Variability of Tidal Volume in Patient-Triggered Mechanical Ventilation in ARDS.
Perinel-Ragey, Sophie; Baboi, Loredana; Guérin, Claude
2017-11-01
Limiting tidal volume (V T ) in patients with ARDS may not be achieved once patient-triggered breaths occur. Furthermore, ICU ventilators offer numerous patient-triggered modes that work differently across brands. We systematically investigated, using a bench model, the effect of patient-triggered modes on the size and variability of V T at different breathing frequencies (f), patient effort, and ARDS severity. We used a V500 Infinity ICU ventilator connected to an ASL 5000 lung model whose compliance was mimicking mild, moderate, and severe ARDS. Thirteen patient-triggered modes were tested, falling into 3 categories, namely volume control ventilation with mandatory minute ventilation; pressure control ventilation, including airway pressure release ventilation (APRV); and pressure support ventilation. Two levels of f and effort were tested for each ARDS severity in each mode. Median (first-third quartiles) V T was compared across modes using non-parametric tests. The probability of V T > 6 mL/kg ideal body weight was assessed by binomial regression and expressed as the odds ratio (OR) with 95% CI. V T variability was measured from the coefficient of variation. V T distribution over all f, effort, and ARDS categories significantly differed across modes ( P < .001, Kruskal-Wallis test). V T was significantly greater with pressure support (OR 420 mL, 95% CI 332-527 mL) than with any other mode except for variable pressure support level. Risk for V T to be > 6 mL/kg was significantly increased with spontaneous breaths patient-triggered by pressure support (OR 19.36, 95% CI 12.37-30.65) and significantly reduced in APRV (OR 0.44, 95% CI 0.26-0.72) and pressure support with guaranteed volume mode. The risk increased with increasing effort and decreasing f. Coefficient of variation of V T was greater for low f and volume control-mandatory minute ventilation and pressure control modes. APRV had the greatest within-mode variability. Risk of V T > 6 mL/kg was significantly reduced in APRV and pressure support with guaranteed volume mode. APRV had the highest variability. Pressure support with guaranteed volume could be tested in patients with ARDS. Copyright © 2017 by Daedalus Enterprises.
The effect of closed system suction on airway pressures when using the Servo 300 ventilator.
Frengley, R W; Closey, D N; Sleigh, J W; Torrance, J M
2001-12-01
To measure airway pressures during closed system suctioning with the ventilator set to three differing modes of ventilation. Closed system suctioning was conducted in 16 patients following cardiac surgery. Suctioning was performed using a 14 French catheter with a vacuum level of -500 cmH2O through an 8.0 mm internal diameter endotracheal tube. The lungs were mechanically ventilated with a Servo 300 ventilator set to one of three ventilation modes: volume-control, pressure-control or CPAP/pressure support. Airway pressures were measured via a 4 French electronic pressure transducer in both proximal and distal airways. Following insertion of the suction catheter, end-expiratory pressure increased significantly (p < 0.001) in both pressure-control and volume-control ventilation. This increase was greatest (p = 0.018) in volume-control mode (2.7 +/- 1.7 cmH2O). On performing a five second suction, airway pressure decreased in all modes, however the lowest airway pressure in volume-control mode (-4.9 +/- 4.0 cmH2O) was significantly (p = 0.001) less than the lowest airway pressure recorded in either pressure-control (0.8 +/- 1.9 cmH2O) or CPAP/pressure support (0.4 +/- 2.8 cmH2O) modes. In CPAP/pressure support mode, 13 of the 16 patients experienced a positive pressure 'breath' at the end of suctioning with airway pressures rising to 21 +/- 1.6 cmH2O. Closed system suctioning in volume control ventilation may result in elevations of end-expiratory pressure following catheter insertion and subatmospheric airway pressures during suctioning. Pressure control ventilation produces less elevation of end-expiratory pressure following catheter insertion and is less likely to be associated with subatmospheric airway pressures during suctioning. CPAP/pressure support has no effect on end-expiratory pressure following catheter insertion and subatmospheric airway pressures are largely avoided during suctioning.
Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes
Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David
2016-01-01
Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid® and Torlon® as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C6mim][Tf2N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse. PMID:27023620
Long-lived Eccentric modes in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Lee, Wing-Kit; Dempsey, Adam M.; Lithwick, Yoram
2018-04-01
A theory is developed to understand global eccentric modes that are slowly precessing in protoplanetary disks. Using the typical self-similar density profiles, we found that these modes are trapped in the disk and are not sensitive to the uncertain boundary condition at the disk edge. This is contrary to common wisdom that the modes can only exist in disks with very sharp outer edge. Because of their discrete spectrum, once excited, a perturbed disk can stay eccentric for a long time until the mode is viscously damped. The physics behind the mode trapping depends ultimately on the relative importance of gas pressure and self-gravity, which is characterized by g = 1/ (Q h), where h is the disk aspect ratio and Q is the Toomre stability parameter. A very low mass disk (g ≪ 1) is pressure-dominated and supports pressure modes, in which the eccentricity is highest at the disk edge. The modes are trapped by a turning point due to the density drop in the outer disk. For a more massive disk with g of order of unity (Q~1/h~10-100), prograde modes are supported. Unlike the pressure modes, these modes are trapped by Q-barriers and result in a bump in the radial eccentricity profile. As the mode trapping is a generic phenomenon for typical disk profiles, the free linear eccentric modes are likely to be present in protoplanetary disks with a wide range of disk mass.
Yaroshchuk, Andriy
2017-01-01
Osmosis is the movement of solvent across a membrane induced by a solute-concentration gradient. It is very important for cell biology. Recently, it has started finding technological applications in the emerging processes of Forward Osmosis and Pressure-Retarded Osmosis. They use ultrathin and dense membranes supported mechanically by much thicker porous layers. Until now, these processes have been modelled by assuming the membrane to be ideally-semipermeable. We show theoretically that allowing for even minor deviations from ideal semipermeability to solvent can give rise to a previously overlooked mode of “breakthrough” osmosis. Here the rate of osmosis is very large (compared to the conventional mode) and practically unaffected by the so-called Internal Concentration Polarization. In Pressure-Retarded Osmosis, the power densities can easily exceed the conventional mode by one order of magnitude. Much more robust support layers can be used, which is an important technical advantage (reduced membrane damage) in Pressure-Retarded Osmosis. PMID:28332607
Aerosol delivery with two ventilation modes during mechanical ventilation: a randomized study.
Dugernier, Jonathan; Reychler, Gregory; Wittebole, Xavier; Roeseler, Jean; Depoortere, Virginie; Sottiaux, Thierry; Michotte, Jean-Bernard; Vanbever, Rita; Dugernier, Thierry; Goffette, Pierre; Docquier, Marie-Agnes; Raftopoulos, Christian; Hantson, Philippe; Jamar, François; Laterre, Pierre-François
2016-12-01
Volume-controlled ventilation has been suggested to optimize lung deposition during nebulization although promoting spontaneous ventilation is targeted to avoid ventilator-induced diaphragmatic dysfunction. Comparing topographic aerosol lung deposition during volume-controlled ventilation and spontaneous ventilation in pressure support has never been performed. The aim of this study was to compare lung deposition of a radiolabeled aerosol generated with a vibrating-mesh nebulizer during invasive mechanical ventilation, with two modes: pressure support ventilation and volume-controlled ventilation. Seventeen postoperative neurosurgery patients without pulmonary disease were randomly ventilated in pressure support or volume-controlled ventilation. Diethylenetriaminepentaacetic acid labeled with technetium-99m (2 mCi/3 mL) was administrated using a vibrating-mesh nebulizer (Aerogen Solo(®), provided by Aerogen Ltd, Galway, Ireland) connected to the endotracheal tube. Pulmonary and extrapulmonary particles deposition was analyzed using planar scintigraphy. Lung deposition was 10.5 ± 3.0 and 15.1 ± 5.0 % of the nominal dose during pressure support and volume-controlled ventilation, respectively (p < 0.05). Higher endotracheal tube and tracheal deposition was observed during pressure support ventilation (27.4 ± 6.6 vs. 20.7 ± 6.0 %, p < 0.05). A similar penetration index was observed for the right (p = 0.210) and the left lung (p = 0.211) with both ventilation modes. A high intersubject variability of lung deposition was observed with both modes regarding lung doses, aerosol penetration and distribution between the right and the left lung. In the specific conditions of the study, volume-controlled ventilation was associated with higher lung deposition of nebulized particles as compared to pressure support ventilation. The clinical benefit of this effect warrants further studies. Clinical trial registration NCT01879488.
