Introducing the Pressure-Sensing Palatograph--The Next Frontier in Electropalatography
ERIC Educational Resources Information Center
Murdoch, Bruce; Goozee, Justine; Veidt, Martin; Scott, Dion; Meyers, Ian
2004-01-01
Primary Objective. To extend the capabilities of current electropalatography (EPG) systems by developing a pressure-sensing EPG system. An initial trial of a prototype pressure-sensing palate will be presented. Research Design. The processes involved in designing the pressure sensors are outlined, with Hall effect transistors being selected. These…
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Jordan, Jennifer L.; Meredith, Roger D.; Harsh, Kevin; Pilant, Evan; Usrey, Michael W.; Beheim, Glenn M.; Hunter, Gary W.; Zorman, Christian A.
2016-01-01
In this paper, the development and characterization of a packaged pressure sensor system suitable for jet engine health monitoring is demonstrated. The sensing system operates from 97 to 117 MHz over a pressure range from 0 to 350 psi and a temperature range from 25 to 500 deg. The sensing system consists of a Clapp-type oscillator that is fabricated on an alumina substrate and is comprised of a Cree SiC MESFET, MIM capacitors, a wire-wound inductor, chip resistors and a SiCN capacitive pressure sensor. The pressure sensor is located in the LC tank circuit of the oscillator so that a change in pressure causes a change in capacitance, thus changing the resonant frequency of the sensing system. The chip resistors, wire-wound inductors and MIM capacitors have all been characterized at temperature and operational frequency, and perform with less than 5% variance in electrical performance. The measured capacitive pressure sensing system agrees very well with simulated results. The packaged pressure sensing system is specifically designed to measure the pressure on a jet turbofan engine. The packaged system can be installed by way of borescope plug adaptor fitted to a borescope port exposed to the gas path of a turbofan engine.
Transient Behavior of Lumped-Constant Systems for Sensing Gas Pressures
NASA Technical Reports Server (NTRS)
Delio, Gene J; Schwent, Glennon V; Cesaro, Richard S
1949-01-01
The development of theoretical equations describing the behavior of a lumped-constant pressure-sensing system under transient operation Is presented with experimental data that show agreement with the equations. A pressure-sensing system 'consisting of a tube terminating in a reservoir is investigated for the transient relation between a presSure disturbance at the open end of the tube and the pressure response in the reservoir. Design parameters are presented that can be adjusted to achieve a desired performance fran such a system when the system is considered as a transfer member of a control loop.
Failure detection and fault management techniques for flush airdata sensing systems
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.
1992-01-01
A high-angle-of-attack flush airdata sensing system was installed and flight tested on the F-18 High Alpha Research Vehicle at NASA-Dryden. This system uses a matrix of pressure orifices arranged in concentric circles on the nose of the vehicle to determine angles of attack, angles of sideslip, dynamic pressure, and static pressure as well as other airdata parameters. Results presented use an arrangement of 11 symmetrically distributed ports on the aircraft nose. Experience with this sensing system data indicates that the primary concern for real-time implementation is the detection and management of overall system and individual pressure sensor failures. The multiple port sensing system is more tolerant to small disturbances in the measured pressure data than conventional probe-based intrusive airdata systems. However, under adverse circumstances, large undetected failures in individual pressure ports can result in algorithm divergence and catastrophic failure of the entire system. How system and individual port failures may be detected using chi sq. analysis is shown. Once identified, the effects of failures are eliminated using weighted least squares.
Continuous-Reading Cryogen Level Sensor
NASA Technical Reports Server (NTRS)
Barone, F. E.; Fox, E.; Macumber, S.
1984-01-01
Two pressure transducers used in system for measuring amount of cryogenic liquid in tank. System provides continuous measurements accurate within 0.03 percent. Sensors determine pressure in liquid and vapor in tank. Microprocessor uses pressure difference to compute mass of cryogenic liquid in tank. New system allows continuous sensing; unaffected by localized variations in composition and density as are capacitance-sensing schemes.
Fiber optic medical pressure-sensing system employing intelligent self-calibration
NASA Astrophysics Data System (ADS)
He, Gang
1996-01-01
In this article, we describe a fiber-optic catheter-type pressure-sensing system that has been successfully introduced for medical diagnostic applications. We present overall sensors and optoelectronics designs, and highlight product development efforts that lead to a reliable and accurate disposable pressure-sensing system. In particular, the incorporation of an intelligent on-site self-calibration approach allows limited sensor reuses for reducing end-user costs and for system adaptation to wide sensor variabilities associated with low-cost manufacturing processes. We demonstrate that fiber-optic sensors can be cost-effectively produced to satisfy needs of certain medical market segments.
Pang, Cheng; Bae, Hyungdae; Gupta, Ashwani; Bryden, Kenneth; Yu, Miao
2013-09-23
We present a micro-electro-mechanical systems (MEMS) based Fabry-Perot (FP) sensor along with an optical system-on-a-chip (SOC) interrogator for simultaneous pressure and temperature sensing. The sensor employs a simple structure with an air-backed silicon membrane cross-axially bonded to a 45° polished optical fiber. This structure renders two cascaded FP cavities, enabling simultaneous pressure and temperature sensing in close proximity along the optical axis. The optical SOC consists of a broadband source, a MEMS FP tunable filter, a photodetector, and the supporting circuitry, serving as a miniature spectrometer for retrieving the two FP cavity lengths. Within the measured pressure and temperature ranges, experimental results demonstrate that the sensor exhibits a good linear response to external pressure and temperature changes.
33 CFR 154.2203 - Facility requirements for barge vapor overpressure and vacuum protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... displacement system must provide a pressure-sensing device that activates an alarm that satisfies the... located in the fluid displacement system's piping downstream of any devices that could potentially isolate... to inject the fluid. (d) A fluid displacement system must provide a pressure-sensing device that is...
Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao
2014-10-15
Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.
Compensating for pneumatic distortion in pressure sensing devices
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Leondes, Cornelius T.
1990-01-01
A technique of compensating for pneumatic distortion in pressure sensing devices was developed and verified. This compensation allows conventional pressure sensing technology to obtain improved unsteady pressure measurements. Pressure distortion caused by frictional attenuation and pneumatic resonance within the sensing system makes obtaining unsteady pressure measurements by conventional sensors difficult. Most distortion occurs within the pneumatic tubing which transmits pressure impulses from the aircraft's surface to the measurement transducer. To avoid pneumatic distortion, experiment designers mount the pressure sensor at the surface of the aircraft, (called in-situ mounting). In-situ transducers cannot always fit in the available space and sometimes pneumatic tubing must be run from the aircraft's surface to the pressure transducer. A technique to measure unsteady pressure data using conventional pressure sensing technology was developed. A pneumatic distortion model is reduced to a low-order, state-variable model retaining most of the dynamic characteristics of the full model. The reduced-order model is coupled with results from minimum variance estimation theory to develop an algorithm to compensate for the effects of pneumatic distortion. Both postflight and real-time algorithms are developed and evaluated using simulated and flight data.
Sensor and methods of detecting target materials and situations in closed systems
Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.
2018-03-13
Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.
Noninvasive blood pressure measurement scheme based on optical fiber sensor
NASA Astrophysics Data System (ADS)
Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan
2016-10-01
Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.
Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring.
Lin, Xiaoyou; Seet, Boon-Chong
2017-04-01
This paper presents a new design of a wearable plantar pressure monitoring system in the form of a smart sock for sensing abnormal relative pressure changes. One advantage of this approach is that with a battery-free design, this system can be powered solely by radio frequency (RF) energy harvested from a radio frequency identification (RFID) reader unit hosted on a smartphone of the wearer. At the same time, this RFID reader can read foot pressure values from an embedded sensor-tag in the sock. A pressure sensing matrix made of conductive fabric and flexible piezo-resistive material is integrated into the sock during the knitting process. Sensed foot pressures are digitized and stored in the memory of a sensor-tag, thus allowing relative foot pressure values to be tracked. The control unit of the smart sock is assembled on a flexible printed circuit board (FPC) that can be strapped to the lower limb and detached easily when it is not in use. Experiments show that the system can operate reliably in both tasks of RF energy harvesting and pressure measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.
Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the needmore » for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.« less
Development of a Pressure Sensitive Paint System with Correction for Temperature Variation
NASA Technical Reports Server (NTRS)
Simmons, Kantis A.
1995-01-01
Pressure Sensitive Paint (PSP) is known to provide a global image of pressure over a model surface. However, improvements in its accuracy and reliability are needed. Several factors contribute to the inaccuracy of PSP. One major factor is that luminescence is temperature dependent. To correct the luminescence of the pressure sensing component for changes in temperature, a temperature sensitive luminophore incorporated in the paint allows the user to measure both pressure and temperature simultaneously on the surface of a model. Magnesium Octaethylporphine (MgOEP) was used as a temperature sensing luminophore, with the pressure sensing luminophore, Platinum Octaethylporphine (PtOEP), to correct for temperature variations in model surface pressure measurements.
Mehmood, Nasir; Hariz, Alex; Templeton, Sue; Voelcker, Nicolas H
2014-11-18
This paper presents the development of an improved mobile-based telemetric dual mode sensing system to monitor pressure and moisture levels in compression bandages and dressings used for chronic wound management. The system is fabricated on a 0.2 mm thick flexible printed circuit material, and is capable of sensing pressure and moisture at two locations simultaneously within a compression bandage and wound dressing. The sensors are calibrated to sense both parameters accurately, and the data are then transmitted wirelessly to a receiver connected to a mobile device. An error-correction algorithm is developed to compensate the degradation in measurement quality due to battery power drop over time. An Android application is also implemented to automatically receive, process, and display the sensed wound parameters. The performance of the sensing system is first validated on a mannequin limb using a compression bandage and wound dressings, and then tested on a healthy volunteer to acquire real-time performance parameters. The results obtained here suggest that this dual mode sensor can perform reliably when placed on a human limb.
Mehmood, Nasir; Hariz, Alex; Templeton, Sue; Voelcker, Nicolas H.
2014-01-01
This paper presents the development of an improved mobile-based telemetric dual mode sensing system to monitor pressure and moisture levels in compression bandages and dressings used for chronic wound management. The system is fabricated on a 0.2 mm thick flexible printed circuit material, and is capable of sensing pressure and moisture at two locations simultaneously within a compression bandage and wound dressing. The sensors are calibrated to sense both parameters accurately, and the data are then transmitted wirelessly to a receiver connected to a mobile device. An error-correction algorithm is developed to compensate the degradation in measurement quality due to battery power drop over time. An Android application is also implemented to automatically receive, process, and display the sensed wound parameters. The performance of the sensing system is first validated on a mannequin limb using a compression bandage and wound dressings, and then tested on a healthy volunteer to acquire real-time performance parameters. The results obtained here suggest that this dual mode sensor can perform reliably when placed on a human limb. PMID:25412216
Pressure sensitivity analysis of fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Mrad, Nezih; Sridharan, Vasant; Kazemi, Alex
2014-09-01
Recent development in fiber optic sensing technology has mainly focused on discrete sensing, particularly, sensing systems with potential multiplexing and multi-parameter capabilities. Bragg grating fiber optic sensors have emerged as the non-disputed champion for multiplexing and simultaneous multi-parameter sensing for emerging high value structural components, advanced processing and manufacturing capabilities and increased critical infrastructure resilience applications. Although the number of potential applications for this sensing technology is large and spans the domains of medicine, manufacturing, aerospace, and public safety; critical issues such as fatigue life, sensitivity, accuracy, embeddability, material/sensor interface integrity, and universal demodulation systems still need to be addressed. The purpose of this paper is to primarily evaluate Commercial-Of-The-Shelf (COTS) Fiber Bragg Grating (FBG) sensors' sensitivity to pressure, often neglected in several applications. The COTS fiber sensitivity to pressure is further evaluated for two types of coatings (Polyimide and Acrylate), and different arrangements (arrayed and single).
Elevation correction factor for absolute pressure measurements
NASA Technical Reports Server (NTRS)
Panek, Joseph W.; Sorrells, Mark R.
1996-01-01
With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.
NASA Technical Reports Server (NTRS)
Ali, Aliyah N.; Borrer, Jerry L.
2013-01-01
This presentation presents information regarding the nose-cap flush airdata sensing (FADS) system on Orion's Pad Abort 1 (PA-1) vehicle. The purpose of the nose-cap FADS system was to test whether or not useful data could be obtained from a FADS system if it was placed in close proximity to firing rockets nozzles like the attitude control motor (ACM) nozzles on the PA-1 launch abort system (LAS). The nose-cap FADS systems use pressure measurements from a series of pressure ports which are arranged in a cruciform pattern and flush with the surface of the vehicle to estimate values of angle of attack, angle of side-slip, Mach number, impact pressure and free-stream static pressure.
Focus control system for stretched-membrane mirror module
Butler, B.L.; Beninga, K.J.
1991-05-21
A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length. 13 figures.
Focus control system for stretched-membrane mirror module
Butler, Barry L.; Beninga, Kelly J.
1991-01-01
A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length.
A flexible, highly sensitive catheter for high resolution manometry based on in-fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Bueley, Christopher; Wild, Peter M.
2013-09-01
This work presents a fibre optic-based flexible catheter for high resolution manometry (HRM), with sensing pods located at a pitch of 10 mm and an overall diameter of 2.8 mm. In-fibre Bragg gratings act as the sensing elements within these sensing pods. Hydrodynamic pressure resolution of 0.2 mmHg is demonstrated in conjunction with insensitivity to occlusion pressure. This result is significant in the context of HRM where independent measurement of hydrodynamic pressure is clinically relevant. The sensing system is compact, robust and flexible. Crosstalk between individual sensors is characterized and a compensation scheme is developed and validated.
Flight Test Evaluation of Airborne Tire Pressure Indicating Systems.
1979-09-01
System (Concept J, Part I Report) This system employs a wheel This system was the best mounted pressure switch the thought out and implemented state of...which is detected across system of its type with an air gap by a rotating coil excellent electror.ic and passing by a statiorery coil pressure switch designs...Pressure Low tire pressure is sensed by a The supplier of this pressure switch in wheel. hardware built a four wheel Pressure switch shorts secondary
Application of the FADS system on the Re-entry Module
NASA Astrophysics Data System (ADS)
Zhen, Huang
2016-07-01
The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.
Experimental characterization of the effects of pneumatic tubing on unsteady pressure measurements
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Lindsey, William T.; Curry, Robert E.; Gilyard, Glenn B.
1990-01-01
Advances in aircraft control system designs have, with increasing frequency, required that air data be used as flight control feedback. This condition requires that these data be measured with accuracy and high fidelity. Most air data information is provided by pneumatic pressure measuring sensors. Typically unsteady pressure data provided by pneumatic sensing systems are distorted at high frequencies. The distortion is a result of the pressure being transmitted to the pressure sensor through a length of connective tubing. The pressure is distorted by frictional damping and wave reflection. As a result, air data provided all-flush, pneumatically sensed air data systems may not meet the frequency response requirements necessary for flight control augmentation. Both lab and flight test were performed at NASA-Ames to investigate the effects of this high frequency distortion in remotely located pressure measurement systems. Good qualitative agreement between lab and flight data are demonstrated. Results from these tests are used to describe the effects of pneumatic distortion in terms of a simple parametric model.
Failure detection and fault management techniques for flush airdata sensing systems
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.
1992-01-01
Methods based on chi-squared analysis are presented for detecting system and individual-port failures in the high-angle-of-attack flush airdata sensing system on the NASA F-18 High Alpha Research Vehicle. The HI-FADS hardware is introduced, and the aerodynamic model describes measured pressure in terms of dynamic pressure, angle of attack, angle of sideslip, and static pressure. Chi-squared analysis is described in the presentation of the concept for failure detection and fault management which includes nominal, iteration, and fault-management modes. A matrix of pressure orifices arranged in concentric circles on the nose of the aircraft indicate the parameters which are applied to the regression algorithms. The sensing techniques are applied to the F-18 flight data, and two examples are given of the computed angle-of-attack time histories. The failure-detection and fault-management techniques permit the matrix to be multiply redundant, and the chi-squared analysis is shown to be useful in the detection of failures.
Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method.
Wang, Zhihui; Zhang, Ling; Liu, Jin; Jiang, Hao; Li, Chunzhong
2018-05-30
Recently, flexible pressure sensors featuring high sensitivity, broad sensing range and real-time detection have aroused great attention owing to their crucial role in the development of artificial intelligent devices and healthcare systems. Herein, highly sensitive pressure sensors based on hemisphere-microarray flexible substrates are fabricated via inversely templating honeycomb structures deriving from a facile and static breath figure process. The interlocked and subtle microstructures greatly improve the sensing characteristics and compressibility of the as-prepared pressure sensor, endowing it a sensitivity as high as 196 kPa-1 and a wide pressure sensing range (0-100 kPa), as well as other superior performance, including a lower detection limit of 0.5 Pa, fast response time (<26 ms) and high reversibility (>10 000 cycles). Based on the outstanding sensing performance, the potential capability of our pressure sensor in capturing physiological information and recognizing speech signals has been demonstrated, indicating promising application in wearable and intelligent electronics.
A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range
Tian, He; Shu, Yi; Wang, Xue-Feng; Mohammad, Mohammad Ali; Bie, Zhi; Xie, Qian-Yi; Li, Cheng; Mi, Wen-Tian; Yang, Yi; Ren, Tian-Ling
2015-01-01
Pressure sensors are a key component in electronic skin (e-skin) sensing systems. Most reported resistive pressure sensors have a high sensitivity at low pressures (<5 kPa) to enable ultra-sensitive detection. However, the sensitivity drops significantly at high pressures (>5 kPa), which is inadequate for practical applications. For example, actions like a gentle touch and object manipulation have pressures below 10 kPa, and 10–100 kPa, respectively. Maintaining a high sensitivity in a wide pressure range is in great demand. Here, a flexible, wide range and ultra-sensitive resistive pressure sensor with a foam-like structure based on laser-scribed graphene (LSG) is demonstrated. Benefitting from the large spacing between graphene layers and the unique v-shaped microstructure of the LSG, the sensitivity of the pressure sensor is as high as 0.96 kPa−1 in a wide pressure range (0 ~ 50 kPa). Considering both sensitivity and pressure sensing range, the pressure sensor developed in this work is the best among all reported pressure sensors to date. A model of the LSG pressure sensor is also established, which agrees well with the experimental results. This work indicates that laser scribed flexible graphene pressure sensors could be widely used for artificial e-skin, medical-sensing, bio-sensing and many other areas. PMID:25721159
Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.
Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao
2017-07-19
Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.
Sub-bandage sensing system for remote monitoring of chronic wounds in healthcare
NASA Astrophysics Data System (ADS)
Hariz, Alex; Mehmood, Nasir; Voelcker, Nico
2015-12-01
Chronic wounds, such as venous leg ulcers, can be monitored non-invasively by using modern sensing devices and wireless technologies. The development of such wireless diagnostic tools may improve chronic wound management by providing evidence on efficacy of treatments being provided. In this paper we present a low-power portable telemetric system for wound condition sensing and monitoring. The system aims at measuring and transmitting real-time information of wound-site temperature, sub-bandage pressure and moisture level from within the wound dressing. The system comprises commercially available non-invasive temperature, moisture, and pressure sensors, which are interfaced with a telemetry device on a flexible 0.15 mm thick printed circuit material, making up a lightweight biocompatible sensing device. The real-time data obtained is transmitted wirelessly to a portable receiver which displays the measured values. The performance of the whole telemetric sensing system is validated on a mannequin leg using commercial compression bandages and dressings. A number of trials on a healthy human volunteer are performed where treatment conditions were emulated using various compression bandage configurations. A reliable and repeatable performance of the system is achieved under compression bandage and with minimal discomfort to the volunteer. The system is capable of reporting instantaneous changes in bandage pressure, moisture level and local temperature at wound site with average measurement resolutions of 0.5 mmHg, 3.0 %RH, and 0.2 °C respectively. Effective range of data transmission is 4-5 m in an open environment.
Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring.
Majerus, Steve J A; Fletter, Paul C; Damaser, Margot S; Garverick, Steven L
2011-03-01
This letter describes the design, fabrication, and testing of a wireless bladder-pressure-sensing system for chronic, point-of-care applications, such as urodynamics or closed-loop neuromodulation. The system consists of a miniature implantable device and an external RF receiver and wireless battery charger. The implant is small enough to be cystoscopically implanted within the bladder wall, where it is securely held and shielded from the urine stream. The implant consists of a custom application-specific integrated circuit (ASIC), a pressure transducer, a rechargeable battery, and wireless telemetry and recharging antennas. The ASIC includes instrumentation, wireless transmission, and power-management circuitry, and on an average draws less than 9 μA from the 3.6-V battery. The battery charge can be wirelessly replenished with daily 6-h recharge periods that can occur during the periods of sleep. Acute in vivo evaluation of the pressure-sensing system in canine models has demonstrated that the system can accurately capture lumen pressure from a submucosal implant location.
Vortex Sensing Tests at Logan and Kennedy Airports
DOT National Transportation Integrated Search
1972-12-01
The report describes a series of tests of wake vortex sensing systems at Logan and Kennedy Airports. Two systems, a pulsed acoustic radar (acdar) and an array of ground level pressure sensors, were tested. Site restrictions limited the Logan work to ...
Chandler, Mark A.; Goggin, David J.; Horne, Patrick J.; Kocurek, Gary G.; Lake, Larry W.
1989-01-01
For making rapid, non-destructive permeability measurements in the field, a portable minipermeameter of the kind having a manually-operated gas injection tip is provided with a microcomputer system which operates a flow controller to precisely regulate gas flow rate to a test sample, and reads a pressure sensor which senses the pressure across the test sample. The microcomputer system automatically turns on the gas supply at the start of each measurement, senses when a steady-state is reached, collects and records pressure and flow rate data, and shuts off the gas supply immediately after the measurement is completed. Preferably temperature is also sensed to correct for changes in gas viscosity. The microcomputer system may also provide automatic zero-point adjustment, sensor calibration, over-range sensing, and may select controllers, sensors, and set-points for obtaining the most precise measurements. Electronic sensors may provide increased accuracy and precision. Preferably one microcomputer is used for sensing instrument control and data collection, and a second microcomputer is used which is dedicated to recording and processing the data, selecting the sensors and set-points for obtaining the most precise measurements, and instructing the user how to set-up and operate the minipermeameter. To provide mass data collection and user-friendly operation, the second microcomputer is preferably a lap-type portable microcomputer having a non-volatile or battery-backed CMOS memory.
Localised strain sensing of dielectric elastomers in a stretchable soft-touch musical keyboard
NASA Astrophysics Data System (ADS)
Xu, Daniel; Tairych, Andreas; Anderson, Iain A.
2015-04-01
We present a new sensing method that can measure the strain at different locations in a dielectric elastomer. The method uses multiple sensing frequencies to target different regions of the same dielectric elastomer to simultaneously detect position and pressure using only a single pair of connections. The dielectric elastomer is modelled as an RC transmission line and its internal voltage and current distribution used to determine localised capacitance changes resulting from contact and pressure. This sensing method greatly simplifies high degree of freedom systems and does not require any modifications to the dielectric elastomer or sensing hardware. It is demonstrated on a multi-touch musical keyboard made from a single low cost carbon-based dielectric elastomer with 4 distinct musical tones mapped along a length of 0.1m. Loudness was controlled by the amount of pressure applied to each of these 4 positions.
Liu, Jason J; Huang, Ming-Chun; Xu, Wenyao; Zhang, Xiaoyi; Stevens, Luke; Alshurafa, Nabil; Sarrafzadeh, Majid
2015-09-01
The ability to continuously monitor respiration rates of patients in homecare or in clinics is an important goal. Past research showed that monitoring patient breathing can lower the associated mortality rates for long-term bedridden patients. Nowadays, in-bed sensors consisting of pressure sensitive arrays are unobtrusive and are suitable for deployment in a wide range of settings. Such systems aim to extract respiratory signals from time-series pressure sequences. However, variance of movements, such as unpredictable extremities activities, affect the quality of the extracted respiratory signals. BreathSens, a high-density pressure sensing system made of e-Textile, profiles the underbody pressure distribution and localizes torso area based on the high-resolution pressure images. With a robust bodyparts localization algorithm, respiratory signals extracted from the localized torso area are insensitive to arbitrary extremities movements. In a study of 12 subjects, BreathSens demonstrated its respiratory monitoring capability with variations of sleep postures, locations, and commonly tilted clinical bed conditions.
Differential pressure sensing system for airfoils usable in turbine engines
Yang, Wen-Ching; Stampahar, Maria E.
2005-09-13
A detection system for identifying airfoils having a cooling systems with orifices that are plugged with contaminants or with showerheads having a portion burned off. The detection system measures pressures at different locations and calculates or measures a differential pressure. The differential pressure may be compared with a known benchmark value to determine whether the differential pressure has changed. Changes in the differential pressure may indicate that one or more of the orifices in a cooling system of an airfoil are plugged or that portions of, or all of, a showerhead has burned off.
NASA Astrophysics Data System (ADS)
Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu
2017-04-01
We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.
Ultrahigh Temperature Capacitive Pressure Sensor
NASA Technical Reports Server (NTRS)
Harsh, Kevin
2014-01-01
Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.
Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challener, William A
2014-12-04
The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber,more » and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.« less
NASA Technical Reports Server (NTRS)
Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.
2015-01-01
This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.
A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics
Yang, Jie
2013-01-01
Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006
A harsh environment wireless pressure sensing solution utilizing high temperature electronics.
Yang, Jie
2013-02-27
Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.
Atmospheric Remote Sensing via Infrared-Submillimeter Double Resonance
NASA Astrophysics Data System (ADS)
Srikantaiah, Sree; Holt, Jennifer; Neese, Christopher F.; Phillips, Dane; Everitt, Henry O.; De Lucia, Frank C.
2016-06-01
Specificity and sensitivity in atmospheric pressure remote sensing have always been big challenges. This is especially true for approaches that involve the submillimeter/terahertz (smm/THz) spectral region because atmospheric pressure broadening precludes taking advantage of the small Doppler broadening in the region. The Infrared-submillimeter (IR-smm) double resonance spectroscopic technique allows us to obtain a more specific two-dimensional signature as well as a means of modulating the molecular signal to enhance its separation from background and system variation. Applying this technique at atmospheric pressure presents a unique bandwidth requirement on the IR pump laser, and the smm/THz receiver. We will discuss the pump system comprising of a CO2 TEA laser, plasma switch and a free induction decay hot cell designed to produce fast IR pulses on the time scale of atmospheric pressure relaxation and a high bandwidth fast pulse smm/THz receiver. System diagnostics will also be discussed. Results as a function of pressure and pump pulse width will be presented.
Flow compensating pressure regulator
NASA Technical Reports Server (NTRS)
Baehr, E. F. (Inventor)
1978-01-01
An apparatus for regulating pressure of treatment fluid during ophthalmic procedures is described. Flow sensing and pressure regulating diaphragms are used to modulate a flow control valve. The pressure regulating diaphragm is connected to the flow control valve to urge the valve to an open position due to pressure being applied to the diaphragm by bias means such as a spring. The flow sensing diaphragm is mechanically connected to the flow control valve and urges it to an opened position because of the differential pressure on the diaphragm generated by a flow of incoming treatment fluid through an orifice in the diaphragm. A bypass connection with a variable restriction is connected in parallel relationship to the orifice to provide for adjusting the sensitivity of the flow sensing diaphragm. A multiple lever linkage system is utilized between the center of the second diaphragm and the flow control valve to multiply the force applied to the valve by the other diaphragm and reverse the direction of the force.
Harsh environment sensor development for advanced energy systems
NASA Astrophysics Data System (ADS)
Romanosky, Robert R.; Maley, Susan M.
2013-05-01
Highly efficient, low emission power systems have extreme conditions of high temperature, high pressure, and corrosivity that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. To achieve the goals and demands of clean energy, the conditions under which fossil fuels are converted into heat and power are harsh compared to traditional combustion/steam cycles. Temperatures can extend as high as 1600 Celsius (°C) in certain systems and pressures can reach as high as 5000 pounds per square inch (psi)/340 atmospheres (atm). The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Two major considerations in the development of harsh environments sensors are the materials used for sensing and the design of the sensing device. This paper will highlight the U.S. Department of Energy's, Office of Fossil Energy and National Energy Technology Laboratory's Program in advanced sensing concepts that are aimed at addressing the technology needs and drivers through the development of new sensor materials and designs capable of withstanding harsh environment conditions. Recent developments with harsh environment sensors will be highlighted and future directions towards in advanced sensing will be introduced.
Remote tire pressure sensing technique
NASA Technical Reports Server (NTRS)
Robinson, Howard H. (Inventor); Mcginnis, Timothy A. (Inventor); Daugherty, Robert H. (Inventor)
1993-01-01
A remote tire pressure sensing technique is provided which uses vibration frequency to determine tire pressure. A vibration frequency measuring device is attached to the external surface of a tire which is then struck with an object, causing the tire to vibrate. The frequency measuring device measures the vibrations and converts the vibrations into corresponding electrical impulses. The electrical impulses are then fed into the frequency analyzing system which uses the electrical impulses to determine the relative peaks of the vibration frequencies as detected by the frequency measuring device. The measured vibration frequency peaks are then compared to predetermined data describing the location of vibration frequency peaks for a given pressure, thereby determining the air pressure of the tire.
Karkokli, R; McConville, K M Valter
2006-01-01
This paper portrays the design and instrumentation of a low cost plantar pressure analysis system, suitable for clinical podiatry. The system measures plantar pressure between the foot and shoe during dynamic movement in real-time, which can be used in clinical gait analysis. It contains a pressure sensing insole which the patient can insert in his/her shoe, and user-friendly software to graph and analyze the data. Applications include occupational health and safety, research and private practice.
A hazard of the Intraflo continuous flush system.
Schwartz, A J; Stoner, B B; Jobes, D R
1977-01-01
Patency of pressure sensing systems can be provided by the Intraflow Continuous Flush System (Sorenson Research Company, Salt Lake City, UT 84115). This device allows continuous flow of flush solution through a regulatory valve while preventing transmission of the high pressure of the flush solution. The case presented describes the recognition of a false elevation of a monitored pressure secondary to the malfunction of the Intraflo regulatory valve. Elimination of the flush solution high pressure during monitoring prevents inappropriate data collection.
Halim, Dunant; Cheng, Li; Su, Zhongqing
2011-03-01
The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America
High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.
2014-06-01
Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550more » nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.« less
Brill, Anne-Kathrin; Moghal, Mohammad; Morrell, Mary J; Simonds, Anita K
2017-10-01
A good mask fit, avoiding air leaks and pressure effects on the skin are key elements for a successful noninvasive ventilation (NIV). However, delivering practical training for NIV is challenging, and it takes time to build experience and competency. This study investigated whether a pressure sensing system with real-time visual feedback improved mask fitting. During an NIV training session, 30 healthcare professionals (14 trained in mask fitting and 16 untrained) performed two mask fittings on the same healthy volunteer in a randomized order: one using standard mask-fitting procedures and one with additional visual feedback on mask pressure on the nasal bridge. Participants were required to achieve a mask fit with low mask pressure and minimal air leak (<10 L/min). Pressure exerted on the nasal bridge, perceived comfort of mask fit and staff- confidence were measured. Compared with standard mask fitting, a lower pressure was exerted on the nasal bridge using the feedback system (71.1 ± 17.6 mm Hg vs 63.2 ± 14.6 mm Hg, P < 0.001). Both untrained and trained healthcare professionals were able to reduce the pressure on the nasal bridge (74.5 ± 21.2 mm Hg vs 66.1 ± 17.4 mm Hg, P = 0.023 and 67 ± 12.1 mm Hg vs 60 ± 10.6 mm Hg, P = 0.002, respectively) using the feedback system and self-rated confidence increased in the untrained group. Real-time visual feedback using pressure sensing technology supported healthcare professionals during mask-fitting training, resulted in a lower pressure on the skin and better mask fit for the volunteer, with increased staff confidence. © 2017 Asian Pacific Society of Respirology.
Landscape irrigation sprinklers are often installed at sites where the system pressure is higher than what is recommended for the sprinkler nozzle, which can lead to water waste. WaterSense labeled sprinkler bodies help control pressure.
Downhole fiber optic sensing: the oilfield service provider's perspective
NASA Astrophysics Data System (ADS)
Skinner, Neal G.; Maida, John L., Jr.
2004-12-01
There is increasing interest in the petroleum industry in the application of fiber-optic sensing techniques. In this paper, we review which sensing technologies are being adopted downhole and the drivers for this deployment. We describe the performance expectations (accuracy, resolution, stability and operational lifetime) that the oil companies and the oil service companies have for fiber-optic sensing systems. We also describe the environmental conditions (high hydrostatic pressures, high temperatures, shock, vibration, crush, and chemical attack) that these systems must tolerate in order to provide reliable and economically attractive reservoir-performance monitoring solutions.
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Ponchak, George E.; Harsh, Kevin; Mackey, Jonathan A.; Meredith, Roger D.; Zorman, Christian A.; Beheim, Glenn M.; Dynys, Frederick W.; Hunter, Gary W.
2014-01-01
In this paper, a wireless capacitive pressure sensor developed for the health monitoring of aircraft engines has been demonstrated. The sensing system is composed of a Clapp-type oscillator that operates at 131 MHz. The Clapp oscillator is fabricated on a alumina substrate and consists of a Cree SiC (silicon carbide) MESFET (Metal Semiconductor Field Effect Transistors), this film inductor, Compex chip capacitors and Sporian Microsystem capacitive pressure sensor. The resonant tank circuit within the oscillator is made up of the pressure sensor and a spiral thin film inductor, which is used to magnetically couple the wireless pressure sensor signal to a coil antenna placed over 1 meter away. 75% of the power used to bias the sensing system is generated from thermoelectric power modules. The wireless pressure sensor is operational at room temperature through 400 C from 0 to 100 psi and exhibits a frequency shift of over 600 kHz.
POFBG-Embedded Cork Insole for Plantar Pressure Monitoring
Vilarinho, Débora; Theodosiou, Antreas; Domingues, Maria de Fátima; André, Paulo; Marques, Carlos
2017-01-01
We propose a novel polymer optical fiber (POF) sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure. The plantar pressure signals are detected by five FBGs, in the same piece of cyclic transparent optical polymer (CYTOP) fiber, which are embedded in a cork insole for the dynamic monitoring of gait. The calibration and measurements performed with the suggested system are presented, and the results obtained demonstrate the accuracy and reliability of the sensing platform to monitor the foot plantar pressure distribution during gait motion and the application of pressure. This architecture does not compromise the patient’s mobility nor interfere in their daily activities. The results using the CYTOP fiber showed a very good response when compared with solutions using silica optical fibers, resulting in a sensitivity almost twice as high, with excellent repeatability and ease of handling. The advantages of POF (e.g., high flexibility and robustness) proved that this is a viable solution for this type of application, since POF’s high fracture toughness enables its application in monitoring patients with higher body mass compared with similar systems based on silica fiber. This study has demonstrated the viability of the proposed system based on POF technology as a useful alternative for plantar pressure detection systems. PMID:29258166
POFBG-Embedded Cork Insole for Plantar Pressure Monitoring.
Vilarinho, Débora; Theodosiou, Antreas; Leitão, Cátia; Leal-Junior, Arnaldo G; Domingues, Maria de Fátima; Kalli, Kyriacos; André, Paulo; Antunes, Paulo; Marques, Carlos
2017-12-16
We propose a novel polymer optical fiber (POF) sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure. The plantar pressure signals are detected by five FBGs, in the same piece of cyclic transparent optical polymer (CYTOP) fiber, which are embedded in a cork insole for the dynamic monitoring of gait. The calibration and measurements performed with the suggested system are presented, and the results obtained demonstrate the accuracy and reliability of the sensing platform to monitor the foot plantar pressure distribution during gait motion and the application of pressure. This architecture does not compromise the patient's mobility nor interfere in their daily activities. The results using the CYTOP fiber showed a very good response when compared with solutions using silica optical fibers, resulting in a sensitivity almost twice as high, with excellent repeatability and ease of handling. The advantages of POF (e.g., high flexibility and robustness) proved that this is a viable solution for this type of application, since POF's high fracture toughness enables its application in monitoring patients with higher body mass compared with similar systems based on silica fiber. This study has demonstrated the viability of the proposed system based on POF technology as a useful alternative for plantar pressure detection systems.
Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W.F.; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B.-H.; Bao, Zhenan
2015-01-01
Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots. PMID:26300307
Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W F; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B-H; Bao, Zhenan
2015-08-24
Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.
NASA Technical Reports Server (NTRS)
Mcvey, Sally
1991-01-01
Earth remote sensing is a uniquely valuable tool for large-scale resource management, a task whose importance will likely increase world-wide through the foreseeable future. NASA research and engineering have virtually created the existing U.S. system, and will continue to push the frontiers, primarily through Earth Observing System (EOS) instruments, research, and data and information systems. It is the researchers' view that the near-term health of remote sensing applications also deserves attention; it seems important not to abandon the system or its clients. The researchers suggest that, like its Landsat predecessor, a successful Earth Observing System program is likely to reinforce pressure to 'manage' natural resources, and consequently, to create more pressure for Earth Observations Commercialization (EOCAP) type applications. The current applications programs, though small, are valuable because of their technical and commercial results, and also because they support a community whose contributions will increase along with our ability to observe the Earth from space.
Accelerator Vacuum Protection System
NASA Astrophysics Data System (ADS)
Barua, Pradip; Kothari, Ashok; Archunan, M.; Joshi, Rajan
2012-11-01
A new and elaborate automatic vacuum protection system using fast acting valve has been installed to avoid accidental venting of accelerator from experimental chamber side. To cover all the beam lines and to reduce the system cost, it has been installed at a common point from where all the seven beam lines originate. The signals are obtained by placing fast response pressure sensing gauges (HV SENSOR) near all the experimental stations. The closing time of the fast valve is 10 milli-second. The fast closing system protects only one vacuum line at a time. At IUAC, we have seven beam lines so one sensor was placed in each of the beam lines near experimental chamber and a multiplexer was incorporated into the fast closing system. At the time of experiment, the sensor of the active beam line is selected through the multiplexer and the Fast closing valve is interlocked with the selected sensor. As soon as the pressure sensor senses the pressure rise beyond a selected pressure, the signal is transferred and the fast valve closes within 10 to 12 millisecond.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.
1991-01-01
The accuracy of a nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was verified for quasi-steady flight conditions up to 55 deg angle of attack during the F-18 High Alpha Research Vehicle (HARV) Program. The system is a matrix of nine pressure ports arranged in annular rings on the aircraft nose. The complete airdata set is estimated using nonlinear regression. Satisfactory frequency response was verified to the system Nyquist frequency (12.5 Hz). The effects of acoustical distortions within the individual pressure sensors of the nonintrusive pressure matrix on overall system performance are addressed. To quantify these effects, a frequency-response model describing the dynamics of acoustical distortion is developed and simple design criteria are derived. The model adjusts measured HI-FADS pressure data for the acoustical distortion and quantifies the effects of internal sensor geometries on system performance. Analysis results indicate that sensor frequency response characteristics very greatly with altitude, thus it is difficult to select satisfactory sensor geometry for all altitudes. The solution used presample filtering to eliminate resonance effects, and short pneumatic tubing sections to reduce lag effects. Without presample signal conditioning the system designer must use the pneumatic transmission line to attenuate the resonances and accept the resulting altitude variability.
NASA Astrophysics Data System (ADS)
Zhang, Yinan; Huang, Jie; Lan, Xinwei; Yuan, Lei; Xiao, Hai
2014-06-01
This paper presents an approach for simultaneous measurement of temperature and pressure using miniaturized fiber inline sensors. The approach utilizes the cascaded optical fiber inline intrinsic Fabry-Perot interferometer and extrinsic Fabry-Perot interferometer as temperature and pressure sensing elements, respectively. A CO2 laser was used to create a loss between them to balance their reflection power levels. The multiplexed signals were demodulated using a Fast Fourier transform-based wavelength tracking method. Experimental results showed that the sensing system could measure temperature and pressure unambiguously in a pressure range of 0 to 6.895×105 Pa and a temperature range from 20°C to 700°C.
Cushion System for Multi-Use Child Safety Seat
NASA Technical Reports Server (NTRS)
Dabney, Richard W. (Inventor); Elrod, Susan V. (Inventor)
2007-01-01
A cushion system for use with a child safety seat has a plurality of bladders assembled to form a seat cushion that cooperates with the seat's safety harness. One or more sensors coupled to the safety harness sense tension therein and generate a signal indicative of the tension. Each of the bladders is individually pressurized by a pressurization system to define a support configuration of the seat cushion. The pressurization system is disabled when tension in the safety harness has attained a threshold level.
Cushion system for multi-use child safety seat
NASA Technical Reports Server (NTRS)
Elrod, Susan V. (Inventor); Dabney, Richard W. (Inventor)
2007-01-01
A cushion system for use with a child safety seat has a plurality of bladders assembled to form a seat cushion that cooperates with the seat's safety harness. One or more sensors coupled to the safety harness sense tension therein and generate a signal indicative of the tension. Each of the bladders is individually pressurized by a pressurization system to define a support configuration of the seat cushion. The pressurization system is disabled when tension in the safety harness has attained a threshold level.
Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens
Gao, Junyuan; Sun, Xiurong; White, Thomas W.; Delamere, Nicholas A.; Mathias, Richard T.
2015-01-01
In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. PMID:26536260
Stable Algorithm For Estimating Airdata From Flush Surface Pressure Measurements
NASA Technical Reports Server (NTRS)
Whitmore, Stephen, A. (Inventor); Cobleigh, Brent R. (Inventor); Haering, Edward A., Jr. (Inventor)
2001-01-01
An airdata estimation and evaluation system and method, including a stable algorithm for estimating airdata from nonintrusive surface pressure measurements. The airdata estimation and evaluation system is preferably implemented in a flush airdata sensing (FADS) system. The system and method of the present invention take a flow model equation and transform it into a triples formulation equation. The triples formulation equation eliminates the pressure related states from the flow model equation by strategically taking the differences of three surface pressures, known as triples. This triples formulation equation is then used to accurately estimate and compute vital airdata from nonintrusive surface pressure measurements.
Valve malfunction detection apparatus
NASA Astrophysics Data System (ADS)
Burley, Richard K.
1993-07-01
A detection system is provided for sensing a malfunction of a valve having an outlet connected to an end of a first pipe through which pressurized fluid may be flowed in a downstream direction away from the valve. The system includes a bypass pipe connected at its opposite ends to the first pipe and operative to bypass a portion of the fluid flow therethrough around a predetermined section thereof. A housing is interiorly divided by a flexible diaphragm into first and second opposite chambers which are respectively communicated with the first pipe section and the bypass pipe, the diaphragm being spring-biased toward the second chamber. The diaphragm housing cooperates with check valves and orifices connected in the two pipes to create and maintain a negative pressure in the first pipe section in response to closure of the valve during pressurized flow through the first pipe. A pressure switch senses the negative pressure and transmits a signal indicative thereof to a computer. Upon cessation of the signal while the valve is still closed, the computer responsively generates a signal indicating that the valve, or another portion of the detection system, is leaking.
Valve malfunction detection apparatus
NASA Technical Reports Server (NTRS)
Burley, Richard K. (Inventor)
1993-01-01
A detection system is provided for sensing a malfunction of a valve having an outlet connected to an end of a first pipe through which pressurized fluid may be flowed in a downstream direction away from the valve. The system includes a bypass pipe connected at its opposite ends to the first pipe and operative to bypass a portion of the fluid flow therethrough around a predetermined section thereof. A housing is interiorly divided by a flexible diaphragm into first and second opposite chambers which are respectively communicated with the first pipe section and the bypass pipe, the diaphragm being spring-biased toward the second chamber. The diaphragm housing cooperates with check valves and orifices connected in the two pipes to create and maintain a negative pressure in the first pipe section in response to closure of the valve during pressurized flow through the first pipe. A pressure switch senses the negative pressure and transmits a signal indicative thereof to a computer. Upon cessation of the signal while the valve is still closed, the computer responsively generates a signal indicating that the valve, or another portion of the detection system, is leaking.
14 CFR 25.841 - Pressurized cabins.
Code of Federal Regulations, 2013 CFR
2013-01-01
... differentials up to the maximum relief valve setting in combination with landing loads. (8) The pressure sensors... located and the sensing system designed so that, in the event of loss of cabin pressure in any passenger... increase the hazards resulting from decompression. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended...
14 CFR 25.841 - Pressurized cabins.
Code of Federal Regulations, 2010 CFR
2010-01-01
... differentials up to the maximum relief valve setting in combination with landing loads. (8) The pressure sensors... located and the sensing system designed so that, in the event of loss of cabin pressure in any passenger... increase the hazards resulting from decompression. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended...
14 CFR 25.841 - Pressurized cabins.
Code of Federal Regulations, 2014 CFR
2014-01-01
... differentials up to the maximum relief valve setting in combination with landing loads. (8) The pressure sensors... located and the sensing system designed so that, in the event of loss of cabin pressure in any passenger... increase the hazards resulting from decompression. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended...
14 CFR 25.841 - Pressurized cabins.
Code of Federal Regulations, 2011 CFR
2011-01-01
... differentials up to the maximum relief valve setting in combination with landing loads. (8) The pressure sensors... located and the sensing system designed so that, in the event of loss of cabin pressure in any passenger... increase the hazards resulting from decompression. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended...
14 CFR 25.841 - Pressurized cabins.
Code of Federal Regulations, 2012 CFR
2012-01-01
... differentials up to the maximum relief valve setting in combination with landing loads. (8) The pressure sensors... located and the sensing system designed so that, in the event of loss of cabin pressure in any passenger... increase the hazards resulting from decompression. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended...
Real-time contaminant sensing and control in civil infrastructure systems
NASA Astrophysics Data System (ADS)
Rimer, Sara; Katopodes, Nikolaos
2014-11-01
A laboratory-scale prototype has been designed and implemented to test the feasibility of real-time contaminant sensing and control in civil infrastructure systems. A blower wind tunnel is the basis of the prototype design, with propylene glycol smoke as the ``contaminant.'' A camera sensor and compressed-air vacuum nozzle system is set up at the test section portion of the prototype to visually sense and then control the contaminant; a real-time controller is programmed to read in data from the camera sensor and administer pressure to regulators controlling the compressed air operating the vacuum nozzles. A computational fluid dynamics model is being integrated in with this prototype to inform the correct pressure to supply to the regulators in order to optimally control the contaminant's removal from the prototype. The performance of the prototype has been evaluated against the computational fluid dynamics model and is discussed in this presentation. Furthermore, the initial performance of the sensor-control system implemented in the test section of the prototype is discussed. NSF-CMMI 0856438.
Analysis and Results from a Flush Airdata Sensing System in Close Proximity to Firing Rocket Nozzles
NASA Technical Reports Server (NTRS)
Ali, Aliyah N.; Borrer, Jerry L.
