminary studies suggest that the effectiveness of yohimbine in autonomic failure can be enhanced with monoamine oxidase inhibitors. Used in combination, yohimbine increases norepinephrine release, whereas monoamine oxidase inhibitors inhibit its degradation. Therefore, yohimbine is not only a useful tool in the study of blood pressure regulation, but may offer a therapeutic option in autonomic dysfunction.
Control of intrauterine fluid pressure during operative hysteroscopy.
Shirk, G J; Gimpelson, R J
1994-05-01
To evaluate the safety of a commonly used piston pump that controls the infusion pressure of low-viscosity fluids in a continuous-flow hysteroscopic system during operative hysteroscopy. Consecutive patients requiring operative hysteroscopy. Three hospital facilities in the Midwest. Sequential sample of 250 women who underwent operative hysteroscopy. Endometrial ablations, resection of submucosal or pedunculated uterine leiomyomata with or without endometrial ablation, polyp resections, metroplasty, and lysis of synechiae. The most serious complication of operative hysteroscopy is fluid overload due to intravasation into the patient's vascular system. Low-viscosity fluids were infused by the Zimmer Controlled Distention Irrigation System. The instrument uses a closed-feedback loop to monitor cavity pressure and automatically regulates the flow to maintain the set point pressure. It is designed to operate in a pressure range of 0 to 80 mm Hg and at flows in excess of 450 ml/minute. In 250 operative hysteroscopies no fluid complications occurred when intrauterine pressure was maintained below 80 mm Hg. No clinically significant differences in intravasation were seen in any type of operative hysteroscopy. This controlled mechanical pump system with exact intrauterine pressure measurement reduced many technical difficulties associated with low-viscosity media, and created a safe environment for the media's use in operative hysteroscopy.
Contained radiological analytical chemistry module
Barney, David M.
1989-01-01
A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.
Contained radiological analytical chemistry module
Barney, David M.
1990-01-01
A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.
Closed-loop control of renal perfusion pressure in physiological experiments.
Campos-Delgado, D U; Bonilla, I; Rodríguez-Martínez, M; Sánchez-Briones, M E; Ruiz-Hernández, E
2013-07-01
This paper presents the design, experimental modeling, and control of a pump-driven renal perfusion pressure (RPP)-regulatory system to implement precise and relatively fast RPP regulation in rats. The mechatronic system is a simple, low-cost, and reliable device to automate the RPP regulation process based on flow-mediated occlusion. Hence, the regulated signal is the RPP measured in the left femoral artery of the rat, and the manipulated variable is the voltage applied to a dc motor that controls the occlusion of the aorta. The control system is implemented in a PC through the LabView software, and a data acquisition board NI USB-6210. A simple first-order linear system is proposed to approximate the dynamics in the experiment. The parameters of the model are chosen to minimize the error between the predicted and experimental output averaged from eight input/output datasets at different RPP operating conditions. A closed-loop servocontrol system based on a pole-placement PD controller plus dead-zone compensation was proposed for this purpose. First, the feedback structure was validated in simulation by considering parameter uncertainty, and constant and time-varying references. Several experimental tests were also conducted to validate in real time the closed-loop performance for stepwise and fast switching references, and the results show the effectiveness of the proposed automatic system to regulate the RPP in the rat, in a precise, accurate (mean error less than 2 mmHg) and relatively fast mode (10-15 s of response time).
Baroreflex sensitivity in acute hypoxia and carbohydrate loading.
Klemenc, Matjaž; Golja, Petra
2011-10-01
Hypoxia decreases baroreflex sensitivity (BRS) and can be a sufficient cause for syncope in healthy individuals. Carbohydrate loading enhances efferent sympathetic activity, which affects cardiac contractility, heart rate and vascular resistance, the main determinants of blood pressure. Thus, in both normoxia and hypoxia, carbohydrate loading may be more than simply metabolically beneficial, as it may affect blood pressure regulation. We hypothesised that carbohydrate loading will, in both normoxia and hypoxia, alter the regulation of blood pressure, as reflected in a change in baroreflex sensitivity. Fourteen subjects participated in two experiments, composed of a 15-min normoxic period, after which the subjects ingested water or an equal amount of water with carbohydrates. A 30-min rest period was then followed by a 10-min second normoxic and a 30-min hypoxic period. Blood pressure and heart rate were monitored continuously during the experiment to determine BRS. Despite an increased sympathetic activation, reflected in increased heart rate (P < 0.001) BRS was lower (P < 0.01) after carbohydrate loading, as compared to the water experiment, in both normoxic [23.7 (12.4) versus 28.8 (13.8) ms/mmHg] and hypoxic [16.8 (11.0) versus 24.3 (12.3) ms/mmHg] phases of the present study. As BRS was decreased in acute hypoxic exposure, the results confirm that hypoxia interferes with blood pressure regulation. However, although oral carbohydrate loading induced sympathoexcitation, it did not improve blood pressure regulation in hypoxia, as evident from the BRS data. Baroreflex effects of other forms of carbohydrate loading, not causing postprandial blood shifts to digestive system, should therefore be investigated.
NASA Technical Reports Server (NTRS)
Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.
2010-01-01
The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the pressurization system, including regulator blowdown and propellant ullage performance, measure system pressure drops for comparison to analysis of tubing and components, and validate system activation and re-activation procedures for the helium pressurant system. Secondary objectives included: validating system processes for loading, unloading, and purging, validating procedures and system response for multiple failure scenarios, including relief valve operation, and evaluating system performance for contingency scenarios. The test results of the cold flow development test program are essential in validating the performance and interaction of the Roll Control System and anchoring analysis tools and results to a Critical Design Review level of fidelity.
Design and performance of heart assist or artificial heart control systems
NASA Technical Reports Server (NTRS)
Webb, J. A., Jr.; Gebben, V. D.
1978-01-01
The factors leading to the design of a controlled driving system for either a heart assist pump or artificial heart are discussed. The system provides square pressure waveform to drive a pneumatic-type blood pump. For assist usage the system uses an R-wave detector circuit that can detect the R-wave of the electrocardiogram in the presence of electrical disturbances. This circuit provides a signal useful for synchronizing an assist pump with the natural heart. It synchronizes a square wave circuit, the output of which is converted into square waveforms of pneumatic pressure suitable for driving both assist device and artificial heart. The pressure levels of the driving waveforms are controlled by means of feedback channels to maintain physiological regulation of the artificial heart's output flow. A more compact system that could achieve similar regulatory characteristics is also discussed.
Micronized coal burner facility
NASA Technical Reports Server (NTRS)
Calfo, F. D.; Lupton, M. W. (Inventor)
1984-01-01
A combustor or burner system in which the ash resulting from burning a coal in oil mixture is of submicron particle size is described. The burner system comprises a burner section, a flame exit nozzle, a fuel nozzle section, and an air tube by which preheated air is directed into the burner section. Regulated air pressure is delivered to a fuel nozzle. Means are provided for directing a mixture of coal particles and oil from a drum to a nozzle at a desired rate and pressure while means returns excess fuel to the fuel drum. Means provide for stable fuel pressure supply from the fuel pump to the fuel nozzle.
NASA Technical Reports Server (NTRS)
Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.
1978-01-01
The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.
Serotonin and Blood Pressure Regulation
Morrison, Shaun F.; Davis, Robert Patrick; Barman, Susan M.
2012-01-01
5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension. PMID:22407614
CHIP protects against cardiac pressure overload through regulation of AMPK
Schisler, Jonathan C.; Rubel, Carrie E.; Zhang, Chunlian; Lockyer, Pamela; Cyr, Douglas M.; Patterson, Cam
2013-01-01
Protein quality control and metabolic homeostasis are integral to maintaining cardiac function during stress; however, little is known about if or how these systems interact. Here we demonstrate that C terminus of HSC70-interacting protein (CHIP), a regulator of protein quality control, influences the metabolic response to pressure overload by direct regulation of the catalytic α subunit of AMPK. Induction of cardiac pressure overload in Chip–/– mice resulted in robust hypertrophy and decreased cardiac function and energy generation stemming from a failure to activate AMPK. Mechanistically, CHIP promoted LKB1-mediated phosphorylation of AMPK, increased the specific activity of AMPK, and was necessary and sufficient for stress-dependent activation of AMPK. CHIP-dependent effects on AMPK activity were accompanied by conformational changes specific to the α subunit, both in vitro and in vivo, identifying AMPK as the first physiological substrate for CHIP chaperone activity and establishing a link between cardiac proteolytic and metabolic pathways. PMID:23863712
40 CFR 52.320 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) regulations to incorporate the nitrogen dioxide (NO2) increments. (i) Incorporation by reference. (A... Gasoline Transfer at Bulk Plants-Vapor Balance System), and D (Test Procedures for Annual Pressure/Vacuum...
Endocannabinoids Acting at Cannabinoid-1 Receptors Regulate Cardiovascular Function in Hypertension
Bátkai, Sándor; Pacher, Pál; Osei-Hyiaman, Douglas; Radaeva, Svetlana; Liu, Jie; Harvey-White, Judith; Offertáler, László; Mackie, Ken; Audrey Rudd, M.; Bukoski, Richard D.; Kunos, George
2009-01-01
Background Endocannabinoids are novel lipid mediators with hypotensive and cardiodepressor activity. Here, we examined the possible role of the endocannabinergic system in cardiovascular regulation in hypertension. Methods and Results In spontaneously hypertensive rats (SHR), cannabinoid-1 receptor (CB1) antagonists increase blood pressure and left ventricular contractile performance. Conversely, preventing the degradation of the endocannabinoid anandamide by an inhibitor of fatty acid amidohydrolase reduces blood pressure, cardiac contractility, and vascular resistance to levels in normotensive rats, and these effects are prevented by CB1 antagonists. Similar changes are observed in 2 additional models of hypertension, whereas in normotensive control rats, the same parameters remain unaffected by any of these treatments. CB1 agonists lower blood pressure much more in SHR than in normotensive Wistar-Kyoto rats, and the expression of CB1 is increased in heart and aortic endothelium of SHR compared with Wistar-Kyoto rats. Conclusions We conclude that endocannabinoids tonically suppress cardiac contractility in hypertension and that enhancing the CB1-mediated cardiodepressor and vasodilator effects of endogenous anandamide by blocking its hydrolysis can normalize blood pressure. Targeting the endocannabinoid system offers novel therapeutic strategies in the treatment of hypertension. PMID:15451779
The cardiovascular effects of a chimeric opioid peptide based on morphiceptin and PFRTic-NH2.
Li, Meixing; Zhou, Lanxia; Ma, Guoning; Cao, Shuo; Dong, Shouliang
2013-01-01
MCRT (YPFPFRTic-NH(2)) is a chimeric opioid peptide based on morphiceptin and PFRTic-NH(2). In order to assess the cardiovascular effect of MCRT, it was administered by intravenous (i.v.) injection targeting at the peripheral nervous system and by intracerebroventricular (i.c.v.) injection targeting at the central nervous system. Naloxone and L-NAME were injected before MCRT to investigate possible interactions with MCRT. Results show that administration of MCRT by i.v. or i.c.v. injection could induce bradycardia and decrease in mean arterial pressure (MAP) at a greater degree than that with morphiceptin and PFRTic-NH(2). When MCRT and NPFF were coinjected, we observed a dose-dependent weakening of these cardiovascular effects by MCRT. Because naloxone completely abolished the cardiovascular effects of MCRT, we conclude that opioid receptors are involved in regulating the MAP of MCRT regardless of modes of injection. The effect of MCRT on heart rate is completely dependent on opioid receptors when MCRT was administered by i.c.v. instead of i.v. The central nitric oxide (NO) pathway is involved in regulating blood pressure by MCRT under both modes of injection, but the peripheral NO pathway had no effect on lowering blood pressure mediated by MCRT when it was administered by i.c.v. Based on the results from different modes of injection, the regulation of heart rate by MCRT mainly involves in the central NO pathway. Lastly, we observed that the cardiovascular effects of MCRT such as bradycardia and decrease of blood pressure, were stronger than that of its parent peptides. Opioid receptors and the NO pathway are involved in the cardiovascular regulation by MCRT, and their degree of involvement differs between intravenous and intracerebroventricular injection. Copyright © 2012 Elsevier Inc. All rights reserved.
Jeong, Hye Yun; Park, Kyung Mi; Lee, Mi Jung; Yang, Dong Ho; Kim, Sang Hoon; Lee, So-Young
2017-09-01
Vitamin D has the pleiotropic effects in multiple organ systems, and vitamin D deficiency was suggested to be associated with high blood pressure according to previous reports. Several interventional studies have examined the effect of vitamin D supplementation on high blood pressure patients, but the results have been inconsistent. In this article, we examined the literature that have proposed a mechanism involving vitamin D in the regulation of blood pressure and review previous observational and interventional studies that have shown the relationship between vitamin D and hypertension among various populations.
Real-time contaminant sensing and control in civil infrastructure systems
NASA Astrophysics Data System (ADS)
Rimer, Sara; Katopodes, Nikolaos
2014-11-01
A laboratory-scale prototype has been designed and implemented to test the feasibility of real-time contaminant sensing and control in civil infrastructure systems. A blower wind tunnel is the basis of the prototype design, with propylene glycol smoke as the ``contaminant.'' A camera sensor and compressed-air vacuum nozzle system is set up at the test section portion of the prototype to visually sense and then control the contaminant; a real-time controller is programmed to read in data from the camera sensor and administer pressure to regulators controlling the compressed air operating the vacuum nozzles. A computational fluid dynamics model is being integrated in with this prototype to inform the correct pressure to supply to the regulators in order to optimally control the contaminant's removal from the prototype. The performance of the prototype has been evaluated against the computational fluid dynamics model and is discussed in this presentation. Furthermore, the initial performance of the sensor-control system implemented in the test section of the prototype is discussed. NSF-CMMI 0856438.
Muñoz-Durango, Natalia; Fuentes, Cristóbal A.; Castillo, Andrés E.; González-Gómez, Luis Martín; Vecchiola, Andrea; Fardella, Carlos E.; Kalergis, Alexis M.
2016-01-01
Arterial hypertension is a common condition worldwide and an important predictor of several complicated diseases. Arterial hypertension can be triggered by many factors, including physiological, genetic, and lifestyle causes. Specifically, molecules of the renin-angiotensin-aldosterone system not only play important roles in the control of blood pressure, but they are also associated with the genesis of arterial hypertension, thus constituting a need for pharmacological interventions. Chronic high pressure generates mechanical damage along the vascular system, heart, and kidneys, which are the principal organs affected in this condition. In addition to mechanical stress, hypertension-induced oxidative stress, chronic inflammation, and the activation of reparative mechanisms lead to end-organ damage, mainly due to fibrosis. Clinical trials have demonstrated that renin-angiotensin-aldosterone system intervention in hypertensive patients lowers morbidity/mortality and inflammatory marker levels as compared to placebo patients, evidencing that this system controls more than blood pressure. This review emphasizes the detrimental effects that a renin-angiotensin-aldosterone system (RAAS) imbalance has on health considerations above and beyond high blood pressure, such as fibrotic end-organ damage. PMID:27347925
Muñoz-Durango, Natalia; Fuentes, Cristóbal A; Castillo, Andrés E; González-Gómez, Luis Martín; Vecchiola, Andrea; Fardella, Carlos E; Kalergis, Alexis M
2016-06-23
Arterial hypertension is a common condition worldwide and an important predictor of several complicated diseases. Arterial hypertension can be triggered by many factors, including physiological, genetic, and lifestyle causes. Specifically, molecules of the renin-angiotensin-aldosterone system not only play important roles in the control of blood pressure, but they are also associated with the genesis of arterial hypertension, thus constituting a need for pharmacological interventions. Chronic high pressure generates mechanical damage along the vascular system, heart, and kidneys, which are the principal organs affected in this condition. In addition to mechanical stress, hypertension-induced oxidative stress, chronic inflammation, and the activation of reparative mechanisms lead to end-organ damage, mainly due to fibrosis. Clinical trials have demonstrated that renin-angiotensin-aldosterone system intervention in hypertensive patients lowers morbidity/mortality and inflammatory marker levels as compared to placebo patients, evidencing that this system controls more than blood pressure. This review emphasizes the detrimental effects that a renin-angiotensin-aldosterone system (RAAS) imbalance has on health considerations above and beyond high blood pressure, such as fibrotic end-organ damage.
Interactive simulation system for artificial ventilation on the internet: virtual ventilator.
Takeuchi, Akihiro; Abe, Tadashi; Hirose, Minoru; Kamioka, Koichi; Hamada, Atsushi; Ikeda, Noriaki
2004-12-01
To develop an interactive simulation system "virtual ventilator" that demonstrates the dynamics of pressure and flow in the respiratory system under the combination of spontaneous breathing, ventilation modes, and ventilator options. The simulation system was designed to be used by unexperienced health care professionals as a self-training tool. The system consists of a simulation controller and three modules: respiratory, spontaneous breath, and ventilator. The respiratory module models the respiratory system by three resistances representing the main airway, the right and left lungs, and two compliances also representing the right and left lungs. The spontaneous breath module generates inspiratory negative pressure produced by a patient. The ventilator module generates driving force of pressure or flow according to the combination of the ventilation mode and options. These forces are given to the respiratory module through the simulation controller. The simulation system was developed using HTML, VBScript (3000 lines, 100 kB) and ActiveX control (120 kB), and runs on Internet Explorer (5.5 or higher). The spontaneous breath is defined by a frequency, amplitude and inspiratory patterns in the spontaneous breath module. The user can construct a ventilation mode by setting a control variable, phase variables (trigger, limit, and cycle), and options. Available ventilation modes are: controlled mechanical ventilation (CMV), continuous positive airway pressure, synchronized intermittent mandatory ventilation (SIMV), pressure support ventilation (PSV), SIMV + PSV, pressure-controlled ventilation (PCV), pressure-regulated volume control (PRVC), proportional assisted ventilation, mandatory minute ventilation (MMV), bilevel positive airway pressure (BiPAP). The simulation system demonstrates in a graph and animation the airway pressure, flow, and volume of the respiratory system during mechanical ventilation both with and without spontaneous breathing. We developed a web application that demonstrated the respiratory mechanics and the basic theory of ventilation mode.
Exploring Heart and Lung Function in Space: ARMS Experiments
NASA Technical Reports Server (NTRS)
Kuipers, Andre; Cork, Michael; LeGouic, Marine
2002-01-01
The Advanced Respiratory Monitoring System (ARMS) is a suite of monitoring instruments and supplies used to study the heart, lungs, and metabolism. Many experiments sponsored by the European Space Agency (ESA) will be conducted using ARMS during STS-107. The near-weightless environment of space causes the body to undergo many physiological adaptations, and the regulation of blood pressure is no exception. Astronauts also experience a decrease in blood volume as an adaptation to microgravity. Reduced blood volume may not provide enough blood pressure to the head during entry or landing. As a result, astronauts often experience light-headedness, and sometimes even fainting, when they stand shortly after returning to Earth. To help regulate blood pressure and heart rate, baroreceptors, sensors located in artery walls in the neck and near the heart, control blood pressure by sending information to the brain and ensuring blood flow to organs. These mechanisms work properly in Earth's gravity but must adapt in the microgravity environment of space. However, upon return to Earth during entry and landing, the cardiovascular system must readjust itself to gravity, which can cause fluctuation in the control of blood pressure and heart rate. Although the system recovers in hours or days, these occurrences are not easily predicted or understood - a puzzle investigators will study with the ARMS equipment. In space, researchers can focus on aspects of the cardiovascular system normally masked by gravity. The STS-107 experiments using ARMS will provide data on how the heart and lungs function in space, as well as how the nervous system controls them. Exercise will also be combined with breath holding and straining (the Valsalva maneuver) to test how heart rate and blood pressure react to different stresses. This understanding will improve astronauts' cardiopulmonary function after return to Earth, and may well help Earthbound patients who experience similar effects after long-term bed rest.
Oral Microbiome and Nitric Oxide: the Missing Link in the Management of Blood Pressure.
Bryan, Nathan S; Tribble, Gena; Angelov, Nikola
2017-04-01
Having high blood pressure puts you at risk for heart disease and stroke, which are leading causes of death in the USA and worldwide. One out of every three Americans has hypertension, and it is estimated that despite aggressive treatment with medications, only about half of those medicated have managed blood pressure. Recent discoveries of the oral microbiome that reduces inorganic nitrate to nitrite and nitric oxide provide a new therapeutic target for the management of hypertension. The presence or absence of select and specific bacteria may determine steady-state blood pressure levels. Eradication of oral bacteria through antiseptic mouthwash or overuse of antibiotics causes blood pressure to increase. Allowing recolonization of nitrate- and nitrite-reducing bacteria can normalize blood pressure. This review will provide evidence of the link between oral microbiota and the production of nitric oxide and regulation of systemic blood pressure. Management of systemic hypertension through maintenance of the oral microbiome is a completely new paradigm in cardiovascular medicine.
Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system
NASA Astrophysics Data System (ADS)
Manikandan, J.; Jayaraman, M.; Jayachandran, M.
2011-02-01
This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.
Cardiovascular regulation in humans in response to oscillatory lower body negative pressure
NASA Technical Reports Server (NTRS)
Levenhagen, D. K.; Evans, J. M.; Wang, M.; Knapp, C. F.
1994-01-01
The frequency response characteristics of human cardiovascular regulation during hypotensive stress have not been determined. We therefore exposed 10 male volunteers to seven frequencies (0.004-0.1 Hz) of oscillatory lower body negative pressure (OLBNP; 0-50 mmHg). Fourier spectra of arterial pressure (AP), central venous pressure (CVP), stroke volume (SV), cardiac output (CO), heart rate (HR), and total peripheral resistance (TPR) were determined and first harmonic mean, amplitude, and phase angles with respect to OLBNP are presented. AP was relatively well regulated as demonstrated by small oscillations in half amplitude (3.5 mmHg) that were independent of OLBNP frequency and similar to unstressed control spectra. Due to the biomechanics of the system, the magnitudes of oscillations in calf circumference (CC) and CVP decreased with increasing frequency; therefore, we normalized responses by these indexes of the fluid volume shifted. The ratios of oscillations in AP to oscillations in CC increased by an order of magnitude, whereas oscillations in CVP to oscillations in CC and oscillations in AP to oscillations in CVP both tripled between 0.004 and 0.1 Hz. Therefore, even though the amount of fluid shifted by OLBNP decreased with increasing frequency, the magnitude of both CVP and AP oscillations per volume of fluid shifted increased (peaking at 0.08 Hz). The phase relationships between variables, particularly the increasing lags in SV and TPR, but not CVP, indicated that efferent responses with lags of 5-6 s could account for the observed responses. We conclude that, at frequencies below 0.02 Hz, the neural system of humans functioned optimally in regulating AP; OLBNP-induced decreases in SV (by as much as 50%) were counteracted by appropriate oscillations in HR and TPR responses. As OLBNP frequency increased, SV, TPR, and HR oscillations increasingly lagged the input and became less optimally timed for AP regulation.
Occupational burns from oxygen resuscitator fires: the hazard of aluminum regulators.
Hodous, Thomas K; Washenitz, Frank; Newton, Barry
2002-07-01
There have been over 30 incidents of oxygen resuscitator fires over the last 6 years, causing severe burns to a number of fire fighters, emergency medical service personnel, health care workers, and patients. The National Institute for Occupational Safety and Health (NIOSH) was requested to investigate three such incidents. NIOSH conducted site investigations of the incidents, and the requesters also sent the involved oxygen resuscitators to a forensic engineering company for a causal analysis. The investigated fires were associated with aluminum regulators, all from one manufacturer, on compressed pure oxygen cylinders. The investigations indicated that the cause of the fires was an initial small ignition in the high-pressure area of the aluminum regulator, which then consumed itself in a massive burnout. Aluminum regulators used with high-pressure oxygen systems are subject to rare, but potentially catastrophic combustion in normal use. Replacement of such regulators with those made of more fire-resistant materials or designs, as well as education and improved safety practices are needed to reduce this hazard.
An Overview of Propulsion Concept Studies and Risk Reduction Activities for Robotic Lunar Landers
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Story, George; Burnside, Chris; Kudlach, Al
2010-01-01
In support of designing robotic lunar lander concepts, the propulsion team at NASA Marshall Space Flight Center (MSFC) and the Johns Hopkins University Applied Physics Laboratory (APL), with participation from industry, conducted a series of trade studies on propulsion concepts with an emphasis on light-weight, advanced technology components. The results suggest a high-pressure propulsion system may offer some benefits in weight savings and system packaging. As part of the propulsion system, a solid rocket motor was selected to provide a large impulse to reduce the spacecraft s velocity prior to the lunar descent. In parallel to this study effort, the team also began technology risk reduction testing on a high thrust-to-weight descent thruster and a high-pressure regulator. A series of hot-fire tests was completed on the descent thruster in vacuum conditions at NASA White Sands Test Facility (WSTF) in New Mexico in 2009. Preparations for a hot-fire test series on the attitude control thruster at WSTF and for pressure regulator testing are now underway. This paper will provide an overview of the concept trade study results along with insight into the risk mitigation activities conducted to date.
Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik
2013-01-01
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389
Genetics Home Reference: familial dysautonomia
... and the regulation of blood pressure and body temperature. It also affects the sensory nervous system, which ... tears, frequent lung infections, and difficulty maintaining body temperature. Older infants and young children with familial dysautonomia ...
Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Cartagena, W.
2015-01-01
A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater. The ullage diffuser tests were conducted as a baseline to evaluate the performance of the pressurization system, and the submerged diffuser tests showed how the performance of the pressurization system was compromised when the diffuser was submerged in LH2. The test results are evaluated and compared, and included in this report for various propellant tank fill levels.
Replaceable Sensor System for Bioreactor Monitoring
NASA Technical Reports Server (NTRS)
Mayo, Mike; Savoy, Steve; Bruno, John
2006-01-01
A sensor system was proposed that would monitor spaceflight bioreactor parameters. Not only will this technology be invaluable in the space program for which it was developed, it will find applications in medical science and industrial laboratories as well. Using frequency-domain-based fluorescence lifetime technology, the sensor system will be able to detect changes in fluorescence lifetime quenching that results from displacement of fluorophorelabeled receptors bound to target ligands. This device will be used to monitor and regulate bioreactor parameters including glucose, pH, oxygen pressure (pO2), and carbon dioxide pressure (pCO2). Moreover, these biosensor fluorophore receptor-quenching complexes can be designed to further detect and monitor for potential biohazards, bioproducts, or bioimpurities. Biosensors used to detect biological fluid constituents have already been developed that employ a number of strategies, including invasive microelectrodes (e.g., dark electrodes), optical techniques including fluorescence, and membrane permeable systems based on osmotic pressure. Yet the longevity of any of these sensors does not meet the demands of extended use in spacecraft habitat or bioreactor monitoring. It was therefore necessary to develop a sensor platform that could determine not only fluid variables such as glucose concentration, pO2, pCO2, and pH but can also regulate these fluid variables with controlled feedback loop.
Investigation on wind energy-compressed air power system.
Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao
2004-03-01
Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.
Zhang, Changzheng; Luo, Wen; Zhou, Peiling; Sun, Tingzhe
2016-08-26
It is well known that the cerebellar fastigial nucleus (FN) is involved in cardiovascular modulation, and has direct evidence of cholinergic activity; however, whether and how acetylcholine (ACh) in the FN modulates blood pressure has not been investigated. In this study, we analyzed mean arterial pressure, maximal change in mean arterial pressure, and the reaction time of blood pressure changes after microinjection of cholinergic reagents into the FN in anesthetized rats. The results showed that ACh evoked a concentration-dependent (10, 30 and 100mM) effect on blood pressure down-regulation. The muscarinic ACh (mACh) receptor antagonist atropine, but not the nicotinic ACh (nACh) receptor antagonist mecamylamine, blocked the ACh-mediated depressor response. The mACh receptor agonist oxotremorine M, rather than nACh receptor agonist nicotine, mimicked the ACh-mediated blood pressure decrease in a dose-dependent manner (10, 30 and 100mM). These results indicate that cholinergic input in the cerebellar FN exerts a depressor effect on systemic blood pressure regulation, and such effects are substantially contributed by mACh rather than nACh receptors, although the precise mechanism concerning the role of mACh receptor in FN-mediated blood pressure modulation remains to be elucidated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Subsystem Analysis/Optimization for the X-34 Main Propulsion System
NASA Technical Reports Server (NTRS)
McDonald, J. P.; Hedayat, A.; Brown, T. M.; Knight, K. C.; Champion, R. H., Jr.
1998-01-01
The Orbital Sciences Corporation X-34 vehicle demonstrates technologies and operations key to future reusable launch vehicles. The general flight performance goal of this unmanned rocket plane is Mach 8 flight at an altitude of 250,000 feet. The Main Propulsion System (MPS) supplies liquid propellants to the main engine, which provides the primary thrust for attaining mission goals. Major MPS design and operational goals are aircraft-like ground operations, quick turnaround between missions, and low initial/operational costs. Analyses related to optimal MPS subsystem design are reviewed in this paper. A pressurization system trade weighs maintenance/reliability concerns against those for safety in a comparison of designs using pressure regulators versus orifices to control pressurant flow. A propellant dump/feed system analysis weighs the issues of maximum allowable vehicle landing weight, trajectory, and MPS complexity to arrive at a final configuration for propellant dump/feed systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Jan; Ferrada, Juan J; Curd, Warren
During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predictedmore » to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support from Northrop Grumman, and OneCIS). ITER International Organization (ITER-IO) is responsible for design oversight and equipment installation in Cadarache, France. TCWS equipment will be fabricated using ASME design codes with quality assurance and oversight by an Agreed Notified Body (approved by the French regulator) that will ensure regulatory compliance. This paper describes the TCWS design and how U.S. ITER and fabricators will use ASME codes to comply with EU Directives and French Orders and Decrees.« less
Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi
2017-09-15
In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.
Neural Control of the Cardiovascular System in Space
NASA Technical Reports Server (NTRS)
Levine, Benjamin D.; Pawelczyk, James A.; Zuckerman, Julie; Zhang, Rong; Fu, Qi; Iwasaki, Kenichi; Ray, Chet; Blomqvist, C. Gunnar; Lane, Lynda D.; Giller, Cole A.
2003-01-01
During the acute transition from lying supine to standing upright, a large volume of blood suddenly moves from the chest into the legs. To prevent fainting, the blood pressure control system senses this change immediately, and rapidly adjusts flow (by increasing heart rate) and resistance to flow (by constricting the blood vessels) to restore blood pressure and maintain brain blood flow. If this system is inadequate, the brain has a backup plan. Blood vessels in the brain can adjust their diameter to keep blood flow constant. If blood pressure drops, the brain blood vessels dilate; if blood pressure increases, the brain blood vessels constrict. This process, which is called autoregulation, allows the brain to maintain a steady stream of oxygen, even when blood pressure changes. We examined what changes in the blood pressure control system or cerebral autoregulation contribute to the blood pressure control problems seen after spaceflight. We asked: (1) does the adaptation to spaceflight cause an adaptation in the blood pressure control system that impairs the ability of the system to constrict blood vessels on return to Earth?; (2) if such a defect exists, could we pinpoint the neural pathways involved?; and (3) does cerebral autoregulation become abnormal during spaceflight, impairing the body s ability to maintain constant brain blood flow when standing upright on Earth? We stressed the blood pressure control system using lower body negative pressure, upright tilt, handgrip exercise, and cold stimulation of the hand. Standard cardiovascular parameters were measured along with sympathetic nerve activity (the nerve activity causing blood vessels to constrict) and brain blood flow. We confirmed that the primary cardiovascular effect of spaceflight was a postflight reduction in upright stroke volume (the amount of blood the heart pumps per beat). Heart rate increased appropriately for the reduction in stroke volume, thereby showing that changes in heart rate regulation alone cannot be responsible for orthostatic hypotension after spaceflight. All of the astronauts in our study had an increase in sympathetic nerve activity during upright tilting on Earth postflight. This increase was well calibrated for the reduction in stroke volume induced by the upright posture. The results obtained from stimulating the sympathetic nervous system using handgrip exercise or cold stress were also entirely normal during and after spaceflight. No astronaut had reduced cerebral blood flow during upright tilt, and cerebral autoregulation was normal or even enhanced inflight. These experiments show that the cardiovascular adaptation to spaceflight does not lead to a defect in the regulation of blood vessel constriction via sympathetic nerve activity. In addition, cerebral autoregulation is well-maintained. It is possible that despite the increased sympathetic nerve activity, blood vessels did not respond with a greater degree of constriction than occurred preflight, possibly uncovering a limit of vasoconstrictor reserve.
Drummond, Heather A; Stec, David E
2015-06-01
Pressure-induced constriction (also known as the "myogenic response") is an important mechanodependent response in small renal arteries and arterioles. The response is initiated by vascular smooth muscle cell (VSMC) stretch due to an increase in intraluminal pressure and leads to vasoconstriction. The myogenic response has two important roles as a mechanism of local blood flow autoregulation and protection against systemic blood pressure-induced microvascular damage. However, the molecular mechanisms underlying initiation of myogenic response are unresolved. Although several molecules have been considered initiators of the response, our laboratory has focused on the role of degenerin proteins because of their strong evolutionary link to mechanosensing in the nematode. Our laboratory has addressed the hypothesis that certain degenerin proteins act as mechanosensors in VSMCs. This article discusses the importance of a specific degenerin protein, β Epithelial Na + Channel (βENaC), in pressure-induced vasoconstriction, renal blood flow and susceptibility to renal injury. We propose that loss of the renal myogenic constrictor response delays the correction of renal blood flow that occurs with fluctuations in systemic pressure, which allows pressure swings to be transmitted to the microvasculature, thus increasing the susceptibility to renal injury and hypertension. The role of βENaC in myogenic regulation is independent of tubular βENaC and thus represents a non-tubular role for βENaC in renal-cardiovascular homeostasis.
NASA Technical Reports Server (NTRS)
1999-01-01
This document describes the design of the leading edge suction system for flight demonstration of hybrid laminar flow control on the Boeing 757 airplane. The exterior pressures on the wing surface and the required suction quantity and distribution were determined in previous work. A system consisting of porous skin, sub-surface spanwise passages ("flutes"), pressure regulating screens and valves, collection fittings, ducts and a turbocompressor was defined to provide the required suction flow. Provisions were also made for flexible control of suction distribution and quantity for HLFC research purposes. Analysis methods for determining pressure drops and flow for transpiration heating for thermal anti-icing are defined. The control scheme used to observe and modulate suction distribution in flight is described.
Novel ideas about salt, blood pressure, and pregnancy.
Rakova, Natalia; Muller, Dominik N; Staff, Anne Cathrine; Luft, Friedrich C; Dechend, Ralf
2014-03-01
The molecular mechanisms leading to preeclampsia are poorly understood. It has been related to certain immune mechanisms, as well as the pathological regulation of the renin-angiotensin system together with perturbed salt and plasma volume regulation. Finally, a non-specific, vascular, inflammatory response is generated, which leads to the clinical syndrome. Here, we present novel findings in salt (NaCl) metabolism implying that salt is not only important in blood pressure control and volume homeostasis, but also in immune regulation. Sodium and chloride can be stored without accumulation of water in the interstitium at hypertonic concentrations through interactions with proteoglycans. Macrophages in the interstitium act as osmosensors for salt, producing increased amounts of vascular endothelial factor C, which increases the density of the lymph-capillary network and the production of nitric oxide in vessels. An increased interstitial salt concentration activates the innate immune system, especially Th17 cells, and may be an important trigger for autoimmune diseases. The novel findings with the idea of sodium storage and local mechanisms of volume and immune regulation are appealing for preeclampsia and may unify the "immune" and "vascular" hypotheses of preeclampsia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Skeletal Muscle Pump Drives Control of Cardiovascular and Postural Systems
NASA Astrophysics Data System (ADS)
Verma, Ajay K.; Garg, Amanmeet; Xu, Da; Bruner, Michelle; Fazel-Rezai, Reza; Blaber, Andrew P.; Tavakolian, Kouhyar
2017-03-01
The causal interaction between cardio-postural-musculoskeletal systems is critical in maintaining postural stability under orthostatic challenge. The absence or reduction of such interactions could lead to fainting and falls often experienced by elderly individuals. The causal relationship between systolic blood pressure (SBP), calf electromyography (EMG), and resultant center of pressure (COPr) can quantify the behavior of cardio-postural control loop. Convergent cross mapping (CCM) is a non-linear approach to establish causality, thus, expected to decipher nonlinear causal cardio-postural-musculoskeletal interactions. Data were acquired simultaneously from young participants (25 ± 2 years, n = 18) during a 10-minute sit-to-stand test. In the young population, skeletal muscle pump was found to drive blood pressure control (EMG → SBP) as well as control the postural sway (EMG → COPr) through the significantly higher causal drive in the direction towards SBP and COPr. Furthermore, the effect of aging on muscle pump activation associated with blood pressure regulation was explored. Simultaneous EMG and SBP were acquired from elderly group (69 ± 4 years, n = 14). A significant (p = 0.002) decline in EMG → SBP causality was observed in the elderly group, compared to the young group. The results highlight the potential of causality to detect alteration in blood pressure regulation with age, thus, a potential clinical utility towards detection of fall proneness.
No Elevated Plasma Catecholamine Levels during Sleep in Newly Diagnosed, Untreated Hypertensives
Rasch, Björn; Dodt, Christoph; Sayk, Friedhelm; Mölle, Matthias; Born, Jan
2011-01-01
The sympatho-adrenergic system is highly involved in regulating sleep, wake and arousal states, and abnormalities in this system are regarded as a key factor in the development and progression of arterial hypertension. While hypertension is associated with a hyperadrenergic state during wakefulness, the effect of hypertension on plasma-catecholamine levels during sleep is not yet known. Twelve young participants with newly diagnosed, untreated hypertension and twelve healthy controls slept for 7 hours in the sleep laboratory. Before and after sleep, subjects rested in a supine position for 3-h periods of wakefulness. We sampled blood at a fast rate (1/10 min) and monitored blood pressure and heart rate continuously. We show that plasma NE and E levels did not differ between hypertensives and normotensive during sleep as well as before and after sleep. Blood pressure was higher in hypertensives, reaching the largest group difference in the morning after sleep. Unlike in the normotensives, in the hypertensive participants the morning rise in blood pressure did not correlate with the rise in catecholamine levels at awakening. Our results suggest that hypertension in its early stages is not associated with a strong hyperadrenergic state during sleep. In showing a diminished control of blood pressure through sympatho-adrenergic signals in hypertensive participants, our data point towards a possible involvement of dysfunctional sleep-related blood pressure regulation in the development of hypertension. PMID:21695061
30 CFR 250.1625 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND... SHELF Sulphur Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to... manifold valves, upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to...
The Renal Renin-Angiotensin System
ERIC Educational Resources Information Center
Harrison-Bernard, Lisa M.
2009-01-01
The renin-angiotensin system (RAS) is a critical regulator of sodium balance, extracellular fluid volume, vascular resistance, and, ultimately, arterial blood pressure. In the kidney, angiotensin II exerts its effects to conserve salt and water through a combination of the hemodynamic control of renal blood flow and glomerular filtration rate and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
... in certain fuel pump pressure switches. This proposed AD results from fuel system reviews conducted... systems. As a result of those findings, we issued a regulation titled ``Transport Airplane Fuel Tank... certificate (TC) and supplemental type certificate (STC)) holders to substantiate that their fuel tank systems...
Mora, Leticia; Hayes, Maria
2015-02-11
The primary function of dietary protein is to provide amino acids for protein synthesis. However, protein is also a source of latent bioactive peptides or cryptides with potential health benefits including the control and regulation of blood pressure. Hypertension or high blood pressure is one of the major, controllable risk factors in the development of cardiovascular disease (CVD), and it is also implicated in the development of myocardial infarction, heart failure, and end-stage diabetes. Cryptides can act on various systems of the body including the circulatory, gastrointestinal (GI), nervous, skeletal, and respiratory systems. A number of studies carried out to date have examined the health benefits of food protein isolates and hydrolysates. This review provides an overview of existing blood pressure regulating peptides and products derived from fish and other protein sources and hydrolysates. It discusses the methods used currently to generate and identify cryptides from these sources and their application in food and pharmaceutical products. It also looks at the current market for protein-derived peptides and peptide-containing products, legislation governing their use, and the future development of research in this area.