Extension of Pressure Measurement to 6× 10-11 Torr Using the Dynamics of the m=1 Diocotron Mode*
NASA Astrophysics Data System (ADS)
Paul, Stephen F.; Morrison, Kyle; Davidson, Ronald C.; Jenkins, Thomas
2001-10-01
Damping of the m=1 diocotron mode is used to measure neutral pressure in the Electron Diffusion Gauge (EDG). The drag exerted on the rotating plasma by collisions with neutrals is expected to excite the mode. However, previous studies in the EDG showed that the diocotron mode is more strongly damped at higher neutral pressures. The damping scaled as P-1/2 in the range from 5× 10-10 to 2× 10-7 Torr. This range has been extended from 6× 10-11 to 5× 10-7 Torr. Above 10-7 Torr, the damping increases linearly with P. Below 5× 10-9 Torr, the scaling is less sensitive, ≈ P-1/4, exhibiting a smooth transition. Sensitivity to pressure increments of less than ΔP = 1× 10-10 Torr are observed. Mode damping is correlated with the rate of expansion of the plasma, which occurs simultaneously. At high pressure, collisions with neutrals dominate the expansion, resulting in a similarly sensitive dependence on pressure. At low pressure, device asymmetries dominate the plasma expansion. Whereas plasma expansion is virtually insensitive to pressures below 5× 10-8 Torr, diocotron mode measurements have shown sensitivity over two orders of magnitude lower in pressure. Both diocotron mode damping and plasma expansion also depend similarly on electron density and magnetic field. Conditions that favor expansion (low field, high collisionality) also favor mode damping. *Research supported by the Office of Naval Research
Selim, Bernardo; Ramar, Kannan
2016-09-01
Volume assured pressure support (VAPS) and adaptive servo ventilation (ASV) are non-invasive positive airway pressure (PAP) modes with sophisticated negative feedback control systems (servomechanism), having the capability to self-adjust in real time its respiratory controlled variables to patient's respiratory fluctuations. However, the widespread use of VAPS and ASV is limited by scant clinical experience, high costs, and the incomplete understanding of propriety algorithmic differences in devices' response to patient's respiratory changes. Hence, we will review and highlight similarities and differences in technical aspects, control algorithms, and settings of each mode, focusing on the literature search published in this area. One hundred twenty relevant articles were identified by Scopus, PubMed, and Embase databases from January 2010 to 2016, using a combination of MeSH terms and keywords. Articles were further supplemented by pearling. Recommendations were based on the literature review and the authors' expertise in this area. Expert commentary: ASV and VAPS differ in their respiratory targets and response to a respiratory fluctuation. The VAPS mode targets a more consistent minute ventilation, being recommended in the treatment of sleep related hypoventilation disorders, while ASV mode attempts to provide a more steady breathing airflow pattern, treating successfully most central sleep apnea syndromes.
Wang, Shigang; Kunselman, Allen R; Ündar, Akif
2017-01-01
The objective of this study was to evaluate the hemodynamic performance and energy transmission of flexible arterial tubing as the arterial line in a simulated pediatric pulsatile extracorporeal life support (ECLS) system. The ECLS circuit consisted of a Medos Deltastream DP3 diagonal pump head, Medos Hilite 2400 LT oxygenator, Biomedicus arterial/venous cannula (10 Fr/14 Fr), 3 feet of polyvinyl chloride (PVC) arterial tubing or latex rubber arterial tubing, primed with lactated Ringer's solution and packed red blood cells (hematocrit 40%). Trials were conducted at flow rates of 300 to 1200 mL/min (300 mL/min increments) under nonpulsatile and pulsatile modes at 36°C using either PVC arterial tubing (PVC group) or latex rubber tubing (Latex group). Real-time pressure and flow data were recorded using a custom-based data acquisition system. Mean pressures and energy equivalent pressures (EEP) were the same under nonpulsatile mode between the two groups. Under pulsatile mode, EEPs were significantly great than mean pressure, especially in the Latex group (P < 0.05). There was no difference between the two groups with regards to pressure drops across ECLS circuit, but pulsatile flow created more pressure drops than nonpulsatile flow (P < 0.05). Surplus hemodynamic energy (SHE) levels were always higher in the Latex group than in the PVC group at all sites. Although total hemodynamic energy (THE) losses were higher under pulsatile mode compared to nonpulsatile mode, more THE was delivered to the pseudopatient, particularly in the Latex group (P < 0.05). The results showed that the flexible arterial tubing retained more hemodynamic energy passing through it under pulsatile mode while mean pressures and pressure drops across the ECLS circuit were similar between PVC and latex rubber arterial tubing. Further studies are warranted to verify our findings. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Türk, Murat; Aydoğdu, Müge; Gürsel, Gül
2018-01-01
Different outcomes and success rates of non-invasive positive pressure ventilation (NPPV) in patients with acute hypercapnic respiratory failure (AHRF) still pose a significant problem in intensive care units. Previous studies investigating different modes, body positioning, and obesity-associated hypoventilation in patients with chronic respiratory failure showed that these factors may affect ventilator mechanics to achieve a better minute ventilation. This study tried to compare pressure support (BiPAP-S) and average volume targeted pressure support (AVAPS-S) modes in patients with acute or acute-on-chronic hypercapnic respiratory failure. In addition, short-term effects of body position and obesity within both modes were analyzed. We conducted a randomized controlled study in a 7-bed intensive care unit. The course of blood gas analysis and differences in ventilation variables were compared between BiPAP-S (n=33) and AVAPS-S (n=29), and between semi-recumbent and lateral positions in both modes. No difference was found in the length of hospital stay and the course of PaCO2, pH, and HCO3 levels between the modes. There was a mean reduction of 5.7±4.1 mmHg in the PaCO2 levels in the AVAPS-S mode, and 2.7±2.3 mmHg in the BiPAP-S mode per session (p<0.05). Obesity didn't have any effect on the course of PaCO2 in both the modes. Body positioning had no notable effect in both modes. Although the decrease in the PaCO2 levels in the AVAPS-S mode per session was remarkably high, the course was similar in both modes. Furthermore, obesity and body positioning had no prominent effect on the PaCO2 response and ventilator mechanics. Post hoc power analysis showed that the sample size was not adequate to detect a significant difference between the modes.
Haines, Nikkole; Wang, Shigang; Myers, John L; Undar, Akif
2009-11-01
We compared the effects of two neonatal extracorporeal life support (ECLS) systems on circuit pressures and surplus hemodynamic energy levels in a simulated ECLS model. The clinical set-up included the Jostra HL-20 heart-lung machine, either the Medtronic ECMO (0800) or the MEDOS 800LT systems with company-provided circuit components, a 10 Fr arterial cannula, and a pseudo-patient. We tested the system in nonpulsatile and pulsatile flow modes at two flow rates using a 40/60 glycerin/water blood analog, for a total of 48 trials, with n = 6 for each set-up. The pressure drops over the Medtronic ECLS were significantly higher than those over the MEDOS system regardless of the flow rate or perfusion mode (144.8 +/- 0.2 mm Hg vs. 35.7 +/- 0.2 mm Hg, respectively, at 500 mL/min in nonpulsatile mode, P < 0.001). The preoxygenator mean arterial pressures were significantly increased and the precannula hemodynamic energy values were decreased with the Medtronic ECLS circuit. These results suggest that the MEDOS ECLS circuit better transmits hemodynamic energy to the patient, keeps mean circuit pressures lower, and has lower pressure drops than the Medtronic Circuit.
[Lung protective ventilation. Ventilatory modes and ventilator parameters].
Schädler, Dirk; Weiler, Norbert
2008-06-01
Mechanical ventilation has a considerable potential for injuring the lung tissue. Therefore, attention has to be paid to the proper choice of ventilatory mode and settings to secure lung-protective ventilation whenever possible. Such ventilator strategy should account for low tidal volume ventilation (6 ml/kg PBW), limited plateau pressure (30 to 35 cm H2O) and positive end-expiratory pressure (PEEP). It is unclear whether pressure controlled or volume controlled ventilation with square flow profile is beneficial. The adjustment of inspiration and expiration time should consider the actual breathing mechanics and anticipate the generation of intrinsic PEEP. Ventilatory modes with the possibility of supporting spontaneous breathing should be used as soon as possible.