2013-01-01
This paper presents information regarding the nosecap Flush Airdata Sensing (FADS) system on Orion’s Pad Abort 1 (PA-1) vehicle. The purpose of the nosecap FADS system was to test whether or not useful data could be obtained from a FADS system if it was placed in close proximity to firing rocket nozzles like the Attitude Control Motor (ACM) nozzles on the PA-1 Launch Abort System. The nosecap FADS system used pressure measurements from a series of pressure ports which were arranged in a cruciform pattern and flush with the surface of the vehicle to estimate values of angle of attack, angle of sideslip, Mach number, impact pressure, and freestream static pressure. This paper will present the algorithms employed by the FADS system along with the development of the calibration datasets and a comparison of the final results to the Best Estimated Trajectory (BET) data for PA-1. Also presented in this paper is a Computational Fluid Dynamics (CFD) study to explore the impact of the ACM on the nosecap FADS system. The comparison of the nosecap FADS system results to the BET and the CFD study showed that more investigation is needed to quantify the impact of the firing rocket motors on the FADS system.
Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution
NASA Astrophysics Data System (ADS)
Wisniewiski, David
2015-03-01
Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.
A study on gaseous extinguishing agent sensing with a simple measurement method
NASA Astrophysics Data System (ADS)
Guan, Yu; Lu, Song; Yuan, Wei; Qian, Hanjie
2018-03-01
As research on the concentration distribution for evaluating the effectiveness of a gas fire extinguisher system is quite important, the proper sensing technology is necessary. Here, a simple method used for measuring the concentration of agent is introduced, and the manufacture of the sensing part is described clearly. The sensing unit is composed of a pressure reducing structure and pressure sensor element. The detection was achieved by sensing the change of pressure difference caused by gas flow. In order to verify the theory and characterize the sensing performance, two types of fire extinguishing agents, bromotrifluoromethane (CBrF3) and heptafluoropropane (C3HF7), were used in the experiments. The results showed a high sensitivity from 0 to 100%, good repeatability and fast response/recovery time. Furthermore, the effect of operating temperature, humidity and geometric structure on the response were investigated. Measurements showed, for CBrF3, that the temperature had a linear impact on the response and the influence of humidity in the sensor was negligible. Through the analysis of the geometry parameter, it was found that the sensing performance could be greatly improved through adjusting the geometry structure. This technique provides a low-cost and highly reliable sensor for the detection of gaseous extinguishing agent that can be easily fabricated.
Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; Mielke, Chuck H; Azad, Abul; Marshall, Bruce; La Lone, Brandon M; Henson, Bryan; Smilowitz, Laura
2015-06-01
A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals are recorded using a single 35 GHz photodetector and a 50 G Samples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L<10-4) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Sun, Zhenshi; Qian, Ya; Zhang, Tao; Rao, Yunjiang
2015-07-01
A hydrostatic leak test for water pipeline with a distributed optical fiber vibration sensing (DOVS) system based on the phase-sensitive OTDR technology is studied in this paper. By monitoring one end of a common communication optical fiber cable, which is laid in the inner wall of the pipe, we can detect and locate the water leakages easily. Different apertures under different pressures are tested and it shows that the DOVS has good responses when the aperture is equal or larger than 4 mm and the inner pressure reaches 0.2 Mpa for a steel pipe with DN 91cm×EN 2cm.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Larson, Terry J.
1990-01-01
A nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was installed and flight-tested on the F-18 high alpha research flight vehicle. The system is a matrix of 25 pressure orifices in concentric circles on the nose of the vehicle. The orifices determine angles of attack and sideslip, Mach number, and pressure altitude. Pressure was transmitted from the orifices to an electronically scanned pressure module by lines of pneumatic tubing. The HI-FADS system was calibrated and demonstrated using dutch roll flight maneuvers covering large Mach, angle-of-attack, and sideslip ranges. Reference airdata for system calibration were generated by a minimum variance estimation technique blending measurements from two wingtip airdata booms with inertial velocities, aircraft angular rates and attitudes, precision radar tracking, and meteorological analyses. The pressure orifice calibration was based on identifying empirical adjustments to modified Newtonian flow on a hemisphere. Calibration results are presented. Flight test results used all 25 orifices or used a subset of 9 orifices. Under moderate maneuvering conditions, the HI-FADS system gave excellent results over the entire subsonic Mach number range up to 55 deg angle of attack. The internal pneumatic frequency response of the system is accurate to beyond 10 Hz. Aerodynamic lags in the aircraft flow field caused some performance degradation during heavy maneuvering.
Smart structure with elastomeric contact surface for prosthetic fingertip sensitivity development
NASA Astrophysics Data System (ADS)
Gu, Chunxin; Liu, Weiting; Yu, Ping; Cheng, Xiaoying; Fu, Xin
2017-09-01
Current flexible/compliant tactile sensors suffer from low sensitivity and high hysteresis introduced by the essential viscosity characteristic of soft material, either used as compliant sensing element or as flexible coverage. To overcome these disadvantages, this paper focuses on developing a tactile sensor with a smart hybrid structure to obtain comprehensive properties in terms of size, compliance, robustness and pressure sensing ability so as to meet the requirements of limited space applications such as prosthetic fingertips. Employing micro-fabricated tiny silicon-based pressure die as the sensing element, it is easy to have both small size and good mechanical performance. To protect it from potential damage and maintain the compliant surface, a rigid base and a soft layer form a sealed chamber and encapsulate the fixed die together with fluid. The fluid serves as highly efficient pressure propagation media of mechanical stimulus from the compliant skin to the pressure die without any hazard impacting the vulnerable connecting wires. To understand the pressure transmission mechanism, a simplified and concise analytic model of a spring system is proposed. Using easy fabrication technologies, a prototype of a 3 × 3 sensor array with total dimensions of 14 mm × 14 mm × 6.5 mm was developed. Based on the quasi-linear relationship between fluid volume and pressure, finite element modeling was developed to analyze the chamber deformation and pressure output of the sensor cell. Experimental tests of the sensor prototype were implemented. The results showed that the sensor cell had good sensing performance with sensitivity of 19.9 mV N-1, linearity of 0.998, repeatability error of 3.41%, and hysteresis error of 3.34%. The force sensing range was from 5 mN to 1.6 N.
DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE
Bradner, H.; Gordon, H.S.
1957-12-24
A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.
Huggy Pajama: A Remote Interactive Touch and Hugging System
NASA Astrophysics Data System (ADS)
Cheok, Adrian David
Huggy Pajama is a novel wearable system aimed at promoting physical interaction in remote communication between parent and child. This system enables parents and children to hug one another through a hugging interface device and a wearable, hug reproducing pajama connected through the Internet. The hug input device is a small, mobile doll with an embedded pressure sensing circuit that is able to accurately sense varying levels of pressure along the range of human touch produced from natural touch. This device sends hug signals to a haptic jacket that simulates the feeling of being hugged to the wearer. It features air pocket actuators that reproduce hug sensations, heating elements to produce warmth that accompanies hugs, and a color changing pattern and accessory to indicate distance of separation and communicate expressions. In this chapter, we present the system design of Huggy Pajama. We also show results from quantitative and qualitative user studies which show the effectiveness of the system simulating an actual human touch. Results also indicate an increased sense of presence between parents and children when used as an added component to instant messaging and video chat communication.
Automotive Test Rig Final Design Report. Volume 2. Control System.
1986-01-01
Pressure Switch Status P27 Low Brake Release Pressure Switch Status P26 Low Brake...Supply Pressure Switch Status P25 Low Port Charge Pump Pressure Switch Status P24 Low Starboard Charge Pump Pressure Switch Status P23 Hydraulic Filter By...Sensed Switch Status P31 Low Scavenge Pump Pressure Switch Status P30 P37 Signal Return for Computer J21 Not Used J22 P A +24 B Pwr Rtn C Ground C
Design and Test of a Soft Plantar Force Measurement System for Gait Detection
Zhang, Xuefeng; Zhao, Yulong; Duan, Zhengyong; Liu, Yan
2012-01-01
This work describes a plantar force measurement system. The MEMS pressure sensor, as the key sensing element, is designed, fabricated and embedded into a flexible silicon oil-filled bladder made of silicon rubber to constitute a single sensing unit. A conditioning circuit is designed for signal processing and data acquisition. The characteristics of the plantar force sensing unit are investigated by both static and dynamic tests. A comparison of characteristics between the proposed plantar force sensing unit and a commercial flexible force sensor is presented. A practical experiment of plantar force measurement has been carried out to validate the system. The results demonstrate that the proposed measurement system has a potential for success in the application of plantar force measurement during normal gait. PMID:23208558
EIT-based fabric pressure sensing.
Yao, A; Yang, C L; Seo, J K; Soleimani, M
2013-01-01
This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.
Radio/FADS/IMU integrated navigation for Mars entry
NASA Astrophysics Data System (ADS)
Jiang, Xiuqiang; Li, Shuang; Huang, Xiangyu
2018-03-01
Supposing future orbiting and landing collaborative exploration mission as the potential project background, this paper addresses the issue of Mars entry integrated navigation using radio beacon, flush air data sensing system (FADS), and inertial measurement unit (IMU). The range and Doppler information sensed from an orbiting radio beacon, the dynamic pressure and heating data sensed from flush air data sensing system, and acceleration and attitude angular rate outputs from an inertial measurement unit are integrated in an unscented Kalman filter to perform state estimation and suppress the system and measurement noise. Computer simulations show that the proposed integrated navigation scheme can enhance the navigation accuracy, which enables precise entry guidance for the given Mars orbiting and landing collaborative exploration mission.
Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; ...
2015-05-21
A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersivemore » line. Signals are recorded using a single 35 GHz photodetector and a 50 GSamples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO₃. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L<10⁻⁴) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. In conclusion, both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.« less
Flush Airdata Sensing (FADS) System Calibration Procedures and Results for Blunt Forebodies
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.; Whitmore, Stephen A.; Haering, Edward A., Jr.; Borrer, Jerry; Roback, V. Eric
1999-01-01
Blunt-forebody pressure data are used to study the behavior of the NASA Dryden Flight Research Center flush airdata sensing (FADS) pressure model and solution algorithm. The model relates surface pressure measurements to the airdata state. Spliced from the potential flow solution for uniform flow over a sphere and the modified Newtonian impact theory, the model was shown to apply to a wide range of blunt-forebody shapes and Mach numbers. Calibrations of a sphere, spherical cones, a Rankine half body, and the F-14, F/A-18, X-33, X-34, and X-38 configurations are shown. The three calibration parameters are well-behaved from Mach 0.25 to Mach 5.0, an angle-of-attack range extending to greater than 30 deg, and an angle-of-sideslip range extending to greater than 15 deg. Contrary to the sharp calibration changes found on traditional pitot-static systems at transonic speeds, the FADS calibrations are smooth, monotonic functions of Mach number and effective angles of attack and sideslip. Because the FADS calibration is sensitive to pressure port location, detailed measurements of the actual pressure port locations on the flight vehicle are required and the wind-tunnel calibration model should have pressure ports in similar locations. The procedure for calibrating a FADS system is outlined.
In-flight demonstration of a Real-Time Flush Airdata Sensing (RT-FADS) system
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Davis, Roy J.; Fife, John Michael
1995-01-01
A prototype real-time flush airdata sensing (RT-FADS) system has been developed and flight tested at the NASA Dryden Flight Research Center. This system uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters in real time using nonlinear regression. The algorithm is robust to sensor failures and noise in the measured pressures. The RT-FADS system has been calibrated using inertial trajectory measurements that were bootstrapped for atmospheric conditions using meteorological data. Mach numbers as high as 1.6 and angles of attack greater than 45 deg have been tested. The system performance has been evaluated by comparing the RT-FADS to the ship system airdata computer measurements to give a quantitative evaluation relative to an accepted measurement standard. Nominal agreements of approximately 0.003 in Mach number and 0.20 deg in angle of attack and angle of sideslip have been achieved.
Soft, Transparent, Electronic Skin for Distributed and Multiple Pressure Sensing
Levi, Alessandro; Piovanelli, Matteo; Furlan, Silvano; Mazzolai, Barbara; Beccai, Lucia
2013-01-01
In this paper we present a new optical, flexible pressure sensor that can be applied as smart skin to a robot or to consumer electronic devices. We describe a mechano-optical transduction principle that can allow the encoding of information related to an externally applied mechanical stimulus, e.g., contact, pressure and shape of contact. The physical embodiment that we present in this work is an electronic skin consisting of eight infrared emitters and eight photo-detectors coupled together and embedded in a planar PDMS waveguide of 5.5 cm diameter. When a contact occurs on the sensing area, the optical signals reaching the peripheral detectors experience a loss because of the Frustrated Total Internal Reflection and deformation of the material. The light signal is converted to electrical signal through an electronic system and a reconstruction algorithm running on a computer reconstructs the pressure map. Pilot experiments are performed to validate the tactile sensing principle by applying external pressures up to 160 kPa. Moreover, the capabilities of the electronic skin to detect contact pressure at multiple subsequent positions, as well as its function on curved surfaces, are validated. A weight sensitivity of 0.193 gr−1 was recorded, thus making the electronic skin suitable to detect pressures in the order of few grams. PMID:23686140
Assessment of meteorological uncertainties as they apply to the ASCENDS mission
NASA Astrophysics Data System (ADS)
Snell, H. E.; Zaccheo, S.; Chase, A.; Eluszkiewicz, J.; Ott, L. E.; Pawson, S.
2011-12-01
Many environment-oriented remote sensing and modeling applications require precise knowledge of the atmospheric state (temperature, pressure, water vapor, surface pressure, etc.) on a fine spatial grid with a comprehensive understanding of the associated errors. Coincident atmospheric state measurements may be obtained via co-located remote sensing instruments or by extracting these data from ancillary models. The appropriate technique for a given application depends upon the required accuracy. State-of-the-art mesoscale/regional numerical weather prediction (NWP) models operate on spatial scales of a few kilometers resolution, and global scale NWP models operate on scales of tens of kilometers. Remote sensing measurements may be made on spatial scale comparable to the measurement of interest. These measurements normally require a separate sensor, which increases the overall size, weight, power and complexity of the satellite payload. Thus, a comprehensive understanding of the errors associated with each of these approaches is a critical part of the design/characterization of a remote-sensing system whose measurement accuracy depends on knowledge of the atmospheric state. One of the requirements as part of the overall ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission development is to develop a consistent set of atmospheric state variables (vertical temperature and water vapor profiles, and surface pressure) for use in helping to constrain overall retrieval error budget. If the error budget requires tighter uncertainties on ancillary atmospheric parameters than can be provided by NWP models and analyses, additional sensors may be required to reduce the overall measurement error and meet mission requirements. To this end we have used NWP models and reanalysis information to generate a set of atmospheric profiles which contain reasonable variability. This data consists of a "truth" set and a companion "measured" set of profiles. The truth set contains climatologically-relevant profiles of pressure, temperature and humidity with an accompanying surface pressure. The measured set consists of some number of instances of the truth set which have been perturbed to represent realistic measurement uncertainty for the truth profile using measurement error covariance matrices. The primary focus has been to develop matrices derived using information about the profile retrieval accuracy as documented for on-orbit sensor systems including AIRS, AMSU, ATMS, and CrIS. Surface pressure variability and uncertainty was derived from globally-compiled station pressure information. We generated an additional measurement set of profiles which represent the overall error within NWP models. These profile sets will allow for comprehensive trade studies for sensor system design and provide a basis for setting measurement requirements for co-located temperature, humidity sounders, determine the utility of NWP data to either replace or supplement collocated measurements, and to assess the overall end-to-end system performance of the sensor system. In this presentation we discuss the process by which we created these data sets and show their utility in performing trade studies for sensor system concepts and designs.
Monitoring Composite Material Pressure Vessels with a Fiber-Optic/Microelectronic Sensor System
NASA Technical Reports Server (NTRS)
Klimcak, C.; Jaduszliwer, B.
1995-01-01
We discuss the concept of an integrated, fiber-optic/microelectronic distributed sensor system that can monitor composite material pressure vessels for Air Force space systems to provide assessments of the overall health and integrity of the vessel throughout its entire operating history from birth to end of life. The fiber optic component would include either a semiconductor light emitting diode or diode laser and a multiplexed fiber optic sensing network incorporating Bragg grating sensors capable of detecting internal temperature and strain. The microelectronic components include a power source, a pulsed laser driver, time domain data acquisition hardware, a microprocessor, a data storage device, and a communication interface. The sensing system would be incorporated within the composite during its manufacture. The microelectronic data acquisition and logging system would record the environmental conditions to which the vessel has been subjected to during its storage and transit, e.g., the history of thermal excursions, pressure loading data, the occurrence of mechanical impacts, the presence of changing internal strain due to aging, delamination, material decomposition, etc. Data would be maintained din non-volatile memory for subsequent readout through a microcomputer interface.
NASA Technical Reports Server (NTRS)
Ellsworth, Joel C.
2010-01-01
Following the successful Mach 7 flight test of the X-43A, unexpectedly low pressures were measured by the aft set of the onboard Flush Air Data Sensing System s pressure ports. These in-flight aft port readings were significantly lower below Mach 3.5 than was predicted by theory. The same lower readings were also seen in the Mach 10 flight of the X-43A and in wind-tunnel data. The pre-flight predictions were developed based on 2-dimensional wedge flow, which fails to predict some of the significant 3-dimensional flow features in this geometry at lower Mach numbers. Using Volterra s solution to the wave equation as a starting point, a three-dimensional finite wedge approximation to flow over the X-43A forebody is presented. The surface pressures from this approximation compare favorably with the measured wind tunnel and flight data at speeds of Mach 2.5 and 3.
Design and Calibration of the X-33 Flush Airdata Sensing (FADS) System
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Cobleigh, Brent R.; Haering, Edward A.
1998-01-01
This paper presents the design of the X-33 Flush Airdata Sensing (FADS) system. The X-33 FADS uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters. The system is designed with dual-redundant measurement hardware, which produces two independent measurement paths. Airdata parameters that correspond to the measurement path with the minimum fit error are selected as the output values. This method enables a single sensor failure to occur with minimal degrading of the system performance. The paper shows the X-33 FADS architecture, derives the estimating algorithms, and demonstrates a mathematical analysis of the FADS system stability. Preliminary aerodynamic calibrations are also presented here. The calibration parameters, the position error coefficient (epsilon), and flow correction terms for the angle of attack (delta alpha), and angle of sideslip (delta beta) are derived from wind tunnel data. Statistical accuracy of' the calibration is evaluated by comparing the wind tunnel reference conditions to the airdata parameters estimated. This comparison is accomplished by applying the calibrated FADS algorithm to the sensed wind tunnel pressures. When the resulting accuracy estimates are compared to accuracy requirements for the X-33 airdata, the FADS system meets these requirements.
Landscape irrigation sprinklers are often installed at sites where the system pressure is higher than what is recommended for the sprinkler body, thus resulting in system inefficiencies. WaterSense labeled sprinkler bodies can address this problem.
Demodulation System for Fiber Optic Bragg Grating Dynamic Pressure Sensing
NASA Technical Reports Server (NTRS)
Lekki, John D.; Adamovsky, Grigory; Floyd, Bertram
2001-01-01
Fiber optic Bragg gratings have been used for years to measure quasi-static phenomena. In aircraft engine applications there is a need to measure dynamic signals such as variable pressures. In order to monitor these pressures a detection system with broad dynamic range is needed. This paper describes an interferometric demodulator that was developed and optimized for this particular application. The signal to noise ratio was maximized through temporal coherence analysis. The demodulator was incorporated in a laboratory system that simulates conditions to be measured. Several pressure sensor configurations incorporating a fiber optic Bragg grating were also explored. The results of the experiments are reported in this paper.
Pressure sensing element based on the BN-graphene-BN heterostructure
NASA Astrophysics Data System (ADS)
Li, Mengwei; Wu, Chenggen; Zhao, Shiliang; Deng, Tao; Wang, Junqiang; Liu, Zewen; Wang, Li; Wang, Gao
2018-04-01
In this letter, we report a pressure sensing element based on the graphene-boron nitride (BN) heterostructure. The heterostructure consists of monolayer graphene sandwiched between two layers of vertically stacked dielectric BN nanofilms. The BN layers were used to protect the graphene layer from oxidation and pollution. Pressure tests were performed to investigate the characteristics of the BN-graphene-BN pressure sensing element. A sensitivity of 24.85 μV/V/mmHg is achieved in the pressure range of 130-180 kPa. After exposing the BN-graphene-BN pressure sensing element to the ambient environment for 7 days, the relative resistance change in the pressure sensing element is only 3.1%, while that of the reference open-faced graphene device without the BN protection layers is 15.7%. Thus, this strategy is promising for fabricating practical graphene pressure sensors with improved performance and stability.
NASA Astrophysics Data System (ADS)
Phuong Pham, Viet; Triet Nguyen, Minh; Park, Jin Woo; Kwak, Sung Soo; Nguyen, Dieu Hien Thi; Kyeom Mun, Mu; Danh Phan, Hoang; San Kim, Doo; Kim, Ki Hyun; Lee, Nae-Eung; Yeom, Geun Young
2017-06-01
Pressure sensing is one of the key functions for smart electronics. Considerably more effort is required to achieve the fabrication of pressure sensors that can imitate and overcome the sophisticated pressure sensing characteristics in nature and industry, especially in the innovation of materials and structures. Almost all of the pressure sensors reported until now have a high sensitivity at a low-pressure detection limit (<10 kPa). While the exploration of a pressure sensor with a high sensitivity and a high responsivity at a high-pressure is challenging, it is required for next generation smart electronics. Here, we report an exotic heterostructure pressure sensor based on ZnO/chlorine radical-trap doped bilayer graphene (ZGClG) as an ideal channel for pressure sensors. Using this ZGClG as the channel, this study shows the possibility of forming a pressure sensor with a high sensitivity (0.19 kPa-1) and a high responsivity (0.575 s) at V = 1 V on glass substrate. Further, the pressure detection limit of this device was as high as 98 kPa. The investigation of the sensing mechanism under pressure has revealed that the significant improved sensing effect is related to the heavy p-type chlorine trap doping in the channel graphene with chlorine radicals without damaging the graphene. This work indicates that the ZGClG channel used for the pressure sensing device could also provide a simple and essential sensing platform for chemical-, medical-, and biological-sensing for future smart electronics.
Safety System for Controlling Fluid Flow into a Suction Line
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2018-01-01
A safety system includes a sleeve fitted within a pool's suction line at its inlet. The sleeve terminates with a plate that resides within the suction line. The plate has holes formed therethrough. A housing defining distinct channels is fitted in the sleeve so that the distinct channels lie within the sleeve. Each of the distinct channels has a first opening on one end thereof and a second opening on another end thereof. The second openings reside in the sleeve. The first openings are in fluid communication with the water in the pool, and are distributed around a periphery of an area of the housing that prevents coverage of all the first openings when a human interacts therewith. A first sensor is coupled to the sleeve to sense pressure therein, and a second pressure sensor is coupled to the plate to sense pressure in one of the plates' holes.
Proof Of Concept of Integrated Load Measurement in 3D Printed Structures
Hinderdael, Michael; Strantza, Maria; De Baere, Dieter; ...
2017-02-09
Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externallymore » mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain).« less
Proof Of Concept of Integrated Load Measurement in 3D Printed Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinderdael, Michael; Strantza, Maria; De Baere, Dieter
Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externallymore » mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain).« less
Proof of Concept of Integrated Load Measurement in 3D Printed Structures
Hinderdael, Michaël; Jardon, Zoé; Lison, Margot; De Baere, Dieter; Devesse, Wim; Strantza, Maria; Guillaume, Patrick
2017-01-01
Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externally mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain). PMID:28208779
Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires
NASA Astrophysics Data System (ADS)
Yao, Shanshan; Zhu, Yong
2014-01-01
Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ~1.2 MPa) and finger touch with high sensitivity, fast response time (~40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors have been demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of the knee joint in patellar reflex (knee-jerk) and other human motions such as walking, running and jumping from squatting, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels.Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ~1.2 MPa) and finger touch with high sensitivity, fast response time (~40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors have been demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of the knee joint in patellar reflex (knee-jerk) and other human motions such as walking, running and jumping from squatting, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05496a
Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactantmore » fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.« less
Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
2015-08-11
Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.
Ultrasoft Electronics for Hyperelastic Strain, Pressure, and Direct Curvature Sensing
NASA Astrophysics Data System (ADS)
Majidi, Carmel; Kramer, Rebecca; Wood, Robert
2011-03-01
Progress in soft robotics, wearable computing, and programmable matter demands a new class of ultrasoft electronics for tactile control, contact detection, and deformation mapping. This next generation of sensors will remain electrically functional under extreme deformation without influencing the natural mechanics of the host system. Ultrasoft strain and pressure sensing has previously been demonstrated with elastomer sheets (eg. PDMS, silicone rubber) embedded with microchannels of conductive liquid (mercury, eGaIn). Building on these efforts, we introduce a novel method for direct curvature sensing that registers the location and intensity of surface curvature. An elastomer sheet is embedded with micropatterned cavities and microchannels of conductive liquid. Bending the elastomer or placing it on a curved surface leads to a change in channel cross-section and a corresponding change in its electrical resistance. In contrast to conventional methods of curvature sensing, this approach does not depend on semi-rigid components or differential strain measurement. Direct curvature sensing completes the portfolio of sensing elements required to completely map hyperelastic deformation for future soft robotics and computing. NSF MRSEC DMR-0820484.
Sun, Chenglu; Li, Wei; Chen, Wei
2017-01-01
For extracting the pressure distribution image and respiratory waveform unobtrusively and comfortably, we proposed a smart mat which utilized a flexible pressure sensor array, printed electrodes and novel soft seven-layer structure to monitor those physiological information. However, in order to obtain high-resolution pressure distribution and more accurate respiratory waveform, it needs more time to acquire the pressure signal of all the pressure sensors embedded in the smart mat. In order to reduce the sampling time while keeping the same resolution and accuracy, a novel method based on compressed sensing (CS) theory was proposed. By utilizing the CS based method, 40% of the sampling time can be decreased by means of acquiring nearly one-third of original sampling points. Then several experiments were carried out to validate the performance of the CS based method. While less than one-third of original sampling points were measured, the correlation degree coefficient between reconstructed respiratory waveform and original waveform can achieve 0.9078, and the accuracy of the respiratory rate (RR) extracted from the reconstructed respiratory waveform can reach 95.54%. The experimental results demonstrated that the novel method can fit the high resolution smart mat system and be a viable option for reducing the sampling time of the pressure sensor array. PMID:28796188
Chronically implanted pressure sensors: challenges and state of the field.
Yu, Lawrence; Kim, Brian J; Meng, Ellis
2014-10-31
Several conditions and diseases are linked to the elevation or depression of internal pressures from a healthy, normal range, motivating the need for chronic implantable pressure sensors. A simple implantable pressure transduction system consists of a pressure-sensing element with a method to transmit the data to an external unit. The biological environment presents a host of engineering issues that must be considered for long term monitoring. Therefore, the design of such systems must carefully consider interactions between the implanted system and the body, including biocompatibility, surgical placement, and patient comfort. Here we review research developments on implantable sensors for chronic pressure monitoring within the body, focusing on general design requirements for implantable pressure sensors as well as specifications for different medical applications. We also discuss recent efforts to address biocompatibility, efficient telemetry, and drift management, and explore emerging trends.
Engineering a laser remote sensor for atmospheric pressure and temperature
NASA Technical Reports Server (NTRS)
Kalshoven, J. E., Jr.; Korb, C. L.
1978-01-01
A system for the remote sensing of atmospheric pressure and temperature is described. Resonant lines in the 7600 Angstrom oxygen A band region are used and an organic dye laser beam is tuned to measure line absorption changes with temperature or pressure. A reference beam outside this band is also transmitted for calibration. Using lidar techniques, profiling of these parameters with altitude can be accomplished.
Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin
2015-03-24
A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.
Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub
2018-04-24
Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.
EIT-Based Fabric Pressure Sensing
Yao, A.; Yang, C. L.; Seo, J. K.; Soleimani, M.
2013-01-01
This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results. PMID:23533538
Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; Di, Chong-an; Zhu, Daoben
2015-09-21
Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa(-1). More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.
NASA Astrophysics Data System (ADS)
Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; di, Chong-An; Zhu, Daoben
2015-09-01
Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa-1. More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.
Wu, Chueh-Yu; Lu, Jau-Ching; Liu, Man-Chi; Tung, Yi-Chung
2012-10-21
Microfluidic technology plays an essential role in various lab on a chip devices due to its desired advantages. An automated microfluidic system integrated with actuators and sensors can further achieve better controllability. A number of microfluidic actuation schemes have been well developed. In contrast, most of the existing sensing methods still heavily rely on optical observations and external transducers, which have drawbacks including: costly instrumentation, professional operation, tedious interfacing, and difficulties of scaling up and further signal processing. This paper reports the concept of electrofluidic circuits - electrical circuits which are constructed using ionic liquid (IL)-filled fluidic channels. The developed electrofluidic circuits can be fabricated using a well-developed multi-layer soft lithography (MSL) process with polydimethylsiloxane (PDMS) microfluidic channels. Electrofluidic circuits allow seamless integration of pressure sensors with analog and digital operation functions into microfluidic systems and provide electrical readouts for further signal processing. In the experiments, the analog operation device is constructed based on electrofluidic Wheatstone bridge circuits with electrical outputs of the addition and subtraction results of the applied pressures. The digital operation (AND, OR, and XOR) devices are constructed using the electrofluidic pressure controlled switches, and output electrical signals of digital operations of the applied pressures. The experimental results demonstrate the designed functions for analog and digital operations of applied pressures are successfully achieved using the developed electrofluidic circuits, making them promising to develop integrated microfluidic systems with capabilities of precise pressure monitoring and further feedback control for advanced lab on a chip applications.
Whispering gallery resonators for optical sensing
NASA Astrophysics Data System (ADS)
Madugani, Ramgopal; Kasumie, Sho; Yang, Yong; Ward, Jonathan; Lei, Fuchuan; Nic Chormaic, Síle
2017-04-01
In recent years, whispering gallery mode devices have extended their functionality across a number of research fields from photonics to sensing applications. Here, we will discuss environmental sensing applications, such as pressure, flow, and temperature using ultrahigh Q-factor microspheres fabricated from ultrathin optical fiber and microbubbles fabricated from pretapered glass capillary. We will discuss device fabrication and the different types of sensing that can be pursued using such systems. Finally, we will introduce the concept of using cavity ring-up spectroscopy to perform dispersive transient sensing, whereby a perturbation to the environment leads to a frequency mode shift, and dissipative transient sensing, which can lead to broadening of the mode, in a whispering gallery mode resonator.
1989-02-01
INDICATOR pPOST-FILTERED VITER RPUESIC POST-FILTRATION POLYMER SOLUTION MCUUM BREAKER FILTRATION POLYMER D*+RENTALkL PRESSURE SWITCH FEED PUMPS POLYMER...differential pressure switch signals the need for backwash of the operating filter. At this time, flow is S automatically switched to the standby filter...filter is undergoing backwash or on standby. High differential pressure across the filter bed, as sensed by a differential pressure switch , signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the second six months of the Phase 2 of this project were to conduct first time experimental studies using optical designs and some initial hardware developed in the first 6 months of Phase 2. One focus is to modify the SiC chip optical properties to enable gas species sensing with a specific gas species under high temperature and pressure. The goal was to acquire sensing test data using two example inert and safe gases and show gas discrimination abilities. A high pressure gas mixing chamber was to be designed and assembled to achieve the mentioned gas sensingmore » needs. Another goal was to initiate high temperature probe design by developing and testing a probe design that leads to accurately measuring the thickness of the deployed SiC sensor chip to enable accurate overall sensor system design. The third goal of this phase of the project was to test the SiC chip under high pressure conditions using the earlier designed calibration cell to enable it to act as a pressure sensor when doing gas detection. In this case, experiments using a controlled pressure system were to deliver repeatable pressure measurement data. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs or schematics of the fabricated hardware are provided. Experimental data from the three optical sensor systems (i.e., Thickness, pressure, and gas species) is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.« less
Design and implementation of sensor systems for control of a closed-loop life support system
NASA Technical Reports Server (NTRS)
Alnwick, Leslie; Clark, Amy; Debs, Patricia; Franczek, Chris; Good, Tom; Rodrigues, Pedro
1989-01-01
The sensing and controlling needs for a Closed-Loop Life Support System (CLLSS) were investigated. The sensing needs were identified in five particular areas and the requirements were defined for workable sensors. The specific areas of interest were atmosphere and temperature, nutrient delivery, plant health, plant propagation and support, and solids processing. The investigation of atmosphere and temperature control focused on the temperature distribution within the growth chamber as well as the possibility for sensing other parameters such as gas concentration, pressure, and humidity. The sensing needs were studied for monitoring the solution level in a porous membrane material along with the requirements for measuring the mass flow rate in the delivery system. The causes and symptoms of plant disease were examined and the various techniques for sensing these health indicators were explored. The study of sensing needs for plant propagation and support focused on monitoring seed viability and measuring seed moisture content as well as defining the requirements for drying and storing the seeds. The areas of harvesting, food processing, and resource recycling, were covered with a main focus on the sensing possibilities for regulating the recycling process.
Application of a flush airdata sensing system to a wing leading edge (LE-FADS)
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Czerniejewski, Mark W.; Nichols, Douglas A.
1993-01-01
This paper investigates the feasibility of locating a flush air-data sensing (FADS) system on a wing leading edge where the operation of the avionics or fire control radar system will not be hindered. The leading-edge FADS system (LE-FADS) was installed on an unswept symmetrical airfoil, and a series of low-speed wind-tunnel tests were conducted to evaluate the performance of the system. As a result of the tests it is concluded that the aerodynamic models formulated for use on aircraft nosetips are directly applicable to wing leading edges and that the calibration process is similar. Furthermore, the agreement between the air-data calculations for angle of attack and total pressure from the LE-FADS and known wind-tunnel values suggest that wing-based flush air-data systems can be calibrated to a high degree of accuracy. Static wind-tunnel tests for angles of attack from -50 to 50 deg and dynamic pressures from 3.6 to 11.4 lb/sq ft were performed.
Design and development of the Waukesha Custom Engine Control Air/Fuel Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, D.W.
1996-12-31
The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less
Application of a Flush Airdata Sensing System to a Wing Leading Edge (LE-FADS)
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Czerniejewski, Mark W.; Nichols, Douglas A.
1993-01-01
The feasibility of locating a flush airdata sensing (FADS) system on a wing leading edge where the operation of the avionics or fire control radar system will not be hindered is investigated. The leading-edge FADS system (LE-FADS) was installed on an unswept symmetrical airfoil and a series of low-speed wind-tunnel tests were conducted to evaluate the performance of the system. As a result of the tests it is concluded that the aerodynamic models formulated for use on aircraft nosetips are directly applicable to wing leading edges and that the calibration process is similar. Furthermore, the agreement between the airdata calculations for angle of attack and total pressure from the LE-FADS and known wind-tunnel values suggest that wing-based flush airdata systems can be calibrated to a high degree of accuracy. Static wind-tunnel tests for angles of attack from -50 deg to 50 deg and dynamic pressures from 3.6 to 11.4 lb/sq ft were performed.
Research on distributed optical fiber sensing data processing method based on LabVIEW
NASA Astrophysics Data System (ADS)
Li, Zhonghu; Yang, Meifang; Wang, Luling; Wang, Jinming; Yan, Junhong; Zuo, Jing
2018-01-01
The pipeline leak detection and leak location problem have gotten extensive attention in the industry. In this paper, the distributed optical fiber sensing system is designed based on the heat supply pipeline. The data processing method of distributed optical fiber sensing based on LabVIEW is studied emphatically. The hardware system includes laser, sensing optical fiber, wavelength division multiplexer, photoelectric detector, data acquisition card and computer etc. The software system is developed using LabVIEW. The software system adopts wavelet denoising method to deal with the temperature information, which improved the SNR. By extracting the characteristic value of the fiber temperature information, the system can realize the functions of temperature measurement, leak location and measurement signal storage and inquiry etc. Compared with traditional negative pressure wave method or acoustic signal method, the distributed optical fiber temperature measuring system can measure several temperatures in one measurement and locate the leak point accurately. It has a broad application prospect.
Implantable ultra-low pulmonary pressure monitoring system for fetal surgery.
Etemadi, Mozziyar; Heller, J Alex; Schecter, Samuel C; Shue, Eveline H; Miniati, Doug; Roy, Shuvo
2012-11-01
Congenital pulmonary hypoplasia is a devastating condition affecting fetal and newborn pulmonary physiology, resulting in great morbidity and mortality. The fetal lung develops in a fluid-filled environment. In this work, we describe a novel, implantable pressure sensing and recording device which we use to study the pressures present in the fetal pulmonary tree throughout gestation. The system achieves 0.18 cm H2O resolution and can record for twenty one days continuously at 256 Hz. Sample tracings of in vivo fetal lamb recordings are shown.
Flow-rate independent gas-mixing system for drift chambers, using solenoid valves
NASA Astrophysics Data System (ADS)
Sugano, K.
1991-03-01
We describe an inexpensive system for mixing argon and ethane gas for drift chambers which was used for an experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow-rate independent without readjustments. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running.
NASA Astrophysics Data System (ADS)
Skinner, Neal G.; Maida, John L.
2014-06-01
For almost three decades, interest has continued to increase with respect to the application of fiber-optic sensing techniques for the upstream oil and gas industry. This paper reviews optical sensing technologies that have been and are being adopted downhole, as well as their drivers. A brief description of the life of a well, from the cradle to the grave, and the roles fiber-optic sensing can play in optimizing production, safety, and protection of the environment are also presented. The performance expectations (accuracy, resolution, stability, and operational lifetime) that oil companies and oil service companies have for fiber-optic sensing systems is described. Additionally, the environmental conditions (high hydrostatic pressures, high temperatures, shock, vibration, crush, and chemical exposure) that these systems must tolerate to provide reliable and economically attractive oilfield monitoring solutions are described.
NASA Astrophysics Data System (ADS)
Stam, Frank; Kuisma, Heikki; Gao, Feng; Saarilahti, Jaakko; Gomes Martins, David; Kärkkäinen, Anu; Marrinan, Brendan; Pintal, Sebastian
2017-05-01
The deadliest disease in the world is coronary artery disease (CAD), which is related to a narrowing (stenosis) of blood vessels due to fatty deposits, plaque, on the arterial walls. The level of stenosis in the coronary arteries can be assessed by Fractional Flow Reserve (FFR) measurements. This involves determining the ratio between the maximum achievable blood flow in a diseased coronary artery and the theoretical maximum flow in a normal coronary artery. The blood flow is represented by a pressure drop, thus a pressure wire or pressure sensor integrated in a catheter can be used to calculate the ratio between the coronary pressure distal to the stenosis and the normal coronary pressure. A 2 Fr (0.67mm) outer diameter catheter was used, which required a high level of microelectronics miniaturisation to fit a pressure sensing system into the outer wall. The catheter has an eccentric guidewire lumen with a diameter of 0.43mm, which implies that the thickest catheter wall section provides less than 210 microns height for flex assembly integration consisting of two dies, a capacitive MEMS pressure sensor and an ASIC. In order to achieve this a very thin circuit flex was used, and the two chips were thinned down to 75 microns and flip chip mounted face down on the flex. Many challenges were involved in obtaining a flex layout that could wrap into a small tube without getting the dies damaged, while still maintaining enough flexibility for the catheter to navigate the arterial system.
In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array.
Shu, Lin; Hua, Tao; Wang, Yangyong; Qiao Li, Qiao; Feng, David Dagan; Tao, Xiaoming
2010-05-01
Spatial and temporal plantar pressure distributions are important and useful measures in footwear evaluation, athletic training, clinical gait analysis, and pathology foot diagnosis. However, present plantar pressure measurement and analysis systems are more or less uncomfortable to wear and expensive. This paper presents an in-shoe plantar pressure measurement and analysis system based on a textile fabric sensor array, which is soft, light, and has a high-pressure sensitivity and a long service life. The sensors are connected with a soft polymeric board through conductive yarns and integrated into an insole. A stable data acquisition system interfaces with the insole, wirelessly transmits the acquired data to remote receiver through Bluetooth path. Three configuration modes are incorporated to gain connection with desktop, laptop, or smart phone, which can be configured to comfortably work in research laboratories, clinics, sport ground, and other outdoor environments. A real-time display and analysis software is presented to calculate parameters such as mean pressure, peak pressure, center of pressure (COP), and shift speed of COP. Experimental results show that this system has stable performance in both static and dynamic measurements.
Multifuctional integrated sensors (MFISES).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homeijer, Brian D.; Roozeboom, Clifton
2015-10-01
Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and themore » real world applications of the sensors systems.« less
Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring.
Majerus, Steve J A; Garverick, Steven L; Suster, Michael A; Fletter, Paul C; Damaser, Margot S
2012-06-01
The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μ A from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session.
Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring
MAJERUS, STEVE J. A.; GARVERICK, STEVEN L.; SUSTER, MICHAEL A.; FLETTER, PAUL C.; DAMASER, MARGOT S.
2015-01-01
The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μA from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session. PMID:26778926
Battery management systems with thermally integrated fire suppression
Bandhauer, Todd M.; Farmer, Joseph C.
2017-07-11
A thermal management system is integral to a battery pack and/or individual cells. It relies on passive liquid-vapor phase change heat removal to provide enhanced thermal protection via rapid expulsion of inert high pressure refrigerant during abnormal abuse events and can be integrated with a cooling system that operates during normal operation. When a thermal runaway event occurs and sensed by either active or passive sensors, the high pressure refrigerant is preferentially ejected through strategically placed passages within the pack to rapidly quench the battery.
Chronically Implanted Pressure Sensors: Challenges and State of the Field
Yu, Lawrence; Kim, Brian J.; Meng, Ellis
2014-01-01
Several conditions and diseases are linked to the elevation or depression of internal pressures from a healthy, normal range, motivating the need for chronic implantable pressure sensors. A simple implantable pressure transduction system consists of a pressure-sensing element with a method to transmit the data to an external unit. The biological environment presents a host of engineering issues that must be considered for long term monitoring. Therefore, the design of such systems must carefully consider interactions between the implanted system and the body, including biocompatibility, surgical placement, and patient comfort. Here we review research developments on implantable sensors for chronic pressure monitoring within the body, focusing on general design requirements for implantable pressure sensors as well as specifications for different medical applications. We also discuss recent efforts to address biocompatibility, efficient telemetry, and drift management, and explore emerging trends. PMID:25365461
Dynamic tire pressure sensor for measuring ground vibration.
Wang, Qi; McDaniel, James Gregory; Wang, Ming L
2012-11-07
This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.
Dynamic Tire Pressure Sensor for Measuring Ground Vibration
Wang, Qi; McDaniel, James Gregory; Wang, Ming L.
2012-01-01
This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application. PMID:23202206
NASA Astrophysics Data System (ADS)
1990-01-01
System 8400 is an advanced system for measurement of gas and liquid pressure, along with a variety of other parameters, including voltage, frequency and digital inputs. System 8400 offers exceptionally high speed data acquisition through parallel processing, and its modular design allows expansion from a relatively inexpensive entry level system by the addition of modular Input Units that can be installed or removed in minutes. Douglas Juanarena was on the team of engineers that developed a new technology known as ESP (electronically scanned pressure). The Langley ESP measurement system was based on miniature integrated circuit pressure-sensing transducers that communicated pressure information to a minicomputer. In 1977, Juanarena formed PSI to exploit the NASA technology. In 1978 he left Langley, obtained a NASA license for the technology, introduced the first commercial product, the 780B pressure measurement system. PSI developed a pressure scanner for automation of industrial processes. Now in its second design generation, the DPT-6400 is capable of making 2,000 measurements a second and has 64 channels by addition of slave units. New system 8400 represents PSI's bid to further exploit the 600 million U.S. industrial pressure measurement market. It is geared to provide a turnkey solution to physical measurement.
Distributed multifunctional sensor network for composite structural state sensing
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Wang, Yishou; Gao, Limin; Kumar, Amrita
2012-04-01
Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and strong designability. In order to take full advantages of composite materials, there is a need to develop an embeddable multifunctional sensing system to allow a structure to "feel" and "think" its structural state. In this paper, the concept of multifunctional sensor network integrated with a structure, similar to the human nervous system, has been developed. Different types of network sensors are permanently integrated within a composite structure to sense structural strain, temperature, moisture, aerodynamic pressure; monitor external impact on the structure; and detect structural damages. Utilizing this revolutionary concept, future composite structures can be designed and manufactured to provide multiple modes of information, so that the structures have the capabilities for intelligent sensing, environmental adaptation and multi-functionality. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the paper.
Zhang, Huixin; Hong, Yingping; Liang, Ting; Zhang, Hairui; Tan, Qiulin; Xue, Chenyang; Liu, Jun; Zhang, Wendong; Xiong, Jijun
2015-01-01
A wireless passive pressure measurement system for an 800 °C high-temperature environment is proposed and the impedance variation caused by the mutual coupling between a read antenna and a LC resonant sensor is analyzed. The system consists of a ceramic-based LC resonant sensor, a readout device for impedance phase interrogation, heat insulating material, and a composite temperature-pressure test platform. Performances of the pressure sensor are measured by the measurement system sufficiently, including pressure sensitivity at room temperature, zero drift from room temperature to 800 °C, and the pressure sensitivity under the 800 °C high temperature environment. The results show that the linearity of sensor is 0.93%, the repeatability is 6.6%, the hysteretic error is 1.67%, and the sensor sensitivity is 374 KHz/bar. The proposed measurement system, with high engineering value, demonstrates good pressure sensing performance in a high temperature environment. PMID:25690546
NASA Technical Reports Server (NTRS)
Whitmore, Stephen R.; Moes, Timothy R.
1991-01-01
The accuracy of a prototype nonintrusive airdata system derived for high-angle-of-attack measurements was demonstrated for quasi-steady maneuvers as great as 55 degrees during phase one of the F-18 high alpha research vehicle flight test program. This system consists of a matrix of nine pressure ports arranged in annular rings on the aircraft nose, and estimates the complete airdata set utilizing flow modeling and nonlinear regression. Particular attention is paid to the effects of acoustical distortions within the individual pressure sensors of the HI-FADS pressure matrix. A dynamic model to quantify these effects which describes acoustical distortion is developed and solved in closed form for frequency response.
Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Zorman, Christian A.
2016-01-01
This paper describes the development of a packaged silicon carbide (SiC) based MEMS pressure sensor system designed specifically for a conventional turbofan engine. The electronic circuit is based on a Clapp-type oscillator that incorporates a 6H-SiC MESFET, a SiCN MEMS capacitive pressure sensor, titanate MIM capacitors, wirewound inductors, and thick film resistors. The pressure sensor serves as the capacitor in the LC tank circuit, thereby linking pressure to the resonant frequency of the oscillator. The oscillator and DC bias circuitry were fabricated on an alumina substrate and secured inside a metal housing. The packaged sensing system reliably operates at 0 to 350 psi and 25 to 540C. The system has a pressure sensitivity of 6.8 x 10E-2 MHzpsi. The packaged system shows negligible difference in frequency response between 25 and 400C. The fully packaged sensor passed standard benchtop acceptance tests and was evaluated on a flight-worthy engine.