21 CFR 868.2700 - Pressure regulator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... purposes and that is used to convert a medical gas pressure from a high variable pressure to a lower, more constant working pressure. This device includes mechanical oxygen regulators. (b) Classification. Class I...
Method of Simulating Flow-Through Area of a Pressure Regulator
NASA Technical Reports Server (NTRS)
Hass, Neal E. (Inventor); Schallhorn, Paul A. (Inventor)
2011-01-01
The flow-through area of a pressure regulator positioned in a branch of a simulated fluid flow network is generated. A target pressure is defined downstream of the pressure regulator. A projected flow-through area is generated as a non-linear function of (i) target pressure, (ii) flow-through area of the pressure regulator for a current time step and a previous time step, and (iii) pressure at the downstream location for the current time step and previous time step. A simulated flow-through area for the next time step is generated as a sum of (i) flow-through area for the current time step, and (ii) a difference between the projected flow-through area and the flow-through area for the current time step multiplied by a user-defined rate control parameter. These steps are repeated for a sequence of time steps until the pressure at the downstream location is approximately equal to the target pressure.
NASA Technical Reports Server (NTRS)
Joerns, J. C.
1986-01-01
Pressure regulated and flow timed to control amount dispensed. Dispenser provides measured amount of water for reconstituting dehydrated foods and beverages. Dispenser holds food or beverage package while being filled with either cold or room-temperature water. Other uses might include dispensing of fluids or medicine. Pressure regulator in dispenser reduces varying pressure of water supply to constant pressure. Electronic timer stops flow after predetermined length of time. Timed flow at regulated pressure ensures controlled volume of water dispensed.
Design and Testing of a Variable Pressure Regulator for the Constellation Space Suit
NASA Technical Reports Server (NTRS)
Gill, Larry; Campbell, Colin
2008-01-01
The next generation space suit requires additional capabilities for controlling and adjusting internal pressure than previous design suits. Next generation suit pressures will range from slight pressure, for astronaut prebreath comfort, to hyperbaric pressure levels for emergency medical treatment. Carleton was awarded a contract in 2008 to design and build a proof of concept bench top demonstrator regulator having five setpoints which are selectable using input electronic signaling. Although the basic regulator architecture is very similar to the existing SOP regulator used in the current EMU, the major difference is the electrical selectivity of multiple setpoints rather than the mechanical On/Off feature found on the SOP regulator. The concept regulator employs a linear actuator stepper motor combination to provide variable compression to a custom design main regulator spring. This concept allows for a continuously adjustable outlet pressures from 8.2 psid (maximum) down to "firm" zero thus effectively allowing it to serve as a shutoff valve. This paper details the regulator design and presents test results on regulation band width, command set point accuracy; slue rate and regulation stability, particularly when the set point is being slued. Projections for a flight configuration version are also offered for performance, architectural layout and weight.
Water outlet control mechanism for fuel cell system operation in variable gravity environments
NASA Technical Reports Server (NTRS)
Vasquez, Arturo (Inventor); McCurdy, Kerri L. (Inventor); Bradley, Karla F. (Inventor)
2007-01-01
A self-regulated water separator provides centrifugal separation of fuel cell product water from oxidant gas. The system uses the flow energy of the fuel cell's two-phase water and oxidant flow stream and a regulated ejector or other reactant circulation pump providing the two-phase fluid flow. The system further uses a means of controlling the water outlet flow rate away from the water separator that uses both the ejector's or reactant pump's supply pressure and a compressibility sensor to provide overall control of separated water flow either back to the separator or away from the separator.
Method and apparatus for fine tuning an orifice pulse tube refrigerator
Swift, Gregory W.; Wollan, John J.
2003-12-23
An orifice pulse tube refrigerator uses flow resistance, compliance, and inertance components connected to a pulse tube for establishing a phase relationship between oscillating pressure and oscillating velocity in the pulse tube. A temperature regulating system heats or cools a working gas in at least one of the flow resistance and inertance components. A temperature control system is connected to the temperature regulating system for controlling the temperature of the working gas in the at least one of the flow resistance and inertance components and maintains a control temperature that is indicative of a desired temporal phase relationship.
Intrathoracic Pressure Regulator for Blood Loss
2016-05-24
AFRL-SA-WP-SR-2016-0006 Intrathoracic Pressure Regulator for Blood Loss Richard D. Branson, RRT University of Cincinnati...Special Report 3. DATES COVERED (From – To) September 2011 – October 2013 4. TITLE AND SUBTITLE Intrathoracic Pressure Regulator for Blood Loss 5a...used to treat hypovolemia and cardiac arrest. Preclinical trials demonstrate that ITPR increases venous return and thereby restores blood pressure and
Intrathoracic Pressure Regulator for Blood Loss
2016-05-01
AFRL-SA-WP-SR-2016-0006 Intrathoracic Pressure Regulator for Blood Loss Richard D. Branson, RRT University of Cincinnati...Special Report 3. DATES COVERED (From – To) September 2011 – October 2013 4. TITLE AND SUBTITLE Intrathoracic Pressure Regulator for Blood Loss 5a...used to treat hypovolemia and cardiac arrest. Preclinical trials demonstrate that ITPR increases venous return and thereby restores blood pressure and
Regulation of Cell Cycle and Stress Responses to Hydrostatic Pressure in Fission Yeast
George, Vinoj T.; Brooks, Gavin
2007-01-01
We have investigated the cellular responses to hydrostatic pressure by using the fission yeast Schizosaccharomyces pombe as a model system. Exposure to sublethal levels of hydrostatic pressure resulted in G2 cell cycle delay. This delay resulted from Cdc2 tyrosine-15 (Y-15) phosphorylation, and it was abrogated by simultaneous disruption of the Cdc2 kinase regulators Cdc25 and Wee1. However, cell cycle delay was independent of the DNA damage, cytokinesis, and cell size checkpoints, suggesting a novel mechanism of Cdc2-Y15 phosphorylation in response to hydrostatic pressure. Spc1/Sty1 mitogen-activated protein (MAP) kinase, a conserved member of the eukaryotic stress-activated p38, mitogen-activated protein (MAP) kinase family, was rapidly activated after pressure stress, and it was required for cell cycle recovery under these conditions, in part through promoting polo kinase (Plo1) phosphorylation on serine 402. Moreover, the Spc1 MAP kinase pathway played a key role in maintaining cell viability under hydrostatic pressure stress through the bZip transcription factor, Atf1. Further analysis revealed that prestressing cells with heat increased barotolerance, suggesting adaptational cross-talk between these stress responses. These findings provide new insight into eukaryotic homeostasis after exposure to pressure stress. PMID:17699598
Bipropellant propulsion with reciprocating pumps
NASA Astrophysics Data System (ADS)
Whitehead, John C.
1993-06-01
A pressure regulated gas generator rocket cycle with alternately pressurized pairs of reciprocating pumps offers thrust-on-demand operation with significantly lower inert mass than conventional spacecraft liquid propulsion systems. The operation of bipropellant feed systems with reciprocating pumps is explained, with consideration for both short and long term missions. There are several methods for startup and shutdown of this self-starting pump-fed system, with preference determined by thrust duty cycle and mission duration. Progress to date includes extensive development testing of components unique to this type of system, and several live tests with monopropellant hydrazine. Pneumatic pump control valves which render pistons and bellows automatically responsive to downstream liquid demand are significantly simpler than those described previously. A compact pumpset mounted to central liquid manifolds has a pair of oxidizer pumps pneumatically slaved to a pair of fuel pumps to reduce vibration. A warm gas pressure reducer for tank expulsion can eliminate any remaining need for inert gas storage.
NASA Astrophysics Data System (ADS)
Balakrishnan, A.; Frei, M.; Kerzenmacher, S.; Reinecke, H.; Mueller, C.
2015-12-01
In this work we present the design and fabrication of the miniaturized PEM fuel cell combined microreactor system with hydrogen regulation mechanism and testing of prototype microreactor. The system consists of two components (i) fuel cell component and (ii) microreactor component. The fuel cell component represents the miniaturized PEM fuel cell system (combination of screen printed fuel cell assembly and an on-board hydrogen storage medium). Hydrogen production based on catalytic hydrolysis of chemical hydride takes place in the microreactor component. The self-regulated hydrogen mechanism based on the gaseous hydrogen produced from the catalytic hydrolysis of sodium borohydride (NaBH4) gets accumulated as bubbles at the vicinity of the hydrophobic coated hydrogen exhaust holes. When the built up hydrogen bubbles pressure exceeds the burst pressure at the hydrogen exhaust holes the bubble collapses. This collapse causes a surge of fresh NaBH4 solution onto the catalyst surface leading to the removal of the reaction by-products formed at the active sites of the catalyst. The catalyst used in the system is platinum deposited on a base substrate. Nickel foam, carbon porous medium (CPM) and ceramic plate were selected as candidates for base substrate for developing a robust catalyst surface. For the first time the platinum layer fabricated by pulsed electrodeposition and dealloying (EPDD) technique is used for hydrolysis of NaBH4. The major advantages of such platinum catalyst layers are its high surface area and their mechanical stability. Prototype microreactor system with self-regulated hydrogen mechanism is demonstrated.
Tank depletion flow controller
Georgeson, Melvin A.
1976-10-26
A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.
Janiuk, I.; Kasacka, I.
2015-01-01
Recent biological advances make it possible to discover new peptides associated with hypertension. The cocaine- and amphetamine-regulated transcript (CART) is a known factor in appetite and feeding behaviour. Various lines of evidence suggest that this peptide participates not only in control of feeding behaviour but also in the regulation of the cardiovascular and sympathetic systems and blood pressure. The role of CART in blood pressure regulation led us to undertake a study aimed at analysing quantitative changes in CART-containing cells in urinary bladders (UB) of rats with renovascular hypertension. We used the Goldblatt model of arterial hypertension (two-kidney, one clip) to evaluate quantitative changes. This model provides researchers with a commonly used tool to analyse the renin-angiotensin system of blood pressure control and, eventually, to develop drugs for the treatment of chronic hypertension. The study was performed on sections of urinary bladders of rats after 3-, 14-, 28-, 42 and 91 days from hypertension induction. Immunohistochemical identification of CART cells was performed on paraffin for the UBs of all the study animals. CART was detected in the endocrine cells, especially numerous in the submucosa and muscularis layers, with a few found in the transitional epithelium and only occasionally in serosa. Hypertension significantly increased the number of CART-positive cells in the rat UBs. After 3 and 42 days following the procedure, statistically significantly higher numbers of CART-positive cells were identified in comparison with the control animals. The differences between the hypertensive rats and the control animals concerned not only the number density of CART-immunoreactive cells but also their localization. After a 6-week period, each of the rats subjected to the renal artery clipping procedure developed stable hypertension. CART appeared in numerous transitional epithelium cells. As this study provides novel findings, the question appears about the type of connection between hypertension and the functioning and activity of CART in the urinary tract (UT). The study gives rise to the assumption that high blood pressure can be a factor that intensifies CART secretion. In conclusion, the endocrine system of the urinary tract is modified by renovascular hypertension. This may affect the production of hormones and biologically active substances and contribute to the development of possible hypertension complications. In order to fully comprehend the role of the CART peptide in blood pressure regulation, further analyses are necessary. PMID:26150151
Janiuk, I; Kasacka, I
2015-04-13
Recent biological advances make it possible to discover new peptides associated with hypertension. The cocaine- and amphetamine-regulated transcript (CART) is a known factor in appetite and feeding behaviour. Various lines of evidence suggest that this peptide participates not only in control of feeding behaviour but also in the regulation of the cardiovascular and sympathetic systems and blood pressure. The role of CART in blood pressure regulation led us to undertake a study aimed at analysing quantitative changes in CART-containing cells in urinary bladders (UB) of rats with renovascular hypertension. We used the Goldblatt model of arterial hypertension (two-kidney, one clip) to evaluate quantitative changes. This model provides researchers with a commonly used tool to analyse the renin-angiotensin system of blood pressure control and, eventually, to develop drugs for the treatment of chronic hypertension. The study was performed on sections of urinary bladders of rats after 3-, 14-, 28-, 42 and 91 days from hypertension induction. Immunohistochemical identification of CART cells was performed on paraffin for the UBs of all the study animals. CART was detected in the endocrine cells, especially numerous in the submucosa and muscularis layers, with a few found in the transitional epithelium and only occasionally in serosa. Hypertension significantly increased the number of CART-positive cells in the rat UBs. After 3 and 42 days following the procedure, statistically significantly higher numbers of CART-positive cells were identified in comparison with the control animals. The differences between the hypertensive rats and the control animals concerned not only the number density of CART-immunoreactive cells but also their localization. After a 6-week period, each of the rats subjected to the renal artery clipping procedure developed stable hypertension. CART appeared in numerous transitional epithelium cells. As this study provides novel findings, the question appears about the type of connection between hypertension and the functioning and activity of CART in the urinary tract (UT). The study gives rise to the assumption that high blood pressure can be a factor that intensifies CART secretion. In conclusion, the endocrine system of the urinary tract is modified by renovascular hypertension. This may affect the production of hormones and biologically active substances and contribute to the development of possible hypertension complications. In order to fully comprehend the role of the CART peptide in blood pressure regulation, further analyses are necessary.
Pan, Huanglei; She, Xingxing; Wu, Hongli; Ma, Jun; Ren, Difeng; Lu, Jun
2015-09-09
This study investigated the long-term (8 weeks) anti-hypertensive effects of 10 mg/kg tripeptides isolated from Spirulina platensis, Ile-Gln-Pro (IQP) and Val-Glu-Pro (VEP), and S. platensis hydrolysates (SH) on spontaneously hypertensive rats. The treatment period was 6 weeks, and observation continued for another 2 weeks. After treatment, weighted systolic blood pressure, weighted diastolic blood pressure, left ventricular mass index, and right ventricular mass index of groups treated with IQP, VEP, and SH were significantly lower than those of the group treated with distilled water, even when the treatments had been withdrawn for 2 weeks. Quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting showed the mRNA expression levels and protein/peptide concentrations of the main components of the renin angiotensin system in myocardium were significantly affected by treatment: angiotensin converting enzyme, angiotensin II, and angiotensin type 1 receptor were down-regulated, whereas angiotensin type 2 receptor, angiotensin converting enzyme 2, angiotensin-(1-7), and Mas receptor were up-regulated.
Leptin regulates ACE activity in mice.
Hilzendeger, Aline Mourao; Morais, Rafael Leite; Todiras, Mihail; Plehm, Ralph; da Costa Goncalves, Andrey; Qadri, Fatimunnisa; Araujo, Ronaldo Carvalho; Gross, Volkmar; Nakaie, Clovis Ryuichi; Casarini, Dulce Elena; Carmona, Adriana Karaoglanovic; Bader, Michael; Pesquero, João Bosco
2010-09-01
Leptin is a hormone related to metabolism. It also influences blood pressure, but the mechanisms triggered in this process are not yet elucidated. Angiotensin-I converting enzyme (ACE) regulates cardiovascular functions and recently has been associated with metabolism control and obesity. Here, we used ob/ob mice, a model lacking leptin, to answer the question whether ACE and leptin could interact to influence blood pressure, thereby linking the renin-angiotensin system and obesity. These mice are obese and diabetic but have normal 24 h mean arterial pressure. Our results show that plasma and lung ACE activities as well as ACE mRNA expression were significantly decreased in ob/ob mice. In agreement with these findings, the hypotensive effect produced by enalapril administration was attenuated in the obese mice. Plasma renin, angiotensinogen, angiotensin I, bradykinin, and angiotensin 1-7 were increased, whereas plasma angiotensin II concentration was unchanged in obese mice. Chronic infusion of leptin increased renin activity and angiotensin II concentration in both groups and increased ACE activity in ob/ob mice. Acute leptin infusion restored ACE activity in leptin-deficient mice. Moreover, the effect of an ACE inhibitor on blood pressure was not changed in ob/+ mice during leptin treatment but increased four times in obese mice. In summary, our findings show that the renin-angiotensin system is altered in ob/ob mice, with markedly reduced ACE activity, which suggests a possible connection between the renin-angiotensin system and leptin. These results point to an important interplay between the angiotensinergic and the leptinergic systems, which may play a role in the pathogenesis of obesity, hypertension, and metabolic syndrome.
Analytical Solution to the Pneumatic Transient Rod System at ACRR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehr, Brandon Michael
2016-01-08
The ACRR pulse is pneumatically driven by nitrogen in a system of pipes, valves and hoses up to the connection of the pneumatic system and mechanical linkages of the transient rod (TR). The main components of the TR pneumatic system are the regulator, accumulator, solenoid valve and piston-cylinder assembly. The purpose of this analysis is to analyze the flow of nitrogen through the TR pneumatic system in order to develop a motion profile of the piston during the pulse and be able to predict the pressure distributions inside both the cylinder and accumulators. The predicted pressure distributions will be validatedmore » against pressure transducer data, while the motion profile will be compared to proximity switch data. By predicting the motion of the piston, pulse timing will be determined and provided to the engineers/operators for verification. The motion profile will provide an acceleration distribution to be used in Razorback to more accurately predict reactivity insertion into the system.« less
Optimization of a pressure control valve for high power automatic transmission considering stability
NASA Astrophysics Data System (ADS)
Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong
2018-02-01
The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.
Hadfield during BP Reg Experiment Operations
2013-04-17
ISS035-E-022360 (17 April 2013) --- In support of the Blood Pressure Regulation Experiment (BP Reg), Expedition 35 Commander Chris Hadfield of the Canadian Space Agency is pictured after having set up the Human Research Facility (HRF) PFS (Pulmonary Function System) and the European Physiology Module (EPM) Cardiolab (CDL) Leg/Arm Cuff System (LACS) and conducting the first ever session of this experiment. The test, which will be repeated using other crew members as well, will help to identify the astronauts who could benefit from countermeasures before returning to Earth. Thus, this method has great potential for astronaut health monitoring during future long-term space flights and it also has important implications for testing of individuals on Earth, especially the elderly, who are at risk for fainting. The research will also allow demonstrating the feasibility of obtaining a set of indicators of overall cardiovascular regulation from the non-invasive measurement of continuous blood pressure.
Hadfield during BP Reg Experiment Operations
2013-04-17
ISS035-E-022357 (17 April 2013) --- In support of the Blood Pressure Regulation Experiment (BP Reg), Expedition 35 Commander Chris Hadfield of the Canadian Space Agency is pictured after having set up the Human Research Facility (HRF) PFS (Pulmonary Function System) and the European Physiology Module (EPM) Cardiolab (CDL) Leg/Arm Cuff System (LACS) and conducting the first ever session of this experiment. The test, which will be repeated using other crew members as well, will help to identify the astronauts who could benefit from countermeasures before returning to Earth. Thus, this method has great potential for astronaut health monitoring during future long-term space flights and it also has important implications for testing of individuals on Earth, especially the elderly, who are at risk for fainting. The research will also allow demonstrating the feasibility of obtaining a set of indicators of overall cardiovascular regulation from the non-invasive measurement of continuous blood pressure.
Hadfield during BP Reg Experiment Operations
2013-04-17
ISS035-E-022356 (17 April 2013) --- In support of the Blood Pressure Regulation Experiment (BP Reg), Expedition 35 Commander Chris Hadfield of the Canadian Space Agency is pictured after having set up the Human Research Facility (HRF) PFS (Pulmonary Function System) and the European Physiology Module (EPM) Cardiolab (CDL) Leg/Arm Cuff System (LACS) and conducting the first ever session of this experiment. The test, which will be repeated using other crew members as well, will help to identify the astronauts who could benefit from countermeasures before returning to Earth. Thus, this method has great potential for astronaut health monitoring during future long-term space flights and it also has important implications for testing of individuals on Earth, especially the elderly, who are at risk for fainting. The research will also allow demonstrating the feasibility of obtaining a set of indicators of overall cardiovascular regulation from the non-invasive measurement of continuous blood pressure.
NASA Astrophysics Data System (ADS)
Chen, Yang; Wang, Huasheng; Xia, Jixia; Cai, Guobiao; Zhang, Zhenpeng
2017-04-01
For the pressure reducing regulator and check valve double-valve combined test system in an integral bipropellant propulsion system, a system model is established with modular models of various typical components. The simulation research is conducted on the whole working process of an experiment of 9 MPa working condition from startup to rated working condition and finally to shutdown. Comparison of simulation results with test data shows: five working conditions including standby, startup, rated pressurization, shutdown and halt and nine stages of the combined test system are comprehensively disclosed; valve-spool opening and closing details of the regulator and two check valves are accurately revealed; the simulation also clarifies two phenomena which test data are unable to clarify, one is the critical opening state in which the check valve spools slightly open and close alternately in their own fully closed positions, the other is the obvious effects of flow-field temperature drop and temperature rise in pipeline network with helium gas flowing. Moreover, simulation results with consideration of component wall heat transfer are closer to the test data than those under the adiabatic-wall condition, and more able to reveal the dynamic characteristics of the system in various working stages.
Dankelman, J; Stassen, H G; Spaan, J A
1990-03-01
In this study the response of driving pressure/flow ration on an abrupt change in heart rate was analysed. The difference between the response obtained with constant pressure and constant flow perfusion was also studied. The responses show a fast initial reversed phase followed by a slow phase caused by regulation. To test whether the initial phase could be the result of mechanical changes in the coronary circulation, a model for regulation was extended by the addition of four different mechanical models originating from the literature. These extended models were able to explain the fast initial phase. However, the mechanical model consisting of an intramyocardial compliance (C = 0.08 ml mm Hg-1 100 g-1) with a variable venous resistance, and the model consisting of a waterfall and a small compliance (C = 0.007 ml mm Hg-1 100g-1) both explained these responses best. The analysis showed that there is no direct relationship between rate of change of vascular tone and rate of change of pressure/flow ratio. However, on the basis of the two extended models, it can be predicted that the half-time for the response of regulation to be complete is about 9s with constant pressure perfusion and 15 s with constant flow perfusion.
Performance Analysis of a Wind Turbine Driven Swash Plate Pump for Large Scale Offshore Applications
NASA Astrophysics Data System (ADS)
Buhagiar, D.; Sant, T.
2014-12-01
This paper deals with the performance modelling and analysis of offshore wind turbine-driven hydraulic pumps. The concept consists of an open loop hydraulic system with the rotor main shaft directly coupled to a swash plate pump to supply pressurised sea water. A mathematical model is derived to cater for the steady state behaviour of entire system. A simplified model for the pump is implemented together with different control scheme options for regulating the rotor shaft power. A new control scheme is investigated, based on the combined use of hydraulic pressure and pitch control. Using a steady-state analysis, the study shows how the adoption of alternative control schemes in a the wind turbine-hydraulic pump system may result in higher energy yields than those from a conventional system with an electrical generator and standard pitch control for power regulation. This is in particular the case with the new control scheme investigated in this study that is based on the combined use of pressure and rotor blade pitch control.
Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.
2017-01-01
To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.
Polska, Elzbieta; Luksch, Alexandra; Schering, Joanne; Frank, Barbara; Imhof, Andrea; Fuchsjäger-Mayrl, Gabriele; Wolzt, Michael; Schmetterer, Leopold
2003-01-01
Recent studies indicate that the human choroid has a considerable capacity to keep blood flow constant despite exercise-induced increases in perfusion pressure. The mechanisms underlying this vasoconstrictor response remain unclear. We hypothesized that pharmacological modulation of the autonomic nervous system may alter the choroidal pressure/flow relationship during squatting. To test this hypothesis, we performed a randomized, double-masked, placebo-controlled, three-way crossover study in 15 healthy male volunteers. Subjects received, on different study days, intravenous infusions of the beta-adrenoceptor antagonist propranolol, the muscarinic receptor antagonist atropine, or placebo. During these infusions, subjects performed squatting for 6 min. Choroidal blood flow was assessed with laser Doppler flowmetry and ocular perfusion pressure (OPP) was calculated from mean arterial pressure and intraocular pressure. As expected, propranolol reduced basal pulse rate, whereas atropine increased pulse rate, indicating that the drugs were administered at systemically effective doses. None of the drugs altered the choroidal pressure/flow relationship during isometric exercise. These data indicate that the regulatory vasoconstrictor capacity of the choroid during exercise is not affected by systemic blockade of beta-adrenoceptors or muscarinic receptors.
Sympathetic nervous system and the kidney in hypertension.
DiBona, Gerald F
2002-03-01
Long-term control of arterial pressure has been attributed to the kidney by virtue of its ability to couple the regulation of blood volume to the maintenance of sodium and water balance by the mechanisms of pressure natriuresis and diuresis. In the presence of a defect in renal excretory function, hypertension arises as the consequence of the need for an increase in arterial pressure to offset the abnormal pressure natriuresis and diuresis mechanisms, and to maintain sodium and water balance. There is growing evidence that an important cause of the defect in renal excretory function in hypertension is an increase in renal sympathetic nerve activity (RSNA). First, increased RSNA is found in animal models of hypertension and hypertensive humans. Second, renal denervation prevents or alleviates hypertension in virtually all animal models of hypertension. Finally, increased RSNA results in reduced renal excretory function by virtue of effects on the renal vasculature, the tubules, and the juxtaglomerular granular cells. The increase in RSNA is of central nervous system origin, with one of the stimuli being the action of angiotensin II, probably of central origin. By acting on brain stem nuclei that are important in the control of peripheral sympathetic vasomotor tone (e.g. rostral ventrolateral medulla), angiotensin II increases the basal level of RSNA and impairs its arterial baroreflex regulation. Therefore, the renal sympathetic nerves may serve as the link between central sympathetic nervous system regulatory sites and the kidney in contributing to the renal excretory defect in the development of hypertension.
Constant pressure high throughput membrane permeation testing system
Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.
2014-09-02
The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.
Integrative regulation of human brain blood flow
Willie, Christopher K; Tzeng, Yu-Chieh; Fisher, Joseph A; Ainslie, Philip N
2014-01-01
Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60–150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research. PMID:24396059
Carotid interventions and blood pressure.
Hirschl, Mirko; Kundi, Michael
2014-12-01
Arterial baroreceptors are pressure sensors found in the carotid sinus near the bifurcation of the carotid artery and in the aortic arch. Carotid interventions, whether endovascular or surgical, affect this complicated control system and the post-interventional blood pressure behavior. Comparisons between the intervention techniques, however, are challenging due to the varying measurement methods, duration of observation, and patient populations. The question as to which interventional method is preferable, if undisturbed regulation of blood pressure is concerned, still remains unanswered. The fact that blood pressure events (i.e., hemodynamic instability, hypertension, unstable blood pressure) frequently occur both immediately after intervention and in the long term, mandates a particularly careful cardiopulmonary and blood pressure monitoring. Direct and indirect measurements of baroreceptor sensitivity can be helpful in identifying high-risk patients, although the association to hard clinical endpoints is rarely documented for methodological reasons.
Development of CNG direct injection (CNGDI) clean fuel system for extra power in small engine
NASA Astrophysics Data System (ADS)
Ali, Yusoff; Shamsudeen, Azhari; Abdullah, Shahrir; Mahmood, Wan Mohd Faizal Wan
2012-06-01
A new design of fuel system for CNG engine with direct injection (CNGDI) was developed for a demonstration project. The development of the fuel system was done on the engine with cylinder head modifications, for fuel injector and spark plug openings included in the new cylinder head. The piston was also redesigned for higher compression ratio. The fuel rails and the regulators are also designed for the direct injection system operating at higher pressure about 2.0 MPa. The control of the injection timing for the direct injectors are also controlled by the Electronic Control Unit specially designed for DI by another group project. The injectors are selected after testing with the various injection pressures and spray angles. For the best performance of the high-pressure system, selection is made from the tests on single cylinder research engine (SCRE). The components in the fuel system have to be of higher quality and complied with codes and standards to secure the safety of engine for high-pressure operation. The results of the CNGDI have shown that better power output is produced and better emissions were achieved compared to the aspirated CNG engine.
49 CFR 179.103-4 - Safety relief devices and pressure regulators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Safety relief devices and pressure regulators. 179... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...
Blood pressure regulation via the epithelial sodium channel: from gene to kidney and beyond.
Büsst, Cara J
2013-08-01
The epithelial sodium channel (ENaC) has long been recognized as playing a vital role in blood pressure (BP) regulation due to its involvement in fluid balance. The genes encoding the three ENaC subunits are likewise important contributors to hypertension, both in rare monogenic diseases and in the general population. The unusually high numbers of genetic variants associated with complex traits, including BP, that are located in non-coding areas suggest an involvement of these variants in regulatory functions. This may involve differential regulation of expression in different tissues. Emerging evidence indicates that the ENaC plays an important role in BP determination not only via its actions in the kidney, but also in other tissues commonly involved in BP regulation. The ENaC in the central nervous system is proposed to regulate BP via sympathetic nervous system activity. Recent evidence suggests that the ENaC contributes to vascular function and the myogenic response. Additional roles potentially include initiation of the baroreceptor reflex via ENaC in the baroreceptors and driving high salt intake with a 'taste for salt' via ENaC in the tongue. The present review describes the involvement of the ENaC in the determination of BP at a genetic and physiological level, detailing recent evidence for its role in the kidney and in other pertinent tissues. © 2013 Wiley Publishing Asia Pty Ltd.
2011-01-01
Vocal production requires complex planning and coordination of respiratory, laryngeal, and vocal tract movements, which are incompletely understood in most mammals. Rats produce a variety of whistles in the ultrasonic range that are of communicative relevance and of importance as a model system, but the sources of acoustic variability were mostly unknown. The goal was to identify sources of fundamental frequency variability. Subglottal pressure, tracheal airflow, and electromyographic (EMG) data from two intrinsic laryngeal muscles were measured during 22-kHz and 50-kHz call production in awake, spontaneously behaving adult male rats. During ultrasound vocalization, subglottal pressure ranged between 0.8 and 1.9 kPa. Pressure differences between call types were not significant. The relation between fundamental frequency and subglottal pressure within call types was inconsistent. Experimental manipulations of subglottal pressure had only small effects on fundamental frequency. Tracheal airflow patterns were also inconsistently associated with frequency. Pressure and flow seem to play a small role in regulation of fundamental frequency. Muscle activity, however, is precisely regulated and very sensitive to alterations, presumably because of effects on resonance properties in the vocal tract. EMG activity of cricothyroid and thyroarytenoid muscle was tonic in calls with slow or no fundamental frequency modulations, like 22-kHz and flat 50-kHz calls. Both muscles showed brief high-amplitude, alternating bursts at rates up to 150 Hz during production of frequency-modulated 50-kHz calls. A differentiated and fine regulation of intrinsic laryngeal muscles is critical for normal ultrasound vocalization. Many features of the laryngeal muscle activation pattern during ultrasound vocalization in rats are shared with other mammals. PMID:21832032
Zajac, David J.; Weissler, Mark C.
2011-01-01
Two studies were conducted to evaluate short-latency vocal tract air pressure responses to sudden pressure bleeds during production of voiceless bilabial stop consonants. It was hypothesized that the occurrence of respiratory reflexes would be indicated by distinct patterns of responses as a function of bleed magnitude. In Study 1, 19 adults produced syllable trains of /pΛ/ using a mouthpiece coupled to a computer-controlled perturbator. The device randomly created bleed apertures that ranged from 0 to 40 mm2 during production of the 2nd or 4th syllable of an utterance. Although peak oral air pressure dropped in a linear manner across bleed apertures, it averaged 2 to 3 cm H2O at the largest bleed. While slope of oral pressure also decreased in a linear trend, duration of the oral pressure pulse remained relatively constant. The patterns suggest that respiratory reflexes, if present, have little effect on oral air pressure levels. In Study 2, both oral and subglottal air pressure responses were monitored in 2 adults while bleed apertures of 20 and 40 mm2 were randomly created. For 1 participant, peak oral air pressure dropped across bleed apertures, as in Study 1. Subglottal air pressure and slope, however, remained relatively stable. These patterns provide some support for the occurrence of respiratory reflexes to regulate subglottal air pressure. Overall, the studies indicate that the inherent physiologic processes of the respiratory system, which may involve reflexes, and passive aeromechanical resistance of the upper airway are capable of developing oral air pressure in the face of substantial pressure bleeds. Implications for understanding speech production and the characteristics of individuals with velopharyngeal dysfunction are discussed. PMID:15324286
Early life stress sensitizes the renal and systemic sympathetic system in rats.
Loria, Analia S; Brands, Michael W; Pollock, David M; Pollock, Jennifer S
2013-08-01
We hypothesized that maternal separation (MS), an early life stress model, induces a sensitization of the sympathetic system. To test this hypothesis, we evaluated the renal and systemic sympathetic system in 12- to 14-wk-old male control or MS rats with the following parameters: 1) effect of renal denervation on conscious renal filtration capacity, 2) norepinephrine (NE) content in key organs involved in blood pressure control, and 3) acute systemic pressor responses to adrenergic stimulation or ganglion blockade. MS was performed by separating pups from their mothers for 3 h/day from day 2 to 14; controls were nonhandled littermates. Glomerular filtration rate (GFR) was examined in renal denervated (DnX; within 2 wk) or sham rats using I¹²⁵-iothalamate plasma clearance. MS-DnX rats showed significantly increased GFR compared with MS-SHAM rats (3.8 ± 0.4 vs. 2.4 ± 0.2 ml/min, respectively, P < 0.05), whereas DnX had no effect in controls, indicating that renal nerves regulate GFR in MS rats. NE content was significantly increased in organ tissues from MS rats (P < 0.05, n = 6-8), suggesting a sensitization of the renal and systemic sympathetic system. Conscious MS rats displayed a significantly greater increase in mean arterial pressure (MAP) in response to NE (2 μg/kg ip) and a greater reduction in MAP in response to mecamylamine (2 mg/kg ip, P < 0.05, n = 4) monitored by telemetry, indicating that MS rats exhibit exaggerated responses to sympathetic stimulation. In conclusion, these data indicate that MS sensitizes the renal and systemic sympathetic system ultimately impairing blood pressure regulation.
Orthostatic stress is necessary to maintain the dynamic range of cardiovascular control in space
NASA Technical Reports Server (NTRS)
Baisch, J. F.; Wolfram, G.; Beck, L.; Drummer, C.; Stormer, I.; Buckey, J.; Blomqvist, G.
2000-01-01
In the upright position, gravity fills the low-pressure systems of human circulation with blood and interstitial fluid in the sections below the diaphragm. Without gravity one pressure component in the vessels disappears and the relationship between hydrostatic pressure and oncotic pressure, which regulates fluid passage across the capillary endothelium in the terminal vascular bed, shifts constantly. The visible consequences of this are a puffy face and "bird" legs. The plasma volume shrinks in space and the range of cardiovascular control is reduced. When they stand up for the first time after landing, 30-50% of astronauts suffer from orthostatic intolerance. It remains unclear whether microgravity impairs cardiovascular reflexes, or whether it is the altered volume status that causes the cardiovascular instability following space flight. Lower body negative pressure was used in several space missions to stimulate the cardiovascular reflexes before, during and after a space flight. The results show that cardiovascular reflexes are maintained in microgravity. However, the astronauts' volume status changed in space, towards a volume-retracted state, as measurements of fluid-regulating hormones have shown. It can be hypothesized that the control of circulation and body fluid homeostasis in humans is adapted to their upright posture in the Earth's gravitational field. Autonomic control regulates fluid distribution to maintain the blood pressure in that posture, which most of us have to cope with for two-thirds of the day. A determined amount of interstitial volume is necessary to maintain the dynamic range of cardiovascular control in the upright posture; otherwise orthostatic intolerance may occur more often.
2002-06-03
KENNEDY SPACE CENTER, FLA. -- Shown in the photo is the gaseous nitrogen pressure regulator in the left Orbital Maneuvering System pod on Space Shuttle Endeavour. The component showed pressure differentials during the launch count May 30, 2002, and mission managers elected to replace it after the launch was scrubbed due to weather concerns. The launch of Endeavour on Mission STS-111, Utilization Flight 2 to the International Space Station, has been rescheduled for June 5, 2002
49 CFR 193.2513 - Transfer procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... transfer position; and (7) Verify that transfers into a pipeline system will not exceed the pressure or...
[Demographic pressure, "informal sector" and technological choices in Third World countries].
Hugon, P
1983-01-01
Trisectorial models of economic functioning have been proposed to replace the dualistic models that proved incapable of illuminating postwar employment trends in developing countries. The new models propose 3 sectors: the subsistence sector, where average productivity corresponds to the subsistence minimum and which is thus incapable of generating a surplus for savings; the intermediate sector, weakly capitalistic, characterized by the absence of a permanent salaried work force or codified labor relations, in which precariousness of employment and the exploitation of specific social relations allow a low wage rate, with a concommitant mode of regulation that largely escapes state control; and the intensely capitalistic sector, with a salaried work force, codified labor relations, existence of administered prices, various state subventions and protections and a monopolistic type of regulation. The 3 sectors are described in greater detail and represented graphically, along with a critique of the limitations of most studies employing a trisectorial perspective. A study of the impact of demographic pressure at different levels of technology embedded in specific sociohistoric systems follows. The final section contains an analysis of 3 types of effects which may mediate the role of demographic pressure in the choice of technologies: effects of demographic pressure on structures of production and consumption, on segments of the labor force, and on involutive and evolutive processes. It is argued that the links between demographic pressure, technologic choices, and the productive sector can only be analyzed in specific social systems.
Simulation modelling for new gas turbine fuel controller creation.
NASA Astrophysics Data System (ADS)
Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.
2017-11-01
State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.
An investigation of the performance of an electronic in-line pump system for diesel engines
NASA Astrophysics Data System (ADS)
Fan, Li-Yun; Zhu, Yuan-Xian; Long, Wu-Qiang; Ma, Xiu-Zhen; Xue, Ying-Ying
2008-12-01
WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China’s diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.
U.S. Laws and Regulations for Renewable Energy Grid Interconnections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernyakhovskiy, Ilya; Tian, Tian; McLaren, Joyce
Rapidly declining costs of wind and solar energy technologies, increasing concerns about the environmental and climate change impacts of fossil fuels, and sustained investment in renewable energy projects all point to a not-so-distant future in which renewable energy plays a pivotal role in the electric power system of the 21st century. In light of public pressures and market factors that hasten the transition towards a low-carbon system, power system planners and regulators are preparing to integrate higher levels of variable renewable generation into the grid. Updating the regulations that govern generator interconnections and operations is crucial to ensure system reliabilitymore » while creating an enabling environment for renewable energy development. This report presents a chronological review of energy laws and regulations concerning grid interconnection procedures in the United States, highlighting the consequences of policies for renewable energy interconnections. Where appropriate, this report places interconnection policies and their impacts on renewable energy within the broader context of power market reform.« less
Downhole hydraulic seismic generator
Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.
1992-01-01
A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.
HORIZONTAL BOILING REACTOR SYSTEM
Treshow, M.
1958-11-18
Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.
Orthostatic blood pressure regulation predicts classroom effort in children.
Carapetian, Stephanie; Siedlarz, Monika; Jackson, Sandra; Perlmuter, Lawrence C
2008-04-01
The increase in orthostatic systolic blood pressure associated with the shift in posture from lying to standing requires several compensatory mechanisms to ensure adequate cerebral perfusion. Decreased efficiency in the various mechanisms controlling orthostatic blood pressure regulation can result in dizziness, lightheadedness, and syncope. The degree of effectiveness of orthostatic systolic blood pressure regulation (OBPR) serves as a marker for a variety of problems including fatigue, depression, anxiety, reduced attention, impulsive behavior and reduced volition. In normal children, an insufficient increase in systolic blood pressure in response to upright posture is predictive of mild cognitive and affective problems. The present study examined orthostatic systolic blood pressure regulation in relation to yearlong teachers' evaluations of academic grades and effort in 7-11 year old children. Poorer systolic blood pressure regulation in response to orthostasis was associated with reduced levels of classroom effort, while academic grades were spared. Converging evidence from clinical as well as experimental studies suggests that the linkage between (OBPR) and effort may be partially mediated by sympathetic dysfunction, altered release of neurotransmitters, or reduced cerebral blood flow.
Design for pressure regulating components
NASA Technical Reports Server (NTRS)
Wichmann, H.