Buckling analysis of Big Dee Vacuum Vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lightner, S.; Gallix, R.
1983-12-01
A simplified three-dimensional shell buckling analysis of the GA Technologies Inc., Big Dee Vacuum Vessel (V/V) was performed using the finite element program TRICO. A coarse-mesh linear elastic model, which accommodated the support boundary conditions, was used to determine the buckling mode shape under a uniform external pressure. Using this buckling mode shape, refined models were used to calculate the linear buckling load (P/sub crit/) more accurately. Several different designs of the Big Dee V/V were considered in this analysis. The supports for the V/V were equally-spaced radial pins at the outer diameter of the mid-plane. For all the casesmore » considered, the buckling mode was axisymmetric in the toroidal direction. Therefore, it was possible to use only a small angular sector of a toric shell for the refined analysis. P/sub crit/ for the Big Dee is about 60 atm for a uniform external pressure. Also investigated in this analysis were the effects of geometrical imperfections and non-uniform pressure distributions.« less
Evaluation of ventilators used during transport of critically ill patients: a bench study.
Boussen, Salah; Gainnier, Marc; Michelet, Pierre
2013-11-01
To evaluate the most recent transport ventilators' operational performance regarding volume delivery in controlled mode, trigger function, and the quality of pressurization in pressure support mode. Eight recent transport ventilators were included in a bench study in order to evaluate their accuracy to deliver a set tidal volume under normal resistance and compliance conditions, ARDS conditions, and obstructive conditions. The performance of the triggering system was assessed by the measure of the decrease in pressure and the time delay required to open the inspiratory valve. The quality of pressurization was obtained by computing the integral of the pressure-time curve for the first 300 ms and 500 ms after the onset of inspiration. For the targeted tidal volumes of 300, 500, and 800 mL the errors ranged from -3% to 48%, -7% to 18%, and -5% to 25% in the normal conditions, -4% to 27%, -2% to 35%, and -3% to 35% in the ARDS conditions, and -4% to 53%, -6% to 30%, and -30% to 28% in the obstructive conditions. In pressure support mode the pressure drop range was 0.4-1.7 cm H2O, the trigger delay range was 68-198 ms, and the pressurization performance (percent of ideal pressurization, as measured by pressure-time product at 300 ms and 500 ms) ranges were -9% to 44% at 300 ms and 6%-66% at 500 ms (P < .01). There were important differences in the performance of the tested ventilators. The most recent turbine ventilators outperformed the pneumatic ventilators. The best performers among the turbine ventilators proved comparable to modern ICU ventilators.
Transverse acoustic forcing of a round hydrodynamically self-excited jet
NASA Astrophysics Data System (ADS)
Kushwaha, Abhijit Kumar; Mazur, Marek; Worth, Nicholas; Dawson, James; Li, Larry K. B.
2017-11-01
Hydrodynamically self-excited jets can readily synchronize with longitudinal acoustic forcing, but their response to transverse acoustic forcing is less clear. In this experimental study, we apply transverse acoustic forcing to an axisymmetric low-density jet at frequencies around its natural global frequency. We place the jet in a rectangular box containing two loudspeakers, one at each end, producing nominally one-dimensional standing pressure waves. By traversing the jet across this box, we subject it to a range of acoustic modes, from purely longitudinal (streamwise) modes at the pressure anti-node to purely transverse (cross-stream) modes at the pressure node. Using time-resolved Background-Oriented Schlieren (BOS) imaging and hot-wire anemometry, we characterize the jet response for different forcing frequencies, amplitudes and mode shapes, providing new insight into the way transverse acoustic oscillations interact with axisymmetric hydrodynamic oscillations. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Daniel, Timothy D.; Abawi, Ahmad T.; Kirsteins, Ivars
2015-11-01
The modulated radiation pressure (MRP) of ultrasound has been used for decades to selectively excite low frequency modes associated with surface tension of fluid objects in water. Much less is known about the excitation of low frequency modes of less compliant metallic objects. Here we use MRP of focused ultrasound to excite resonant flexural vibrations of a circular metal plate in water. The source transducer was driven with a double-sideband suppressed carrier voltage as in. The response of the target (detected with a hydrophone) was at twice the modulation frequency and proportional to the square of the drive voltage. Since the radiation pressure of focused beams is spatially localized, mode shapes could be identified by scanning the source along the target while measuring the target's response. Additional measurements were done with an open-ended water-filled copper circular cylindrical shell in which resonant frequencies and mode shapes were also identified. These experiments show how focused ultrasound can be used to identify low-frequency modes of elastic objects without direct contact. Supported by ONR.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
... seal and allowed the pressure in certain slides/ rafts to fall below the minimum raft mode pressure for the unit. We are issuing this AD to prevent loss of pressure in the escape slides/rafts after an emergency evacuation, which could result in inadequate buoyancy to support the raft's passenger capacity...
Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics.
Kale, Sushrut S; Olson, Elizabeth S
2015-12-15
Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics
Kale, Sushrut S.; Olson, Elizabeth S.
2015-01-01
Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models. PMID:26682824
Study of roles of remote manipulator systems and EVA for shuttle mission support, volume 1
NASA Technical Reports Server (NTRS)
Malone, T. B.; Micocci, A. J.
1974-01-01
Alternate extravehicular activity (EVA) and remote manipulator system (RMS) configurations were examined for their relative effectiveness in performing an array of representative shuttle and payload support tasks. Initially a comprehensive analysis was performed of payload and shuttle support missions required to be conducted exterior to a pressurized inclosure. A set of task selection criteria was established, and study tasks were identified. The EVA and RMS modes were evaluated according to their applicability for each task and task condition. The results are summarized in tabular form, showing the modes which are chosen as most effective or as feasible for each task/condition. Conclusions concerning the requirements and recommendations for each mode are presented.
Interactive simulation system for artificial ventilation on the internet: virtual ventilator.
Takeuchi, Akihiro; Abe, Tadashi; Hirose, Minoru; Kamioka, Koichi; Hamada, Atsushi; Ikeda, Noriaki
2004-12-01
To develop an interactive simulation system "virtual ventilator" that demonstrates the dynamics of pressure and flow in the respiratory system under the combination of spontaneous breathing, ventilation modes, and ventilator options. The simulation system was designed to be used by unexperienced health care professionals as a self-training tool. The system consists of a simulation controller and three modules: respiratory, spontaneous breath, and ventilator. The respiratory module models the respiratory system by three resistances representing the main airway, the right and left lungs, and two compliances also representing the right and left lungs. The spontaneous breath module generates inspiratory negative pressure produced by a patient. The ventilator module generates driving force of pressure or flow according to the combination of the ventilation mode and options. These forces are given to the respiratory module through the simulation controller. The simulation system was developed using HTML, VBScript (3000 lines, 100 kB) and ActiveX control (120 kB), and runs on Internet Explorer (5.5 or higher). The spontaneous breath is defined by a frequency, amplitude and inspiratory patterns in the spontaneous breath module. The user can construct a ventilation mode by setting a control variable, phase variables (trigger, limit, and cycle), and options. Available ventilation modes are: controlled mechanical ventilation (CMV), continuous positive airway pressure, synchronized intermittent mandatory ventilation (SIMV), pressure support ventilation (PSV), SIMV + PSV, pressure-controlled ventilation (PCV), pressure-regulated volume control (PRVC), proportional assisted ventilation, mandatory minute ventilation (MMV), bilevel positive airway pressure (BiPAP). The simulation system demonstrates in a graph and animation the airway pressure, flow, and volume of the respiratory system during mechanical ventilation both with and without spontaneous breathing. We developed a web application that demonstrated the respiratory mechanics and the basic theory of ventilation mode.
Elrazek, E Abd
2004-10-01
The aim of this prospective, randomized and crossover study was to assess the role of a relatively new mode of mechanical ventilation, biphasic intermittent positive airway pressure (BIPAP) in comparison to another well established one, pressure-support ventilation (PSV) in surgical intensive care patients. 24 generally stable patients, breathing on their own after short-term (< 24 hours) postoperative controlled mechanical ventilation (CMV) were randomized to start on either PSV or BIPAP, and indirect calorimetry measurements were performed after 1 hour adaptation period at two time intervals; immediately after the investigated ventilatory mode was started and 1 hour later. Statistics included a two-tailed paired t-test to compare the two sets of different data, p < 0.5 was considered significant. Oxygen consumption (VO2), energy expenditure (EE), Carbon dioxide production (VCO2), and respiratory quotient (RQ) did not differ significantly between the two groups. There were also no significant differences regarding respiratory rate (RR), minute volume (MV) and arterial blood gas analysis (ABGs). Both modes of ventilation were well tolerated by all patients. PSV and BIPAP can be used for weaning patients comfortably in surgical intensive care after short-term postoperative ventilation. BIPAP may have the credit of being smoother than PSV where no patient effort is required.