NASA Astrophysics Data System (ADS)
Zienkiewicz, Aleksandra; Huotari, Niko; Raitamaa, Lauri; Raatikainen, Ville; Ferdinando, Hany; Vihriälä, Erkki; Korhonen, Vesa; Myllylä, Teemu; Kiviniemi, Vesa
2017-03-01
The lymph system is responsible for cleaning the tissues of metabolic waste products, soluble proteins and other harmful fluids etc. Lymph flow in the body is driven by body movements and muscle contractions. Moreover, it is indirectly dependent on the cardiovascular system, where the heart beat and blood pressure maintain force of pressure in lymphatic channels. Over the last few years, studies revealed that the brain contains the so-called glymphatic system, which is the counterpart of the systemic lymphatic system in the brain. Similarly, the flow in the glymphatic system is assumed to be mostly driven by physiological pulsations such as cardiovascular pulses. Thus, continuous measurement of blood pressure and heart function simultaneously with functional brain imaging is of great interest, particularly in studies of the glymphatic system. We present our MRI compatible optics based sensing system for continuous blood pressure measurement and show our current results on the effects of blood pressure variations on cerebral brain dynamics, with a focus on the glymphatic system. Blood pressure was measured simultaneously with near-infrared spectroscopy (NIRS) combined with an ultrafast functional brain imaging (fMRI) sequence magnetic resonance encephalography (MREG, 3D brain 10 Hz sampling rate).
Robust, Brillouin Active Embedded Fiber-Is-The-Sensor System in Smart Composite Structures
NASA Technical Reports Server (NTRS)
Yu, Chung
1996-01-01
Extensive review of our proposed sensing scheme, based mainly on the forward Guided Acoustic Wave Brillouin Scattering (GAWBS) with backward stimulated Brillouin scattering (sBs) as an auxiliary scheme for system fault tolerance has been completed during this project period. This preliminary study is conducted for a number of reasons. The most significant reasons lie in the essential capability of the system to measure temperature and pressure. These two measurands have been proposed to be sensed by sBs in our proposal. Temperature and pressure/strain are important measurands in structural monitoring, so that the effectiveness of sensing by sBs needs to be further examined. It has been pointed out initially that sBs shift will be dependent on temperature and pressure/strain simultaneously. The shift versus temperature or strain is linear. Now, the question is how can these two measurands be separated when sBs is used to sense an environment, in which both temperature and strain are changing simultaneously. Typical sBs shift plotted versus strain and varying temperature is shown in Fig. 1. As is clear, a fiber initially stressed will relax with rising temperature. This is verified by a displacement to the right with rising temperature of the sBs shift vs strain curves in the figure. A way to circumvent this ambiguity is by employing two fibers, one pre-stressed and the other is a free fiber. The latter will measure temperature and subtracting data in the latter fiber from those of the former will give us net strain readings. This is a laborious approach, since it involves the use of two identical fibers, and this is hard to accomplish, especially when many sensors are needed. Additional multiplexing of the data stream for data subtraction becomes a necessity.
A quantitative estimate of eastern Washington annual haul road needs for wheat and barley movements
DOT National Transportation Integrated Search
1995-03-01
The Washington state transportation system is under pressure, physically and financially. Railroad abandonment, waterway drawdown and road deterioration all contribute to a sense of urgency in detailing the needs of that system. The overall purpose o...
NASA Technical Reports Server (NTRS)
Daso, Endwell O. (Inventor); Pritchett, II, Victor E. (Inventor); Wang, Ten-See (Inventor); Farr, Rebecca Ann (Inventor)
2012-01-01
The upstream flowfield of a vehicle traveling in supersonic or hypersonic atmospheric flight is actively controlled using attribute(s) experienced by the vehicle. Sensed attribute(s) include pressure along the vehicle's outer mold line, temperature along the vehicle's outer mold line, heat flux along the vehicle's outer mold line, and/or local acceleration response of the vehicle. A non-heated, non-plasma-producing gas is injected into an upstream flowfield of the vehicle from at least one surface location along the vehicle's outer mold line. The pressure of the gas so-injected is adjusted based on the attribute(s) so-sensed.
NASA Astrophysics Data System (ADS)
Chen, Ying; Yu, Miao; Bruck, Hugh A.; Smela, Elisabeth
2018-06-01
To allow robots to interact with humans via touch, new sensing concepts are needed that can detect a wide range of potential interactions and cover the body of a robot. In this paper, a skin-inspired multi-layer tactile sensing architecture is presented and characterized. The structure consists of stretchable piezoresistive strain-sensing layers over foam layers of different stiffness, allowing for both sufficient sensitivity and pressure range for human contacts. Strip-shaped sensors were used in this architecture to produce a deformation response proportional to pressure. The roles of the foam layers were elucidated by changing their stiffness and thickness, allowing the development of a geometric model to account for indenter interactions with the structure. The advantage of this architecture over other approaches is the ability to easily tune performance by adjusting the stiffness or thickness of the foams to tailor the response for different applications. Since viscoelastic materials were used, the temporal effects were also investigated.
ERIC Educational Resources Information Center
Saltrick, Susan
2010-01-01
Schools and school leaders today contend with a dizzying array of demands, including the need to comply with high-stakes accountability systems. The ability to make sense of these multiple pressures and guide the school to craft an appropriate organizational response is an important but little-understood aspect of school leadership (Firestone…
Fuel cell system shutdown with anode pressure control
Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.
2002-01-01
A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.
Atmospheric simulator and calibration system for remote sensing radiometers
NASA Technical Reports Server (NTRS)
Holland, J. A.
1983-01-01
A system for calibrating the MAPS (measurement of air pollution from satellites) instruments was developed. The design of the system provides a capability for simulating a broad range of radiant energy source temperatures and a broad range of atmospheric pressures, temperatures, and pollutant concentrations for a single slab atmosphere. The system design and the system operation are described.
Apparatus for controlling air/fuel ratio for internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, K.; Mizuno, T.
1986-07-08
This patent describes an apparatus for controlling air-fuel ratio of an air-fuel mixture to be supplied to an internal combustion engine having an intake passage, an exhaust passage, an an exhaust gas recirculation passage for recirculating exhaust gases in the exhaust passage to the intake passage therethrough. The apparatus consists of: (a) means for sensing rotational speed of the engine; (b) means for sensing intake pressure in the intake passage; (c) means for sensing atmospheric pressure; (d) means for enabling and disabling exhaust gas recirculation through the exhaust gas recirculation passage in accordance with operating condition of the engine; (e)more » means for determining required amount of fuel in accordance with the sensed rotational speed and the sensed intake pressure; (f) means for determining, when the exhaust gas recirculation is enabled, a first correction value in accordance with the sensed rotational speed, the sensed intake pressure and the sensed atmospheric pressure, the first correction factor being used for correcting fuel amount so as to compensate for the decrease of fuel due to the performance of exhaust gas recirculation and also to compensate for the change in atmospheric pressure; (g) means for determining, when the exhaust gas recirculation is disabled, a second correction value in accordance with the atmospheric pressure, the second correction factor being used so as to compensate for the change in atmospheric pressure; (h) means for correcting the required amount of fuel by the first correction value and the second correction value when the exhaust gas recirculation is enabled and disabled respectively; and (i) means for supplying the engine with the corrected amount of fuel.« less
NASA Technical Reports Server (NTRS)
Bard, Steven (Inventor); Wu, Jiunn-Jeng (Inventor); Trimble, Curtis A. (Inventor)
1992-01-01
A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.
NASA Astrophysics Data System (ADS)
Bard, Steven; Wu, Jiunn-Jeng; Trimble, Curtis A.
1992-06-01
A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.
Variable pressure power cycle and control system
Goldsberry, Fred L.
1984-11-27
A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.
Blood-Pressure Measuring System Gives Accurate Graphic Output
NASA Technical Reports Server (NTRS)
1965-01-01
The problem: To develop an instrument that will provide an external (indirect) measurement of arterial blood pressure in the form of an easily interpreted graphic trace that can be correlated with standard clinical blood-pressure measurements. From sphygmograms produced by conventional sphygmographs, it is very difficult to differentiate the systolic and diastolic blood-pressure pulses and to correlate these indices with the standard clinical values. It is nearly impossible to determine these indices when the subject is under physical or emotional stress. The solution: An electronic blood-pressure system, basically similar to conventional ausculatory sphygmomanometers, employing a standard occluding cuff, a gas-pressure source, and a gas-pressure regulator and valve. An electrical output transducer senses cuff pressure, and a microphone positioned on the brachial artery under the occluding cuff monitors the Korotkoff sounds from this artery. The output signals present the conventional systolic and diastolic indices in a clear, graphical display. The complete system also includes an electronic timer and cycle-control circuit.
Liquid crystalline fiber optic colorimeter for hydrostatic pressure measurement
NASA Astrophysics Data System (ADS)
Wolinski, Tomasz R.; Bajdecki, Waldemar K.; Domanski, Andrzej W.; Karpierz, Miroslaw A.; Konopka, Witold; Nasilowski, T.; Sierakowski, Marek W.; Swillo, Marcin; Dabrowski, Roman S.; Nowinowski-Kruszelnicki, Edward; Wasowski, Janusz
2001-08-01
This paper presents results of tests performed on a fiber optic system of liquid crystalline transducer for hydrostatic pressure monitoring based on properties of colorimetry. The system employs pressure-induced deformations occurring in liquid crystalline (LC) cells configured in a homogeneous Frederiks geometry. The sensor is compared of a round LC cell placed inside a specially designed pressure chamber. As a light source we used a typical diode operating at red wavelength and modulated using standard techniques. The pressure transducer was connected to a computer with a specially designed interface built on the bas of advanced ADAM modules. Results indicate that the system offers high response to pressure with reduced temperature sensitivity and, depending on the LC cell used, can be adjusted for monitoring of low hydrostatic pressures up to 6 MPa. These studies have demonstrated the feasibility of fiber optic liquid crystal colorimeter for hydrostatic pressure sensing specially dedicated to pipe- lines, mining instrumentation, and process-control technologies.
A high-resolution superconducting pressure control system for use at low temperatures
NASA Astrophysics Data System (ADS)
Geng, Z. K.; Swanson, D. R.; Nissen, J. A.; Lipa, J. A.
2000-01-01
We have developed a high resolution superconducting pressure gauge and controller system capable of stabilizing pressure to within +/-10-8 bar in the range 0-30 bars at temperatures below about 6K. The system consists of two parts: a transducer and a pressure actuator. The transducer is based on the inductive sensing of the position of a diaphragm using superconducting techniques. A rod attached to the center of the diaphragm supports a superconducting plate which is in close proximity to a flat, spiral superconducting coil. A persistent current of about 1 A is trapped in the coil and is coupled to a dc SQUID magnetometer. The magnetometer produces a partially digitized dc output proportional to the change of pressure applied to the diaphragm. Because of the ability of the magnetometer to count magnetic flux quanta, an extremely wide dynamic range can be achieved with high sensitivity and repeatability. The transducer was used to control the pressure of a sample of liquid helium at temperatures near 2 K and pressures from 1-25 bars. The actuator consisted of two parts: a thermally isolated chamber filled with 3He that could be heated and cooled as desired over the range 1.5 to 10 K, and a beryllium-copper diaphragm assembly. This diaphragm had the 3He on one side and the sample helium on the other. A simple servomechanism was used to convert the output signal from the magnetometer to heat applied to the 3He chamber. The system has been operated routinely over the full range of pressures and so far no significant drift has been detected. It is somewhat sensitive to vibration and EMI, but otherwise appears quite robust. Plans have been made to improve the shielding to reduce the EMI susceptibility. The vibration sensitivity can be reduced by making use of a pair of pressure sensing diaphragms acting in opposite directions. .
Fluid dynamic modelling of renal pelvic pressure during endoscopic stone removal
NASA Astrophysics Data System (ADS)
Oratis, Alexandros; Subasic, John; Bird, James; Eisner, Brian
2015-11-01
Endoscopic kidney stone removal procedures are known to increase internal pressure in the renal pelvis, the kidney's urinary collecting system. High renal pelvic pressure incites systemic absorption of irrigation fluid, which can increase the risk of postoperative fever and sepsis or the unwanted absorption of electrolytes. Urologists choose the appropriate surgical procedure based on patient history and kidney stone size. However, no study has been conducted to compare the pressure profiles of each procedure, nor is there a precise sense of how the renal pelvic pressure scales with various operational parameters. Here we develop physical models for the flow rates and renal pelvic pressure for various procedures. We show that the results of our models are consistent with existing urological data on each procedure and that the models can predict pressure profiles where data is unavailable.
Hochman, Mark N
2007-04-01
This article will review standard techniques for intraligamentary injection and describe the technology and technique behind a new single-tooth anesthesia system. This system and technique represents a technological advancement and a greater understanding of intraligamentary anesthesia.
Fiber optic sensing technology for detecting gas hydrate formation and decomposition.
Rawn, C J; Leeman, J R; Ulrich, S M; Alford, J E; Phelps, T J; Madden, M E
2011-02-01
A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH(4)-H(2)O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments.
Fiber optic sensing technology for detecting gas hydrate formation and decomposition
NASA Astrophysics Data System (ADS)
Rawn, C. J.; Leeman, J. R.; Ulrich, S. M.; Alford, J. E.; Phelps, T. J.; Madden, M. E.
2011-02-01
A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH4-H2O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments.
Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity.
Cho, Sung Hwan; Lee, Seung Won; Yu, Seunggun; Kim, Hyeohn; Chang, Sooho; Kang, Donyoung; Hwang, Ihn; Kang, Han Sol; Jeong, Beomjin; Kim, Eui Hyuk; Cho, Suk Man; Kim, Kang Lib; Lee, Hyungsuk; Shim, Wooyoung; Park, Cheolmin
2017-03-22
The development of pressure sensors that are effective over a broad range of pressures is crucial for the future development of electronic skin applicable to the detection of a wide pressure range from acoustic wave to dynamic human motion. Here, we present flexible capacitive pressure sensors that incorporate micropatterned pyramidal ionic gels to enable ultrasensitive pressure detection. Our devices show superior pressure-sensing performance, with a broad sensing range from a few pascals up to 50 kPa, with fast response times of <20 ms and a low operating voltage of 0.25 V. Since high-dielectric-constant ionic gels were employed as constituent sensing materials, an unprecedented sensitivity of 41 kPa -1 in the low-pressure regime of <400 Pa could be realized in the context of a metal-insulator-metal platform. This broad-range capacitive pressure sensor allows for the efficient detection of pressure from a variety of sources, including sound waves, a lightweight object, jugular venous pulses, radial artery pulses, and human finger touch. This platform offers a simple, robust approach to low-cost, scalable device design, enabling practical applications of electronic skin.
Novel remote sensor systems: design, prototyping, and characterization
NASA Astrophysics Data System (ADS)
Kayastha, V.; Gibbons, S.; Lamb, J. E.; Giedd, R. E.
2014-06-01
We have designed and tested a prototype TRL4 radio-frequency (RF) sensing platform containing a transceiver that interrogates a passive carbon nanotube (CNT)-based sensor platform. The transceiver can be interfaced to a server technology such as a Bluetooth® or Wi-Fi device for further connectivity. The novelty of a very-low-frequency (VLF) implementation in the transceiver design will ultimately enable deep penetration into the ground or metal structures to communicate with buried sensing platforms. The sensor platform generally consists of printed electronic devices made of CNTs on flexible poly(ethylene terephthalate) (PET) and Kapton® substrates. This novel remote sensing system can be integrated with both passive and active sensing platforms. It offers unique characteristics suitable for a variety of sensing applications. The proposed sensing platforms can take on different form factors and the RF output of the sensing platforms could be modulated by humidity, temperature, pressure, strain, or vibration signals. Resonant structures were designed and constructed to operate in the very-high-frequency (VHF) and VLF ranges. In this presentation, we will report results of our continued effort to develop a commercially viable transceiver capable of interrogating the conformally mounted sensing platforms made from CNTs or silver-based nanomaterials on polyimide substrates over a broad range of frequencies. The overall performance of the sensing system with different sensing elements and at different frequency ranges will be discussed.
Research on the Sensing Performance of the Tuning Fork-Probe as a Micro Interaction Sensor
Gao, Fengli; Li, Xide
2015-01-01
The shear force position system has been widely used in scanning near-field optical microscopy (SNOM) and recently extended into the force sensing area. The dynamic properties of a tuning fork (TF), the core component of this system, directly determine the sensing performance of the shear positioning system. Here, we combine experimental results and finite element method (FEM) analysis to investigate the dynamic behavior of the TF probe assembled structure (TF-probe). Results from experiments under varying atmospheric pressures illustrate that the oscillation amplitude of the TF-probe is linearly related to the quality factor, suggesting that decreasing the pressure will dramatically increase the quality factor. The results from FEM analysis reveal the influences of various parameters on the resonant performance of the TF-probe. We compared numerical results of the frequency spectrum with the experimental data collected by our recently developed laser Doppler vibrometer system. Then, we investigated the parameters affecting spatial resolution of the SNOM and the dynamic response of the TF-probe under longitudinal and transverse interactions. It is found that the interactions in transverse direction is much more sensitive than that in the longitudinal direction. Finally, the TF-probe was used to measure the friction coefficient of a silica–silica interface. PMID:26404310
A computerized Langmuir probe system
NASA Astrophysics Data System (ADS)
Pilling, L. S.; Bydder, E. L.; Carnegie, D. A.
2003-07-01
For low pressure plasmas it is important to record entire single or double Langmuir probe characteristics accurately. For plasmas with a depleted high energy tail, the accuracy of the recorded ion current plays a critical role in determining the electron temperature. Even for high density Maxwellian distributions, it is necessary to accurately model the ion current to obtain the correct electron density. Since the electron and ion current saturation values are, at best, orders of magnitude apart, a single current sensing resistor cannot provide the required resolution to accurately record these values. We present an automated, personal computer based data acquisition system for the determination of fundamental plasma properties in low pressure plasmas. The system is designed for single and double Langmuir probes, whose characteristics can be recorded over a bias voltage range of ±70 V with 12 bit resolution. The current flowing through the probes can be recorded within the range of 5 nA-100 mA. The use of a transimpedance amplifier for current sensing eliminates the requirement for traditional current sensing resistors and hence the need to correct the raw data. The large current recording range is realized through the use of a real time gain switching system in the negative feedback loop of the transimpedance amplifier.
Performance Evaluation of an Oxygen Sensor as a Function of the Samaria Doped Ceria Film Thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanghavi, Rahul P.; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T
The current demand in the automobile industry is in the control of air-fuel mixture in the combustion engine of automobiles. Oxygen partial pressure can be used as an input parameter for regulating or controlling systems in order to optimize the combustion process. Our goal is to identify and optimize the material system that would potentially function as the active sensing material for such a device that monitors oxygen partial pressure in these systems. We have used thin film samaria doped ceria (SDC) as the sensing material for the sensor operation, exploiting the fact that at high temperatures, oxygen vacancies generatedmore » due to samarium doping act as conducting medium for oxygen ions which hop through the vacancies from one side to the other contributing to an electrical signal. We have recently established that 6 atom % Sm doping in ceria films has optimum conductivity. Based on this observation, we have studied the variation in the overall conductivity of 6 atom % samaria doped ceria thin films as a function of thickness in the range of 50 nm to 300 nm at a fixed bias voltage of 2 volts. A direct proportionality in the increase in the overall conductivity is observed with the increase in sensing film thickness. For a range of oxygen pressure values from 1 mTorr to 100 Torr, a tolerable hysteresis error, good dynamic response and a response time of less than 10 seconds was observed« less
Method and Apparatus for Characterizing Pressure Sensors using Modulated Light Beam Pressure
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor)
2003-01-01
Embodiments of apparatuses and methods are provided that use light sources instead of sound sources for characterizing and calibrating sensors for measuring small pressures to mitigate many of the problems with using sound sources. In one embodiment an apparatus has a light source for directing a beam of light on a sensing surface of a pressure sensor for exerting a force on the sensing surface. The pressure sensor generates an electrical signal indicative of the force exerted on the sensing surface. A modulator modulates the beam of light. A signal processor is electrically coupled to the pressure sensor for receiving the electrical signal.
NASA Astrophysics Data System (ADS)
Cory, J. F., Jr.; Gordon, J. L.; Miyoshi, T.; Suzuki, K.
1989-06-01
Papers are presented on the use of microcomputers, supercomputers, and workstations in solid and structural mechanics. Artificial intelligence technology, the development and use of expert systems, and research in the area of robotics are discussed. Attention is also given to probabilistic finite element and boundary element methods and acoustic sensing.
Remote sensing of atmospheric pressure and sea state using laser altimeters
NASA Technical Reports Server (NTRS)
Gardner, C. S.
1985-01-01
Short-pulse multicolor laser ranging systems are currently being developed for satellite ranging applications. These systems use Q-switched pulsed lasers and streak-tube cameras to provide timing accuracies approaching a few picoseconds. Satellite laser ranging systems have been used to evaluate many important geophysical phenomena such as fault motion, polar motion and solid earth tides, by measuring the orbital perturbations of retroreflector equipped satellites. Some existing operational systems provide range resolution approaching a few millimeters. There is currently considerable interest in adapting these highly accurate systems for use as airborne and satellite based altimeters. Potential applications include the measurement of sea state, ground topography and atmospheric pressure. This paper reviews recent progress in the development of multicolor laser altimeters for use in monitoring sea state and atmospheric pressure.
Autonomous stimulus triggered self-healing in smart structural composites
NASA Astrophysics Data System (ADS)
Norris, C. J.; White, J. A. P.; McCombe, G.; Chatterjee, P.; Bond, I. P.; Trask, R. S.
2012-09-01
Inspired by the ability of biological systems to sense and autonomously heal damage, this research has successfully demonstrated the first autonomous, stimulus triggered, self-healing system in a structural composite material. Both the sensing and healing mechanisms are reliant on microvascular channels incorporated within a laminated composite material. For the triggering mechanism, a single air filled vessel was pressurized, sealed and monitored. Upon drop weight impact (10 J), delamination and microcrack connectivity between the pressurized vessel and those open to ambient led to a pressure loss which, with the use of a suitable sensor, triggered a pump to deliver a healing agent to the damage zone. Using this autonomous healing approach, near full recovery of post-impact compression strength was achieved (94% on average). A simplified alternative system with healing agent continuously flowing through the vessels, akin to blood flow, was found to offer 100% recovery of the material’s virgin strength. Optical microscopy and ultrasonic C-scanning provided further evidence of large-scale infusion of matrix damage with the healing agent. The successful implementation of this bioinspired technology could substantially enhance the integrity and reliability of aerospace structures, whilst offering benefits through improved performance/weight ratios and extended lifetimes.
NASA Astrophysics Data System (ADS)
Belwanshi, Vinod; Topkar, Anita
2016-05-01
Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.
An implantable blood pressure and flow transmitter.
NASA Technical Reports Server (NTRS)
Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.
1973-01-01
A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.
Zhao, Quan-Liang; He, Guang-Ping; Di, Jie-Jian; Song, Wei-Li; Hou, Zhi-Ling; Tan, Pei-Pei; Wang, Da-Wei; Cao, Mao-Sheng
2017-07-26
A flexible semitransparent energy harvester is assembled based on laterally aligned Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) single-crystal nanowires (NWs). Such a harvester presents the highest open-circuit voltage and a stable area power density of up to 10 V and 0.27 μW/cm 2 , respectively. A high pressure sensitivity of 0.14 V/kPa is obtained in the dynamic pressure sensing, much larger than the values reported in other energy harvesters based on piezoelectric single-crystal NWs. Furthermore, theoretical and finite element analyses also confirm that the piezoelectric voltage constant g 33 of PZT NWs is competitive to the lead-based bulk single crystals and ceramics, and the enhanced pressure sensitivity and power density are substantially linked to the flexible structure with laterally aligned PZT NWs. The energy harvester in this work holds great potential in flexible and transparent sensing and self-powered systems.
78 FR 29387 - Government-Owned Inventions, Available for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
....: MSC-24919-1: Systems and Methods for RFID-Enables Information Collection; NASA Case No.: MSC-25632-1... Methods for RFID-Enabled Dispenser; NASA Case No.: MSC-25313-1: Hydrostatic Hyperbaric Apparatus and...; NASA Case No: MSC-25590-1: Systems and Methods for RFID-Enabled Pressure Sensing Apparatus; NASA Case...
Impact reactivity of materials at very high oxygen pressure
NASA Technical Reports Server (NTRS)
Connor, H. W.; Minchey, J. G.; Crowder, R.; Davidson, R.
1983-01-01
The requirements for impact testing of materials in an oxygen atmosphere at pressures from 82.7 MPa (12,000 psi) to 172 MPa (25,000 psi) were evaluated. The impact tester system was evaluated for potential pressure increases from 69 MPa (10,000 psi) to 82.7 MPa (12,000 psi). The low pressure oxygen and nitrogen systems, the impact tower, the impact test cell, and the high pressure oxygen system were evaluated individually. Although the structural integrity of the impact test cell and the compressor were sufficient for operation at 82.7 MPa (12,000 psi), studies revealed possible material incompatibility at that pressure and above. It was recommended that if a component should be replaced for 82.7 MPa (12,000 psi) operation the replacement should meet the final objectives of 172 MPa (25,000 psi). Recommended changes in the system include; use of Monel 400 for pressures above 82.7 MPa (12,000 psi), use of bellows to replace the seal in the impact tester, use of a sapphire window attached to a fiber optic for event sensing, and use of a three diaphragm compressor.
TermehYousefi, Amin; Azhari, Saman; Khajeh, Amin; Hamidon, Mohd Nizar; Tanaka, Hirofumi
2017-08-01
Haptic sensors are essential devices that facilitate human-like sensing systems such as implantable medical devices and humanoid robots. The availability of conducting thin films with haptic properties could lead to the development of tactile sensing systems that stretch reversibly, sense pressure (not just touch), and integrate with collapsible. In this study, a nanocomposite based hemispherical artificial fingertip fabricated to enhance the tactile sensing systems of humanoid robots. To validate the hypothesis, proposed method was used in the robot-like finger system to classify the ripe and unripe tomato by recording the metabolic growth of the tomato as a function of resistivity change during a controlled indention force. Prior to fabrication, a finite element modeling (FEM) was investigated for tomato to obtain the stress distribution and failure point of tomato by applying different external loads. Then, the extracted computational analysis information was utilized to design and fabricate nanocomposite based artificial fingertip to examine the maturity analysis of tomato. The obtained results demonstrate that the fabricated conformable and scalable artificial fingertip shows different electrical property for ripe and unripe tomato. The artificial fingertip is compatible with the development of brain-like systems for artificial skin by obtaining periodic response during an applied load. Copyright © 2017. Published by Elsevier B.V.
Global versus local mechanisms of temperature sensing in ion channels.
Arrigoni, Cristina; Minor, Daniel L
2018-05-01
Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.
Touch Sensor Responds to Contact Pressure
NASA Technical Reports Server (NTRS)
Bejczy, A. K.
1982-01-01
Optical tactile sensor for mechanical hands senses contact pressure via change in light reflected from an elastic covering. Pressure against a cell cover causes distortion, which changes internal reflection of light. Change is sensed by detector, and output signal informs operator of contact. The greater the pressure and distortion, the greater the change in light reflection.
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor); Hopson, Purnell, Jr. (Inventor)
1992-01-01
A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a backplate for damping membrane motion. The backplate further provides a means for on-line calibration of the microphone.
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor)
1993-01-01
A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a back plate for damping membrane motion. The back plate further provides a means for on-line calibration of the microphone.
Halim, Dunant; Cheng, Li; Su, Zhongqing
2011-04-01
The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.
Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991
NASA Technical Reports Server (NTRS)
Depaula, Ramon P. (Editor); Udd, Eric (Editor)
1991-01-01
The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.
A comparative study of MOEM pressure sensors using MZI, DC, and racetrack resonator IO structures
NASA Astrophysics Data System (ADS)
Selvarajan, A.; Pattnaik, Prasant Kumar; Badrinarayana, T.; Srinivas, T.
2006-03-01
In recent years micro-electro-mechanical system (MEMS) sensors have drawn considerable attention due to their attraction in terms of miniaturization, batch fabrication and ease of integration with the required electronics circuitry. Micro-opto-electro-mechanical (MOEM) devices and systems, based on the principles of integrated optics and micromachining technology on silicon have immense potential for sensor applications. Employing optical techniques have important advantages such as functionality, large bandwidth and higher sensitivity. Pressure sensing is currently the most lucrative market for solid-state micro sensors. Pressure sensing using micromachined structures utilize the changes induced in either the resistive or capacitive properties of the electro-mechanical structure by the impressed pressure. Integrated optical pressure sensors can utilize the changes to the amplitude, phase, refractive index profile, optical path length, or polarization of the lightwave by the external pressure. In this paper we compare the performance characteristics of three types of MOEM pressure sensors based on Mach-Zehnder Interferometer (MZI), Directional Coupler (DC) and racetrack resonator (RR) integrated optical geometries. The first two configurations measure the pressure changes through a change in optical intensity while the third one measures the same in terms of frequency or wavelength change. The analysis of each sensors has been carried out in terms of mechanical and optical models and their interrelationship through optomechanical coupling. For a typical diaphragm of size 2mm × 1mm × 20 μm, normalized pressure sensitivity of 18.35 μW/mW/kPa, 29.37 μW/mW/kPa and 2.26 pm/kPa in case of MZI, DC and RR devices have been obtained respectively. The noise performance of these devices are also presented.
Mabuchi, Kunihiko
2013-01-01
We are currently developing an artificial arm/hand system which is capable of sensing stimuli and then transferring these stimuli to users as somatic sensations. Presently, we are evoking the virtual somatic sensations by electrically stimulating a sensory nerve fiber which innervates a single mechanoreceptor unit at the target area; this is done using a tungsten microelectrode that was percutaneously inserted into the use's peripheral nerve (a microstimulation method). The artificial arm/hand system is composed of a robot hand equipped with a pressure sensor system on its fingers. The sensor system detects mechanical stimuli, which are transferred to the user by means of the microstimulation method so that the user experiences the stimuli as the corresponding somatic sensations. In trials, the system worked satisfactorily and there was a good correlation between the pressure applied to the pressure sensors on the robot fingers and the subjective intensities of the evoked pressure sensations.
NASA Astrophysics Data System (ADS)
Tondji Chendjou, Yvan Wilfried
This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes to obtain the vibration sensing measurements. The measured accelerations were acquired by an NI real-time acquisition system using LABVIEW software for a real-time graphical visualization. The recorded data were then analyzed and the analysis indicated that no aeroelastic phenomenon occurred on the model during the wind tunnel tests, at speeds of 50 m/s and 80m/s.
An approach to improve the spatial resolution of a force mapping sensing system
NASA Astrophysics Data System (ADS)
Negri, Lucas Hermann; Manfron Schiefer, Elberth; Sade Paterno, Aleksander; Muller, Marcia; Luís Fabris, José
2016-02-01
This paper proposes a smart sensor system capable of detecting sparse forces applied to different positions of a metal plate. The sensing is performed with strain transducers based on fiber Bragg gratings (FBG) distributed under the plate. Forces actuating in nine squared regions of the plate, resulting from up to three different loads applied simultaneously to the plate, were monitored with seven transducers. The system determines the magnitude of the force/pressure applied on each specific area, even in the absence of a dedicated transducer for that area. The set of strain transducers with coupled responses and a compressive sensing algorithm are employed to solve the underdetermined inverse problem which emerges from mapping the force. In this configuration, experimental results have shown that the system is capable of recovering the value of the load distributed on the plate with a signal-to-noise ratio better than 12 dB, when the plate is submitted to three simultaneous test loads. The proposed method is a practical illustration of compressive sensing algorithms for the reduction of the number of FBG-based transducers used in a quasi-distributed configuration.
Microelectromechanical Systems
NASA Technical Reports Server (NTRS)
Gabriel, Kaigham J.
1995-01-01
Micro-electromechanical systems (MEMS) is an enabling technology that merges computation and communication with sensing and actuation to change the way people and machines interact with the physical world. MEMS is a manufacturing technology that will impact widespread applications including: miniature inertial measurement measurement units for competent munitions and personal navigation; distributed unattended sensors; mass data storage devices; miniature analytical instruments; embedded pressure sensors; non-invasive biomedical sensors; fiber-optics components and networks; distributed aerodynamic control; and on-demand structural strength. The long term goal of ARPA's MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies for both perceiving and controlling systems, processes, and the environment. The MEMS program has three major thrusts: advanced devices and processes, system design, and infrastructure.
Sensing Senses: Tactile Feedback for the Prevention of Decubitus Ulcers
Verbunt, Marcel
2009-01-01
Decubitus ulcers, also known as pressure sores, is a major problem in health care, in particular for patients with spinal cord injuries. These patients cannot feel the discomfort that would urge healthy people to change their posture. We describe a system that uses a sensor mat to detect problematic postures and provides tactile feedback to the user. The results of our preliminary study with healthy subjects show that the tactile feedback is a viable option to spoken feedback. We envision the system being used for rehabilitation games, but also for everyday Decubitus ulcers prevention. PMID:19949852
Development of two-dimensional interdigitated center of pressure sensor
NASA Astrophysics Data System (ADS)
Yoo, Byungseok; Pines, Darryll J.
2017-12-01
This paper presents the development of a two-dimensional (2D) flexible patch sensor to detect and monitor the center of pressure (CoP) location and the total magnitude of a spatially distributed pressure to the specific surface areas of engineering structures. The CoP sensor with the contact mode induced by a pressure distribution was formulated by force sensitive resistor technology and was mainly composed of a thin conductive polymer layer, adhesive spacers, and two interdigitated patterned electrode films with unique sensing aperture shadings. By properly mapping the interdigitated electrode patterns to the top and bottom surfaces of the conductive polymer, the proposed sensor ideally enables to measure an overall applied pressure level and its centroid location within a predetermined sensing region in real-time. The CoP sensor containing 36 sensing sections within a dimension of around 3 × 3 inches was prototyped and experimentally investigated to verify its capability to identify the CoP location and magnitude due to the presence of a permanent magnet-based local pressure distribution. Only five electric wires connected to the CoP sensor to inspect the pressure-sensing positions of 36 segments. The evaluation results of the measured sensor data demonstrate good agreements with the actual test parameters such as the total pressure and its centroid position with about 5% locational error. However, to provide accurate information on the overall pressure range, the compensation factors must be determined and applied to the individual sensing sections of the sensor.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.
1988-01-01
Presented is a mathematical model derived from the Navier-Stokes equations of momentum and continuity, which may be accurately used to predict the behavior of conventionally mounted pneumatic sensing systems subject to arbitrary pressure inputs. Numerical techniques for solving the general model are developed. Both step and frequency response lab tests were performed. These data are compared with solutions of the mathematical model and show excellent agreement. The procedures used to obtain the lab data are described. In-flight step and frequency response data were obtained. Comparisons with numerical solutions of the math model show good agreement. Procedures used to obtain the flight data are described. Difficulties encountered with obtaining the flight data are discussed.
Development of a Piezoelectric Vacuum Sensing Component for a Wide Pressure Range
Wang, Bing-Yu; Hsieh, Fan-Chun; Lin, Che-Yu; Chen, Shao-En; Chen, Fong-Zhi; Wu, Chia-Che
2014-01-01
In this study, we develop a clamped–clamped beam-type piezoelectric vacuum pressure sensing element. The clamped–clamped piezoelectric beam is composed of a PZT layer and a copper substrate. A pair of electrodes is set near each end. An input voltage is applied to a pair of electrodes to vibrate the piezoelectric beam, and the output voltage is measured at the other pair. Because the viscous forces on the piezoelectric beam vary at different air pressures, the vibration of the beam depends on the vacuum pressure. The developed pressure sensor can sense a wide range of pressure, from 6.5 × 10−6 to 760 Torr. The experimental results showed that the output voltage is inversely proportional to the gas damping ratio, and thus, the vacuum pressure was estimated from the output voltage. PMID:25421736
Inverse Flush Air Data System (FADS) for Real Time Simulations
NASA Astrophysics Data System (ADS)
Madhavanpillai, Jayakumar; Dhoaya, Jayanta; Balakrishnan, Vidya Saraswathi; Narayanan, Remesh; Chacko, Finitha Kallely; Narayanan, Shyam Mohan
2017-12-01
Flush Air Data Sensing System (FADS) forms a mission critical sub system in future reentry vehicles. FADS makes use of surface pressure measurements from the nose cap of the vehicle for deriving the air data parameters of the vehicle such as angle of attack, angle of sideslip, Mach number, etc. These parameters find use in the flight control and guidance systems, and also assist in the overall mission management. The FADS under consideration in this paper makes use of nine pressure ports located in the nose cap of a technology demonstrator vehicle. In flight, the air data parameters are obtained from the FADS estimation algorithm using the pressure data at the nine pressure ports. But, these pressure data will not be available, for testing the FADS package during ground simulation. So, an inverse software to FADS which estimates the pressure data at the pressure ports for a given flight condition is developed. These pressure data at the nine ports will go as input to the FADS package during ground simulation. The software is run to generate the pressure data for the descent phase trajectory of the technology demonstrator. This data is used again to generate the air data parameters from FADS algorithm. The computed results from FADS algorithm match well with the trajectory data.
Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L
2018-03-13
Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.
NASA Astrophysics Data System (ADS)
Romanosky, Robert R.
2017-05-01
he National Energy Technology Laboratory (NETL) under the Department of Energy (DOE) Fossil Energy (FE) Program is leading the effort to not only develop near zero emission power generation systems, but to increaser the efficiency and availability of current power systems. The overarching goal of the program is to provide clean affordable power using domestic resources. Highly efficient, low emission power systems can have extreme conditions of high temperatures up to 1600 oC, high pressures up to 600 psi, high particulate loadings, and corrosive atmospheres that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Advancements in sensing using optical fibers are key efforts within NETL's sensor development program as these approaches offer the potential to survive and provide critical information about these processes. An overview of the sensor development supported by the National Energy Technology Laboratory (NETL) will be given, including research in the areas of sensor materials, designs, and measurement types. New approaches to intelligent sensing, sensor placement and process control using networked sensors will be discussed as will novel approaches to fiber device design concurrent with materials development research and development in modified and coated silica and sapphire fiber based sensors. The use of these sensors for both single point and distributed measurements of temperature, pressure, strain, and a select suite of gases will be addressed. Additional areas of research includes novel control architecture and communication frameworks, device integration for distributed sensing, and imaging and other novel approaches to monitoring and controlling advanced processes. The close coupling of the sensor program with process modeling and control will be discussed for the overarching goal of clean power production.
Real-time strap pressure sensor system for powered exoskeletons.
Tamez-Duque, Jesús; Cobian-Ugalde, Rebeca; Kilicarslan, Atilla; Venkatakrishnan, Anusha; Soto, Rogelio; Contreras-Vidal, Jose Luis
2015-02-16
Assistive and rehabilitative powered exoskeletons for spinal cord injury (SCI) and stroke subjects have recently reached the clinic. Proper tension and joint alignment are critical to ensuring safety. Challenges still exist in adjustment and fitting, with most current systems depending on personnel experience for appropriate individual fastening. Paraplegia and tetraplegia patients using these devices have impaired sensation and cannot signal if straps are uncomfortable or painful. Excessive pressure and blood-flow restriction can lead to skin ulcers, necrotic tissue and infections. Tension must be just enough to prevent slipping and maintain posture. Research in pressure dynamics is extensive for wheelchairs and mattresses, but little research has been done on exoskeleton straps. We present a system to monitor pressure exerted by physical human-machine interfaces and provide data about levels of skin/body pressure in fastening straps. The system consists of sensing arrays, signal processing hardware with wireless transmission, and an interactive GUI. For validation, a lower-body powered exoskeleton carrying the full weight of users was used. Experimental trials were conducted with one SCI and one able-bodied subject. The system can help prevent skin injuries related to excessive pressure in mobility-impaired patients using powered exoskeletons, supporting functionality, independence and better overall quality of life.
Enabling technologies for fiber optic sensing
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.
2016-04-01
In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.
Spatially digitized tactile pressure sensors with tunable sensitivity and sensing range.
Choi, Eunsuk; Sul, Onejae; Hwang, Soonhyung; Cho, Joonhyung; Chun, Hyunsuk; Kim, Hongjun; Lee, Seung-Beck
2014-10-24
When developing an electronic skin with touch sensation, an array of tactile pressure sensors with various ranges of pressure detection need to be integrated. This requires low noise, highly reliable sensors with tunable sensing characteristics. We demonstrate the operation of tactile pressure sensors that utilize the spatial distribution of contact electrodes to detect various ranges of tactile pressures. The device consists of a suspended elastomer diaphragm, with a carbon nanotube thin-film on the bottom, which makes contact with the electrodes on the substrate with applied pressure. The electrodes separated by set distances become connected in sequence with tactile pressure, enabling consecutive electrodes to produce a signal. Thus, the pressure is detected not by how much of a signal is produced but by which of the electrodes is registering an output. By modulating the diaphragm diameter, and suspension height, it was possible to tune the pressure sensitivity and sensing range. Also, adding a fingerprint ridge structure enabled the sensor to detect the periodicity of sub-millimeter grating patterns on a silicon wafer.
Wang, Lin; Acosta, Miguel A.; Leach, Jennie B.; Carrier, Rebecca L.
2013-01-01
Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems. PMID:23443975
Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L
2013-04-21
Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.
Real-time combustion control and diagnostics sensor-pressure oscillation monitor
Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy [Morgantown, WV; Huckaby, E David [Morgantown, WV; Richards, George A [Morgantown, WV
2009-07-14
An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.
Electrospray-printed nanostructured graphene oxide gas sensors
NASA Astrophysics Data System (ADS)
Taylor, Anthony P.; Velásquez-García, Luis F.
2015-12-01
We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors’ response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ˜5 × 10-4 T) at ˜1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.
Electrospray-printed nanostructured graphene oxide gas sensors.
Taylor, Anthony P; Velásquez-García, Luis F
2015-12-18
We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors' response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ∼5 × 10(-4) T) at ∼1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.
Acoustic Wave Propagation in Pressure Sense Lines
NASA Technical Reports Server (NTRS)
Vitarius, Patrick; Gregory, Don A.; Wiley, John; Korman, Valentin
2003-01-01
Sense lines are used in pressure measurements to passively transmit information from hostile environments to areas where transducers can be used. The transfer function of a sense line can be used to obtain information about the measured environment from the protected sensor. Several properties of this transfer function are examined, including frequency dependence, Helmholtz resonance, and time of flight delay.
ERIC Educational Resources Information Center
Willis, Lynne
2010-01-01
Managing change in education is a complex process, but to do so under the pressure of a punishment-based measurement system (Fullan, 2008) makes sustainable and meaningful change increasingly difficult. Systems which produce high stakes accountability measures, which bring with it sanctions that create a greater sense of distrust, demoralization…
Zebra Mussel Chemical Control Guide, Version 2.0
2015-07-01
delivery systems, including potable water treatment, agriculture, industry, power generation, and fire protection. Since this invasive organism’s...delivery systems, including potable water treatment, agriculture, industry, power generation, and fire protection (Mackie and Claudi 2010). Zebra mussels...generators, pipes, valves, sensing equipment (level, flow, and pressure) and fire protection (Mackie and Claudi 2010; Prescott et al. 2014). Other USACE
Code of Federal Regulations, 2010 CFR
2010-07-01
... level sensing devices that activate an alarm or control the flow, or otherwise prevent discharges. (f) Equip pressure containers with high and low pressure sensing devices that activate an alarm or control... flow conditions, combination of pressure and flow, manual or remote control mechanisms. (k) Install a...
NASA Astrophysics Data System (ADS)
HajiReza, Parsin H.; Bell, Kevan L.; Shi, Wei; Zemp, Roger J.
2017-03-01
A novel all-optical non-contact photoacoustic microscopy system is introduced. The confocal configuration is used to ensure detection of initial pressure shock wave-induced intensity reflections at the subsurface origin where pressures are largest. Phantom studies confirm signal dependence on optical absorption, index-contrast, and excitation fluence. Taking advantage of a focused1310 nm interrogation beam, the penetration depth of the system is improved to 2mm for an optical resolution system. High signal-to-noise ratios (>60dB) with 2.5 cm working distance from the objective lens to the sample is achieved. Real-time in-vivo imaging of microvasculature and melanoma tumors are demonstrated.
A silicon micromachined resonant pressure sensor
NASA Astrophysics Data System (ADS)
Tang, Zhangyang; Fan, Shangchun; Cai, Chenguang
2009-09-01
This paper describes the design, fabrication and test of a silicon micromachined resonant pressure sensor. A square membrane and a doubly clamped resonant beam constitute a compound structure. The former senses the pressure directly, while the latter changes its resonant frequency according to deformation of the membrane. The final output relation between the resonant frequency and the applied pressure is deducted according to the structure mechanical properties. Sensors are fabricated by micromachining technology, and then sealed in vaccum. These sensors are tested by open-loop and close-loop system designed on purpose. The experiment results demonstrate that the sensor has a sensitivity of 49.8Hz/kPa and repeatability of 0.08%.
NASA Astrophysics Data System (ADS)
Xu, Tingzhong; Wang, Hongyan; Xia, Yong; Zhao, Zhiming; Huang, Mimi; Wang, Jiuhong; Zhao, Libo; Zhao, Yulong; Jiang, Zhuangde
2017-12-01
A novel micro-electromechanical systems piezoresistive pressure sensor with a diagonally positioned peninsula-island structure has high sensitivity for ultralow- pressure measurement. The pressure sensor was designed with a working range of 0-500 Pa and had a high sensitivity of 0.06 mV·V-1·Pa-1. The trade-off between high sensitivity and linearity was alleviated. Moreover, the influence of the installation angle on the sensing chip output was analyzed, and an application experiment of the sensor was conducted using the built pipettor test platform. Findings indicated that the proposed pressure sensor had sufficient resolution ability and accuracy to detect the pressure variation in the pipettor chamber. Therefore, the proposed pressure sensor has strong potential for medical equipment application.
Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.
Wang, Xuewen; Liu, Zheng; Zhang, Ting
2017-07-01
Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integrated Liquid Bismuth Propellant Feed System
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.
2006-01-01
A prototype bismuth propellant feed and control system was constructed and tested. An electromagnetic pump was used in this system to provide fine control of the hydrostatic pressure, and a new type of in-line flow sensor was developed to provide an accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of macor for the main body of both components. Post-test inspections of both components revealed no cracks or leaking in either. In separate proof-of-concept experiments, the pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, with a pressure of 10 kPa at 30 A. Flow sensing was successfully demonstrated in a bench-top test using gallium as a substitute liquid metal. A real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.
Enabling aspects of fiber optic acoustic sensing in harsh environments
NASA Astrophysics Data System (ADS)
Saxena, Indu F.
2013-05-01
The advantages of optical fiber sensing in harsh electromagnetic as well as physical stress environments make them uniquely suited for structural health monitoring and non-destructive testing. In addition to aerospace applications they are making a strong footprint in geophysical monitoring and exploration applications for higher temperature and pressure environments, due to the high temperature resilience of fused silica glass sensors. Deeper oil searches and geothermal exploration and harvesting are possible with these novel capabilities. Progress in components and technologies that are enabling these systems to be fieldworthy are reviewed and emerging techniques summarized that could leapfrog the system performance and reliability.