1973-01-01
The design development for Pressure Regulating Components included a regulator component trade-off study with analog computer performance verification to arrive at a final optimized regulator configuration for the Space Storable Propulsion Module, under development for a Jupiter Orbiter mission. This application requires the pressure regulator to be capable of long-term fluorine exposure. In addition, individual but basically identical (for purposes of commonality) units are required for separate oxidizer and fuel pressurization. The need for dual units requires improvement in the regulation accuracy over present designs. An advanced regulator concept was prepared featuring redundant bellows, all metallic/ceramic construction, friction-free guidance of moving parts, gas damping, and the elimination of coil springs normally used for reference forces. The activities included testing of actual size seat/poppet components to determine actual discharge coefficients and flow forces. The resulting data was inserted into the computer model of the regulator. Computer simulation of the propulsion module performance over two mission profiles indicated satisfactory minimization of propellant residual requirements imposed by regulator performance uncertainties.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... of the Code of Federal Regulations (10 CFR), Part 50, Appendix R, Section III.O, ``Oil collection... with an oil collection system (OCS) if the containment is not inerted during normal operation and such collection systems shall be capable of collecting lube oil from all potential pressurized and unpressurized...
ERIC Educational Resources Information Center
Riede, Tobias; Goller, Franz
2010-01-01
Song production in songbirds is a model system for studying learned vocal behavior. As in humans, bird phonation involves three main motor systems (respiration, vocal organ and vocal tract). The avian respiratory mechanism uses pressure regulation in air sacs to ventilate a rigid lung. In songbirds sound is generated with two independently…
Space Shuttle 750 psi Helium Regulator Application on Mars Science Laboratory Propulsion
NASA Technical Reports Server (NTRS)
Mizukami, Masashi; Yankura, George; Rust, Thomas; Anderson, John R.; Dien, Anthony; Garda, Hoshang; Bezer, Mary Ann; Johnson, David; Arndt, Scott
2009-01-01
The Mars Science Laboratory (MSL) is NASA's next major mission to Mars, to be launched in September 2009. It is a nuclear powered rover designed for a long duration mission, with an extensive suite of science instruments. The descent and landing uses a unique 'skycrane' concept, where a rocket-powered descent stage decelerates the vehicle, hovers over the ground, lowers the rover to the ground on a bridle, then flies a safe distance away for disposal. This descent stage uses a regulated hydrazine propulsion system. Performance requirements for the pressure regulator were very demanding, with a wide range of flow rates and tight regulated pressure band. These indicated that a piloted regulator would be needed, which are notoriously complex, and time available for development was short. Coincidentally, it was found that the helium regulator used in the Space Shuttle Orbiter main propulsion system came very close to meeting MSL requirements. However, the type was out of production, and fabricating new units would incur long lead times and technical risk. Therefore, the Space Shuttle program graciously furnished three units for use by MSL. Minor modifications were made, and the units were carefully tuned to MSL requirements. Some of the personnel involved had built and tested the original shuttle units. Delta qualification for MSL application was successfully conducted on one of the units. A pyrovalve slam start and shock test was conducted. Dynamic performance analyses for the new application were conducted, using sophisticated tools developed for Shuttle. Because the MSL regulator is a refurbished Shuttle flight regulator, it will be the only part of MSL which has physically already been in space.
Spool valve cycles at controlled frequency
NASA Technical Reports Server (NTRS)
Charlton, K. W.; Van Arnam, D. E.
1966-01-01
Spool valve accurately controls the cycle of a pneumatically-actuated system over long periods. Regulation of pressure from the external source, positioning of the adjusting plugs, and magnet selection, together afford wide variation in cyclic timing and speed of closure in either direction.
Is Homeostatic Sleep Regulation Under Low Sleep Pressure Modified by Age?
Munch, Mirjam; Knoblauch, Vera; Blatter, Katharina; Wirz-Justice, Anna; Cajochen, Christian
2007-01-01
Study Objectives: We have previously shown that healthy older volunteers react with an attenuated frontal predominance of sleep electroencephalogram (EEG) delta activity in response to high sleep pressure. Here, we investigated age-related changes in homeostatic sleep regulation under low sleep pressure conditions, with respect to regional EEG differences and their dynamics. Design: Analysis of the sleep EEG during an 8-hour baseline night, during a 40-hour multiple nap protocol (150 minutes of wakefulness and 75 minutes of sleep) and during the following 8-hour recovery night under constant posture conditions. Setting: Centre for Chronobiology, Psychiatric University Clinics, Basel, Switzerland Participants: Sixteen young (20–31 years) and 15 older (57–74 years) healthy volunteers Interventions: N/A. Measurements and Results: All-night EEG spectra revealed an increase in spindle activity (13–15.25 Hz) for both age groups, but only in the young did we find a significant decrease of delta activity (0.5–1.25 Hz) in response to low sleep pressure conditions, predominantly in occipital brain regions. However, delta activity during the first non-rapid eye movement (NREM) sleep episode was equally reduced in both age groups. This response lasted significantly longer in the young (across the first 2 NREM sleep episodes) than in the older participants (only the first NREM sleep episode). Conclusion: The initial EEG delta response to low sleep pressure was similar in healthy older and young participants. Therefore, age-related sleep deteriorations cannot solely be attributed to alterations in the homeostatic sleep-regulatory system. It is, rather, the interplay of circadian and homeostatic factors of sleep regulation, which is changed with aging. Citation: Munch M; Knoblauch V; Blatter K et al. Is homeostatic sleep regulation under low sleep pressure modified by age? SLEEP 2007;30(6):781-792. PMID:17580600
Buzinski, Steven G; Kitchens, Michael B
2017-01-01
Self-regulation constrains the expression of prejudice, but when self-regulation falters, the immediate environment can act as an external source of prejudice regulation. This hypothesis derives from work demonstrating that external controls and internal self-regulation can prompt goal pursuit in the absence of self-imposed controls. Across four studies, we found support for this complementary model of prejudice regulation. In Study 1, self-regulatory fatigue resulted in less motivation to be non-prejudiced, compared to a non-fatigued control. In Study 2, strong (vs. weak) perceived social pressure was related to greater motivation to be non-prejudiced. In Study 3, dispositional self-regulation predicted non-prejudice motivation when perceived social pressure was weak or moderate, but not when it was strong. Finally, in Study 4 self-regulatory fatigue increased prejudice when social pressure was weak but not when it was strong.
Pressure disequilibria induced by rapid valve closure in noble gas extraction lines
Morgan, Leah; Davidheiser-Kroll, Brett
2015-01-01
Pressure disequilibria during rapid valve closures can affect calculated molar quantities for a range of gas abundance measurements (e.g., K-Ar geochronology, (U-Th)/He geochronology, noble gas cosmogenic chronology). Modeling indicates this effect in a system with a 10 L reservoir reaches a bias of 1% before 1000 pipette aliquants have been removed from the system, and a bias of 10% before 10,000 aliquants. Herein we explore the causes and effects of this problem, which is the result of volume changes during valve closure. We also present a solution in the form of an electropneumatic pressure regulator that can precisely control valve motion. This solution reduces the effect to ∼0.3% even after 10,000 aliquants have been removed from a 10 L reservoir.
Pressure disequilibria induced by rapid valve closure in noble gas extraction lines
NASA Astrophysics Data System (ADS)
Morgan, Leah E.; Davidheiser-Kroll, Brett
2015-06-01
Pressure disequilibria during rapid valve closures can affect calculated molar quantities for a range of gas abundance measurements (e.g., K-Ar geochronology, (U-Th)/He geochronology, noble gas cosmogenic chronology). Modeling indicates this effect in a system with a 10 L reservoir reaches a bias of 1% before 1000 pipette aliquants have been removed from the system, and a bias of 10% before 10,000 aliquants. Herein we explore the causes and effects of this problem, which is the result of volume changes during valve closure. We also present a solution in the form of an electropneumatic pressure regulator that can precisely control valve motion. This solution reduces the effect to ˜0.3% even after 10,000 aliquants have been removed from a 10 L reservoir.
Initial in vitro testing of a paediatric continuous-flow total artificial heart.
Fukamachi, Kiyotaka; Karimov, Jamshid H; Horvath, David J; Sunagawa, Gengo; Byram, Nicole A; Kuban, Barry D; Moazami, Nader
2018-06-01
Mechanical circulatory support has become standard therapy for adult patients with end-stage heart failure; however, in paediatric patients with congenital heart disease, the options for chronic mechanical circulatory support are limited to paracorporeal devices or off-label use of devices intended for implantation in adults. Congenital heart disease and cardiomyopathy often involve both the left and right ventricles; in such cases, heart transplantation, a biventricular assist device or a total artificial heart is needed to adequately sustain both pulmonary and systemic circulations. We aimed to evaluate the in vitro performance of the initial prototype of our paediatric continuous-flow total artificial heart. The paediatric continuous-flow total artificial heart pump was downsized from the adult continuous-flow total artificial heart configuration by a scale factor of 0.70 (1/3 of total volume) to enable implantation in infants. System performance of this prototype was evaluated using the continuous-flow total artificial heart mock loop set to mimic paediatric circulation. We generated maps of pump performance and atrial pressure differences over a wide range of systemic vascular resistance/pulmonary vascular resistance and pump speeds. Performance data indicated left pump flow range of 0.4-4.7 l/min at 100 mmHg delta pressure. The left/right atrial pressure difference was maintained within ±5 mmHg with systemic vascular resistance/pulmonary vascular resistance ratios between 1.4 and 35, with/without pump speed modulation, verifying expected passive self-regulation of atrial pressure balance. The paediatric continuous-flow total artificial heart prototype met design requirements for self-regulation and performance; in vivo pump performance studies are ongoing.
Overall Heat Transfer Coefficients for a Horizontal Cylinder in a Fluidized Bed.
1984-04-01
The distribution system is composed of 2 in. PVC pipe and fittings arranged in a convenient air-tight geometry. Pressure regulators, pressure gauges...uniform fluidization. After i£ A_ 4 passing through the beads, the air is exhausted to the outside by means of galvanized duct work. Fluidized Bed...design is the matching with the copper cylinder of outer diameters, the fastening with recessed set screws , their length and the material selection. In
2002-06-03
KENNEDY SPACE CENTER, FLA. -- United Space Alliance Aft Technician Bobby Wright looks at the gaseous nitrogen pressure regulator in the left Orbital Maneuvering System pod on Space Shuttle Endeavour. The component showed pressure differentials during the launch count May 30, 2002, and mission managers elected to replace it after the launch was scrubbed due to weather concerns. The launch of Endeavour on Mission STS-111, Utilization Flight 2 to the International Space Station, has been rescheduled for June 5, 2002
Using materials research results in new regulations -- The Swedish approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gott, K.
1995-12-31
Swedish regulations are normally divided into two sections: the first part is the compulsory text and the second part explains very briefly the ideas behind the regulations and section consists of an interpretive text. This second part explains very briefly the ideas behind the regulations and gives advice as to how to apply the regulations, acceptable testing and analysis methods, and references to other standards and relevant documents. In the new regulations, which were approved by the Board of SKI in September 1994 and are effective from 1st January 1995, a number of innovations have been included concerning chemistry andmore » environmental degradation of the primary pressure boundary in Light Water Reactors. With regard to chemistry SKI will no longer approve the various parameters in the technical specifications (such as conductivity and impurity concentrations) but will require that the utilities have a chemistry control program in place which ensures the integrity of the primary pressure boundary and does not expose it to environments (such as impurities and decontamination chemicals) for which it was not designed. SKI can at any time control that such a program exists and assess its compatibility with these goals, either during routine inspections or as part of special theme inspections. Crack growth rates have been specified for different materials stainless steels, and the nickel base alloy types 600 and 182. Different environments have also been specified: water chemistry within and outside plant specifications as well as normal and hydrogen water chemistry conditions. Stress corrosion cracking in pressurized water reactor systems is also treated separately in the regulations, but not discussed specifically here.« less
NASA Technical Reports Server (NTRS)
Gorodinskiy, S. M.; Gramenitskiy, P. M.; Kuznets, Y. I.; Ozerov, O. Y.; Yakovleva, E. V.; Groza, P.; Kozlovskiy, S.; Naremski, Y.
1974-01-01
Thermal regulation for astronauts working in pressure suits in open space provides for protection by a system of artificial heat removal and compensation to counteract possible changes in the heat regulating function of the human body that occur under the complex effects of space flight conditions. Most important of these factors are prolonged weightlessness, prolonged limitation of motor activity, and possible deviations of microclimatic environmental parameters.
46 CFR 50.01-15 - Scope of regulations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... choice of materials for machinery, boilers, pressure vessels, safety valves, and piping systems upon which safety of life is dependent. (b) Since this subchapter contains the marine engineering details, it... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Basis and...
46 CFR 50.01-15 - Scope of regulations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... choice of materials for machinery, boilers, pressure vessels, safety valves, and piping systems upon which safety of life is dependent. (b) Since this subchapter contains the marine engineering details, it... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Basis and...
46 CFR 50.01-15 - Scope of regulations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... choice of materials for machinery, boilers, pressure vessels, safety valves, and piping systems upon which safety of life is dependent. (b) Since this subchapter contains the marine engineering details, it... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Basis and...
46 CFR 50.01-15 - Scope of regulations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... choice of materials for machinery, boilers, pressure vessels, safety valves, and piping systems upon which safety of life is dependent. (b) Since this subchapter contains the marine engineering details, it... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Basis and...
46 CFR 50.01-15 - Scope of regulations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... choice of materials for machinery, boilers, pressure vessels, safety valves, and piping systems upon which safety of life is dependent. (b) Since this subchapter contains the marine engineering details, it... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Basis and...
Modified Pressure System for Imaging Egg Cracks
USDA-ARS?s Scientific Manuscript database
One aspect of grading table eggs is shell checks or cracks. Currently, USDA voluntary regulations require that humans grade a representative sample of all eggs processed. However, as processing plants and packing facilities continue to increase their volume and throughput, human graders are having ...
Modified Pressure System for Imaging Egg Cracks
USDA-ARS?s Scientific Manuscript database
Abstract One aspect of grading table eggs is shell checks or cracks. Currently, USDA voluntary regulations require that humans grade a representative sample of all eggs processed. However, as processing plants and packing facilities continue to increase their volume and throughput, human graders a...
Analytical scaling relations to evaluate leakage and intrusion in intermittent water supply systems.
Taylor, David D J; Slocum, Alexander H; Whittle, Andrew J
2018-01-01
Intermittent water supplies (IWS) deliver piped water to one billion people; this water is often microbially contaminated. Contaminants that accumulate while IWS are depressurized are flushed into customers' homes when these systems become pressurized. In addition, during the steady-state phase of IWS, contaminants from higher-pressure sources (e.g., sewers) may continue to intrude where pipe pressure is low. To guide the operation and improvement of IWS, this paper proposes an analytic model relating supply pressure, supply duration, leakage, and the volume of intruded, potentially-contaminated, fluids present during flushing and steady-state. The proposed model suggests that increasing the supply duration may improve water quality during the flushing phase, but decrease the subsequent steady-state water quality. As such, regulators and academics should take more care in reporting if water quality samples are taken during flushing or steady-state operational conditions. Pipe leakage increases with increased supply pressure and/or duration. We propose using an equivalent orifice area (EOA) to quantify pipe quality. This provides a more stable metric for regulators and utilities tracking pipe repairs. Finally, we show that the volume of intruded fluid decreases in proportion to reductions in EOA. The proposed relationships are applied to self-reported performance indicators for IWS serving 108 million people described in the IBNET database and in the Benchmarking and Data Book of Water Utilities in India. This application shows that current high-pressure, continuous water supply targets will require extensive EOA reductions. For example, in order to achieve national targets, utilities in India will need to reduce their EOA by a median of at least 90%.
Analytical scaling relations to evaluate leakage and intrusion in intermittent water supply systems
Slocum, Alexander H.; Whittle, Andrew J.
2018-01-01
Intermittent water supplies (IWS) deliver piped water to one billion people; this water is often microbially contaminated. Contaminants that accumulate while IWS are depressurized are flushed into customers’ homes when these systems become pressurized. In addition, during the steady-state phase of IWS, contaminants from higher-pressure sources (e.g., sewers) may continue to intrude where pipe pressure is low. To guide the operation and improvement of IWS, this paper proposes an analytic model relating supply pressure, supply duration, leakage, and the volume of intruded, potentially-contaminated, fluids present during flushing and steady-state. The proposed model suggests that increasing the supply duration may improve water quality during the flushing phase, but decrease the subsequent steady-state water quality. As such, regulators and academics should take more care in reporting if water quality samples are taken during flushing or steady-state operational conditions. Pipe leakage increases with increased supply pressure and/or duration. We propose using an equivalent orifice area (EOA) to quantify pipe quality. This provides a more stable metric for regulators and utilities tracking pipe repairs. Finally, we show that the volume of intruded fluid decreases in proportion to reductions in EOA. The proposed relationships are applied to self-reported performance indicators for IWS serving 108 million people described in the IBNET database and in the Benchmarking and Data Book of Water Utilities in India. This application shows that current high-pressure, continuous water supply targets will require extensive EOA reductions. For example, in order to achieve national targets, utilities in India will need to reduce their EOA by a median of at least 90%. PMID:29775462
Yoshimoto, Misa; Yoshida, Ikue; Miki, Kenju
2011-08-01
This study aimed to investigate whether REM sleep evoked diverse changes in sympathetic outflows and, if so, to elucidate why REM sleep evokes diverse changes in sympathetic outflows. Male Wistar rats were chronically implanted with electrodes to measure renal (RSNA) and lumbar sympathetic nerve activity (LSNA), electroencephalogram, electromyogram, and electrocardiogram, and catheters to measure systemic arterial and central venous pressure; these parameters were measured simultaneously and continuously during the sleep-awake cycle in the same rat. REM sleep resulted in a step reduction in RNSA by 36.1% ± 2.7% (P < 0.05), while LSNA increased in a step manner by 15.3% ± 2% (P < 0.05) relative to the NREM level. Systemic arterial pressure increased gradually (P < 0.05), while heart rate decreased in a step manner (P < 0.05) during REM sleep. In contrast to REM sleep, RSNA, LSNA, systemic arterial pressure, and heart rate increased in a unidirectional manner associated with increases in physical activity levels in the order from NREM sleep, quiet awake, moving, and grooming state. Thus, the relationship between RSNA vs. LSNA and systemic arterial pressure vs. heart rate observed during REM sleep was dissociated compared with that obtained during the other behavioral states. It is suggested that the diverse changes in sympathetic outflows during REM sleep may be needed to increase systemic arterial pressure by balancing vascular resistance between muscles and vegetative organs without depending on the heart.
Jackson, Kristy L; Marques, Francine Z; Watson, Anna M D; Palma-Rigo, Kesia; Nguyen-Huu, Thu-Phuc; Morris, Brian J; Charchar, Fadi J; Davern, Pamela J; Head, Geoffrey A
2013-10-01
Genetically hypertensive mice (BPH/2J) are hypertensive because of an exaggerated contribution of the sympathetic nervous system to blood pressure. We hypothesize that an additional contribution to elevated blood pressure is via sympathetically mediated activation of the intrarenal renin-angiotensin system. Our aim was to determine the contribution of the renin-angiotensin system and sympathetic nervous system to hypertension in BPH/2J mice. BPH/2J and normotensive BPN/3J mice were preimplanted with radiotelemetry devices to measure blood pressure. Depressor responses to ganglion blocker pentolinium (5 mg/kg i.p.) in mice pretreated with the angiotensin-converting enzyme inhibitor enalaprilat (1.5 mg/kg i.p.) revealed a 2-fold greater sympathetic contribution to blood pressure in BPH/2J mice during the active and inactive period. However, the depressor response to enalaprilat was 4-fold greater in BPH/2J compared with BPN/3J mice, but only during the active period (P=0.01). This was associated with 1.6-fold higher renal renin messenger RNA (mRNA; P=0.02) and 0.8-fold lower abundance of micro-RNA-181a (P=0.03), identified previously as regulating human renin mRNA. Renin mRNA levels correlated positively with depressor responses to pentolinium (r=0.99; P=0.001), and BPH/2J mice had greater renal sympathetic innervation density as identified by tyrosine hydroxylase staining of cortical tubules. Although there is a major sympathetic contribution to hypertension in BPH/2J mice, the renin-angiotensin system also contributes, doing so to a greater extent during the active period and less during the inactive period. This is the opposite of the normal renin-angiotensin system circadian pattern. We suggest that renal hyperinnervation and enhanced sympathetically induced renin synthesis mediated by lower micro-RNA-181a contributes to hypertension in BPH/2J mice.
The intricacies of the renin angiotensin system in metabolic regulation
Bruce, Erin; de Kloet, Annette D.
2017-01-01
Over recent years, the renin-angiotensin-system (RAS), which is best-known as an endocrine system with established roles in hydromineral balance and blood pressure control, has emerged as a fundamental regulator of many additional physiological and pathophysiological processes. In this manuscript, we celebrate and honor Randall Sakai’s commitment to his trainees, as well as his contribution to science. Scientifically, Randall made many notable contributions to the recognition of the RAS’s roles in brain and behavior. His interests, in this regard, ranged from its traditionally-accepted roles in hydromineral balance, to its less-appreciated functions in stress responses and energy metabolism. Here we review the current understanding of the role of the RAS in the regulation of metabolism. In particular, the opposing actions of the RAS within adipose tissue vs. its actions within the brain are discussed. PMID:27887998
Circadian changes in uterine artery and ovarian stromal blood flow after pituitary down-regulation.
Chan, Carina C W; Ng, Ernest H Y; Tang, Oi-Shan; Ho, Pak-Chung
2005-09-01
To investigate changes in the uterine artery and ovarian stromal blood flow in relation to the time of the day after pituitary down-regulation during in vitro fertilization treatment. Thirteen women were recruited. The uterine artery blood flow was studied using pulsed color Doppler ultrasonography and the ovarian stromal blood flow was measured using three-dimensional power Doppler ultrasonography. Ultrasound scan examinations and blood pressure measurements were performed in the morning and evening. The diastolic and the mean arterial pressures were significantly higher in the evening. An increase in the uterine artery pulsatility index and resistance index in the evening was observed. The ovarian vascularization index, vascularization flow index, and right ovarian flow index were significantly lower in the evening. Despite the small sample size, we have demonstrated the presence of a diurnal change in uterine artery and ovarian stromal blood flow after pituitary down-regulation. Such changes may be related to the systemic change in the sympathetic system and hence vascular resistance. Future study regarding ovarian stromal blood flow should take into account the effect of the time of the day on the readings in order to avoid misleading interpretation of data.
The importance of the renin-angiotensin system in normal cardiovascular homeostasis
NASA Technical Reports Server (NTRS)
Haber, E.
1975-01-01
Studies were carried out on adult mongrel dogs (20 to 30 kilograms) to investigate the importance of the renin-angiotensin system. Results indicate that the renin-angiotensin system plays a major role in the maintenance of circulatory homeostasis when extracellular fluid volume is depleted. It was also found that angiotensin II concentration, in addition to renal perfusion pressure, is a factor in the regulation of renin release.
The assembly and use of continuous flow systems for chemical synthesis.
Britton, Joshua; Jamison, Timothy F
2017-11-01
The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.
NASA Astrophysics Data System (ADS)
Farquharson, Jamie I.; Wadsworth, Fabian B.; Heap, Michael J.; Baud, Patrick
2017-06-01
Volcanic eruptions are driven by the ascent of volatile-laden magma. The capacity of a volcano system to outgas these volatiles-its permeability-controls the explosive potential, and fractures at volcanic conduit margins play a crucial role in tempering eruption explosivity by acting as outgassing pathways. However, these fractures are often filled with hot volcanic debris that welds and compacts over time, meaning that these permeable pathways have a finite lifetime. While numerous studies emphasize that permeability evolution is important for regulating pressure in shallow volcanic systems, how and when this occurs remains an outstanding question in volcanology. In this contribution, we show that different pressure evolution regimes can be expected across a range of silicic systems as a function of the width and distribution of fractures in the system, the timescales over which they can outgas (a function of depth and temperature), and the permeability of the host material. We define outgassing, diffusive relaxation, and pressure increase regimes, which are distinguished by comparing the characteristic timescales over which they operate. Moreover, we define a critical permeability threshold, which determines (in concert with characteristic timescales of diffusive mass exchange between the pore and melt phases) whether systems fracture and outgas efficiently, or if a volcano will be prone to pressure increases, incomplete healing, and explosive failure.
Space nuclear system volume accumulator development (SNAP program)
NASA Technical Reports Server (NTRS)
Whitaker, W. D.; Shimazaki, T. T.
1973-01-01
The engineering, design, and fabrication status of the volume accumulator units to be employed in the NaK primary and secondary coolant loops of the 5-kwe reactor thermoelectric system are described. Three identical VAU's are required - two for the primary coolant loop, and one for the secondary coolant loop. The VAU's utilize nested-formed bellows as the flexing member, are hermetically sealed, provide double containment and utilize a combination of gas pressure force and bellows spring force to obtain the desired pressure regulation of the coolant loops. All parts of the VAU, except the NaK inlet tube, are to be fabricated from Inconel 718.
Soft x-ray-controlled dose deposition in yeast cells: techniques, model, and biological assessment
NASA Astrophysics Data System (ADS)
Milani, Marziale; Batani, Dimitri; Conti, Aldo; Masini, Alessandra; Costato, Michele; Pozzi, Achille; Turcu, I. C. Edmond
1996-12-01
A procedure is presented to release soft x-rays onto yeast cell membrane allegedly damaging the resident enzymatic processes connected with fermentation. The damage is expected to be restricted to regulating fermentation processes without interference with respiration. By this technique fermentation is followed leading to CO2 production, and respiration resulting in global pressure measurements. A solid state pressure sensor system has been developed linked to a data acquisition system. Yeast cells cultures have been investigated at different concentrations and with different nutrients. A non-monotone response in CO2 production as a function of the delivered x-ray dose is observed.
Thermostatic Valves Containing Silicone-Oil Actuators
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard
2009-01-01
Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.
Essential hypertension--is erroneous receptor output to blame?
Ufnal, Marcin
2012-04-01
Hypertension is a chronic medical condition in which systemic arterial blood pressure is elevated. About 80-90% of diagnosed hypertension is considered essential (idiopathic), which means there is no obvious cause of the increase in blood pressure. My hypothesis states that part of idiopathic hypertension results from erroneous information that the brain receives from receptors involved in the regulation of arterial blood pressure, i.e. if, despite high systemic blood pressure, the brain receives false "low-arterial pressure input" from cardiovascular receptors. As a result the brain centres which control blood pressure reset and produce an inappropriate output to the effectors (heart, blood vessels, kidneys and glands). The information errors may result from: (i) structural and/or functional impairment of cardiovascular receptors, (ii) changes in cardiovascular receptors activity, which are caused by other factors than changes in blood pressure, and (iii) impaired transmission in afferent fibres. I assume that in contrast to the lack of input from damaged or denervated cardiovascular receptors, an erroneous input will impair the control of arterial blood pressure. This will apply especially to false input which imitates "low-arterial pressure input". Higher priority of "low-arterial pressure input" over "high-arterial pressure input" or none input may be explained by the evolutionary adaptation, i.e. low blood pressure, mostly due to haemorrhage, used to be a more common condition than high blood pressure and constitute a major threat to humans. Copyright © 2012 Elsevier Ltd. All rights reserved.
49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes... car tanks. ...
ERIC Educational Resources Information Center
Jahrling, Peter
2002-01-01
With careful layout and improved equipment, schools can enhance security and improve hygiene in their restrooms by installing products such as low-consumption, pressure-assist toilets (to reduce water consumption); sensor-operated plumbing fixtures (to improve hygiene and reduce vandalism); and automated-control systems (to regulate timing,…
A hemodynamics model to study the collective behavior of the ventricular-arterial system
NASA Astrophysics Data System (ADS)
Lin Wang, Yuh-Ying; Wang, Wei-Kung
2013-01-01
Applying principles from complex systems to study the efficacy of integrative therapies has become a new interest in medical research. We aimed to construct a concise model for the ventricular-arterial (VA) system and to provide a systematic method for exploring its overall behavior. The transportation of blood from the heart to the peripheral arterioles via hydraulic pressure forces was described by a multi-rank model. Parts of the VA system that have strong mutual interactions were combined into a single sub system. Sub systems of four different ranks were characterized. We then applied the multi-rank model to analyze the aortic pressure wave generated by the periodic ventricular blood ejection, the renal pressure in response to the input from the VA system, and the blood flowing from the renal artery to its arterioles. Maintaining the pressure distribution along the main arteries and in all of the organs with the lowest possible ventricular input turned out to be the first principle for the operation of an efficient VA system. By this principle, we pointed out the benefit of some arterial structures in mammals, derived specific regulation rules and deduced some fundamental concepts for healing. The justification of the biomechanics in our model that differed greatly from those in the prevailing models was given. We concluded that the oscillatory motion and the pressure pulse of the arterial system can be analyzed as steady states with resonance behaviors and suggested utilizing this model to construct integrative therapies for diseases correlated with abnormality in blood circulation.
CooLN2Car: An Experimental Car Which Uses Liquid Nitrogen as Its Fuel
NASA Astrophysics Data System (ADS)
Parker, M. E.; Plummer, M. C.; Ordonez, C. A.
1997-10-01
A ``cryogenic" heat engine which operates using the atmosphere as a heat source and a cryogenic medium as a heat sink has been incorporated as the power system for an automobile. A 1973 Volkswagen Beetle has been converted and uses liquid nitrogen as its ``fuel." A Dewar was mounted in the car and provides nitrogen under pressure to two heat exchangers connected in parallel which use atmospheric heat to heat the nitrogen. The heat exchangers deliver compressed nitrogen gas to a vane-type pneumatic motor mounted in place of the original gasoline engine. Pressure in the tank is maintained internally at 1.2 MPa and is reduced to 0.7 MPa before the motor by a pressure regulator. A throttle, composed of a butterfly valve, is mounted between the regulator and the motor and is connected to the driver's accelerator peddle. The vehicle has good acceleration, a maximum range of 15 miles, and a maximum speed of 25 mph. A demonstration with the vehicle is planned.
Safety assessment for In-service Pressure Bending Pipe Containing Incomplete Penetration Defects
NASA Astrophysics Data System (ADS)
Wang, M.; Tang, P.; Xia, J. F.; Ling, Z. W.; Cai, G. Y.
2017-12-01
Incomplete penetration defect is a common defect in the welded joint of pressure pipes. While the safety classification of pressure pipe containing incomplete penetration defects, according to periodical inspection regulations in present, is more conservative. For reducing the repair of incomplete penetration defect, a scientific and applicable safety assessment method for pressure pipe is needed. In this paper, the stress analysis model of the pipe system was established for the in-service pressure bending pipe containing incomplete penetration defects. The local finite element model was set up to analyze the stress distribution of defect location and the stress linearization. And then, the applicability of two assessment methods, simplified assessment and U factor assessment method, to the assessment of incomplete penetration defects located at pressure bending pipe were analyzed. The results can provide some technical supports for the safety assessment of complex pipelines in the future.
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M. (Editor); Benz, Frank J. (Editor); Stradling, Jack S. (Editor)
1989-01-01
The present volume discusses the ignition of nonmetallic materials by the impact of high-pressure oxygen, the promoted combustion of nine structural metals in high-pressure gaseous oxygen, the oxygen sensitivity/compatibility ranking of several materials by different test methods, the ignition behavior of silicon greases in oxygen atmospheres, fire spread rates along cylindrical metal rods in high-pressure oxygen, and the design of an ignition-resistant, high pressure/temperature oxygen valve. Also discussed are the promoted ignition of oxygen regulators, the ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen, evolving nonswelling elastomers for high-pressure oxygen environments, the evaluation of systems for oxygen service through the use of the quantitative fault-tree analysis, and oxygen-enriched fires during surgery of the head and neck.
Cuff-Free Blood Pressure Estimation Using Pulse Transit Time and Heart Rate.
Wang, Ruiping; Jia, Wenyan; Mao, Zhi-Hong; Sclabassi, Robert J; Sun, Mingui
2014-10-01
It has been reported that the pulse transit time (PTT), the interval between the peak of the R-wave in electrocardiogram (ECG) and the fingertip photoplethysmogram (PPG), is related to arterial stiffness, and can be used to estimate the systolic blood pressure (SBP) and diastolic blood pressure (DBP). This phenomenon has been used as the basis to design portable systems for continuously cuff-less blood pressure measurement, benefiting numerous people with heart conditions. However, the PTT-based blood pressure estimation may not be sufficiently accurate because the regulation of blood pressure within the human body is a complex, multivariate physiological process. Considering the negative feedback mechanism in the blood pressure control, we introduce the heart rate (HR) and the blood pressure estimate in the previous step to obtain the current estimate. We validate this method using a clinical database. Our results show that the PTT, HR and previous estimate reduce the estimated error significantly when compared to the conventional PTT estimation approach (p<0.05).
Englert, Chris; Zwemmer, Kris; Bertrams, Alex; Oudejans, Raôul R
2015-04-01
In the current study we investigated whether ego depletion negatively affects attention regulation under pressure in sports by assessing participants' dart throwing performance and accompanying gaze behavior. According to the strength model of self-control, the most important aspect of self-control is attention regulation. Because higher levels of state anxiety are associated with impaired attention regulation, we chose a mixed design with ego depletion (yes vs. no) as between-subjects and anxiety level (high vs. low) as within-subjects factor. Participants performed a perceptual-motor task requiring selective attention, namely, dart throwing. In line with our expectations, depleted participants in the high-anxiety condition performed worse and displayed a shorter final fixation on bull's eye, demonstrating that when one's self-control strength is depleted, attention regulation under pressure cannot be maintained. This is the first study that directly supports the general assumption that ego depletion is a major factor in influencing attention regulation under pressure.
Hillman, Stanley S
2018-06-06
Anurans are the most terrestrial order of amphibians. Couple the high driving forces for evaporative loss in terrestrial environments and their low resistance to evaporation, dehydration is an inevitable stress on their water balance. Anurans have the greatest tolerances for dehydration of any vertebrate group, some species can tolerate evaporative losses up to 45% of their standard body mass. Anurans have remarkable capacities to regulate blood volume with hemorrhage and dehydration compared to mammals. Stabilization of blood volume is central to extending dehydration tolerance, since it avoids both the hypovolemic and hyperviscosity stresses on cardiac output and its consequential effects on aerobic capacity. Anurans, in contrast to mammals, seem incapable of generating a sufficient pressure difference, either oncotically or via interstitial compliance, to move fluid from the interstitium into the capillaries. Couple this inability to generate a sufficient pressure difference for transvascular uptake to a circulatory system with high filtration coefficients and a high rate of plasma turnover is the consequence. The novel lymphatic system of anurans is critical to a remarkable capacity for blood volume regulation. This review summarizes what is known about the anatomical and physiological specializations which are involved in explaining differential blood volume regulation and dehydration tolerance involving a true centrally mediated negative feedback of lymphatic function involving baroreceptors as sensors and lymph hearts, AVT, pulmonary ventilation and specialized skeletal muscles as effectors.
NASA Astrophysics Data System (ADS)
Jeon, Juncheol; Han, Chulhee; Chung, Jye Ung; Choi, Seung-Bok
2015-01-01
In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains.
Advanced Liquid Feed Experiment
NASA Astrophysics Data System (ADS)
Distefano, E.; Noll, C.
1993-06-01
The Advanced Liquid Feed Experiment (ALFE) is a Hitchhiker experiment flown on board the Shuttle of STS-39 as part of the Space Test Payload-1 (STP-1). The purpose of ALFE is to evaluate new propellant management components and operations under the low gravity flight environment of the Space Shuttle for eventual use in an advanced spacecraft feed system. These components and operations include an electronic pressure regulator, an ultrasonic flowmeter, an ultrasonic point sensor gage, and on-orbit refill of an auxiliary propellant tank. The tests are performed with two transparent tanks with dyed Freon 113, observed by a camera and controlled by ground commands and an on-board computer. Results show that the electronic pressure regulator provides smooth pressure ramp-up, sustained pressure control, and the flexibility to change pressure settings in flight. The ultrasonic flowmeter accurately measures flow and detects gas ingestion. The ultrasonic point sensors function well in space, but not as a gage during sustained low-gravity conditions, as they, like other point gages, are subject to the uncertainties of propellant geometry in a given tank. Propellant transfer operations can be performed with liquid-free ullage equalization at a 20 percent fill level, gas-free liquid transfer from 20-65 percent fill level, minimal slosh, and can be automated.
Lee, Jing-Yi; Huo, Teh-Ia; Wang, Sun-Sang; Lin, Han-Chieh; Chuang, Chiao-Lin; Lee, Shou-Dong
2013-01-01
Liver cirrhosis may lead to portal-systemic collateral formation and bleeding. The hemostatic effect is influenced by the response of collateral vessels to vasoconstrictors. Diabetes and glucose also influence vasoresponsiveness, but their net effect on collaterals remains unexplored. This study investigated the impact of diabetes or glucose application on portal-systemic collateral vasoresponsiveness to arginine vasopressin (AVP) in cirrhosis. Spraque-Dawley rats with bile duct ligation (BDL)-induced cirrhosis received vehicle (citrate buffer) or streptozotocin (diabetic, BDL/STZ). The in situ collateral perfusion was done after hemodynamic measurements: Both were perfused with Krebs solution, D-glucose, or D-glucose and NaF, with additional OPC-31260 for the BDL/STZ group. Splenorenal shunt vasopressin receptors and Gα proteins mRNA expressions were evaluated. The survival rate of cirrhotic rats was decreased by STZ injection. The collateral perfusion pressure changes to AVP were lower in STZ-injected groups, which were reversed by OPC-31260 (a V2R antagonist) and overcome by NaF (a G protein activator). The splenorenal shunt V2R mRNA expression was increased while Gα proteins mRNA expressions were decreased in BDL/STZ rats compared to BDL rats. The Gαq and Gα11 mRNA expressions also correlated with the maximal perfusion pressure changes to AVP. Diabetes diminished the portal-systemic collateral vascular response to AVP in rats with BDL-induced cirrhosis, probably via V2 receptor up-regulation and Gα proteins down-regulation. PMID:23874439
Lee, Jing-Yi; Huo, Teh-Ia; Wang, Sun-Sang; Huang, Hui-Chun; Lee, Fa-Yauh; Lin, Han-Chieh; Chuang, Chiao-Lin; Lee, Shou-Dong
2013-01-01
Liver cirrhosis may lead to portal-systemic collateral formation and bleeding. The hemostatic effect is influenced by the response of collateral vessels to vasoconstrictors. Diabetes and glucose also influence vasoresponsiveness, but their net effect on collaterals remains unexplored. This study investigated the impact of diabetes or glucose application on portal-systemic collateral vasoresponsiveness to arginine vasopressin (AVP) in cirrhosis. Spraque-Dawley rats with bile duct ligation (BDL)-induced cirrhosis received vehicle (citrate buffer) or streptozotocin (diabetic, BDL/STZ). The in situ collateral perfusion was done after hemodynamic measurements: Both were perfused with Krebs solution, D-glucose, or D-glucose and NaF, with additional OPC-31260 for the BDL/STZ group. Splenorenal shunt vasopressin receptors and Gα proteins mRNA expressions were evaluated. The survival rate of cirrhotic rats was decreased by STZ injection. The collateral perfusion pressure changes to AVP were lower in STZ-injected groups, which were reversed by OPC-31260 (a V2R antagonist) and overcome by NaF (a G protein activator). The splenorenal shunt V2R mRNA expression was increased while Gα proteins mRNA expressions were decreased in BDL/STZ rats compared to BDL rats. The Gαq and Gα11 mRNA expressions also correlated with the maximal perfusion pressure changes to AVP. Diabetes diminished the portal-systemic collateral vascular response to AVP in rats with BDL-induced cirrhosis, probably via V2 receptor up-regulation and Gα proteins down-regulation.