Pressure Effect on Hydrogen Tunneling and Vibrational Spectrum in α-Mn
NASA Astrophysics Data System (ADS)
Kolesnikov, Alexander; Podlesnyak, Andrey; Sadykov, Ravil; Antonov, Vladimir; Kuzovnikov, Michail; Ehlers, Georg; Granroth, Garrett
The pressure effect on the tunneling mode and vibrational spectra of hydrogen in α-MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α-Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α-Mn at 100 kbar, when the estimated tunneling splitting of the hydrogen ground state exceeds the barrier height. Acknowledgments: Research at ORNL SNS was supported by the Sci. User Facilities Division, Office BES, US DOE, and was sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the US DOE. It used resources of the Nat. Energy Res. Sci. Comp. Center, which is supported by the Office of Sci. US DOE under Contract No. DE-AC02-05CH11231. A support by a Grant of the Program on Elementary Particle Physics, Fundamental Nuclear Physics and Nuclear Techn. RAS is also acknowledged.
Control of 3-D Modes in a Boundary Layer Undergoing Subharmonic Transition.
NASA Astrophysics Data System (ADS)
Corke, T. C.; Peto, J.; Speer, A.; Paroozan, P.; Sciammarella, C.
1997-11-01
The effect of alternating standing patterns of wall displacements in the transition region of a Falkner-Skan boundary layer with an adverse pressure gradient is investigated. Transition is controlled by introducing disturbances to excite a pair of oblique modes along with a plane TS mode. The oblique modes are at the TS subharmonic frequency in order to promote subharmonic resonance. Measurements consist of a spanwise rake of hot-wire sensors placed near the wall below the critical layer, and a 2-D (15 x 15) array of optical pressure sensors. The space-time data series are processed using 2-D Fourier analysis to determine the spanwise wave number content of the flow. Of particular interest is the streamwise vortex mode which results from a difference interaction of the subharmonic oblique modes. We examine the effect of different patterns and amplitudes of upstream wall displacements on the development of the travelling and stationary modes in this case leading to transition. Supported by ARO Grant No. DAAH04-93-G-0212
ELM Suppression and Pedestal Structure in I-Mode Plasmas
NASA Astrophysics Data System (ADS)
Walk, John
2013-10-01
The I-mode regime is characterized by the formation of a temperature pedestal and enhanced energy confinement (H98 up to 1.2), without an accompanying density pedestal or drop in particle transport. Unlike ELMy H-modes, I-mode operation appears to have naturally-occurring suppression of large ELMs in addition to its highly favorable scalings of pedestal structure (and therefore overall performance). Instead, continuous Weakly Coherent Modes help to regulate density. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Peeling-ballooning MHD calculations are completed using the ELITE code, showing I-mode pedestals to be generally MHD-stable. Under certain conditions, intermittent ELMs are observed in I-mode at reduced field, typically triggered by sawtooth crashes; modification of the temperature pedestal (and therefore the pressure profile stability) by sawtooth heat pulses is being examined in ELITE. Modeled stability to KBM turbulence in I-mode and ELMy H-mode suggests that typical I-modes are stable against KBM turbulence. Measured I-mode pedestals are significantly wider (more stable) than the width scaling with the square root of poloidal beta characteristic of the KBM-limited pedestals in ELMy H-mode. Finally, we explore scalings of pedestal structure with engineering parameters compared to ELMy H-modes on C-Mod. In particular, we focus on scalings of the pressure pedestal with heating power (and its relation to the favorable scaling of confinement with power in I-mode) and on relationships between heat flux and pedestal temperature gradients. This work is supported by DOE agreement DE-FC02-99ER54512. Theory work at General Atomics is supported by DOE agreement DE-FG02-99ER54309.
Dependency of Tearing Mode Stability on Current and Pressure Profiles in DIII-D Hybrid Discharges
NASA Astrophysics Data System (ADS)
Kim, K.; Park, J. M.; Murakami, M.; La Haye, R. J.; Na, Y.-S.; SNU/ORAU; ORNL; Atomics, General; SNU; DIII-D Team
2016-10-01
Understanding the physics of the onset and evolution of tearing modes (TMs) in tokamak plasmas is important for high- β steady-state operation. Based on DIII-D steady-state hybrid experiments with accurate equilibrium reconstruction and well-measured plasma profiles, the 2/1 tearing mode can be more stable with increasing local current and pressure gradient at rational surface and with lower pressure peaking and plasma inductance. The tearing stability index Δ', estimated by the Rutherford equation with experimental mode growth rate was validated against Δ' calculated by linear eigenvalue solver (PEST3); preliminary comprehensive MHD modeling by NIMROD reproduced the TM onset reasonably well. We present a novel integrated modeling for the purpose of predicting TM onset in experiment by combining a model equilibrium reconstruction using IPS/FASTRAN, linear stability Δ' calculation using PEST3, and fitting formula for critical Δ' from NIMROD. Work supported in part by the US DoE under DE-AC05-06OR23100, DE-AC05-00OR22725, and DEFC02-04ER54698.
Hybrid simulation of fishbone instabilities in the EAST tokamak
NASA Astrophysics Data System (ADS)
Shen, Wei; Fu, Guoyong; Wang, Feng; Xu, Liqing; Li, Guoqiang; Liu, Chengyue; EAST Team
2017-10-01
Hybrid simulations with the global kinetic- MHD code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven fishbone in EAST experiment. Linear simulations show that a low frequency fishbone instability is excited at experimental value of beam ion pressure. The mode is mainly driven by low energy beam ions via precessional resonance. The results are consistent with the experimental measurement with respect to mode frequency and mode structure. When the beam ion pressure is increased to exceed a critical value, the low frequency mode transits to a BAE with much higher frequency. Nonlinear simulations show that the frequency of the low frequency fishbone chirps up and down with corresponding hole-clump structures in phase space, consistent with the Berk-Breizman theory. In addition to the low frequency mode, the high frequency BAE is excited during the nonlinear evolution. For the transient case of beam pressure fraction where the low and high frequency modes are simultaneously excited in the linear phase, only one dominant mode appears in the nonlinear phase with frequency jumps up and down during nonlinear evolution. This work is supported by the National Natural Science Foundation of China under Grant Nos. 11605245 and 11505022, and the CASHIPS Director's Fund under Grant No. YZJJ201510, and the Department of Energy Scientific Discovery through Advanced Computing (SciDAC) under Grant No. DE-AC02-09CH11466.
Ventilation practices in the neonatal intensive care unit: a cross-sectional study.
van Kaam, Anton H; Rimensberger, Peter C; Borensztajn, Dorine; De Jaegere, Anne P
2010-11-01
To assess current ventilation practices in newborn infants. We conducted a 2-point cross-sectional study in 173 European neonatal intensive care units, including 535 infants (mean gestational age 28 weeks and birth weight 1024 g). Patient characteristics, ventilator settings, and measurements were collected bedside from endotracheally ventilated infants. A total of 457 (85%) patients were conventionally ventilated. Time cycled pressure-limited ventilation was used in 59% of these patients, most often combined with synchronized intermittent mandatory ventilation (51%). Newer conventional ventilation modes like volume targeted and pressure support ventilation were used in, respectively, 9% and 7% of the patients. The mean tidal volume, measured in 84% of the conventionally ventilated patients, was 5.7 ± 2.3 ml/kg. The mean positive end-expiratory pressure was 4.5 ± 1.1 cmH(2)O and rarely exceeded 7 cmH(2)O. Time cycled pressure-limited ventilation is the most commonly used mode in neonatal ventilation. Tidal volumes are usually targeted between 4 to 7 mL/kg and positive end-expiratory pressure between 4 to 6 cmH(2)O. Newer ventilation modes are only used in a minority of patients. Copyright © 2010 Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Logan, Nikolas
2015-11-01
Experiments on DIII-D have demonstrated that multiple kink modes with comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n=2, in good agreement with ideal MHD models. In contrast to a single-mode model, the structure of the response measured using poloidally distributed magnetic sensors changes when varying the applied poloidal spectrum. This is most readily evident in that different spectra of applied fields can independently excite inboard and outboard magnetic responses, which are identified as distinct plasma modes by IPEC modeling. The outboard magnetic response is correlated with the plasma pressure and consistent with the long wavelength perturbations of the least stable, pressure driven kinks calculated by DCON and used in IPEC. The models show the structure of the pressure driven modes extends throughout the bad curvature region and into the plasma core. The inboard plasma response is correlated with the edge current profile and requires the inclusion of multiple kink modes with greater stability, including opposite helicity modes, to replicate the experimental observations in the models. IPEC reveals the resulting mode structure to be highly localized in the plasma edge. Scans of the applied spectrum show this response induces the transport that influences the density pump-out, as well as the toroidal rotation drag observed in experiment and modeled using PENT. The classification of these two mode types establishes a new multi-modal paradigm for n=2 plasma response and guides the understanding needed to optimize 3D fields for independent control of stability and transport. Supported by US DOE contract DE-AC02-09CH11466.