Wang, Zhao; Tan, Lun; Pan, Xumin; Liu, Gao; He, Yahua; Jin, Wenchao; Li, Meng; Hu, Yongming; Gu, Haoshuang
2017-08-30
The rapid development of microscaled piezoelectric energy harvesters has provided a simple and highly efficient way for building self-powered sensor systems through harvesting the mechanical energy from the ambient environment. In this work, a self-powered microfluidic sensor that can harvest the mechanical energy of the fluid and simultaneously monitor their characteristics was fabricated by integrating the flexible piezoelectric poly(vinylidene fluoride) (PVDF) nanofibers with the well-designed microfluidic chips. Those devices could generate open-circuit high output voltage up to 1.8 V when a droplet of water is flowing past the suspended PVDF nanofibers and result in their periodical deformations. The impulsive output voltage signal allowed them to be utilized for droplets or bubbles counting in the microfluidic systems. Furthermore, the devices also exhibited self-powered sensing behavior due to the decreased voltage amplitude with increasing input pressure and liquid viscosity. The drop of output voltage could be attributed to the variation of flow condition and velocity of the droplets, leading to the reduced deformation of the piezoelectric PVDF layer and the decrease of the generated piezoelectric potential.
Acrylic Plastic Spherical Pressure Hull for Continental Shelf Depths
1993-03-01
the con- l and secure conduit for the instrumentation leads at cave surface of the sphere (figure 26). The meridi- any external pressure to which the...constant pressure monitoring. In-line pressure CEA-06-1 25WT-120 with a gage factor of 2.11, transducers sense chamber pressures and send a bonded to the...wired to a strain gage conditioner that sensed strain as an analog FINDINGS voltage corresponding to the change in resistance occuring in each gage as it
Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark
2015-01-01
This paper describes an algorithm for atmospheric state estimation that is based on a coupling between inertial navigation and flush air data sensing pressure measurements. In this approach, the full navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to directly estimate atmospheric winds and density using a nonlinear weighted least-squares algorithm. The approach uses a high fidelity model of atmosphere stored in table-look-up form, along with simplified models of that are propagated along the trajectory within the algorithm to provide prior estimates and covariances to aid the air data state solution. Thus, the method is essentially a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere and winds are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the discrete-time observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content to the system. The algorithm is then applied to the design of the pressure measurement system for the Mars 2020 mission. The pressure port layout is optimized to maximize the observability of atmospheric states along the trajectory. Linear covariance analysis is performed to assess estimator performance for a given pressure measurement uncertainty. The results indicate that the new tightly-coupled estimator can produce enhanced estimates of atmospheric states when compared with existing algorithms.
Xu, Tingzhong; Lu, Dejiang; Zhao, Libo; Jiang, Zhuangde; Wang, Hongyan; Guo, Xin; Li, Zhikang; Zhou, Xiangyang; Zhao, Yulong
2017-01-01
The influence of diaphragm bending stiffness distribution on the stress concentration characteristics of a pressure sensing chip had been analyzed and discussed systematically. According to the analysis, a novel peninsula-island-based diaphragm structure was presented and applied to two differenet diaphragm shapes as sensing chips for pressure sensors. By well-designed bending stiffness distribution of the diaphragm, the elastic potential energy induced by diaphragm deformation was concentrated above the gap position, which remarkably increased the sensitivity of the sensing chip. An optimization method and the distribution pattern of the peninsula-island based diaphragm structure were also discussed. Two kinds of sensing chips combined with the peninsula-island structures distributing along the side edge and diagonal directions of rectangular diaphragm were fabricated and analyzed. By bonding the sensing chips with anti-overload glass bases, these two sensing chips were demonstrated by testing to achieve not only high sensitivity, but also good anti-overload ability. The experimental results showed that the proposed structures had the potential to measure ultra-low absolute pressures with high sensitivity and good anti-overload ability in an atmospheric environment. PMID:28846599
Advanced technologies and devices for inhalational anesthetic drug dosing.
Meyer, J-U; Kullik, G; Wruck, N; Kück, K; Manigel, J
2008-01-01
Technological advances in micromechanics, optical sensing, and computing have led to innovative and reliable concepts of precise dosing and sensing of modern volatile anesthetics. Mixing of saturated desflurane flow with fresh gas flow (FGF) requires differential pressure sensing between the two circuits for precise delivery. The medical gas xenon is administered most economically in a closed circuit breathing system. Sensing of xenon in the breathing system is achieved with miniaturized and unique gas detector systems. Innovative sensing principles such as thermal conductivity and sound velocity are applied. The combination of direct injection of volatile anesthetics and low-flow in a closed circuit system requires simultaneous sensing of the inhaled and exhaled gas concentrations. When anesthetic conserving devices are used for sedation with volatile anesthetics, regular gas concentration monitoring is advised. High minimal alveolar concentration (MAC) of some anesthetics and low-flow conditions bear the risk of hypoxic gas delivery. Oxygen sensing based on paramagnetic thermal transduction has become the choice when long lifetime and one-time calibration are required. Compact design of beam splitters, infrared filters, and detectors have led to multiple spectra detector systems that fit in thimble-sized housings. Response times of less than 500 ms allow systems to distinguish inhaled from exhaled gas concentrations. The compact gas detector systems are a prerequisite to provide "quantitative anesthesia" in closed circuit feedback-controlled breathing systems. Advanced anesthesia devices in closed circuit mode employ multiple feedback systems. Multiple feedbacks include controls of volume, concentrations of anesthetics, and concentration of oxygen with a corresponding safety system. In the ideal case, the feedback system delivers precisely what the patient is consuming. In this chapter, we introduce advanced technologies and device concepts for delivering inhalational anesthetic drugs. First, modern vaporizers are described with special attention to the particularities of delivering desflurane. Delivery of xenon is presented, followed by a discussion of direct injection of volatile anesthetics and of a device designed to conserve anesthetic drugs. Next, innovative sensing technologies are presented for reliable control and precise metering of the delivered volatile anesthetics. Finally, we discuss the technical challenges of automatic control in low-flow and closed circuit breathing systems in anesthesia.
PyzoFlex: a printed piezoelectric pressure sensing foil for human machine interfaces
NASA Astrophysics Data System (ADS)
Zirkl, M.; Scheipl, G.; Stadlober, B.; Rendl, C.; Greindl, P.; Haller, M.; Hartmann, P.
2013-09-01
Ferroelectric material supports both pyro- and piezoelectric effects that can be used for sensing pressures on large, bended surfaces. We present PyzoFlex, a pressure-sensing input device that is based on a ferroelectric material (PVDF:TrFE). It is constructed by a sandwich structure of four layers that can easily be printed on any substrate. The PyzoFlex foil is sensitive to pressure- and temperature changes, bendable, energy-efficient, and it can easily be produced by a screen-printing routine. Even a hovering input-mode is feasible due to its pyroelectric effect. In this paper, we introduce this novel, fully printed input technology and discuss its benefits and limitations.
Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg
1995-01-01
A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.
Device and method for determining oxygen concentration and pressure in gases
Ayers, Michael R.; Hunt, Arlon J.
1999-01-01
Disclosed are oxygen concentration and/or pressure sensing devices and methods which incorporate photoluminescent silica aerogels. Disclosed sensors include a light proof housing for holding the photoluminescent aerogel, a source of excitation radiation (e.g., a UV source), a detector for detecting radiation emitted by the aerogel, a system for delivering a sample gas to the aerogel, and a thermocouple. Also disclosed are water resistant oxygen sensors having a photoluminescent aerogel coated with a hydrophobic material.
Fault Detection and Isolation for Hydraulic Control
NASA Technical Reports Server (NTRS)
1987-01-01
Pressure sensors and isolation valves act to shut down defective servochannel. Redundant hydraulic system indirectly senses failure in any of its electrical control channels and mechanically isolates hydraulic channel controlled by faulty electrical channel so flat it cannot participate in operating system. With failure-detection and isolation technique, system can sustains two failed channels and still functions at full performance levels. Scheme useful on aircraft or other systems with hydraulic servovalves where failure cannot be tolerated.
Wireless boundary monitor system and method
Haynes, H.D.; Ayers, C.W.
1997-12-09
A wireless boundary monitor system used to monitor the integrity of a boundary surrounding an area uses at least two housings having at least one transmitting means for emitting ultrasonic pressure waves to a medium. Each of the housings has a plurality of receiving means for sensing the pressure waves in the medium. The transmitting means and the receiving means of each housing are aimable and communicably linked. At least one of the housings is equipped with a local alarm means for emitting a first alarm indication whereby, when the pressure waves propagating from a transmitting means to a receiving means are sufficiently blocked by an object a local alarm means or a remote alarm means or a combination thereof emit respective alarm indications. The system may be reset either manually or automatically. This wireless boundary monitor system has useful applications in both indoor and outdoor environments. 4 figs.
Wireless boundary monitor system and method
Haynes, Howard D.; Ayers, Curtis W.
1997-01-01
A wireless boundary monitor system used to monitor the integrity of a boundary surrounding an area uses at least two housings having at least one transmitting means for emitting ultrasonic pressure waves to a medium. Each of the housings has a plurality of receiving means for sensing the pressure waves in the medium. The transmitting means and the receiving means of each housing are aimable and communicably linked. At least one of the housings is equipped with a local alarm means for emitting a first alarm indication whereby, when the pressure waves propagating from a transmitting means to a receiving means are sufficiently blocked by an object a local alarm means or a remote alarm means or a combination thereof emit respective alarm indications. The system may be reset either manually or automatically. This wireless boundary monitor system has useful applications in both indoor and outdoor environments.
Circuits and Systems for Low-Power Miniaturized Wireless Sensors
NASA Astrophysics Data System (ADS)
Nagaraju, Manohar
The field of electronic sensors has witnessed a tremendous growth over the last decade particularly with the proliferation of mobile devices. New applications in Internet of Things (IoT), wearable technology, are further expected to fuel the demand for sensors from current numbers in the range of billions to trillions in the next decade. The main challenges for a trillion sensors are continued miniaturization, low-cost and large-scale manufacturing process, and low power consumption. Traditional integration and circuit design techniques in sensor systems are not suitable for applications in smart dust, IoT etc. The first part of this thesis demonstrates an example sensor system for biosignal recording and illustrates the tradeoffs in the design of low-power miniaturized sensors. The different components of the sensor system are integrated at the board level. The second part of the thesis demonstrates fully integrated sensors that enable extreme miniaturization of a sensing system with the sensor element, processing circuitry, a frequency reference for communication and the communication circuitry in a single hermetically sealed die. Design techniques to reduce the power consumption of the sensor interface circuitry at the architecture and circuit level are demonstrated. The principles are used to design sensors for two of the most common physical variables, mass and pressure. A low-power wireless mass and pressure sensor suitable for a wide variety of biological/chemical sensing applications and Tire Pressure Monitoring Systems (TPMS) respectively are demonstrated. Further, the idea of using high-Q resonators for a Voltage Controlled Oscillator (VCO) is proposed and a low-noise, wide bandwidth FBAR-based VCO is presented.
A simple sensing mechanism for wireless, passive pressure sensors.
Drazan, John F; Wassick, Michael T; Dahle, Reena; Beardslee, Luke A; Cady, Nathaniel C; Ledet, Eric H
2016-08-01
We have developed a simple wireless pressure sensor that consists of only three electrically isolated components. Two conductive spirals are separated by a closed cell foam that deforms when exposed to changing pressures. This deformation changes the capacitance and thus the resonant frequency of the sensors. Prototype sensors were submerged and wirelessly interrogated while being exposed to physiologically relevant pressures from 10 to 130 mmHg. Sensors consistently exhibited a sensitivity of 4.35 kHz/mmHg which is sufficient for resolving physiologically relevant pressure changes in vivo. These simple sensors have the potential for in vivo pressure sensing.
Real-Time Strap Pressure Sensor System for Powered Exoskeletons
Tamez-Duque, Jesús; Cobian-Ugalde, Rebeca; Kilicarslan, Atilla; Venkatakrishnan, Anusha; Soto, Rogelio; Contreras-Vidal, Jose Luis
2015-01-01
Assistive and rehabilitative powered exoskeletons for spinal cord injury (SCI) and stroke subjects have recently reached the clinic. Proper tension and joint alignment are critical to ensuring safety. Challenges still exist in adjustment and fitting, with most current systems depending on personnel experience for appropriate individual fastening. Paraplegia and tetraplegia patients using these devices have impaired sensation and cannot signal if straps are uncomfortable or painful. Excessive pressure and blood-flow restriction can lead to skin ulcers, necrotic tissue and infections. Tension must be just enough to prevent slipping and maintain posture. Research in pressure dynamics is extensive for wheelchairs and mattresses, but little research has been done on exoskeleton straps. We present a system to monitor pressure exerted by physical human-machine interfaces and provide data about levels of skin/body pressure in fastening straps. The system consists of sensing arrays, signal processing hardware with wireless transmission, and an interactive GUI. For validation, a lower-body powered exoskeleton carrying the full weight of users was used. Experimental trials were conducted with one SCI and one able-bodied subject. The system can help prevent skin injuries related to excessive pressure in mobility-impaired patients using powered exoskeletons, supporting functionality, independence and better overall quality of life. PMID:25690551
A Comprehensive Study on Technologies of Tyre Monitoring Systems and Possible Energy Solutions
Kubba, Ali E.; Jiang, Kyle
2014-01-01
This article presents an overview on the state of the art of Tyre Pressure Monitoring System related technologies. This includes examining the latest pressure sensing methods and comparing different types of pressure transducers, particularly their power consumption and measuring range. Having the aim of this research to investigate possible means to obtain a tyre condition monitoring system (TCMS) powered by energy harvesting, various approaches of energy harvesting techniques were evaluated to determine which approach is the most applicable for generating energy within the pneumatic tyre domain and under rolling tyre dynamic conditions. This article starts with an historical review of pneumatic tyre development and demonstrates the reasons and explains the need for using a tyre condition monitoring system. Following this, different tyre pressure measurement approaches are compared in order to determine what type of pressure sensor is best to consider in the research proposal plan. Then possible energy harvesting means inside land vehicle pneumatic tyres are reviewed. Following this, state of the art battery-less tyre pressure monitoring systems developed by individual researchers or by world leading tyre manufacturers are presented. Finally conclusions are drawn based on the reviewed documents cited in this article and a research proposal plan is presented. PMID:24922457
Highly compressible fluorescent particles for pressure sensing in liquids
NASA Astrophysics Data System (ADS)
Cellini, F.; Peterson, S. D.; Porfiri, M.
2017-05-01
Pressure sensing in liquids is important for engineering applications ranging from industrial processing to naval architecture. Here, we propose a pressure sensor based on highly compressible polydimethylsiloxane foam particles embedding fluorescent Nile Red molecules. The particles display pressure sensitivities as low as 0.0018 kPa-1, which are on the same order of magnitude of sensitivities reported in commercial pressure-sensitive paints for air flows. We envision the application of the proposed sensor in particle image velocimetry toward an improved understanding of flow kinetics in liquids.
Embedded programmable blood pressure monitoring system
NASA Astrophysics Data System (ADS)
Hasan, Md. Mahmud-Ul; Islam, Md. Kafiul; Shawon, Mehedi Azad; Nowrin, Tasnuva Faruk
2010-02-01
A more efficient newer algorithm of detecting systolic and diastolic pressure of human body along with a complete package of an effective user-friendly embedded programmable blood pressure monitoring system has been proposed in this paper to reduce the overall workload of medical personals as well as to monitor patient's condition more conveniently and accurately. Available devices for measuring blood pressure have some problems and limitations in case of both analog and digital devices. The sphygmomanometer, being analog device, is still being used widely because of its reliability and accuracy over digital ones. But it requires a skilled person to measure the blood pressure and obviously not being automated as well as time consuming. Our proposed system being a microcontroller based embedded system has the advantages of the available digital blood pressure machines along with a much improved form and has higher accuracy at the same time. This system can also be interfaced with computer through serial port/USB to publish the measured blood pressure data on the LAN or internet. The device can be programmed to determine the patient's blood pressure after each certain interval of time in a graphical form. To sense the pressure of human body, a pressure to voltage transducer is used along with a cuff in our system. During the blood pressure measurement cycle, the output voltage of the transducer is taken by the built-in ADC of microcontroller after an amplifier stage. The recorded data are then processed and analyzed using the effective software routine to determine the blood pressure of the person under test. Our proposed system is thus expected to certainly enhance the existing blood pressure monitoring system by providing accuracy, time efficiency, user-friendliness and at last but not the least the 'better way of monitoring patient's blood pressure under critical care' all together at the same time.
Code Description for Generation of Meteorological Height and Pressure Level and Layer Profiles
2016-06-01
defined by user input height or pressure levels. It can process input profiles from sensing systems such as radiosonde, lidar, or wind profiling radar...nearly the same way, but the split between wind and temperature/humidity (TH) special levels leads to some changes to one other routine. If changes are...top of the sounding, sometimes the moisture, the thermal, both thermal and moisture, and/or the wind data are missing. Missing data items in the
Device and method for determining oxygen concentration and pressure in gases
Ayers, M.R.; Hunt, A.J.
1999-03-23
Disclosed are oxygen concentration and/or pressure sensing devices and methods which incorporate photoluminescent silica aerogels. Disclosed sensors include a light proof housing for holding the photoluminescent aerogel, a source of excitation radiation (e.g., a UV source), a detector for detecting radiation emitted by the aerogel, a system for delivering a sample gas to the aerogel, and a thermocouple. Also disclosed are water resistant oxygen sensors having a photoluminescent aerogel coated with a hydrophobic material. 6 figs.
Oceanic-wave-measurement system
NASA Technical Reports Server (NTRS)
Holmes, J. F.; Miles, R. T.
1980-01-01
Barometer mounted on bouy senses wave heights. As wave motion raises and lowers barometer, pressure differential is proportional to wave height. Monitoring circuit samples barometer output every half cycle of wave motion and adds magnitudes of adjacent positive and negative peaks. Resulting output signals, proportional to wave height, are transmitted to central monitoring station.
33 CFR 154.2150 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... system contains pressure-sensing, relieving, or alarming components in addition to those required by 33... precautions must be taken to prevent and detect polymerization of the cargo vapors. (p) Mixing of incompatible... vapor to a level at which reaction with the subsequent vapor cannot occur; and (3) The required duration...
System interface for an integrated intelligent safety system (ISS) for vehicle applications.
Hannan, Mahammad A; Hussain, Aini; Samad, Salina A
2010-01-01
This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS) that includes an airbag deployment decision system (ADDS) and a tire pressure monitoring system (TPMS). A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.
System Interface for an Integrated Intelligent Safety System (ISS) for Vehicle Applications
Hannan, Mahammad A.; Hussain, Aini; Samad, Salina A.
2010-01-01
This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS) that includes an airbag deployment decision system (ADDS) and a tire pressure monitoring system (TPMS). A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications. PMID:22205861
Distributed optical fibre sensing for early detection of shallow landslides triggering.
Schenato, Luca; Palmieri, Luca; Camporese, Matteo; Bersan, Silvia; Cola, Simonetta; Pasuto, Alessandro; Galtarossa, Andrea; Salandin, Paolo; Simonini, Paolo
2017-10-31
A distributed optical fibre sensing system is used to measure landslide-induced strains on an optical fibre buried in a large scale physical model of a slope. The fibre sensing cable is deployed at the predefined failure surface and interrogated by means of optical frequency domain reflectometry. The strain evolution is measured with centimetre spatial resolution until the occurrence of the slope failure. Standard legacy sensors measuring soil moisture and pore water pressure are installed at different depths and positions along the slope for comparison and validation. The evolution of the strain field is related to landslide dynamics with unprecedented resolution and insight. In fact, the results of the experiment clearly identify several phases within the evolution of the landslide and show that optical fibres can detect precursory signs of failure well before the collapse, paving the way for the development of more effective early warning systems.
Use of a pitot probe for determining wing section drag in flight
NASA Technical Reports Server (NTRS)
Saltzman, E. J.
1975-01-01
A wake traversing probe was used to obtain section drag and wake profile data from the wing of a sailplane. The transducer sensed total pressure defect in the wake as well as freestream total pressure on both sides of the sensing element when the probe moved beyond the wake. Profiles of wake total pressure defects plotted as a function of distance above and below the trailing edge plane were averaged for calculating section drag coefficients for flights at low dynamic pressures.
Plant-Derived Natural Products as Sources of Anti-Quorum Sensing Compounds
Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Tan, Li Ying; Krishnan, Thiba; Chong, Yee Meng; Chan, Kok-Gan
2013-01-01
Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selection pressure. A number of anti-quorum sensing approaches have been documented and plant-based natural products have been extensively studied in this context. Plant matter is one of the major sources of chemicals in use today in various industries, ranging from the pharmaceutical, cosmetic, and food biotechnology to the textile industries. Just like animals and humans, plants are constantly exposed to bacterial infections, it is therefore logical to expect that plants have developed sophisticated of chemical mechanisms to combat pathogens. In this review, we have surveyed the various types of plant-based natural products that exhibit anti-quorum sensing properties and their anti-quorum sensing mechanisms. PMID:23669710
Pressure sensor based on pristine multi-walled carbon nanotubes forest
NASA Astrophysics Data System (ADS)
Yasar, M.; Mohamed, N. M.; Hamid, N. H.; Shuaib, M.
2016-11-01
In the course of the most recent decade, carbon nanotubes (CNTs) have been developed as alternate material for many sensing applications because of their interesting properties. Their outstanding electromechanical properties make them suitable for pressure/strain sensing application. Other than in view of their structure and number of walls (i.e. Single-Walled CNTs and MultiWalled CNTs), carbon nanotubes can likewise be classified based on their orientation and combined arrangement. One such classification is vertically aligned Multi-Walled Carbon Nanotubes (VA-MWCNTs), regularly termed as CNTs arrays, foam or forest which is macro scale form of CNTs. Elastic behavior alongside exceptional electromechanical (high gauge factor) make it suitable for pressure sensing applications. This paper presents pressure sensor based on such carbon nanotubes forest in pristine form which enables it to perform over wider temperature range as compared to pressure sensors based on conventional materials such as Silicon.
Beinert, K; Preiss, S; Huber, M; Taube, W
2015-12-01
Impaired cervical joint position sense is a feature of chronic neck pain and is commonly argued to rely on abnormal cervical input. If true, muscle vibration, altering afferent input, but not mental interventions, should have an effect on head repositioning acuity and neck pain perception. The aim of the present study was to determine the short-term effects of neck muscle vibration, motor imagery, and action observation on cervical joint position sense and pressure pain threshold in people with chronic neck pain. Forty-five blinded participants with neck pain received concealed allocation and were randomized in three treatment groups. A blinded assessor performed pre- and post-test measurement. Patients were recruited from secondary outpatient clinics in the southwest of Germany. Chronic, non specific neck pain patients without arm pain were recruited for this study. A single intervention session of 5 minutes was delivered to each blinded participant. Patients were either allocated to one of the following three interventions: (1) neck muscle vibration; (2) motor imagery; (3) action observation. Primary outcomes were cervical joint position sense acuity and pressure pain threshold. Repeated measures ANOVAs were used to evaluate differences between groups and subjects. Repositioning acuity displayed significant time effects for vibration, motor imagery, and action observation (all P<0.05), but revealed no time*group effect. Pressure pain threshold demonstrated a time*group effect (P=0.042) as only vibration significantly increased pressure pain threshold (P=0.01). Although motor imagery and action observation did not modulate proprioceptive, afferent input, they nevertheless improved cervical joint position sense acuity. This indicates that, against the common opinion, changes in proprioceptive input are not prerequisite to improve joint repositioning performance. However, the short-term applications of these cognitive treatments had no effect on pressure pain thresholds, whereas vibration reduced pressure pain thresholds. This implies different underlying mechanisms after vibration and mental training. Mental interventions were effective in improving cervical joint position sense and are easy to integrate in rehabilitation regimes. Neck muscle vibration is effective in improving cervical joint position sense and pressure pain thresholds within 5 minutes of application.
Non-invasive method and apparatus for measuring pressure within a pliable vessel
NASA Technical Reports Server (NTRS)
Shimizu, M. (Inventor)
1983-01-01
A non-invasive method and apparatus is disclosed for measuring pressure within a pliable vessel such as a blood vessel. The blood vessel is clamped by means of a clamping structure having a first portion housing a pressure sensor and a second portion extending over the remote side of the blood vessel for pressing the blood vessel into engagement with the pressure sensing device. The pressure sensing device includes a flat deflectable diaphragm portion arranged to engage a portion of the blood vessel flattened against the diaphragm by means of the clamp structure. In one embodiment, the clamp structure includes first and second semicylindrical members held together by retaining rings. In a second embodiment the clamp structure is of one piece construction having a solid semicylindrical portion and a hollow semicylindrical portion with a longitudinal slot in the follow semicylindrical portion through which a slip the blood vessel. In a third embodiment, an elastic strap is employed for clamping the blood vessel against the pressure sensing device.
Carbon, Claus-Christian; Hecht, Heiko
2017-01-01
The present study is a first attempt to experimentally test the impact of two specific social factors, namely social conformity pressure and a sense of being watched, on participants’ judgments of the artistic quality of aesthetic objects. We manipulated conformity pressure with a test form in which a photograph of each stimulus was presented together with unanimously low (downward pressure) or high quality ratings (upward pressure) of three would-be previous raters. Participants’ sense of being watched was manipulated by testing each of them in two settings, one of which contained an eyespots stimulus. Both social factors significantly affected the participants’ judgments—unexpectedly, however, with conformity pressure only working in the downward direction and eyespots leading to an overall downward shift in participants’ judgments. Our findings indicate the relevance of including explicit and implicit social factors in aesthetics research, thus also reminding us of the limitations of overly reductionist approaches to investigating aesthetic perception and experience. PMID:29201336
Hesslinger, Vera M; Carbon, Claus-Christian; Hecht, Heiko
2017-01-01
The present study is a first attempt to experimentally test the impact of two specific social factors, namely social conformity pressure and a sense of being watched, on participants' judgments of the artistic quality of aesthetic objects. We manipulated conformity pressure with a test form in which a photograph of each stimulus was presented together with unanimously low (downward pressure) or high quality ratings (upward pressure) of three would-be previous raters. Participants' sense of being watched was manipulated by testing each of them in two settings, one of which contained an eyespots stimulus. Both social factors significantly affected the participants' judgments-unexpectedly, however, with conformity pressure only working in the downward direction and eyespots leading to an overall downward shift in participants' judgments. Our findings indicate the relevance of including explicit and implicit social factors in aesthetics research, thus also reminding us of the limitations of overly reductionist approaches to investigating aesthetic perception and experience.
Basler, J.A.
1983-01-01
Requirements for testing hydrologic test wells at the proposed Waste Isolation Pilot Plant near Carlsbad, New Mexico, necessitated the use of inflatable formation packers and pressure transducers. Observations during drilling and initial development indicated small formation yields which would require considerable test times by conventional open-casing methods. A pressure-monitoring system was assembled for performance evaluation utilizing commercially available components. Formation pressures were monitored with a down-hole strain-gage transducer. An inflatable packer equipped with a 1/4-inch-diameter steel tube extending through the inflation element permitted sensing formation pressures in isolated test zones. Surface components of the monitoring system provided AC transducer excitation, signal conditioning for recording directly in engineering units, and both analog and digital recording. Continuous surface monitoring of formation pressures provided a means of determining test status and projecting completion times during any phase of testing. Maximum portability was afforded by battery operation with all surface components mounted in a small self-contained trailer. (USGS)
Development of a conformable electronic skin based on silver nanowires and PDMS
NASA Astrophysics Data System (ADS)
Wang, Haopeng
2017-06-01
This paper presented the designed and tested a flexible and stretchable pressure sensor array that could be used to cover 3D surface to measure contact pressure. The sensor array is laminated into a thin film with 1 mm in thickness and can easily be stretched without losing its functionality. The fabricated sensor array contained 8×8 sensing elements, each could measure the pressure up to 180 kPa. An improved sandwich structure is used to build the sensor array. The upper and lower layers were PDMS thin films embedded with conductor strips formed by PDMS-based silver nanowires (AgNWs) networks covered with nano-scale thin metal film. The middle layer was formed a porous PDMS film inserted with circular conductive rubber. The sensor array could detect the contact pressure within 30% stretching rate. In this paper, the performance of the pressure sensor array was systematically studied. With the corresponding scanning power-supply circuit and data acquisition system, it is demonstrated that the system can successfully capture the tactile images induced by objects of different shapes. Such sensor system could be applied on complex surfaces in robots or medical devices for contact pressure detection and feedback.
Self-Regulating Water-Separator System for Fuel Cells
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; McCurdy, Kerri; Bradley, Karla F.
2007-01-01
proposed system would perform multiple coordinated functions in regulating the pressure of the oxidant gas (usually, pure oxygen) flowing to a fuelcell stack and in removing excess product water that is generated in the normal fuel-cell operation. The system could function in the presence or absence of gravitation, and in any orientation in a gravitational field. Unlike some prior systems for removing product water, the proposed system would not depend on hydrophobicity or hydrophilicity of surfaces that are subject to fouling and, consequently, to gradual deterioration in performance. Also unlike some prior systems, the proposed system would not include actively controlled electric motors for pumping; instead, motive power for separation and pumping away of product water would be derived primarily from the oxidant flow and perhaps secondarily from the fuel flow. The net effect of these and other features would be to make the proposed system more reliable and safer, relative to the prior systems. The proposed system (see figure) would include a pressure regulator and sensor in the oxidant supply just upstream from an ejector reactant pump. The pressure of the oxidant supply would depend on the consumption flow. In one of two control subsystems, the pressure of oxidant flowing from the supply to the ejector would be sensed and used to control the speed of a set of a reciprocating constant-displacement pump so that the volumetric flow of nominally incompressible water away from the system would slightly exceed the rate at which water was produced by the fuel cell(s). The two-phase (gas/liquid water) outlet stream from the fuel cell(s) would enter the water separator, a turbinelike centrifugal separator machine driven primarily by the oxidant gas stream. A second control subsystem would utilize feedback derived from the compressibility of the outlet stream: As the separator was emptied of liquid water, the compressibility of the pumped stream would increase. The compressibility would be sensed, and an increase in compressibility beyond a preset point (signifying a decrease in water content below an optimum low level) would cause the outflow from the reciprocating pump to be diverted back to the separator to recycle some water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T; Cho, M; Kang, S
Purpose: To improve the setup accuracy of thermoplastic mask, we developed a new monitoring method based on force sensing technology and evaluated its feasibility. Methods: The thermoplastic mask setup monitoring system consists of a force sensing resistor sensor unit, a signal transport device, a control PC and an in-house software. The system is designed to monitor pressure variation between the mask and patient in real time. It also provides a warning to the user when there is a possibility of movement. A preliminary study was performed to evaluate the reliability of the sensor unit and developed monitoring system with amore » head phantom. Then, a simulation study with volunteers was conducted to evaluate the feasibility of the monitoring system. Note that the sensor unit can have multiple end-sensors and every end-sensor was confirmed to be within 2% reliability in pressure reading through a screening test. Results: To evaluate the reproducibility of the proposed monitoring system in practice, we simulated a mask setup with the head phantom. FRS sensors were attached on the face of the head phantom and pressure was monitored. For 3 repeated mask setups on the phantom, the variation of the pressure was less than 3% (only 1% larger than 2% potential uncertainty confirmed in the screening test). In the volunteer study, we intended to verify that the system could detect patient movements within the mask. Thus, volunteers were asked to turn their head or lift their chin. The system was able to detect movements effectively, confirming the clinical feasibility of the monitoring system developed. Conclusion: Through the proposed setup monitoring method, it is possible to monitor patient motion inside a mask in real time, which has never been possible with most commonly used systems using non-radiographic technology such as infrared camera system and surface imaging system. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less
Sensitivity enhancement of fiber loop cavity ring-down pressure sensor.
Jiang, Yajun; Yang, Dexing; Tang, Daqing; Zhao, Jianlin
2009-11-10
We present a theoretical and experimental study on sensitivity enhancement of a fiber-loop cavity ring-down pressure sensor. The cladding of the sensing fiber is etched in hydrofluoric acid solution to enhance its sensitivity. The experimental results demonstrate that the pressure applied on the sensing fiber is linearly proportional to the difference between the reciprocals of the ring-down time with and without pressure, and the relative sensitivity exponentially increases with decreasing the cladding diameter. When the sensing fiber is etched to 41.15 microm, its sensitivity is about 36 times that of nonetched fiber in the range of 0 to 32.5 MPa. The measured relative standard deviation of the ring-down time is about 0.15% and, correspondingly, the least detectable loss is about 0.00069 dB.
Soft Active Materials for Actuation, Sensing, and Electronics
NASA Astrophysics Data System (ADS)
Kramer, Rebecca Krone
Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.
Estimation of Temporal Gait Parameters Using a Human Body Electrostatic Sensing-Based Method.
Li, Mengxuan; Li, Pengfei; Tian, Shanshan; Tang, Kai; Chen, Xi
2018-05-28
Accurate estimation of gait parameters is essential for obtaining quantitative information on motor deficits in Parkinson's disease and other neurodegenerative diseases, which helps determine disease progression and therapeutic interventions. Due to the demand for high accuracy, unobtrusive measurement methods such as optical motion capture systems, foot pressure plates, and other systems have been commonly used in clinical environments. However, the high cost of existing lab-based methods greatly hinders their wider usage, especially in developing countries. In this study, we present a low-cost, noncontact, and an accurate temporal gait parameters estimation method by sensing and analyzing the electrostatic field generated from human foot stepping. The proposed method achieved an average 97% accuracy on gait phase detection and was further validated by comparison to the foot pressure system in 10 healthy subjects. Two results were compared using the Pearson coefficient r and obtained an excellent consistency ( r = 0.99, p < 0.05). The repeatability of the purposed method was calculated between days by intraclass correlation coefficients (ICC), and showed good test-retest reliability (ICC = 0.87, p < 0.01). The proposed method could be an affordable and accurate tool to measure temporal gait parameters in hospital laboratories and in patients' home environments.
Quandt, Brit M; Scherer, Lukas J; Boesel, Luciano F; Wolf, Martin; Bona, Gian-Luca; Rossi, René M
2015-02-18
Long-term monitoring with optical fibers has moved into the focus of attention due to the applicability for medical measurements. Within this Review, setups of flexible, unobtrusive body-monitoring systems based on optical fibers and the respective measured vital parameters are in focus. Optical principles are discussed as well as the interaction of light with tissue. Optical fiber-based sensors that are already used in first trials are primarily selected for the section on possible applications. These medical textiles include the supervision of respiration, cardiac output, blood pressure, blood flow and its saturation with hemoglobin as well as oxygen, pressure, shear stress, mobility, gait, temperature, and electrolyte balance. The implementation of these sensor concepts prompts the development of wearable smart textiles. Thus, current sensing techniques and possibilities within photonic textiles are reviewed leading to multiparameter designs. Evaluation of these designs should show the great potential of optical fibers for the introduction into textiles especially due to the benefit of immunity to electromagnetic radiation. Still, further improvement of the signal-to-noise ratio is often necessary to develop a commercial monitoring system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sudhakar, P.; Kalavathi, P.; Ramakrishna Rao, D.; Satyanarayna, M.
2014-12-01
Industrialization can no longer sustain without internalization of the concerns of the receiving environment and land-use. Increased awareness and public pressure, coupled with regulatory instruments and bodies exert constant pressure on industries to control their emissions to a level acceptable to the receiving environment. However, when a group of industries come-up together as an industrial estate, the cumulative impacts of all the industries together often challenges the expected/desired quality of receiving environment, requiring stringent pollution control and monitoring measures. Laser remote sensing techniques provide powerful tools for environmental monitoring. These methods provide range resolved measurements of concentrations of various gaseous pollutants and suspended particulate matter (SPM) not only in the path of the beam but over the entire area. A three dimensional mapping of the pollutants and their dispersal can be estimated using the laser remote sensing methods on a continuous basis. Laser Radar (Lidar) systems are the measurements technology used in the laser remote sensing methods. Differential absorption lidar (DIAL) and Raman Lidar technologies have proved to be very useful for remote sensing of air pollutants. DIAL and Raman lidar systems can be applied for range resolved measurements of molecules like SO2, NO2, O3 Hg, CO, C2H4, H2O, CH4, hydrocarbons etc. in real time on a continuous basis. This paper describes the design details of the DAIL and Raman lidar techniques for measurement of various hazardous air pollutants which are being released into the atmosphere by the chemical industries operating in the Bachupally industrial Estate area at Hyderabad, India. The relative merits of the two techniques have been studied and the minimum concentration of pollutants that can be measured using these systems are presented. A dispersion model of the air pollutants in the selected chemical industrial estates at Hyderabad has been developed.
Xu, Tianbai; Wang, Wenbo; Bian, Xiaolei; Wang, Xiaoxue; Wang, Xiaozhi; Luo, J K; Dong, Shurong
2015-08-13
Human skin contains multiple receptors, and is able to sense various stimuli such as temperature, pressure, force, corrosion etc, and to feel pains and the shape of objects. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, strain gauges etc. Great efforts have been made to develop high performance skin-like sensors, but they are far from perfect and much inferior to human skin as most of them can only sense one stimulus with focus on pressure (strain) or temperature, and are unable to visualize sensations and shape of objects. Here we report a skin-like sensor which imitates real skin with multiple receptors, and a new concept of pain sensation. The sensor with very high resolution not only has multiple sensations for touch, pressure, temperature, but also is able to sense various pains and reproduce the three dimensional shape of an object in contact.
Implementation of infants risk detection sensing system using IoT
NASA Astrophysics Data System (ADS)
Yang, Youseok; Lee, Taeo; Lee, Yechan; Choi, Jaehyeon; Park, Eunju; Lim, Hankyu
2017-06-01
Infants are vulnerable to surrounding environment and they receive large influence from even a small change. As their body composition is not complete yet, infants receive huge impact from small pressure. Small change can cause disease or even death of infants. This paper designed and implemented a risk-detection system for infants. In addition to the fundamental function of safety management system, the risk-detection system implemented in this paper in corporate child-caring function by using a variety of sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kevin P.
2015-02-13
This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less
Design of pressure-sensing diaphragm for MEMS capacitance diaphragm gauge considering size effect
NASA Astrophysics Data System (ADS)
Li, Gang; Li, Detian; Cheng, Yongjun; Sun, Wenjun; Han, Xiaodong; Wang, Chengxiang
2018-03-01
MEMS capacitance diaphragm gauge with a full range of (1˜1000) Pa is considered for its wide application prospect. The design of pressure-sensing diaphragm is the key to achieve balanced performance for this kind of gauges. The optimization process of the pressure-sensing diaphragm with island design of a capacitance diaphragm gauge based on MEMS technique has been reported in this work. For micro-components in micro scale range, mechanical properties are very different from that in the macro scale range, so the size effect should not be ignored. The modified strain gradient elasticity theory considering size effect has been applied to determine the bending rigidity of the pressure-sensing diaphragm, which is then used in the numerical model to calculate the deflection-pressure relation of the diaphragm. According to the deflection curves, capacitance variation can be determined by integrating over the radius of the diaphragm. At last, the design of the diaphragm has been optimized based on three parameters: sensitivity, linearity and ground capacitance. With this design, a full range of (1˜1000) Pa can be achieved, meanwhile, balanced sensitivity, resolution and linearity can be kept.
2011-01-01
remote sensing , such as Fourier-transform infrared spectroscopy, has limited recognition specificity because of atmospheric pressure broadening. Active interrogation techniques promise much greater chemical recognition that can overcome the limits imposed by atmospheric pressure broadening. Here we introduce infrared - terahertz (IR/THz) double resonance spectroscopy as an active means of chemical remote sensing that retains recognition specificity through rare, molecule-unique coincidences between IR molecular absorption and a line-tunable CO2
Welding wire pressure sensor assembly
NASA Technical Reports Server (NTRS)
Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)
1994-01-01
The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.
Planetary Probe Entry Atmosphere Estimation Using Synthetic Air Data System
NASA Technical Reports Server (NTRS)
Karlgaard, Chris; Schoenenberger, Mark
2017-01-01
This paper develops an atmospheric state estimator based on inertial acceleration and angular rate measurements combined with an assumed vehicle aerodynamic model. The approach utilizes the full navigation state of the vehicle (position, velocity, and attitude) to recast the vehicle aerodynamic model to be a function solely of the atmospheric state (density, pressure, and winds). Force and moment measurements are based on vehicle sensed accelerations and angular rates. These measurements are combined with an aerodynamic model and a Kalman-Schmidt filter to estimate the atmospheric conditions. The new method is applied to data from the Mars Science Laboratory mission, which landed the Curiosity rover on the surface of Mars in August 2012. The results of the new estimation algorithm are compared with results from a Flush Air Data Sensing algorithm based on onboard pressure measurements on the vehicle forebody. The comparison indicates that the new proposed estimation method provides estimates consistent with the air data measurements, without the use of pressure measurements. Implications for future missions such as the Mars 2020 entry capsule are described.
Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes.
Lipomi, Darren J; Vosgueritchian, Michael; Tee, Benjamin C-K; Hellstrom, Sondra L; Lee, Jennifer A; Fox, Courtney H; Bao, Zhenan
2011-10-23
Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics, implantable medical devices and robotic systems with human-like sensing capabilities. The availability of conducting thin films with these properties could lead to the development of skin-like sensors that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays and solar cells, and also wrap around non-planar and biological surfaces such as skin and organs, without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm(-1) in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors.
Automatic Rejection Of Multimode Laser Pulses
NASA Technical Reports Server (NTRS)
Tratt, David M.; Menzies, Robert T.; Esproles, Carlos
1991-01-01
Characteristic modulation detected, enabling rejection of multimode signals. Monitoring circuit senses multiple longitudinal mode oscillation of transversely excited, atmospheric-pressure (TEA) CO2 laser. Facility developed for inclusion into coherent detection laser radar (LIDAR) system. However, circuit described of use in any experiment where desireable to record data only when laser operates in single longitudinal mode.
Comparative Study on a Solving Model and Algorithm for a Flush Air Data Sensing System
Liu, Yanbin; Xiao, Dibo; Lu, Yuping
2014-01-01
With the development of high-performance aircraft, precise air data are necessary to complete challenging tasks such as flight maneuvering with large angles of attack and high speed. As a result, the flush air data sensing system (FADS) was developed to satisfy the stricter control demands. In this paper, comparative stuides on the solving model and algorithm for FADS are conducted. First, the basic principles of FADS are given to elucidate the nonlinear relations between the inputs and the outputs. Then, several different solving models and algorithms of FADS are provided to compute the air data, including the angle of attck, sideslip angle, dynamic pressure and static pressure. Afterwards, the evaluation criteria of the resulting models and algorithms are discussed to satisfy the real design demands. Futhermore, a simulation using these algorithms is performed to identify the properites of the distinct models and algorithms such as the measuring precision and real-time features. The advantages of these models and algorithms corresponding to the different flight conditions are also analyzed, furthermore, some suggestions on their engineering applications are proposed to help future research. PMID:24859025
Comparative study on a solving model and algorithm for a flush air data sensing system.
Liu, Yanbin; Xiao, Dibo; Lu, Yuping
2014-05-23
With the development of high-performance aircraft, precise air data are necessary to complete challenging tasks such as flight maneuvering with large angles of attack and high speed. As a result, the flush air data sensing system (FADS) was developed to satisfy the stricter control demands. In this paper, comparative stuides on the solving model and algorithm for FADS are conducted. First, the basic principles of FADS are given to elucidate the nonlinear relations between the inputs and the outputs. Then, several different solving models and algorithms of FADS are provided to compute the air data, including the angle of attck, sideslip angle, dynamic pressure and static pressure. Afterwards, the evaluation criteria of the resulting models and algorithms are discussed to satisfy the real design demands. Futhermore, a simulation using these algorithms is performed to identify the properites of the distinct models and algorithms such as the measuring precision and real-time features. The advantages of these models and algorithms corresponding to the different flight conditions are also analyzed, furthermore, some suggestions on their engineering applications are proposed to help future research.
Army Net Zero Prove Out. Army Net Zero Training Report
2014-11-20
existing reporting systems (e.g., Army Energy and Water Reporting System, Solid Waste Annual Reporting- web , Headquarters Army Environmental System). 3...Testing a wave energy converter Harnesses the pressure of a wave on the ocean floor 22 Conduct thermal building envelope analysis IR ...bathroom f ixtures, ai r handling units, Less than 3W i rrigat ion controls w ith EPA Water’Sense approved equipment 1% 0 . .279% Acqu ire lower water
NASA Astrophysics Data System (ADS)
Yang, Dong; Wang, Shun; Lu, Ping; Liu, Deming
2014-11-01
We propose and fabricate a new type fiber acoustic sensor based on dual fiber Bragg gratings (FBGs) configuration. The acoustic sensor head is constructed by putting the sensing cells enclosed in an aluminum cylinder space built by two Cband FBGs and a titanium diaphragm of 50 um thickness. One end of each FBG is longitudinally adhered to the diaphragm by UV glue. Both of the two FBGs are employed for reflecting light. The dual FBGs play roles not only as signal transmission system but also as sensing component, and they demodulate each other's optical signal mutually during the measurement. Both of the two FBGs are pre-strained and the output optical power experiences fluctuation in a linear relationship along with a variation of axial strain and surrounding acoustic interference. So a precise approach to measure the frequency and sound pressure of the acoustic disturbance is achieved. Experiments are performed and results show that a relatively flat frequency response in a range from 200 Hz to 1 kHz with the average signal-to-noise ratio (SNR) above 21 dB is obtained. The maximum sound pressure sensitivity of 11.35mV/Pa is achieved with the Rsquared value of 0.99131 when the sound pressure in the range of 87.7-106.6dB. It has potential applications in low frequency signal detection. Owing to its direct self-demodulation method, the sensing system reveals the advantages of easy to demodulate, good temperature stability and measurement reliability. Besides, performance of the proposed sensor could be improved by optimizing the parameters of the sensor, especially the diaphragm.
Photonic sensing of arterial distension
Ruh, Dominic; Subramanian, Sivaraman; Sherman, Stanislav; Ruhhammer, Johannes; Theodor, Michael; Dirk, Lebrecht; Foerster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Zappe, Hans; Seifert, Andreas
2016-01-01
Most cardiovascular diseases, such as arteriosclerosis and hypertension, are directly linked to pathological changes in hemodynamics, i.e. the complex coupling of blood pressure, blood flow and arterial distension. To improve the current understanding of cardiovascular diseases and pave the way for novel cardiovascular diagnostics, innovative tools are required that measure pressure, flow, and distension waveforms with yet unattained spatiotemporal resolution. In this context, miniaturized implantable solutions for continuously measuring these parameters over the long-term are of particular interest. We present here an implantable photonic sensor system capable of sensing arterial wall movements of a few hundred microns in vivo with sub-micron resolution, a precision in the micrometer range and a temporal resolution of 10 kHz. The photonic measurement principle is based on transmission photoplethysmography with stretchable optoelectronic sensors applied directly to large systemic arteries. The presented photonic sensor system expands the toolbox of cardiovascular measurement techniques and makes these key vital parameters continuously accessible over the long-term. In the near term, this new approach offers a tool for clinical research, and as a perspective, a continuous long-term monitoring system that enables novel diagnostic methods in arteriosclerosis and hypertension research that follow the trend in quantifying cardiovascular diseases by measuring arterial stiffness and more generally analyzing pulse contours. PMID:27699095
Luo, Ming; Skorina, Erik H; Tao, Weijia; Chen, Fuchen; Ozel, Selim; Sun, Yinan; Onal, Cagdas D
2017-06-01
Real-world environments are complex, unstructured, and often fragile. Soft robotics offers a solution for robots to safely interact with the environment and human coworkers, but suffers from a host of challenges in sensing and control of continuously deformable bodies. To overcome these challenges, this article considers a modular soft robotic architecture that offers proprioceptive sensing of pressure-operated bending actuation modules. We present integrated custom magnetic curvature sensors embedded in the neutral axis of bidirectional bending actuators. We describe our recent advances in the design and fabrication of these modules to improve the reliability of proprioceptive curvature feedback over our prior work. In particular, we study the effect of dimensional parameters on improving the linearity of curvature measurements. In addition, we present a sliding-mode controller formulation that drives the binary solenoid valve states directly, giving the control system the ability to hold the actuator steady without continuous pressurization and depressurization. In comparison to other methods, this control approach does not rely on pulse width modulation and hence offers superior dynamic performance (i.e., faster response rates). Our experimental results indicate that the proposed soft robotic modules offer a large range of bending angles with monotonic and more linear embedded curvature measurements, and that the direct sliding-mode control system exhibits improved bandwidth and a notable reduction in binary valve actuation operations compared to our earlier iterative sliding-mode controller.