Hilliard, Lucinda M; Nematbakhsh, Mehdi; Kett, Michelle M; Teichman, Elleesha; Sampson, Amanda K; Widdop, Robert E; Evans, Roger G; Denton, Kate M
2011-02-01
Sexual dimorphism in arterial pressure regulation has been observed in humans and animal models. The mechanisms underlying this gender difference are not fully known. Previous studies in rats have shown that females excrete more salt than males at a similar arterial pressure. The renin-angiotensin system is a powerful regulator of arterial pressure and body fluid volume. This study examined the role of the angiotensin type 2 receptor (AT₂R) in pressure-natriuresis in male and female rats because AT₂R expression has been reported to be enhanced in females. Renal function was examined at renal perfusion pressures of 120, 100, and 80 mm Hg in vehicle-treated and AT₂R antagonist-treated (PD123319; 1 mg/kg/h) groups. The pressure-natriuresis relationship was gender-dependent such that it was shifted upward in female vs male rats (P < 0.001). AT₂R blockade modulated the pressure-natriuresis relationship, shifting the curve downward in male (P < 0.01) and female (P < 0.01) rats to a similar extent. In females, AT₂R blockade also reduced the lower end of the autoregulatory range of renal blood flow (P < 0.05) and glomerular filtration rate (P < 0.01). Subsequently, the renal blood flow response to graded angiotensin II infusion was also measured with and without AT₂R blockade. We found that AT₂R blockade enhanced the renal vasoconstrictor response to angiotensin II in females but not in males (P < 0.05). In conclusion, the AT₂R modulates pressure-natriuresis, allowing the same level of sodium to be excreted at a lower pressure in both genders. However, a gender-specific role for the AT₂R in renal autoregulation was evident in females, which may be a direct vascular AT₂R effect.
Giuliani, Maria Elisa; Benedetti, Maura; Nigro, Marco; Regoli, Francesco
2017-08-01
Despite the key importance of Nrf2-Keap1 in regulating antioxidant system in vertebrates, this system is still poorly investigated in marine species. The present study focused on the Antarctic silverfish Pleuragramma antarctica which, during the final phases of embryo development in platelet ice, is challenged by a sudden enhancement of environmental oxidative conditions associated to ice melting. Partial coding sequences were identified for Nrf2, its repressor Keap1 and for typical Nrf2-target antioxidant genes, like catalase, glutathione peroxidase isoform 1 and Cu/Zn-dependent superoxide dismutase. Compared to temperate homologues, the protein sequences showed an elevated conservation of amino acids essential for catalytic functions, while a few specific substitutions in non-essential regions may represent a molecular adaptation to improve flexibility and accessibility to active site at cold temperatures. The role of the Nrf2-Keap1 pathway in modulating the activation of antioxidant defences was demonstrated at both transcriptional and functional levels with a clear temporal increase of antioxidant protection in embryos before the hatching. Such findings confirm the importance of Nrf2 and highlight regulation of antioxidants as an adaptive strategy in P. antarctica to protect the early life stages toward the environmental changes of pro-oxidant pressure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Research on the influence of institutional pressures on green innovation strategy
NASA Astrophysics Data System (ADS)
Zewen, Chen; xin, Li; Hongjun, Cao
2017-11-01
Based on the new Institutional theory and the sample of 116 enterprises, this paper explores the influencing factors of green innovation strategy from the perspective of forced pressure, normative pressure and imitation pressure. The results show that the mandatory regulation, the incentive regulation, the supply chain pressure, and the competitive pressure all have a significant and positive impact on the green innovation strategy. Therefore, the government should take steps to stimulate enterprises to choose the green innovation strategy.
Regulation of coronary blood flow
Gorlin, Richard
1971-01-01
Coronary blood flow is dependent upon arterial pressure, diastolic time, and small vessel resistance. The system is regulated to achieve a low flow high oxygen extraction and low myocardial Po2. This setting is sensitive to change in oxygen needs. Regulation of blood flow occurs primarily through local intrinsic regulation, most likely through production of vasodilating metabolites in response to minimal degrees of ischaemia. Local regulation appears to dominate over remote regulation in most circumstances. Blood flow distribution to the myocardium is depth dependent as well as regional in variation. Both types of distribution of blood flow are profoundly disturbed in the presence of obstructive coronary atherosclerosis. This results in either concentric myocardial shells or patchy transmural zones of selective ischaemia with clear-cut but local abnormalities in metabolism and performance. Images PMID:4929442
Measurement of Rubidium Number Density Under Optically Thick Conditions
2010-11-15
for efficient, high-power laser systems . While these alkali metals offer great promise, there are several issues which need to be resolved. Two such...circulator. The pressure and composition of the diluent within the heat pipe could also be adjusted using the attached gas handling system . The gas...handling system consisted of a vacuum pump, 10 Torr and 1000 Torr baratrons, various valves and a line going to a regulated gas cylinder. The second
Mozhaev, V V; Bec, N; Balny, C
1994-08-01
Biocatalytic transformations in reversed micelles formed by anionic surfactant Aerosol OT in octane have been studied at high pressures by an example of alpha-chymotrypsin-catalyzed hydrolysis of N-carbobenzoxy-L-tyrosine p-nitrophenyl ester and N-succinyl-L-phenylalanine p-nitroanilide. For the first time it has been found that the enzyme retains high activity in these water-in-oil microemulsions up to a pressure of 2 kbar. The value of the activation volume (delta V*) for the enzyme reactions shows a dependence on the water content in the system. When the size of the micellar aqueous inner cavity (as evaluated at 1 atm) approaches the molecular size of alpha-chymotrypsin, delta V* becomes significantly different from the value in aqueous solution and in the micelles with a larger size. Possibilities of regulating the enzyme activity by pressure in systems with a low content of water are discussed.
Dimke, Henrik
2011-12-01
The thiazide-sensitive NaCl cotransporter (NCC) plays key roles in renal electrolyte transport and blood pressure maintenance. Regulation of this cotransporter has received increased attention recently, prompted by the discovery that mutations in the with-no-lysine (WNK) kinases are the molecular explanation for pseudohypoaldosteronism type II (PHAII). Studies suggest that WNK4 regulates NCC via two distinct pathways, depending on its state of activation. Furthermore, an intact STE20-related proline-alanine-rich kinase (SPAK)/oxidative stress response 1 kinase (OSR1) pathway was found to be necessary for a WNK4 PHAII mutation to increase NCC phosphorylation and blood pressure in mice. The mouse protein 25α is a novel regulator of the SPAK/OSR1 kinase family, which greatly increases their activity. The phosphorylation status of NCC and the WNK is regulated by the serum- and glucocorticoid-inducible kinase 1, suggesting novel mechanisms whereby aldosterone modulates NCC activity. Dephosphorylation of NCC by protein phosphatase 4 strongly influences the activity of the cotransporter, confirming an important role for NCC phosphorylation. Finally, γ-adducin increases NCC activity. This stimulatory effect is dependent on the phosphorylation status of the cotransporter. γ-Adducin only binds the dephosphorylated cotransporter, suggesting that phosphorylation of NCC causes the dissociation of γ-adducin. Since γ-adducin is not a kinase, it is tempting to speculate that the protein exerts its function by acting as a scaffold between the dephosphorylated cotransporter and the regulatory kinase. As more molecular regulators of NCC are identified, the system-controlling NCC activity is becoming increasingly complex. This intricacy confers an ability to integrate a variety of stimuli, thereby regulating NCC transport activity and ultimately blood pressure.
Nonlinear Modeling and Control of a Propellant Mixer
NASA Technical Reports Server (NTRS)
Barbieri, Enrique; Richter, Hanz; Figueroa, Fernando
2003-01-01
A mixing chamber used in rocket engine combustion testing at NASA Stennis Space Center is modeled by a second order nonlinear MIMO system. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. The outputs to be tracked and/or regulated are mixer internal pressure, exit mass flow, and exit temperature. The outputs must conform to test specifications dictated by the type of rocket engine or component being tested downstream of the mixer. Feedback linearization is used to achieve tracking and regulation of the outputs. It is shown that the system is minimum-phase provided certain conditions on the parameters are satisfied. The conditions are shown to have physical interpretation.
117. PNEUMATIC SUPPLY PANEL IN CENTER OF VEHICLE MECHANICAL SYSTEMS ...
117. PNEUMATIC SUPPLY PANEL IN CENTER OF VEHICLE MECHANICAL SYSTEMS ROOM (111), LSB (BLDG. 770), FACING NORTH. CONTROLS FOR FLOW AND PRESSURE REGULATION OF HELIUM ON LEFT SIDE OF PANEL; CONTROLS FOR NITROGEN ON RIGHT SIDE OF PANEL (AT RIGHT EDGE OF PHOTO). - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
116. PNEUMATIC SUPPLY PANEL IN CENTER OF VEHICLE MECHANICAL SYSTEMS ...
116. PNEUMATIC SUPPLY PANEL IN CENTER OF VEHICLE MECHANICAL SYSTEMS ROOM (111) OF LSB (BLDG. 770), FACING NORTH. CONTROLS FOR FLOW AND PRESSURE REGULATION OF NITROGEN ON RIGHT SIDE OF PANEL; CONTROLS FOR HELIUM ON LEFT SIDE OF PANEL (AT LEFT EDGE OF PHOTO). - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Variation of DNA Methylome of Zebrafish Cells under Cold Pressure
Xu, Qiongqiong; Luo, Juntao; Shi, Yingdi; Li, Xiaoxia; Yan, Xiaonan; Zhang, Junfang
2016-01-01
DNA methylation is an essential epigenetic mechanism involved in multiple biological processes. However, the relationship between DNA methylation and cold acclimation remains poorly understood. In this study, Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) was performed to reveal a genome-wide methylation profile of zebrafish (Danio rerio) embryonic fibroblast cells (ZF4) and its variation under cold pressure. MeDIP-seq assay was conducted with ZF4 cells cultured at appropriate temperature of 28°C and at low temperature of 18°C for 5 (short-term) and 30 (long-term) days, respectively. Our data showed that DNA methylation level of whole genome increased after a short-term cold exposure and decreased after a long-term cold exposure. It is interesting that metabolism of folate pathway is significantly hypomethylated after short-term cold exposure, which is consistent with the increased DNA methylation level. 21% of methylation peaks were significantly altered after cold treatment. About 8% of altered DNA methylation peaks are located in promoter regions, while the majority of them are located in non-coding regions. Methylation of genes involved in multiple cold responsive biological processes were significantly affected, such as anti-oxidant system, apoptosis, development, chromatin modifying and immune system suggesting that those processes are responsive to cold stress through regulation of DNA methylation. Our data indicate the involvement of DNA methylation in cellular response to cold pressure, and put a new insight into the genome-wide epigenetic regulation under cold pressure. PMID:27494266
Vascular and renal function in experimental thyroid disorders.
Vargas, Félix; Moreno, Juan Manuel; Rodríguez-Gómez, Isabel; Wangensteen, Rosemary; Osuna, Antonio; Alvarez-Guerra, Miriam; García-Estañ, Joaquín
2006-02-01
This review focuses on the effects of thyroid hormones in vascular and renal systems. Special emphasis is given to the mechanisms by which thyroid hormones affect the regulation of body fluids, vascular resistance and, ultimately, blood pressure. Vascular function is markedly affected by thyroid hormones that produce changes in vascular reactivity and endothelial function in hyper- and hypothyroidism. The hypothyroid state is accompanied by a marked decrease in sensitivity to vasoconstrictors, especially to sympathetic agonists, alteration that may play a role in the reduced blood pressure of hypothyroid rats, as well as in the preventive effects of hypothyroidism on experimental hypertension. Moreover, in hypothyroid rats, the endothelium-dependent and nitric oxide donors vasodilation is reduced. Conversely, the vessels from hyperthyroid rats showed an increased endothelium-dependent responsiveness that may be secondary to the shear-stress induced by the hyperdynamic circulation, and that may contribute to the reduced vascular resistance characteristic of this disease. Thyroid hormones also have important effects in the kidney, affecting renal growth, renal haemodynamics, and salt and water metabolism. In hyperthyroidism, there is a resetting of the pressure-natriuresis relationship related to hyperactivity of the renin-angiotensin system, which contributes to the arterial hypertension associated with this endocrine disease. Moreover, thyroid hormones affect the development and/or maintenance of various forms of arterial hypertension. This review also describes recent advances in our understanding of thyroid hormone action on nitric oxide and oxidative stress in the regulation of cardiovascular and renal function and in the long-term control of blood pressure.
Ultra-high pressure water jetting for coating removal and surface preparation
NASA Technical Reports Server (NTRS)
Johnson, Spencer T.
1995-01-01
This paper shall examine the basics of water technology with particular attention paid to systems currently in use and some select new applications. By providing an overview of commercially available water jet systems in the context of recent case histories, potential users may evaluate the process for future applications. With the on going introduction of regulations prohibiting the use of chemical paint strippers, manual scrapping and dry abrasive media blasting, the need for an environmentally compliant coating removal process has been mandated. Water jet cleaning has been a traditional part of many industrial processed for year, although it has only been in the last few years that reliable pumping equipment capable of ultra-high pressure operation have become available. With the advent of water jet pumping equipment capable of sustaining pressures in excess of 36,000 psi. there has been shift away from lower pressure, high water volume systems. One of the major factors in driving industry to seek higher pressures is the ability to offer higher productivity rates while lowering the quantity of water used and subsequently reprocessed. Among benefits of the trend toward higher pressure/lower volume systems is the corresponding reduction in water jet reaction forces making hand held water jetting practical and safe. Other unique applications made possible by these new generation pumping systems include the use of alternative fluids including liquid ammonia for specialized and hazardous material removal applications. A review of the equipment used and the required modifications will be presented along with the conclusions reached reached during this test program.
Hormonal regulation of fluid and electrolyte metabolism in zero-g and bedrest
NASA Technical Reports Server (NTRS)
Vernikos, Joan
1991-01-01
The study of man in spaceflight has consistently indicated changes in fluid and electrolyte balance. Sodium (Na), Potassium (K), and Calcium (Ca) excretion are increased, accompanied by changes in the levels and responsiveness of adrenal hormones and the sympathetic nervous system (SNS). These hormones and neurohumors are critical to the regulation of blood pressure, blood flow, and blood volume. The primary objectives of the research conducted under this task have been to use -6 deg head down bedrest (BR) as the analog to spaceflight, to determine the long term changes in these systems, their relationship to orthostatic tolerance, and to develop and test suitable countermeasures.
Current Status of the Nitrogen Oxygen Recharge System
NASA Technical Reports Server (NTRS)
Dick, Brandon
2011-01-01
This paper presents an overview of the Nitrogen Oxygen Recharge System (NORS) to date and the current development status of the system. NORS is an element of the International Space Station (ISS) Environmental Control and Life Support Systems (ECLSS) used to resupply the ISS with Nitrogen and Oxygen following the impending retirement of the Space Shuttle. The paper will discuss why NASA is developing NORS, including a summary of other concepts considered, and other related concepts currently being developed by NASA. The current system architecture will be described, along with a summary of the current design of the NORS. The overall programmatic schedule of the NORS in the context of the upcoming shuttle retirement and future launch vehicle development will also be presented. Finally, the paper will examine the significant technical challenges encountered during the requirements and preliminary design phase of NORS development. A key challenge to the development of NORS is the international shipment - and associated regulations - of pressurized Oxygen, which is necessary due to the use of launch vehicles based in Japan and French Guiana to send NORS gasses to the ISS. The storage and use of relatively large quantities of high pressure (41,000 kPa) Oxygen and Nitrogen within the ISS, which is unprecedented both on the ISS and other space vehicles, has had a significant impact on the design and architecture of the system. The high pressure of the system also poses unique thermal considerations, which has led to the development of a heater system for thermal conditioning of high pressure gas to avoid thermal impacts on downstream hardware. The on-orbit envelope allocated to the NORS has changed (gotten smaller) and has impacted both the design and architecture of the system. Finally, the balance of safety considerations associated with these high pressure gasses, particularly high pressure Oxygen, with the functionality of the system has profoundly impacted the form of the system and will be discussed.
Do agonistic motives matter more than anger? Three studies of cardiovascular risk in adolescents.
Ewart, Craig K; Elder, Gavin J; Smyth, Joshua M; Sliwinski, Martin J; Jorgensen, Randall S
2011-09-01
Three motivational profiles have been associated with recurring psychological stress in low-income youth and young adults: Striving to control others (agonistic striving), striving to control the self (transcendence striving), and not asserting control (dissipated striving). Agonistic striving has been associated with elevated ambulatory blood pressure during daily activities. Three studies tested the hypotheses that: (1) agonistic striving is associated with poor anger regulation, and (2) agonistic striving and poor anger regulation interactively elevate blood pressure. Motivational profiles, anger regulation, and ambulatory blood pressure were assessed in a multiethnic sample of 264 urban youth. (1) anger regulation/recovery during laboratory challenge; (2) anger/blood pressure during daily activities (48 hours). Replication of the profiles in distant cities showed they occur with similar frequency across differences of region, race, and gender. Analyses controlling for body size, race, and gender revealed that individuals with the agonistic striving profile had higher ambulatory pressure, especially during social encounters. They became more openly angry and aggressive when challenged but did not exhibit difficulty regulating anger in the laboratory, nor did they feel angrier during monitoring. However, individuals with the agonistic striving profile who did display poor anger regulation in the lab had the highest blood pressure; deficient self-regulatory capability amplified the positive association between agonistic striving and cardiovascular risk in both genders and all ethnic groups. Although anger is thought to increase cardiovascular risk, present findings suggest that anger and elevated blood pressure are coeffects of agonistic struggles to control others.
The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System
Menazza, Sara; Murphy, Elizabeth
2016-01-01
Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to two nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue specific co-activators and co-repressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as GPER to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long term effects. The kinase signaling pathways can also mediate transcriptional changes, and can synergize with the estrogen receptor to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER-membrane signaling mechanisms. PMID:26838792
[THE CORRECTION WITH NOOPHEN OF AUTONOMIC DYSFUNCTION IN YOUNG MEN WITH HYPERTENSION].
Knyazkova, I I; Kuzminova, N V; Osovskaya, N Yu
2015-01-01
The aim of this study was to investigate the influence of antihypertensive therapy with adding of gamma-amino-beta-phenylbutyric acid hydrochloride on the autonornic regulation of tcardiovascular system and the psychoemotional status in young men with hypertension. The study included 58 male with hypertension, aged 18-39 years (mean age 31.7 yearst 2.3 years), of them 28 patients (group I) administered beta-blocker and the other received a complex therapy which included beta-blocker and gamma-amino-beta-phenylbutyric acid hydrochiotide--Noofen ("OlainFarm", Latvia) 250 mg 3 times a day for 4 weeks. The control group consisted of 20 healthy indi&iduals aged 18-39 years (mean age 31.5 years +/- 2.5 years). The examination included of standard clinical; biochemical and instrumental investigatIons. We conducted a clinical measurement of blorid pressure, ambulatory blood pressure monitoring (ABPM), Doppler echocardiography, heart rate variability, autononlic symptoms questionnaire and Spielberger--Hanina Anxiety Scale. Analysis of circadian blbod pressure profile arid autonomic nervous system state in young men with hypertension, in spite of the short disenle history demonstratnl violations of the blood pressure circadian rhythm associated with the violation of the autonomic regulation of cardiovascular system as indreased sympathetic activity and decreased parasympathetic activity heart tate. In hypertensive patients with autonomic dysfunction we noted a reduction of level of mental health, which was reflected in an increase in'the number of people with high and moderate levels of reactive and personal anxiety It has been demonstratedthat the use of combination therapy with adding Noofen in young hypertensive men and autonomic dysfunction helped significantly improve the HRV parameters and restore autonomic balance on time parameters of heart rate variability reduced the level of reactive anxiety and imprdved the psychoemotional state.
49 CFR 179.100 - General specifications applicable to pressure tank car tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...
Gaseous Nitrogen Orifice Mass Flow Calculator
NASA Technical Reports Server (NTRS)
Ritrivi, Charles
2013-01-01
The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.
Growing wheat to maturity in reduced gas pressures
NASA Technical Reports Server (NTRS)
Rykiel, Edward J., Jr.; Drew, Malcolm C.; Etter, Brad D.
1993-01-01
The main objective of this project was to determine assimilation of CO2 and efficiency of water use in wheat grown to maturity in a low pressure total gas pressure environment. A functional test of the low pressure plant growth chamber system was accomplished in February and March of 1993 wherein this objective was partially achieved. Plants were grown to maturity in the chambers. Data were actively collected during the first 29 days. The plants were allowed to maintain themselves at the CO2 compensation point until day 45 of the study at which point active atmospheric regulation was resumed. This provided data at the vegetative and reproductive stages of the life cycle of the plants. However, this information may not be representative of the performance of the plants due to the loss of low pressure on a number of days during the study, which affected the plants by changing the pressure potential of the tissues. The performance of the system will be discussed on a component by component basis. The maintenance of the plants at the CO2 compensation point was driven by the failure of the computer program operating the system. The software problems that arose during the functional test have since been corrected. Results from the functional test also indicated that the plants were not receiving adequate light and nutrients. The growth chambers have been relocated and the growth room modified to compensate for these deficiencies.
NASA Technical Reports Server (NTRS)
Dan, Dan; Hoag, Jeffrey B.; Ellenbogen, Kenneth A.; Wood, Mark A.; Eckberg, Dwain L.; Gilligan, David M.
2002-01-01
OBJECTIVES: We studied hemodynamic changes leading to orthostatic vasovagal presyncope to determine whether changes of cerebral artery blood flow velocity precede or follow reductions of arterial pressure. BACKGROUND: Some evidence suggests that disordered cerebral autoregulation contributes to the occurrence of orthostatic vasovagal syncope. We studied cerebral hemodynamics with transcranial Doppler recordings, and we closely examined the temporal sequence of changes of cerebral artery blood flow velocity and systemic arterial pressure in 15 patients who did or did not faint during passive 70 degrees head-up tilt. METHODS: We recorded photoplethysmographic arterial pressure, RR intervals (electrocardiogram) and middle cerebral artery blood flow velocities (mean, total, mean/RR interval; Gosling's pulsatility index; and cerebrovascular resistance [mean cerebral velocity/mean arterial pressure, MAP]). RESULTS: Eight men developed presyncope, and six men and one woman did not. Presyncopal patients reported light-headedness, diaphoresis, or a sensation of fatigue 155 s (range: 25 to 414 s) before any cerebral or systemic hemodynamic change. Average cerebral blood flow velocity (CBFV) changes (defined by an iterative linear regression algorithm) began 67 s (range: 9 to 198 s) before reductions of MAP. Cerebral and systemic hemodynamic measurements remained constant in nonsyncopal patients. CONCLUSIONS: Presyncopal symptoms and CBFV changes precede arterial pressure reductions in patients with orthostatic vasovagal syncope. Therefore, changes of cerebrovascular regulation may contribute to the occurrence of vasovagal reactions.
Nursing Education in China: Opportunities for International Collaboration.
ERIC Educational Resources Information Center
Anders, Robert L.; Harrigan, Rosanne
2002-01-01
In China, nursing has been a secondary-level trade, although modernization and pressures on the health care system are increasing the prevalence of degree programs. The ministry of health beginning to regulate practice and establish standards. Education of key administrators and stakeholders is crucial. (Contains 11 references.) (SK)
40 CFR 141.63 - Maximum contaminant levels (MCLs) for microbiological contaminants.
Code of Federal Regulations, 2012 CFR
2012-07-01
... water pressure in all parts of the distribution system; (4) Filtration and/or disinfection of surface water, as described in subpart H, or disinfection of ground water using strong oxidants such as chlorine... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking...
Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans.
Fuchsjäger-Mayrl, Gabriele; Luksch, Alexandra; Malec, Magdalena; Polska, Elzbieta; Wolzt, Michael; Schmetterer, Leopold
2003-02-01
There is evidence that the choroid has some autoregulatory capacity in response to changes in ocular perfusion pressure (OPP). The mediators of this response are hitherto unidentified. The hypothesis for the current study was that endothelin (ET)-1 and/or angiotensin (ANF)-II may be involved in choroidal vasoconstriction during an increase in OPP. To test this hypothesis a randomized, double-masked, placebo-controlled, three way crossover study was performed in 12 healthy male volunteers. Subjects received on different study days intravenous infusions of the specific ET(A) receptor antagonist BQ-123, the angiotensin converting enzyme inhibitor enalapril or placebo. During these infusion periods subjects were asked to squat for 6 minutes. Choroidal blood flow was measured using a confocal laser Doppler flowmeter and ocular perfusion pressure (OPP) was calculated from mean arterial pressure and intraocular pressure. BQ-123 and enalapril had no effect on basal blood pressure, pulse rate, intraocular pressure, or choroidal blood flow. During isometric exercise, a pronounced increase in mean arterial pressure paralleled by an increase in OPP was observed. Although choroidal blood flow slightly increased during squatting, the increase was much less pronounced than the increase in OPP, indicating some regulatory potential of the choroid. Enalapril did not alter the choroidal pressure-flow relationship during isometric exercise, but BQ-123 induced a significant leftward shift of the pressure-flow curve (P < 0.001). The present data indicate that ET-1, but not ANG II, plays a role in choroidal blood flow regulation during isometric exercise in healthy humans. Hence, impaired choroidal autoregulation in patients with ocular vascular diseases may arise from an altered endothelin system. Further studies in such patients are warranted to verify this hypothesis.
Cardiovascular simulator improvement: pressure versus volume loop assessment.
Fonseca, Jeison; Andrade, Aron; Nicolosi, Denys E C; Biscegli, José F; Leme, Juliana; Legendre, Daniel; Bock, Eduardo; Lucchi, Julio Cesar
2011-05-01
This article presents improvement on a physical cardiovascular simulator (PCS) system. Intraventricular pressure versus intraventricular volume (PxV) loop was obtained to evaluate performance of a pulsatile chamber mimicking the human left ventricle. PxV loop shows heart contractility and is normally used to evaluate heart performance. In many heart diseases, the stroke volume decreases because of low heart contractility. This pathological situation must be simulated by the PCS in order to evaluate the assistance provided by a ventricular assist device (VAD). The PCS system is automatically controlled by a computer and is an auxiliary tool for VAD control strategies development. This PCS system is according to a Windkessel model where lumped parameters are used for cardiovascular system analysis. Peripheral resistance, arteries compliance, and fluid inertance are simulated. The simulator has an actuator with a roller screw and brushless direct current motor, and the stroke volume is regulated by the actuator displacement. Internal pressure and volume measurements are monitored to obtain the PxV loop. Left chamber internal pressure is directly obtained by pressure transducer; however, internal volume has been obtained indirectly by using a linear variable differential transformer, which senses the diaphragm displacement. Correlations between the internal volume and diaphragm position are made. LabVIEW integrates these signals and shows the pressure versus internal volume loop. The results that have been obtained from the PCS system show PxV loops at different ventricle elastances, making possible the simulation of pathological situations. A preliminary test with a pulsatile VAD attached to PCS system was made. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël
2013-06-01
How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.
49 CFR 179.103-4 - Safety relief devices and pressure regulators.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Safety relief devices and pressure regulators. 179...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...
49 CFR 179.103-4 - Safety relief devices and pressure regulators.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Safety relief devices and pressure regulators. 179...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...
49 CFR 179.103-4 - Safety relief devices and pressure regulators.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Safety relief devices and pressure regulators. 179...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...
49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to...
Application of microturbines to control emissions from associated gas
Schmidt, Darren D.
2013-04-16
A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.
Methods/Labor Standards Application Program - Phase IV
1985-01-01
Engine Platform a. Pressure switch b. Compressor motor c. Voltage regulator d. Open and clean generator exciter and main windings S3 . Main Collector...clean motors b. Slip rings Gantry #3 Annual: S2. Engine Platform a. Pressure switch b. Compressor motor Voltage regulator d. Open and clean generator...Travel Motors Open and clean motorsa. b. Slip rings Gantry #4 S2 . S3. S4 . S5 . Engine Platform a. Pressure switch b. Compressor motor Voltage regulator
Central nervous systen alpha-adrenergic mechanisms and cardiovascular regulation in rats.
Boudier, H S; Smeets, G; Brouwer, G; Van Rossum, J M
1975-02-01
Noradrenaline (NA) induced a decrease in blood pressure and heart rate when injected into specific areas in either the medulla oblongata or the hypothalamus. In the medulla the area of the nucleus tractus solitarius was specifically sensitive to NA; in the hypothalamus depressor effects were obtained only after NA injections into the anterior hypothalamic/preoptic region. The cardiovascular effects induced by NA (3-40 nmol) in these areas consisted of an immediate decrease in both arterial pressure and heart rate. Size and duration of these effects depended upon the dose of NA injected. Alpha-methylNA (5-15 nmol) induced a long lasting decrease in blood pressure and heart rate when injected into the anterior hypothalamic/preoptic region. These data are discussed in view of the existence of at least two sites within the central nervous system (CNS) from which interference with noradrenergic mechanisms can cause changes in the cardiovascular system.
A sealable ultrathin window sample cell for the study of liquids by means of soft X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Grötzsch, D.; Streeck, C.; Nietzold, C.; Malzer, W.; Mantouvalou, I.; Nutsch, A.; Dietrich, P.; Unger, W.; Beckhoff, B.; Kanngießer, B.
2017-12-01
A new sample cell concept for the analysis of liquids or solid-liquid interfaces using soft X-ray spectroscopy is presented, which enables the complete sealing of the cell as well as the transport into vacuum via, for example, a load-lock system. The cell uses pressure monitoring and active as well as passive pressure regulation systems, thereby facilitating the full control over the pressure during filling, sealing, evacuation, and measurement. The cell design and sample preparation as well as the crucial sealing procedure are explained in detail. As a first proof-of-principle experiment, successful nitrogen K-edge fluorescence yield near-edge X-ray absorption fine structure experiments of a biomolecular solution are presented. For this purpose, it is shown that the careful evaluation of all involved parameters, such as window type or photon flux, is desirable for optimizing the experimental result.
Gravitational biology and the mammalian circadian timing system
NASA Astrophysics Data System (ADS)
Fuller, Charles A.; Murakami, Dean M.; Sulzman, Frank M.
Mammals have evolved under the influence of many selective pressures. Two of these pressures have been the static force of gravity and the daily variations in the environment due to the rotation of the earth. It is now clear that each of these pressures has led to specific adaptations which influence how organisms respond to changes in either gravity or daily time cues. However, several unpredicted responses to altered gravitational environments occur within the homeostatic and circadian control systems. These results may be particularly relevant to biological and medical issues related to spaceflight. This paper demonstrates that the homeostatic regulation of rat body temperature, heart rate, and activity become depressed following exposure to a 2 G hyperdynamic field, and recovers within 5-6 days. In addition, the circadian rhythms of these same variables exhibit a depression of rhythm amplitude; however, recovery required a minimum of 7 days.
Arterial baroreceptors in the management of systemic hypertension
Kougias, Panagiotis; Weakley, Sarah M.; Yao, Qizhi; Lin, Peter H.; Chen, Changyi
2010-01-01
Summary Hypertension is a multifactorial disease associated with significant morbidity. Increased sympathetic nervous system activity has been noted as an important etiologic factor and is, in part, regulated by afferent input arising from arterial and cardiopulmonary baroreceptors, activation of which causes inhibition of sympathetic output. It was thought for many years that baroreceptors control only short-term blood pressure changes, a conclusion stemming from observations in sinoaortic denervation (SAD) animal models and the phenomenon of rapid baroreceptor resetting, also seen in animal models. Newer observations, however, indicate that SAD is rather imperfect and resetting is rarely complete. Recent studies reveal that baroreceptors control sympathetic output on a more long-term basis and participate in fluid volume regulation by the kidney, and thus have the potential to adjust blood pressure chronically. Importantly, these findings are consistent with studies and observations in humans. Meanwhile, a model of electrical stimulation of the carotid sinus has been developed and successfully tested in animals. Following these encouraging results human trials to evaluate the clinical application of electrical carotid sinus manipulation in the treatment of systemic hypertension have commenced, and results so far indicate that this represents an exciting potential tool in the clinician’s armament against chronic arterial hypertension. PMID:20037502
Psychophysiology of arterial baroreceptors and the etiology of hypertension.
Rau, H; Elbert, T
2001-01-01
Arterial baroreceptors are sensitive to blood pressure dependent blood vessel dilation. They play a key role in the short term regulation of blood pressure. Their impact on psychological and psychophysiological aspects is of increasing interest. The review focuses on experimental techniques for the controlled baroreceptor manipulation. Results from the application of these techniques show that baroreceptor activation influences the cardiovascular system as well as central nervous functioning: Behavioral and electrophysiological measures of arousal, low level reflexes and pain responses are modulated through baroreceptor manipulation. The observation of an overall dampening ('barbiturate like') effect of baroreceptor activity led Dworkin et al. formulate the theory of learned hypertension: Subjects might experience blood pressure dependent baroreceptor activation as stress and pain relieving. High blood pressure periods become negatively reinforced. Phasic high blood pressure might develop as a coping strategy. Data from a longitudinal human study supporting this theory are reported.
77 FR 9520 - Airworthiness Directives; Bombardier Inc., Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-17
... a report of deformation at the neck of the pressure regulator body on certain oxygen cylinder and regulator assemblies (CRA). This AD requires an inspection to determine if a certain oxygen CRA is installed and the replacement of oxygen CRAs containing pressure regulators having a certain part number. We are...
Do Agonistic Motives Matter More Than Anger? Three Studies of Cardiovascular Risk in Adolescents
Ewart, Craig K.; Elder, Gavin J.; Smyth, Joshua M.; Sliwinski, Martin J.; Jorgensen, Randall S.
2011-01-01
Objective Three motivational profiles have been associated with recurring psychological stress in low-income youth and young adults: Striving to control others (agonistic striving), striving to control the self (transcendence striving), and not asserting control (dissipated striving); Agonistic Striving has been associated with elevated ambulatory blood pressure during daily activities. Three studies tested the hypotheses that: (1) Agonistic Striving is associated with poor anger regulation, and (2) Agonistic Striving and poor anger regulation interactively elevate blood pressure. Design Motivational profiles, anger regulation, and ambulatory blood pressure were assessed in a multiethnic sample of 264 urban youth. Main outcome measures (1) Anger regulation/recovery during laboratory challenge; (2) anger / blood pressure during daily activities (48 hours). Results and conclusion Replication of the profiles in distant cities showed they occur with similar frequency across differences of region, race, and gender. Analyses controlling for body size, race, and gender revealed that individuals with the Agonistic Striving profile had higher ambulatory pressure, especially during social encounters. They became more openly angry and aggressive when challenged, but did not exhibit difficulty regulating anger in the laboratory, nor did they feel more angry during monitoring. However, individuals with the Agonistic Striving profile who did display poor anger regulation in the lab had the highest blood pressure; deficient self-regulatory capability amplified the positive association between Agonistic Striving and cardiovascular risk in both genders and all ethnic groups. Although anger is thought to increase cardiovascular risk, present findings suggest that anger and elevated blood pressure are co-effects of agonistic struggles to control others. PMID:21534673
49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a table...
Cellular pressure and volume regulation and implications for cell mechanics
NASA Astrophysics Data System (ADS)
Jiang, Hongyuan; Sun, Sean
2013-03-01
In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death and migration. Volume and shape regulation also directly impacts the mechanics of the cell and multi-cellular tissues. Recent experiments found that during mitosis, eukaryotic cells establish a preferred steady volume and pressure, and the steady volume and pressure can robustly adapt to large osmotic shocks. Here we develop a mathematical model of cellular pressure and volume regulation, incorporating essential elements such as water permeation, mechano-sensitive channels, active ion pumps and active stresses in the actomyosin cortex. The model can fully explain the available experimental data, and predicts the cellular volume and pressure for several models of cell cortical mechanics. Furthermore, we show that when cells are subjected to an externally applied load, such as in an AFM indentation experiment, active regulation of volume and pressure leads to complex cellular response. We found the cell stiffness highly depends on the loading rate, which indicates the transport of water and ions might contribute to the observed viscoelasticity of cells.
Blood Pressure Regulation XI: Overview and Future Research Directions
Raven, Peter B.; Chapleau, Mark W.
2014-01-01
While the importance of regulating arterial blood pressure within a ‘normal’ range is widely appreciated, the definition of ‘normal’ and the means by which humans and other species regulate blood pressure under various conditions remain hotly debated. The effects of diverse physiological, pathological and environmental challenges on blood pressure and the mechanisms that attempt to maintain it at an optimal level are reviewed and critically analyzed in a series of articles published in this themed issue of the European Journal of Applied Physiology. We summarize here the major points made in these reviews, with emphasis on unifying concepts of regulatory mechanisms and future directions for research. PMID:24463603
Bisson, M A; Beilby, M J
2008-01-01
Hyper- and hypotonic stresses elicit apparently symmetrical responses in the alga Ventricaria. With hypertonic stress, membrane potential difference (PD) between the vacuole and the external medium becomes more positive, conductance at positive PDs (Gmpos) increases and KCl is actively taken up to increase turgor. With hypotonic stress, the membrane PD becomes more negative, conductance at negative PDs (Gmneg) increases and KCl is lost to decrease turgor. We used inhibitors that affect active transport to determine whether agents that inhibit the K(+) pump and hypertonic regulation also inhibit hypotonic regulatory responses. Cells whose turgor pressure was held low by the pressure probe (turgor-clamped) exhibited the same response as cells challenged by hyperosmotic medium, although the response was maintained longer than in osmotically challenged cells, which regulate turgor. The role of active K(+) transport was confirmed by the effects of decreased light, dichlorophenyldimethyl urea and diethylstilbestrol, which induced a uniformly low conductance (quiet state). Cells clamped to high turgor exhibited the same response as cells challenged by hypo-osmotic medium, but the response was similarly transient, making effects of inhibitors hard to determine. Unlike clamped cells, cells challenged by hypo-osmotic medium responded to inhibitors with rapid, transient, negative-going PDs, with decreased Gmneg and increased Gmpos (linearized I-V), achieving the quiet state as PD recovered. These changes are different from those exerted on the pump state, indicating that different transport systems are responsible for turgor regulation in the two cases.
Erythropoiesis and Blood Pressure Are Regulated via AT1 Receptor by Distinctive Pathways.
Kato, Hideki; Ishida, Junji; Matsusaka, Taiji; Ishimaru, Tomohiro; Tanimoto, Keiji; Sugiyama, Fumihiro; Yagami, Ken-Ichi; Nangaku, Masaomi; Fukamizu, Akiyoshi
2015-01-01
The renin-angiotensin system (RAS) plays a central role in blood pressure regulation. Although clinical and experimental studies have suggested that inhibition of RAS is associated with progression of anemia, little evidence is available to support this claim. Here we report that knockout mice that lack angiotensin II, including angiotensinogen and renin knockout mice, exhibit anemia. The anemia of angiotensinogen knockout mice was rescued by angiotensin II infusion, and rescue was completely blocked by simultaneous administration of AT1 receptor blocker. To genetically determine the responsible receptor subtype, we examined AT1a, AT1b, and AT2 knockout mice, but did not observe anemia in any of them. To investigate whether pharmacological AT1 receptor inhibition recapitulates the anemic phenotype, we administered AT1 receptor antagonist in hypotensive AT1a receptor knockout mice to inhibit the remaining AT1b receptor. In these animals, hematocrit levels barely decreased, but blood pressure further decreased to the level observed in angiotensinogen knockout mice. We then generated AT1a and AT1b double-knockout mice to completely ablate the AT1 receptors; the mice finally exhibited the anemic phenotype. These results provide clear evidence that although erythropoiesis and blood pressure are negatively controlled through the AT1 receptor inhibition in vivo, the pathways involved are complex and distinct, because erythropoiesis is more resistant to AT1 receptor inhibition than blood pressure control.
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki; Anshari, Rio
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environmentmore » such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.« less
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
NASA Astrophysics Data System (ADS)
Su'ud, Zaki; Anshari, Rio
2012-06-01
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.