Mols, G; von Ungern-Sternberg, B; Rohr, E; Haberthür, C; Geiger, K; Guttmann, J
2000-06-01
To assess respiratory comfort and associated breathing pattern during volume assist (VA) as a component of proportional assist ventilation and during pressure support ventilation (PSV). Prospective, double-blind, interventional study. Laboratory. A total of 15 healthy volunteers (11 females, 4 males) aged 21-31 yrs. Decreased respiratory system compliance was simulated by banding of the thorax and abdomen. Volunteers breathed via a mouthpiece with VA and PSV each applied at two levels (VA, 8 cm H2O/L and 12 cm H2O/L; PSV, 10 cm H2O and 15 cm H2O) using a positive end-expiratory pressure of 5 cm H2O throughout. The study was subdivided into two parts. In Part 1, volunteers breathed three times with each of the four settings for 2 mins in random order. In Part 2, the first breath effects of multiple, randomly applied mode, and level shifts were studied. In Part 1, the volunteers were asked to estimate respiratory comfort in comparison with normal breathing using a visual analog scale. In Part 2, they were asked to estimate the change of respiratory comfort as increased, decreased, or unchanged immediately after a mode shift. Concomitantly, the respiratory pattern (change) was characterized with continuously measured tidal volume, respiratory rate, pressure, and gas flow. Respiratory comfort during VA was higher than during PSV. The higher support level was less important during VA but had a major negative influence on comfort during PSV. Both modes differed with respect to the associated breathing pattern. Variability of breathing was higher during VA than during PSV (Part 1). Changes in respiratory variables were associated with changes in respiratory comfort (Part 2). For volunteers breathing with artificially reduced respiratory system compliance, respiratory comfort is higher with VA than with PSV. This is probably caused by a better adaptation of the ventilatory support to the volunteer's need with VA.
NASA Astrophysics Data System (ADS)
Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team
2014-10-01
In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.
Raman scattering from superhard rhenium diboride under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Miao; Winkler, Björn; Mao, Zhu
2014-01-06
Lattice vibrational properties of superhard rhenium diboride (ReB{sub 2}) were examined up to 8 GPa in a diamond anvil cell using Raman spectroscopy techniques. Linear pressure coefficients and mode Grüneisen parameters are obtained. Good agreement is found between the experimental and theoretical calculated Grüneisen parameters. Examination of the calculated mode Grüneisen parameters reveals that both B-B and Re-B covalent bonds play a dominant role in supporting the applied load under pressure. A comparison of vibrations parallel and perpendicular to the c-axis indicates that bonds along the c-axis tend to take greater loads. Our results agree with observations of elastic lattice anisotropymore » obtained from both in situ X-ray diffraction measurements and ultrasonic resonance spectra.« less
NASA Lewis F100 engine testing
NASA Technical Reports Server (NTRS)
Werner, R. A.; Willoh, R. G., Jr.; Abdelwahab, M.
1984-01-01
Two builds of an F100 engine model derivative (EMD) engine were evaluated for improvements in engine components and digital electronic engine control (DEEC) logic. Two DEEC flight logics were verified throughout the flight envelope in support of flight clearance for the F100 engine model derivative program (EMPD). A nozzle instability and a faster augmentor transient capability was investigated in support of the F-15 DEEC flight program. Off schedule coupled system mode fan flutter, DEEC nose-boom pressure correlation, DEEC station six pressure comparison, and a new fan inlet variable vane (CIVV) schedule are identified.
Arakawa, Mamoru; Nishimura, Takashi; Takewa, Yoshiaki; Umeki, Akihide; Ando, Masahiko; Kishimoto, Yuichiro; Kishimoto, Satoru; Fujii, Yutaka; Date, Kazuma; Kyo, Shunei; Adachi, Hideo; Tatsumi, Eisuke
2016-06-01
We previously developed a novel control system for a continuous-flow left ventricular assist device (LVAD), the EVAHEART, and demonstrated that sufficient pulsatility can be created by increasing its rotational speed in the systolic phase (pulsatile mode) in a normal heart animal model. In the present study, we assessed this system in its reliability and ability to follow heart rate variability. We implanted an EVAHEART via left thoracotomy into five goats for the Study for Fixed Heart Rate with ventricular pacing at 80, 100, 120 and 140 beats/min and six goats for the Study for native heart rhythm. We tested three modes: the circuit clamp, the continuous mode and the pulsatile mode. In the pulsatile mode, rotational speed was increased during the initial 35 % of the RR interval by automatic control based on the electrocardiogram. Pulsatility was evaluated by pulse pressure and dP/dt max of aortic pressure. As a result, comparing the pulsatile mode with the continuous mode, the pulse pressure was 28.5 ± 5.7 vs. 20.3 ± 7.9 mmHg, mean dP/dt max was 775.0 ± 230.5 vs 442.4 ± 184.7 mmHg/s at 80 bpm in the study for fixed heart rate, respectively (P < 0.05). The system successfully determined the heart rate to be 94.6 % in native heart rhythm. Furthermore, pulse pressure was 41.5 ± 7.9 vs. 27.8 ± 5.6 mmHg, mean dP/dt max was 716.2 ± 133.9 vs 405.2 ± 86.0 mmHg/s, respectively (P < 0.01). In conclusion, our newly developed the pulsatile mode for continuous-flow LVADs reliably provided physiological pulsatility with following heart rate variability.
Lucato, Jeanette Janaina Jaber; Cunha, Thiago Marraccini Nogueira da; Reis, Aline Mela Dos; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga
2017-01-01
To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes.
Lucato, Jeanette Janaina Jaber; da Cunha, Thiago Marraccini Nogueira; dos Reis, Aline Mela; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga
2017-01-01
Objective To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Methods Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. Results A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. Conclusion The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes. PMID:28977257
NASA Astrophysics Data System (ADS)
Ansari, Saleem A.; Haroon, Muhammad; Rashid, Atif; Kazmi, Zafar
2017-02-01
Extensive calculation and measurements of flow-induced vibrations (FIV) of reactor internals were made in a PWR plant to assess the structural integrity of reactor core support structure against coolant flow. The work was done to meet the requirements of the Fukushima Response Action Plan (FRAP) for enhancement of reactor safety, and the regulatory guide RG-1.20. For the core surveillance measurements the Reactor Internals Vibration Monitoring System (IVMS) has been developed based on detailed neutron noise analysis of the flux signals from the four ex-core neutron detectors. The natural frequencies, displacement and mode shapes of the reactor core barrel (CB) motion were determined with the help of IVMS. The random pressure fluctuations in reactor coolant flow due to turbulence force have been identified as the predominant cause of beam-mode deflection of CB. The dynamic FIV calculations were also made to supplement the core surveillance measurements. The calculational package employed the computational fluid dynamics, mode shape analysis, calculation of power spectral densities of flow & pressure fields and the structural response to random flow excitation forces. The dynamic loads and stiffness of the Hold-Down Spring that keeps the core structure in position against upward coolant thrust were also determined by noise measurements. Also, the boron concentration in primary coolant at any time of the core cycle has been determined with the IVMS.