Analysis of nematode mechanics by piezoresistive displacement clamp
Park, Sung-Jin; Goodman, Miriam B.; Pruitt, Beth L.
2007-01-01
Studying animal mechanics is critical for understanding how signals in the neuromuscular system give rise to behavior and how force-sensing organs and sensory neurons work. Few techniques exist to provide forces and displacements appropriate for such studies. To address this technological gap, we developed a metrology using piezoresistive cantilevers as force–displacement sensors coupled to a feedback system to apply and maintain defined load profiles to micrometer-scale animals. We show that this system can deliver forces between 10−8 and 10−3 N across distances of up to 100 μm with a resolution of 12 nN between 0.1 Hz and 100 kHz. We use this new metrology to show that force–displacement curves of wild-type nematodes (Caenorhabditis elegans) are linear. Because nematodes have approximately cylindrical bodies, this finding demonstrates that nematode body mechanics can be modeled as a cylindrical shell under pressure. Little is known about the relative importance of hydrostatic pressure and shell mechanics, however. We show that dissipating pressure by cuticle puncture or decreasing it by hyperosmotic shock has only a modest effect on stiffness, whereas defects in the dpy-5 and lon-2 genes, which alter body shape and cuticle proteins, decrease and increase stiffness by 25% and 50%, respectively. This initial analysis of C. elegans body mechanics suggests that shell mechanics dominates stiffness and is a first step in understanding how body mechanics affect locomotion and force sensing. PMID:17962419
Epidermal electronic systems for sensing and therapy
NASA Astrophysics Data System (ADS)
Lu, Nanshu; Ameri, Shideh K.; Ha, Taewoo; Nicolini, Luke; Stier, Andrew; Wang, Pulin
2017-04-01
Epidermal electronic system is a class of hair thin, skin soft, stretchable sensors and electronics capable of continuous and long-term physiological sensing and clinical therapy when applied on human skin. The high cost of manpower, materials, and photolithographic facilities associated with its manufacture limit the availability of disposable epidermal electronics. We have invented a cost and time effective, completely dry, benchtop "cut-and-paste" method for the green, freeform and portable manufacture of epidermal electronics within minutes. We have applied the "cut-and-paste" method to manufacture epidermal electrodes, hydration and temperature sensors, conformable power-efficient heaters, as well as cuffless continuous blood pressure monitors out of metal thin films, two-dimensional (2D) materials, and piezoelectric polymer sheets. For demonstration purpose, we will discuss three examples of "cut-and-pasted" epidermal electronic systems in this paper. The first will be submicron thick, transparent epidermal graphene electrodes that can be directly transferred to human skin like a temporary transfer tattoo and can measure electrocardiogram (ECG) with signal-to-noise ratio and motion artifacts on par with conventional gel electrodes. The second will be a chest patch which houses both electrodes and pressure sensors for the synchronous measurements of ECG and seismocardiogram (SCG) such that beat-to-beat blood pressure can be inferred from the time interval between the R peak of the ECG and the AC peak of the SCG. The last example will be a highly conformable, low power consumption epidermal heater for thermal therapy.
Operability of an Ejector Enhanced Pulse Combustor in a Gas Turbine Environment
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Dougherty, Kevin
2008-01-01
A pressure-gain combustor comprised of a mechanically valved, liquid fueled pulsejet, an ejector, and an enclosing shroud, was coupled to a small automotive turbocharger to form a self-aspirating, thrust producing gas turbine engine. The system was constructed in order to investigate issues associated with the interaction of pulsed combustion devices and turbomachinery. Installed instrumentation allowed for sensing of distributed low frequency pressure and temperature, high frequency pressure in the shroud, fuel flow rate, rotational speed, thrust, and laboratory noise. The engine ran successfully and reliably, achieving a sustained thrust of 5 to 6 lbf, and maintaining a rotor speed of approximately 90,000 rpm, with a combustor pressure gain of approximately 4 percent. Numerical simulations of the system without pressure-gain combustion indicated that the turbocharger would not operate. Thus, the new combustor represented a substantial improvement in system performance. Acoustic measurements in the shroud and laboratory indicated turbine stage sound pressure level attenuation of 20 dB. This is consistent with published results from detonative combustion experiments. As expected, the mechanical reed valves suffered considerable damage under the higher pressure and thermal loading characteristics of this system. This result underscores the need for development of more robust valve systems for this application. The efficiency of the turbomachinery components did not appear to be significantly affected by unsteadiness associated with pulsed combustion, though the steady component efficiencies were already low, and thus not expected to be particularly sensitive.
Director's Discretionary Fund Report for Fiscal Year 1996
NASA Technical Reports Server (NTRS)
1997-01-01
Topics covered include: Waterproofing the Space Shuttle tiles, thermal protection system for Reusable Launch Vehicles, computer modeling of the thermal conductivity of cometary ice, effects of ozone depletion and ultraviolet radiation on plants, a novel telemetric biosensor to monitor blood pH on-line, ion mobility in polymer electrolytes for lithium-polymer batteries, a microwave-pumped far infrared photoconductor, and a new method for measuring cloud liquid vapor using near infrared remote sensing. Also included: laser-spectroscopic instrument for turbulence measurement, remote sensing of aircraft contrails using a field portable imaging interferometer, development of a silicon-micromachined gas chromatography system for determination of planetary surface composition, planar Doppler velocimetry, chaos in interstellar chemistry, and a limited pressure cycle engine for high-speed output.
Pang, Yu; Tian, He; Tao, Luqi; Li, Yuxing; Wang, Xuefeng; Deng, Ningqin; Yang, Yi; Ren, Tian-Ling
2016-10-03
A mechanical sensor with graphene porous network (GPN) combined with polydimethylsiloxane (PDMS) is demonstrated by the first time. Using the nickel foam as template and chemically etching method, the GPN can be created in the PDMS-nickel foam coated with graphene, which can achieve both pressure and strain sensing properties. Because of the pores in the GPN, the composite as pressure and strain sensor exhibit wide pressure sensing range and highest sensitivity among the graphene foam-based sensors, respectively. In addition, it shows potential applications in monitoring or even recognize the walking states, finger bending degree, and wrist blood pressure.
Ta, Chieu Anh; Freundorfer, Marie; Mah, Thien-Fah; Otárola-Rojas, Marco; Garcia, Mario; Sanchez-Vindas, Pablo; Poveda, Luis; Maschek, J Alan; Baker, Bill J; Adonizio, Allison L; Downum, Kelsey; Durst, Tony; Arnason, John T
2014-03-01
Bacterial biofilms are responsible for many persistent infections by many clinically relevant pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. Biofilms are much more resistant to conventional antibiotics than their planktonic counterparts. Quorum sensing, an intercellular communication system, controls pathogenesis and biofilm formation in most bacterial species. Quorum sensing provides an important pharmacological target since its inhibition does not provide a selective pressure for resistance. In this study, we investigated the quorum sensing and biofilm inhibitory activities of 126 plant extracts from 71 species collected from neotropical rainforests in Costa Rica. Quorum sensing and biofilm interference were assessed using a modified disc diffusion bioassay with Chromobacterium violaceum ATCC 12,472 and a spectrophotometric bioassay with Pseudomonas aeruginosa PA14, respectively. Species with significant anti-quorum sensing and/or anti-biofilm activities belonged to the Meliaceae, Melastomataceae, Lepidobotryaceae, Sapindaceae, and Simaroubaceae families. IC50 values ranged from 45 to 266 µg/mL. Extracts of these active species could lead to future development of botanical treatments for biofilm-associated infections. Georg Thieme Verlag KG Stuttgart · New York.
Fiber-linked interferometric pressure sensor
NASA Technical Reports Server (NTRS)
Beheim, G.; Fritsch, K.; Poorman, R. N.
1987-01-01
A fiber-optic pressure sensor is described which uses a diaphragm to modulate the mirror separation of a Fabry-Perot cavity (the sensing cavity). A multimode optical fiber delivers broadband light to the sensing cavity and returns the spectrally modulated light which the cavity reflects. The sensor's output spectrum is analyzed using a tunable Fabry-Perot cavity (the reference cavity) to determine the mismatch in the mirror separations of the two cavities. An electronic servo control uses this result to cause the mirror separation of the reference cavity to equal that of the sensing cavity. The displacement of the pressure-sensing diaphragm is then obtained by measuring the capacitance of the reference cavity's metal-coated mirrors. Relative to other fiber-optic sensors, an important advantage of this instrument is its high immunity to the effects of variations in both the transmissivity of the fiber link and the wavelength of the optical source.
Sapko, Michael J.; Cortese, Robert A.
1992-01-01
An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.
A novel, intelligent, pressure-sensing colostomy plug for reducing fecal leakage.
Chen, Fei; Li, Zhi-Chao; Li, Qiang; Liang, Fei-Xue; Guo, Xiong-Bo; Huang, Zong-Hai
2015-06-01
This study aims to describe and report the effectiveness of a novel, pressure-sensing colostomy plug for reducing fecal leakage. Nine miniature Tibetan pigs, aged 6-8 months, were given colostomies and divided into three groups (n = 3 each group). A novel pressure-sensing colostomy plug was placed in each pig and set to indicate when intestinal pressures of either 5, 10, or 15 mm Hg, respectively, were reached. When the pressure thresholds were reached, the animals' bowels were examined for the presence of stool and/or stomal leakage, and the data were recorded at weeks 1, 4, and 8 after surgery. The colostomy plug calibrated to 15 mm Hg pressure demonstrated the greatest accuracy in predicting the presence of stool in the bowels of study animals, averaging >90% sensitivity. In general, the sensitivity for predicting the presence of stool did not vary significantly over time, though there was a slight increase in accuracy in the 5 mm Hg group at later time-points. The sensitivity for predicting stool in the bowel did not change significantly over time in any of the three groups. Stomal leakage was found to be inversely proportional to the pressure-sensor setting, in that the 15 mm Hg group exhibited the greatest amount of leakage. This difference, however, was found to be significant only at week 1 postsurgery. The intelligent, pressure-sensing colostomy plug was able to accurately predict the presence of stool in the bowel and maintain continence, allowing negligible leakage. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Bedard, A. J., Jr.; Nishiyama, R. T.
1993-01-01
Instruments developed for making meteorological observations under adverse conditions on Earth can be applied to systems designed for other planetary atmospheres. Specifically, a wind sensor developed for making measurements within tornados is capable of detecting induced pressure differences proportional to wind speed. Adding strain gauges to the sensor would provide wind direction. The device can be constructed in a rugged form for measuring high wind speeds in the presence of blowing dust that would clog bearings and plug passages of conventional wind speed sensors. Sensing static pressure in the lower boundary layer required development of an omnidirectional, tilt-insensitive static pressure probe. The probe provides pressure inputs to a sensor with minimum error and is inherently weather-protected. The wind sensor and static pressure probes have been used in a variety of field programs and can be adapted for use in different planetary atmospheres.
NASA Astrophysics Data System (ADS)
Webb, Alexander J.; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David
2013-04-01
Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.
Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark
2016-01-01
This paper describes an algorithm for atmospheric state estimation based on a coupling between inertial navigation and flush air data-sensing pressure measurements. The navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to estimate the atmosphere using a nonlinear weighted least-squares algorithm. The approach uses a high-fidelity model of atmosphere stored in table-lookup form, along with simplified models propagated along the trajectory within the algorithm to aid the solution. Thus, the method is a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content. The algorithm is applied to the design of the pressure measurement system for the Mars 2020 mission. A linear covariance analysis is performed to assess estimator performance. The results indicate that the new estimator produces more precise estimates of atmospheric states than existing algorithms.
A flexible touch-pressure sensor array with wireless transmission system for robotic skin
NASA Astrophysics Data System (ADS)
Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping
2016-06-01
Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.
A flexible touch-pressure sensor array with wireless transmission system for robotic skin.
Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping
2016-06-01
Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.
Flexible pressure sensors for burnt skin patient monitoring
NASA Astrophysics Data System (ADS)
Hong, Gwang-Wook; Kim, Se-Hoon; Kim, Joo-Hyung
2015-04-01
To monitor hypertrophic scars in burnt skin we proposed and demonstrated a hybrid polymer/carbon tube-based flexible pressure sensor. To monitor the pressure on skin by measurement, we were focusing on the fabrication of a well-defined hybrid polydimethylsiloxsane/functionalized multi-walled carbon tube array formed on the patterned interdigital transducer in a controllable way for the application of flexible pressure sensing devices. As a result, the detection at the pressure of 20 mmHg is achieved, which is a suggested optimal value of resistance for sensing pressure. It should be noted that the achieved value of resistance at the pressure of 20 mmHg is highly desirable for the further development of sensitive flexible pressure sensors. In addition we demonstrate a feasibility of a wearable pressure sensor which can be in real-time detection of local pressure by wireless communication module. Keywords:
Phase-sensitive techniques applied to a micromachined vacuum sensor
NASA Astrophysics Data System (ADS)
Chapman, Glenn H.; Sawadsky, N.; Juneja, P. P.
1996-09-01
Phase sensitive AC measurement techniques are particularly applicable to micromachined sensors detecting temperature changes at a sensor caused by a microheater. The small mass produces rapid thermal response to AC signals which are easily detectable with lock-in amplifiers. Phase sensitive measurements were applied to a CMOS compatible micromachined pressure sensor consisting a polysilicon sense line, 760 microns long, on an oxide microbridge separated by 6 microns on each horizontal side from similar polysilicon heaters, all over a micromachined cavity. Sinusoidal heater signals at 32 Hz induced temperature caused sense line resistance changes at 64 Hz. The lock-in detected this as a first harmonic sense resistor voltage from a DC constant sense current. By observing the first harmonic the lock-in rejects all AC coupling of noise by capacitance or inductance, by measuring only those signals at the 64 Hz frequency and with a fixed phase relationship to the heater driver signals. This sensor produces large signals near atmospheric pressure, declining to 7 (mu) V below 0.1 mTorr. Phase measurements between 760 and 100 Torr where the air's thermal conductivity changes little, combined with amplitude changes at low pressure generate a pressure measurement accurate at 5 percent from 760 Torr to 10 mTorr, sensing of induced temperature changes of 0.001 degree C.
Pressure mapping with textile sensors for compression therapy monitoring.
Baldoli, Ilaria; Mazzocchi, Tommaso; Paoletti, Clara; Ricotti, Leonardo; Salvo, Pietro; Dini, Valentina; Laschi, Cecilia; Francesco, Fabio Di; Menciassi, Arianna
2016-08-01
Compression therapy is the cornerstone of treatment in the case of venous leg ulcers. The therapy outcome is strictly dependent on the pressure distribution produced by bandages along the lower limb length. To date, pressure monitoring has been carried out using sensors that present considerable drawbacks, such as single point instead of distributed sensing, no shape conformability, bulkiness and constraints on patient's movements. In this work, matrix textile sensing technologies were explored in terms of their ability to measure the sub-bandage pressure with a suitable temporal and spatial resolution. A multilayered textile matrix based on a piezoresistive sensing principle was developed, calibrated and tested with human subjects, with the aim of assessing real-time distributed pressure sensing at the skin/bandage interface. Experimental tests were carried out on three healthy volunteers, using two different bandage types, from among those most commonly used. Such tests allowed the trends of pressure distribution to be evaluated over time, both at rest and during daily life activities. Results revealed that the proposed device enables the dynamic assessment of compression mapping, with a suitable spatial and temporal resolution (20 mm and 10 Hz, respectively). In addition, the sensor is flexible and conformable, thus well accepted by the patient. Overall, this study demonstrates the adequacy of the proposed piezoresistive textile sensor for the real-time monitoring of bandage-based therapeutic treatments. © IMechE 2016.
Intelligent sensor-model automated control of PMR-15 autoclave processing
NASA Technical Reports Server (NTRS)
Hart, S.; Kranbuehl, D.; Loos, A.; Hinds, B.; Koury, J.
1992-01-01
An intelligent sensor model system has been built and used for automated control of the PMR-15 cure process in the autoclave. The system uses frequency-dependent FM sensing (FDEMS), the Loos processing model, and the Air Force QPAL intelligent software shell. The Loos model is used to predict and optimize the cure process including the time-temperature dependence of the extent of reaction, flow, and part consolidation. The FDEMS sensing system in turn monitors, in situ, the removal of solvent, changes in the viscosity, reaction advancement and cure completion in the mold continuously throughout the processing cycle. The sensor information is compared with the optimum processing conditions from the model. The QPAL composite cure control system allows comparison of the sensor monitoring with the model predictions to be broken down into a series of discrete steps and provides a language for making decisions on what to do next regarding time-temperature and pressure.
Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L
2016-07-01
A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pressure-relieving properties of a intra-operative warming device.
Baker, E A; Leaper, D J
2003-04-01
The primary objective of this study was to determine differences in interface pressure between four mattress combinations: a standard operating table mattress, a pressure-relieving gel pad and an under-patient warming device set at 38 degrees C (Pegasus Inditherm System) and at ambient temperature. The secondary objective was to determine whether the warming device remains stable in extreme surgical positions. Interface pressures obtained with all four combinations were measured in 10 healthy volunteers using force sensing array technology. The warming device demonstrated better or equivalent pressure relief when compared with the standard gel pad. There was no significant difference in subject position 'shift' between the mattress, the gel pad and the warming device for either the Trendelenberg or reverse Trendelenberg positions. Both pressure-relieving mattresses and warming reduce intra-operative pressure damage. A mattress with both properties may further reduce pressure damage postoperatively. The warming device used in this study appears stable--subject 'slippage' was minimal in extreme positions. Research needs to be conducted among real anaesthetised patients to support these conclusions.
Intracranial pressure monitoring (image)
Intracranial pressure monitoring is performed by inserting a catheter into the head with a sensing device to monitor the pressure around the brain. An increase in intracranial pressure can cause a decrease in blood flow to ...
1993-07-12
NASA's F/A-18 Hornet is seen here in a banked turn over Rogers Dry Lake in the Mojave desert on an early research flight. It was flown by NASA's Dryden Flight Research Center, Edwards, California, in a multi-year, joint NASA/DOD/industry program, the former Navy fighter was modified into a unique Systems Research Aircraft (SRA) to investigate a host of new technologies in the areas of flight controls, airdata sensing and advanced computing. One of the more than 20 experiments tested aboard the SRA F-18 was an advanced air data sensing system which used a group of pressure taps flush-mounted on the forward fuselage to measure both altitude and wind speed and direction--critical data for flight control and research investigations. The Real-Time Flush Air Data Sensing system concept was evaluated for possible use on the X-33 and X-34 resuable space-launch vehicles. The primary goal of the SRA program was to validate through flight research cutting-edge technologies which could benefit future aircraft and spacecraft by improving efficiency and performance, reducing weight and complexity, with a resultant reduction on development and operational costs.
Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing.
Talataisong, W; Wang, D N; Chitaree, R; Liao, C R; Wang, C
2015-04-01
We demonstrate a fiber in-line Mach-Zehnder interferometer based on an inner air-cavity with open micro-channel for high-pressure sensing applications. The inner air-cavity is fabricated by combining femtosecond laser micromachining and the fusion splicing technique. The micro-channel is drilled on the top of the inner air-cavity to allow the high-pressure gas to flow in. The fiber in-line device is miniature, robust, and stable in operation and exhibits a high pressure sensitivity of ∼8,239 pm/MPa.
Nanostructure Sensing and Transmission of Gas Data
NASA Technical Reports Server (NTRS)
Li, Jing (Inventor)
2011-01-01
A system for receiving, analyzing and communicating results of sensing chemical and/or physical parameter values, using wireless transmission of the data. Presence or absence of one or more of a group of selected chemicals in a gas or vapor is determined, using suitably functionalized carbon nanostructures that are exposed to the gas. One or more physical parameter values, such as temperature, vapor pressure, relative humidity and distance from a reference location, are also sensed for the gas, using nanostructures and/or microstructures. All parameter values are transmitted wirelessly to a data processing site or to a control site, using an interleaving pattern for data received from different sensor groups, using I.E.E.E. 802.11 or 802.15 protocol, for example. Methods for estimating chemical concentration are discussed.
Fabrications and Performance of Wireless LC Pressure Sensors through LTCC Technology.
Lin, Lin; Ma, Mingsheng; Zhang, Faqiang; Liu, Feng; Liu, Zhifu; Li, Yongxiang
2018-01-25
This paper presents a kind of passive wireless pressure sensor comprised of a planar spiral inductor and a cavity parallel plate capacitor fabricated through low-temperature co-fired ceramic (LTCC) technology. The LTCC material with a low Young's modulus of ~65 GPa prepared by our laboratory was used to obtain high sensitivity. A three-step lamination process was applied to construct a high quality cavity structure without using any sacrificial materials. The effects of the thickness of the sensing membranes on the sensitivity and detection range of the pressure sensors were investigated. The sensor with a 148 μm sensing membrane showed the highest sensitivity of 3.76 kHz/kPa, and the sensor with a 432 μm sensing membrane presented a high detection limit of 2660 kPa. The tunable sensitivity and detection limit of the wireless pressure sensors can meet the requirements of different scenes.
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; O'Dowd, John A.; Honniball, Arthur; Bessler, Vivian; Farnan, Martin; O'Connor, Peter; Melicher, Milos; Gleeson, Danny
2017-09-01
The Future Launchers Preparatory Programme (FLPP) supported by the European Space Agency (ESA) has a goal of developing various launch vehicle system concepts and identifying the technologies required for the design of Europe's Next-Generation Launcher (NGL) while maintaining competitiveness on the commercial market. Avionics fiber optic sensing technology was investigated as part of the FLPP programme. Here we demonstrate and evaluate a high speed hybrid electrical/optical data acquisition system based on commercial off the shelf (COTS) technology capable of acquiring data from traditional electrical sensors and optical Fibre Bragg Grating (FBG) sensors. The proposed system consists of the KAM-500 data acquisition system developed by Curtis-Wright and the I4 tunable laser based fiber optic sensor interrogator developed by FAZ Technology. The key objective was to demonstrate the capability of the hybrid system to acquire data from traditional electrical sensors used in launcher applications e.g. strain, temperature and pressure in combination with optical FBG sensors, as well as data delivery to spacecraft avionics systems. The KAM-500 was configured as the main acquisition unit (MAU) and provided a 1 kHz sampling clock to the I4 interrogator that was configured as the secondary acquisition unit (SAU) to synchronize the data acquisition sample rate between both systems. The SAU acquired data from an array of optical FBG sensors, while the MAU data acquisition system acquired data from the electrical sensors. Data acquired from the optical sensors was processed by the FAZ I4 interrogation system and then encapsulated into UDP/IP packets and transferred to the KAM-500. The KAM-500 encapsulated the optical sensor data together with the data acquired from electrical sensors and transmitted the data over MIL-STD-1553 and Ethernet data interface. The temperature measurements resulted in the optical and electrical sensors performing on a par with each other, with all sensors recording an accuracy within 0.35% FS over the full temperature range of -70°C to +180°C. The pressure measurements were performed over a 0 to 5 bar absolute pressure range and over different temperatures across a -40°C to +80°C range. The tests concluded that the optical pressure sensors performed on par with the electrical pressure sensor for each temperature set, where both sensor technologies measured a pressure accuracy of 1.2% FS. As for the strain measurements, the results show the optical and electrical sensors can measure to within 1% FS (Full Scale) of measurement range +/-1,200 μstrain. The proposed hybrid system can be potentially used for next generation launcher applications delivering weight reduction, improvement in measurement coverage and reduction in Assembly, Integration and Testing (AIT) over traditional electrical systems.
NASA Technical Reports Server (NTRS)
Flower, D. A.; Peckham, G. E.; Bradford, W. J.
1984-01-01
Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.
System Regulates the Water Contents of Fuel-Cell Streams
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Lazaroff, Scott
2005-01-01
An assembly of devices provides for both humidification of the reactant gas streams of a fuel cell and removal of the product water (the water generated by operation of the fuel cell). The assembly includes externally-sensing forward-pressure regulators that supply reactant gases (fuel and oxygen) at variable pressures to ejector reactant pumps. The ejector supply pressures depend on the consumption flows. The ejectors develop differential pressures approximately proportional to the consumption flow rates at constant system pressure and with constant flow restriction between the mixer-outlet and suction ports of the ejectors. For removal of product water from the circulating oxygen stream, the assembly includes a water/gas separator that contains hydrophobic and hydrophilic membranes. The water separator imposes an approximately constant flow restriction, regardless of the quality of the two-phase flow that enters it from the fuel cell. The gas leaving the water separator is nearly 100 percent humid. This gas is returned to the inlet of the fuel cell along with a quantity of dry incoming oxygen, via the oxygen ejector, thereby providing some humidification.
Microelectromechanical system pressure sensor integrated onto optical fiber by anodic bonding.
Saran, Anish; Abeysinghe, Don C; Boyd, Joseph T
2006-03-10
Optical microelectromechanical system pressure sensors based on the principle of Fabry-Perot interferometry have been developed and fabricated using the technique of silicon-to-silicon anodic bonding. The pressure sensor is then integrated onto an optical fiber by a novel technique of anodic bonding without use of any adhesives. In this anodic bonding technique we use ultrathin silicon of thickness 10 microm to bond the optical fiber to the sensor head. The ultrathin silicon plays the role of a stress-reducing layer, which helps the bonding of an optical fiber to silicon having conventional wafer thickness. The pressure-sensing membrane is formed by 8 microm thick ultrathin silicon acting as a membrane, thus eliminating the need for bulk silicon etching. The pressure sensor integrated onto an optical fiber is tested for static response, and experimental results indicate degradation in the fringe visibility of the Fabry-Perot interferometer. This effect was mainly due to divergent light rays from the fiber degrading the fringe visibility. This effect is demonstrated in brief by an analytical model.
Biocompatible Pressure Sensing Skins for Minimally Invasive Surgical Instruments
Arabagi, Veaceslav; Felfoul, Ouajdi; Gosline, Andrew H.; Wood, Robert J.; Dupont, Pierre E.
2016-01-01
This paper presents 800-μm thick, biocompatible sensing skins composed of arrays of pressure sensors. The arrays can be configured to conform to the surface of medical instruments so as to act as disposable sensing skins. In particular, the fabrication of cylindrical geometries is considered here for use on endoscopes. The sensing technology is based on polydimethylsiloxane synthetic silicone encapsulated microchannels filled with a biocompatible salt-saturated glycerol solution, functioning as the conductive medium. A multi-layer manufacturing approach is introduced that enables stacking sensing microchannels, mechanical stress concentration features, and electrical routing via flexcircuits in a thickness of less than 1 mm. The proposed approach is inexpensive and does not require clean room tools or techniques. The mechanical stress concentration features are implemented using a patterned copper layer that serves to improve sensing range and sensitivity. Sensor performance is demonstrated experimentally using a sensing skin mounted on a neuroendoscope insertion cannula and is shown to outperform previously developed non-biocompatible sensors. PMID:27642266
Monitoring pressure profiles across an airfoil with a fiber Bragg grating sensor array
NASA Astrophysics Data System (ADS)
Papageorgiou, Anthony W.; Parkinson, Luke A.; Karas, Andrew R.; Hansen, Kristy L.; Arkwright, John W.
2018-02-01
Fluid flow over an airfoil section creates a pressure difference across the upper and lower surfaces, thus generating lift. Successful wing design is a combination of engineering design and experience in the field, with subtleties in design and manufacture having significant impact on the amount of lift produced. Current methods of airfoil optimization and validation typically involve computational fluid dynamics (CFD) and extensive wind tunnel testing with pressure sensors embedded into the airfoil to measure the pressure over the wing. Monitoring pressure along an airfoil in a wind tunnel is typically achieved using surface pressure taps that consist of hollow tubes running from the surface of the airfoil to individual pressure sensors external to the tunnel. These pressure taps are complex to configure and not ideal for in-flight testing. Fiber Bragg grating (FBG) pressure sensing arrays provide a highly viable option for both wind tunnel and inflight pressure measurement. We present a fiber optic sensor array that can detect positive and negative pressure suitable for validating CFD models of airfoil profile sections. The sensing array presented here consists of 6 independent sensing elements, each capable of a pressure resolution of less than 10 Pa over the range of 70 kPa to 120 kPa. The device has been tested with the sensor array attached to a 90mm chord length airfoil section subjected to low velocity flow. Results show that the arrays are capable of accurately detecting variations of the pressure profile along the airfoil as the angle of attack is varied from zero to the point at which stall occurs.
NASA Astrophysics Data System (ADS)
Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay
2016-04-01
Surface plasmon resonance (SPR) technique is an easy and reliable method for detecting very low concentration of toxic gases at room temperature using a gas sensitive thin film layer. In the present work, a room temperature operated NH3 gas sensor has been developed using a laboratory assembled SPR measurement setup utilising a p-polarized He-Ne laser and prism coupling technique. A semiconducting gas sensitive tin oxide (SnO2) layer has been deposited under varying growth conditions (i.e., by varying deposition pressure) over the gold coated prism (BK-7) to excite the surface plasmon modes in Kretschmann configuration. The SPR reflectance curves for prism/Au/SnO2/air system for SnO2 thin films prepared at different sputtering pressure were measured, and the SnO2 film deposited at 10 mT pressure is found to exhibit a sharp SPR reflectance curve with minimum reflectance (0.32) at the resonance angle of 44.7° which is further used for sensing NH3 gas of different concentration at room temperature. The SPR reflectance curve shows a significant shift in resonance angle from 45.05° to 58.55° on interacting with NH3. The prepared sensor is found to give high sensing response (0.11) with high selectivity towards very low concentration of NH3 (0.5 ppm) and quick response time at room temperature.
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2011-01-01
An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also be used with NASA's advanced nonflow-through fuel cell power systems by simply incorporating a jet nozzle with an appropriate nozzle diameter.
Apperl, Benjamin; Pressl, Alexander; Schulz, Karsten
2017-01-01
The cost effective maintenance of underwater pressure pipes for sewage disposal in Austria requires the detection and localization of leakages. Extrusion of wastewater in lakes can heavily influence the water and bathing quality of surrounding waters. The Distributed Temperature Sensing (DTS) technology is a widely used technique for oil and gas pipeline leakage detection. While in pipeline leakage detection, fiber optic cables are installed permanently at the outside or within the protective sheathing of the pipe; this paper aims at testing the feasibility of detecting leakages with temporary introduced fiber optic cable inside the pipe. The detection and localization were tested in a laboratory experiment. The intrusion of water from leakages into the pipe, producing a local temperature drop, served as indicator for leakages. Measurements were taken under varying measurement conditions, including the number of leakages as well as the positioning of the fiber optic cable. Experiments showed that leakages could be detected accurately with the proposed methodology, when measuring resolution, temperature gradient and measurement time were properly selected. Despite the successful application of DTS for leakage detection in this lab environment, challenges in real system applications may arise from temperature gradients within the pipe system over longer distances and the placement of the cable into the real pipe system.
Capacitive Micro Pressure Sensor Integrated with a Ring Oscillator Circuit on Chip
Dai, Ching-Liang; Lu, Po-Wei; Chang, Chienliu; Liu, Cheng-Yang
2009-01-01
The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0–300 kPa. PMID:22303167
Capacitive micro pressure sensor integrated with a ring oscillator circuit on chip.
Dai, Ching-Liang; Lu, Po-Wei; Chang, Chienliu; Liu, Cheng-Yang
2009-01-01
The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0-300 kPa.
Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing.
Hou, Maoxiang; Zhu, Feng; Wang, Ying; Wang, Yiping; Liao, Changrui; Liu, Shen; Lu, Peixiang
2016-11-28
A gas pressure sensor based on an antiresonant reflecting guidance mechanism in a hollow-core fiber (HCF) with an open microchannel is experimentally demonstrated for gas pressure sensing. The microchannel was created on the ring cladding of the HCF by femtosecond laser drilling to provide an air-core pressure equivalent to the external environment. The HCF cladding functions as an antiresonant reflecting waveguide, which induces sharp periodic lossy dips in the transmission spectrum. The proposed sensor exhibits a high pressure sensitivity of 3.592 nm/MPa and a low temperature cross-sensitivity of 7.5 kPa/°C. Theoretical analysis indicates that the observed high gas pressure sensitivity originates from the pressure induced refractive index change of the air in the hollow-core. The good operation durability and fabrication simplicity make the device an attractive candidate for reliable and highly sensitive gas pressure measurement in harsh environments.
A simultaneous pressure and temperature sensor based on a superstructure fiber grating
NASA Astrophysics Data System (ADS)
Lin, Chia-Min; Liu, Wen-Fung; Fu, Ming-Yue; Sheng, Hao-Jan; Bor, Sheau-Shung; Tien, Chuen-Lin
2004-12-01
We demonstrated that a high-sensitivity fiber sensor based on a superstructure fiber grating (SFG) can simultaneously measure the pressure and temperature by encapsulating the grating in a polymer-half-filled metal cylinder, in which there are two openings on opposite sides of the wall filled with the polymer to sense the pressure. The mechanism of sensing pressure is to transfer the pressure into the axial extended-strain. According to the optical characteristics of an SFG composed of a fiber Bragg grating (FBG) and long period grating (LPG), the various pressure and temperature will cause the variation of the center-wavelength and reflection simultaneously. Thus, the sensor can be used for the measurement both of the pressure and temperature. The pressure sensitivity of 2.28×10-2MPa-1 and the temperature sensitivity both of 0.015nm/°C and -0.143dB/°C are obtained.
Jeong, Y J; Oh, T I; Woo, E J; Kim, K J
2017-07-01
Recently, highly flexible and soft pressure distribution imaging sensor is in great demand for tactile sensing, gait analysis, ubiquitous life-care based on activity recognition, and therapeutics. In this study, we integrate the piezo-capacitive and piezo-electric nanowebs with the conductive fabric sheets for detecting static and dynamic pressure distributions on a large sensing area. Electrical impedance tomography (EIT) and electric source imaging are applied for reconstructing pressure distribution images from measured current-voltage data on the boundary of the hybrid fabric sensor. We evaluated the piezo-capacitive nanoweb sensor, piezo-electric nanoweb sensor, and hybrid fabric sensor. The results show the feasibility of static and dynamic pressure distribution imaging from the boundary measurements of the fabric sensors.
Dynamic Pressure Probes Developed for Supersonic Flow-Field Measurements
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2001-01-01
A series of dynamic flow-field pressure probes were developed for use in large-scale supersonic wind tunnels at the NASA Glenn Research Center. These flow-field probes include pitot and static pressure probes that can capture fast-acting flow-field pressure transients occurring on a millisecond timescale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The flow-field pressure probe contains four major components: 1) Static pressure aerodynamic tip; 2) Pressure-sensing cartridge assembly; 3) Pitot pressure aerodynamic tip; 4) Mounting stem. This modular design allows for a variety of probe tips to be used for a specific application. Here, the focus is on flow-field pressure measurements in supersonic flows, so we developed a cone-cylinder static pressure tip and a pitot pressure tip. Alternatively, probe tips optimized for subsonic and transonic flows could be used with this design. The pressure-sensing cartridge assembly allows the simultaneous measurement of steady-state and transient pressure which allows continuous calibration of the dynamic pressure transducer.
Li, Sijia; Zhang, Jiquan; Guo, Enliang; Zhang, Feng; Ma, Qiyun; Mu, Guangyi
2017-10-01
The extensive use of a geographic information system (GIS) and remote sensing in ecological risk assessment from a spatiotemporal perspective complements ecological environment management. Chromophoric dissolved organic matter (CDOM), which is a complex mixture of organic matter that can be estimated via remote sensing, carries and produces carcinogenic disinfection by-products and organic pollutants in various aquatic environments. This paper reports the first ecological risk assessment, which was conducted in 2016, of CDOM in the Yinma River watershed including riverine waters, reservoir waters, and urban waters. Referring to the risk formation theory of natural disaster, the entropy evaluation method and DPSIR (driving force-pressure-state-impact-response) framework were coupled to establish a hazard and vulnerability index with multisource data, i.e., meteorological, remote sensing, experimental, and socioeconomic data, of this watershed. This ecological vulnerability assessment indicator system contains 23 indicators with respect to ecological sensitivity, ecological pressure, and self-resilience. The characteristics of CDOM absorption parameters from different waters showed higher aromatic content and molecular weights in May because of increased terrestrial inputs. The assessment results indicated that the overall ecosystem risk in the study area was focused in the extremely, heavily, and moderately vulnerable regions. The ecological risk assessment results objectively reflect the regional ecological environment and demonstrate the potential of ecological risk assessment of pollutants over traditional chemical measurements. Copyright © 2017. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahari, S.; Hajela, S.; Rammohan, H. P.
2012-07-01
700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) is horizontal channel type reactor with partial boiling at channel outlet. Due to boiling, it has a large volume of vapor present in the primary loops. It has two primary loops connected with the help of pressurizer surge line. The pressurizer has a large capacity and is partly filled by liquid and partly by vapor. Large vapor volume improves compressibility of the system. During turbine trip or load rejection, pressure builds up in Steam Generator (SG). This leads to pressurization of Primary Heat Transport System (PHTS). To control pressurization of SG andmore » PHTS, around 70% of the steam generated in SG is dumped into the condenser by opening Condenser Steam Dump Valves (CSDVs) and rest of the steam is released to the atmosphere by opening Atmospheric Steam Discharge Valves (ASDVs) immediately after sensing the event. This is accomplished by adding anticipatory signal to the output of SG pressure controller. Anticipatory signal is proportional to the thermal power of reactor and the proportionality constant is set so that SG pressure controller's output jacks up to ASDV opening range when operating at 100% FP. To simulate this behavior for 700 MWe IPHWR, Primary and secondary heat transport system is modeled. SG pressure control and other process control program have also been modeled to capture overall plant dynamics. Analysis has been carried out with 3-D neutron kinetics coupled thermal hydraulic computer code ATMIKA.T to evaluate the effect of the anticipatory signal on PHT pressure and over all plant dynamics during turbine trip in 700 MWe IPHWR. This paper brings out the results of the analysis with and without considering anticipatory signal in SG pressure control program during turbine trip. (authors)« less
Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen
2018-03-16
Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O 3 ) microengineering technique. The UV/O 3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ∼ -0.101 ± 0.005 kPa -1 (<1 kPa), a fast response/relaxation speed of ∼10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O 3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.
NASA Astrophysics Data System (ADS)
Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen
2018-03-01
Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O3) microengineering technique. The UV/O3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ˜ -0.101 ± 0.005 kPa-1 (<1 kPa), a fast response/relaxation speed of ˜10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.
Wireless remote weather monitoring system based on MEMS technologies.
Ma, Rong-Hua; Wang, Yu-Hsiang; Lee, Chia-Yen
2011-01-01
This study proposes a wireless remote weather monitoring system based on Micro-Electro-Mechanical Systems (MEMS) and wireless sensor network (WSN) technologies comprising sensors for the measurement of temperature, humidity, pressure, wind speed and direction, integrated on a single chip. The sensing signals are transmitted between the Octopus II-A sensor nodes using WSN technology, following amplification and analog/digital conversion (ADC). Experimental results show that the resistance of the micro temperature sensor increases linearly with input temperature, with an average TCR (temperature coefficient of resistance) value of 8.2 × 10(-4) (°C(-1)). The resistance of the pressure sensor also increases linearly with air pressure, with an average sensitivity value of 3.5 × 10(-2) (Ω/kPa). The sensitivity to humidity increases with ambient temperature due to the effect of temperature on the dielectric constant, which was determined to be 16.9, 21.4, 27.0, and 38.2 (pF/%RH) at 27 °C, 30 °C, 40 °C, and 50 °C, respectively. The velocity of airflow is obtained by summing the variations in resistor response as airflow passed over the sensors providing sensitivity of 4.2 × 10(-2), 9.2 × 10(-2), 9.7 × 10(-2) (Ω/ms(-1)) with power consumption by the heating resistor of 0.2, 0.3, and 0.5 W, respectively. The passage of air across the surface of the flow sensors prompts variations in temperature among each of the sensing resistors. Evaluating these variations in resistance caused by the temperature change enables the measurement of wind direction.
Auditory Cortical Processing in Real-World Listening: The Auditory System Going Real
Bizley, Jennifer; Shamma, Shihab A.; Wang, Xiaoqin
2014-01-01
The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. PMID:25392481
Electron spin control of optically levitated nanodiamonds in vacuum.
Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-07-19
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.
Electron spin control of optically levitated nanodiamonds in vacuum
Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-01-01
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin–optomechanical system for studying macroscopic quantum mechanics. PMID:27432560
Electron spin control of optically levitated nanodiamonds in vacuum
NASA Astrophysics Data System (ADS)
Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-07-01
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.
Auditory cortical processing in real-world listening: the auditory system going real.
Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin
2014-11-12
The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.
Damage detection and isolation via autocorrelation: a step toward passive sensing
NASA Astrophysics Data System (ADS)
Chang, Y. S.; Yuan, F. G.
2018-03-01
Passive sensing technique may eliminate the need of expending power from actuators and thus provide a means of developing a compact and simple structural health monitoring system. More importantly, it may provide a solution for monitoring the aircraft subjected to environmental loading from air flow during operation. In this paper, a non-contact auto-correlation based technique is exploited as a feasibility study for passive sensing application to detect damage and isolate the damage location. Its theoretical basis bears some resemblance to reconstructing Green's function from diffusive wavefield through cross-correlation. Localized high pressure air from air compressor are randomly and continuously applied on the one side surface of the aluminum panels through the air blow gun. A laser Doppler vibrometer (LDV) was used to scan a 90 mm × 90 mm area to create a 6 × 6 2D-array signals from the opposite side of the panels. The scanned signals were auto-correlated to reconstruct a "selfimpulse response" (or Green's function). The premise for stably reconstructing the accurate Green's function requires long sensing times. For a 609.6 mm × 609.6 mm flat aluminum panel, the sensing times roughly at least four seconds is sufficient to establish converged Green's function through correlation. For the integral stiffened aluminum panel, the geometrical features of the panel expedite the formation of the diffusive wavefield and thus shorten the sensing times. The damage is simulated by gluing a magnet onto the panels. Reconstructed Green's functions (RGFs) are used for damage detection and damage isolation based on an imaging condition with mean square deviation of the RGFs from the pristine and the damaged structure and the results are shown in color maps. The auto-correlation based technique is shown to consistently detect the simulated damage, image and isolate the damage in the structure subjected to high pressure air excitation. This technique may be transformed into passive sensing applied on the aircraft during operation.
A Fast and Easily-Realized Concentration Sensor for Binary Gas Mixtures and Its Design Analysis.
Guan, Yu; Lu, Song; Zhang, Dan; Hu, Yang; Yuan, Wei
2018-04-19
A low-cost and easily-realized sensing device used for the detection of gas mixtures at different concentrations is presented. Its sensing part includes a small critical nozzle, a laminar structure, and a differential pressure sensor. When gas flows through the laminar structure, there is a pressure drop between both ends of it, and for different components of gas, the pressure drop is different. Based on this feature, the concentration detection is achieved. Concentration tests for two types of fire extinguishing agents CBrF₃ and C₃HF₇ are presented. The results show the characteristics of fast response/recovery time, high accuracy, and good repeatability. Based on the theoretical analysis, the effects of the design parameters on the sensing performance to concentration detection are discussed in detail.
A dynamic pressure calibration standard
NASA Technical Reports Server (NTRS)
Schutte, P. C.; Cate, K. H.; Young, S. D.
1985-01-01
A dynamic pressure calibration standard has been developed for calibrating flush diaphragm mounted pressure transducers. Pressures up to 20 kPa (3 psi) have been accurately generated over a frequency range of 50 to 1800 hz. The uncertainty of the standard is +/-5 pct to 5kPa (.75 psi) and +/-10 pct from 5 kPa (.75 psi) to 20 kPa (3 psi). The system consists of two conically shaped, aluminum columns, one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with a viscous fluid. A column is mounted on the armature of a vibration exciter which imparts a sinusoidally varying acceleration to the fluid column. Two pressure transducers mounted at the base of the column sense the sinusoidally varying pressure. This pressure is determined from measurements of the density of the fluid, the height of the fluid, and the acceleration of the column. A section of the taller column is filled with steel balls to control the damping of the fluid to extend its useful frequency range.
NASA Technical Reports Server (NTRS)
Ashby, George C., Jr.; Robbins, W. Eugene; Horsley, Lewis A.
1991-01-01
Probe readily positionable in core of uniform flow in hypersonic wind tunnel. Formed of pair of mating cylindrical housings: transducer housing and pitot-tube housing. Pitot tube supported by adjustable wedge fairing attached to top of pitot-tube housing with semicircular foot. Probe adjusted both radially and circumferentially. In addition, pressure-sensing transducer cooled internally by water or other cooling fluid passing through annulus of cooling system.
System Design of an Unmanned Aerial Vehicle (UAV) for Marine Environmental Sensing
2013-02-01
Malaysia to the north. Sea trials have been located through the green band. ................................................................... 56 Figure...light of recent disasters, pressure monitoring nodes mounted to the seafloor now provide advanced tsunami warning in countries including Malaysia ...organisms in huge number. Human health can also be impacted through the consumption of shellfish or other seafood contaminated with bloom-related
The control of purity and stoichiometry of compound semiconductors by high vapor pressure transport
NASA Technical Reports Server (NTRS)
Bachmann, Klaus J.; Ito, Kazufumi; Scroggs, Jeffery S.; Tran, Hien T.
1995-01-01
In this report we summarize the results of a three year research program on high pressure vapor transport (HPVT) of compound semiconductors. Most of our work focused onto pnictides, in particular ZnGeP2, as a model system. Access to single crystals of well controlled composition of this material is desired for advancing the understanding and control of its point defect chemistry in the contest of remote, real-time sensing of trace impurities, e.g., greenhouse gases, in the atmosphere by ZnGeP2 optical parametric oscillators (OPO's).
Inflight thermodynamic properties
NASA Technical Reports Server (NTRS)
Brown, S. C.; Daniels, G. E.; Johnson, D. L.; Smith, O. E.