Structural Insights into Central Hypertension Regulation by Human Aminopeptidase A*
Yang, Yang; Liu, Chang; Lin, Yi-Lun; Li, Fang
2013-01-01
Hypertension is regulated through both the central and systemic renin-angiotensin systems. In the central renin-angiotensin system, zinc-dependent aminopeptidase A (APA) up-regulates blood pressure by specifically cleaving the N-terminal aspartate, but not the adjacent arginine, from angiotensin II, a process facilitated by calcium. Here, we determined the crystal structures of human APA and its complexes with different ligands and identified a calcium-binding site in the S1 pocket of APA. Without calcium, the S1 pocket can bind both acidic and basic residues through formation of salt bridges with the charged side chains. In the presence of calcium, the binding of acidic residues is enhanced as they ligate the cation, whereas the binding of basic residues is no longer favorable due to charge repulsion. Of the peptidomimetic inhibitors of APA, amastatin has higher potency than bestatin by fitting better in the S1 pocket and interacting additionally with the S3′ subsite. These results explain the calcium-modulated substrate specificity of APA in central hypertension regulation and can guide the design and development of brain-targeting antihypertensive APA inhibitors. PMID:23888046
Structural insights into central hypertension regulation by human aminopeptidase A.
Yang, Yang; Liu, Chang; Lin, Yi-Lun; Li, Fang
2013-08-30
Hypertension is regulated through both the central and systemic renin-angiotensin systems. In the central renin-angiotensin system, zinc-dependent aminopeptidase A (APA) up-regulates blood pressure by specifically cleaving the N-terminal aspartate, but not the adjacent arginine, from angiotensin II, a process facilitated by calcium. Here, we determined the crystal structures of human APA and its complexes with different ligands and identified a calcium-binding site in the S1 pocket of APA. Without calcium, the S1 pocket can bind both acidic and basic residues through formation of salt bridges with the charged side chains. In the presence of calcium, the binding of acidic residues is enhanced as they ligate the cation, whereas the binding of basic residues is no longer favorable due to charge repulsion. Of the peptidomimetic inhibitors of APA, amastatin has higher potency than bestatin by fitting better in the S1 pocket and interacting additionally with the S3' subsite. These results explain the calcium-modulated substrate specificity of APA in central hypertension regulation and can guide the design and development of brain-targeting antihypertensive APA inhibitors.
What We Talk about when We Talk with Medical Students
ERIC Educational Resources Information Center
Joyner, Michael J.; Charkoudian, Nisha; Curry, Timothy B.; Eisenach, John H.; Wehrwein, Erica A.
2011-01-01
In this article, we review how we interact with medical students in our efforts to teach blood pressure regulation and systemic cardiovascular control along with related elements of respiratory and exercise physiology. Rather than provide a detailed lecture with key facts, we attempted to outline our approach to teaching integrative cardiovascular…
TRPV4 channels: physiological and pathological role in cardiovascular system.
Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh
2015-11-01
TRPV4 channels are non-selective cation channels permeable to Ca(2+), Na(+), and Mg(2+) ions. Recently, TRPV4 channels have received considerable attention as these channels are widely expressed in the cardiovascular system including endothelial cells, cardiac fibroblasts, vascular smooth muscles, and peri-vascular nerves. Therefore, these channels possibly play a pivotal role in the maintenance of cardiovascular homeostasis. TRPV4 channels critically regulate flow-induced arteriogenesis, TGF-β1-induced differentiation of cardiac fibroblasts into myofibroblasts, and heart failure-induced pulmonary edema. These channels also mediate hypoxia-induced increase in proliferation and migration of pulmonary artery smooth muscle cells and progression of pulmonary hypertension. These channels also maintain flow-induced vasodilation and preserve vascular function by directly activating Ca(2+)-dependent KCa channels. Furthermore, these may also induce vasodilation and maintain blood pressure indirectly by evoking the release of NO, CGRP, and substance P. The present review discusses the evidences and the potential mechanisms implicated in diverse responses including arteriogenesis, cardiac remodeling, congestive heart failure-induced pulmonary edema, pulmonary hypertension, flow-induced dilation, regulation of blood pressure, and hypoxic preconditioning.
Modelling the interaction among several mechanisms in the short-term arterial pressure control.
Ursino, M
2000-01-01
A Mathematical model of the short-term arterial pressure control in humans is presented. It includes a six-compartment description of the vascular system, an elastance variable model of the pulsating heart, two groups of baroreceptors (high-pressure or sinoaortic baroreceptors and low-pressure or cardiopulmonary baroreceptors), the efferent activity in the sympathetic nerves and in the vagus, and the response of four distinct effectors (heart period, systemic peripheral resistance, systemic venous unstressed volume and heart contractility). Several experimental results reported in the physiological literature can be reproduced with the model quite well. The examples presented in this work include the effect of combined sympathetic and vagal stimulation on heart rate, the baroreflex response to mild and severe acute haemorrhages, and the baroreflex response to ventricular pacing at different rates performed during atrioventricular block. The results suggest that: i) The sympathetic nerves and the vagus interact linearly in regulating heart period. The apparent negative interaction observed experimentally can be ascribed merely to the hyperbolic relationship which links heart rate to heart period. ii) The cardiopulmonary baroafferents play a significant role in the control of systemic arterial pressure during mild haemorrhages (lower than 3-4% of the overall blood volume). In this range, they may allow arterial pressure to be maintained at its normal level without the intervention of the sinoaortic baroreceptors. In contrast, the sinoaortic baroreceptors become the major responsible of the observed cardiovascular adjustments during more severe haemorrhages, when the role of cardiopulmonary baroreceptors becomes progressively exhausted. iii) The stability margin of the closed-loop system is quite low. Increasing the static gain of the baroreceptors or reducing the rate-dependent component may result in self-sustained oscillations similar to Mayer waves.
Physiological Research on the Centrifuge in Flight Medical Examinations and Selection System
1988-11-09
and veins) when the pressure is-sn them. in vascular tension regulation under ac it:r C , L .. L Ifl .,:echanisms and the renin angiotensin syste...AND SELECTION SYSTEM by P.M. Suvorov DTIC x~ f ELE T E0 Approved for public release; Distribution unlimited. !P F D- ID(RS)T-0892-88 HUMAN TRANSLATION...SELECTION SYSTEM By: P.M. Suvorov English pages: 39 Source: Fiziologicheskiye Issledovaniya na Tsentrifuge v Praktike Vrachebno-Letnoy Ekspertizy i Sisteme
Molecular regulation of NKCC2 in the thick ascending limb
Ares, Gustavo R.; Caceres, Paulo S.
2011-01-01
The kidney plays an essential role in blood pressure regulation by controlling short-term and long-term NaCl and water balance. The thick ascending limb of the loop of Henle (TAL) reabsorbs 25–30% of the NaCl filtered by the glomeruli in a process mediated by the apical Na+-K+-2Cl− cotransporter NKCC2, which allows Na+ and Cl− entry from the tubule lumen into TAL cells. In humans, mutations in the gene coding for NKCC2 result in decreased or absent activity characterized by severe salt and volume loss and decreased blood pressure (Bartter syndrome type 1). Opposite to Bartter's syndrome, enhanced NaCl absorption by the TAL is associated with human hypertension and animal models of salt-sensitive hypertension. TAL NaCl reabsorption is subject to exquisite control by hormones like vasopressin, parathyroid, glucagon, and adrenergic agonists (epinephrine and norepinephrine) that stimulate NaCl reabsorption. Atrial natriuretic peptides or autacoids like nitric oxide and prostaglandins inhibit NaCl reabsorption, promoting salt excretion. In general, the mechanism by which hormones control NaCl reabsorption is mediated directly or indirectly by altering the activity of NKCC2 in the TAL. Despite the importance of NKCC2 in renal physiology, the molecular mechanisms by which hormones, autacoids, physical factors, and intracellular ions regulate NKCC2 activity are largely unknown. During the last 5 years, it has become apparent that at least three molecular mechanisms determine NKCC2 activity. As such, membrane trafficking, phosphorylation, and protein-protein interactions have recently been described in TALs and heterologous expression systems as mechanisms that modulate NKCC2 activity. The focus of this review is to summarize recent data regarding NKCC2 regulation and discuss their potential implications in physiological control of TAL function, renal physiology, and blood pressure regulation. PMID:21900458
Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua
2015-01-01
The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season. PMID:26221726
Ten year environmental test of glass fiber/epoxy pressure vessels
NASA Technical Reports Server (NTRS)
Faddoul, J. R.
1985-01-01
By the beginning of the 1970's composite pressure vessels had received a significant amount of development effort, and applications were beginning to be investigated. One of the first applications grew out of NASA Johnson Space Center efforts to develop a superior emergency breathing system for firemen. While the new breathing system provided improved wearer comfort and an improved mask and regulator, the primary feature was low weight which was achieved by using a glass fiber reinforced aluminum pressure vessel. Part of the development effort was to evaluate the long term performance of the pressure vessel and as a consequence, some 30 bottles for a test program were procured. These bottles were then provided to NASA Lewis Research Center where they were maintained in an outdoor environment in a pressurized condition for a period of up to 10 yr. During this period, bottles were periodically subjected to cyclic and burst testing. There was no protective coating applied to the fiberglass/epoxy composite, and significant loss in strength did occur as a result of the environment. Similar bottles stored indoors showed little, if any, degradation. This report contains a description of the pressure vessels, a discussion of the test program, data for each bottle, and appropriate plots, comparisons, and conclusions.
Technical prospects for commercial and residential distribution and utilization of hydrogen
NASA Technical Reports Server (NTRS)
Pangborn, J.; Scott, M.; Sharer, J.
1976-01-01
Various investigators have assumed that hydrogen will be compatible with conventional gas delivery systems and that, with minor modifications, hydrogen can be utilized in existing equipment for heating and cooking. The paper addresses some of the issues of concern in the compatibility of natural gas systems with hydrogen and hydrogen mixtures and identifies areas for which tests, research, or development are appropriate. Requirements to be met by atmospheric burners built for most commercial and residential gas appliances are discussed. Expected modifications to appliances for satisfactory operation with hydrogen are closing the primary air shutters, replacing the burners, adjusting the appliance gas regulator for proper delivery pressure, and possibly replacing the gas regulator or its vent.
NASA Astrophysics Data System (ADS)
Vitkovskii, I. L.; Nikonov, S. P.; Ryasnyi, S. I.
2014-02-01
The subject of this paper is a transient caused by connection of a standby loop to three operating circulation pumps at the initial reactor heat rate equal to 70% of the rated value without preliminarily reducing it to 30% of the rated level as required by the safe operation regulations. Failure of the following normal operation systems is supposed: the first- and the second-type warning protection systems, all quick-acting reducing devices releasing steam into the auxiliary manifold, the electric heaters of the pressurizer, the pressurizer injection system, the primary cooling circuit fluid makeup/blow-through systems, and the blocking systems to shut down the main circulation pump after the level in the steam generator is exceeded. In addition, it is supposed that, under transient conditions, the valves of the turbine regulation system will be in the position in which they were at the moment of the initial event until generation of the signal for positive closing of the turbine stop valves. The first signal to actuate the reactor emergency protection system (EPS) is skipped. The failure of all quick-acting reducing devices releasing steam into the atmosphere is assumed. In addition to equipment failure, at the moment when the main circulation pump is connected, the operator erroneously puts in a new setting to maintain the power allowable for four pumps in operation-in the calculations it was taken equal to 104% of the rated level at most considering the accuracy of evaluating and maintaining the reactor heat rate-and the working group of the reactor protection and control system (P&CS) starts moving upward. On reaching the set power level, the automatic reactor power regulator stops operating and the P&CS elements remain in the position in which they are at the moment. Compliance with the design safety criteria for the adopted scenario of the transient is demonstrated.
Bohachevsky, I.O.; Torrey, M.D.
1986-06-10
An underwater pulsed hydrojet propulsion system is provided for accelerating and propelling a projectile or other vessel. A reactant, such as lithium, is fluidized and injected into a water volume. The resulting reaction produces an energy density in a time effective to form a steam pocket. Thrust flaps or baffles direct the pressure from the steam pocket toward an exit nozzle for accelerating a water volume to create thrust. A control system regulates the dispersion of reactant to control thrust characteristics.
NASA Astrophysics Data System (ADS)
Riedl, M.; Suhrbier, A.; Malberg, H.; Penzel, T.; Bretthauer, G.; Kurths, J.; Wessel, N.
2008-07-01
The parameters of heart rate variability and blood pressure variability have proved to be useful analytical tools in cardiovascular physics and medicine. Model-based analysis of these variabilities additionally leads to new prognostic information about mechanisms behind regulations in the cardiovascular system. In this paper, we analyze the complex interaction between heart rate, systolic blood pressure, and respiration by nonparametric fitted nonlinear additive autoregressive models with external inputs. Therefore, we consider measurements of healthy persons and patients suffering from obstructive sleep apnea syndrome (OSAS), with and without hypertension. It is shown that the proposed nonlinear models are capable of describing short-term fluctuations in heart rate as well as systolic blood pressure significantly better than similar linear ones, which confirms the assumption of nonlinear controlled heart rate and blood pressure. Furthermore, the comparison of the nonlinear and linear approaches reveals that the heart rate and blood pressure variability in healthy subjects is caused by a higher level of noise as well as nonlinearity than in patients suffering from OSAS. The residue analysis points at a further source of heart rate and blood pressure variability in healthy subjects, in addition to heart rate, systolic blood pressure, and respiration. Comparison of the nonlinear models within and among the different groups of subjects suggests the ability to discriminate the cohorts that could lead to a stratification of hypertension risk in OSAS patients.
Sala, Roberto; Malacarne, Mara; Pagani, Massimo; Lucini, Daniela
2016-06-01
In the general population higher levels of exercise capacity seem to protect the cardiovascular system with effects well beyond traditional risk factors. We hypothesize that this phenomenon, called "risk factor gap", could be ascribed to functional components, such as autonomic adaptation to aerobic training. In 257 subjects (age 36.2±0.8 years) we measured VO2peak (incremental cycling exercise), together with arterial pressure and autonomic proxies (baroreflex gain, R-R variance and standing induced increase in marker of excitatory oscillatory regulation of the SA node, ∆LFRRnu). Autonomic proxies appeared significantly correlated with indicators of aerobic fitness (age and gender corrected correlation between VO2peak, baroreflex gain: r=0.277, P<0.001, and DAP r=-0.228, P<0.001). Subsequently, subjects were subdivided in three age and gender adjusted categories of VO2peak (poor, medium and good). Autonomic indices and arterial pressure appeared significantly ordered with categories of VO2peak (P<0.006). In addition, within these categories the proportion of subjects with a desirable autonomic and pressure profile becomes significantly greater with better fitness levels. The strong ordered relationship between categories of aerobic fitness and autonomic proxies speaks in favor of a complementary role of the autonomic nervous system in the management of cardiovascular risk factor gap at a population level.
Hypertension: physiology and pathophysiology.
Hall, John E; Granger, Joey P; do Carmo, Jussara M; da Silva, Alexandre A; Dubinion, John; George, Eric; Hamza, Shereen; Speed, Joshua; Hall, Michael E
2012-10-01
Despite major advances in understanding the pathophysiology of hypertension and availability of effective and safe antihypertensive drugs, suboptimal blood pressure (BP) control is still the most important risk factor for cardiovascular mortality and is globally responsible for more than 7 million deaths annually. Short-term and long-term BP regulation involve the integrated actions of multiple cardiovascular, renal, neural, endocrine, and local tissue control systems. Clinical and experimental observations strongly support a central role for the kidneys in the long-term regulation of BP, and abnormal renal-pressure natriuresis is present in all forms of chronic hypertension. Impaired renal-pressure natriuresis and chronic hypertension can be caused by intrarenal or extrarenal factors that reduce glomerular filtration rate or increase renal tubular reabsorption of salt and water; these factors include excessive activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, increased formation of reactive oxygen species, endothelin, and inflammatory cytokines, or decreased synthesis of nitric oxide and various natriuretic factors. In human primary (essential) hypertension, the precise causes of impaired renal function are not completely understood, although excessive weight gain and dietary factors appear to play a major role since hypertension is rare in nonobese hunter-gathers living in nonindustrialized societies. Recent advances in genetics offer opportunities to discover gene-environment interactions that may also contribute to hypertension, although success thus far has been limited mainly to identification of rare monogenic forms of hypertension. © 2012 American Physiological Society
Fargali, Samira; Garcia, Angelo L.; Sadahiro, Masato; Jiang, Cheng; Janssen, William G.; Lin, Wei-Jye; Cogliani, Valeria; Elste, Alice; Mortillo, Steven; Cero, Cheryl; Veitenheimer, Britta; Graiani, Gallia; Pasinetti, Giulio M.; Mahata, Sushil K.; Osborn, John W.; Huntley, George W.; Phillips, Greg R.; Benson, Deanna L.; Bartolomucci, Alessandro; Salton, Stephen R.
2014-01-01
Secretion of proteins and neurotransmitters from large dense core vesicles (LDCVs) is a highly regulated process. Adrenal LDCV formation involves the granin proteins chromogranin A (CgA) and chromogranin B (CgB); CgA- and CgB-derived peptides regulate catecholamine levels and blood pressure. We investigated function of the granin VGF (nonacronymic) in LDCV formation and the regulation of catecholamine levels and blood pressure. Expression of exogenous VGF in nonendocrine NIH 3T3 fibroblasts resulted in the formation of LDCV-like structures and depolarization-induced VGF secretion. Analysis of germline VGF-knockout mouse adrenal medulla revealed decreased LDCV size in noradrenergic chromaffin cells, increased adrenal norepinephrine and epinephrine content and circulating plasma epinephrine, and decreased adrenal CgB. These neurochemical changes in VGF-knockout mice were associated with hypertension. Germline knock-in of human VGF1–615 into the mouse Vgf locus rescued the hypertensive knockout phenotype, while knock-in of a truncated human VGF1–524 that lacks several C-terminal peptides, including TLQP-21, resulted in a small but significant increase in systolic blood pressure compared to hVGF1–615 mice. Finally, acute and chronic administration of the VGF-derived peptide TLQP-21 to rodents decreased blood pressure. Our studies establish a role for VGF in adrenal LDCV formation and the regulation of catecholamine levels and blood pressure.—Fargali, S., Garcia, A. L., Sadahiro, M., Jiang, C., Janssen, W. G., Lin, W.-J., Cogliani, V., Elste, A., Mortillo, S., Cero, C., Veitenheimer, B., Graiani, G., Pasinetti, G. M., Mahata, S. K., Osborn, J. W., Huntley, G. W., Phillips, G. R., Benson, D. L., Bartolomucci, A., Salton, S. R. The granin VGF promotes genesis of secretory vesicles, and regulates circulating catecholamine levels and blood pressure. PMID:24497580
Wang, Guo-Qi; Li, Tong-Tong; Li, Zhi-Rui; Zhang, Li-Cheng
2016-01-01
Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A). Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p < 0.01). Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes. PMID:28074188
NASA Technical Reports Server (NTRS)
1979-01-01
Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.
Involvement of WNK1-mediated potassium channels in the sexual dimorphism of blood pressure.
Yu, Guofeng; Cheng, Mengting; Wang, Wei; Zhao, Rong; Liu, Zhen
2017-04-01
Potassium homeostasis plays an essential role in the control of blood pressure. It is unknown, however, whether potassium balance is involved in the gender-associated blood pressure differences. We therefore investigated the possible mechanism of sexual dimorphism in blood pressure regulation by measuring the blood pressure, plasma potassium, renal actions of potassium channels and upstream regulator in male and female mice. Here we found that female mice exhibited lower blood pressure and higher plasma K + level as compared to male littermates. Western blot analyses of mouse kidney extract revealed a significant decrease in renal outer medullary potassium (ROMK) channel expression, while large-conductance Ca 2+ -activated K + (BK) channel and Na-K-2Cl cotransporter (NKCC2) as well as the upstream regulator with-no-lysine kinase 1 (WNK1) enhanced in female mice under normal condition. Surprisingly, both dietary K + loading and K + depletion eliminated the differences in plasma K + and blood pressure between females and males, and the differences of renal K + channels and WNK1 also attenuated in both groups of mice. These findings indicated the existence of a close correlation between K + homeostasis and sex-associated blood pressure. Moreover, the differential regulation of ROMK, BK-α and NKCC2 between female and male mice, at least, were partly mediated via WNK1 pathway, which may contribute to the sexual dimorphism of plasma K + and blood pressure control. Copyright © 2017 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-19
..., deformation was found at the neck of the pressure regulator body on the oxygen Cylinder and Regulator.... This may cause elongation of the pressure regulator neck, which could result in rupture of the oxygen cylinder and in the case of cabin depressurization, oxygen not being available when required. * * * * * The...
Water loss control using pressure management: life-cycle energy and air emission effects.
Stokes, Jennifer R; Horvath, Arpad; Sturm, Reinhard
2013-10-01
Pressure management is one cost-effective and efficient strategy for controlling water distribution losses. This paper evaluates the life-cycle energy use and emissions for pressure management zones in Philadelphia, Pennsylvania, and Halifax, Nova Scotia. It compares water savings using fixed-outlet and flow-modulated pressure control to performance without pressure control, considering the embedded electricity and chemical consumption in the lost water, manufacture of pipe and fittings to repair breaks caused by excess pressure, and pressure management. The resulting energy and emissions savings are significant. The Philadelphia and Halifax utilities both avoid approximately 130 million liters in water losses annually using flow-modulated pressure management. The conserved energy was 780 GJ and 1900 GJ while avoided greenhouse gas emissions were 50 Mg and 170 Mg a year by Philadelphia and Halifax, respectively. The life-cycle financial and environmental performance of pressure management systems compares favorably to the traditional demand management strategy of installing low-flow toilets. The energy savings may also translate to cost-effective greenhouse gas emission reductions depending on the energy mix used, an important advantage in areas where water and energy are constrained and/or expensive and greenhouse gas emissions are regulated as in California, for example.
Jiang, H J; Zhang, J M; Fu, W M; Zheng, Z; Luo, W; Zheng, Y X; Zhu, J M
2016-06-07
To investigate some important issues for diagnosis and treatment of idiopathic normal-pressure hydrocephalus (iNPH), such as standardized pre-operative assessment, initial pressure value of diverter pump, and pressure regulation during follow-up. Twenty six iNPH patients (21 males) who treated in Department of Neurosurgery of 2nd Affiliated Hospital of Zhejiang University School of Medicine from 2011 to 2015 were analyzed retrospectively. The average age was 60.5 year. The analysis focused on the treatment process of iNPH, initial pressure value of diverter pump, choice of diverter pump, and pressure regulation during follow-up. As a result, 24 cases (92.3%) had a good prognosis based on their imaging and clinical manifestations. Based on the literature and their clinical experiences, this department established a diagnosis and treatment procedure of iNPH and a pressure regulation procedure for the follow-up of iNPH. Moreover, it is proposed that choosing an anti-gravity diverter pump and making an initial pressure value 20 mmH2O less than pre-surgical cerebrospinal pressure may be beneficial for the prognosis. This standardized diagnosis and treatment procedure for iNPH is practical and effective.
Implementing International Health Regulation (2005) in the Brazilian legal-administrative system.
Lima, Yara Oyram Ramos; Costa, Ediná Alves
2015-06-01
The scope of this study was to analyze how the International Sanitary Regulation (ISR 2005)has been incorporated into the Brazilian legal-administrative system, in relation to sanitary control measures involving freight, means of transportation and travelers and possible alterations to health surveillance activities, competencies and procedures. This case study has been undertaken using a qualitative approach, of a descriptive and exploratory nature, using institutional data sources and interviews with key-informants involved in implementing ISR (2005). Alterations to the Brazilian legal-administrative system resulting from ISR (2005) were identified, in relation to standards, special competencies and procedures relating to sanitary controls for freight, modes of transportation and travelers. In its present form, the International Sanitary Regulation is an instrument that, in addition to introducing new international and national sanitary control concepts and elements, also helps to clarify questions that are helpful on a national level, relating to the specific competencies and procedures which will, to a certain extent, put pressure on administrative structures in the areas of sanitary control and surveillance.
Design of a Cyclic Pressure Bioreactor for the Ex Vivo Study of Aortic Heart Valves
Schipke, Kimberly J.; Filip To, S. D.; Warnock, James N.
2011-01-01
The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage1-3. Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease4. The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve5. Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves6-9. Pulsatile bioreactors have also been developed to study a range of tissues including cartilage10, bone11 and bladder12. The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed air into the system at the appropriate rate. The system mimicked the dynamic transvalvular pressure levels associated with the aortic valve; a saw tooth wave produced a gradual increase in pressure, typical of the transvalvular pressure gradient that is present across the valve during diastole, followed by a sharp pressure drop depicting valve opening in systole. The LabVIEW program allowed users to control the magnitude and frequency of cyclic pressure. The system was able to subject tissue samples to physiological and pathological pressure conditions. This device can be used to increase our understanding of how heart valves respond to changes in the local mechanical environment. PMID:21876532
Design of a cyclic pressure bioreactor for the ex vivo study of aortic heart valves.
Schipke, Kimberly J; To, S D Filip; Warnock, James N
2011-08-23
The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage(1-3). Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease(4). The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve(5). Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves(6-9). Pulsatile bioreactors have also been developed to study a range of tissues including cartilage(10), bone(11) and bladder(12). The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed air into the system at the appropriate rate. The system mimicked the dynamic transvalvular pressure levels associated with the aortic valve; a saw tooth wave produced a gradual increase in pressure, typical of the transvalvular pressure gradient that is present across the valve during diastole, followed by a sharp pressure drop depicting valve opening in systole. The LabVIEW program allowed users to control the magnitude and frequency of cyclic pressure. The system was able to subject tissue samples to physiological and pathological pressure conditions. This device can be used to increase our understanding of how heart valves respond to changes in the local mechanical environment.
Butler, Emily A; Gross, James J; Barnard, Kobus
2014-04-01
In theory, the essence of emotion is coordination across experiential, behavioral, and physiological systems in the service of functional responding to environmental demands. However, people often regulate emotions, which could either reduce or enhance cross-system concordance. The present study tested the effects of two forms of emotion regulation (expressive suppression, positive reappraisal) on concordance of subjective experience (positive-negative valence), expressive behavior (positive and negative), and physiology (inter-beat interval, skin conductance, blood pressure) during conversations between unacquainted young women. As predicted, participants asked to suppress showed reduced concordance for both positive and negative emotions. Reappraisal instructions also reduced concordance for negative emotions, but increased concordance for positive ones. Both regulation strategies had contagious interpersonal effects on average levels of responding. Suppression reduced overall expression for both regulating and uninstructed partners, while reappraisal reduced negative experience. Neither strategy influenced the uninstructed partners' concordance. These results suggest that emotion regulation impacts concordance by altering the temporal coupling of phasic subsystem responses, rather than by having divergent effects on subsystem tonic levels. Copyright © 2013 Elsevier B.V. All rights reserved.
Testing of a controller for a hybrid capillary pumped loop thermal control system
NASA Technical Reports Server (NTRS)
Schweickart, Russell; Ottenstein, Laura; Cullimore, Brent; Egan, Curtis; Wolf, Dave
1989-01-01
A controller for a series hybrid capillary pumped loop (CPL) system that requires no moving parts does not resrict fluid flow has been tested and has demonstrated improved performance characteristics over a plain CPL system and simple hybrid CPL systems. These include heat load sharing, phase separation, self-regulated flow control and distribution, all independent of most system pressure drop. In addition, the controlled system demonstrated a greater heat transport capability than the simple CPL system but without the large fluid inventory requirement of the hybrid systems. A description of the testing is presented along with data that show the advantages of the system.
Fargali, Samira; Garcia, Angelo L; Sadahiro, Masato; Jiang, Cheng; Janssen, William G; Lin, Wei-Jye; Cogliani, Valeria; Elste, Alice; Mortillo, Steven; Cero, Cheryl; Veitenheimer, Britta; Graiani, Gallia; Pasinetti, Giulio M; Mahata, Sushil K; Osborn, John W; Huntley, George W; Phillips, Greg R; Benson, Deanna L; Bartolomucci, Alessandro; Salton, Stephen R
2014-05-01
Secretion of proteins and neurotransmitters from large dense core vesicles (LDCVs) is a highly regulated process. Adrenal LDCV formation involves the granin proteins chromogranin A (CgA) and chromogranin B (CgB); CgA- and CgB-derived peptides regulate catecholamine levels and blood pressure. We investigated function of the granin VGF (nonacronymic) in LDCV formation and the regulation of catecholamine levels and blood pressure. Expression of exogenous VGF in nonendocrine NIH 3T3 fibroblasts resulted in the formation of LDCV-like structures and depolarization-induced VGF secretion. Analysis of germline VGF-knockout mouse adrenal medulla revealed decreased LDCV size in noradrenergic chromaffin cells, increased adrenal norepinephrine and epinephrine content and circulating plasma epinephrine, and decreased adrenal CgB. These neurochemical changes in VGF-knockout mice were associated with hypertension. Germline knock-in of human VGF1-615 into the mouse Vgf locus rescued the hypertensive knockout phenotype, while knock-in of a truncated human VGF1-524 that lacks several C-terminal peptides, including TLQP-21, resulted in a small but significant increase in systolic blood pressure compared to hVGF1-615 mice. Finally, acute and chronic administration of the VGF-derived peptide TLQP-21 to rodents decreased blood pressure. Our studies establish a role for VGF in adrenal LDCV formation and the regulation of catecholamine levels and blood pressure.
Design of Test Support Hardware for Advanced Space Suits
NASA Technical Reports Server (NTRS)
Watters, Jeffrey A.; Rhodes, Richard
2013-01-01
As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step was to certify the equipment for manned used, which included generating a Hazard Analysis and giving a presentation to the Test Readiness Review Board. Both of these test support systems will perform critical roles in the development of next-generation space suits. They will used on a regular basis to test the NASA's new Z-2 Space Suit. The Space Suit Cooling System is now the primary cooling system for all advanced suit tests.
Mio, Kensuke; Kirkham, Jennifer; Bonass, William A
2007-12-01
The potential involvement of the extracellular signal-regulated kinase (ERK) pathway in chondrocyte mechanotransduction was tested in bovine chondrocyte-agarose constructs under hydrostatic loading. Results suggested that the ERK pathway may be inhibited by hydrostatic pressure-induced mechanotransduction and may also be a negative regulator of Sox9 mRNA expression, which is an important modulator of chondrocyte function.
Effects of lesions of the caudal cerebellar vermis on cardiovascular regulation in awake cats
NASA Technical Reports Server (NTRS)
Holmes, M. J.; Cotter, L. A.; Arendt, H. E.; Cass, S. P.; Yates, B. J.
2002-01-01
The vestibular system is known to participate in cardiovascular regulation during movement and postural alterations. The present study considered whether lesions of two regions of the posterior cerebellar vermis (the nodulus and uvula) that provide inputs to vestibular nucleus regions that affect control of blood pressure would alter cardiovascular responses during changes in posture. Blood pressure and heart rate were monitored in awake cats during nose-up tilts up to 60 degrees in amplitude before and following aspiration lesions of the nodulus or uvula; in most animals, cardiovascular responses were also recorded following the subsequent removal of vestibular inputs. Lesions of the nodulus or uvula did not affect baseline blood pressure or heart rate, although cardiovascular responses during nose-up tilts were altered. Increases in heart rate that typically occurred during 60 degrees nose-up tilt were attenuated in all three animals with lesions affecting both dorsal and ventral portions of the uvula; in contrast, the heart rate responses were augmented in the two animals with lesions mainly confined to the nodulus. Furthermore, following subsequent removal of vestibular inputs, uvulectomized animals, but not those with nodulus lesions, experienced more severe orthostatic hypotension than has previously been reported in cerebellum-intact animals with bilateral labyrinthectomies. These data suggest that the cerebellar nodulus and uvula modulate vestibulo-cardiovascular responses, although the two regions play different roles in cardiovascular regulation.
74. LIQUID NITROGEN TANK, REGULATOR VALVES, AND PRESSURE GAUGES FOR ...
74. LIQUID NITROGEN TANK, REGULATOR VALVES, AND PRESSURE GAUGES FOR LIQUID NITROGEN PUMPING STATION - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
LNG systems for natural gas propelled ships
NASA Astrophysics Data System (ADS)
Chorowski, M.; Duda, P.; Polinski, J.; Skrzypacz, J.
2015-12-01
In order to reduce the atmospheric pollution generated by ships, the International Marine Organization has established Emission Controlled Areas. In these areas, nitrogen oxides, sulphur oxides and particulates emission is strongly controlled. From the beginning of 2015, the ECA covers waters 200 nautical miles from the coast of the US and Canada, the US Caribbean Sea area, the Baltic Sea, the North Sea and the English Channel. From the beginning of 2020, strong emission restrictions will also be in force outside the ECA. This requires newly constructed ships to be either equipped with exhaust gas cleaning devices or propelled with emission free fuels. In comparison to low sulphur Marine Diesel and Marine Gas Oil, LNG is a competitive fuel, both from a technical and economical point of view. LNG can be stored in vacuum insulated tanks fulfilling the difficult requirements of marine regulations. LNG must be vaporized and pressurized to the pressure which is compatible with the engine requirements (usually a few bar). The boil-off must be controlled to avoid the occasional gas release to the atmosphere. This paper presents an LNG system designed and commissioned for a Baltic Sea ferry. The specific technical features and exploitation parameters of the system will be presented. The impact of strict marine regulations on the system's thermo-mechanical construction and its performance will be discussed. The review of possible flow-schemes of LNG marine systems will be presented with respect to the system's cost, maintenance, and reliability.
NASA Technical Reports Server (NTRS)
Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.
1997-01-01
We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.
Magnetorheological valve based actuator for improvement of passively controlled turbocharger system
NASA Astrophysics Data System (ADS)
Bahiuddin, I.; Mazlan, S. A.; Imaduddin, F.; Ubaidillah, Ichwan, B.
2016-03-01
Variable geometry turbochargers have been widely researched to fulfil the current engine stringent regulations. The passively controlled turbocharger (PCT) concept has been proposed to reduce energy consumption by utilizing the emission energy to move the actuator. However, it only covered a small range operating condition. Therefore, a magnetorheological(MR) Valve device, as typical smart material devices to enhance a passive device, is proposed to improve the PCT. Even though the benefits have been considered for the compactness and easiness to connect to an electrical system, the number of publications regarding the MR application within engine system is hard to be found. Therefore, this paper introduces a design of an MR Valve in a turbocharger. The main challenge is to make sure its capability to produce a sufficient total pressure drop. To overcome the challenge, its material properties, shape and pressure drop calculation has been analyzed to fulfil the requirement. Finally, to get a more understanding of actuator performance, the actuator response was simulated by treating the exhaust gas pressure as an input. It shows that the new MR actuator has a potential dynamic to improve the PCT controllability.
Design and Testing of Suit Regulator Test Rigs
NASA Technical Reports Server (NTRS)
Campbell, Colin
2010-01-01
The next generation space suit requires additional capabilities for controlling and adjusting internal pressure compared to that of historical designs. Next generation suit pressures will range from slight pressure, for astronaut prebreathe comfort, to hyperbaric pressure levels for emergency medical treatment of decompression sickness. In order to test these regulators through-out their development life cycle, novel automated test rigs are being developed. This paper addresses the design philosophy, performance requirements, physical implementation, and test results with various units under test.
Correlation between cerebral hemodynamic and perfusion pressure changes in non-human primates
NASA Astrophysics Data System (ADS)
Ruesch, A.; Smith, M. A.; Wollstein, G.; Sigal, I. A.; Nelson, S.; Kainerstorfer, J. M.
2017-02-01
The mechanism that maintains a stable blood flow in the brain despite changes in cerebral perfusion pressure (CPP), and therefore guaranties a constant supply of oxygen and nutrients to the neurons, is known as cerebral auto-regulation (CA). In a certain range of CPP, blood flow is mediated by a vasomotor adjustment in vascular resistance through dilation of blood vessels. CA is known to be impaired in diseases like traumatic brain injury, Parkinson's disease, stroke, hydrocephalus and others. If CA is impaired, blood flow and pressure changes are coupled and thee oxygen supply might be unstable. Lassen's blood flow auto-regulation curve describes this mechanism, where a plateau of stable blood flow in a specific range of CPP corresponds to intact auto-regulation. Knowing the limits of this plateau and maintaining CPP within these limits can improve patient outcome. Since CPP is influenced by both intracranial pressure and arterial blood pressure, long term changes in either can lead to auto-regulation impairment. Non-invasive methods for monitoring blood flow auto-regulation are therefore needed. We propose too use Near infrared spectroscopy (NIRS) too fill this need. NIRS is an optical technique, which measures microvascular changes in cerebral hemoglobin concentration. We performed experiments on non-human primates during exsanguination to demonstrate that thee limits of blood flow auto-regulation can be accessed with NIRS.
The Effect of Size and Species on Lens Intracellular Hydrostatic Pressure
Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; Brink, Peter R.; White, Thomas W.; Mathias, Richard T.
2013-01-01
Purpose. Previous experiments showed that mouse lenses have an intracellular hydrostatic pressure that varied from 335 mm Hg in central fibers to 0 mm Hg in surface cells. Model calculations predicted that in larger lenses, all else equal, pressure should increase as the lens radius squared. To test this prediction, lenses of different radii from different species were studied. Methods. All studies were done in intact lenses. Intracellular hydrostatic pressures were measured with a microelectrode-manometer–based system. Membrane conductances were measured by frequency domain impedance analysis. Intracellular Na+ concentrations were measured by injecting the Na+-sensitive dye sodium-binding benzofuran isophthalate. Results. Intracellular hydrostatic pressures were measured in lenses from mice, rats, rabbits, and dogs with radii (cm) 0.11, 0.22, 0.49, and 0.57, respectively. In each species, pressure varied from 335 ± 6 mm Hg in central fiber cells to 0 mm Hg in surface cells. Further characterization of transport in lenses from mice and rats showed that the density of fiber cell gap junction channels was approximately the same, intracellular Na+ concentrations varied from 17 mM in central fiber cells to 7 mM in surface cells, and intracellular voltages varied from −45 mV in central fiber cells to −60 mV in surface cells. Fiber cell membrane conductance was a factor of 2.7 times larger in mouse than in rat lenses. Conclusions. Intracellular hydrostatic pressure is an important physiological parameter that is regulated in lenses from these different species. The most likely mechanism of regulation is to reduce the density of open Na+-leak channels in fiber cells of larger lenses. PMID:23211824
78 FR 29384 - Petitions for Modification of Application of Existing Mandatory Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
... sprinkler system will not be less than 10 psi with any eight sprinklers open. The supply of water will be... in Routt County, Colorado. Regulation Affected: 30 CFR 75.1101-7(a) (Installation of water sprinkler... of 10 psi. The pressure will not exceed 250 psi when the sprays are operating. 4. Each water...
Isolating causal pathways between flow and fish in the regulated river hierarchy
Ryan McManamay; Donald J. Orth; Charles A. Dolloff; David C. Mathews
2015-01-01
Unregulated river systems are organized in a hierarchy in which large scale factors (i.e. landscape and segment scales) influence local habitats (i.e. reach, meso- and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative...
Yang, Yimu; Schmidt, Eric P.
2013-01-01
Once thought to be a structure of small size and uncertain significance, the endothelial glycocalyx is now known to be an important regulator of endothelial function. Studies of the systemic vasculature have demonstrated that the glycocalyx forms a substantial in vivo endothelial surface layer (ESL) critical to inflammation, barrier function and mechanotransduction. The pulmonary ESL is significantly thicker than the systemic ESL, suggesting unique physiologic function. We have recently demonstrated that the pulmonary ESL regulates exposure of endothelial surface adhesion molecules, thereby serving as a barrier to neutrophil adhesion and extravasation. While the pulmonary ESL is not a critical structural component of the endothelial barrier to fluid and protein, it serves a major role in the mechanotransduction of vascular pressure, with impact on the active regulation of endothelial permeability. It is likely that the ESL serves numerous additional functions in vascular physiology, representing a fertile area for future investigation. PMID:24073386
Next Generation Life Support Project Status
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond
2012-01-01
Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.
Rodent Studies of Cardiovascular Deconditioning
NASA Technical Reports Server (NTRS)
Shoukas, Artin A.