Adaptive support ventilation: State of the art review
Fernández, Jaime; Miguelena, Dayra; Mulett, Hernando; Godoy, Javier; Martinón-Torres, Federico
2013-01-01
Mechanical ventilation is one of the most commonly applied interventions in intensive care units. Despite its life-saving role, it can be a risky procedure for the patient if not applied appropriately. To decrease risks, new ventilator modes continue to be developed in an attempt to improve patient outcomes. Advances in ventilator modes include closed-loop systems that facilitate ventilator manipulation of variables based on measured respiratory parameters. Adaptive support ventilation (ASV) is a positive pressure mode of mechanical ventilation that is closed-loop controlled, and automatically adjust based on the patient's requirements. In order to deliver safe and appropriate patient care, clinicians need to achieve a thorough understanding of this mode, including its effects on underlying respiratory mechanics. This article will discuss ASV while emphasizing appropriate ventilator settings, their advantages and disadvantages, their particular effects on oxygenation and ventilation, and the monitoring priorities for clinicians. PMID:23833471
Roberts, C T; Davis, P G; Owen, L S
2013-01-01
Nasal continuous positive airway pressure (NCPAP) has proven to be an effective mode of non-invasive respiratory support in preterm infants; however, many infants still require endotracheal ventilation, placing them at an increased risk of morbidities such as bronchopulmonary dysplasia. Several other modes of non-invasive respiratory support beyond NCPAP, including synchronised and non-synchronised nasal intermittent positive pressure ventilation (SNIPPV and nsNIPPV) and bi-level positive airway pressure (BiPAP) are now also available. These techniques require different approaches, and the exact mechanisms by which they act remain unclear. SNIPPV has been shown to reduce the rate of reintubation in comparison to NCPAP when used as post-extubation support, but the evidence for nsNIPPV and BiPAP in this context is less convincing. There is some evidence that NIPPV (whether synchronised or non-synchronised) used as primary respiratory support is beneficial, but the variation in study methodology makes this hard to translate confidently into clinical practice. There is currently no evidence to suggest a reduction in mortality or important morbidities such as bronchopulmonary dysplasia, with NIPPV or BiPAP in comparison to NCPAP, and there is a lack of appropriately designed studies in this area. This review discusses the different approaches and proposed mechanisms of action of SNIPPV, nsNIPPV and BiPAP, the challenges of applying the available evidence for these distinct modalities of non-invasive respiratory support to clinical practice, and possible areas of future research. © 2013 S. Karger AG, Basel.
Impedance Eduction in Ducts with Higher-Order Modes and Flow
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.
2009-01-01
An impedance eduction technique, previously validated for ducts with plane waves at the source and duct termination planes, has been extended to support higher-order modes at these locations. Inputs for this method are the acoustic pressures along the source and duct termination planes, and along a microphone array located in a wall either adjacent or opposite to the test liner. A second impedance eduction technique is then presented that eliminates the need for the microphone array. The integrity of both methods is tested using three sound sources, six Mach numbers, and six selected frequencies. Results are presented for both a hardwall and a test liner (with known impedance) consisting of a perforated plate bonded to a honeycomb core. The primary conclusion of the study is that the second method performs well in the presence of higher-order modes and flow. However, the first method performs poorly when most of the microphones are located near acoustic pressure nulls. The negative effects of the acoustic pressure nulls can be mitigated by a judicious choice of the mode structure in the sound source. The paper closes by using the first impedance eduction method to design a rectangular array of 32 microphones for accurate impedance eduction in the NASA LaRC Curved Duct Test Rig in the presence of expected measurement uncertainties, higher order modes, and mean flow.
The Research of EAST Pedestal Structure and Preliminary Application
NASA Astrophysics Data System (ADS)
Wang, Tengfei; Zang, Qing; Han, Xiaofeng; Xiao, Shumei; Hu, Ailan; Zhao, Junyu
2016-10-01
The pedestal characteristic is an important basis for high confinement mode (H-mode) research. Because of the finite spatial resolution of Thomson scattering (TS) diagnostic on Experimental Advanced Superconducting Tokamak (EAST), it is necessary to characterize the pedestal with a suitable functional form. Based on simulated and experimental data of EAST, it is shown that the two-line method with a bilinear fitting has better reproducibility of pedestal parameters than hyperbolic tangent (tanh) and modified hyperbolic tangent (mtanh) methods. This method has been applied to EAST type I edge localized mode (ELM) discharges, and the electron pedestal density is found to be proportional to the line-averaged density and the edge pressure gradient is found to be proportional to the pedestal pressure. Furthermore, the ion poloidal gyro-radius has been identified as the suitable parameter to describe the pedestal pressure width. supported by National Natural Science Foundation of China (Nos. 11275233 and 11405206), and the National Magnetic Confinement Fusion Science Program of China (No. 2013GB112003), and Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences (No. DSJJ-15-JC01)
Test Data Analysis of a Spray Bar Zero-Gravity Liquid Hydrogen Vent System for Upper Stages
NASA Technical Reports Server (NTRS)
Hedayat, A.; Bailey, J. W.; Hastings, L. J.; Flachbart, R. H.
2003-01-01
To support development of a zero-gravity pressure control capability for liquid hydrogen (LH2), a series of thermodynamic venting system (TVS) tests was conducted in 1996 and 1998 using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB). These tests were performed with ambient heat leaks =20 and 50 W for tank fill levels of 90%, 50%, and 25%. TVS performance testing revealed that the spray bar was highly effective in providing tank pressure control within a 7-kPa band (131-138 Wa), and complete destratification of the liquid and the ullage was achieved with all test conditions. Seven of the MHTB tests were correlated with the TVS performance analytical model. The tests were selected to encompass the range of tank fill levels, ambient heat leaks, operational modes, and ullage pressurants. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature obtained from the TVS model were compared with the test data. During extended self-pressurization periods, following tank lockup, the model predicted faster pressure rise rates than were measured. However, once the system entered the cyclic mixing/venting operational mode, the modeled and measured data were quite similar.
Lee, Susie So-Hyun; Berman, Mitchell F
2015-12-01
In this case report, we describe the use of the Draeger Apollo anesthesia machine to deliver bilevel positive airway pressure (BiPAP) to a patient with severe chronic obstructive pulmonary disease and a history of lung resection undergoing frontal craniotomy for the removal of a brain tumor under moderate to deep sedation. BiPAP in the perioperative period has been described for purposes of preoxygenation and postextubation recruitment. Although its utility as a mode of ventilation during moderate to deep sedation has been demonstrated, it has not come into widespread use. We describe the intraoperative use of pressure support mode on the anesthesia machine to deliver noninvasive positive pressure ventilation through a standard anesthesia mask. Given its ease of access and effectiveness, it is our belief that intraoperative BiPAP may reduce hypoxemia and/or hypercarbia in patients with chronic obstructive pulmonary disease and obstructive sleep apnea undergoing moderate to deep sedation.
NASA Technical Reports Server (NTRS)
Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.
2015-01-01
Conical shell theory and a supersonic potential flow aerodynamic theory are used to study the nonlinear pressure buckling and aeroelastic limit cycle behavior of the thermal protection system for NASA's Hypersonic Inflatable Aerodynamic Decelerator. The structural model of the thermal protection system consists of an orthotropic conical shell of the Donnell type, resting on several circumferential elastic supports. Classical Piston Theory is used initially for the aerodynamic pressure, but was found to be insufficient at low supersonic Mach numbers. Transform methods are applied to the convected wave equation for potential flow, and a time-dependent aerodynamic pressure correction factor is obtained. The Lagrangian of the shell system is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the governing differential-algebraic equations of motion. Aeroelastic limit cycle oscillations and buckling deformations are calculated in the time domain using a Runge-Kutta method in MATLAB. Three conical shell geometries were considered in the present analysis: a 3-meter diameter 70 deg. cone, a 3.7-meter 70 deg. cone, and a 6-meter diameter 70 deg. cone. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD. Though agreement between theoretical and experimental strains was poor, the circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With Piston Theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. The effect of axial tension was studied for this configuration, and increasing tension was found to decrease the limit cycle amplitudes when the circumferential elastic supports were neglected, but resulted in more complex behavior when the supports were included. The nominal flutter dynamic pressure of the 3.7-meter configuration was significantly lower than that of the 3-meter, and it was found that two sets of natural modes coalesce to flutter modes near the same dynamic pressure. This resulted in a significant drop in the limit cycle frequencies at higher dynamic pressures, where the flutter mode with the lower frequency becomes more critical. Pre-buckling pressure loads and the aerodynamic pressure correction factor were studied for all geometries, and these effects resulted in significantly lower flutter boundaries compared with Piston Theory alone. The maximum dynamic pressure predicted by aerodynamic simulations of a proposed 3.7-meter HIAD vehicle was still lower than any of the calculated flutter dynamic pressures, suggesting that aeroelastic effects for this vehicle are of little concern.