1973-01-01
The inflight thermodynamic parameters (temperature, pressure, and density) of the atmosphere are presented. Mean and extreme values of the thermodynamic parameters given here can be used in application of many aerospace problems, such as: (1) research and planning and engineering design of remote earth sensing systems; (2) vehicle design and development; and (3) vehicle trajectory analysis, dealing with vehicle thrust, dynamic pressure, aerodynamic drag, aerodynamic heating, vibration, structural and guidance limitations, and reentry analysis. Atmospheric density plays a very important role in most of the above problems. A subsection on reentry is presented, giving atmospheric models to be used for reentry heating, trajectory, etc., analysis.
Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanghavi, Rahul P.; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T
High temperature oxygen sensors are widely used for exhaust gas monitoring in automobiles. This particular study explores the use of thin film single crystalline samaria doped ceria as the oxygen sensing material. Desired signal to noise ratio can be achieved in a material system with high conductivity. From previous studies it is established that 6 atomic percent samarium doping is the optimum concentration for thin film samaria doped ceria to achieve high ionic conductivity. In this study, the conductivity of the 6 atomic percent samaria doped ceria thin film is measured as a function of the sensing film thickness. Hysteresismore » and dynamic response of this sensing platform is tested for a range of oxygen pressures from 0.001 Torr to 100 Torr for temperatures above 673 K. An attempt has been made to understand the physics behind the thickness dependent conductivity behavior of this sensing platform by developing a hypothetical operating model and through COMSOL simulations. This study can be used to identify the parameters required to construct a fast, reliable and compact high temperature oxygen sensor.« less
North American approach to smoke management.
Klote, J H
1999-03-01
The term smoke is used to mean the airborne products of combustion and air that is mixed with those products. A smoke control system is used to mean a system intended to manage smoke by pressurisation, and smoke management system is a broader term that includes systems that use any combination of compartmentation, dilution, air flow, pressurization or buoyancy. Smoke control systems include zoned smoke control, pressurized stairwells, and elevator smoke control. Over the past few decades there have been a number of full scale fire tests that demonstrate that pressure differences can prevent smoke migration from the low pressure side to the high pressure side of a barrier. While there are equations that can be used for smoke control design, network computer models can account for the effects of complex building leakage paths. For simplicity the term atrium was used in this paper in a generic sense to mean almost any large space (such as arcades, sports arenas, and exhibition halls). In North America most atria rely on sprinkler protection for spaces connected to the atrium and fan powered exhaust at or near the top of the atrium. Because the ability of sprinklers to suppress fires in spaces with ceilings higher than about 11m is limited, smoke exhaust is especially important for fires that start in the atrium. Equations and computer zone models can be used for the design of atrium exhaust systems. When these approaches are inappropriate, CFD modelling or physical modelling can be used.
Recent Progress in Electronic Skin
Wang, Xiandi; Dong, Lin; Zhang, Hanlu; Yu, Ruomeng; Wang, Zhong Lin
2015-01-01
The skin is the largest organ of the human body and can sense pressure, temperature, and other complex environmental stimuli or conditions. The mimicry of human skin's sensory ability via electronics is a topic of innovative research that could find broad applications in robotics, artificial intelligence, and human–machine interfaces, all of which promote the development of electronic skin (e‐skin). To imitate tactile sensing via e‐skins, flexible and stretchable pressure sensor arrays are constructed based on different transduction mechanisms and structural designs. These arrays can map pressure with high resolution and rapid response beyond that of human perception. Multi‐modal force sensing, temperature, and humidity detection, as well as self‐healing abilities are also exploited for multi‐functional e‐skins. Other recent progress in this field includes the integration with high‐density flexible circuits for signal processing, the combination with wireless technology for convenient sensing and energy/data transfer, and the development of self‐powered e‐skins. Future opportunities lie in the fabrication of highly intelligent e‐skins that can sense and respond to variations in the external environment. The rapidly increasing innovations in this area will be important to the scientific community and to the future of human life. PMID:27980911
Transverse strain measurements using fiber optic grating based sensors
NASA Technical Reports Server (NTRS)
Udd, Eric (Inventor)
1998-01-01
A system and method to sense the application of transverse stress to an optical fiber which includes a light source that producing a relatively wide spectrum light beam. The light beam is reflected or transmitted off of an optical grating in the core of an optical fiber that is transversely stressed either directly or by the exposure to pressure when the fiber is bifringent so that the optical fiber responds to the pressure to transversely stress its core. When transversely stressed, the optical grating produces a reflection or transmission from the light beam that has two peaks or minimums in its frequency spectrum whose spacing and/or spread are indicative of the forces applied to the fiber. One or more detectors sense the reflection or transmissions from the optical grating to produce an output representative of the applied force. Multiple optical gratings and detectors may be employed to simultaneously measure temperature or the forces at different locations along the fiber.
Wide-Field Imaging Using Nitrogen Vacancies
NASA Technical Reports Server (NTRS)
Englund, Dirk Robert (Inventor); Trusheim, Matthew Edwin (Inventor)
2017-01-01
Nitrogen vacancies in bulk diamonds and nanodiamonds can be used to sense temperature, pressure, electromagnetic fields, and pH. Unfortunately, conventional sensing techniques use gated detection and confocal imaging, limiting the measurement sensitivity and precluding wide-field imaging. Conversely, the present sensing techniques do not require gated detection or confocal imaging and can therefore be used to image temperature, pressure, electromagnetic fields, and pH over wide fields of view. In some cases, wide-field imaging supports spatial localization of the NVs to precisions at or below the diffraction limit. Moreover, the measurement range can extend over extremely wide dynamic range at very high sensitivity.
Self-actuating reactor shutdown system
Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.
1988-01-01
A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.
Atmospheric Environments for Entry, Descent and Landing (EDL)
NASA Technical Reports Server (NTRS)
Justus, Carl G.; Braun, Robert D.
2007-01-01
Scientific measurements of atmospheric properties have been made by a wide variety of planetary flyby missions, orbiters, and landers. Although landers can make in-situ observations of near-surface atmospheric conditions (and can collect atmospheric data during their entry phase), the vast majority of data on planetary atmospheres has been collected by remote sensing techniques from flyby and orbiter spacecraft (and to some extent by Earth-based remote sensing). Many of these remote sensing observations (made over a variety of spectral ranges), consist of vertical profiles of atmospheric temperature as a function of atmospheric pressure level. While these measurements are of great interest to atmospheric scientists and modelers of planetary atmospheres, the primary interest for engineers designing entry descent and landing (EDL) systems is information about atmospheric density as a function of geometric altitude. Fortunately, as described in in this paper, it is possible to use a combination of the gas-law relation and the hydrostatic balance relation to convert temperature-versus-pressure, scientific observations into density-versus-altitude data for use in engineering applications. The following section provides a brief introduction to atmospheric thermodynamics, as well as constituents, and winds for EDL. It also gives methodology for using atmospheric information to do "back-of-the-envelope" calculations of various EDL aeroheating parameters, including peak deceleration rate ("g-load"), peak convective heat rate. and total heat load on EDL spacecraft thermal protection systems. Brief information is also provided about atmospheric variations and perturbations for EDL guidance and control issues, and atmospheric issues for EDL parachute systems. Subsequent sections give details of the atmospheric environments for five destinations for possible EDL missions: Venus. Earth. Mars, Saturn, and Titan. Specific atmospheric information is provided for these destinations, and example results are presented for the "back-of-the-envelope" calculations mentioned above.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel Riza
In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement datamore » using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.« less
An Overview of the Development of High Temperature Wireless Smart Sensor Technology
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2014-01-01
The harsh environment inherent in propulsion systems is especially challenging for Smart Sensor Systems; this paper addresses technology development for such applications. A basic sensing system for high temperature wireless pressure monitoring composed of a sensor, electronics, and wireless communication with scavenged power developed for health monitoring of aircraft engines and other high temperature applications has been demonstrated at 475 C. Other efforts will be discussed including a brief overview of the status of high temperature electronics and sensors, as well as their use and applications.
A Quad-Cantilevered Plate micro-sensor for intracranial pressure measurement.
Lalkov, Vasko; Qasaimeh, Mohammad A
2017-07-01
This paper proposes a new design for pressure-sensing micro-plate platform to bring higher sensitivity to a pressure sensor based on piezoresistive MEMS sensing mechanism. The proposed design is composed of a suspended plate having four stepped cantilever beams connected to its corners, and thus defined as Quad-Cantilevered Plate (QCP). Finite element analysis was performed to determine the optimal design for sensitivity and structural stability under a range of applied forces. Furthermore, a piezoresistive analysis was performed to calculate sensor sensitivity. Both the maximum stress and the change in resistance of the piezoresistor associated with the QCP were found to be higher compared to previously published designs, and linearly related to the applied pressure as desired. Therefore, the QCP demonstrates greater sensitivity, and could be potentially used as an efficient pressure sensor for intracranial pressure measurement.
Dresher, Russell P; Irazoqui, Pedro P
2007-01-01
Wireless sensing has shown potential benefits for the continuous-time measurement of physiological data. One such application is the recording of intraocular pressure (IOP) for patients with glaucoma. Ultra-low-power circuits facilitate the use of inductively-coupled power for implantable wireless systems. Compact circuit size is also desirable for implantable systems. As a first step towards the realization of such circuits, we have designed a compact, ultra-low-power operational amplifier which can be used to record IOP. This paper presents the measured results of a CMOS operational amplifier that can be incorporated with a wireless IOP monitoring system or other low-power application. It has a power consumption of 736 nW, chip area of 0.023 mm2, and output impedance of 69 Omega to drive low-impedance loads.
Use of Nanocomposites for Flexible Pressure Sensors =
NASA Astrophysics Data System (ADS)
Sepulveda, Alexandra Conceicao Teixeira
Polymer nanocomposites (PNCs) are defined as polymers bonded with nanoparticles to create materiais with improved properties. The development of this type of material is rapidly emerging as a multidisciplinary research activity, since their final properties can benefit many different fields of application, namely in the development of electrical devices as studied herein. A fabrication technique to produce conductive PNCs was developed in this work and used to fabricate flexible capacitive pressure sensors. The process is based on vertically aligned-carbon nanotubes (A-CNTs) embedded in a flexible and biocompatible matrix of polydimethylsiloxane (PDMS). Thin A-CNTs/PDMS nanocomposite films ( 400 mum) were produced using wetting of as-grown A-CNTs with uncured PDMS and the resulting nanocomposites were used to fabricate flexible pressure sensors. The sensing capability of this A-CNTs/PDMS nanocomposite is attributed to the distinctive combination of mechanical flexibility and electrical properties. The fabricated nanocomposites were characterized and mechanical and electrical properties evaluated. The PDMS is significantly modified by the reinforcing A-CNT fibers, demonstrating non-isotropic (as opposed to the isotropic neat PDMS) elastic properties ali different than the PDMS (Young's modulus of 0.8 MPa), including an anisotropy ratio of 4.8 and increases in the modulus of A-CNTs/PDMS nanocomposites over PDMS by more than 900 % and 100 %, in the CNTs longitudinal and transverse directions, respectively. Regarding the electrical measurements, A-CNTs/PDMS nanocomposites presented an electrical conductivity of 0.35 Sim. The rather low conductivity does not compromise the developed capacitive sensor, but since passive telemetry is required to measure and power the sensor, solutions to overcome this problem were also studied. The configuration of the developed flexible sensor is similar to typical silicon-based capacitive pressure sensors. It is composed of three thin films, where two of them are A-CNTs/PDMS nanocomposites (defining the diaphragm type electrodes) separated by a film made of neat PDMS (defining the dielectric) and its operating principie is based on the change of the deflection of the nanocomposite layers due to the change of an external pressure. The developed flexible pressure sensors tested for pressures between 0 kPa and 100 kPa (operation required to measure the blood pressure in the aneurysm sac) showed good linearity, mainly in the region near to the atmospheric pressure (pressure inside of dielectric ). To demonstrate feasibility for practical applications, the flexible sensor technology was used in a biomedical application, more specifically in the context of abdominal aortic aneurysms. The proposed implantable flexible pressure sensing system (capacitive sensor plus inductor) consists of a mixed technology that uses A-CNTs/nanocomposites to build the capacitar electrodes and flexible printed circuit board (PCB) technology to build an inductor. The complete system was assessed by applying pressures varying from 0 kPa to 100 kPa. The results showed that the flexible sensors responded to pressure variations with a well-defined characteristic curve and oscillation frequencies centered around 5.3 MHz (the sensor receives energy and reflects back its oscillation frequency by means of inductive coupling). Finally, the developed technology to fabricate flexible pressure sensors based on A-CNTs/PDMS nanocomposites proved successful in sensing applications and due to its biocompatibility and versatility, can be used in other fields of application such as portable medical devices and e-textiles (to monitor the vital signs of an individual, such as heart rate and temperature, by using textile substrates with integrated electronics). (Abstract shortened by ProQuest.).
MEMS fiber-optic Fabry-Perot pressure sensor for high temperature application
NASA Astrophysics Data System (ADS)
Fang, G. C.; Jia, P. G.; Cao, Q.; Xiong, J. J.
2016-10-01
We design and demonstrate a fiber-optic Fabry-Perot pressure sensor (FOFPPS) for high-temperature sensing by employing micro-electro-mechanical system (MEMS) technology. The FOFPPS is fabricated by anodically bonding the silicon wafer and the Pyrex glass together and fixing the facet of the optical fiber in parallel with the silicon surface by glass frit and organic adhesive. The silicon wafer can be reduced through dry etching technology to construct the sensitive diaphragm. The length of the cavity changes with the deformation of the diaphragm due to the loaded pressure, which leads to a wavelength shift of the interference spectrum. The pressure can be gauged by measuring the wavelength shift. The pressure experimental results show that the sensor has linear pressure sensitivities ranging from 0 kPa to 600 kPa at temperature range between 20°C to 300°C. The pressure sensitivity at 300°C is approximately 27.63 pm/kPa. The pressure sensitivities gradually decrease with increasing the temperature. The sensor also has a linear thermal drift when temperature changes from 20°C - 300°C.
Shock sensing dual mode warhead
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamblen, M.; Walchak, M.T.; Richmond, L.
1980-12-31
A shock sensing dual mode warhead is provided for use against both soft and hard targets and is capable of sensing which type of target has been struck. The warhead comprises a casing made of a ductile material containing an explosive charge and a fuze assembly. The ductile warhead casing will mushroom upon striking a hard target while still confining the explosive. Proper ductility and confinement are necessary for fuze shock sensing. The fuze assembly contains a pair of parallel firing trains, one initiated only by dynamic pressure caused high impact deceleration and one initiated by low impact deceleration. Themore » firing train actuated by high impact deceleration senses dynamic pressure transmitted, during deformation of the warhead, through the explosive filler which is employed as a fuzing signature. The firing train actuated by low impact deceleration contains a pyrotechnic delay to allow penetration of soft targets.« less
Initial animal studies of a wireless, batteryless, MEMS implant for cardiovascular applications.
Najafi, Nader; Ludomirsky, Achiau
2004-03-01
This paper reports the results of the initial animal studies of a wireless, batteryless, implantable pressure sensor using microelectromechanical systems (MEMS) technology. The animal studies were acute and proved the functional feasibility of using MEMS technology for wireless bio sensing. The results are very encouraging and surpassed the majority of the application's requirements, including high sampling speed and high resolution. Based on the lessons learned, second generation wireless sensors are being developed that will provide total system solution.
The X-43A Flush Airdata Sensing System Flight Test Results
NASA Technical Reports Server (NTRS)
Baumann, Ethan; Pahle, Joseph W.; Davis, Mark; White, John Terry
2008-01-01
The National Aeronautics and Space Administration (NASA) has flight-tested a flush airdata sensing (FADS) system on the Hyper-X Research Vehicle (X-43A) at hypersonic speeds during the course of two successful flights. For this series of tests, the FADS system was calibrated to operate between Mach 3 and Mach 8, and flight test data was collected between Mach 1 and Mach 10. The FADS system acquired pressure data from surface-mounted ports and generated a real-time angle-of-attack (alpha) estimate on board the X-43A. The collected data were primarily intended to evaluate the FADS system performance, and the estimated alpha was used by the flight control algorithms on the X-43A for only a portion of the first successful flight. This paper provides an overview of the FADS system and alpha estimation algorithms, presents the in-flight alpha estimation algorithm performance, and provides comparisons to wind tunnel results and theory. Results indicate that the FADS system adequately estimated the alpha of the vehicle during the hypersonic portions of the two flights.
Review on pressure sensors for structural health monitoring
NASA Astrophysics Data System (ADS)
Sikarwar, Samiksha; Satyendra; Singh, Shakti; Yadav, Bal Chandra
2017-12-01
This paper reports the state of art in a variety of pressure and the detailed study of various matrix based pressure sensors. The performances of the bridges, buildings, etc. are threatened by earthquakes, material degradations, and other environmental effects. Structural health monitoring (SHM) is crucial to protect the people and also for assets planning. This study is a contribution in developing the knowledge about self-sensing smart materials and structures for the construction industry. It deals with the study of self-sensing as well as mechanical and electrical properties of different matrices based on pressure sensors. The relationships among the compression, tensile strain, and crack length with electrical resistance change are also reviewed.
A Novel Bioinspired PVDF Micro/Nano Hair Receptor for a Robot Sensing System
Li, Fei; Liu, Weiting; Stefanini, Cesare; Fu, Xin; Dario, Paolo
2010-01-01
This paper describes the concept and design of a novel artificial hair receptor for the sensing system of micro intelligent robots such as a cricket-like jumping mini robot. The concept is inspired from the natural hair receptor of animals, also called cilium or filiform hair by different research groups, which is usually used as a vibration receptor or a flow detector by insects, mammals and fishes. The suspended fiber model is firstly built and the influence of scaling down is analyzed theoretically. The design of this artificial hair receptor is based on aligned suspended PVDF (polyvinylidene fluoride) fibers, manufactures with a novel method called thermo-direct drawing technique, and aligned suspended submicron diameter fibers are thus successfully fabricated on a flexible Kapton. In the post process step, some key problems such as separated electrodes deposition along with the fiber drawing direction and poling of micro/nano fibers to impart them with good piezoeffective activity have been presented. The preliminary validation experiments show that the artificial hair receptor has a reliable response with good sensibility to external pressure variation and, medium flow as well as its prospects in the application on sensing system of mini/micro bio-robots. PMID:22315581
Near infrared spectroscopy for fibre based gas detection
NASA Astrophysics Data System (ADS)
Stewart, George; Johnstone, Walter; Thursby, Graham; Culshaw, Brian
2010-04-01
Gas sensing systems based on fibre optic linked near infra red absorption cells are potentially a flexible and effective tool for monitoring accumulations of hazardous and noxious gases in enclosed areas such as tunnels and mines. Additionally the same baseline technology is readily modified to measure concentrations of hydrocarbon fuels - notably but not exclusively methane, and monitoring emissions of greenhouse gases. Furthermore the system can be readily implemented to provide intrinsically safe monitoring over extensive areas at up to ~250 points from a single interrogation unit. In this paper we review our work on fibre coupled gas sensing systems. We outline the basic principles through which repeatable and accurate self calibrating gas measurements may be realised, including the recover of detailed line shapes for non contact temperature and / or pressure measurements in addition to concentration assessments in harsh environments. We also outline our experience in using these systems in extensive networks operating under inhospitable conditions over extended periods extending to several years.
Observation of vacuum-enhanced electron spin resonance of optically levitated nanodiamonds
NASA Astrophysics Data System (ADS)
Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon
Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potential applications of NV centers in gas sensing.
Transducer with a sense of touch
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Paine, G.
1979-01-01
Matrix of pressure sensors determines shape and pressure distribution of object in contact with its surface. Output can be used to develop pressure map of objects' surface and displayed as array of alphanumeric symbols on video monitor.
Design of a Sensor System for On-Line Monitoring of Contact Pressure in Chalcographic Printing.
Jiménez, José Antonio; Meca, Francisco Javier; Santiso, Enrique; Martín, Pedro
2017-09-05
Chalcographic printer is the name given to a specific type of press which is used to transfer the printing of a metal-based engraved plate onto paper. The printing system consists of two rollers for pressing and carrying a metal plate onto which an engraved inked plate is placed. When the driving mechanism is operated, the pressure exerted by the rollers, also called contact pressure, allows the engraved image to be transferred into paper, thereby obtaining the final image. With the aim of ensuring the quality of the result, in terms of good and even transfer of ink, the contact pressure must be uniform. Nowadays, the strategies utilized to measure the pressure are implemented off-line, i.e., when the press machines are shut down for maintenance, which poses limitations. This paper proposes a novel sensor system aimed at monitoring the pressure exerted by the rollers on the engraved plate while chalcographic printer is operating, i.e., on-line. The purpose is two-fold: firstly, real-time monitoring reduces the number of breakdown repairs required, reduces machine downtime and reduces the number of low-quality engravings, which increases productivity and revenues; and secondly, the on-line monitoring and register of the process parameters allows the printing process to be reproducible even with changes in the environmental conditions or other factors such as the wear of the parts that constitute the mechanical system and a change in the dimensions of the printing materials. The proposed system consists of a strain gauge-based load cell and conditioning electronics to sense and treat the signals.
Design of a Sensor System for On-Line Monitoring of Contact Pressure in Chalcographic Printing
Jiménez, José Antonio; Meca, Francisco Javier; Santiso, Enrique; Martín, Pedro
2017-01-01
Chalcographic printer is the name given to a specific type of press which is used to transfer the printing of a metal-based engraved plate onto paper. The printing system consists of two rollers for pressing and carrying a metal plate onto which an engraved inked plate is placed. When the driving mechanism is operated, the pressure exerted by the rollers, also called contact pressure, allows the engraved image to be transferred into paper, thereby obtaining the final image. With the aim of ensuring the quality of the result, in terms of good and even transfer of ink, the contact pressure must be uniform. Nowadays, the strategies utilized to measure the pressure are implemented off-line, i.e., when the press machines are shut down for maintenance, which poses limitations. This paper proposes a novel sensor system aimed at monitoring the pressure exerted by the rollers on the engraved plate while chalcographic printer is operating, i.e., on-line. The purpose is two-fold: firstly, real-time monitoring reduces the number of breakdown repairs required, reduces machine downtime and reduces the number of low-quality engravings, which increases productivity and revenues; and secondly, the on-line monitoring and register of the process parameters allows the printing process to be reproducible even with changes in the environmental conditions or other factors such as the wear of the parts that constitute the mechanical system and a change in the dimensions of the printing materials. The proposed system consists of a strain gauge-based load cell and conditioning electronics to sense and treat the signals. PMID:28872583
Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi
2016-09-15
A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.
Demodulation algorithm for optical fiber F-P sensor.
Yang, Huadong; Tong, Xinglin; Cui, Zhang; Deng, Chengwei; Guo, Qian; Hu, Pan
2017-09-10
The demodulation algorithm is very important to improving the measurement accuracy of a sensing system. In this paper, the variable step size hill climbing search method will be initially used for the optical fiber Fabry-Perot (F-P) sensing demodulation algorithm. Compared with the traditional discrete gap transformation demodulation algorithm, the computation is greatly reduced by changing step size of each climb, which could achieve nano-scale resolution, high measurement accuracy, high demodulation rates, and large dynamic demodulation range. An optical fiber F-P pressure sensor based on micro-electro-mechanical system (MEMS) has been fabricated to carry out the experiment, and the results show that the resolution of the algorithm can reach nano-scale level, the sensor's sensitivity is about 2.5 nm/KPa, which is similar to the theoretical value, and this sensor has great reproducibility.
Dynamic assessment of women pelvic floor function by using a fiber Bragg grating sensor system
NASA Astrophysics Data System (ADS)
Ferreira, Luis A.; Araújo, Francisco M.; Mascarenhas, Teresa; Natal Jorge, Renato M.; Fernandes, António A.
2006-02-01
We present a novel sensing system consisting of an intravaginal probe and an optoelectronic measurement unit, which allows an easy, comfortable and quantitative dynamic evaluation of women pelvic floor muscle strength. The sensing probe is based on a silicone cylinder that transduces radial muscle pressure into axial load applied to a fiber Bragg grating strain sensor. The performance of a first sensor probe prototype with temperature referentiation and of the autonomous, portable optoelectronic measurement unit with data logging capabilities and graphical user interface is disclosed. The presented results refer to an ongoing collaboration work between researchers from the Medical, Optoelectronics and Mechanical areas, directed to the development of equipment that can assist in medical practice and help in the research of primary mechanisms responsible for several pelvic floor disorders, in particular urogenital prolapses.
Versatile resonance-tracking circuit for acoustic levitation experiments.
Baxter, K; Apfel, R E; Marston, P L
1978-02-01
Objects can be levitated by radiation pressure forces in an acoustic standing wave. In many circumstances it is important that the standing wave frequency remain locked on an acoustic resonance despite small changes in the resonance frequency. A self-locking oscillator circuit is described which tracks the resonance frequency by sensing the magnitude of the transducer current. The tracking principle could be applied to other resonant systems.
Handheld isotope identification system
Frankle, Christen M [Los Alamos, NM; Becker, John A [Alameda, CA; Cork,; Christopher, P [Pleasant Hill, CA; Madden, Norman W [Livermore, CA
2007-01-09
A portable radiation detector using a high-purity germanium crystal as the sensing device. The crystal is fabricated such that it exhibits a length to width ratio greater than 1:1 and is oriented within the detector to receive radiation along the width of said crystal. The crystal is located within a container pressurized with ultra-pure nitrogen, and the container is located within a cryostat under vacuum.
The role of remote sensing in U.S. forest inventories: Past, present and future
G. Moisen; K. Brewer; R. Czaplewski; S. Healey; K. Megown; M. Finco
2014-01-01
In the current budget climate, the U.S. Forest Inventory and Analysis program is under increased pressure to do more with less. While reliance solely on field data under the current annual inventory system is a suitable solution when funding is adequate and stable, decreasing budgets and increasing need for timely information may necessitate solutions that can augment...
Wireless energizing system for an automated implantable sensor.
Swain, Biswaranjan; Nayak, Praveen P; Kar, Durga P; Bhuyan, Satyanarayan; Mishra, Laxmi P
2016-07-01
The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.
A volumetric flow sensor for automotive injection systems
NASA Astrophysics Data System (ADS)
Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.
2008-04-01
For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.
System-level challenges in pressure-operated soft robotics
NASA Astrophysics Data System (ADS)
Onal, Cagdas D.
2016-05-01
Last decade witnessed the revival of fluidic soft actuation. As pressure-operated soft robotics becomes more popular with promising recent results, system integration remains an outstanding challenge. Inspired greatly by biology, we envision future robotic systems to embrace mechanical compliance with bodies composed of soft and hard components as well as electronic and sensing sub-systems, such that robot maintenance starts to resemble surgery. In this vision, portable energy sources and driving infrastructure plays a key role to offer autonomous many-DoF soft actuation. On the other hand, while offering many advantages in safety and adaptability to interact with unstructured environments, objects, and human bodies, mechanical compliance also violates many inherent assumptions in traditional rigid-body robotics. Thus, a complete soft robotic system requires new approaches to utilize proprioception that provides rich sensory information while remaining flexible, and motion control under significant time delay. This paper discusses our proposed solutions for each of these system-level challenges in soft robotics research.
Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga
2017-08-21
The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg.
Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga
2017-01-01
The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg. PMID:28825672
Distortion Of Pressure Signals In Pneumatic Tubes
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Gilyard, Glenn B.; Curry, Robert; Lindsey, William
1993-01-01
NASA technical memorandum describes experimental investigation of distorting effects of propagation of pressure signals along narrow pneumatic tubes from pressure-sensing orifices on surfaces of models or aircraft to pressure sensors distant from orifices. Pressure signals distorted principally by frictional damping along walls of tubes and by reflections at orifice and sensor ends.
Operational considerations in monitoring oxygen levels at the National Transonic Facility
NASA Technical Reports Server (NTRS)
Zalenski, M. A.; Rowe, E. L.; Mcphee, J. R.
1985-01-01
Laboratory monitoring of the level of oxygen in sample gas mixtures is a process which can be performed with accurate and repeatable results. Operations at the National Transonic Facility require the storage and pumping of large volumes of liquid nitrogen. To protect against the possibility of a fault resulting in a localized oxygen deficient atmosphere, the facility is equipped with a monitoring system with an array of sensors. During the early operational stages, the system produced recurrent alarms, none of which could be traced to a true oxygen deficiency. A thorough analysis of the system was undertaken with primary emphasis placed on the sensor units. These units sense the partial pressure of oxygen which, after signal conditioning, is presented as a % by volume indication at the system output. It was determined that many of the problems experienced were due to a lack of proper accounting for the partial pressure/% by volume relationship, with a secondary cause being premature sensor failure. Procedures were established to consider atmospherically induced partial pressure variations. Sensor rebuilding techniques were examined, and those elements contributing to premature sensor failure were identified. The system now operates with a high degree of confidence and reliability.
Local Leak Detection and Health Monitoring of Pressurized Tanks
NASA Technical Reports Server (NTRS)
Polzin, Kurt; Witherow, William; Korman, Valentin; Sinko, John; Hendrickson, Adam
2011-01-01
An optical gas-detection sensor safely monitors pressurized systems (such as cryogenic tanks) and distribution systems for leaks. This sensor system is a fiber-coupled, solid optical body interferometer that allows for the miniaturized sensing element of the device to be placed in the smallest of recesses, and measures a wide range of gas species and densities (leaks). The deflection of the fringe pattern is detected and recorded to yield the time-varying gas density in the gap. This technology can be used by manufacturers or storage facilities with toxic, hazardous, or explosive gases. The approach is to monitor the change in the index of refraction associated with low-level gas leaks into a vacuum environment. The completion of this work will provide NASA with an enabling capability to detect gas system leaks in space, and to verify that pressurized systems are in a safe (i.e. non-leaking) condition during manned docking and transit operations. By recording the output of the sensor, a time-history of the leak can be constructed to indicate its severity. Project risk is mitigated by having several interferometric geometries and detection techniques available, each potentially leveraging hardware and lessons learned to enhance detectability.
Optimizing a remote sensing instrument to measure atmospheric surface pressure
NASA Technical Reports Server (NTRS)
Peckham, G. E.; Gatley, C.; Flower, D. A.
1983-01-01
Atmospheric surface pressure can be remotely sensed from a satellite by an active instrument which measures return echoes from the ocean at frequencies near the 60 GHz oxygen absorption band. The instrument is optimized by selecting its frequencies of operation, transmitter powers and antenna size through a new procedure baesd on numerical simulation which maximizes the retrieval accuracy. The predicted standard deviation error in the retrieved surface pressure is 1 mb. In addition the measurements can be used to retrieve water vapor, cloud liquid water and sea state, which is related to wind speed.
Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO 2 Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challener, William
2015-02-10
This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO 2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+)more » simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO 2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.« less
A MEMS SOI-based piezoresistive fluid flow sensor
NASA Astrophysics Data System (ADS)
Tian, B.; Li, H. F.; Yang, H.; Song, D. L.; Bai, X. W.; Zhao, Y. L.
2018-02-01
In this paper, a SOI (silicon-on-insulator)-based piezoresistive fluid flow sensor is presented; the presented flow sensor mainly consists of a nylon sensing head, stainless steel cantilever beam, SOI sensor chip, printed circuit board, half-cylinder gasket, and stainless steel shell. The working principle of the sensor and some detailed contrastive analysis about the sensor structure were introduced since the nylon sensing head and stainless steel cantilever beam have distinct influence on the sensor performance; the structure of nylon sensing head and stainless steel cantilever beam is also discussed. The SOI sensor chip was fabricated using micro-electromechanical systems technologies, such as reactive ion etching and low pressure chemical vapor deposition. The designed fluid sensor was packaged and tested; a calibration installation system was purposely designed for the sensor experiment. The testing results indicated that the output voltage of the sensor is proportional to the square of the fluid flow velocity, which is coincident with the theoretical derivation. The tested sensitivity of the sensor is 3.91 × 10-4 V ms2/kg.
NASA Astrophysics Data System (ADS)
Sahatiya, Parikshit; Badhulika, Sushmee
2017-03-01
This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions. The eraser serves as a substrate for strain sensing, as well as acting as a dielectric for capacitive pressure sensing, thereby eliminating the dielectric deposition step, which is crucial in capacitive-based pressure sensors. The strain sensing transduction mechanism is attributed to the tunneling effect, caused by the elastic behavior of the MWCNTs and the strong mechanical interlock between MWCNTs and the eraser substrate, which restricts slippage of MWCNTs on the eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to be 2.4, which is comparable to and even better than most of the strain and pressure sensors fabricated with more complex designs and architectures. The sensitivity of the capacitive pressure sensor was found to be 0.135 MPa-1.To demonstrate the applicability of the sensor as artificial electronic skin, the sensor was assembled on various parts of the human body and corresponding movements and touch sensation were monitored. The entire fabrication process is scalable and can be integrated into large areas to map spatial pressure distributions. This low-cost, easily scalable MWCNT pin-rolled eraser-based pressure and strain sensor has huge potential in applications such as artificial e-skin in flexible electronics and medical diagnostics, in particular in surgery as it provides high spatial resolution without a complex nanostructure architecture.
Sahatiya, Parikshit; Badhulika, Sushmee
2017-03-03
This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions. The eraser serves as a substrate for strain sensing, as well as acting as a dielectric for capacitive pressure sensing, thereby eliminating the dielectric deposition step, which is crucial in capacitive-based pressure sensors. The strain sensing transduction mechanism is attributed to the tunneling effect, caused by the elastic behavior of the MWCNTs and the strong mechanical interlock between MWCNTs and the eraser substrate, which restricts slippage of MWCNTs on the eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to be 2.4, which is comparable to and even better than most of the strain and pressure sensors fabricated with more complex designs and architectures. The sensitivity of the capacitive pressure sensor was found to be 0.135 MPa -1 .To demonstrate the applicability of the sensor as artificial electronic skin, the sensor was assembled on various parts of the human body and corresponding movements and touch sensation were monitored. The entire fabrication process is scalable and can be integrated into large areas to map spatial pressure distributions. This low-cost, easily scalable MWCNT pin-rolled eraser-based pressure and strain sensor has huge potential in applications such as artificial e-skin in flexible electronics and medical diagnostics, in particular in surgery as it provides high spatial resolution without a complex nanostructure architecture.
Bae, Taehan; Atkins, Robert A; Taylor, Henry F; Gibler, William N
2003-02-20
Pressure sensing in an internal combustion engine with an intrinsic fiber Fabry-Perot interferometer (FFPI) integrated with a spark plug is demonstrated for the first time. The spark plug was used for the ignition of the cylinder in which it was mounted. The FFPI element, protected with a copper/gold coating, was embedded in a groove in the spark-plug housing. Gas pressure inthe engine induced longitudinal strain in this housing, which was also experienced by the fiber-optic sensing element. The sensor was monitored with a signal conditioning unit containing a chirped distributed-feedback laser. Pressure sensitivities as high as 0.00339 radians round-trip phase shift per pounds per square inch of pressure were observed. Measured pressure versus time traces showed good agreement with those from a piezoelectric reference sensor mounted in the same engine cylinder.
NASA Astrophysics Data System (ADS)
Bae, Taehan; Atkins, Robert A.; Taylor, Henry F.; Gibler, William N.
2003-02-01
Pressure sensing in an internal combustion engine with an intrinsic fiber Fabry-Perot interferometer (FFPI) integrated with a spark plug is demonstrated for the first time. The spark plug was used for the ignition of the cylinder in which it was mounted. The FFPI element, protected with a copper /gold coating, was embedded in a groove in the spark-plug housing. Gas pressure in the engine induced longitudinal strain in this housing, which was also experienced by the fiber-optic sensing element. The sensor was monitored with a signal conditioning unit containing a chirped distributed-feedback laser. Pressure sensitivities as high as 0.00339 radians round-trip phase shift per pounds per square inch of pressure were observed. Measured pressure versus time traces showed good agreement with those from a piezoelectric reference sensor mounted in the same engine cylinder.
NASA Astrophysics Data System (ADS)
Bright, Ido; Lin, Guang; Kutz, J. Nathan
2013-12-01
Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressure field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L1 norm.
Pressure sensing of Fabry-Perot interferometer with a microchannel demodulated by a FBG
NASA Astrophysics Data System (ADS)
Yu, Yongqin; Chen, Xue; Huang, Quandong; Du, Chenlin; Ruan, Shuangchen
2015-07-01
A novel and compact fiber-probe pressure sensor was demonstrated based on micro Fabry-Perot interferometer (FPI). The device was fabricated by splicing both ends of a short section simplified hollow-core photonic crystal fiber (SHCPCF) with single mode fibers (SMFs), and then a micro channel was drilled by femtosecond laser micromachining in the SHC-PCF to significantly enhance the pressure sensitivity. The pressure sensing characteristics based on micro-FPI have been investigated by measuring the signals through the demodulation of phase since the external signal imposing on the interferometer will induce the phase change of interference signal. Then a FBG was cascaded to demodulate the signal. A micro FPI demonstrates a maximum pressure sensitivity of 32 dB/MPa, while a low temperature cross-sensitivity of 0.27 KPa/°C. Hence it may have potential for pressure applications in harsh environment.
Unattended Radiation Sensor Systems for Remote Terrestrial Applications and Nuclear Nonproliferation
NASA Astrophysics Data System (ADS)
van den Berg, Lodewijk; Proctor, Alan E.; Pohl, Ken R.; Bolozdynya, Alex; De Vito, Raymond
2002-10-01
The design of instrumentation for remote sensing presents special requirements in the areas of power consumption, long-term stability, and compactness. At the same time, the high sensitivity and resolution of the devices needs to be preserved. This paper will describe several instruments suitable for remote sensing developed under the sponsorship of the Defense Threat Reduction Agency (DTRA). The first is a system consisting of a mechanical cryocooler coupled with a high-purity germanium (HPGe) detector. The system is portable and can be operated for extended periods of time at remote locations without servicing. The second is a hand-held radiation intensity meter with high sensitivity that can operate for several months on two small batteries. Intensity signals above a set limit can be transmitted to a central monitoring station by cable or radio transmission. The third is a small module incorporating one or more high resolution mercuric iodide detectors and front end electronics. This unit can be operated using standard electronic systems, or it can be connected to a separately designed, pocket-size module that can provide power to any detector system and can process detector signals. It incorporates a shaping amplifier, a multichannel analyzer, and gated integrator electronics to process the slow signal pulses generated by room temperature solid state detectors. The fourth is a high pressure xenon (HPXe) ionization chamber filled with very pure xenon gas at high pressure, so that the efficiency and spectral resolution are increased above the normally available gas-filled tubes. The performance of these systems will be described and discussed.
Electrical stimulation of mechanoreceptors
NASA Astrophysics Data System (ADS)
Echenique, A. M.; Graffigna, J. P.
2011-12-01
Within the field of Rehabilitation Engineering, this work is aimed at identifying the optimal parameters of electric current stimulus which activate the nervous axons of mecanoreceptors found in the fingertip, allowing, this way, to resemble tactile senses. These sensorial feelings can be used by aiding technological means, namely, the sensorial substitution technology, in an attempt to render information to blind people through the tactile sense. The physical pressure on sensorial areas (fingertips) used for reading activities through the Braille System is the main effect that is imitated and studied in this research work. An experimental aiding prototype for Braille reading research has been developed and tested with blinds and reduced vision people, with highly satisfactory results.
Near real time water quality monitoring of Chivero and Manyame lakes of Zimbabwe
NASA Astrophysics Data System (ADS)
Muchini, Ronald; Gumindoga, Webster; Togarepi, Sydney; Pinias Masarira, Tarirai; Dube, Timothy
2018-05-01
Zimbabwe's water resources are under pressure from both point and non-point sources of pollution hence the need for regular and synoptic assessment. In-situ and laboratory based methods of water quality monitoring are point based and do not provide a synoptic coverage of the lakes. This paper presents novel methods for retrieving water quality parameters in Chivero and Manyame lakes, Zimbabwe, from remotely sensed imagery. Remotely sensed derived water quality parameters are further validated using in-situ data. It also presents an application for automated retrieval of those parameters developed in VB6, as well as a web portal for disseminating the water quality information to relevant stakeholders. The web portal is developed, using Geoserver, open layers and HTML. Results show the spatial variation of water quality and an automated remote sensing and GIS system with a web front end to disseminate water quality information.
Bringing an ecological view of change to Landsat-based remote sensing
Kennedy, Robert E.; Andrefouet, Serge; Cohen, Warren; Gomez, Cristina; Griffiths, Patrick; Hais, Martin; Healey, Sean; Helmer, Eileen H.; Hostert, Patrick; Lyons, Mitchell; Meigs, Garrett; Pflugmacher, Dirk; Phinn, Stuart; Powell, Scott; Scarth, Peter; Susmita, Sen; Schroeder, Todd A.; Schneider, Annemarie; Sonnenschein, Ruth; Vogelmann, James; Wulder, Michael A.; Zhu, Zhe
2014-01-01
When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more subtle processes of interest to ecologists. Recent technical advances have led to a fundamental shift toward an ecological view of change. Although this conceptual shift began with coarser-scale global imagery, it has now reached users of Landsat imagery, since these datasets have temporal and spatial characteristics appropriate to many ecological questions. We argue that this ecologically relevant perspective of change allows the novel characterization of important dynamic processes, including disturbances, long-term trends, cyclical functions, and feedbacks, and that these improvements are already facilitating our understanding of critical driving forces, such as climate change, ecological interactions, and economic pressures.
Cardiovascular simulator improvement: pressure versus volume loop assessment.
Fonseca, Jeison; Andrade, Aron; Nicolosi, Denys E C; Biscegli, José F; Leme, Juliana; Legendre, Daniel; Bock, Eduardo; Lucchi, Julio Cesar
2011-05-01
This article presents improvement on a physical cardiovascular simulator (PCS) system. Intraventricular pressure versus intraventricular volume (PxV) loop was obtained to evaluate performance of a pulsatile chamber mimicking the human left ventricle. PxV loop shows heart contractility and is normally used to evaluate heart performance. In many heart diseases, the stroke volume decreases because of low heart contractility. This pathological situation must be simulated by the PCS in order to evaluate the assistance provided by a ventricular assist device (VAD). The PCS system is automatically controlled by a computer and is an auxiliary tool for VAD control strategies development. This PCS system is according to a Windkessel model where lumped parameters are used for cardiovascular system analysis. Peripheral resistance, arteries compliance, and fluid inertance are simulated. The simulator has an actuator with a roller screw and brushless direct current motor, and the stroke volume is regulated by the actuator displacement. Internal pressure and volume measurements are monitored to obtain the PxV loop. Left chamber internal pressure is directly obtained by pressure transducer; however, internal volume has been obtained indirectly by using a linear variable differential transformer, which senses the diaphragm displacement. Correlations between the internal volume and diaphragm position are made. LabVIEW integrates these signals and shows the pressure versus internal volume loop. The results that have been obtained from the PCS system show PxV loops at different ventricle elastances, making possible the simulation of pathological situations. A preliminary test with a pulsatile VAD attached to PCS system was made. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the opticalmore » systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology. The goals of the second six months of this project were to conduct high temperature sensing tests using the test chamber and optical sensing instrument designs developed in the first part of the project. In addition, a Phase I goal was to develop the basic processing theory and physics for the proposed first sensor experimentation and data processing. All these goals have been achieved and are described in detail. Both optical experimental design process and sensed temperature are provided. In addition, photographs of the fabricated SiC optical chips after deployment in the high temperature test chamber are shown from a material study point-of-view.« less
The pressure is all in your head: A cilia-driven high-pressure pump in the head of a deep-sea animal
NASA Astrophysics Data System (ADS)
Nawroth, Janna; Katija, Kakani; Shelley, Michael; Kanso, Eva
2017-11-01
Motile cilia are microscopic, hair-like structures on the cell surface that can sense and propel the extracellular fluid environment. In many ciliated systems found in nature, such as the mammalian airways and marine sponges, the organization and collective behavior of the cilia favors the pumping of fluids at low pressures and high volumes. We recently discovered an alternate design located in the head of a deep-sea animal called Larvacean. Here, cilia morphology, kinematics and flow indicate a role in maintaining the hydrostatic skeleton of the animal by generating a high-pressure flow. We describe our empirical and computational approaches toward understanding the design principles and dynamic range of this newly discovered pumping mechanism. In ongoing work, we further explore the fluid dynamic constraints on the morphological diversity of cilia and the resulting categories of fluid transport functions.
Distributed Acoustic Sensing (DAS) Data for Periodic Hydraulic Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Thomas; Becker, Matthew
California State University Long Beach evaluated hydraulic connectivity among geothermal wells using Periodic Hydraulic Testing (PHT) and Distributed Acoustic Sensing (DAS). The principal was to create a pressure signal in one well and observe the responding pressure signals in one or more observation wells to assess the permeability and storage of the fracture network that connects the two wells. DAS measured strain at mHz frequency in monitoring wells in response to PHT.
Lynch, J J; Lynch, K E; Friedmann, E
1992-01-01
This paper describes sudden extreme drops in blood pressure in both experimental and clinical situations when a person is talking about or describing situations of hopelessness and helplessness. These changes are discussed in the context of historical perspectives about the cardiovascular system. A new perspective is introduced, one in which these blood pressure changes are seen as part of an unheard cry for understanding. It is hypothesized that such changes do not occur in response to a person's attempts to communicate a sense of hopelessness, but rather are the biological foundations of the hopelessness itself. Viewed from such a context an entirely new therapeutic approach is outlined regarding the treatment of patients suffering from a wide variety of psychosomatic as well as psychological disturbances.
Purdy, Phillip D; South, Charles; Klucznik, Richard P; Liu, Kenneth C; Novakovic, Robin L; Puri, Ajit S; Pride, G Lee; Aagaard-Kienitz, Beverly; Ray, Abishek; Elliott, Alan C
2017-01-01
Purpose Monitoring of blood pressure (BP) during procedures is variable, depending on multiple factors. Common methods include sphygmomanometer (BP cuff), separate radial artery catheterization, and side port monitoring of an indwelling sheath. Each means of monitoring has disadvantages, including time consumption, added risk, and signal dampening due to multiple factors. We sought an alternative approach to monitoring during procedures in the catheterization laboratory. Methods A new technology involving a 330 µm fiberoptic sensor embedded in the wall of a sheath structure was tested against both radial artery catheter and sphygmomanometer readings obtained simultaneous with readings recorded from the pressure sensing system (PSS). Correlations and Bland–Altman analysis were used to determine whether use of the PSS could substitute for these standard techniques. Results The results indicated highly significant correlations in systolic, diastolic, and mean arterial pressures (MAP) when compared against radial artery catheterization (p<0.0001), and MAP means differed by <4%. Bland–Altman analysis of the data suggested that the sheath measurements can replace a separate radial artery catheter. While less striking, significant correlations were seen when PSS readings were compared against BP cuff readings. Conclusions The PSS has competitive functionality to that seen with a dedicated radial artery catheter for BP monitoring and is available immediately on sheath insertion without the added risk of radial catheterization. The sensor is structurally separated from the primary sheath lumen and readings are unaffected by device introduction through the primary lumen. Time delays and potential complications from radial artery catheterization are avoided. PMID:27422970
Pressure-sensing performance of upright cylinders in a Mach 10 boundary-layer
NASA Technical Reports Server (NTRS)
Johnson, Steven; Murphy, Kelly
1994-01-01
An experimental research program to provide basic knowledge of the pressure-sensing performance of upright, flushported cylinders in a hypersonic boundary layer is described. Three upright cylinders of 0.25-, 0.5- and l.0-in. diameters and a conventional rake were placed in the test section sidewall boundary layer of the 31 Inch Mach 10 Wind Tunnel at NASA Langley Research Center, Hampton, Virginia. Boundary-layer pressures from these cylinders were compared to those measured with a conventional rake. A boundary-layer thickness-to-cylinder-diameter ratio of 8 proved sufficient to accurately measure an overall pressure profile and ascertain the boundary-layer thickness. Effects of Reynolds number, flow angularity, and shock wave impingement on pressure measurement were also investigated. Although Reynolds number effects were negligible at the conditions studied, flow angularity above 10 deg significantly affects the measured pressures. Shock wave impingement was used to investigate orifice-to-orifice pressure crosstalk. No crosstalk was measured. The lower pressure measured above the oblique shock wave impingement showed no influence of the higher pressure generated at the lower port locations.