1999-01-01
Changes in blood pressure can occur for two reasons: 1) A decrease in cardiac output resulting from the altered contractility of the heart or through changes in venous filling pressure via the Frank Starling mechanism or; 2) A change in systemic vascular resistance. The observed changes in cardiac output and blood pressure after long term space flight cannot be entirely explained through changes in contractility or heart rate alone. Therefore, alterations in filling pressure mediated through changes in systemic venous capacitance and arterial resistance function may be important determinants of cardiac output and blood pressure after long term space flight. Our laboratory and previous studies have shown the importance of veno-constriction mediated by the carotid sinus baroreceptor reflex system on overall circulatory homeostasis and in the regulation of cardiac output. Our proposed experiments test the overall hypothesis that alterations in venous capacitance function and arterial resistance by the carotid sinus baroreceptor reflex system are an important determinant of the cardiac output and blood pressure response seen in astronauts after returning to earth from long term exposure to microgravity. This hypothesis is important to our overall understanding of circulatory adjustments made during long term space flight. It also provides a framework for investigating counter measures to reduce the incidence of orthostatic hypotension caused by an attenuation of cardiac output. We continue to use hind limb unweighted (HLU) rat model to simulate the patho physiological effects as they relate to cardiovascular deconditioning in microgravity. We have used this model to address the hypothesis that microgravity induced cardiovascular deconditioning results in impaired vascular responses and that these impaired vascular responses result from abnormal alpha-1 AR signaling. The impaired vascular reactivity results in attenuated blood pressure and cardiac output responses to an orthostatic challenge. We have used in vitro vascular reactivity assays to explore abnormalities in vascular responses in vessels from HLU animals and, cardiac output (CO), blood pressure (BP) and heart rate (HR) measurements to characterize changes in hemodynamics following HLU.
TRPV4 participates in pressure-induced inhibition of renin secretion by juxtaglomerular cells.
Seghers, François; Yerna, Xavier; Zanou, Nadège; Devuyst, Olivier; Vennekens, Rudi; Nilius, Bernd; Gailly, Philippe
2016-12-15
Increase in blood pressure in the renal afferent arteriole is known to induce an increase in cytosolic calcium concentration ([Ca 2+ ] i ) of juxtaglomerular (JG) cells and to result in a decreased secretion of renin. Mechanical stimulation of As4.1 JG cells induces an increase in [Ca 2+ ] i that is inhibited by HC067047 and RN1734, two inhibitors of TRPV4, or by siRNA-mediated repression of TRPV4. Inhibition of TRPV4 impairs pressure-induced decrease in renin secretion. Compared to wild-type mice, Trpv4 -/- mice present increased resting plasma levels of renin and aldosterone and present a significantly altered pressure-renin relationship. We suggest that TRPV4 channel participates in mechanosensation at the juxtaglomerular apparatus. The renin-angiotensin system is a crucial blood pressure regulation system. It consists of a hormonal cascade where the rate-limiting enzyme is renin, which is secreted into the blood flow by renal juxtaglomerular (JG) cells in response to low pressure in the renal afferent arteriole. In contrast, an increase in blood pressure results in a decreased renin secretion. This is accompanied by a transitory increase in [Ca 2+ ] i of JG cells. The inverse relationship between [Ca 2+ ] i and renin secretion has been called the 'calcium paradox' of renin release. How increased pressure induces a [Ca 2+ ] i transient in JG cells, is however, unknown. We observed that [Ca 2+ ] i transients induced by mechanical stimuli in JG As4.1 cells were completely abolished by HC067047 and RN1734, two inhibitors of TRPV4. They were also reduced by half by siRNA-mediated repression of TRPV4 but not after repression or inhibition of TRPV2 or Piezo1 ion channels. Interestingly, the stimulation of renin secretion by the adenylate cyclase activator forskolin was totally inhibited by cyclic stretching of the cells. This effect was mimicked by stimulation with GSK1016790A and 4αPDD, two activators of TRPV4 and inhibited in the presence of HC067047. Moreover, in isolated perfused kidneys from Trpv4 -/- mice, the pressure-renin relationship was significantly altered. In vivo, Trpv4 -/- mice presented increased plasma levels of renin and aldosterone compared to wild-type mice. Altogether, our results suggest that TRPV4 is involved in the pressure-induced entry of Ca 2+ in JG cells, which inhibits renin release and allows the negative feedback regulation on blood pressure. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Air-flow regulation system for a coal gasifier
Fasching, George E.
1984-01-01
An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.
Real Time Ferrograph Development.
1979-11-01
differential temperature of 65 0 C. Since opteo- electronic devices (photodiodes, photoresistors, etc.) have a maximum operating temperature around 85 0 C, it is...flow during the precipitation cycle. This regulator must keep the flow rate constant at any given temperature regardless of the differential pressure...across the sensing head. The pressure regulator achieved this by using the differential pressure across a fixed re;7trictor to move a bellows diaphragm
Code of Federal Regulations, 2014 CFR
2014-07-01
... Connector 1.69 Block Valve 0.557 Control Valve 9.34 Pressure Relief Valve 0.27 Orifice Meter 0.212 Regulator 0.772 Open-ended Line 26.131 Population Emission Factors—Below Grade Metering-Regulating station 1..., Inlet Pressure 100 to 300 psig 0.20 Below Grade M&R Station, Inlet Pressure Population...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Connector 1.69 Block Valve 0.557 Control Valve 9.34 Pressure Relief Valve 0.27 Orifice Meter 0.212 Regulator 0.772 Open-ended Line 26.131 Population Emission Factors—Below Grade Metering-Regulating station 1..., Inlet Pressure 100 to 300 psig 0.20 Below Grade M&R Station, Inlet Pressure Population...
Internal combustion engine for natural gas compressor operation
Hagen, Christopher; Babbitt, Guy
2016-12-27
This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.
International trade regulation and publicly funded health care in Canada.
Ostry, A S
2001-01-01
The World Trade Organization (WTO) creates new challenges for the Canadian health care system, arguably one of the most "socialized" systems in the world today. In particular, the WTO's enhanced trade dispute resolution powers, enforceable with sanctions, may make Canadian health care vulnerable to corporate penetration, particularly in the pharmaceutical and private health services delivery sectors. The Free Trade Agreement and its extension, the North American Free Trade Agreement, gave multinational pharmaceutical companies greater freedom in Canada at the expense of the Canadian generic drug industry. Recent challenges by the WTO have continued this process, which will limit the health care system's ability to control drug costs. And pressure is growing, through WTO's General Agreement on Trade in Services and moves by the Alberta provincial government to privatize health care delivery, to open up the Canadian system to corporate penetration. New WTO agreements will bring increasing pressure to privatize Canada's public health care system and limit government's ability to control pharmaceutical costs.
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2012-01-01
Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.
Renal dopaminergic system: Pathophysiological implications and clinical perspectives
Choi, Marcelo Roberto; Kouyoumdzian, Nicolás Martín; Rukavina Mikusic, Natalia Lucía; Kravetz, María Cecilia; Rosón, María Inés; Rodríguez Fermepin, Martín; Fernández, Belisario Enrique
2015-01-01
Fluid homeostasis, blood pressure and redox balance in the kidney are regulated by an intricate interaction between local and systemic anti-natriuretic and natriuretic systems. Intrarenal dopamine plays a central role on this interactive network. By activating specific receptors, dopamine promotes sodium excretion and stimulates anti-oxidant and anti-inflammatory pathways. Different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome, hypertension and renal inflammation, can be associated with impaired action of renal dopamine including alteration in biosynthesis, dopamine receptor expression and signal transduction. Given its properties on the regulation of renal blood flow and sodium excretion, exogenous dopamine has been postulated as a potential therapeutic strategy to prevent renal failure in critically ill patients. The aim of this review is to update and discuss on the most recent findings about renal dopaminergic system and its role in several diseases involving the kidneys and the potential use of dopamine as a nephroprotective agent. PMID:25949933
Analysis of cardiovascular regulation.
Wilhelm, F H; Grossman, P; Roth, W T
1999-01-01
Adequate characterization of hemodynamic and autonomic responses to physical and mental stress can elucidate underlying mechanisms of cardiovascular disease or anxiety disorders. We developed a physiological signal processing system for analysis of continuously recorded ECG, arterial blood pressure (BP), and respiratory signals using the programming language Matlab. Data collection devices are a 16-channel digital, physiological recorder (Vitaport), a finger arterial pressure transducer (Finapres), and a respiratory inductance plethysmograph (Respitrace). Besides the conventional analysis of the physiological channels, power spectral density and transfer functions of respiration, heart rate, and blood pressure variability are used to characterize respiratory sinus arrhythmia (RSA), 0.10-Hz BP oscillatory activity (Mayer-waves), and baroreflex sensitivity. The arterial pressure transducer waveforms permit noninvasive estimation of stroke volume, cardiac output, and systemic vascular resistance. Time trends in spectral composition of indices are assessed using complex demodulation. Transient dynamic changes of cardiovascular parameters at the onset of stress and recovery periods are quantified using a regression breakpoint model that optimizes piecewise linear curve fitting. Approximate entropy (ApEn) is computed to quantify the degree of chaos in heartbeat dynamics. Using our signal processing system we found distinct response patterns in subgroups of patients with coronary artery disease or anxiety disorders, which were related to specific pharmacological and behavioral factors.
Design and Validation of a Breathing Detection System for Scuba Divers.
Altepe, Corentin; Egi, S Murat; Ozyigit, Tamer; Sinoplu, D Ruzgar; Marroni, Alessandro; Pierleoni, Paola
2017-06-09
Drowning is the major cause of death in self-contained underwater breathing apparatus (SCUBA) diving. This study proposes an embedded system with a live and light-weight algorithm which detects the breathing of divers through the analysis of the intermediate pressure (IP) signal of the SCUBA regulator. A system composed mainly of two pressure sensors and a low-power microcontroller was designed and programmed to record the pressure sensors signals and provide alarms in absence of breathing. An algorithm was developed to analyze the signals and identify inhalation events of the diver. A waterproof case was built to accommodate the system and was tested up to a depth of 25 m in a pressure chamber. To validate the system in the real environment, a series of dives with two different types of workload requiring different ranges of breathing frequencies were planned. Eight professional SCUBA divers volunteered to dive with the system to collect their IP data in order to participate to validation trials. The subjects underwent two dives, each of 52 min on average and a maximum depth of 7 m. The algorithm was optimized for the collected dataset and proved a sensitivity of inhalation detection of 97.5% and a total number of 275 false positives (FP) over a total recording time of 13.9 h. The detection algorithm presents a maximum delay of 5.2 s and requires only 800 bytes of random-access memory (RAM). The results were compared against the analysis of video records of the dives by two blinded observers and proved a sensitivity of 97.6% on the data set. The design includes a buzzer to provide audible alarms to accompanying dive buddies which will be triggered in case of degraded health conditions such as near drowning (absence of breathing), hyperventilation (breathing frequency too high) and skip-breathing (breathing frequency too low) measured by the improper breathing frequency. The system also measures the IP at rest before the dive and indicates with flashing light-emitting diodes and audible alarm the regulator malfunctions due to high or low IP that may cause fatal accidents during the dive by preventing natural breathing. It is also planned to relay the alarm signal to underwater and surface rescue authorities by means of acoustic communication.
141. NITROGEN SUPPLY PANEL PRESSURE REGULATOR IN NORTHWEST CORNER OF ...
141. NITROGEN SUPPLY PANEL PRESSURE REGULATOR IN NORTHWEST CORNER OF CONTROL ROOM (214), LSB (BLDG. 751), FACING WEST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Local blockage of EMMPRIN impedes pressure ulcers healing in a rat model.
Zhao, Xi-Lan; Luo, Xiao; Wang, Ze-Xin; Yang, Guo-Li; Liu, Ji-Zhong; Liu, Ya-Qiong; Li, Ming; Chen, Min; Xia, Yong-Mei; Liu, Jun-Jie; Qiu, Shu-Ping; Gong, Xiao-Qing
2015-01-01
Excessive extracellular matrix degradation caused by the hyperfunction of matrix metalloproteinases (MMPs) has been implicated in the failure of pressure ulcers healing. EMMPRIN, as a widely expressed protein, has emerged as an important regulator of MMP activity. We hypothesize that EMMPRIN affects the process of pressure ulcer healing by modulating MMP activity. In the rat pressure ulcer model, the expression of EMMPRIN in ulcers detected by Western blot was elevated compared with that observed in normal tissue. To investigate the role of EMMPRIN in regulating ulcer healing, specific antibodies against EMMPRIN were used via direct administration on the pressure ulcer. Local blockage of EMMPRIN resulted in a poor ulcer healing process compared with control ulcers, which was the opposite of our expectation. Furthermore, inhibiting EMMPRIN minimally impacted MMP activity. However, the collagen content in the pressure ulcer was reduced in the EMMPRIN treated group. Angiogenesis and the expression of angiogenic factors in pressure ulcers were also reduced by EMMPRIN local blockage. The results in the present study indicate a novel effect of EMMPRIN in the regulation of pressure ulcer healing by controlling the collagen contents and angiogenesis rather than MMPs activity.
Regulation of Blood Pressure by Targeting CaV1.2-Galectin-1 Protein Interaction.
Hu, Zhenyu; Li, Guang; Wang, Jiong-Wei; Chong, Suet Yen; Yu, Dejie; Wang, Xiaoyuan; Soon, Jia Lin; Liang, Mui Cheng; Wong, Yuk Peng; Huang, Na; Colecraft, Henry M; Liao, Ping; Soong, Tuck Wah
2018-04-12
Background -L-type Ca V 1.2 channels play crucial roles in regulation of blood pressure. Galectin-1 (Gal-1), has been reported to bind to the I-II loop of Ca V 1.2 channels to reduce their current density. However, the mechanistic understanding for the down-regulation of Ca V 1.2 channels by Gal-1, and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. Methods - In vitro experiments involving co-IP, western blot, patch-clamp recordings, immunohistochemistry and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 down-regulates Ca V 1.2 channel in transfected HEK 293 cells, smooth muscle cells, arteries from Lgasl1 -/- mice, rat and human patients. In vivo experiments involving delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting Ca V 1.2-Gal-1 interaction on blood pressure monitored by tail cuff or telemetry methods. Results -Our study reveals that Gal-1 is a key regulator for proteasomal degradation of Ca V 1.2 channels. Gal-1 competed allosterically with Ca V β subunit for binding to the I-II loop of Ca V 1.2 channel. This competitive disruption of Ca V β binding led to Ca V 1.2 degradation by exposing the channels to poly-ubiquitination. Notably, we demonstrated that the inverse relationship of reduced Gal-1 and increased Ca V 1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice due to up-regulated Ca V 1.2 protein level in arteries. To directly regulate blood pressure by targeting the Ca V 1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1, by a mini-osmotic pump and this specific disruption of Ca V 1.2-Gal-1 coupling increased smooth muscle Ca V 1.2 currents, induced larger arterial contraction and caused hypertension in rats. In contrasting experiments, over-expression of Gal-1 in smooth muscle by a single bolus of AAV5-Gal-1 significantly reduced blood pressure in spontaneously hypertensive rats. Conclusions -We have defined molecularly that Gal-1 promotes Ca V 1.2 degradation by replacing Ca V β and thereby exposing specific lysines for poly-ubiquitination, and by masking I-II loop ER export signals. This mechanistic understanding provided the basis for targeting Ca V 1.2-Gal-1 interaction to demonstrate clearly the modulatory role Gal-1 plays in regulating blood pressure, and offering a potential approach for therapeutic management of hypertension.
Treshow, M.
1959-02-10
A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.
The Immunological Basis of Hypertension
Pons, Héctor; Quiroz, Yasmir; Johnson, Richard J.
2014-01-01
A large number of investigations have demonstrated the participation of the immune system in the pathogenesis of hypertension. Studies focusing on macrophages and Toll-like receptors have documented involvement of the innate immunity. The requirements of antigen presentation and co-stimulation, the critical importance of T cell–driven inflammation, and the demonstration, in specific conditions, of agonistic antibodies directed to angiotensin II type 1 receptors and adrenergic receptors support the role of acquired immunity. Experimental findings support the concept that the balance between T cell–induced inflammation and T cell suppressor responses is critical for the regulation of blood pressure levels. Expression of neoantigens in response to inflammation, as well as surfacing of intracellular immunogenic proteins, such as heat shock proteins, could be responsible for autoimmune reactivity in the kidney, arteries, and central nervous system. Persisting, low-grade inflammation in these target organs may lead to impaired pressure natriuresis, an increase in sympathetic activity, and vascular endothelial dysfunction that may be the cause of chronic elevation of blood pressure in essential hypertension. PMID:25150828
Pressure Control System Design for a Closed Crop Growth Chamber
NASA Technical Reports Server (NTRS)
Tsai, K.; Blackwell, C.; Harper, Lynn D. (Technical Monitor)
1994-01-01
The Controlled Ecological Life Support System (CELSS) is an area of active research at NASA. CELSS is a plant-based bioregenerative life support system for long term manned space flights where resupply is costly or impractical. The plants in a CELSS will function to convert the carbon dioxide (exhaled by the crew) into oxygen, purify non-potable water into potable quality water, and provide food for the crew. Prior to implementing a CELSS life support system, one must have knowledge on growing plants in a closed chamber under low gravity. This information will come from research to be conducted on the CELSS Test Facility that will operate on the Space Station Freedom. Currently a ground-based CELSS Test Facility is being built at NASA Ames Research Center. It is called the EDU (Engineering Development Unit). This system will allow researchers to identify issues that may cause difficulties in the development of the CELSS Test Facility and aid in the development of new needed technologies. The EDU consists of a 1 m2 crop growth chamber that is surrounded by a containment enclosure. The containment enclosure isolates the system so there is very little mass and thermal exchange with the ambient. The leakage rate is on the order of 1 % of the enclosure's volume per day (with 0.2S psi pressure difference). The thermal leakage is less than 0.5% of the electrical power supplied to the system per degree Celsius difference from the surrounding. The pressure in the containment enclosure is regulated at 62.5 Pa below the ambient by an active controller. The goal is to maintain this set point for a variety of conditions, such as a range of operating temperatures, heat load variations that occur when the lights are turned on and off, and fluctuations in ambient pressure. In addition certain transition tracking performance is required. This paper illustrates the application of some advanced systems control methods to the task of synthesizing the EDU's pressure control system.
Implications of global budget payment system on nursing home costs.
Di Giorgio, Laura; Filippini, Massimo; Masiero, Giuliano
2014-04-01
Pressure on health care systems due to the increasing expenditures of the elderly population is pushing policy makers to adopt new regulation and payment schemes for nursing home services. We consider the behavior of nonprofit nursing homes under different payment schemes and empirically investigate the implications of prospective payments on nursing home costs under tightly regulated quality aspects. To evaluate the impact of the policy change introduced in 2006 in Southern Switzerland - from retrospective to prospective payment - we use a panel of 41 homes observed over a 10-years period (2001-2010). We employ a fixed effects model with a time trend that is allowed to change after the policy reform. There is evidence that the new payment system slightly reduces costs without impacting quality. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Jagow, R. B.
1972-01-01
Laboratory investigations to define optimum process conditions for oxidation of fecal/urine slurries were conducted in a one-liter batch reactor. The results of these tests formed the basis for the design, fabrication, and testing of an initial prototype system, including a 100-hour design verification test. Areas of further development were identified during this test. Development of a high pressure slurry pump, materials corrosion studies, oxygen supply trade studies, comparison of salt removal water recovery devices, ammonia removal investigation, development of a solids grinder, reactor design studies and bearing life tests, and development of shutoff valves and a back pressure regulator were undertaken. The development work has progressed to the point where a prototype system suitable for manned chamber testing can be fabricated and tested with a high degree of confidence of success.
NASA Astrophysics Data System (ADS)
Shughrue, C. M.; Werner, B.; Nugnug, P. T.
2010-12-01
The catastrophic Deepwater Horizon oil spill highlights the risks for widespread environmental damage resulting from petroleum resource extraction. Possibilities for amelioration of these risks depend critically on understanding the dynamics and nonlinear interactions between various components of the coupled human-environmental resource extraction system. We use a complexity analysis to identify the levels of description and time scales at which these interactions are strongest, and then use the analysis as the basis for an agent-based numerical model with which decadal trends can be analyzed. Oil industry economic and technological activity and associated oil spills are components of a complex system that is coupled to natural environment, legislation, regulation, media, and resistance systems over annual to decadal time scales. In the model, oil spills are produced stochastically with a range of magnitudes depending on a reliability-engineering-based assessment of failure for the technology employed, human factors including compliance with operating procedures, and risks associated with the drilling environment. Oil industry agents determine drilling location and technological investment using a cost-benefit analysis relating projected revenue from added production to technology cost and government regulation. Media outlet agents reporting on the oil industry and environmental damage from oil spills assess the impacts of aggressively covering a story on circulation increases, advertiser concerns and potential loss of information sources. Environmental advocacy group agents increase public awareness of environmental damage (through media and public contact), solicit memberships and donations, and apply direct pressure on legislators for policy change. Heterogeneous general public agents adjust their desire for change in the level of regulation, contact their representatives or participate in resistance via protest by considering media sources, personal experiences with oil spills and individual predispositions toward the industry. Legislator agents pass legislation and influence regulator agents based on interaction with oil industry, media and general public agents. Regulator agents generate and enforce regulations by responding to pressure from legislator and oil industry agents. Oil spill impacts on the natural environment are related to number and magnitude of spills, drilling locations, and spill response methodology, determined collaboratively by government and oil company agents. Agents at the corporate and government levels use heterogeneous prediction models combined with a constant absolute risk aversion utility for wealth. This model simulates a nonlinear adaptive system with mechanisms to self-regulate oil industry activity, environmental damage and public response. A comparison of model output with historical oil industry development and environmental damage; the sensitivity of oil spill damage to economic, political and social factors; the potential for the emergence of new and possibly unstable behaviors; and opportunities for intervening in system dynamics to alter expected outcomes will be discussed. Supported by NSF: Geomorphology and Land Use Dynamics Program
Breath-hold device for laboratory rodents undergoing imaging procedures.
Rivera, Belinda; Bushman, Mark J; Beaver, Richard G; Cody, Dianna D; Price, Roger E
2006-07-01
The increased use in noninvasive imaging of laboratory rodents has prompted innovative techniques in animal handling. Lung imaging of rodents can be a difficult task because of tissue motion caused by breathing, which affects image quality. The use of a prototype flat-panel computed tomography unit allows the acquisition of images in as little as 2, 4, or 8 s. This short acquisition time has allowed us to improve the image quality of this instrument by performing a breath-hold during image acquisition. We designed an inexpensive and safe method for performing a constant-pressure breath-hold in intubated rodents. Initially a prototypic manual 3-way valve system, consisting of a 3-way valve, an air pressure regulator, and a manometer, was used to manually toggle between the ventilator and the constant-pressure breath-hold equipment. The success of the manual 3-way valve system prompted the design of an electronically actuated valve system. In the electronic system, the manual 3-way valve was replaced with a custom designed 3-way valve operated by an electrical solenoid. The electrical solenoid is triggered by using a hand-held push button or a foot pedal that is several feet away from the gantry of the scanner. This system has provided improved image quality and is safe for the animals, easy to use, and reliable.
Structural integrated sensor and actuator systems for active flow control
NASA Astrophysics Data System (ADS)
Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael
2016-04-01
An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.
Liquid Hydrogen Regulated Low Pressure High Flow Pneumatic Panel AFT Arrow Analysis
NASA Technical Reports Server (NTRS)
Jones, Kelley, M.
2013-01-01
Project Definition: Design a high flow pneumatic regulation panel to be used with helium and hydrogen. The panel will have two circuits, one for gaseous helium (GHe) supplied from the GHe Movable Storage Units (MSUs) and one for gaseous hydrogen (GH2) supplied from an existing GH2 Fill Panel. The helium will supply three legs; to existing panels and on the higher pressure leg and Simulated Flight Tanks (SFTs) for the lower pressure legs. The hydrogen line will pressurize a 33,000 gallon vacuum jacketed vessel.
High-bandwidth continuous-flow arc furnace
Hardt, David E.; Lee, Steven G.
1996-01-01
A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.
High-bandwidth continuous-flow arc furnace
Hardt, D.E.; Lee, S.G.
1996-08-06
A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.
Wet atmospheric generation apparatus
NASA Technical Reports Server (NTRS)
Hamner, Richard M. (Inventor); Allen, Janice K. (Inventor)
1990-01-01
The invention described relates to an apparatus for providing a selectively humidified gas to a camera canister containing cameras and film used in space. A source of pressurized gas (leak test gas or motive gas) is selected by a valve, regulated to a desired pressure by a regulator, and routed through an ejector (venturi device). A regulated source of water vapor in the form of steam from a heated reservoir is coupled to a low pressure region of the ejector which mixes with high velocity gas flow through the ejector. This mixture is sampled by a dew point sensor to obtain dew point thereof (ratio of water vapor to gas) and the apparatus adjusted by varying gas pressure or water vapor to provide a mixture at a connector having selected humidity content.
A digital strategy for manometer dynamic enhancement. [for wind tunnel monitoring
NASA Technical Reports Server (NTRS)
Stoughton, J. W.
1978-01-01
Application of digital signal processing techniques to improve the non-linear dynamic characteristics of a sonar-type mercury manometer is described. The dynamic enhancement strategy quasi-linearizes the manometer characteristics and improves the effective bandwidth in the context of a wind-tunnel pressure regulation system. Model identification data and real-time hybrid simulation data demonstrate feasibility of approach.
Earthquake Risk Reduction to Istanbul Natural Gas Distribution Network
NASA Astrophysics Data System (ADS)
Zulfikar, Can; Kariptas, Cagatay; Biyikoglu, Hikmet; Ozarpa, Cevat
2017-04-01
Earthquake Risk Reduction to Istanbul Natural Gas Distribution Network Istanbul Natural Gas Distribution Corporation (IGDAS) is one of the end users of the Istanbul Earthquake Early Warning (EEW) signal. IGDAS, the primary natural gas provider in Istanbul, operates an extensive system 9,867km of gas lines with 750 district regulators and 474,000 service boxes. The natural gas comes to Istanbul city borders with 70bar in 30inch diameter steel pipeline. The gas pressure is reduced to 20bar in RMS stations and distributed to district regulators inside the city. 110 of 750 district regulators are instrumented with strong motion accelerometers in order to cut gas flow during an earthquake event in the case of ground motion parameters exceeds the certain threshold levels. Also, state of-the-art protection systems automatically cut natural gas flow when breaks in the gas pipelines are detected. IGDAS uses a sophisticated SCADA (supervisory control and data acquisition) system to monitor the state-of-health of its pipeline network. This system provides real-time information about quantities related to pipeline monitoring, including input-output pressure, drawing information, positions of station and RTU (remote terminal unit) gates, slum shut mechanism status at 750 district regulator sites. IGDAS Real-time Earthquake Risk Reduction algorithm follows 4 stages as below: 1) Real-time ground motion data transmitted from 110 IGDAS and 110 KOERI (Kandilli Observatory and Earthquake Research Institute) acceleration stations to the IGDAS Scada Center and KOERI data center. 2) During an earthquake event EEW information is sent from IGDAS Scada Center to the IGDAS stations. 3) Automatic Shut-Off is applied at IGDAS district regulators, and calculated parameters are sent from stations to the IGDAS Scada Center and KOERI. 4) Integrated building and gas pipeline damage maps are prepared immediately after the earthquake event. The today's technology allows to rapidly estimate the expected level of shaking when an earthquake starts to occur. However, in Istanbul case for a potential Marmara Sea Earthquake, the time is very limited even to estimate the level of shaking. The robust threshold based EEW system is only algorithm for such a near source event to activate automatic shut-off mechanism in the critical infrastructures before the damaging waves arrive. This safety measure even with a few seconds of early warning time will help to mitigate potential damages and secondary hazards.
Hormonal regulation of fluid and electrolyte metabolism during periods of headward fluid shifts
NASA Technical Reports Server (NTRS)
Keil, Lanny C.; Severs, W. B.; Thrasher, T.; Ramsay, D. J.
1991-01-01
In the broadest sense, this project evaluates how spaceflight induced shifts of blood and interstitial fluids into the thorax affect regulation by the central nervous system (CNS) of fluid-electrolyte hormone secretion. Specifically, it focuses on the role of hormones related to salt/water balance and their potential function in the control of intracranial pressure and cerebrospinal fluid (CSF) composition. Fluid-electrolyte status during spaceflight gradually equilibrates, with a reduction in all body fluid compartments. Related to this is the cardiovascular deconditioning of spaceflight which is manifested upon return to earth as orthostatic intolerance.
40 CFR 52.2420 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Enforceable, Implementation Plan, Potential to Emit, State Enforceable, Volatile Organic Compound 4/1/96 3/12..., Regulation of the Board, These regulations. Terms Revised—Good Engineering Practice, Person, Volatile organic... pressure, Vapor pressure, Volatile organic compounds. Terms Removed: Air Quality Maintenance Area. 5-10-20...
NASA Technical Reports Server (NTRS)
Ekrami, Yasamin; Cook, Joseph S.
2011-01-01
In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.
NASA Astrophysics Data System (ADS)
Guo, W. C.; Yang, J. D.; Chen, J. P.; Teng, Y.
2014-03-01
According to the fact that the effects of penstock, unit and governor on stability of water level fluctuation for hydropower station with air cushion surge chamber are neglected in previous researches, in this paper, Thoma assumption is broken through, the complete mathematical model of waterpower-speed control system for hydropower station with air cushion surge chamber is established, and the comprehensive transfer function and linear homogeneous differential equation that characterize the dynamic characteristics of system are derived. The stability domain that characterizes the good or bad of stability quantitatively is drawn by using the stability conditions. The effects of the fluid inertia in water diversion system, the air cushion surge chamber parameters, hydraulic turbine characteristics, generator characteristics, and regulation modes of governor on the stability of waterpower-speed control system are analyzed through stability domain. The main conclusions are as follows: The fluid inertia in water diversion system and hydraulic turbine characteristics have unfavorable effects on the system while generator characteristics have favorable effect. The stability keeps getting better with the increase of chamber height and basal area and the decrease of air pressure and air polytropic exponent. The stability of power regulation mode is obviously better than that of frequency regulation mode.
Cardiovascular effects in rats following exposure to a high-boiling coal liquid.
Zangar, R C; Sasser, L B; Mahlum, D D; Abhold, R H; Springer, D L
1987-11-01
In previous work, increased blood pressure was observed in anesthetized rats following a subchronic aerosol exposure to solvent-refined coal heavy distillate (HD). To determine if this increase is a permanent, dose-related response, 11-week-old male rats were exposed by inhalation to 0, 0.24, or 0.70 mg/liter (control, low-exposure, and high-exposure groups, respectively) of HD for 6 hr/day, 5 days/week, for 6 weeks. In addition to blood pressure, select cardiovascular parameters were measured to obtain information on other possible toxic effects of the HD and also to gain some insight into potentially altered regulatory mechanisms that could be affecting the blood pressure. The angiotensin-aldosterone hormonal system, body fluid regulation, cardiac function and regulation, and pulmonary gas-exchange capabilities were examined. Two weeks after the end of exposure, mean blood pressures and heart rates of anesthetized animals in the low-and high-exposure groups were elevated relative to the controls. Plasma angiotensin concentrations decreased with increasing dose, whereas aldosterone concentrations were unaffected. In the high-dose group, blood and plasma volumes were 20 and 28%, respectively, higher than those of controls. Seven weeks after exposure, all measured cardiovascular parameters were similar to control values. Results from this study show that a 6-week exposure to HD resulted in dose-dependent, transient changes in a variety of physiological factors considered important in cardiovascular function.
Progress in fuel systems to meet new fuel economy and emissions standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This publication includes information describing the latest developments within the automotive industry on fuel system hardware and control strategies. Contents include: Slow heating process of a heated pintle-type gasoline fuel injector; Mixture preparation measurements; Study of fuel flow rate change in injector for methanol fueled S.I. engine; Flow and structural analysis for fuel pressure regulator performance; A new method to analyze fuel behavior in a spark ignition engine; Throttle body at engine idle -- tolerance effect on flow rate; and more.
Motor vehicle technology:Mobility for prosperity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
This book presents the papers given at a conference on internal combustion engines for vehicles. Topics considered at the conference included combustion chambers, the lubrication of turbocharged engines, oil filters, fuel consumption, traffic control, crashworthiness, brakes, acceleration, unleaded gasoline, methanol fuels, pressure drop, safety regulations, tire vibration, detergents, fuel economy, ceramics in engines, steels, catalytic converters, fuel additives, heat exchangers, pump systems, emissions control, fuel injection systems, noise pollution control, natural gas fuels, assembly plant productivity, aerodynamics, torsion, electronics, and automatic transmissions.
Hardware and Procedures for Using the Diveair2 Monitor to Test Diving Air Quality in the Field
2011-09-01
Dive System ( LWDS ), and the Fly- Away Dive System (FADS); b. one pressure-reducing regulator (“reducer”) mounted on the inside of the lid of the...1. compressors and air banks, 6 2. scuba bottles that had already been charged, 3. the Navy’s LWDS , both during and after charging, and...site where the charging whip attaches to that scuba bottle. c. A LWDS adaptor, to allow air from the LWDS to be sampled both during and after
NASA Technical Reports Server (NTRS)
Iwasaki, K. I.; Zhang, R.; Zuckerman, J. H.; Pawelczyk, J. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)
2000-01-01
Adaptation to head-down-tilt bed rest leads to an apparent abnormality of baroreflex regulation of cardiac period. We hypothesized that this "deconditioning response" could primarily be a result of hypovolemia, rather than a unique adaptation of the autonomic nervous system to bed rest. To test this hypothesis, nine healthy subjects underwent 2 wk of -6 degrees head-down bed rest. One year later, five of these same subjects underwent acute hypovolemia with furosemide to produce the same reductions in plasma volume observed after bed rest. We took advantage of power spectral and transfer function analysis to examine the dynamic relationship between blood pressure (BP) and R-R interval. We found that 1) there were no significant differences between these two interventions with respect to changes in numerous cardiovascular indices, including cardiac filling pressures, arterial pressure, cardiac output, or stroke volume; 2) normalized high-frequency (0.15-0.25 Hz) power of R-R interval variability decreased significantly after both conditions, consistent with similar degrees of vagal withdrawal; 3) transfer function gain (BP to R-R interval), used as an index of arterial-cardiac baroreflex sensitivity, decreased significantly to a similar extent after both conditions in the high-frequency range; the gain also decreased similarly when expressed as BP to heart rate x stroke volume, which provides an index of the ability of the baroreflex to alter BP by modifying systemic flow; and 4) however, the low-frequency (0.05-0.15 Hz) power of systolic BP variability decreased after bed rest (-22%) compared with an increase (+155%) after acute hypovolemia, suggesting a differential response for the regulation of vascular resistance (interaction, P < 0.05). The similarity of changes in the reflex control of the circulation under both conditions is consistent with the hypothesis that reductions in plasma volume may be largely responsible for the observed changes in cardiac baroreflex control after bed rest. However, changes in vasomotor function associated with these two conditions may be different and may suggest a cardiovascular remodeling after bed rest.
Reversible Morphological Control of Tubulin-Encapsulating Giant Liposomes by Hydrostatic Pressure.
Hayashi, Masahito; Nishiyama, Masayoshi; Kazayama, Yuki; Toyota, Taro; Harada, Yoshie; Takiguchi, Kingo
2016-04-19
Liposomes encapsulating cytoskeletons have drawn much recent attention to develop an artificial cell-like chemical-machinery; however, as far as we know, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons because the sets of various regulatory factors, that is, their interacting proteins, are required to control the state of every reaction system of cytoskeletons. Here we focused on hydrostatic pressure to control the polymerization state of microtubules (MTs) within cell-sized giant liposomes (diameters ∼10 μm). MT is the cytoskeleton formed by the polymerization of tubulin, and cytoskeletal systems consisting of MTs are very dynamic and play many important roles in living cells, such as the morphogenesis of nerve cells and formation of the spindle apparatus during mitosis. Using real-time imaging with a high-pressure microscope, we examined the effects of hydrostatic pressure on the morphology of tubulin-encapsulating giant liposomes. At ambient pressure (0.1 MPa), many liposomes formed protrusions due to tubulin polymerization within them. When high pressure (60 MPa) was applied, the protrusions shrank within several tens of seconds. This process was repeatedly inducible (around three times), and after the pressure was released, the protrusions regenerated within several minutes. These deformation rates of the liposomes are close to the velocities of migrating or shape-changing living cells rather than the shortening and elongation rates of the single MTs, which have been previously measured. These results demonstrate that the elongation and shortening of protrusions of giant liposomes is repeatedly controllable by regulating the polymerization state of MTs within them by applying and releasing hydrostatic pressure.
Physiological and biochemical principles underlying volume-targeted therapy--the "Lund concept".
Nordström, Carl-Henrik
2005-01-01
The optimal therapy of sustained increase in intracranial pressure (ICP) remains controversial. The volume-targeted therapy ("Lund concept") discussed in this article focuses on the physiological volume regulation of the intracranial compartments. The balance between effective transcapillary hydrostatic and osmotic pressures constitutes the driving force for transcapillary fluid exchange. The low permeability for sodium and chloride combined with the high crystalloid osmotic pressure (approximately 5700 mmHg) on both sides of the blood-brain barrier (BBB) counteracts fluid exchange across the intact BBB. Additionally, variations in systemic blood pressure generally are not transmitted to these capillaries because cerebral intracapillary hydrostatic pressure (and blood flow) is physio-logically tightly autoregulated. Under pathophysiological conditions, the BBB may be partially disrupted. Transcapillary water exchange is then determined by the differences in hydrostatic and colloid osmotic pressure between the intra- and extracapillary compartments. Pressure autoregulation of cerebral blood flow is likely to be impaired in these conditions. A high cerebral perfusion pressure accordingly increases intracapillary hydrostatic pressure and leads to increased intracerebral water content and an increase in ICP. The volume-targeted "Lund concept" has been evaluated in experimental and clinical studies to examine the physiological and biochemical (utilizing intracerebral microdialysis) effects, and the clinical experiences have been favorable.
Weiner, H L; Constantini, S; Cohen, H; Wisoff, J H
1995-11-01
FROM THE RECORDS of approximately 1500 shunt operations performed between 1987 and 1992, we identified 37 adults between ages 38 and 86 years (mean, 70 yr) with the normal-pressure hydrocephalus (NPH) syndrome who underwent surgery by a single surgeon. Since 1990, we have routinely used a flow-regulated shunt system (Orbis-Sigma valve [OSV]; Cordis Corporation, Miami, FL) in these patients. In this study, we compared the OSV system with conventional differential-pressure (DP) shunt systems uniformly used before 1990. This series (n = 37) consisted of 62% men (n = 23) and 38% women (n = 14). We excluded all patients with hydrocephalus associated with central nervous system neoplasms, intracerebral hemorrhage, or trauma as well those with radiographically documented late-onset aqueductal stenosis. All patients presented with the NPH clinical syndrome, chiefly with magnetic gait. In addition, 75% of patients experienced cognitive loss and 59% experienced urinary incontinence. The mean duration of preoperative symptoms was 35 months (range, 7-120 mo). Eight patients (22%) had undergone previous shunting procedures before referral to our service. A total of 89 shunt operations were performed in the 37 patients. Using actuarial methods and controlling for a history of prior shunt surgery, we found no significant difference in the time to initial malfunction (shunt survival) between the OSV and the DP shunts. There were three subdural hematomas and one infection in the OSV group compared with no complications in the DP valve group (P = 0.11). Thirty-six patients were available for follow-up, at a mean of 14 months after surgery. Nearly 90% of all patients experienced improvement in gait after shunting, regardless of the valve system that was used. There was one unrelated death. Realizing the limitations of a retrospective analysis and on the basis of the limited number of patients in this study, we conclude that using actuarial methods, we found no significant difference in shunt survival when comparing the OSV with the standard DP valve shunt systems with antisiphon devices in patients with NPH. Contrary to previous reports, the OSV is not free of overdrainage complications. Most patients (89%) with the NPH syndrome who primarily presented with gait disorder experienced significant improvement in gait after either OSV or DP shunting procedures when selected for surgery on the basis of the clinical syndrome and confirmatory radiographic data.
NASA Astrophysics Data System (ADS)
Kumar, V. Suresh; Kumar, R.; Sivaraman, N.; Ravisankar, G.; Vasudeva Rao, P. R.