Electron-phonon coupling and superconductivity in MgB2 under hydrostatic pressure.
NASA Astrophysics Data System (ADS)
Quijano, Ramiro; Aguayo, Aaron
2005-03-01
We have studied the dynamics and coupling of the E2g phonon mode with the σ-band in MgB2 under pressure using the Frozen Phonon Approximation. The results were obtained by means of first-principles total-energy calculations using the full potential Linearized Augmented Plane Wave (LAPW) method and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We present results for the evolution of the anharmonicity and phonon frequency of the E2g mode, the electron-phonon coupling constant, and Tc as a function of hydrostatic pressure in the range 0-40 GPa. We find that the phonon frequency increases monotonically with pressure, but the the anharmonicity, the electron-phonon coupling and Tc decreases with pressure. We have obtained a very good agreement between the calculated Tc(P) and the experimental data available in the literature, in particular with the experimental data corresponding to monocystalline samples. This work was supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, D. P.; Maingi, R.; Snyder, P. B.
2011-01-01
Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated with wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX.« less
NASA Astrophysics Data System (ADS)
Li, Chunyan; Wu, Pei-Ming; Shutter, Lori A.; Narayan, Raj K.
2010-02-01
The dual-mode operation of a polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) piezoelectric polymer diaphragm, in a capacitive or resonant mode, is reported as a flexible intracranial pressure (ICP) sensor. The pressure sensor using a capacitive mode exhibits a higher linearity and less power consumption than resonant mode operated pressure sensor. In contrast, the latter provides better sensitivity and easier adaption for wireless application. The metrological properties of the dual-mode ICP sensor being described are satisfactory in vitro. We propose that the piezoelectric polymer diaphragm has a promising future in intracranial pressure monitoring.
Martin, Andrew R; Katz, Ira M; Jenöfi, Katharina; Caillibotte, Georges; Brochard, Laurent; Texereau, Joëlle
2012-10-03
Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may provide an alternative to pressure support in circumstances where NIV is not available or poorly tolerated.
Normal mode analysis on the relaxation of an excited nitromethane molecule in argon bath
NASA Astrophysics Data System (ADS)
Rivera-Rivera, Luis; Wagner, Albert
In our previous work [J. Chem. Phys. 142, 014303 (2015)] classical molecular dynamics simulations followed in an Ar bath the relaxation of nitromethane (CH3NO2) instantaneously excited by statistically distributing 50 kcal/mol among all its internal degrees of freedom. The 300 K Ar bath was at pressures of 10 to 400 atm, a range spanning the breakdown of the isolated binary collision approximation. Both rotational and vibrational energies exhibit multi-exponential decay. This study explores mode-specific mechanisms at work in the decay process. With the separation of rotation and vibration developed by Rhee and Kim [J. Chem. Phys. 107, 1394 (1997)], one can show that the vibrational kinetic energy decomposes only into vibrational normal modes while the rotational and Coriolis energies decompose into both vibrational and rotational normal modes. Then the saved CH3NO2 positions and momenta can be converted into mode-specific energies whose decay over 1000 ps can be monitored. The results identify vibrational and rotational modes that promote/resist energy lost and drive multi-exponential behavior. Increasing pressure can be shown to increasingly interfere with post-collision IVR. The work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.
Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2
NASA Astrophysics Data System (ADS)
Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude
2018-03-01
Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.
The leaking mode problem in atmospheric acoustic-gravity wave propagation
NASA Technical Reports Server (NTRS)
Kinney, W. A.; Pierce, A. D.
1976-01-01
The problem of predicting the transient acoustic pressure pulse at long horizontal distances from large explosions in the atmosphere is examined. Account is taken of poles off the real axis and of branch line integrals in the general integral governing the transient waveform. Perturbation techniques are described for the computation of the imaginary ordinate of the poles and numerical studies are described for a model atmosphere terminated by a halfspace with c = 478 m/sec above 125 km. For frequencies less than 0.0125 rad/sec, the GR sub 1 mode, for example, is found to have a frequency dependent amplitude decay of the order of 0.0001 nepers/km. Examples of numerically synthesized transient waveforms are exhibited with and without the inclusion of leaking modes. The inclusion of leaking modes results in waveforms with a more marked beginning rather than a low frequency oscillating precursor of gradually increasing amplitude. Also, the revised computations indicate that waveforms invariably begin with a pressure rise, a result supported by other theoretical considerations and by experimental data.
NASA Astrophysics Data System (ADS)
Daniel, Timothy; Fortuner, Auberry; Abawi, Ahmad; Kirsteins, Ivars; Marston, Philip
2016-11-01
The modulated radiation pressure (MRP) of ultrasound has been widely used to selectively excite low frequency modes of fluid objects. We previously used MRP to excite less compliant metallic object in water including the low frequency modes of a circular metal plate in water. A larger focused ultrasonic transducer allows us to drive modes of larger more-realistic targets. In our experiments solid targets are suspended by strings or supported on sand and the modulated ultrasound is focused on the target's surface. Target sound emissions were recorded and a laser vibrometer was used to measure the surface velocity of the target to give the magnitude of the target response. The source transducer was driven with a doublesideband suppressed carrier voltage as in. By varying the modulation frequency and monitoring target response, resonant frequencies can be measured and compared to finite element models. We also demonstrate the radiation torque of a focused first-order acoustic vortex beam associated with power absorption in the Stokes layer adjacent to a sphere. Funded by ONR.
NASA Astrophysics Data System (ADS)
Burba, Christopher M.; Chang, Hai-Chou
2018-03-01
Continued growth and development of ionic liquids requires a thorough understanding of how cation and anion molecular structure defines the liquid structure of the materials as well as the various properties that make them technologically useful. Infrared spectroscopy is frequently used to assess molecular-level interactions among the cations and anions of ionic liquids because the intramolecular vibrational modes of the ions are sensitive to the local potential energy environments in which they reside. Thus, different interaction modes among the ions may lead to different spectroscopic signatures in the vibrational spectra. Charge organization present in ionic liquids, such as 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4mim]CF3SO3), is frequently modeled in terms of a quasicrystalline structure. Highly structured quasilattices enable the dynamic coupling of vibrationally-induced dipole moments to produce optical dispersion and transverse optical-longitudinal optical (TO-LO) splitting of vibrational modes of the ionic liquid. According to dipolar coupling theory, the degree of TO-LO splitting is predicted to have a linear dependence on the number density of the ionic liquid. Both temperature and pressure will affect the number density of the ionic liquid and, therefore, the amount of TO-LO splitting for this mode. Therefore, we test these relationships through temperature- and pressure-dependent FT-IR spectroscopic studies of [C4mim]CF3SO3, focusing on the totally symmetric Ssbnd O stretching mode for the anion, νs(SO3). Increased temperature decreases the amount of TO-LO splitting for νs(SO3), whereas elevated pressure is found to increase the amount of band splitting. In both cases, the experimental observations follow the general predictions of dipolar coupling theory, thereby supporting the quasilattice model for this ionic liquid.
Francis, Colin Anthony; Hoffer, Joaquín Andrés; Reynolds, Steven
2016-01-01
Mechanical ventilation is associated with atrophy and weakness of the diaphragm. Ultrasound is an easy noninvasive way to track changes in thickness of the diaphragm. To validate ultrasound as a means of tracking thickness of the diaphragm in patients undergoing mechanical ventilation by evaluating interobserver and interoperator reliability and to collect initial data on the relationship of mode of ventilation to changes in the diaphragm. Daily ultrasound images of the quadriceps and the right side of the diaphragm were acquired in 8 critically ill patients receiving various modes of mechanical ventilation. Thickness of the diaphragm and the quadriceps was measured, and changes with time were noted. Interoperator and interobserver reliability were measured. Intraclass correlation coefficients between operators and between observers for thickness of the diaphragm and quadriceps were greater than 0.95, indicating excellent interoperator and interobserver reliability. Patients receiving assist-control ventilation (n = 4) showed a mean decline in diaphragm thickness of 4.7% per day. Patients receiving pressure support ventilation (n = 8) showed a mean increase in diaphragm thickness of 1.5% per day. Quadriceps thickness declined in all participants (n = 8) at a mean rate of 2.0% per day. Use of ultrasound to measure thickness of the diaphragm in 8 intensive care patients undergoing various modes of mechanical ventilation was feasible and yielded reproducible results. Ultrasound tracking of changes in thickness of the diaphragm in this small sample indicated that the thickness decreased during assist-control mode and increased during pressure support mode. ©2016 American Association of Critical-Care Nurses.