Gas dispersion measurements using a mobile Raman lidar system
NASA Technical Reports Server (NTRS)
Houston, J. D.; Brown, D. R.
1986-01-01
The exploitation of natural gas resources to supply energy demands has resulted in the need to engineer pipelines and plants capable of handling extremely high pressures and throughputs. Consequently, more attention has been directed to evaluating the consequences of releases of material whether accidental or deliberate in nature. An important aspect of assessing the consequences of a release is an understanding of how gas disperses in the atmosphere over a wide range of release and atmospheric conditions. The most cost effective way of providing such information is through the development and use of reliable theoretical prediction methods. The need for some form of remote sensing device was identified. The various possibilities studied led to the conclusion that LIDAR (Light Detection And Ranging) offered the most suitable method. The system designed and built is described, and its recent use in monitoring operational ventings from a high pressure transmission system is discussed.
Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection
NASA Astrophysics Data System (ADS)
Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; di, Chong-An; Zhu, Daoben
2015-03-01
The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa-1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.
Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection
Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; Di, Chong-an; Zhu, Daoben
2015-01-01
The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa−1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications. PMID:25872157
Bio-Inspired Stretchable Absolute Pressure Sensor Network
Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.
2016-01-01
A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134
Sensing Pressure Distribution on a Lower-Limb Exoskeleton Physical Human-Machine Interface
De Rossi, Stefano Marco Maria; Vitiello, Nicola; Lenzi, Tommaso; Ronsse, Renaud; Koopman, Bram; Persichetti, Alessandro; Vecchi, Fabrizio; Ijspeert, Auke Jan; van der Kooij, Herman; Carrozza, Maria Chiara
2011-01-01
A sensory apparatus to monitor pressure distribution on the physical human-robot interface of lower-limb exoskeletons is presented. We propose a distributed measure of the interaction pressure over the whole contact area between the user and the machine as an alternative measurement method of human-robot interaction. To obtain this measure, an array of newly-developed soft silicone pressure sensors is inserted between the limb and the mechanical interface that connects the robot to the user, in direct contact with the wearer’s skin. Compared to state-of-the-art measures, the advantage of this approach is that it allows for a distributed measure of the interaction pressure, which could be useful for the assessment of safety and comfort of human-robot interaction. This paper presents the new sensor and its characterization, and the development of an interaction measurement apparatus, which is applied to a lower-limb rehabilitation robot. The system is calibrated, and an example its use during a prototypical gait training task is presented. PMID:22346574
Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications
Fernández, Román; García, Pablo; García, María; Jiménez, Yolanda; Arnau, Antonio
2017-01-01
Acoustic wave resonators have become suitable devices for a broad range of sensing applications due to their sensitivity, low cost, and integration capability, which are all factors that meet the requirements for the resonators to be used as sensing elements for portable point of care (PoC) platforms. In this work, the design, characterization, and validation of a 150 MHz high fundamental frequency quartz crystal microbalance (HFF-QCM) sensor for bio-sensing applications are introduced. Finite element method (FEM) simulations of the proposed design are in good agreement with the electrical characterization of the manufactured resonators. The sensor is also validated for bio-sensing applications. For this purpose, a specific sensor cell was designed and manufactured that addresses the critical requirements associated with this type of sensor and application. Due to the small sensing area and the sensor’s fragility, these requirements include a low-volume flow chamber in the nanoliter range, and a system approach that provides the appropriate pressure control for assuring liquid confinement while maintaining the integrity of the sensor with a good base line stability and easy sensor replacement. The sensor characteristics make it suitable for consideration as the elemental part of a sensor matrix in a multichannel platform for point of care applications. PMID:28885551
BOU: Development of a low-cost tethered balloon sensing system for monitoring the lower atmosphere
NASA Astrophysics Data System (ADS)
Picos, Rodrigo; Lopez-Grifol, Alvaro; Martinez-Villagrassa, Daniel; Simó, Gemma; Wenger, Burkhard; Dünnermann, Jens; Jiménez, Maria Antonia; Cuxart, Joan
2016-04-01
The study of the atmospheric boundary layer, the lowest part of the atmosphere, and the processes that occur therein often requires the observation of vertical profiles of the main meteorological variables, i.e. air temperature and humidity, wind vector and barometric pressure. In particular, when the interest is focused on the air-surface interactions, a high vertical resolution over the first 500 m is required for the observations to describe the physical processes that occur immediately above the surface. Typically, these needs are covered with the use of captive balloons, which are helium-filled balloons tethered to a winch on the ground and a sensor package suspended a short distance below the balloon. Since the commercial version of such instrumental platforms are scarce and expensive, a new low-cost device has been developed in the last years: BOU (tethered Balloon sonde OWL-UIB). In this paper, we focus on the sensor package and data acquisition system part, that is able to fulfill the low-cost requirements. The system uses a low-cost Arduino Mega board as the processor, and stores all the data in a SD card, though an RF connection is also possible but more unreliable. The system has been configured to sample temperature, humidity, air pressure, wind speed, having also a magnetometer and an accelerometer. Sampling time was 1 second, though it was possible to set it faster. It is worth mentioning that the system is easily reconfigurable, and more sensors can be added. The system is powered by a Polymer battery of 1800mA , allowing the system to run continously for more than 6 hours. The temperature is acquired using three different sensors (a HYT 271 calibrated sensor with an accuracy of ±0.2 °C, plus the internal temperature sensors of the wind and pressure sensors, with accuracies around ±0.5 °C). The humidity is also sensed using the calibrated HYT 271 sensor, which features an accuracy of ±1.8%. Air pressure is sensed using a BMP080 sensor, which also provides a reading of the temperature (less accurate than the HYT 271 but useful as a complement). Wind speed is measured using a low-cost hot-wire sensor, bought from a commercial source (Wind Sensor Rev. P, from Modern Device), that has also been calibrated against a WindSonic. This sensor also provides a reading of the temperature, with the same characteristics than the BMP080. Finally, the magnetometer and the accelerometer are used as a mean of tracking the position of the balloon, allowing us to additionally estimate the wind direction from the lateral acceleration. This system has been used successfully in different campaigns, comparing favorably the obtained values against data obtained using an unmanned aerial vehicle (UAV) and a WindRass. Possible additions to the system are a GPS tracker, a RF link to the base station, and different kinds of sensors. The current configuration of the system includes RS232, I2C, and purely analog input ports, giving it a wide flexibility to add different sensors.
Determination of Barometric Altimeter Errors for the Orion Exploration Flight Test-1 Entry
NASA Technical Reports Server (NTRS)
Brown, Denise L.; Munoz, Jean-Philippe; Gay, Robert
2011-01-01
The EFT-1 mission is the unmanned flight test for the upcoming Multi-Purpose Crew Vehicle (MPCV). During entry, the EFT-1 vehicle will trigger several Landing and Recovery System (LRS) events, such as parachute deployment, based on onboard altitude information. The primary altitude source is the filtered navigation solution updated with GPS measurement data. The vehicle also has three barometric altimeters that will be used to measure atmospheric pressure during entry. In the event that GPS data is not available during entry, the altitude derived from the barometric altimeter pressure will be used to trigger chute deployment for the drogues and main parachutes. Therefore it is important to understand the impact of error sources on the pressure measured by the barometric altimeters and on the altitude derived from that pressure. There are four primary error sources impacting the sensed pressure: sensor errors, Analog to Digital conversion errors, aerodynamic errors, and atmosphere modeling errors. This last error source is induced by the conversion from pressure to altitude in the vehicle flight software, which requires an atmosphere model such as the US Standard 1976 Atmosphere model. There are several secondary error sources as well, such as waves, tides, and latencies in data transmission. Typically, for error budget calculations it is assumed that all error sources are independent, normally distributed variables. Thus, the initial approach to developing the EFT-1 barometric altimeter altitude error budget was to create an itemized error budget under these assumptions. This budget was to be verified by simulation using high fidelity models of the vehicle hardware and software. The simulation barometric altimeter model includes hardware error sources and a data-driven model of the aerodynamic errors expected to impact the pressure in the midbay compartment in which the sensors are located. The aerodynamic model includes the pressure difference between the midbay compartment and the free stream pressure as a function of altitude, oscillations in sensed pressure due to wake effects, and an acoustics model capturing fluctuations in pressure due to motion of the passive vents separating the barometric altimeters from the outside of the vehicle.
TOPICAL REVIEW: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing
NASA Astrophysics Data System (ADS)
Pearton, S. J.; Kang, B. S.; Kim, Suku; Ren, F.; Gila, B. P.; Abernathy, C. R.; Lin, Jenshan; Chu, S. N. G.
2004-07-01
There is renewed emphasis on development of robust solid-state sensors capable of uncooled operation in harsh environments. The sensors should be capable of detecting chemical, gas, biological or radiation releases as well as sending signals to central monitoring locations. We discuss the advances in use of GaN-based solid-state sensors for these applications. AlGaN/GaN high electron mobility transistors (HEMTs) show a strong dependence of source/drain current on the piezoelectric polarization-induced two-dimensional electron gas (2DEG). Furthermore, spontaneous and piezoelectric polarization-induced surface and interface charges can be used to develop very sensitive but robust sensors to detect gases, polar liquids and mechanical pressure. AlGaN/GaN HEMT structures have been demonstrated to exhibit large changes in source-drain current upon exposing the gate region to various block co-polymer solutions. Pt-gated GaN Schottky diodes and Sc2O3/AlGaN/GaN metal-oxide semiconductor diodes also show large change in forward currents upon exposure to H2. Of particular interest is detection of ethylene (C2H4), which has strong double bonds and hence is difficult to dissociate at modest temperatures. Apart from combustion gas sensing, the AlGaN/GaN heterostructure devices can be used as sensitive detectors of pressure changes. In addition, large changes in source-drain current of the AlGaN/GaN HEMT sensors can be detected upon adsorption of biological species on the semiconductor surface. Finally, the nitrides provide an ideal platform for fabrication of surface acoustic wave (SAW) devices. The GaN-based devices thus appear promising for a wide range of chemical, biological, combustion gas, polar liquid, strain and high temperature pressure-sensing applications. In addition, the sensors are compatible with high bit-rate wireless communication systems that facilitate their use in remote arrays.
Carignan, Forest J.
1986-01-21
An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.
Description of a landing site indicator (LASI) for light aircraft operation
NASA Technical Reports Server (NTRS)
Fuller, H. V.; Outlaw, B. K. E.
1976-01-01
An experimental cockpit mounted head-up type display system was developed and evaluated by LaRC pilots during the landing phase of light aircraft operations. The Landing Site Indicator (LASI) system display consists of angle of attack, angle of sideslip, and indicated airspeed images superimposed on the pilot's view through the windshield. The information is made visible to the pilot by means of a partially reflective viewing screen which is suspended directly in frot of the pilot's eyes. Synchro transmitters are operated by vanes, located at the left wing tip, which sense angle of attack and sideslip angle. Information is presented near the center of the display in the form of a moving index on a fixed grid. The airspeed is sensed by a pitot-static pressure transducer and is presented in numerical form at the top center of the display.
Instrumentation for the Characterization of Inflatable Structures
NASA Technical Reports Server (NTRS)
Swanson, Gregory T.; Cassell, Alan M.; Johnson, R. Keith
2012-01-01
Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will be utilized during the 2012 HIAD ground test campaign.
Nuclear reactor with makeup water assist from residual heat removal system
Corletti, Michael M.; Schulz, Terry L.
1993-01-01
A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.
Nuclear reactor with makeup water assist from residual heat removal system
Corletti, M.M.; Schulz, T.L.
1993-12-07
A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the Year 2006 Continuation Phase 2 three months period (April 1 to Sept. 30) of this project were to (a) conduct a probe elements industrial environment feasibility study and (b) fabricate embedded optical phase or microstructured SiC chips for individual gas species sensing. Specifically, SiC chips for temperature and pressure probe industrial applications were batch fabricated. Next, these chips were subject to a quality test for use in the probe sensor. A batch of the best chips for probe design were selected and subject to further tests that included sensor performance based on corrosive chemical exposure, powermore » plant soot exposure, light polarization variations, and extreme temperature soaking. Experimental data were investigated in detail to analyze these mentioned industrial parameters relevant to a power plant. Probe design was provided to overcome mechanical vibrations. All these goals have been achieved and are described in detail in the report. The other main focus of the reported work is to modify the SiC chip by fabricating an embedded optical phase or microstructures within the chip to enable gas species sensing under high temperature and pressure. This has been done in the Kar UCF Lab. using a laser-based system whose design and operation is explained. Experimental data from the embedded optical phase-based chip for changing temperatures is provided and shown to be isolated from gas pressure and species. These design and experimentation results are summarized to give positive conclusions on the proposed high temperature high pressure gas species detection optical sensor technology.« less
NASA Astrophysics Data System (ADS)
Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.
2013-12-01
The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.
Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment.
Ulapane, Nalika; Alempijevic, Alen; Vidal Calleja, Teresa; Valls Miro, Jaime
2017-09-26
Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor's behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application.
Pre-production Test Report for Transformer Abort Sensing and Control Unit.
The purpose of the report is to describe the test equipment and procedure required for the pre-production testing of a transformer, pressure switch excitation, abort sensing and control unit. (Author)
The Young Scientist: Sense-sational Sensors!
ERIC Educational Resources Information Center
Lewis, Carol
1991-01-01
Human and electronic sensors that can indicate the presence of light, sound, temperature, pressure, and movement are discussed. Activities that investigate the human senses are described. Directions for making an electronic touch sensor are provided. (KR)
Optical air data systems and methods
NASA Technical Reports Server (NTRS)
Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); O'Brien, Martin (Inventor)
2010-01-01
Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.
Optical air data systems and methods
NASA Technical Reports Server (NTRS)
Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)
2008-01-01
Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.
Optical air data systems and methods
NASA Technical Reports Server (NTRS)
Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)
2005-01-01
Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.
High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)
2000-01-01
A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.
Circumferential pressure probe
NASA Technical Reports Server (NTRS)
Holmes, Harlan K. (Inventor); Moore, Thomas C. (Inventor); Fantl, Andrew J. (Inventor)
1989-01-01
A probe for measuring circumferential pressure inside a body cavity is disclosed. In the preferred embodiment, a urodynamic pressure measurement probe for evaluating human urinary sphincter function is disclosed. Along the length of the probe are disposed a multiplicity of deformable wall sensors which typically comprise support tube sections with flexible side wall areas. These are arranged along the length of the probe in two areas, one just proximal to the tip for the sensing of fluid pressure inside the bladder, and five in the sensing section which is positioned within the urethra at the point at which the urinary sphincter constricts to control the flow of urine. The remainder of the length of the probe comprises multiple rigid support tube sections interspersed with flexible support tube sections in the form of bellows to provide flexibility.
Tactile surface classification for limbed robots using a pressure sensitive robot skin.
Shill, Jacob J; Collins, Emmanuel G; Coyle, Eric; Clark, Jonathan
2015-02-02
This paper describes an approach to terrain identification based on pressure images generated through direct surface contact using a robot skin constructed around a high-resolution pressure sensing array. Terrain signatures for classification are formulated from the magnitude frequency responses of the pressure images. The initial experimental results for statically obtained images show that the approach yields classification accuracies [Formula: see text]. The methodology is extended to accommodate the dynamic pressure images anticipated when a robot is walking or running. Experiments with a one-legged hopping robot yield similar identification accuracies [Formula: see text]. In addition, the accuracies are independent with respect to changing robot dynamics (i.e., when using different leg gaits). The paper further shows that the high-resolution capabilities of the sensor enables similarly textured surfaces to be distinguished. A correcting filter is developed to accommodate for failures or faults that inevitably occur within the sensing array with continued use. Experimental results show using the correcting filter can extend the effective operational lifespan of a high-resolution sensing array over 6x in the presence of sensor damage. The results presented suggest this methodology can be extended to autonomous field robots, providing a robot with crucial information about the environment that can be used to aid stable and efficient mobility over rough and varying terrains.
Remote sensing validation through SOOP technology: implementation of Spectra system
NASA Astrophysics Data System (ADS)
Piermattei, Viviana; Madonia, Alice; Bonamano, Simone; Consalvi, Natalizia; Caligiore, Aurelio; Falcone, Daniela; Puri, Pio; Sarti, Fabio; Spaccavento, Giovanni; Lucarini, Diego; Pacci, Giacomo; Amitrano, Luigi; Iacullo, Salvatore; D'Andrea, Salvatore; Marcelli, Marco
2017-04-01
The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of marine research. The availability of low-cost technologies allows the realization of extended observatory networks for the study of marine phenomena through an integrated approach merging observations, remote sensing and operational oceanography. Marine services and practical applications critically depends on the availability of large amount of data collected with sufficiently dense spatial and temporal sampling. This issue directly influences the robustness both of ocean forecasting models and remote sensing observations through data assimilation and validation processes, particularly in the biological domain. For this reason it is necessary the development of cheap, small and integrated smart sensors, which could be functional both for satellite data validation and forecasting models data assimilation as well as to support early warning systems for environmental pollution control and prevention. This is particularly true in coastal areas, which are subjected to multiple anthropic pressures. Moreover, coastal waters can be classified like case 2 waters, where the optical properties of inorganic suspended matter and chromophoric dissolved organic matter must be considered and separated by the chlorophyll a contribution. Due to the high costs of mooring systems, research vessels, measure platforms and instrumentation a big effort was dedicated to the design, development and realization of a new low cost mini-FerryBox system: Spectra. Thanks to the modularity and user-friendly employment of the system, Spectra allows to acquire continuous in situ measures of temperature, conductivity, turbidity, chlorophyll a and chromophoric dissolved organic matter (CDOM) fluorescences from voluntary vessels, even by non specialized operators (Marcelli et al., 2014; 2016). This work shows the preliminary application of this technology to remote sensing data validation.
Advanced sensor systems for biotelemetry
NASA Technical Reports Server (NTRS)
Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor); Hines, John W. (Inventor); Somps, Christopher J. (Inventor)
2003-01-01
The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 .mu.W., which yields a lifetime of approximately 6-9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38.times.28 mm to 22.times.8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.
Advanced Sensor Systems for Biotelemetry
NASA Technical Reports Server (NTRS)
Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)
2003-01-01
The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 microW, which yields a lifetime of approximately 6 - 9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38 x 28 mm to 22 x 8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.
NASA Astrophysics Data System (ADS)
Wang, Fang; Lu, Heng; Wang, Xu; Liu, Yufang
2018-03-01
Fiber-loop ring-down spectroscopy (FLRDS) technique can be used for measurement by indirectly measuring the ring-down time. This is advantageous because it is free from fluctuations of the light source and has a high sensitivity. A novel sensing system for measuring the concentration and temperature based on the FLRDS technique and Mach-Zehnder interferometer (MZI) is proposed in this work. The intra-cavity losses were compensated, which depended on the erbium-doped fiber amplifier. The sensor head was a section of 4 cm single-mode fiber that was spliced into the fiber loop ring cavity in a core-offset way, and its characteristics were tested by experimenting with different solution concentrations and temperatures. The experimental results showed that the detection limit of this system is 0.0014 g/ml, in the range of 0.010-0.400 g/ml. In the temperature sensing experiment, when the temperature varied from 30-200 °C, a sensitivity of 1.83 μs/°C was achieved. This research demonstrated that the MZI-based FLRDS sensing system has a clear response to the solution and temperature; therefore, it provides a reference for the measurement of stress, pressure, curvature, and other physical quantities.
Peng, Jie; Dong, Wu-Jun; Li, Ling; Xu, Jia-Ming; Jin, Du-Jia; Xia, Xue-Jun; Liu, Yu-Ling
2015-12-01
The effect of different high pressure homogenization energy input parameters on mean diameter droplet size (MDS) and droplets with > 5 μm of lipid injectable emulsions were evaluated. All emulsions were prepared at different water bath temperatures or at different rotation speeds and rotor-stator system times, and using different homogenization pressures and numbers of high-pressure system recirculations. The MDS and polydispersity index (PI) value of the emulsions were determined using the dynamic light scattering (DLS) method, and large-diameter tail assessments were performed using the light-obscuration/single particle optical sensing (LO/SPOS) method. Using 1000 bar homogenization pressure and seven recirculations, the energy input parameters related to the rotor-stator system will not have an effect on the final particle size results. When rotor-stator system energy input parameters are fixed, homogenization pressure and recirculation will affect mean particle size and large diameter droplet. Particle size will decrease with increasing homogenization pressure from 400 bar to 1300 bar when homogenization recirculation is fixed; when the homogenization pressure is fixed at 1000 bar, the particle size of both MDS and percent of fat droplets exceeding 5 μm (PFAT 5 ) will decrease with increasing homogenization recirculations, MDS dropped to 173 nm after five cycles and maintained this level, volume-weighted PFAT 5 will drop to 0.038% after three cycles, so the "plateau" of MDS will come up later than that of PFAT 5 , and the optimal particle size is produced when both of them remained at plateau. Excess homogenization recirculation such as nine times under the 1000 bar may lead to PFAT 5 increase to 0.060% rather than a decrease; therefore, the high-pressure homogenization procedure is the key factor affecting the particle size distribution of emulsions. Varying storage conditions (4-25°C) also influenced particle size, especially the PFAT 5 . Copyright © 2015. Published by Elsevier B.V.
Frostless heat pump having thermal expansion valves
Chen, Fang C [Knoxville, TN; Mei, Viung C [Oak Ridge, TN
2002-10-22
A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.
Magnetoacoustic Sensing of Magnetic Nanoparticles.
Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis
2016-03-11
The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.
Research on Flow Field Perception Based on Artificial Lateral Line Sensor System.
Liu, Guijie; Wang, Mengmeng; Wang, Anyi; Wang, Shirui; Yang, Tingting; Malekian, Reza; Li, Zhixiong
2018-03-11
In nature, the lateral line of fish is a peculiar and important organ for sensing the surrounding hydrodynamic environment, preying, escaping from predators and schooling. In this paper, by imitating the mechanism of fish lateral canal neuromasts, we developed an artificial lateral line system composed of micro-pressure sensors. Through hydrodynamic simulations, an optimized sensor structure was obtained and the pressure distribution models of the lateral surface were established in uniform flow and turbulent flow. Carrying out the corresponding underwater experiment, the validity of the numerical simulation method is verified by the comparison between the experimental data and the simulation results. In addition, a variety of effective research methods are proposed and validated for the flow velocity estimation and attitude perception in turbulent flow, respectively and the shape recognition of obstacles is realized by the neural network algorithm.
Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin
2015-08-31
Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively.
Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin
2015-01-01
Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively. PMID:26334279
Tuning the sensing range of silicon pressure sensor by trench etching technology
NASA Astrophysics Data System (ADS)
Chou, Yu-Tuan; Lin, Hung-Yi; Hu, Hsin-Hua
2006-01-01
The silicon pressure sensor has been developed for over thirty years and widely used in automobiles, medical instruments, commercial electronics, etc. There are many different specifications of silicon pressure sensors that cover a very large sensing range, from less than 1 psi to as high as 1000 psi. The key elements of the silicon pressure sensor are a square membrane and the piezoresistive strain gages near the boundary of the membrane. The dimensions of the membrane determine the full sensing range and the sensitivity of the silicon sensor, including thickness and in-plane length. Unfortunately, in order to change the sensing range, the manufacturers need to order a customized epi wafer to get the desired thickness. All masks (usually six) have to be re-laid and re-fabricated for different membrane sizes. The existing technology requires at least three months to deliver the prototype for specific customer requests or the new application market. This research proposes a new approach to dramatically reduce the prototyping time from three months to one week. The concept is to tune the rigidity of the sensing membrane by modifying the boundary conditions without changing the plenary size. An extra mask is utilized to define the geometry and location of deep-RIE trenches and all other masks remain the same. Membranes with different depths and different patterns of trenches are designed for different full sensing ranges. The simulation results show that for a 17um thick and 750um wide membrane, the adjustable range by tuning trench depth is about 45% (from 5um to 10um), and can go to as high as 100% by tuning both the pattern and depth of the trenches. Based on an actual test in a product fabrication line, we verified that the total delivery time can be minimized to one week to make the prototyping very effective and cost-efficient.
Arshak, A; Arshak, K; Waldron, D; Morris, D; Korostynska, O; Jafer, E; Lyons, G
2005-06-01
Telemetry capsules have existed since the 1950s and were used to measure temperature, pH or pressure inside the gastrointestinal (GI) tract. It was hoped that these capsules would replace invasive techniques in the diagnosis of function disorders in the GI tract. However, problems such as signal loss and uncertainty of the pills position limited their use in a clinical setting. In this paper, a review of the capabilities of MicroElectroMechanical Systems (MEMS) and thick film technology (TFT) for the fabrication of a wireless pressure sensing microsystem is presented. The circuit requirements and methods of data transfer are examined. The available fabrication methods for MEMS sensors are also discussed and examples of wireless sensors are given. Finally the limitations of each technology are examined.
Internationalization of the Space Station
NASA Technical Reports Server (NTRS)
Lottmann, R. V.
1985-01-01
Attention is given to the NASA Space Station system elements whose production is under consideration by potential foreign partners. The ESA's Columbus Program declaration encompasses studies of pressurized modules, unmanned payload carriers, and ground support facilities. Canada has expressed interest in construction and servicing facilities, solar arrays, and remote sensing facilities. Japanese studies concern a multipurpose experimental module concept. Each of these foreign investments would expand Space Station capabilities and lay the groundwork for long term partnerships.
Cryogenic High Pressure Sensor Module
NASA Technical Reports Server (NTRS)
Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)
1999-01-01
A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.
Cryogenic, Absolute, High Pressure Sensor
NASA Technical Reports Server (NTRS)
Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)
2001-01-01
A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.
Manufacturing of Liquid-Embedded Elastomers for Stretchable Electronics
NASA Astrophysics Data System (ADS)
Kramer, Rebecca; Majidi, Carmel; Weaver, James; Wood, Robert
2013-03-01
Future generations of robots, electronics, and assistive medical devices will include systems that are soft, elastically deformable, and may adapt their functionality in unstructured environments. This will require soft active materials for power circuits and sensing of deformation and contact pressure. As the demand for increased elasticity of electrical components heightens, the challenges for functionality revert to basic questions of fabrication, materials, and design. Several designs for soft sensory skins (including strain, pressure and curvature sensors) based on a liquid-embedded-elastomer approach have been developed. This talk will highlight new ``soft MEMS'' manufacturing techniques based on wetting behavior between gallium-indium alloys and elastomers with varying microtextured surface topography. Supported by Harvard MRSEC and the Wyss Institute
NASA Technical Reports Server (NTRS)
Farr, Rebecca A.; Wiley, John T.; Vitarius, Patrick
2005-01-01
This paper documents acoustics environments data collected during liquid oxygen- ethanol hot-fire rocket testing at NASA Marshall Space Flight Center in November- December 2003. The test program was conducted during development testing of the RS-88 development engine thrust chamber assembly in support of the Orbital Space Plane Crew Escape System Propulsion Program Pad Abort Demonstrator. In addition to induced environments analysis support, coincident data collected using other sensors and methods has allowed benchmarking of specific acoustics test measurement methodologies during propulsion tests. Qualitative effects on data characteristics caused by using tygon sense lines of various lengths in pressure transducer measurements is discussed here.
All printed touchless human-machine interface based on only five functional materials
NASA Astrophysics Data System (ADS)
Scheipl, G.; Zirkl, M.; Sawatdee, A.; Helbig, U.; Krause, M.; Kraker, E.; Andersson Ersman, P.; Nilsson, D.; Platt, D.; Bodö, P.; Bauer, S.; Domann, G.; Mogessie, A.; Hartmann, Paul; Stadlober, B.
2012-02-01
We demonstrate the printing of a complex smart integrated system using only five functional inks: the fluoropolymer P(VDF:TrFE) (Poly(vinylidene fluoride trifluoroethylene) sensor ink, the conductive polymer PEDOT:PSS (poly(3,4 ethylenedioxythiophene):poly(styrene sulfonic acid) ink, a conductive carbon paste, a polymeric electrolyte and SU8 for separation. The result is a touchless human-machine interface, including piezo- and pyroelectric sensor pixels (sensitive to pressure changes and impinging infrared light), transistors for impedance matching and signal conditioning, and an electrochromic display. Applications may not only emerge in human-machine interfaces, but also in transient temperature or pressure sensing used in safety technology, in artificial skins and in disposable sensor labels.
Wireless energizing system for an automated implantable sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.
The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonantmore » frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.« less
Purdy, Phillip D; South, Charles; Klucznik, Richard P; Liu, Kenneth C; Novakovic, Robin L; Puri, Ajit S; Pride, G Lee; Aagaard-Kienitz, Beverly; Ray, Abishek; Elliott, Alan C
2017-08-01
Monitoring of blood pressure (BP) during procedures is variable, depending on multiple factors. Common methods include sphygmomanometer (BP cuff), separate radial artery catheterization, and side port monitoring of an indwelling sheath. Each means of monitoring has disadvantages, including time consumption, added risk, and signal dampening due to multiple factors. We sought an alternative approach to monitoring during procedures in the catheterization laboratory. A new technology involving a 330 µm fiberoptic sensor embedded in the wall of a sheath structure was tested against both radial artery catheter and sphygmomanometer readings obtained simultaneous with readings recorded from the pressure sensing system (PSS). Correlations and Bland-Altman analysis were used to determine whether use of the PSS could substitute for these standard techniques. The results indicated highly significant correlations in systolic, diastolic, and mean arterial pressures (MAP) when compared against radial artery catheterization (p<0.0001), and MAP means differed by <4%. Bland-Altman analysis of the data suggested that the sheath measurements can replace a separate radial artery catheter. While less striking, significant correlations were seen when PSS readings were compared against BP cuff readings. The PSS has competitive functionality to that seen with a dedicated radial artery catheter for BP monitoring and is available immediately on sheath insertion without the added risk of radial catheterization. The sensor is structurally separated from the primary sheath lumen and readings are unaffected by device introduction through the primary lumen. Time delays and potential complications from radial artery catheterization are avoided. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Kumar, V. Suresh; Kumar, R.; Sivaraman, N.; Ravisankar, G.; Vasudeva Rao, P. R.
2010-09-01
The design and development of a novel supercritical extraction experimental facility adapted for safe operation in a glove box for the recovery of radioactive elements from waste is described. The apparatus incorporates a high pressure extraction vessel, reciprocating pumps for delivering supercritical fluid and reagent, a back pressure regulator, and a collection chamber. All these components of the system have been specially designed for glove box adaptation and made modular to facilitate their replacement. Confinement of these materials must be ensured in a glove box to protect the operator and prevent contamination to the work area. Since handling of radioactive materials under high pressure (30 MPa) and temperature (up to 333 K) is involved in this process, the apparatus needs elaborate safety features in the design of the equipment, as well as modification of a standard glove box to accommodate the system. As a special safety feature to contain accidental leakage of carbon dioxide from the extraction vessel, a safety vessel has been specially designed and placed inside the glove box. The extraction vessel was enclosed in the safety vessel. The safety vessel was also incorporated with pressure sensing and controlling device.
Applications for fiber optic sensing in the upstream oil and gas industry
NASA Astrophysics Data System (ADS)
Baldwin, Chris S.
2015-05-01
Fiber optic sensing has been used in an increasing number of applications in the upstream oil and gas industry over the past 20 years. In some cases, fiber optic sensing is providing measurements where traditional measurement technologies could not. This paper will provide a general overview of these applications and describe how the use of fiber optic sensing is enabling these applications. Technologies such as Bragg gratings, distributed temperature and acoustic sensing, interferometric sensing, and Brillouin scattering will be discussed. Applications for optic sensing include a range of possibilities from a single pressure measurement point in the wellbore to multizone pressure and flow monitoring. Some applications make use of fully distributed measurements including thermal profiling of the well. Outside of the wellbore, fiber optic sensors are used in applications for flowline and pipeline monitoring and for riser integrity monitoring. Applications to be described in this paper include in-flow profiling, well integrity, production monitoring, and steam chamber growth. These applications will cover well types such as injectors, producers, hydraulic fracturing, and thermal recovery. Many of these applications use the measurements provided by fiber optic sensing to improve enhanced oil recovery operations. The growing use of fiber optic sensors is providing improved measurement capabilities leading to the generation of actionable data for enhanced production optimization. This not only increases the recovered amount of production fluids but can also enhance wellbore integrity and safety.
Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors
Wang, Hui; Zhang, Ke-Qin
2013-01-01
Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027
Simplicity and Specificity in Language: Domain-General Biases Have Domain-Specific Effects
Culbertson, Jennifer; Kirby, Simon
2016-01-01
The extent to which the linguistic system—its architecture, the representations it operates on, the constraints it is subject to—is specific to language has broad implications for cognitive science and its relation to evolutionary biology. Importantly, a given property of the linguistic system can be “specific” to the domain of language in several ways. For example, if the property evolved by natural selection under the pressure of the linguistic function it serves then the property is domain-specific in the sense that its design is tailored for language. Equally though, if that property evolved to serve a different function or if that property is domain-general, it may nevertheless interact with the linguistic system in a way that is unique. This gives a second sense in which a property can be thought of as specific to language. An evolutionary approach to the language faculty might at first blush appear to favor domain-specificity in the first sense, with individual properties of the language faculty being specifically linguistic adaptations. However, we argue that interactions between learning, culture, and biological evolution mean any domain-specific adaptations that evolve will take the form of weak biases rather than hard constraints. Turning to the latter sense of domain-specificity, we highlight a very general bias, simplicity, which operates widely in cognition and yet interacts with linguistic representations in domain-specific ways. PMID:26793132
Parabolic flight - Loss of sense of orientation
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1979-01-01
On the earth, or in level flight, a blindfolded subject being rotated at constant velocity about his recumbent long body axis experiences illusory orbital motion of his body in the opposite direction. By contrast, during comparable rotation in the free-fall phase of parabolic flight, no body motion is perceived and all sense of external orientation may be lost; when touch and pressure stimulation is applied to the body surface, a sense of orientation is reestablished immediately. The increased gravitoinertial force period of a parabola produces an exaggeration of the orbital motion experienced in level flight. These observations reveal an important influence of touch, pressure, and kinesthetic information on spatial orientation and provide a basis for understanding many of the postural illusions reported by astronauts in space flight.
All-optical non-mechanical fiber-coupled sensor for liquid- and airborne sound detection.
NASA Astrophysics Data System (ADS)
Rohringer, Wolfgang; Preißer, Stefan; Fischer, Balthasar
2017-04-01
Most fiber-optic devices for pressure, strain or temperature measurements are based on measuring the mechanical deformation of the optical fiber by various techniques. While excellently suited for detecting strain, pressure or structure-borne sound, their sensitivity to liquid- and airborne sound is so far not comparable with conventional capacitive microphones or piezoelectric hydrophones. Here, we present an all-optical acoustic sensor which relies on the detection of pressure-induced changes of the optical refractive index inside a rigid, millimeter-sized, fiber-coupled Fabry-Pérot interferometer (FPI). No mechanically movable or deformable parts take part in the signal transduction chain. Therefore, due to the absence of mechanical resonances, this sensing principle allows for high sensitivity as well as a flat frequency response over an extraordinary measurement bandwidth. As a fiber-coupled device, it can be integrated easily into already available distributed fiber-optic networks for geophysical sensing. We present characterization measurements demonstrating the sensitivity, frequency response and directivity of the device for sound and ultrasound detection in air and water. We show that low-frequency temperature and pressure drifts can be recorded in addition to acoustic sensing. Finally, selected application tests of the laser-based hydrophone and microphone implementation are presented.
Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.
Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo
2016-04-26
Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).
NASA Astrophysics Data System (ADS)
Srimannarayana, K.; Vengal Rao, P.; Sai Shankar, M.; Kishore, P.
2014-05-01
A temperature independent high sensitive pressure sensing system using fiber Bragg grating (FBG) and `C' shaped Bourdon tube (CBT) is demonstrated. The sensor is configured by firmly fixing the FBG (FBG1) between free and fixed ends of the CBT. Additional FBG (FBG2) in line to the FBG1 is introduced which is shielded from the external pressure, tend to measure only the ambient temperature fluctuations. The CBT has an elliptical cross section where its free end is sealed and the fixed end is open for subjecting the liquid or gas pressure to be measured. With the application of pressure, the free end of CBT tends to straighten out results in an axial strain in FBG1 causes red shift in Bragg wavelength. The pressure can be determined by measuring the shift of the Bragg wavelength. The experimental pressure sensitivity is found to be 66.9 pm/psi over a range of 0 to 100 psi. The test results show that the Bragg wavelength shift is linear corresponds to change in applied pressure and well agreed with the simulated results. This simple and high sensitive design is capable of measuring static/dynamic pressure and temperature simultaneously which suits for industrial applications.
Yoosefinejad, Amin Kordi; Motealleh, Alireza; Abbasnia, Keramatollah
2016-01-01
Iontophoresis is the noninvasive delivery of ions using direct current. The direct current has some disadvantages such as skin burning. Interferential current is a kind of alternating current without limitations of direct current; so the purpose of this study is to investigate and compare the effects of lidocaine, interferential current and lidocaine iontophoresis using interferential current. 30 healthy women aged 20-24 years participated in this randomized clinical trial study. Pressure, tactile and pain thresholds were evaluated before and after the application of treatment methods. Pressure, tactile and pain sensitivity increased significantly after the application of lidocaine alone (p < 0.005) and lidocaine iontophoresis using interferential current (p < 0.0001). Lidocaine iontophoresis using interferential current can increase perception threshold of pain, tactile stimulus and pressure sense more significantly than lidocaine and interferential current alone.
Gregurech, S.
1984-08-01
A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.
Wong, Holly; Kaufman, Jaime; Baylis, Barry; Conly, John M; Hogan, David B; Stelfox, Henry T; Southern, Danielle A; Ghali, William A; Ho, Chester H
2015-09-29
Interface pressure is a key risk factor in the development of pressure ulcers. Visual feedback of continuous interface pressure between the body and support surface could inform clinicians on repositioning strategies and play a key role in an overall strategy for the prevention and management of pressure ulcers. A parallel two-group randomized controlled clinical trial will be conducted to study the effect of continuous pressure imaging on reducing interface pressure and on the incidence of pressure ulcers in vulnerable hospital patients. A total of 678 eligible consenting inpatients at risk of pressure ulcer development in a tertiary acute care institution will be randomly allocated to either having the ForeSite PT™ system with the liquid-crystal display monitor turned on to provide visual feedback to the clinicians while also collecting continuous interface pressure data (intervention group) or to having the ForeSite PT™ system with monitor turned off (that is, not providing visual feedback) but still collecting continuous interface pressure data (control group), in a ratio of 1:1. Continuous interface pressure data will be collected in both groups for 3 days (72 h). Data collection will continue until discharge for a subset of approximately 60 patients. The primary outcome will be the differences in the two groups' interface pressure analysis. Interface pressure readings will be collected through hourly samplings of continuous interface pressure recordings. Secondary outcomes will be the differences between the two groups in pressure-related skin and soft tissue changes in areas at risk of pressure ulcer (obtained at baseline within 24 h of admission) and on the third day of the trial or at discharge and perceptions of the intervention by patients and clinicians (obtained on the third day or at discharge). This will be the first randomized controlled trial to investigate the effect of visual feedback with continuous interface pressure of vulnerable hospital patients across different care settings, and the association between interface pressure and development of pressure-related skin and soft tissue changes. The results could provide important information to guide clinical practice in the prevention and management of pressure ulcers. ClinicalTrials.gov NCT02325388 (date of registration: 24 December 2014).
Ice lollies: An ice particle generated in supercooled conveyor belts
NASA Astrophysics Data System (ADS)
Keppas, S. Ch.; Crosier, J.; Choularton, T. W.; Bower, K. N.
2017-05-01
On 21 January 2009, a maturing low-pressure weather system approached the UK along with several associated frontal systems. As a part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate-Clouds project, an observational research flight took place in southern England, sampling the leading warm front of this system. During the flight, a distinctive hydrometeor type was repeatedly observed which has not been widely reported in previous studies. We refer to the hydrometeors as "drizzle-rimed columnar ice" or "ice lollies" for short due to their characteristic shape. We discuss the processes that led to their formation using in situ and remote sensing data.
Electron spin control of optically levitated nanodiamonds in vacuum
NASA Astrophysics Data System (ADS)
Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-05-01
Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect.
A hybrid electronically scanned pressure module for cryogenic environments
NASA Technical Reports Server (NTRS)
Chapman, J. J.; Hopson, P., Jr.; Kruse, N.
1995-01-01
Pressure is one of the most important parameters measured when testing models in wind tunnels. For models tested in the cryogenic environment of the National Transonic Facility at NASA Langley Research Center, the technique of utilizing commercially available multichannel pressure modules inside the models is difficult due to the small internal volume of the models and the requirement of keeping the pressure transducer modules within an acceptable temperature range well above the -173 degrees C tunnel temperature. A prototype multichannel pressure transducer module has been designed and fabricated with stable, repeatable sensors and materials optimized for reliable performance in the cryogenic environment. The module has 16 single crystal silicon piezoresistive pressure sensors electrostatically bonded to a metalized Pyrex substrate for sensing the wind tunnel model pressures. An integral temperature sensor mounted on each silicon micromachined pressure sensor senses real-time temperature fluctuations to within 0.1 degrees C to correct for thermally induced non-random sensor drift. The data presented here are from a prototype sensor module tested in the 0.3 M cryogenic tunnel and thermal equilibrium conditions in an environmental chamber which approximates the thermal environment (-173 degrees C to +60 degrees C) of the National Transonic Facility.
Theory of Auditory Thresholds in Primates
NASA Astrophysics Data System (ADS)
Harrison, Michael J.
2001-03-01
The influence of thermal pressure fluctuations at the tympanic membrane has been previously investigated as a possible determinant of the threshold of hearing in humans (L.J. Sivian and S.D. White, J. Acoust. Soc. Am. IV, 4;288(1933).). More recent work has focussed more precisely on the relation between statistical mechanics and sensory signal processing by biological means in creatures' brains (W. Bialek, in ``Physics of Biological Systems: from molecules to species'', H. Flyvberg et al, (Eds), p. 252; Springer 1997.). Clinical data on the frequency dependence of hearing thresholds in humans and other primates (W.C. Stebbins, ``The Acoustic Sense of Animals'', Harvard 1983.) has long been available. I have derived an expression for the frequency dependence of hearing thresholds in primates, including humans, by first calculating the frequency dependence of thermal pressure fluctuations at eardrums from damped normal modes excited in model ear canals of given simple geometry. I then show that most of the features of the clinical data are directly related to the frequency dependence of the ratio of thermal noise pressure arising from without to that arising from within the masking bandwidth which signals must dominate in order to be sensed. The higher intensity of threshold signals in primates smaller than humans, which is clinically observed over much but not all of the human auditory spectrum is shown to arise from their smaller meatus dimensions. note
Structural integrated sensor and actuator systems for active flow control
NASA Astrophysics Data System (ADS)
Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael
2016-04-01
An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.
Development of an Open Source, Air-Deployable Weather Station
NASA Astrophysics Data System (ADS)
Krejci, A.; Lopez Alcala, J. M.; Nelke, M.; Wagner, J.; Udell, C.; Higgins, C. W.; Selker, J. S.
2017-12-01
We created a packaged weather station intended to be deployed in the air on tethered systems. The device incorporates lightweight sensors and parts and runs for up to 24 hours off of lithium polymer batteries, allowing the entire package to be supported by a thin fiber. As the fiber does not provide a stable platform, additional data (pitch and roll) from typical weather parameters (e.g. temperature, pressure, humidity, wind speed, and wind direction) are determined using an embedded inertial motion unit. All designs are open sourced including electronics, CAD drawings, and descriptions of assembly and can be found on the OPEnS lab website at http://www.open-sensing.org/lowcost-weather-station/. The Openly Published Environmental Sensing Lab (OPEnS: Open-Sensing.org) expands the possibilities of scientific observation of our Earth, transforming the technology, methods, and culture by combining open-source development and cutting-edge technology. New OPEnS labs are now being established in India, France, Switzerland, the Netherlands, and Ghana.
Mapping of Coral Reef Environment in the Arabian Gulf Using Multispectral Remote Sensing
NASA Astrophysics Data System (ADS)
Ben-Romdhane, H.; Marpu, P. R.; Ghedira, H.; Ouarda, T. B. M. J.
2016-06-01
Coral reefs of the Arabian Gulf are subject to several pressures, thus requiring conservation actions. Well-designed conservation plans involve efficient mapping and monitoring systems. Satellite remote sensing is a cost-effective tool for seafloor mapping at large scales. Multispectral remote sensing of coastal habitats, like those of the Arabian Gulf, presents a special challenge due to their complexity and heterogeneity. The present study evaluates the potential of multispectral sensor DubaiSat-2 in mapping benthic communities of United Arab Emirates. We propose to use a spectral-spatial method that includes multilevel segmentation, nonlinear feature analysis and ensemble learning methods. Support Vector Machine (SVM) is used for comparison of classification performances. Comparative data were derived from the habitat maps published by the Environment Agency-Abu Dhabi. The spectral-spatial method produced 96.41% mapping accuracy. SVM classification is assessed to be 94.17% accurate. The adaptation of these methods can help achieving well-designed coastal management plans in the region.
Sheybani, Roya; Cobo, Angelica; Meng, Ellis
2015-08-01
We present a fully integrated implantable electrolysis-based micropump with incorporated EI dosing sensors. Wireless powering and data telemetry (through amplitude and frequency modulation) were utilized to achieve variable flow control and a bi-directional data link with the sensors. Wireless infusion rate control (0.14-1.04 μL/min) and dose sensing (bolus resolution of 0.55-2 μL) were each calibrated separately with the final circuit architecture and then simultaneous wireless flow control and dose sensing were demonstrated. Recombination detection using the dosing system, as well as, effects of coil separation distance and misalignment in wireless power and data transfer were studied. A custom-made normally closed spring-loaded ball check valve was designed and incorporated at the reservoir outlet to prevent backflow of fluids as a result of the reverse pressure gradient caused by recombination of electrolysis gases. Successful delivery, infusion rate control, and dose sensing were achieved in simulated brain tissue.