2010-09-01
The design and development of a novel supercritical extraction experimental facility adapted for safe operation in a glove box for the recovery of radioactive elements from waste is described. The apparatus incorporates a high pressure extraction vessel, reciprocating pumps for delivering supercritical fluid and reagent, a back pressure regulator, and a collection chamber. All these components of the system have been specially designed for glove box adaptation and made modular to facilitate their replacement. Confinement of these materials must be ensured in a glove box to protect the operator and prevent contamination to the work area. Since handling of radioactive materials under high pressure (30 MPa) and temperature (up to 333 K) is involved in this process, the apparatus needs elaborate safety features in the design of the equipment, as well as modification of a standard glove box to accommodate the system. As a special safety feature to contain accidental leakage of carbon dioxide from the extraction vessel, a safety vessel has been specially designed and placed inside the glove box. The extraction vessel was enclosed in the safety vessel. The safety vessel was also incorporated with pressure sensing and controlling device.
Klarica, Marijan; Radoš, Milan; Erceg, Gorislav; Petošić, Antonio; Jurjević, Ivana; Orešković, Darko
2014-01-01
Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension.
SRC-1 regulates blood pressure and aortic stiffness in female mice
USDA-ARS?s Scientific Manuscript database
Framingham Heart Study suggests that dysfunction of steroid receptor coactivator-1 may be involved in the development of hypertension. However, there is no functional evidence linking steroid receptor coactivator-1 to the regulation of blood pressure. We used immunohistochemistry to map the expressi...
STS-55 Pilot Henricks with baroreflex collar in SL-D2 module onboard OV-102
1993-05-06
STS055-233-019 (26 April-6 May 1993) --- Terence T. (Tom) Henricks, STS-55 pilot, wears a special collar for a space adaptation experiment in the science module onboard the Earth-orbiting Space Shuttle Columbia. The Baroreflex (BA) experiment is designed to investigate the theory that light-headedness and a reduction in blood pressures upon standing after landing may arise because the normal reflex system regulating blood pressure behaves differently after having adapted to a microgravity environment. These space-based measurements of the baroreflex will be compared to ground measurements to determine if microgravity affects the reflex.
1995-11-01
Emergency department overcrowding, the growth of managed care, and the high cost of emergency care are creating pressures to triage patients away from U.S. EDs. Paradoxically, this pressure to limit patient access to EDs has increased in spite of federal laws that restrict patient triage and transfer. The latter regulations view EDs as the safety net for the U.S. health care system. The SAEM Ethics Committee evaluated the ethical implications of policies that triage patients out of the ED prior to complete evaluation and treatment. The committee used these implications to develop practical guidelines, which are reported.
Renal intercalated cells and blood pressure regulation.
Wall, Susan M
2017-12-01
Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl - absorption and HCO 3 - secretion largely through pendrin-dependent Cl - /HCO 3 - exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO 3 administration. In some rodent models, pendrin-mediated HCO 3 - secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl - absorption, but also by modulating the aldosterone response for epithelial Na + channel (ENaC)-mediated Na + absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.
Intrinsically safe moisture blending system
Hallman Jr., Russell L.; Vanatta, Paul D.
2012-09-11
A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.
Giovanella, Lígia; Stegmüller, Klaus
2014-11-01
The paper analyzes trends in contemporary health sector reforms in three European countries with Bismarckian and Beveridgean models of national health systems within the context of strong financial pressure resulting from the economic crisis (2008-date), and proceeds to discuss the implications for universal care. The authors examine recent health system reforms in Spain, Germany, and the United Kingdom. Health systems are described using a matrix to compare state intervention in financing, regulation, organization, and services delivery. The reforms' impacts on universal care are examined in three dimensions: breadth of population coverage, depth of the services package, and height of coverage by public financing. Models of health protection, institutionality, stakeholder constellations, and differing positions in the European economy are factors that condition the repercussions of restrictive policies that have undermined universality to different degrees in the three dimensions specified above and have extended policies for regulated competition as well as commercialization in health care systems.
Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments
NASA Technical Reports Server (NTRS)
Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet
2004-01-01
This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.
Acute and Chronic Regulation of Aldosterone Production
Hattangady, Namita; Olala, Lawrence; Bollag, Wendy B.; Rainey, William E.
2011-01-01
Aldosterone is the major mineralocorticoid synthesized by the adrenal. Secretion of aldosterone is regulated tightly by the adrenocortical glomerulosa cells due to the selective expression of CYP11B2 in the outermost zone, the zona glomerulosa. Aldosterone is largely responsible for regulation of systemic blood pressure through the absorption of electrolytes and water under the regulation of certain specific agonists. Angiotensin II (Ang II), potassium (K+) and adrenocorticotropin (ACTH) are the main physiological agonists which regulate aldosterone secretion. The mechanisms involved in this process may be regulated minutes after a stimulus (acutely) through increased expression and phosphorylation of the steroidogenic acute regulatory (StAR) protein, over hours to days (chronically) by increased expression of the enzymes involved in the synthesis of aldosterone, particularly aldosterone synthase (CYP11B2). Imbalance in any of these processes may lead to several aldosterone excess disorders. In this review we attempt to summarize the key molecular events involved in and specifically attributed to the acute and chronic phases of aldosterone secretion. PMID:21839803
Climate regulation services by urban lakes in Bucharest city
NASA Astrophysics Data System (ADS)
Ioja, Cristian; Cheval, Sorin; Vanau, Gabriel; Sandric, Ionut; Onose, Diana; Carstea, Elfrida
2017-04-01
Urban ecosystems services assessment is an important challenge for practitioners, due to the high complexity of relations between urban systems components, high vulnerability to climate change, and consequences in social-economical systems. Urban lakes represent a significant component in more European cities (average 5% of total surface). Adequate urban management supports diverse benefits of urban lakes: clean water availability, mediation of waste, toxics and other nuisance, air quality and climate regulation, support for physical, intelectual or spiritual interactions. Due to underestimation of climate change and misfit urban planning decision, these benefits may be lost or chaged into diservices. The aim of the paper is to assess the changes in terms of the urban lakes contribution role to regulate urban climate, using the Bucharest as case study. Using sensors and Modis, Sentinel and Landsat images, the paper experiments the evolution of climate regulation services of urban lakes under the pressure of urbanisation and climate change between 2008 and 2015. Urban lakes management has to include specific measures in order to help the cities to become more sustainable, resilient, liveable and healthly.
49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).
Code of Federal Regulations, 2010 CFR
2010-10-01
... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes...
30 CFR 250.1007 - What to include in applications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and risers; pressure-regulating devices (including back-pressure regulators); sensing devices with.... (ii) If you propose to use one or more pipeline risers for a tension leg platform or other floating platform, your application must include: (A) The design fatigue life of the riser, with calculations, and...
30 CFR 250.1007 - What to include in applications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and risers; pressure-regulating devices (including back-pressure regulators); sensing devices with.... (ii) If you propose to use one or more pipeline risers for a tension leg platform or other floating platform, your application must include: (A) The design fatigue life of the riser, with calculations, and...
30 CFR 250.1007 - What to include in applications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and risers; pressure-regulating devices (including back-pressure regulators); sensing devices with.... (ii) If you propose to use one or more pipeline risers for a tension leg platform or other floating platform, your application must include: (A) The design fatigue life of the riser, with calculations, and...
The Combined Dexamethasone/TSST Paradigm – A New Method for Psychoneuroendocrinology
Andrews, Julie; D’Aguiar, Catherine; Pruessner, Jens C.
2012-01-01
The two main physiological systems involved in the regulation of the stress response are the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). However, the interaction of these systems on the stress response remains poorly understood. To better understand the cross-regulatory effects of the different systems involved in stress regulation, we developed a new stress paradigm that keeps the activity of the HPA constant when exposing subjects to psychosocial stress. Thirty healthy male participants were recruited and randomly assigned to either a dexamethasone (DEX; n = 15) or placebo (PLC; n = 15) group. All subjects were instructed to take the Dexamethasone (2 mg) or Placebo pill the night before coming to the laboratory to undergo the Trier Social Stress Task (TSST). Salivary cortisol, salivary alpha amylase (sAA), heart rate, blood pressure and subjective stress were assessed throughout the protocol. As expected, the DEX group presented with suppressed cortisol levels. In comparison, their heart rate was elevated by approximately ten base points compared to the PLC group, with increases throughout the protocol and during the TSST. Neither sAA, nor systolic or diastolic blood pressures showed significant group differences. Subjective stress levels significantly increased from baseline, and were found to be higher before and after the TSST after DEX compared to placebo. These results demonstrate a significant interaction between the HPA and the SNS during acute stress. The SNS activity was found to be elevated in the presence of a suppressed HPA axis, with some further effects on subjective levels of stress. The method to suppress the HPA prior to inducing stress was found to completely reliable, without any adverse side effects. Therefore, we propose this paradigm as a new method to investigate the interaction of the two major stress systems in the regulation of the stress response. PMID:22701740
Effects of Repeated Valsalva Maneuver Straining on Cardiac and Vasoconstrictive Baroreflex Responses
2003-03-01
of blood pressure regulation that differ in men repeatedly exposed to high G acceleration. Am J Physiol Regul Integr Comp Physiol 2001; 280:R947–58. 10...Methods: We tested this hypothesis by measuring cardiac baroreflex responses to carotid baroreceptor stimulation (neck pressures ), and changes in heart rate...hypothesis is the observation that elevated pulse pressures in isolated carotid sinuses of dogs sen- sitized baroreceptor afferent firing (4,5). Elevated arte
NASA Astrophysics Data System (ADS)
Katura, Takusige; Tanaka, Naoki; Obata, Akiko; Sato, Hiroki; Maki, Atsushi
2005-08-01
In this study, from the information-theoretic viewpoint, we analyzed the interrelation between the spontaneous low-frequency fluctuations around 0.1Hz in the hemoglobin concentration in the cerebral cortex, mean arterial blood pressure and the heart rate. For this analysis, as measures of information transfer, we used transfer entropy (TE) proposed for two-factor systems by Schreiber and intrinsic transfer entropy (ITE) introduced for further analysis of three-factor systems by extending the original TE. In our analysis, information transfer analysis based on both TE and ITE suggests the systemic cardiovascular fluctuations alone cannot account for the cerebrovascular fluctuations, that is, the regulation of the regional cerebral energetic metabolism is important as a candidate of its generation mechanism Such an information transfer analysis seems useful to reveal the interrelation between the elements regulated each other in a complex manner.
Sibir'ianov, A R; Sergeeva, N V; Podzolko, T Iu
2013-01-01
The present study was designed to study the influence of classical back and neck massage on the functional state of the cardiovascular system and its regulation under conditions of short-term physical loading in the healthy adolescents. It was shown that a course of classical massage promoted the reduction of arterial pressure in all children and the heart rate frequency in the boys. This effect was apparent as a reaction of blood circulation to the dosed physical exercises manifested as a rise in the heart rate frequency and stroke volume. The effects of classical massage were shown to be mediated through the alteration of the levels and mechanisms of regulation of the blood circulatory system and the enhancement of humoral and metabolic segmental sympathetic influences associated with the adaptation to the impact of massage therapy.
Functional importance of blood flow dynamics and partial oxygen pressure in the anterior pituitary.
Schaeffer, Marie; Hodson, David J; Lafont, Chrystel; Mollard, Patrice
2010-12-01
The pulsatile release of hormone is obligatory for the control of a range of important body homeostatic functions. To generate these pulses, endocrine organs have developed finely regulated mechanisms to modulate blood flow both to meet the metabolic demand associated with intense endocrine cell activity and to ensure the temporally precise uptake of secreted hormone into the bloodstream. With a particular focus on the pituitary gland as a model system, we review here the importance of the interplay between blood flow regulation and oxygen tensions in the functioning of endocrine systems, and the known regulatory signals involved in the modification of flow patterns under both normal physiological and pathological conditions. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Complexity of cardiovascular rhythms during head-up tilt test by entropy of patterns.
Wejer, Dorota; Graff, Beata; Makowiec, Danuta; Budrejko, Szymon; Struzik, Zbigniew R
2017-05-01
The head-up tilt (HUT) test, which provokes transient dynamical alterations in the regulation of cardiovascular system, provides insights into complex organization of this system. Based on signals with heart period intervals (RR-intervals) and/or systolic blood pressure (SBP), differences in the cardiovascular regulation between vasovagal patients (VVS) and the healthy people group (CG) are investigated. Short-term relations among signal data represented symbolically by three-beat patterns allow to qualify and quantify the complexity of the cardiovascular regulation by Shannon entropy. Four types of patterns: permutation, ordinal, deterministic and dynamical, are used, and different resolutions of signal values in the the symbolization are applied in order to verify how entropy of patterns depends on a way in which values of signals are preprocessed. At rest, in the physiologically important signal resolution ranges, independently of the type of patterns used in estimates, the complexity of SBP signals in VVS is different from the complexity found in CG. Entropy of VVS is higher than CG what could be interpreted as substantial presence of noisy ingredients in SBP of VVS. After tilting this relation switches. Entropy of CG occurs significantly higher than VVS for SBP signals. In the case of RR-intervals and large resolutions, the complexity after the tilt becomes reduced when compared to the complexity of RR-intervals at rest for both groups. However, in the case of VVS patients this reduction is significantly stronger than in CG. Our observations about opposite switches in entropy between CG and VVS might support a hypothesis that baroreflex in VVS affects stronger the heart rate because of the inefficient regulation (possibly impaired local vascular tone alternations) of the blood pressure.
Involvement of Smad3 pathway in atrial fibrosis induced by elevated hydrostatic pressure.
Wei, Wei; Rao, Fang; Liu, Fangzhou; Xue, Yumei; Deng, Chunyu; Wang, Zhaoyu; Zhu, Jiening; Yang, Hui; Li, Xin; Zhang, Mengzhen; Fu, Yongheng; Zhu, Wensi; Shan, Zhixin; Wu, Shulin
2018-06-01
Hypertension is a main risk factor for atrial fibrillation, but the direct effects of hydrostatic pressure on the atrial fibrosis are still unknown. The present study investigated whether hydrostatic pressure is responsible for atrial fibrosis, and addressed a potential role of the Smad pathway in this pathology. Biochemical assays were used to study regulation and expression of fibrotic factors in spontaneously hypertensive rats (SHRs) and Wistar rats, and in cardiac fibroblasts (CFs) cultured under standard (0 mmHg) and elevated (20, 40 mmHg) hydrostatic pressure. Levels of atrial fibrosis and protein expression of fibrotic factors Col-1A1/-3A1, TGF-β1, and MMP-2 in SHRs' left atrial tissues were higher than those in Wistar rats. Exposure to elevated pressure was associated with the proliferation of CFs. The protein expression of Col-1A1/-3A1, TGF-β1, and MMP-2 in CFs was also up-regulated in a pressure-dependent manner. The proliferation of CFs and increased expressions of fibrotic markers induced by elevated hydrostatic pressure could be reversed by the Smad3 inhibitor naringenin. The activation of Smad3 pathway was also stimulated by elevated hydrostatic pressure. These results demonstrate that CF secretory function and proliferation can be up-regulated by exposure to elevated pressure, and that Smad3 may modulate CF activation induced by high hydrostatic pressure. © 2017 Wiley Periodicals, Inc.
Zhao, Yin-Hua; Lv, Xin; Liu, Yan-Li; Zhao, Ying; Li, Qiang; Chen, Yong-Jin; Zhang, Min
2015-05-01
Our previous studies have shown that hydrostatic pressure can serve as an active regulator for bone marrow mesenchymal stem cells (BMSCs). The current work further investigates the roles of cytoskeletal regulatory proteins Ras homolog gene family member A (RhoA) and Ras-related C3 botulinum toxin substrate 1 (Rac1) in hydrostatic pressure-related effects on BMSCs. Flow cytometry assays showed that the hydrostatic pressure promoted cell cycle initiation in a RhoA- and Rac1-dependent manner. Furthermore, fluorescence assays confirmed that RhoA played a positive and Rac1 displayed a negative role in the hydrostatic pressure-induced F-actin stress fiber assembly. Western blots suggested that RhoA and Rac1 play central roles in the pressure-inhibited ERK phosphorylation, and Rac1 but not RhoA was involved in the pressure-promoted JNK phosphorylation. Finally, real-time polymerase chain reaction (PCR) experiments showed that pressure promoted the expression of osteogenic marker genes in BMSCs at an early stage of osteogenic differentiation through the up-regulation of RhoA activity. Additionally, the PCR results showed that pressure enhanced the expression of chondrogenic marker genes in BMSCs during chondrogenic differentiation via the up-regulation of Rac1 activity. Collectively, our results suggested that RhoA and Rac1 are critical to the pressure-induced proliferation and differentiation, the stress fiber assembly, and MAPK activation in BMSCs. Copyright © 2015. Published by Elsevier B.V.
Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M
Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.
49 CFR 173.301b - Additional general requirements for shipment of UN pressure receptacles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... pressure receptacles. 173.301b Section 173.301b Transportation Other Regulations Relating to Transportation....301b Additional general requirements for shipment of UN pressure receptacles. (a) General. The... gases in UN pressure receptacles. A UN pressure receptacle, including closures, must conform to the...
Blood pressure responses to LBNP in nontrained and trained hypertensive rats
NASA Technical Reports Server (NTRS)
Bedford, T. G.; Tipton, C. M.
1992-01-01
To study the influences of 16 wk of endurance training on the reflex regulation of resting blood pressure, nontrained (NT) and trained (T) female hypertensive rats (SHR) were subjected to conditions of lower body negative pressure (LBNP). Measurements of muscle cytochrome oxidase activity and run time to exhaustion indicated that the animals were endurance trained. The rats (NT = 6, T = 7) were tranquilized with 300-600 micrograms.kg-1 diazepam (IV) before heart rates and blood pressures were measured over a range of 2.5-10.0 mm Hg of negative pressure. When subjected to conditions of LBNP, the reflex tachycardia of the T group was greater than the NT at the lower (-2.5 and -5.0 mm Hg) negative pressures. Although arterial pressure declines were similar in both groups, the T group experienced significantly less of a decline in central venous pressure than the NT animals. When chlorisondamine was used as a ganglionic blocker (2.5 mg.kg-1, IV), the fall in CVP at 10 mm Hg negative pressure was greater for the NT group while the fall in the initial systemic arterial pressure was more for the T group. From these results we concluded that training had altered the interaction between cardiopulmonary and arterial baroreflexes in these hypertensive rats and a nonneural component had been altered such as cardiac function.
1998-01-01
Changes in domestic refining operations are identified and related to the summer Reid vapor pressure (RVP) restrictions and oxygenate blending requirements. This analysis uses published Energy Information Administration survey data and linear regression equations from the Short-Term Integrated Forecasting System (STIFS). The STIFS model is used for producing forecasts appearing in the Short-Term Energy Outlook.
Sandrock, H.E.
1982-05-06
Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.
Directly measured cabin pressure conditions during Boeing 747-400 commercial aircraft flights.
Kelly, Paul T; Seccombe, Leigh M; Rogers, Peter G; Peters, Matthew J
2007-07-01
In the low pressure environment of commercial aircraft, hypoxaemia may be common and accentuated in patients with lung or heart disease. Regulations specify a cabin pressure not lower than 750 hPa but it is not known whether this standard is met. This knowledge is important in determining the hazards of commercial flight for patients and the validity of current flight simulation tests. Using a wrist-watch recording altimeter, cabin pressure was recorded at 60 s intervals on 45 flights in Boeing 747-400 aircraft with three airlines. A log was kept of aircraft altitude using the in-flight display. Change in cabin pressure during flight, relationship between aircraft altitude and cabin pressure and proportion of flight time with cabin pressure approaching the minimum specified by regulation were determined. Flight duration averaged 10 h. Average cabin pressure during flight was 846 hPa. There was a linear fall in cabin pressure as the aircraft cruising altitude increased. At 10,300 m (34,000 ft) cabin pressure was 843 hPa and changed 8 hPa for every 300 m (1000 ft) change in aircraft altitude (r(2) = 0.993; P < 0.001). Lowest cabin pressure was 792 hPa at 12 200 m (40,000 ft) but during only 2% of flight time was cabin pressure less than 800 hPa. Cabin pressure is determined only by the engineering of the aircraft and its altitude and in the present study was always higher than required by regulation. Current fitness-to-fly evaluations simulate cabin conditions that passengers will not experience on these aircraft. There may be increased risks to patients should new or older aircraft operate nearer to the present minimum standard.
Yamazaki, Toshiya; Waki, Hidefumi; Kohsaka, Akira; Nakamura, Takeshi; Cui, He; Yukawa, Kazunori; Maeda, Masanobu
2008-11-03
Systemic administration of urocortin I (Ucn I), a member of the corticotrophin-releasing factor (CRF) peptide family, modulates cardiovascular system. In the central nervous system, Ucn I is found in the nucleus tractus solitarii (NTS), which plays an important role in regulating arterial blood pressure (ABP) and heart rate (HR) in response to activation of the baroreceptor afferents. In this study, we examined the effects of Ucn I, which has a high affinity for both type 1 and type 2 CRF receptors (i.e. CRF-R1 and -R2), on cardiovascular functions at the level of the NTS. A specific agonist of CRF-R1 (i.e. CRF) and a specific agonist of CRF-R2 (i.e. Urocortin II) were also tested to identify the specific cardiovascular effects induced by individual activation of either CRF-R1 or -R2. We found that Ucn I microinjected into the rat NTS produced a significant reduction in both ABP and HR. Both agonists for CRF-R1 and -R2 microinjected into the NTS also reduced ABP and HR. Our results suggest that Ucn I in the NTS may play an important role in cardiovascular regulation and the cardiovascular effects of Ucn I may be mediated by activation of both CRF-R1 and -R2, which are known to be present in the NTS.
Update on Middle Ear Barotrauma after Hyperbaric Oxygen Therapy—Insights on Pathophysiology
Lima, Marco Antônio Rios; Farage, Luciano; Cury, Maria Cristina Lancia; Bahamad, Fayez
2014-01-01
Introduction Middle ear barotrauma is the most common side effect of hyperbaric oxygen therapy. Knowledge and understanding of its pathophysiology are crucial for an accurate diagnosis and proper decision making about treatment and prevention. Objective Describe up-to-date information on pathophysiology of middle ear barotrauma after hyperbaric oxygen therapy considering the physiology of pressure variation of the middle ear. Data Synthesis Middle ear barotrauma occurs especially during the compression phase of hyperbaric oxygen therapy. The hyperoxic environment in hyperbaric oxygen therapy leads to ventilatory dysfunction of the eustachian tube, especially in monoplace chambers, where the patients are pressurized with 100% O2, favoring middle ear barotrauma. Conclusion The eustachian tube, the tympanic cavity, and mastoid work together in a neural controlled feedback system in which various mechanisms concur for middle ear pressure regulation. PMID:25992091
RAS in the central nervous system: Potential role in neuropsychiatric disorders.
Rocha, Natalia Pessoa; Simões e Silva, Ana Cristina; Prestes, Thiago Ruiz Rodrigues; Feracin, Victor; Machado, Caroline Amaral; Ferreira, Rodrigo Novaes; Teixeira, Antonio Lucio; de Miranda, Aline Silva
2018-02-25
The Renin-Angiotensin System (RAS) is a key regulator of cardiovascular and renal homeostasis, but also plays important roles in mediating physiological functions in the central nervous system (CNS). The effects of the RAS were classically described as mediated by angiotensin (Ang) II via angiotensin type 1 (AT1) receptors. However, another arm of the RAS formed by the angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and the Mas receptor has been a matter of investigation due to its important physiological roles, usually counterbalancing the classical effects exerted by Ang II. We aim to provide an overview of effects elicited by the RAS, especially Ang-(1-7), in the brain. We also aim to discuss the therapeutic potential for neuropsychiatric disorders of the modulation of RAS. We carried out an extensive literature search in PubMed central. Within the brain, Ang-(1-7) contributes to the regulation of blood pressure by acting at regions that control cardiovascular functions. In contrast with Ang II, Ang-(1-7) improves baroreflex sensitivity and plays an inhibitory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to blood pressure regulation, but also acts as a neuroprotective component of the RAS, for instance, by reducing cerebral infarct size, inflammation, oxidative stress and neuronal apoptosis. Pre-clinical evidence supports a relevant role for ACE2/Ang-(1-7)/Mas receptor axis in several neuropsychiatric conditions, including stress-related and mood disorders, cerebrovascular ischemic and haemorrhagic lesions and neurodegenerative diseases. However, very few data are available regarding the ACE2/Ang-(1-7)/Mas receptor axis in human CNS. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Seeck, A; Rademacher, W; Fischer, C; Haueisen, J; Surber, R; Voss, A
2013-03-01
Today atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice accounting for approximately one third of hospitalizations and accompanied with a 5 fold increased risk for ischemic stroke and a 1.5 fold increased mortality risk. The role of the cardiac regulation system in AF recurrence after electrical cardioversion (CV) is still unclear. The aim of this study was to investigate the autonomic regulation by analyzing the interaction between heart rate and blood pressure using novel methods of nonlinear interaction dynamics, namely joint symbolic dynamics (JSD) and segmented Poincaré plot analysis (SPPA). For the first time, we applied SPPA to analyze the interaction between two time series. Introducing a parameter set of two indices, one derived from JSD and one from SPPA, the linear discriminant function analysis revealed an overall accuracy of 89% (sensitivity 91.7%, specificity 86.7%) for the classification between patients with stable sinus rhythm (group SR, n = 15) and with AF recurrence (group REZ, n = 12). This study proves that the assessment of the autonomic regulation by analyzing the coupling of heart rate and systolic blood pressure provides a potential tool for the prediction of AF recurrence after CV and could aid in the adjustment of therapeutic options for patients with AF. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha
2014-01-01
Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.
In vitro performance and principles of anti-siphoning devices.
Freimann, Florian Baptist; Kimura, Takaoki; Stockhammer, Florian; Schulz, Matthias; Rohde, Veit; Thomale, Ulrich-Wilhelm
2014-11-01
Anti-siphon devices (ASDs) of various working principles were developed to overcome overdrainage-related complications associated with ventriculoperitoneal shunting. We aimed to provide comparative data on the pressure and flow characteristics of six different types of ASDs (gravity-assisted, membrane-controlled, and flow-regulated) in order to achieve a better understanding of these devices and their potential clinical application. We analyzed three gravity-dependent ASDs (ShuntAssistant [SA], Miethke; Gravity Compensating Accessory [GCA], Integra; SiphonX [SX], Sophysa), two membrane-controlled ASDs (Anti-Siphon Device [IASD], Integra; Delta Chamber [DC], Medtronic), and one flow-regulated ASD (SiphonGuard [SG], Codman). Defined pressure conditions within a simulated shunt system were generated (differential pressure 10-80 cmH2O), and the specific flow and pressure characteristics were measured. In addition, the gravity-dependent ASDs were measured in defined spatial positions (0-90°). The flow characteristics of the three gravity-assisted ASDs were largely dependent upon differential pressure and on their spatial position. All three devices were able to reduce the siphoning effect, but each to a different extent (flow at inflow pressure: 10 cmH2O, siphoning -20 cmH2O at 0°/90°: SA, 7.1 ± 1.2*/2.3 ± 0.5* ml/min; GCA, 10.5 ± 0.8/3.4 ± 0.4* ml/min; SX, 9.5 ± 1.2*/4.7 ± 1.9* ml/min, compared to control, 11.1 ± 0.4 ml/min [*p < 0.05]). The flow characteristics of the remaining ASDs were primarily dependent upon the inflow pressure effect (flow at 10 cmH2O, siphoning 0 cmH2O/ siphoning -20cmH2O: DC, 2.6 ± 0.1/ 4 ± 0.3* ml/min; IASD, 2.5 ± 0.2/ 0.8 ± 0.4* ml/min; SG, 0.8 ± 0.2*/ 0.2 ± 0.1* ml/min [*p < 0.05 vs. control, respectively]). The tested ASDs were able to control the siphoning effect within a simulated shunt system to differing degrees. Future comparative trials are needed to determine the type of device that is superior for clinical application.
Takahashi, Hakuo; Yoshika, Masamichi; Komiyama, Yutaka; Nishimura, Masato
2011-01-01
The central nervous system has a key role in regulating the circulatory system by modulating the sympathetic and parasympathetic nervous systems, pituitary hormone release, and the baroreceptor reflex. Digoxin- and ouabain-like immunoreactive materials were found >20 years ago in the hypothalamic nuclei. These factors appeared to localize to the paraventricular and supraoptic nuclei and the nerve fibers at the circumventricular organs and supposed to affect electrolyte balance and blood pressure. The turnover rate of these materials increases with increasing sodium intake. As intracerebroventricular injection of ouabain increases blood pressure via sympathetic activation, an endogenous digitalis-like factor (EDLF) was thought to regulate cardiovascular system-related functions in the brain, particularly after sodium loading. Experiments conducted mainly in rats revealed that the mechanism of action of ouabain in the brain involves sodium ions, epithelial sodium channels (ENaCs) and the renin–angiotensin–aldosterone system (RAAS), all of which are affected by sodium loading. Rats fed a high-sodium diet develop elevated sodium levels in their cerebrospinal fluid, which activates ENaCs. Activated ENaCs and/or increased intracellular sodium in neurons activate the RAAS; this releases EDLF in the brain, activating the sympathetic nervous system. The RAAS promotes oxidative stress in the brain, further activating the RAAS and augmenting sympathetic outflow. Angiotensin II and aldosterone of peripheral origin act in the brain to activate this cascade, increasing sympathetic outflow and leading to hypertension. Thus, the brain Na+–ENaC–RAAS–EDLF axis activates sympathetic outflow and has a crucial role in essential and secondary hypertension. This report provides an overview of the central mechanism underlying hypertension and discusses the use of antihypertensive agents. PMID:21814209
Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L
2015-07-01
The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.
Drummond, Heather A
2012-01-01
Pressure-induced constriction (also known as the "myogenic response") is an important mechano-dependent response in certain blood vessels. The response is mediated by vascular smooth muscle cells (VSMCs) and characterized by a pressure-induced vasoconstriction in small arteries and arterioles in the cerebral, mesenteric, cardiac, and renal beds. The myogenic response has two important roles; it is a mechanism of blood flow autoregulation and provides protection against systemic blood pressure-induced damage to delicate microvessels. However, the molecular mechanism(s) underlying initiation of myogenic response is unclear. Degenerin proteins have a strong evolutionary link to mechanotransduction in the nematode. Our laboratory has addressed the hypothesis that these proteins may also act as mechanosensors in certain mammalian tissues such as VSMCs and arterial baroreceptor neurons. This article discusses the importance of a specific degenerin protein, β Epithelial Na(+) Channel (βENaC) in pressure-induced vasoconstriction in renal vessels and arterial baroreflex function as determined in a mouse model of reduced βENaC (βENaC m/m). We propose that loss of baroreflex sensitivity (due to loss of baroreceptor βENaC) increases blood pressure variability, increasing the likelihood and magnitude of upward swings in systemic pressure. Furthermore, loss of the myogenic constrictor response (due to loss of VSMC βENaC) will permit those pressure swings to be transmitted to the microvasculature in βENaC m/m mice, thus increasing the susceptibility to renal injury and hypertension.
Verification of the Chesapeake Bay Model.
1981-12-01
points on the model. Each inflow control unit consists of a pressure regulator , a digital flow control valve, and a flowmeter (Fig- ure 8). A mechanical...spring-type pressure regulator ensures constant pressure to the digital flow control valve. Each digital valve contains eight solenoid valve actuators...FT) =0.798 EEOC 1DGS 2.78 EPOCH (DEGS) - 11. 84 3 DATA TAKEN: AC(0) = 0. 11 38 F T A (0)= 0. 1653 FT 28 MAR 1978 RANGE (FT) - 1.638 RANGE (FT
30 CFR 250.1007 - What to include in applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... line pipe and risers; pressure-regulating devices (including back-pressure regulators); sensing devices... § 250.198), if applicable. (ii) If you propose to use one or more pipeline risers for a tension leg... riser, with calculations, and the fatigue point at which you would replace the riser; (B) The results of...
A large ultra-clean gas system with closed loop for the high-rate Outer Tracker at HERA-B
NASA Astrophysics Data System (ADS)
Hohlmann, Marcus
2003-12-01
The gas system for the Outer Tracker of the HERA-B experiment at DESY produces the desired counting gas mixture Ar/CF 4/CO 2 65:30:5 and circulates it through the detector at a flow rate of 20 m3/ h, i.e. ˜1 vol/ h. It controls flows and regulates pressures in all 26 OTR half-superlayers, purifies the gas upon return from the detector, and automatically performs a quantitative analysis of main and trace (O 2, N 2, H 2O) gas components for the common input and the outputs of all half-superlayers. The first running experience and the strategies employed during system construction to avoid any detector aging possibly induced by the gas system are discussed. The large system with major gas purification stations was constructed using only non-outgassing, "clean" materials and devices, such as stainless steel, PEEK, baked Viton, and metal bellows pumps. An epoxy glue was used extensively as a non-outgassing sealing material in applications with up to 100 bar pressure.
Fundamentals of SCADA and automated meter reading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwok, A.
1992-02-01
This paper discusses SCADA systems allow users to control and acquire data from remote facilities such as compressors, pressure-regulating stations, control valves and measurement stations. In general, a SCADA system performs functions in sequential control, continuous control, supervisory setpoint control and data acquisitions. AMR systems allow users to obtain up-to-date information on their gas demand. When AMR was in its infancy, equipment was designed only to read and record gas consumption values. The basic function of an early AMR system was to read gas volume at a fixed interval and record the data in its memory until it communicated withmore » a central receiving facility.« less
The role of nitric oxide in regulation of the cardiovascular system in reptiles.
Skovgaard, Nini; Galli, Gina; Abe, Augusto; Taylor, Edwin W; Wang, Tobias
2005-10-01
The roles that nitric oxide (NO) plays in the cardiovascular system of reptiles are reviewed, with particular emphasis on its effects on central vascular blood flows in the systemic and pulmonary circulations. New data is presented that describes the effects on hemodynamic variables in varanid lizards of exogenously administered NO via the nitric oxide donor sodium nitroprusside (SNP) and inhibition of nitric oxide synthase (NOS) by l-nitroarginine methyl ester (l-NAME). Furthermore, preliminary data on the effects of SNP on hemodynamic variables in the tegu lizard are presented. The findings are compared with previously published data from our laboratory on three other species of reptiles: pythons (), rattlesnakes () and turtles (). These five species of reptiles possess different combinations of division of the heart and structural complexity of the lungs. Comparison of their responses to NO donors and NOS inhibitors may reveal whether the potential contribution of NO to vascular tone correlates with pulmonary complexity and/or with blood pressure. All existing studies on reptiles have clearly established a potential role for NO in regulating vascular tone in the systemic circulation and NO may be important for maintaining basal systemic vascular tone in varanid lizards, pythons and turtles, through a continuous release of NO. In contrast, the pulmonary circulation is less responsive to NO donors or NOS inhibitors, and it was only in pythons and varanid lizards that the lungs responded to SNP. Both species have a functionally separated heart, so it is possible that NO may exert a larger role in species with low pulmonary blood pressures, irrespective of lung complexity.
HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meidt, Sharon E.
2016-02-10
In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itselfmore » inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.« less
Renal intercalated cells and blood pressure regulation
Wall, Susan M.
2017-01-01
Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl− absorption and HCO3− secretion largely through pendrin-dependent Cl−/HCO3− exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO3 administration. In some rodent models, pendrin-mediated HCO3− secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl− absorption, but also by modulating the aldosterone response for epithelial Na+ channel (ENaC)-mediated Na+ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure. PMID:29285423
Baroreflex regulation of blood pressure during dynamic exercise
NASA Technical Reports Server (NTRS)
Raven, P. B.; Potts, J. T.; Shi, X.; Blomqvist, C. G. (Principal Investigator)
1997-01-01
From the work of Potts et al. Papelier et al. and Shi et al. it is readily apparent that the arterial (aortic and carotid) baroreflexes are reset to function at the prevailing ABP of exercise. The blood pressure of exercise is the result of the hemodynamic (cardiac output and TPR) responses, which appear to be regulated by two redundant neural control systems, "Central Command" and the "exercise pressor reflex". Central Command is a feed-forward neural control system that operates in parallel with the neural regulation of the locomotor system and appears to establish the hemodynamic response to exercise. Within the central nervous system it appears that the HLR may be the operational site for Central Command. Specific neural sites within the HLR have been demonstrated in animals to be active during exercise. With the advent of positron emission tomography (PET) and single-photon emission computed tomography (SPECT), the anatomical areas of the human brain related to Central Command are being mapped. It also appears that the Nucleus Tractus Solitarius and the ventrolateral medulla may serve as an integrating site as they receive neural information from the working muscles via the group III/IV muscle afferents as well as from higher brain centers. This anatomical site within the CNS is now the focus of many investigations in which arterial baroreflex function, Central Command and the "exercise pressor reflex" appear to demonstrate inhibitory or facilitatory interaction. The concept of whether Central Command is the prime mover in the resetting of the arterial baroreceptors to function at the exercising ABP or whether the resetting is an integration of the "exercise pressor reflex" information with that of Central Command is now under intense investigation. However, it would be justified to conclude, from the data of Bevegard and Shepherd, Dicarlo and Bishop, Potts et al., and Papelier et al. that the act of exercise results in the resetting of the arterial baroreflex. In addition, if, as we have proposed, the cardiopulmonary baroreceptors primarily monitors and reflexly regulates cardiac filling volume, it would seem from the data of Mack et al. and Potts et al. that the cardiopulmonary baroreceptor is also reset at the beginning of exercise. Therefore, investigations of the neural mechanisms of regulation involving Central Command and cardiopulmonary afferents, similar to those being undertaken for the arterial baroreflex, need to be established.
Dehydrating and Sterilizing Wastes Using Supercritical CO2
NASA Technical Reports Server (NTRS)
Brown, Ian J.
2006-01-01
A relatively low-temperature process for dehydrating and sterilizing biohazardous wastes in an enclosed life-support system exploits (1) the superior mass-transport properties of supercritical fluids in general and (2) the demonstrated sterilizing property of supercritical CO2 in particular. The wastes to be treated are placed in a chamber. Liquid CO2, drawn from storage at a pressure of 850 psi (approx.=5.9 MPa) and temperature of 0 C, is compressed to pressure of 2 kpsi (approx.=14 MPa) and made to flow into the chamber. The compression raises the temperature to 10 C. The chamber and its contents are then further heated to 40 C, putting the CO2 into a supercritical state, in which it kills microorganisms in the chamber. Carrying dissolved water, the CO2 leaves the chamber through a back-pressure regulator, through which it is expanded back to the storage pressure. The expanded CO2 is refrigerated to extract the dissolved water as ice, and is then returned to the storage tank at 0 C
Jortikka, M O; Parkkinen, J J; Inkinen, R I; Kärner, J; Järveläinen, H T; Nelimarkka, L O; Tammi, M I; Lammi, M J
2000-02-15
Chondrocytes of the articular cartilage sense mechanical factors associated with joint loading, such as hydrostatic pressure, and maintain the homeostasis of the extracellular matrix by regulating the metabolism of proteoglycans (PGs) and collagens. Intermittent hydrostatic pressure stimulates, while continuous high hydrostatic pressure inhibits, the biosynthesis of PGs. High continuous hydrostatic pressure also changes the structure of cytoskeleton and Golgi complex in cultured chondrocytes. Using microtubule (MT)-affecting drugs nocodazole and taxol as tools we examined whether MTs are involved in the regulation of PG synthesis in pressurized primary chondrocyte monolayer cultures. Disruption of the microtubular array by nocodazole inhibited [(35)S]sulfate incorporation by 39-48%, while MT stabilization by taxol caused maximally a 17% inhibition. Continuous hydrostatic pressure further decreased the synthesis by 34-42% in nocodazole-treated cultures. This suggests that high pressure exerts its inhibitory effect through mechanisms independent of MTs. On the other hand, nocodazole and taxol both prevented the stimulation of PG synthesis by cyclic 0. 5 Hz, 5 MPa hydrostatic pressure. The drugs did not affect the structural and functional properties of the PGs, and none of the treatments significantly affected cell viability, as indicated by the high level of PG synthesis 24-48 h after the release of drugs and/or high hydrostatic pressure. Our data on two-dimensional chondrocyte cultures indicate that inhibition of PG synthesis by continuous high hydrostatic pressure does not interfere with the MT-dependent vesicle traffic, while the stimulation of synthesis by cyclic pressure does not occur if the dynamic nature of MTs is disturbed by nocodazole. Similar phenomena may operate in cartilage matrix embedded chondrocytes. Copyright 2000 Academic Press.
Evaluation of Pressure Generated by Resistors From Different Positive Expiratory Pressure Devices.
Fagevik Olsén, Monika; Carlsson, Maria; Olsén, Erik; Westerdahl, Elisabeth
2015-10-01
Breathing exercises with positive expiratory pressure (PEP) are used to improve pulmonary function and airway clearance. Different PEP devices are available, but there have been no studies that describe the pressure generated by different resistors. The purpose of this study was to compare pressures generated from the proprietary resistor components of 4 commercial flow-dependent PEP valves with all other parameters kept constant. Resistors from 4 flow-regulated PEP devices (Pep/Rmt system, Wellspect HealthCare; Pipe P breathing exerciser, Koo Medical Equipment; Mini-PEP, Philips Respironics [including resistors by Rüsch]; and 15-mm endo-adapter, VBM Medizintechnik) were tested randomly by a blinded tester at constant flows of 10 and 18 L/min from an external gas system. All resistors were tested 3 times. Resistors with a similar diameter produced statistically significant different pressures at the same flow. The differences were smaller when the flow was 10 L/min compared with 18 L/min. The differences were also smaller when the diameter of the resistor was increased. The pressures produced by the 4 resistors of the same size were all significantly different when measuring 1.5- and 2.0-mm resistors at a flow of 10 L/min and 2.0-mm resistors at a flow of 18 L/min (P < .001). There were no significant differences between any of the resistors when testing sizes of 4.5 and 5.0 mm at either flow. The Mini-PEP and adapter resistors gave the highest pressures. Pressures generated by the different proprietary resistor components of 4 commercial PEP devices were not comparable, even though the diameter of the resistors is reported to be the same. The pressures generated were significantly different, particularly when using small-diameter resistors at a high flow. Therefore, the resistors may not be interchangeable. This is important information for clinicians, particularly when considering PEP for patients who do not tolerate higher pressures. Copyright © 2015 by Daedalus Enterprises.
Patrick, John W.
2013-01-01
The pressure flow model of phloem transport envisaged by Münch (1930) has gained wide acceptance. Recently, however, the model has been questioned on structural and physiological grounds. For instance, sub-structures of sieve elements may reduce their hydraulic conductances to levels that impede flow rates of phloem sap and observed magnitudes of pressure gradients to drive flow along sieve tubes could be inadequate in tall trees. A variant of the Münch pressure flow model, the high-pressure manifold model of phloem transport introduced by Donald Fisher may serve to reconcile at least some of these questions. To this end, key predicted features of the high-pressure manifold model of phloem transport are evaluated against current knowledge of the physiology of phloem transport. These features include: (1) An absence of significant gradients in axial hydrostatic pressure in sieve elements from collection to release phloem accompanied by transport properties of sieve elements that underpin this outcome; (2) Symplasmic pathways of phloem unloading into sink organs impose a major constraint over bulk flow rates of resources translocated through the source-path-sink system; (3) Hydraulic conductances of plasmodesmata, linking sieve elements with surrounding phloem parenchyma cells, are sufficient to support and also regulate bulk flow rates exiting from sieve elements of release phloem. The review identifies strong circumstantial evidence that resource transport through the source-path-sink system is consistent with the high-pressure manifold model of phloem transport. The analysis then moves to exploring mechanisms that may link demand for resources, by cells of meristematic and expansion/storage sinks, with plasmodesmal conductances of release phloem. The review concludes with a brief discussion of how these mechanisms may offer novel opportunities to enhance crop biomass yields. PMID:23802003
Precharged Pneumatic Soft Actuators and Their Applications to Untethered Soft Robots.
Li, Yunquan; Chen, Yonghua; Ren, Tao; Li, Yingtian; Choi, Shiu Hong
2018-06-20
The past decade has witnessed tremendous progress in soft robotics. Unlike most pneumatic-based methods, we present a new approach to soft robot design based on precharged pneumatics (PCP). We propose a PCP soft bending actuator, which is actuated by precharged air pressure and retracted by inextensible tendons. By pulling or releasing the tendons, the air pressure in the soft actuator is modulated, and hence, its bending angle. The tendons serve in a way similar to pressure-regulating valves that are used in typical pneumatic systems. The linear motion of tendons is transduced into complex motion via the prepressurized bent soft actuator. Furthermore, since a PCP actuator does not need any gas supply, complicated pneumatic control systems used in traditional soft robotics are eliminated. This facilitates the development of compact untethered autonomous soft robots for various applications. Both theoretical modeling and experimental validation have been conducted on a sample PCP soft actuator design. A fully untethered autonomous quadrupedal soft robot and a soft gripper have been developed to demonstrate the superiority of the proposed approach over traditional pneumatic-driven soft robots.
Diversity and dialogue in immunity to helminths.
Allen, Judith E; Maizels, Rick M
2011-06-01
The vertebrate immune system has evolved in concert with a broad range of infectious agents, including ubiquitous helminth (worm) parasites. The constant pressure of helminth infections has been a powerful force in shaping not only how immunity is initiated and maintained, but also how the body self-regulates and controls untoward immune responses to minimize overall harm. In this Review, we discuss recent advances in defining the immune cell types and molecules that are mobilized in response to helminth infection. Finally, we more broadly consider how these immunological players are blended and regulated in order to accommodate persistent infection or to mount a vigorous protective response and achieve sterile immunity.
Fantidis, P; Fernández Ruiz, M A; Madero Jarabo, R; Moreno Granados, F; Cordovilla Zurdo, G; Sanz Galeote, E
1990-11-01
In order to find out the validity of the vascular waterfall mechanism in coronary venous circulation, the role of coronary sinus pressure in the regulation of coronary return volume via the coronary sinus is studied in healthy animals. An experimental model of pressure regulation in the coronary sinus was prepared, and aortic pressure, EKG and the cardiac output (measured by thermodilution) were recorded. The return volume via the coronary sinus was measured at coronary sinus pressure of 10 or less, 15, 20, and 25 mmHg or more, for a total of 36 determinations. Increased coronary sinus pressure did not produce significant changes in aortic pressure, heart rate, cardiac index or coronary return volume via coronary sinus. When coronary sinus pressure was 25 mmHg or more, there was a significant decline in the average of coronary return volume via coronary sinus. Nevertheless, stepwise variant regression showed that the coronary sinus pressure per se does not condition the volume of coronary return via the coronary sinus. Our results suggest that in the healthy animals, the vascular waterfall mechanism in coronary venous circulation is not valid. Our results suggest that in the correction of congenital cardiac malformations using atriopulmonary anastomosis procedures, employing techniques that ensure coronary sinus drainage into the left atrium, in order to avoid the hemodynamic repercussions attributable to the vascular waterfall mechanism, is not justified.
Computer simulation analysis of the behavior of renal-regulating hormones during hypogravic stress
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1982-01-01
A computer simulation of a mathematical circulation model is used to study the alterations of body fluids and their electrolyte composition that occur in weightlessness. The behavior of the renal-regulating hormones which control these alterations is compared in simulations of several one-g analogs of weightlessness and space flight. It is shown that the renal-regulating hormones represent a tightly coupled system that responds acutely to volume disturbances and chronically to electrolyte disturbances. During hypogravic conditions these responses lead to an initial suppression of hormone levels and a long-term effect which varies depending on metabolic factors that can alter the plasma electrolytes. In addition, it is found that if pressure effects normalize rapidly, a transition phase may exist which leads to a dynamic multiphasic endocrine response.
Debaty, Guillaume; Metzger, Anja; Rees, Jennifer; McKnite, Scott; Puertas, Laura; Yannopoulos, Demetris; Lurie, Keith
2016-01-01
Objective To improve the likelihood for survival with favorable neurologic function after cardiac arrest, we assessed a new advanced life support approach using active compression-decompression cardiopulmonary resuscitation plus an intrathoracic pressure regulator. Design Prospective animal investigation. Setting Animal laboratory. Subjects Female farm pigs (n = 25) (39 ± 3 kg). Interventions Protocol A: After 12 minutes of untreated ventricular fibrillation, 18 pigs were randomized to group A—3 minutes of basic life support with standard cardiopulmonary resuscitation, defibrillation, and if needed 2 minutes of advanced life support with standard cardiopulmonary resuscitation; group B—3 minutes of basic life support with standard cardiopulmonary resuscitation, defibrillation, and if needed 2 minutes of advanced life support with active compression-decompression plus intrathoracic pressure regulator; and group C—3 minutes of basic life support with active compression-decompression cardiopulmonary resuscitation plus an impedance threshold device, defibrillation, and if needed 2 minutes of advanced life support with active compression-decompression plus intrathoracic pressure regulator. Advanced life support always included IV epinephrine (0.05 μg/kg). The primary endpoint was the 24-hour Cerebral Performance Category score. Protocol B: Myocardial and cerebral blood flow were measured in seven pigs before ventricular fibrillation and then following 6 minutes of untreated ventricular fibrillation during sequential 5 minutes treatments with active compression-decompression plus impedance threshold device, active compression-decompression plus intrathoracic pressure regulator, and active compression-decompression plus intrathoracic pressure regulator plus epinephrine. Measurements and Main Results Protocol A: One of six pigs survived for 24 hours in group A versus six of six in groups B and C (p = 0.002) and Cerebral Performance Category scores were 4.7 ± 0.8, 1.7 ± 0.8, and 1.0 ± 0, respectively (p = 0.001). Protocol B: Brain blood flow was significantly higher with active compression-decompression plus intrathoracic pressure regulator compared with active compression-decompression plus impedance threshold device (0.39 ± 0.23 vs 0.27 ± 0.14 mL/min/g; p = 0.03), whereas differences in myocardial perfusion were not statistically significant (0.65 ± 0.81 vs 0.42 ± 0.36 mL/min/g; p = 0.23). Brain and myocardial blood flow with active compression-decompression plus intrathoracic pressure regulator plus epinephrine were significantly increased versus active compression-decompression plus impedance threshold device (0.40 ± 0.22 and 0.84 ± 0.60 mL/min/g; p = 0.02 for both). Conclusion Advanced life support with active compression-decompression plus intrathoracic pressure regulator significantly improved cerebral perfusion and 24-hour survival with favorable neurologic function. These findings support further evaluation of this new advanced life support methodology in humans. PMID:25756411
Portable fixture facilitates pressure testing of instrumentation fittings
NASA Technical Reports Server (NTRS)
Olson, G. A.
1967-01-01
Portable fixture facilitates pressure testing to detect possible leaks in instrumentation fittings mounted on tank bulkheads. It uses a vacuum cup which seals a pressure regulator adapter around one side of the fitting to be pressure tested. Leakage is detected with a gas sniffer.
Regulation of pressure anisotropy in the solar wind: processes within inertial range of turbulence
NASA Astrophysics Data System (ADS)
Strumik, M.; Schekochihin, A. A.; Squire, J.; Bale, S. D.
2016-12-01
Dynamics of weakly collisional plasmas may lead to thermal pressure anisotropies that are driven by velocity shear, plasma expansion/compression or temperature gradients. The pressure anisotropies can provide free energy for the growth of micro-scale instabilities, like the mirror of firehose instabilities, that are commonly believed to constrain the pressure anisotropy in the solar wind if appropriate thresholds are exceeded. We discuss possible alternative mechanisms of regulation of the pressure anisotropy in the inertial range of solar wind turbulence that provide β-dependent constraints on the amplitude of fluctuations of pressure components and other quantities. In particular it is shown that double-adiabatic (CGL) closure for magnetohydrodynamic regime leads to 1/β scaling of the amplitude of the pressure component fluctuations and the pressure anisotropy. Both freely decaying and forced turbulence are discussed based on results of 3D numerical simulations and analytical theoretical predictions. The theoretical results are contrasted with WIND spacecraft measurements.
Self-Efficacy and Blood Pressure Self-Care Behaviors in Patients on Chronic Hemodialysis.
Kauric-Klein, Zorica; Peters, Rosalind M; Yarandi, Hossein N
2017-07-01
This study examined the effects of an educative, self-regulation intervention on blood pressure self-efficacy, self-care outcomes, and blood pressure control in adults receiving hemodialysis. Simple randomization was done at the hemodialysis unit level. One hundred eighteen participants were randomized to usual care ( n = 59) or intervention group ( n = 59). The intervention group received blood pressure education sessions and 12 weeks of individual counseling on self-regulation of blood pressure, fluid, and salt intake. There was no significant increase in self-efficacy scores within ( F = .55, p = .46) or between groups at 12 weeks ( F = 2.76, p = .10). Although the intervention was not successful, results from the total sample ( N = 118) revealed that self-efficacy was significantly related to a number of self-care outcomes including decreased salt intake, lower interdialytic weight gain, increased adherence to blood pressure medications, and fewer missed hemodialysis appointments. Increased blood pressure self-efficacy was also associated with lower diastolic blood pressure.
NASA Technical Reports Server (NTRS)
Stein, William B.; Holt, K.; Holton, M.; Williams, J. H.; Butt, A.; Dervan, M.; Sharp, D.
2010-01-01
The Ares I launch vehicle is an integral part of NASA s Constellation Program, providing a foundation for a new era of space access. The Ares I is designed to lift the Orion Crew Module and will enable humans to return to the Moon as well as explore Mars.1 The Ares I is comprised of two inline stages: a Space Shuttle-derived five-segment Solid Rocket Booster (SRB) First Stage (FS) and an Upper Stage (US) powered by a Saturn V-derived J-2X engine. A dedicated Roll Control System (RoCS) located on the connecting interstage provides roll control prior to FS separation. Induced yaw and pitch moments are handled by the SRB nozzle vectoring. The FS SRB operates for approximately two minutes after which the US separates from the vehicle and the US Reaction Control System (ReCS) continues to provide reaction control for the remainder of the mission. A representation of the Ares I launch vehicle in the stacked configuration and including the Orion Crew Exploration Vehicle (CEV) is shown in Figure 1. Each Reaction Control System (RCS) design incorporates a Gaseous Helium (GHe) pressurization system combined with a monopropellant Hydrazine (N2H4) propulsion system. Both systems have two diametrically opposed thruster modules. This architecture provides one failure tolerance for function and prevention of catastrophic hazards such as inadvertent thruster firing, bulk propellant leakage, and over-pressurization. The pressurization system on the RoCS includes two ambient pressure-referenced regulators on parallel strings in order to attain the required system level single Fault Tolerant (FT) design for function while the ReCS utilizes a blow-down approach. A single burst disk and relief valve assembly is also included on the RoCS to ensure single failure tolerance for must-not-occur catastrophic hazards. The Reaction Control Systems are designed to support simultaneously firing multiple thrusters as required
Verouti, Sophia N; Boscardin, Emilie; Hummler, Edith; Frateschi, Simona
2015-04-01
The activity of the thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) and of the amiloride-sensitive epithelial Na(+) channel (ENaC) is pivotal for blood pressure regulation. NCC is responsible for Na(+) reabsorption in the distal convoluted tubule (DCT) of the nephron, while ENaC reabsorbs the filtered Na(+) in the late DCT and in the cortical collecting ducts (CCD) providing the final renal adjustment to Na(+) balance. Here, we aim to highlight the recent advances made using transgenic mouse models towards the understanding of the regulation of NCC and ENaC function relevant to the control of sodium balance and blood pressure. We thus like to pave the way for common mechanisms regulating these two sodium-transporting proteins and their potential implication in structural remodeling of the nephron segments and Na(+) and Cl(-) reabsorption. Copyright © 2015 Elsevier Ltd. All rights reserved.
Harrigan, T P
1996-01-01
A simple compartmental model for myogenic regulation of interstitial pressure in bone is developed, and the interaction between changes in interstitial pressure and changes in arterial and venous resistance is studied. The arterial resistance is modeled by a myogenic model that depends on transmural pressure, and the venous resistance is modeled by using a vascular waterfall. Two series capacitances model blood storage in the vascular system and interstitial fluid storage in the extravascular space. The static results mimic the observed effect that vasodilators work less well in bone than do vasoconstrictors. The static results also show that the model gives constant flow rates over a limited range of arterial pressure. The dynamic model shows unstable behavior at small values of bony capacitance and at high enough myogenic gain. At low myogenic gain, only a single equilibrium state is present, but a high enough myogenic gain, two new equilibrium states appear. At additional increases in gain, one of the two new states merges with and then separates from the original state, and the original state becomes a saddle point. The appearance of the new states and the transition of the original state to a saddle point do not depend on the bony capacitance, and these results are relevant to general fluid compartments. Numerical integration of the rate equations confirms the stability calculations and shows limit cycling behavior in several situations. The relevance of this model to circulation in bone and to other compartments is discussed.
Expression of the Kdp ATPase Is Consistent with Regulation by Turgor Pressure
Malli, Ravi; Epstein, Wolfgang
1998-01-01
The kdpFABC operon of Escherichia coli encodes the four protein subunits of the Kdp K+ transport system. Kdp is expressed when growth is limited by the availability of K+. Expression of Kdp is dependent on the products of the adjacent kdpDE operon, which encodes a pair of two-component regulators. Studies with kdp-lac fusions led to the suggestion that change in turgor pressure acts as the signal to express Kdp (L. A. Laimins, D. B. Rhoads, and W. Epstein, Proc. Natl. Acad. Sci. USA 78:464–468, 1981). More recently, effects of compatible solutes, among others, have been interpreted as inconsistent with the turgor model (H. Asha and J. Gowrishankar, J. Bacteriol. 175:4528–4537, 1993). We re-examined the effects of compatible solutes and of medium pH on expression of Kdp in studies in which growth rate was also measured. In all cases, Kdp expression correlated with the K+ concentration when growth began to slow. Making the reasonable but currently untestable assumptions that the reduction in growth rate by K+ limitation is due to a reduction in turgor and that addition of betaine does not increase turgor, we concluded that all of the data on Kdp expression are consistent with control by turgor pressure. PMID:9748442
Ethylene: Response of Fruit Dehiscence to CO2 and Reduced Pressure 1
Lipe, John A.; Morgan, Page W.
1972-01-01
These studies were conducted to determine whether ethylene serves as a natural regulator of fruit wall dehiscence, a major visible feature of ripening in some fruits. We employed treatments to inhibit ethylene action or remove ethylene and observed their effect on fruit dehiscence. CO2 (13%), a competitive inhibitor of ethylene action in many systems, readily delayed dehiscence of detached fruits of cotton (Gossypium hirsutum L.), pecan (Carya illinoensis [Wang.] K. Koch), and okra (Hibiscus esculentus L.). The CO2 effect was duplicated by placing fruits under reduced pressure (200 millimeters mercury), to promote the escape of ethylene from the tissue. Dehiscence of detached fruits of these species as well as attached cotton fruits was delayed. The delay of dehiscence of cotton and okra by both treatments was achieved with fruit harvested at intervals from shortly after anthesis until shortly before natural dehiscence. Pecan fruits would not dehisce until approximately 1 month before natural dehiscence, and during that time, CO2 and reduced pressure delayed dehiscence. CO2 and ethylene were competitive in their effects on cotton fruit dehiscence. All of the results are compatible with a hypothetical role of ethylene as a natural regulator of dehiscence, a dominant aspect of ripening of cotton, pecan, and some other fruits. PMID:16658260
Ethylene: Response of Fruit Dehiscence to CO(2) and Reduced Pressure.
Lipe, J A; Morgan, P W
1972-12-01
These studies were conducted to determine whether ethylene serves as a natural regulator of fruit wall dehiscence, a major visible feature of ripening in some fruits. We employed treatments to inhibit ethylene action or remove ethylene and observed their effect on fruit dehiscence. CO(2) (13%), a competitive inhibitor of ethylene action in many systems, readily delayed dehiscence of detached fruits of cotton (Gossypium hirsutum L.), pecan (Carya illinoensis [Wang.] K. Koch), and okra (Hibiscus esculentus L.). The CO(2) effect was duplicated by placing fruits under reduced pressure (200 millimeters mercury), to promote the escape of ethylene from the tissue. Dehiscence of detached fruits of these species as well as attached cotton fruits was delayed. The delay of dehiscence of cotton and okra by both treatments was achieved with fruit harvested at intervals from shortly after anthesis until shortly before natural dehiscence. Pecan fruits would not dehisce until approximately 1 month before natural dehiscence, and during that time, CO(2) and reduced pressure delayed dehiscence. CO(2) and ethylene were competitive in their effects on cotton fruit dehiscence. All of the results are compatible with a hypothetical role of ethylene as a natural regulator of dehiscence, a dominant aspect of ripening of cotton, pecan, and some other fruits.
Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure
Xu, Jianchao; Li, Guoyong; Wang, Peili; Velazquez, Heino; Yao, Xiaoqiang; Li, Yanyan; Wu, Yanling; Peixoto, Aldo; Crowley, Susan; Desir, Gary V.
2005-01-01
The kidney not only regulates fluid and electrolyte balance but also functions as an endocrine organ. For instance, it is the major source of circulating erythropoietin and renin. Despite currently available therapies, there is a marked increase in cardiovascular morbidity and mortality among patients suffering from end-stage renal disease. We hypothesized that the current understanding of the endocrine function of the kidney was incomplete and that the organ might secrete additional proteins with important biological roles. Here we report the identification of a novel flavin adenine dinucleotide–dependent amine oxidase (renalase) that is secreted into the blood by the kidney and metabolizes catecholamines in vitro (renalase metabolizes dopamine most efficiently, followed by epinephrine, and then norepinephrine). In humans, renalase gene expression is highest in the kidney but is also detectable in the heart, skeletal muscle, and the small intestine. The plasma concentration of renalase is markedly reduced in patients with end-stage renal disease, as compared with healthy subjects. Renalase infusion in rats caused a decrease in cardiac contractility, heart rate, and blood pressure and prevented a compensatory increase in peripheral vascular tone. These results identify renalase as what we believe to be a novel amine oxidase that is secreted by the kidney, circulates in blood, and modulates cardiac function and systemic blood pressure. PMID:15841207
A common humoral background of intraocular and arterial blood pressure dysregulation.
Skrzypecki, Janusz; Grabska-Liberek, Iwona; Przybek, Joanna; Ufnal, Marcin
2018-03-01
It has been postulated that intraocular pressure, an important glaucoma risk factor, correlates positively with arterial blood pressure (blood pressure). However, results of experimental and clinical studies are often contradictory. It is hypothesized that, in some hypertensive patients, disturbances in intraocular pressure regulation may depend on biological effects of blood borne hormones underlying a particular type of hypertension, rather than on blood pressure level itself. This review compares the effects of hormones on blood pressure and intraocular pressure, in order to identify a hormonal profile of hypertensive patients with an increased risk of intraocular pressure surge. The PUBMED database was searched to identify pre-clinical and clinical studies investigating the role of angiotensin II, vasopressin, adrenaline, noradrenaline, prostaglandins, and gaseous transmitters in the regulation of blood pressure and intraocular pressure. Studies included in the review suggest that intraocular and blood pressures often follow a different pattern of response to the same hormone. For example, vasopressin increases blood pressure, but decreases intraocular pressure. In contrast, high level of nitric oxide decreases blood pressure, but increases intraocular pressure. Arterial hypertension is associated with altered levels of blood borne hormones. Contradicting results of studies on the relationship between arterial hypertension and intraocular pressure might be partially explained by diverse effects of hormones on arterial and intraocular pressures. Further studies are needed to evaluate if hormonal profiling may help to identify glaucoma-prone patients.
Angiotensins in Alzheimer's disease - friend or foe?
Kehoe, Patrick G; Miners, Scott; Love, Seth
2009-12-01
The renin-angiotensin system (RAS) is an important regulator of blood pressure. Observational and experimental studies suggest that alterations in blood pressure and components of the brain RAS contribute to the development and progression of Alzheimer's disease (AD), resulting in changes that can lead or contribute to cognitive decline. The complexity of the RAS and diversity of its interactions with neurological processes have recently become apparent but large gaps in our understanding still remain. Modulation of activity of components of the brain RAS offers substantial opportunities for the treatment and prevention of dementia, including AD. This paper reviews molecular, genetic, experimental and clinical data as well as the therapeutic opportunities that relate to the involvement of the RAS in AD.
40 CFR Table W - 7 of Subpart W-Default Methane Emission Factors for Natural Gas Distribution
Code of Federal Regulations, 2012 CFR
2012-07-01
... Valve 0.557 Control Valve 9.34 Pressure Relief Valve 0.27 Orifice Meter 0.212 Regulator 0.772 Open-ended Line 26.131 Population Emission Factors—Below Grade Metering-Regulating station 1 Components, Gas... 100 to 300 psig 0.20 Below Grade M&R Station, Inlet Pressure Population Emission...
Kurz, Jenny; Borello-France, Diane
2017-04-01
Women with postpartum pelvic organ prolapse (POP) and urinary incontinence are often treated by physical therapists specializing in women's health. Movement system impairments often coexist in this patient population. The purpose of this case report is to describe the physical therapist treatment of a woman with postpartum POP complicated by additional pelvic symptoms. A 31-year-old woman presented with postpartum POP, diastasis recti, urinary incontinence, and constipation. Movement system impairments were consistent with a physical therapist diagnosis of femoral adduction-medial rotation syndrome exacerbated by levator ani muscle weakness and incoordination and impaired intra-abdominal pressure regulation. Interventions, based on a movement system guided approach, included postural correction; pelvic-floor, abdominal, and hip muscle strengthening; functional training to correct identified movement faults; and patient education. Movement system impairment outcomes included: correction of femoral adduction-medial rotation and knee hyperextension during standing at rest, ambulation, and exercise; increased hip muscle strength; and effective regulation of intra-abdominal pressure (resolution of breath holding with the Valsalva maneuver) during all transitional movements and therapeutic exercise. The patient also demonstrated reductions in POP, urinary, and colorectal symptom severity that exceeded the minimal clinically important difference. Additionally, she demonstrated a reduction in diastasis rectus distance. A movement system impairment-guided approach led the physical therapist to consider impairments outside the pelvic floor that could have contributed to the patient's pelvic symptoms. Using this approach, the patient achieved resolution of musculoskeletal and movement impairments and reductions in POP, urinary and colorectal symptoms, and symptom-related distress. © 2016 American Physical Therapy Association
The Kallikrein-Kinin System as a Regulator of Cardiovascular and Renal Function
Rhaleb, Nour-Eddine; Yang, Xiao-Ping; Carretero, Oscar A.
2015-01-01
Autocrine, paracrine, endocrine, and neuroendocrine hormonal systems help regulate cardiovascular and renal function. Any change in the balance among these systems may result in hypertension and target organ damage, whether the cause is genetic, environmental or a combination of the two. Endocrine and neuroendocrine vasopressor hormones such as the renin-angiotensin system (RAS), aldosterone, and catecholamines are important for regulation of blood pressure and pathogenesis of hypertension and target organ damage. While the role of vasodepressor autacoids such as kinins is not as well defined, there is increasing evidence that they are not only critical to blood pressure and renal function but may also oppose remodeling of the cardiovascular system. Here we will primarily be concerned with kinins, which are oligopeptides containing the aminoacid sequence of bradykinin. They are generated from precursors known as kininogens by enzymes such as tissue (glandular) and plasma kallikrein. Some of the effects of kinins are mediated via autacoids such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and/or tissue plasminogen activator (†PA). Kinins help protect against cardiac ischemia and play an important part in preconditioning as well as the cardiovascular and renal protective effects of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARB). But the role of kinins in the pathogenesis of hypertension remains controversial. A study of Utah families revealed that a dominant kallikrein gene expressed as high urinary kallikrein excretion was associated with a decreased risk of essential hypertension. Moreover, researchers have identified a restriction fragment length polymorphism (RFLP) that distinguishes the kallikrein gene family found in one strain of spontaneously hypertensive rats (SHR) from a homologous gene in normotensive Brown Norway rats, and in recombinant inbred substrains derived from these SHR and Brown Norway rats this RFLP cosegregated with an increase in blood pressure. However, humans, rats and mice with a deficiency in one or more components of the kallikrein-kinin-system (KKS) or chronic KKS blockade do not have hypertension. In the kidney, kinins are essential for proper regulation of papillary blood flow and water and sodium excretion. B2-KO mice appear to be more sensitive to the hypertensinogenic effect of salt. Kinins are involved in the acute antihypertensive effects of ACE inhibitors but not their chronic effects (save for mineralocorticoidsalt-induced hypertension). Kinins appear to play a role in the pathogenesis of inflammatory diseases such as arthritis and skin inflammation; they act on innate immunity as mediators of inflammation by promoting maturation of dendritic cells, which activate the body’s adaptive immune system and thereby stimulate mechanisms that promote inflammation. On the other hand, kinins acting via NO contribute to the vascular protective effect of ACE inhibitors during neointima formation. In myocardial infarction produced by ischemia/reperfusion, kinins help reduce infarct size following preconditioning or treatment with ACE inhibitors. In heart failure secondary to infarction, the therapeutic effects of ACE inhibitors are partially mediated by kinins via release of NO, while drugs that activate the angiotensin type 2 receptor act in part via kinins and NO. Thus kinins play an important role in regulation of cardiovascular and renal function as well as many of the beneficial effects of ACE inhibitors and ARBs on target organ damage in hypertension. PMID:23737209
Marvar, Paul J.; Hendy, Emma B.; Cruise, Thomas D.; Walas, Dawid; DeCicco, Danielle; Vadigepalli, Rajanikanth; Schwaber, James S.; Waki, Hidefumi; Murphy, David
2016-01-01
Key points Evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models.Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4), a potent chemoattractant involved in the inflammatory response, but its mode of action is poorly understood.In the SHR, we observed an increase in T cells and macrophages in the brainstem; in addition, gene expression profiling data showed that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension.When LTB4 receptor 1 (BLT1) receptors were blocked with CP‐105,696, arterial pressure was reduced in the SHR compared to the normotensive control and this reduction was associated with a significant decrease in systolic blood pressure (BP) indicators.These data provide new evidence for the role of LTB4 as an important neuro‐immune pathway in the development of hypertension and therefore may serve as a novel therapeutic target for the treatment of neurogenic hypertension. Abstract Accumulating evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4), a potent chemoattractant involved in the inflammatory response. However, the mechanism for LTB4‐mediated inflammation in hypertension is poorly understood. Here we report in the SHR, increased brainstem infiltration of T cells and macrophages plus gene expression profiling data showing that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension. Chronic blockade of the LTB4 receptor 1 (BLT1) receptor with CP‐105,696, reduced arterial pressure in the SHR compared to the normotensive control and this reduction was associated with a significant decrease in low and high frequency spectra of systolic blood pressure, and an increase in spontaneous baroreceptor reflex gain (sBRG). These data provide new evidence for the role of LTB4 as an important neuro‐immune pathway in the development of hypertension and therefore may serve as a novel therapeutic target for the treatment of neurogenic hypertension. PMID:27230966
USSR and Eastern Europe Scientific Abstracts, Engineering and Equipment, Number 32
1977-05-25
serial publication contains abstracts of articles and news items from USSR and Eastern Europe scientific and technical journals on the specific...loads ( internal pressure plus pure bending). A study is made of a broad range of problems involved in the design of torroidal, spherical and...and protec- tion system are regulated by the International Electrical Engineering Com- mission. Figure 1; tables 2; references 12. 18 Construction
1988-10-01
autoregulation, render the cerebral circulation dependent upon systemic circulation exposing brain to ischernic damage or edema in shock or stress...Thus, sharp reductions of arterial pressure, as might occur in hemorrhagic or traumatic shock, will render the cerebral circulation vulnerable to...autoregulated range, rendering local areas of the brain vulnerable to cerebral edema and breakdown of the blood brain barrier. -2- 8. Cerebral blood
Application and effectiveness of prophylactic devices in model experiments
NASA Technical Reports Server (NTRS)
Kakurin, L. I.
1977-01-01
Material is presented for evaluating the effectiveness of prophylactic devices intended for maintaining: a relatively high functional level of the cardiovascular system; the nerve and muscle apparatus; and the water and salt status. The effects of the following are analyzed: physical training, lower body negative pressure, regulation of water and salt consumption, pharmacological preparations, and a combination of these. The author points out the need for further research.
Mutant HABP2 Causes Non-Medullary Thyroid Cancer | Center for Cancer Research
The thyroid is a butterfly-shaped gland that lies at the base of the throat in front of the windpipe. A member of the endocrine system, the thyroid secretes hormones to regulate heart rate, blood pressure, temperature, and metabolism. Cancer of the thyroid is the most common endocrine cancer and the eighth most common cancer in the U.S. An estimated 63,450 Americans will be
Fluid valve with wide temperature range
NASA Technical Reports Server (NTRS)
Kast, Howard Berdolt (Inventor)
1976-01-01
A fluid valve suitable for either metering or pressure regulating fluids at various temperatures is provided for a fuel system as may be utilized in an aircraft gas turbine engine. The valve includes a ceramic or carbon pad which cooperates with a window in a valve plate to provide a variable area orifice which remains operational during large and sometimes rapid variations in temperature incurred from the use of different fuels.
Virchow-Robin space and aquaporin-4: new insights on an old friend.
Nakada, Tsutomu
2014-08-28
Recent studies have strongly indicated that the classic circulation model of cerebrospinal fluid (CSF) is no longer valid. The production of CSF is not only dependent on the choroid plexus but also on water flux in the peri-capillary (Virchow Robin) space. Historically, CSF flow through the Virchow Robin space is known as interstitial flow, the physiological significance of which is now fully understood. This article briefly reviews the modern concept of CSF physiology and the Virchow-Robin space, in particular its functionalities critical for central nervous system neural activities. Water influx into the Virchow Robin space and, hence, interstitial flow is regulated by aquaporin-4 (AQP-4) localized in the endfeet of astrocytes, connecting the intracellular cytosolic fluid space of astrocytes and the Virchow Robin space. Interstitial flow has a functionality equivalent to systemic lymphatics, on which clearance of β-amyloid is strongly dependent. Autoregulation of brain blood flow serves to maintain a constant inner capillary fluid pressure, allowing fluid pressure of the Virchow Robin space to regulate regional cerebral blood flow (rCBF) based on AQP-4 gating. Excess heat produced by neural activities is effectively removed from the area of activation by increased rCBF by closing AQP-4 channels. This neural flow coupling (NFC) is likely mediated by heat generated proton channels.
The vestibulosympathetic reflex in humans: neural interactions between cardiovascular reflexes
NASA Technical Reports Server (NTRS)
Ray, Chester A.; Monahan, Kevin D.
2002-01-01
1. Over the past 5 years, there has been emerging evidence that the vestibular system regulates sympathetic nerve activity in humans. We have studied this issue in humans by using head-down rotation (HDR) in the prone position. 2. These studies have clearly demonstrated increases in muscle sympathetic nerve activity (MSNA) and calf vascular resistance during HDR. These responses are mediated by engagement of the otolith organs and not the semicircular canals. 3. However, differential activation of sympathetic nerve activity has been observed during HDR. Unlike MSNA, skin sympathetic nerve activity does not increase with HDR. 4. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes (i.e. barorereflexes and skeletal muscle reflexes) has shown an additive interaction for MSNA. 5. The additive interaction between the baroreflexes and vestibulosympathetic reflex suggests that the vestibular system may assist in defending against orthostatic challenges in humans by elevating MSNA beyond that of the baroreflexes. 6. In addition, the further increase in MSNA via otolith stimulation during isometric handgrip, when arterial pressure is elevated markedly, indicates that the vestibulosympathetic reflex is a powerful activator of MSNA and may contribute to blood pressure and flow regulation during dynamic exercise. 7. Future studies will help evaluate the importance of the vestibulosympathetic reflex in clinical conditions associated with orthostatic hypotension.
Radoš, Milan; Erceg, Gorislav; Petošić, Antonio; Jurjević, Ivana
2014-01-01
Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension. PMID:24748150
Charoenwong, Duangkamol; Andrews, Simon; Mackey, Bernard
2011-01-01
This work investigated the role of rpoS in the development of increased cell envelope resilience and enhanced pressure resistance in stationary-phase cells of Escherichia coli. Loss of both colony-forming ability and membrane integrity, measured as uptake of propidium iodide (PI), occurred at lower pressures in E. coli BW3709 (rpoS) than in the parental strain (BW2952). The rpoS mutant also released much higher concentrations of protein under pressure than the parent. We propose that RpoS-regulated functions are responsible for the increase in membrane resilience as cells enter stationary phase and that this plays a major role in the development of pressure resistance. Strains from the Keio collection with mutations in two RpoS-regulated genes, cfa (cyclopropane fatty acyl phospholipid synthase) and osmB (outer membrane lipoprotein), were significantly more pressure sensitive and took up more PI than the parent strain, with cfa having the greatest effect. Mutations in the bolA morphogene and other RpoS-regulated lipoprotein genes (osmC, osmE, osmY, and ybaY) had no effect on pressure resistance. The cytoplasmic membranes of the rpoS mutant failed to reseal after pressure treatment, and strains with mutations in osmB and nlpI (new lipoprotein) were also somewhat impaired in the ability to reseal their membranes. The cfa mutant, though pressure sensitive, was unaffected in membrane resealing, implying that the initial transient permeabilization event is critical for loss of viability rather than the failure to reseal. The enhanced pressure sensitivity of polA, recA, and xthA mutants suggested that DNA may be a target of oxidative stress in pressure-treated cells. PMID:21705547
Charoenwong, Duangkamol; Andrews, Simon; Mackey, Bernard
2011-08-01
This work investigated the role of rpoS in the development of increased cell envelope resilience and enhanced pressure resistance in stationary-phase cells of Escherichia coli. Loss of both colony-forming ability and membrane integrity, measured as uptake of propidium iodide (PI), occurred at lower pressures in E. coli BW3709 (rpoS) than in the parental strain (BW2952). The rpoS mutant also released much higher concentrations of protein under pressure than the parent. We propose that RpoS-regulated functions are responsible for the increase in membrane resilience as cells enter stationary phase and that this plays a major role in the development of pressure resistance. Strains from the Keio collection with mutations in two RpoS-regulated genes, cfa (cyclopropane fatty acyl phospholipid synthase) and osmB (outer membrane lipoprotein), were significantly more pressure sensitive and took up more PI than the parent strain, with cfa having the greatest effect. Mutations in the bolA morphogene and other RpoS-regulated lipoprotein genes (osmC, osmE, osmY, and ybaY) had no effect on pressure resistance. The cytoplasmic membranes of the rpoS mutant failed to reseal after pressure treatment, and strains with mutations in osmB and nlpI (new lipoprotein) were also somewhat impaired in the ability to reseal their membranes. The cfa mutant, though pressure sensitive, was unaffected in membrane resealing, implying that the initial transient permeabilization event is critical for loss of viability rather than the failure to reseal. The enhanced pressure sensitivity of polA, recA, and xthA mutants suggested that DNA may be a target of oxidative stress in pressure-treated cells.
Soler, María José; Lloveras, Josep; Batlle, Daniel
2008-07-12
The renin-angiotensin system (RAS) plays a key role in the regulation of cardiovascular and renal function. Thus, RAS blockade with an angiotensin-converting enzyme (ACE) and/or angiotensin receptor blocker decreases blood pressure, cardiovascular events, and delays the progression of kidney disease. The discovery of ACE2, a homologue of ACE, capable of degrading angiotensin II to angiotensin 1-7, may offer new insights into the RAS. In this review we discuss the possible protective role of ACE2 in different organs, namely heart, lungs and kidneys. The role of this enzyme is inferred from recent studies performed using genetically manipulated mice that lack the ACE2 gene and also mice treated with pharmacological ACE2 inhibitors. These results suggest that ACE2 might be a new therapeutic target within the RAS.
46 CFR 105.10-20 - Pressure vacuum relief valve.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in enclosed... 46 Shipping 4 2011-10-01 2011-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10...
46 CFR 105.10-20 - Pressure vacuum relief valve.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in enclosed... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10...
46 CFR 105.10-20 - Pressure vacuum relief valve.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in enclosed... 46 Shipping 4 2014-10-01 2014-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10...