Bombardini, Tonino; Gemignani, Vincenzo; Bianchini, Elisabetta; Pasanisi, Emilio; Pratali, Lorenza; Pianelli, Mascia; Faita, Francesco; Giannoni, Massimo; Arpesella, Giorgio; Sicari, Rosa; Picano, Eugenio
2009-01-01
Background New sensors for intelligent remote monitoring of the heart should be developed. Recently, a cutaneous force-frequency relation recording system has been validated based on heart sound amplitude and timing variations at increasing heart rates. Aim To assess sensor-based post-exercise contractility, diastolic function and pressure in normal and diseased hearts as a model of a wireless telemedicine system. Methods We enrolled 150 patients and 22 controls referred for exercise-stress echocardiography, age 55 ± 18 years. The sensor was attached in the precordial region by an ECG electrode. Stress and recovery contractility were derived by first heart sound amplitude vibration changes; diastolic times were acquired continuously. Systemic pressure changes were quantitatively documented by second heart sound recording. Results Interpretable sensor recordings were obtained in all patients (feasibility = 100%). Post-exercise contractility overshoot (defined as increase > 10% of recovery contractility vs exercise value) was more frequent in patients than controls (27% vs 8%, p < 0.05). At 100 bpm stress heart rate, systolic/diastolic time ratio (normal, < 1) was > 1 in 20 patients and in none of the controls (p < 0.01); at recovery systolic/diastolic ratio was > 1 in only 3 patients (p < 0.01 vs stress). Post-exercise reduced arterial pressure was sensed. Conclusion Post-exercise contractility, diastolic time and pressure changes can be continuously measured by a cutaneous sensor. Heart disease affects not only exercise systolic performance, but also post-exercise recovery, diastolic time intervals and blood pressure changes – in our study, all of these were monitored by a non-invasive wearable sensor. PMID:19442285
Nabeel, P M; Karthik, Srinivasa; Joseph, Jayaraj; Sivaprakasam, Mohanasankar
2017-07-01
We present a prototype design of dual element photoplethysmograph (PPG) probe along with associated measurement system for carotid local pulse wave velocity (PWV) evaluation in a non-invasive and continuous manner. The PPG probe consists of two identical sensing modules placed 23 mm apart. Simultaneously measured blood pulse waveforms from these arterial sites were processed and the pulse transit time delay was resolved using the developed application-specific software. The ability of developed PPG probe and associated measurement system to detect acute changes in carotid local PWV due to blood pressure (BP) variations was experimentally validated by an in-vivo study. Intra-subject carotid BP elevation was achieved by an upper arm cuff based occlusion, which offered a controlled way of local PWV escalation. The elevated carotid BP values were also recorded by a calibrated pressure tonometer prior to the study, and was used as a reference. A significant increment (1.0 - 2.6 m/s) in local PWV was observed and was proportional to the BP increment induced by the occlusive reactive hyperemia. Study results demonstrated the feasibility of real-time signal acquisition and reliable local PWV evaluation under normal and elevated BP conditions using the developed measurement system.
Ultrasonic Sensing of Plant Water Needs for Agriculture
Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier
2016-01-01
Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968
Ultrasonic Sensing of Plant Water Needs for Agriculture.
Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier
2016-07-14
Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained.
Multiple scaling power in liquid gallium under pressure conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Renfeng; Wang, Luhong; Li, Liangliang
Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiplemore » scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.« less
Next Generation Life Support: High Performance EVA Glove
NASA Technical Reports Server (NTRS)
Walsh, Sarah K.
2015-01-01
The objectives of the High Performance EVA Glove task are to develop advanced EVA gloves for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. New technologies and manufacturing techniques will be incorporated into the new gloves to address finger and hand mobility, injury reduction and durability in nonpristine environments. Three prototypes will be developed, each focusing on different technological advances. A robotic assist glove will integrate a powered grasping system into the current EVA glove design to reduce astronaut hand fatigue and hand injuries. A mechanical counter pressure (MCP) glove will be developed to further explore the potential of MCP technology and assess its capability for countering the effects of vacuum or low pressure environments on the body by using compression fabrics or materials to apply the necessary pressure. A gas pressurized glove, incorporating new technologies, will be the most flight-like of the three prototypes. Advancements include the development and integration of aerogel insulation, damage sensing components, dust-repellant coatings, and dust tolerant bearings.
Sensory Transduction in Microorganisms 2008 Gordon Research Conference (January 2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann M. Stock
2009-04-08
Research into the mechanisms involved in the sensing and responses of microorganisms to changes in their environments is currently very active in a large number of laboratories worldwide. An increasingly wide range of prokaryotic and eukaryotic species are being studied with regard to their sensing of diverse chemical and physical stimuli, including nutrients, toxins, intercellular signaling molecules, redox indicators, light, pressure, magnetic fields, and surface contact, leading to adaptive responses affecting motile behavior, gene expression and/or development. The ease of manipulation of microorganisms has facilitated application of a broad range of techniques that have provided comprehensive descriptions of cellular behaviormore » and its underlying molecular mechanisms. Systems and their molecular components have been probed at levels ranging from the whole organism down to atomic resolution using behavioral analyses; electrophysiology; genetics; molecular biology; biochemical and biophysical characterization; structural biology; single molecule, fluorescence and cryo-electron microscopy; computational modeling; bioinformatics and genomic analyses. Several model systems such as bacterial chemotaxis and motility, fruiting body formation in Myxococcus xanthus, and motility and development in Dictyostelium discoideum have traditionally been a focus of this meeting. By providing a basis for assessment of similarities and differences in mechanisms, understanding of these pathways has advanced the study of many other microbial sensing systems. This conference aims to bring together researchers investigating different prokaryotic and eukaryotic microbial systems using diverse approaches to compare data, share methodologies and ideas, and seek to understand the fundamental principles underlying sensory responses. Topic areas include: (1) Receptor Sensing and Signaling; (2) Intracellular Signaling (two-component, c-di-GMP, c-AMP, etc.); (3) Intracellular Localization and the Cytoskeleton; (4) Motors and Motility; (5) Differentiation and Development; (6) Host/Pathogen and Host/Symbiont Interactions; (7) Intercellular Communication; (8) Microbes and the Environment; and (9) Modeling Signaling Pathways.« less
A passive gust alleviation system for a light aircraft
NASA Technical Reports Server (NTRS)
Roesch, P.; Harlan, R. B.
1975-01-01
A passive aeromechanical gust alleviation system was examined for application to a Cessna 172. The system employs small auxiliary wings to sense changes in angle of attack and to drive the wing flaps to compensate the resulting incremental lift. The flaps also can be spring loaded to neutralize the effects of variations in dynamic pressure. Conditions for gust alleviation are developed and shown to introduce marginal stability if both vertical and horizontal gusts are compensated. Satisfactory behavior is realized if only vertical gusts are absorbed; however, elevator control is effectively negated by the system. Techniques to couple the elevator and flaps are demonstrated to restore full controllability without sacrifice of gust alleviation.
Global terrestrial Human Footprint maps for 1993 and 2009
Venter, Oscar; Sanderson, Eric W.; Magrach, Ainhoa; Allan, James R.; Beher, Jutta; Jones, Kendall R.; Possingham, Hugh P.; Laurance, William F.; Wood, Peter; Fekete, Balázs M.; Levy, Marc A.; Watson, James E.M.
2016-01-01
Remotely-sensed and bottom-up survey information were compiled on eight variables measuring the direct and indirect human pressures on the environment globally in 1993 and 2009. This represents not only the most current information of its type, but also the first temporally-consistent set of Human Footprint maps. Data on human pressures were acquired or developed for: 1) built environments, 2) population density, 3) electric infrastructure, 4) crop lands, 5) pasture lands, 6) roads, 7) railways, and 8) navigable waterways. Pressures were then overlaid to create the standardized Human Footprint maps for all non-Antarctic land areas. A validation analysis using scored pressures from 3114×1 km2 random sample plots revealed strong agreement with the Human Footprint maps. We anticipate that the Human Footprint maps will find a range of uses as proxies for human disturbance of natural systems. The updated maps should provide an increased understanding of the human pressures that drive macro-ecological patterns, as well as for tracking environmental change and informing conservation science and application. PMID:27552448
Reducing the pressure drag of a D-shaped bluff body using linear feedback control
NASA Astrophysics Data System (ADS)
Dalla Longa, L.; Morgans, A. S.; Dahan, J. A.
2017-12-01
The pressure drag of blunt bluff bodies is highly relevant in many practical applications, including to the aerodynamic drag of road vehicles. This paper presents theory revealing that a mean drag reduction can be achieved by manipulating wake flow fluctuations. A linear feedback control strategy then exploits this idea, targeting attenuation of the spatially integrated base (back face) pressure fluctuations. Large-eddy simulations of the flow over a D-shaped blunt bluff body are used as a test-bed for this control strategy. The flow response to synthetic jet actuation is characterised using system identification, and controller design is via shaping of the frequency response to achieve fluctuation attenuation. The designed controller successfully attenuates integrated base pressure fluctuations, increasing the time-averaged pressure on the body base by 38%. The effect on the flow field is to push the roll-up of vortices further downstream and increase the extent of the recirculation bubble. This control approach uses only body-mounted sensing/actuation and input-output model identification, meaning that it could be applied experimentally.
Natural Models for Autonomous Control of Spatial Navigation, Sensing, and Guidance
2013-05-28
the opsins of deep-sea fishes , including their ability to withstand pressure, a significant study of how sensing proteins function in difficult...polarization sensing, we will gain insight concerning functional differences among materials which could have application for fabrication or design...have made excellent progress towards understanding how polarized-light receptors in animals function as well, including their function at the
Cardiac pacemaker dysfunction in children after thoracic drainage catheter manipulation.
Lobdell, K W; Walters, H L; Hudson, C; Hakimi, M
1997-05-01
Two children underwent placement of permanent, epicardial-lead, dual-chamber, unipolar pacemaker systems for complete heart block. Postoperatively, both patients demonstrated subcutaneous emphysema-in the area of their pulse generators-temporally related to thoracic catheter manipulation. Acutely, each situation was managed with manual compression of the pulse generator, ascertaining appropriate pacemaker sensing and pacing. Maintenance of compression with pressure dressings, vigilant observation/monitoring, and education of the care givers resulted in satisfactory pacemaker function without invasive intervention.
Methods for LWIR Radiometric Calibration and Characterization
NASA Technical Reports Server (NTRS)
Ryan, Robert; Pagnutti, Mary; Zanoni, Vicki; Harrington, Gary; Howell, Dane; Stewart, Randy
2002-01-01
The utility of a thermal remote sensing system increases with it's ability to retrieve surface temperature or radiance accurately. The radiometer measures the water surface radiant temperature. Combining these measurements with atmospheric pressure, temperature, and water vapor profiles, a top-of-the-atmosphere tradiance estimate can be caluclated with a radiativer transfer code to compare to trhe sensor's output. A novel approach has been developed using an uncooled infrared camera mounted on a boom, to quantify buoy effects.
Tunable-optical-filter-based white-light interferometry for sensing.
Yu, Bing; Wang, Anbo; Pickrell, Gary; Xu, Juncheng
2005-06-15
We describe tunable-optical-filter-based white-light interferometry for sensor interrogation. By introducing a tunable optical filter into a white-light interferometry system, one can interrogate an interferometer with either quadrature demodulation or spectral-domain detection at low cost. To demonstrate the feasibility of effectively demodulating various types of interferometric sensor, experiments have been performed using an extrinsic Fabry-Perot tunable filter to interrogate two extrinsic Fabry-Perot interferometric temperature sensors and a diaphragm-based pressure sensor.
2011-10-01
been developed. The next step is to develop a the base technology into a grid like mapping sensor, construct the excitation and detection circuits...the project involves advancing the base technology into a grid -like mapping se nsor, constructing the excitation and detection circuits, modifying and...further. In conclusion, the screen printing and etching process allows for precise repeat able production of sensing elements for grid fabrication
NASA Astrophysics Data System (ADS)
Schuerger, Andrew C.; Richards, Jeffrey T.
2006-09-01
Plant-based life support systems that utilize bioregenerative technologies have been proposed for long-term human missions to both the Moon and Mars. Bioregenerative life support systems will utilize higher plants to regenerate oxygen, water, and edible biomass for crews, and are likely to significantly lower the ‘equivalent system mass’ of crewed vehicles. As part of an ongoing effort to begin the development of an automatic remote sensing system to monitor plant health in bioregenerative life support modules, we tested the efficacy of seven artificial illumination sources on the remote detection of plant stresses. A cohort of pepper plants (Capsicum annuum L.) were grown 42 days at 25 °C, 70% relative humidity, and 300 μmol m-2 s-1 of photosynthetically active radiation (PAR; from 400 to 700 nm). Plants were grown under nutritional stresses induced by irrigating subsets of the plants with 100, 50, 25, or 10% of a standard nutrient solution. Reflectance spectra of the healthy and stressed plants were collected under seven artificial lamps including two tungsten halogen lamps, plus high pressure sodium, metal halide, fluorescent, microwave, and red/blue light emitting diode (LED) sources. Results indicated that several common algorithms used to estimate biomass and leaf chlorophyll content were effective in predicting plant stress under all seven illumination sources. However, the two types of tungsten halogen lamps and the microwave illumination source yielded linear models with the highest residuals and thus the highest predictive capabilities of all lamps tested. The illumination sources with the least predictive capabilities were the red/blue LEDs and fluorescent lamps. Although the red/blue LEDs yielded the lowest residuals for linear models derived from the remote sensing data, the LED arrays used in these experiments were optimized for plant productivity and not the collection of remote sensing data. Thus, we propose that if adjusted to optimize the collectio n of remote sensing information from plants, LEDs remain the best candidates for illumination sources for monitoring plant stresses in bioregenerative life support systems.
Unmanned Aerial Mass Spectrometer Systems for In-Situ Volcanic Plume Analysis
NASA Astrophysics Data System (ADS)
Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C. Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin
2015-02-01
Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.
Unmanned aerial mass spectrometer systems for in-situ volcanic plume analysis.
Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin
2015-02-01
Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.
Research on Flow Field Perception Based on Artificial Lateral Line Sensor System
Wang, Anyi; Wang, Shirui; Yang, Tingting
2018-01-01
In nature, the lateral line of fish is a peculiar and important organ for sensing the surrounding hydrodynamic environment, preying, escaping from predators and schooling. In this paper, by imitating the mechanism of fish lateral canal neuromasts, we developed an artificial lateral line system composed of micro-pressure sensors. Through hydrodynamic simulations, an optimized sensor structure was obtained and the pressure distribution models of the lateral surface were established in uniform flow and turbulent flow. Carrying out the corresponding underwater experiment, the validity of the numerical simulation method is verified by the comparison between the experimental data and the simulation results. In addition, a variety of effective research methods are proposed and validated for the flow velocity estimation and attitude perception in turbulent flow, respectively and the shape recognition of obstacles is realized by the neural network algorithm. PMID:29534499
Wireless structural monitoring for homeland security applications
NASA Astrophysics Data System (ADS)
Kiremidjian, Garo K.; Kiremidjian, Anne S.; Lynch, Jerome P.
2004-07-01
This paper addresses the development of a robust, low-cost, low power, and high performance autonomous wireless monitoring system for civil assets such as large facilities, new construction, bridges, dams, commercial buildings, etc. The role of the system is to identify the onset, development, location and severity of structural vulnerability and damage. The proposed system represents an enabling infrastructure for addressing structural vulnerabilities specifically associated with homeland security. The system concept is based on dense networks of "intelligent" wireless sensing units. The fundamental properties of a wireless sensing unit include: (a) interfaces to multiple sensors for measuring structural and environmental data (such as acceleration, displacements, pressure, strain, material degradation, temperature, gas agents, biological agents, humidity, corrosion, etc.); (b) processing of sensor data with embedded algorithms for assessing damage and environmental conditions; (c) peer-to-peer wireless communications for information exchange among units(thus enabling joint "intelligent" processing coordination) and storage of data and processed information in servers for information fusion; (d) ultra low power operation; (e) cost-effectiveness and compact size through the use of low-cost small-size off-the-shelf components. An integral component of the overall system concept is a decision support environment for interpretation and dissemination of information to various decision makers.
Shen, H; Xu, Y; Dickinson, B T
2014-11-18
Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.
Embedded infrared fiber-optic sensor for thermometry in a high temperature/pressure environment
NASA Astrophysics Data System (ADS)
Yoo, Wook Jae; Jang, Kyoung Won; Moon, Jinsoo; Han, Ki-Tek; Jeon, Dayeong; Lee, Bongsoo; Park, Byung Gi
2012-11-01
In this study, we developed an embedded infrared fiber-optic temperature sensor for thermometry in high temperature/pressure and water-chemistry environments by using two identical silver-halide optical fibers. The performance of the fabricated temperature sensor was assessed in an autoclave filled with an aqueous coolant solution containing boric acid and lithium hydroxide. We carried out real-time monitoring of the infrared radiation emitted from the signal and reference probes for various temperatures over a temperature range from 95 to 225 °C. In order to decide the temperature of the synthetic coolant solution, we measured the difference between the infrared radiation emitted from the two temperature-sensing probes. Thermometry with the proposed sensor is immune to any changes in the physical conditions and the emissivity of the heat source. From the experimental results, the embedded infrared fiber-optic temperature sensor can withstand, and normally operate in a high temperature/pressure test loop system corresponding to the coolant system used for nuclear power plant simulation. We expect that the proposed sensor can be developed to accurately monitor temperatures in harsh environments.
Brady's Geothermal Field - Analysis of Pressure Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, David
*This submission provides corrections to GDR Submissions 844 and 845* Poroelastic Tomography (PoroTomo) by Adjoint Inverse Modeling of Data from Hydrology. The 3 *csv files containing pressure data are the corrected versions of the pressure dataset found in Submission 844. The dataset has been corrected in the sense that the atmospheric pressure has been subtracted from the total pressure measured in the well. Also, the transducers used at wells 56A-1 and SP-2 are sensitive to surface temperature fluctuations. These temperature effects have been removed from the corrected datasets. The 4th *csv file contains corrected version of the pumping data foundmore » in Submission 845. The data has been corrected in the sense that the data from several wells that were used during the PoroTomo deployment pumping tests that were not included in the original dataset has been added. In addition, several other minor changes have been made to the pumping records due to flow rate instrument calibration issues that were discovered.« less
Techniques of Force and Pressure Measurement in the Small Joints of the Wrist.
Schreck, Michael J; Kelly, Meghan; Canham, Colin D; Elfar, John C
2018-01-01
The alteration of forces across joints can result in instability and subsequent disability. Previous methods of force measurements such as pressure-sensitive films, load cells, and pressure-sensing transducers have been utilized to estimate biomechanical forces across joints and more recent studies have utilized a nondestructive method that allows for assessment of joint forces under ligamentous restraints. A comprehensive review of the literature was performed to explore the numerous biomechanical methods utilized to estimate intra-articular forces. Methods of biomechanical force measurements in joints are reviewed. Methods such as pressure-sensitive films, load cells, and pressure-sensing transducers require significant intra-articular disruption and thus may result in inaccurate measurements, especially in small joints such as those within the wrist and hand. Non-destructive methods of joint force measurements either utilizing distraction-based joint reaction force methods or finite element analysis may offer a more accurate assessment; however, given their recent inception, further studies are needed to improve and validate their use.
NASA Technical Reports Server (NTRS)
Yunck, Tom P.; Hajj, George A.
2003-01-01
The vast illuminating power of the Global Positioning System (GPS), which transformed space geodesy in the 199Os, is now serving to probe the earth's fluid envelope in unique ways. Three distinct techniques have emerged: ground-based sensing of the integrated atmospheric moisture; space-based profiling of atmospheric refractivity, pressure, temperature, moisture, and other properties by active limb sounding; and surface (ocean and ice) altimetry and scatterometry with reflected signals detected from space. Ground-based GPS moisture sensing is already in provisional use for numerical weather prediction. Limb sounding, while less mature, offers a bevy of attractions, including high accuracy, stability, and vertical resolution; all-weather operation; and exceptionally low cost. GPS bistatic radar, r 'reflectometry,' is the least advanced but shows promise for a number of niche applications.
NASA Astrophysics Data System (ADS)
Staveley, Chris
2014-06-01
With the growth in deep-water oil and gas production, condition monitoring of high-value subsea assets to give early warning of developing problems is vital. Offshore operators can then transport and deploy spare parts before a failure occurs, so minimizing equipment down-time, and the significant costs associated with unscheduled maintenance. Results are presented from a suite of tests in which multiple elements of a subsea twin-screw pump and associated electric motor were monitored using a fibre optic sensing system based on fibre Bragg gratings (FBG) that simultaneously measured dynamic strain on the main rotor bearings, pressure and temperature of the lubricating oil, distributed temperature through the motor stator windings and vibration of the pump and motor housings.
The development of a Martian atmospheric Sample collection canister
NASA Astrophysics Data System (ADS)
Kulczycki, E.; Galey, C.; Kennedy, B.; Budney, C.; Bame, D.; Van Schilfgaarde, R.; Aisen, N.; Townsend, J.; Younse, P.; Piacentine, J.
The collection of an atmospheric sample from Mars would provide significant insight to the understanding of the elemental composition and sub-surface out-gassing rates of noble gases. A team of engineers at the Jet Propulsion Laboratory (JPL), California Institute of Technology have developed an atmospheric sample collection canister for Martian application. The engineering strategy has two basic elements: first, to collect two separately sealed 50 cubic centimeter unpressurized atmospheric samples with minimal sensing and actuation in a self contained pressure vessel; and second, to package this atmospheric sample canister in such a way that it can be easily integrated into the orbiting sample capsule for collection and return to Earth. Sample collection and integrity are demonstrated by emulating the atmospheric collection portion of the Mars Sample Return mission on a compressed timeline. The test results achieved by varying the pressure inside of a thermal vacuum chamber while opening and closing the valve on the sample canister at Mars ambient pressure. A commercial off-the-shelf medical grade micro-valve is utilized in the first iteration of this design to enable rapid testing of the system. The valve has been independently leak tested at JPL to quantify and separate the leak rates associated with the canister. The results are factored in to an overall system design that quantifies mass, power, and sensing requirements for a Martian atmospheric Sample Collection (MASC) canister as outlined in the Mars Sample Return mission profile. Qualitative results include the selection of materials to minimize sample contamination, preliminary science requirements, priorities in sample composition, flight valve selection criteria, a storyboard from sample collection to loading in the orbiting sample capsule, and contributions to maintaining “ Earth” clean exterior surfaces on the orbiting sample capsule.
NASA Astrophysics Data System (ADS)
Iwato, Hirofumi; Sakanushi, Keishi; Takeuchi, Yoshinori; Imai, Masaharu
To measure the detrusor pressure for diagnosing lower urinary tract symptoms, we designed a small-area and low-power System on a Chip (SoC). The SoC should be small and low power because it is encapsulated in tiny air-tight capsules which are simultaneously inserted in the urinary bladder and rectum for several days. Since the SoC is also required to be programmable, we designed an Application Specific Instruction set Processor (ASIP) for pressure measurement and wireless communication, and implemented almost required functions on the ASIP. The SoC was fabricated using a 0.18µm CMOS mixed-signal process and the chip size is 2.5×2.5mm2. Evaluation results show that the power consumption of the SoC is 93.5µW, and that it can operate the capsule for seven days with a tiny battery.
High temperature acoustic levitator
NASA Technical Reports Server (NTRS)
Barmatz, M. B. (Inventor)
1984-01-01
A system is described for acoustically levitating an object within a portion of a chamber that is heated to a high temperature, while a driver at the opposite end of the chamber is maintained at a relatively low temperature. The cold end of the chamber is constructed so it can be telescoped to vary the length (L sub 1) of the cold end portion and therefore of the entire chamber, so that the chamber remains resonant to a normal mode frequency, and so that the pressure at the hot end of the chamber is maximized. The precise length of the chamber at any given time, is maintained at an optimum resonant length by a feedback loop. The feedback loop includes an acoustic pressure sensor at the hot end of the chamber, which delivers its output to a control circuit which controls a motor that varies the length (L) of the chamber to a level where the sensed acoustic pressure is a maximum.
Chen, Donna T; Ko, Tomohiro M; Allen, Ashleigh A; Bonnie, Richard J; Suratt, Colleen E; Appelbaum, Paul S; Nunes, Edward V; Friedmann, Peter D; Lee, Joshua D; Gordon, Michael S; McDonald, Ryan; Wilson, Donna; Boney, Tamara Y; Murphy, Sean M; O'Brien, Charles P
2018-04-01
Individuals must feel free to exert personal control over decisions regarding research participation. We present an examination of participants' perceived personal control over, as well as reported pressures and threats from others, influencing their decision to join a study assessing the effectiveness of extended-release naltrexone in preventing opioid dependence relapse. Most participants endorsed a strong sense of control over the decision; few reported pressures or threats. Although few in number, participants' brief narrative descriptions of the pressures and threats are illuminating and provide context for their perceptions of personal control. Based on this work, we propose a useful set of tools to help ascertain participants' sense of personal control in joining research.
Military Potential Test of Elapsed-Time Indicator, P/N 85986X
1967-06-13
consisting basically of an electrolytic mercury cell, an accutron-quality mercury battery, and a pressure switch . The unit weighs 1. 687 ounces. Installed, it...orientation from 18 inches’ distance. The test item is actuated by a pressure switch which senses an actuating pressure of 40 t 5 pounds per square inch
Inducer Hydrodynamic Forces in a Cavitating Environment
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.
2004-01-01
Marshall Space Flight Center has developed and demonstrated a measurement device for sensing and resolving the hydrodynamic loads on fluid machinery. The device - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining the amplitude and frequency content associated with operating in various cavitation modes. The rotating balance was calibrated statically using a dead-weight load system in order to generate the 6 x 12 calibration matrix later used to convert measured voltages to engineering units. Structural modeling suggested that the rotating assembly first bending mode would be significantly reduced with the balance s inclusion. This reduction in structural stiffness was later confirmed experimentally with a hammer-impact test. This effect, coupled with the relatively large damping associated with the rotating balance waterproofing material, limited the device s bandwidth to approximately 50 Hertz Other pre-test validations included sensing the test article rotating assembly built-in imbalance for two configurations and directly measuring the assembly mass and buoyancy while submerged under water. Both tests matched predictions and confirmed the device s sensitivity while stationary and rotating. The rotating balance was then demonstrated in a water test of a full-scale Space Shuttle Main Engine high-pressure liquid oxygen pump inducer. Experimental data was collected a scaled operating conditions at three flow coefficients across a range of cavitation numbers for the single inducer geometry and radial clearance. Two distinct cavitation modes were observed symmetric tip vortex cavitation and alternate-blade cavitation. Although previous experimental tests on the same inducer demonstrated two additional cavitation modes at lower inlet pressures, these conditions proved unreachable with the rotating balance installed due to the intense dynamic environment. The sensed radial load was less influenced by flow coefficient than by cavitation number or cavitation mode although the flow coefficient range was relatively narrow. Transition from symmetric tip vortex to alternate-blade cavitation corresponded to changes in both radial load magnitude and radial load orientation relative to the inducer. Sensed moments indicated that the effective load center moved downstream during this change in cavitation mode. An occurrence of "higher+rdex cavitation" was also detected in both the stationary pressures and the rotating balance data although the frequency of the phenomena was well above the reliable bandwidth of the rotating balance. In summary the experimental tests proved both the concept and device s capability despite the limitations and confirmed that hydrodynamically-induced forces and moments develop in response to the unbalanced pressure field, which is, in turn, a product of the cavitation environment.
November, G.S.; Schute, F.
1962-02-20
A fluid flowmeter is designed in which a standing pressure wave is established. The amplitude of this standing wave is a function of the fluid flow rate so that pressure sensing devices may be used to indicate fluid flow and variations thereof. (AEC)
NASA Technical Reports Server (NTRS)
Hess, R. V.; Seals, R. K.
1974-01-01
Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.
Li, La; Lou, Zheng; Han, Wei; Shen, Guozhen
2016-08-11
The development of wearable electronic devices in recent decades has brought new opportunities in the exploration of micro-supercapacitors as energy storage units. In this work, we report the fabrication of flexible NiFe2O4 nanofiber based in-plane micro-supercapacitors (MSCs), which can serve as energy storage receptors to drive a portable graphene pressure sensor. The obtained NiFe2O4 nanofiber electrodes exhibited a specific capacitance of 2.23 F cm(-3) at the scan rate of 100 mV s(-1), and excellent rate capability and robust cycling stability with a capacitance retention of 93.6% after 10 000 charge/discharge cycles. Moreover, the in-plane MSCs have superior flexibility and outstanding stability even after repetition of charge/discharge cycles during the convex and concave bending states. The MSCs offered a high energy density of 0.197 mWh cm(-3) and power density up to 2.07 W cm(-3). We also coupled the MSCs with a graphene pressure sensor as a micro-integrated system to implement it's pressure response function and used MATLAB to simulate this system behavior as well. The performance of the designed systems exhibited a stable pressure response, and the simulated results coincide well with the experimental data, demonstrating its feasibility in wearable electronic devices.
Research on pressure sensors for biomedical instruments
NASA Technical Reports Server (NTRS)
Angell, J. B.
1975-01-01
The development of a piezo-resistive pressure transducer is discussed suitable for recording pressures typically encountered in biomedical applications. The pressure transducer consists of a thin silicon diaphragm containing four strain-sensitive resistors, and is fabricated using silicon monolithic integrated-circuit technology. The pressure transducers can be as small as 0.7 mm outer diameter, and are, as a result, suitable for mounting at the tip of a catheter. Pressure-induced stress in the diaphragm is sensed by the resistors, which are interconnected to form a Wheatstone bridge.
Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment
2017-01-01
Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor’s behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application. PMID:28954392
Synergistic advances in diagnostic and therapeutic medical ultrasound
NASA Astrophysics Data System (ADS)
Lizzi, Frederic L.
2003-04-01
Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.
Base pressure associated with incompressible flow past wedges at high Reynolds numbers
NASA Technical Reports Server (NTRS)
Warpinski, N. R.; Chow, W. L.
1979-01-01
A model is suggested to study the viscid-inviscid interaction associated with steady incompressible flow past wedges of arbitrary angles. It is shown from this analysis that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem and this pressure can only be determined from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which should adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as boundary-layer buildup along the wedge surface, jet mixing, recompression, and reattachment which occurs along the region attached to the inviscid flow in the sense of the boundary-layer concept, serve to determine the aforementioned parameters needed for the establishment of the inviscid flow. It is found that the point of reattachment behaves as a saddle point singularity for the system of equations describing the viscous recompression process. Detailed results such as the base pressure, pressure distributions on the wedge surface, and the wake geometry as well as the influence of the characteristic Reynolds number are obtained. Discussion of these results and their comparison with the experimental data are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, Jeremy R.; Cardiff, Michael; Coleman, Thomas
Distributed temperature sensing (DTS) systems provide near real-time data collection that captures borehole spatiotemporal temperature dynamics. For this study, temperature data was collected in an observation well at an active geothermal site for a period of eight days under geothermal production conditions. Collected temperature data showcase the ability of DTS systems to detect changes to the location of the steam-water interface, visualize borehole temperature recovery — following injection of a coldwater “slug” — and identify anomalously warm and/or cool zones. The high sampling rate and spatial resolution of DTS data also shows borehole temperature dynamics that are not captured bymore » traditional pressure-temperature survey tools. Inversion of thermal recovery data using a finite-difference heat-transfer model produces a thermal-diffusivity profile that is consistent with laboratorymeasured values and correlates with identified lithologic changes within the borehole. Used alone or in conjunction with complementary data sets, DTS systems are useful tools for developing a better understanding of both reservoir rock thermal properties as well as within and near borehole fluid movement.« less
Patterson, Jeremy R.; Cardiff, Michael; Coleman, Thomas; ...
2017-12-01
Distributed temperature sensing (DTS) systems provide near real-time data collection that captures borehole spatiotemporal temperature dynamics. For this study, temperature data was collected in an observation well at an active geothermal site for a period of eight days under geothermal production conditions. Collected temperature data showcase the ability of DTS systems to detect changes to the location of the steam-water interface, visualize borehole temperature recovery — following injection of a coldwater “slug” — and identify anomalously warm and/or cool zones. The high sampling rate and spatial resolution of DTS data also shows borehole temperature dynamics that are not captured bymore » traditional pressure-temperature survey tools. Inversion of thermal recovery data using a finite-difference heat-transfer model produces a thermal-diffusivity profile that is consistent with laboratorymeasured values and correlates with identified lithologic changes within the borehole. Used alone or in conjunction with complementary data sets, DTS systems are useful tools for developing a better understanding of both reservoir rock thermal properties as well as within and near borehole fluid movement.« less
Fiber Bragg Grating vibration sensor with DFB laser diode
NASA Astrophysics Data System (ADS)
Siska, Petr; Brozovic, Martin; Cubik, Jakub; Kepak, Stanislav; Vitasek, Jan; Koudelka, Petr; Latal, Jan; Vasinek, Vladimir
2012-01-01
The Fiber Bragg Grating (FBG) sensors are nowadays used in many applications. Thanks to its quite big sensitivity to a surrounding environment, they can be used for sensing of temperature, strain, vibration or pressure. A fiber Bragg grating vibration sensor, which is interrogated by a distributed feedback laser diode (DFB) is demonstrated in this article. The system is based on the intensity modulation of the narrow spectral bandwidth of the DFB laser, when the reflection spectrum of the FBG sensor is shifted due to the strain that is applied on it in form of vibrations caused by acoustic wave pressure from loud speaker. The sensor's response in frequency domain and strain is measured; also the factor of sensor pre-strain impact on its sensitivity is discussed.
Karst aquifer characterization using geophysical remote sensing of dynamic recharge events
NASA Astrophysics Data System (ADS)
Grapenthin, R.; Bilek, S. L.; Luhmann, A. J.
2017-12-01
Geophysical monitoring techniques, long used to make significant advances in a wide range of deeper Earth science disciplines, are now being employed to track surficial processes such as landslide, glacier, and river flow. Karst aquifers are another important hydrologic resource that can benefit from geophysical remote sensing, as this monitoring allows for safe, noninvasive karst conduit measurements. Conduit networks are typically poorly constrained, let alone the processes that occur within them. Geophysical monitoring can also provide a regionally integrated analysis to characterize subsurface architecture and to understand the dynamics of flow and recharge processes in karst aquifers. Geophysical signals are likely produced by several processes during recharge events in karst aquifers. For example, pressure pulses occur when water enters conduits that are full of water, and experiments suggest seismic signals result from this process. Furthermore, increasing water pressure in conduits during recharge events increases the load applied to conduit walls, which deforms the surrounding rock to yield measureable surface displacements. Measureable deformation should also occur with mass loading, with subsidence and rebound signals associated with increases and decreases of water mass stored in the aquifer, respectively. Additionally, geophysical signals will likely arise with turbulent flow and pore pressure change in the rock surrounding conduits. Here we present seismic data collected during a pilot study of controlled and natural recharge events in a karst aquifer system near Bear Spring, near Eyota, MN, USA as well as preliminary model results regarding the processes described above. In addition, we will discuss an upcoming field campaign where we will use seismometers, tiltmeters, and GPS instruments to monitor for recharge-induced responses in a FL, USA karst system with existing cave maps, coupling these geophysical observations with hydrologic and meteorologic data to map and characterize conduits and other features of the larger karst system and to monitor subsurface flow dynamics during recharge events.
Noncontact vibration measurements using magnetoresistive sensing elements
NASA Astrophysics Data System (ADS)
Tomassini, R.; Rossi, G.
2016-06-01
Contactless instrumentations is more and more used in turbomachinery testing thanks to the non-intrusive character and the possibility to monitor all the components of the machine at the same time. Performances of blade tip timing (BTT) measurement systems, used for noncontact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics and processing methods. The sensors used for BTT generate pulses, used for precise measurements of turbine blades time of arrival. Nowadays proximity sensors used in this application are based on optical, capacitive, eddy current and microwave measuring principle. Pressure sensors has been also tried. This paper summarizes the results achieved using a novel instrumentation based on the magnetoresistive sensing elements. The characterization of the novel probe has been already published. The measurement system was validated in test benches and in a real jet-engine comparing different sensor technologies. The whole instrumentation was improved. The work presented in this paper focuses on the current developments. In particular, attention is given to the data processing software and new sensor configurations.
Nanostructured films employed as sensing units in an "electronic tongue" system.
da Silva, B A; Antunes, P A; Pasquini, D; Curvelo, A A S; Aroca, R F; Riul, A Júnior; Constantino, C J L
2007-02-01
Nanostructured films of lignin (macromolecule extracted from sugar cane bagasse), polypyrrole (conducting polymer) and bis butylimido perylene (organic dye) were used in the detection of trace levels of fluorine (from H2SiF6), chlorine (from NaClO), Pb(+2), Cu(+2), and Cd(+2) in aqueous solutions. Langmuir monolayers on ultrapure water were characterised by surface pressure-mean molecular area (II-A) isotherms. Langmuir-Blodgett (LB) films were transferred onto gold interdigitated electrodes and used as individual sensing units of an electronic tongue system. Impedance spectroscopy measurements were taken with the sensor immersed into aqueous solutions containing the ions described above in different molar concentrations. Fourier transform infrared absorption (FTIR) was employed to identify possible interactions between the LB films and the analytes in solution, and no significant changes could be observed in the FTIR spectra of BuPTCD and Ppy. Therefore, the results for lignin point to an interaction involving the electronic cloud of the phenyl groups with the metallic ions.
Electron spin control and torsional optomechanics of an optically levitated nanodiamond in vacuum
NASA Astrophysics Data System (ADS)
Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon
Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centers, indicating potential applications of NV centers in oxygen gas sensing. For spin-optomechanics, it is important to control the orientation of the nanodiamond and NV centers in a magnetic field. Recently, we have observed the angular trapping and torsional vibration of a levitated nanodiamond, which paves the way towards levitated torsional optomechanics in the quantum regime. NSF 1555035-PHY.
Low-power sensor module for long-term activity monitoring.
Leuenberger, Kaspar; Gassert, Roger
2011-01-01
Wearable sensor modules are a promising approach to collecting data on functional motor activities, both for repeated and long-term assessments, as well as to investigate the transfer of therapy to activities of daily living at home, but have so far either had limited sensing capabilities, or were not laid out for long-term monitoring. This paper presents ReSense, a miniature sensor unit optimized for long-term monitoring of functional activity. Inertial MEMS sensors capture accelerations along six degrees of freedom and a barometric pressure sensor serves as a precise altimeter. Data is written to an integrated memory card. The realized module measures Ø25 × 10 mm, weighs 10 g and can record continuously for 27 h at 25 Hz and over 22 h at 100 Hz. The integrated power-management system detects inactivity and extends the operating time by about a factor of two, as shown by initial 24 h recordings on five energetic healthy adults. The integrated barometric pressure sensor allowed to identify activities incorporating a change in altitude, such as going up/down stairs or riding an elevator. By taking into account data from the inertial sensors during the altitude changes, it becomes possible to distinguish between these two activities.
NASA Astrophysics Data System (ADS)
Lee, Daniel D.; Bendana, Fabio A.; Schumaker, S. Alexander; Spearrin, R. Mitchell
2018-05-01
A laser absorption sensor was developed for carbon monoxide (CO) sensing in high-pressure, fuel-rich combustion gases associated with the internal conditions of hydrocarbon-fueled liquid bipropellant rockets. An absorption feature near 4.98 μm, comprised primarily of two rovibrational lines from the P-branch of the fundamental band, was selected to minimize temperature sensitivity and spectral interference with other combustion gas species at the extreme temperatures (> 3000 K) and pressures (> 50 atm) in the combustion chamber environment. A scanned wavelength modulation spectroscopy technique (1 f-normalized 2 f detection) is utilized to infer species concentration from CO absorption, and mitigate the influence of non-absorption transmission losses and noise associated with the harsh sooting combustor environment. To implement the sensing strategy, a continuous-wave distributed-feedback (DFB) quantum cascade laser (QCL) was coupled to a hollow-core optical fiber for remote mid-infrared light delivery to the test article, with high-bandwidth light detection by a direct-mounted photovoltaic detector. The method was demonstrated to measure time-resolved CO mole fraction over a range of oxidizer-to-fuel ratios and pressures (20-70 atm) in a single-element-injector RP-2-GOx rocket combustor.
Characterization of sapphire: For its material properties at high temperatures
NASA Astrophysics Data System (ADS)
Bal, Harman Singh
There are numerous needs for sensing, one of which is in pressure sensing for high temperature application such as combustion related process and embedded in aircraft wings for reusable space vehicles. Currently, silicon based MEMS technology is used for pressure sensing. However, due to material properties the sensors have a limited range of approximately 600 °C which is capable of being pushed towards 1000 °C with active cooling. This can introduce reliability issues when you add more parts and high flow rates to remove large amounts of heat. To overcome this challenge, sapphire is investigated for optical based pressure transducers at temperatures approaching 1400 °C. Due to its hardness and chemical inertness, traditional cutting and etching methods used in MEMS technology are not applicable. A method that is being investigated as a possible alternative is laser machining using a picosecond laser. In this research, we study the material property changes that occur from laser machining and quantify the changes with the experimental results obtained by testing sapphire at high-temperature with a standard 4-point bending set-up.
Thin and Flexible Carbon Nanotube-Based Pressure Sensors with Ultra-wide Sensing Range.
Doshi, Sagar M; Thostenson, Erik T
2018-06-26
A scalable electrophoretic deposition (EPD) approach is used to create novel thin, flexible and lightweight carbon nanotube-based textile pressure sensors. The pressure sensors can be produced using an extensive variety of natural and synthetic fibers. These piezoresistive sensors are sensitive to pressures ranging from the tactile range (< 10 kPa), in the body weight range (~ 500 kPa), and very high pressures (~40 MPa). The EPD technique enables the creation of a uniform carbon nanotube-based nanocomposite coating, in the range of 250-750 nm thick, of polyethyleneimine (PEI) functionalized carbon nanotubes on non-conductive fibers. In this work, non-woven aramid fibers are coated by EPD onto a backing electrode followed by film formation onto the fibers creating a conductive network. The electrically conductive nanocomposite coating is firmly bonded to the fiber surface and shows piezoresistive electrical/mechanical coupling. The pressure sensor displays a large in-plane change in electrical conductivity with applied out-of-plane pressure. In-plane conductivity change results from fiber/fiber contact as well as the formation of a sponge-like piezoresistive nanocomposite "interphase" between the fibers. The resilience of the nanocomposite interphase enables sensing of high pressures without permanent changes to the sensor response, showing high repeatability.
A minimally invasive in-fiber Bragg grating sensor for intervertebral disc pressure measurements
NASA Astrophysics Data System (ADS)
Dennison, Christopher R.; Wild, Peter M.; Wilson, David R.; Cripton, Peter A.
2008-08-01
We present an in-fiber Bragg grating (FBG) based intervertebral disc (IVD) pressure sensor that has pressure sensitivity seven times greater than that of a bare fiber, and a major diameter and sensing area of only 400 µm and 0.03 mm2, respectively. This is the only optical, the smallest and the most mechanically compliant disc pressure sensor reported in the literature. This is also an improvement over other FBG pressure sensors that achieve increased sensitivity through mechanical amplification schemes, usually resulting in major diameters and sensing lengths of many millimeters. Sensor sensitivity is predicted using numerical models, and the predicted sensitivity is verified through experimental calibrations. The sensor is validated by conducting IVD pressure measurements in porcine discs and comparing the FBG measurements to those obtained using the current standard sensor for IVD pressure. The predicted sensitivity of the FBG sensor matched with that measured experimentally. IVD pressure measurements showed excellent repeatability and agreement with those obtained from the standard sensor. Unlike the current larger sensors, the FBG sensor could be used in discs with small disc height (i.e. cervical or degenerated discs). Therefore, there is potential to conduct new measurements that could lead to new understanding of the biomechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, M; Kim, T; Kang, S
Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attachingmore » FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by the Industrial R&D program of MOTIE/KEIT. [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less
Direct Left Atrial Pressure Monitoring in Severe Heart Failure: Long-Term Sensor Performance
Ritzema, Jay; Eigler, Neal L.; Melton, Iain C.; Krum, Henry; Adamson, Philip B.; Kar, Saibal; Shah, Prediman K.; Whiting, James S.; Heywood, J. Thomas; Rosero, Spencer; Singh, Jagmeet P.; Saxon, Leslie; Matthews, Ray; Crozier, Ian G.; Abraham, William T.
2010-01-01
We report the stability, accuracy, and development history of a new left atrial pressure (LAP) sensing system in ambulatory heart failure (HF) patients. A total of 84 patients with advanced HF underwent percutaneous transseptal implantation of the pressure sensor. Quarterly noninvasive calibration by modified Valsalva maneuver was achieved in all patients, and 96.5% of calibration sessions were successful with a reproducibility of 1.2 mmHg. Absolute sensor drift was maximal after 3 months at 4.7 mmHg (95% CI, 3.2–6.2 mmHg) and remained stable through 48 months. LAP was highly correlated with simultaneous pulmonary wedge pressure at 3 and 12 months (r = 0.98, average difference of 0.8 ± 4.0 mmHg). Freedom from device failure was 95% (n = 37) at 2 years and 88% (n = 12) at 4 years. Causes of failure were identified and mitigated with 100% freedom from device failure and less severe anomalies in the last 41 consecutive patients (p = 0.005). Accurate and reliable LAP measurement using a chronic implanted monitoring system is safe and feasible in patients with advanced heart failure. PMID:20945124
Sensory substitution for space gloves and for space robots
NASA Technical Reports Server (NTRS)
Bach-Y-rita, P.; Webster, J. G.; Tompkins, W. J.; Crabb, T.
1987-01-01
Sensory substitution systems for space applications are described. Physical sensors replace missing human receptors and feed information to the interpretive centers of a different sense. The brain is plastic enough so that, with training, the subject localizes the input as if it were received through the missing receptors. Astronauts have difficulty feeling objects through space suit gloves because of their thickness and because of the 4.3 psi pressure difference. Miniature force sensors on the glove palm drive an electrotactile belt around the waist, thus augmenting the missing tactile sensation. A proposed teleoperator system with telepresence for a space robot would incorporate teleproprioception and a force sensor/electrotactile belt sensory substitution system for teletouch.
Infra-sound cancellation and mitigation in wind turbines
NASA Astrophysics Data System (ADS)
Boretti, Albert; Ordys, Andrew; Al Zubaidy, Sarim
2018-03-01
The infra-sound spectra recorded inside homes located even several kilometres far from wind turbine installations is characterized by large pressure fluctuation in the low frequency range. There is a significant body of literature suggesting inaudible sounds at low frequency are sensed by humans and affect the wellbeing through different mechanisms. These mechanisms include amplitude modulation of heard sounds, stimulating subconscious pathways, causing endolymphatic hydrops, and possibly potentiating noise-induced hearing loss. We suggest the study of infra-sound active cancellation and mitigation to address the low frequency noise issues. Loudspeakers generate pressure wave components of same amplitude and frequency but opposite phase of the recorded infra sound. They also produce pressure wave components within the audible range reducing the perception of the infra-sound to minimize the sensing of the residual infra sound.