NASA Astrophysics Data System (ADS)
Deem, Eric; Cattafesta, Louis; Zhang, Hao; Rowley, Clancy
2016-11-01
Closed-loop control of flow separation requires the spatio-temporal states of the flow to be fed back through the controller in real time. Previously, static and dynamic estimation methods have been employed that provide reduced-order model estimates of the POD-coefficients of the flow velocity using surface pressure measurements. However, this requires a "learning" dataset a priori. This approach is effective as long as the dynamics during control do not stray from the learning dataset. Since only a few dynamical features are required for feedback control of flow separation, many of the details provided by full-field snapshots are superfluous. This motivates a state-observation technique that extracts key dynamical features directly from surface pressure, without requiring PIV snapshots. The results of identifying DMD modes of separated flow through an array of surface pressure sensors in real-time are presented. This is accomplished by employing streaming DMD "on the fly" to surface pressure snapshots. These modal characteristics exhibit striking similarities to those extracted from PIV data and the pressure field obtained via solving Poisson's equation. Progress towards closed-loop separation control based on the dynamic modes of surface pressure will be discussed. Supported by AFOSR Grant FA9550-14-1-0289.
ten Brink, Fia; Duke, Trevor; Evans, Janine
2013-09-01
The aim of this study was to compare the use of high-flow nasal prong oxygen therapy to nasopharyngeal continuous positive airway pressure in a PICU at a tertiary hospital; to understand the safety and effectiveness of high-flow nasal prong therapy; in particular, what proportion of children require escalation of therapy, whether any bedside monitoring data predict stability or need for escalation, and complications of the therapies. This was a prospective observational study of the first 6 months after the introduction of high-flow nasal prong oxygen therapy at the Royal Children's Hospital in Melbourne. Data were collected on all children who were managed with either high-flow nasal prong oxygen therapy or nasopharyngeal continuous positive airway pressure. The mode of respiratory support was determined by the treating medical staff. Data were collected on each patient before the use of high-flow nasal prong or nasopharyngeal continuous positive airway pressure, at 2 hours after starting the therapy, and the children were monitored and data collected until discharge from the ICU. Therapy was considered to be escalated if children on high-flow nasal prong required a more invasive form or higher level of respiratory support, including nasopharyngeal continuous positive airway pressure or mask bilevel positive airway pressure or endotracheal intubation and mechanical ventilation. Therapy was considered to be escalated if children on nasopharyngeal continuous positive airway pressure required bilevel positive airway pressure or intubation and mechanical ventilation. As the first mode of respiratory support, 72 children received high-flow nasal prong therapy and 37 received nasopharyngeal continuous positive airway pressure. Forty-four patients (61%) who received high-flow nasal prong first were weaned to low-flow oxygen or to room air and 21 (29%) required escalation of respiratory support, compared with children on nasopharyngeal continuous positive airway pressure: 21 (57%) weaned successfully and 9 (24%) required escalation. Repeated treatment and crossover were common in this cohort. Throughout the study duration, escalation to a higher level of respiratory support was needed in 26 of 100 high-flow nasal prong treatment episodes (26%) and in 10 of 55 continuous positive airway pressure episodes (18%; p = 0.27). The need for escalation could be predicted by two of failure of normalization of heart rate and respiratory rate, and if the FIO2 did not fall to lower than 0.5, 2 hours after starting high-flow nasal prong therapy. Nasopharyngeal continuous positive airway pressure was required for significantly longer periods than high-flow nasal prong (median 48 and 18 hours, respectively; p ≤ 0.001). High-flow nasal prong therapy is a safe form of respiratory support for children with moderate-to-severe respiratory distress, across a large range of diagnoses, whose increased work of breathing or hypoxemia is not relieved by standard oxygen therapy. About one quarter of all children will require escalation to another form of respiratory support. This can be predicted by simple bedside observations.
Raman Spectroscopy of Water-rich Stishovite and Dense High-Pressure Silica up to 55 GPa
NASA Astrophysics Data System (ADS)
Nisr, C.; Shim, S. H.; Leinenweber, K. D.; Chizmeshya, A. V.
2017-12-01
Recent studies have shown that mineral phases such as δ-AlOOH, (Mg,Si)OOH, (Mg,Si,Al)OOH, (Al,Si)O2 and SiO2 with rutile-type or modified rutile-type crystal structures can store large amounts of water and be stable at high pressure and high temperature relevant to the Earth's lower mantle. The Al-H charge coupled substitution has been proposed to explain the large storage capacity of these phases. However, the substitution cannot explain the large water storage found in pure stishovite (Spektor et al., 2011). Instead, an octahedral version of hydrogarnet-like substitution has been proposed for the incorporation of hydrogen in pure stishovite. We have performed Raman spectroscopy measurements on pure hydrous stishovite with 3.2 wt% water up to 55 GPa. At ambient pressure, we found that the OH stretching mode frequencies range between those of low-water aluminous stishovite and δ-AlOOH, suggesting an intermediate strength of hydrogen bonding between these two phases. In the lattice mode range, we observe modes similar to the IR-active modes of anhydrous stishovite after decompression to 1 bar, suggesting Si defects in the crystal structure that activate the inactive modes. Our data show a series of changes at pressures between 24 and 28 GPa, supporting our observation of a phase transition (likely to the CaCl2 type) in X-Ray diffraction measurements (Nisr et al., 2017, JGR). We found that the OH mode of hydrous stishovite has a positive frequency shift with an increase in pressure. The behavior is the opposite to that found in δ-AlOOH, indicating that the OH incorporation mechanism in hydrous silica is different from that of aluminous low-water stishovite and δ-AlOOH, likely through direct substitution (Si ⇄ 4H+). Because the mantle hydrous phases would have complex compositions, our study suggests that the direct substitution should also be considered together with the Al substitution for the deep mantle storage of water.
Matsuo, Junko; Sugama, Junko; Sanada, Hiromi; Okuwa, Mayumi; Nakatani, Toshio; Konya, Chizuko; Sakamoto, Jirou
2011-05-01
Pressure ulcers are a common problem, especially in older patients. In Japan, most institutionalized older people are malnourished and show extreme bony prominence (EBP). EBP is a significant factor in the development of pressure ulcers due to increased interface pressure concentrated at the skin surface over the EBP. The use of support surfaces is recommended for the prophylaxis of pressure ulcers. However, the present equivocal criteria for evaluating the pressure redistribution of support surfaces are inadequate. Since pressure redistribution is influenced by physique and posture, evaluations using human subjects are limited. For this reason, models that can substitute for humans are necessary. We developed a new EBP model based on the anthropometric measurements, including pelvic inclination, of 100 bedridden elderly people. A comparison between the pressure distribution charts of our model and bedridden elderly subjects demonstrated that maximum contact pressure values, buttock contact pressure values, and bone prominence rates corresponded closely. This indicates that the model provides a good approximation of the features of elderly people with EBP. We subsequently examined the validity of the model through quantitative assessment of pressure redistribution functions consisting of immersion, envelopment, and contact area change. The model was able to detect differences in the hardness of urethane foam, differences in the internal pressure of an air mattress, and sequential changes during the pressure switching mode. These results demonstrate the validity of our new buttock model in evaluating pressure redistribution for a variety of surfaces. Copyright © 2010 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Becker, Markus M.; Hoder, Tomas; Loffhagen, Detlef
2014-10-01
Recently, an asymmetric dielectric barrier discharge ignited in atmospheric pressure argon in a single filament configuration has been analysed by experiments and modelling [1,2]. A special feature of the discharge under consideration is the occurrence of two different discharge modes at different amplitudes of the sinusoidal voltage supply. At voltages below the critical voltage of 2 kV ordinary filamentary discharges occur, while at higher voltages discharges with striated filaments emerge. In the present contribution the mode transition is investigated with respect to the electrical characteristics as well as the electron energy budget by means of numerical modelling. It is found that the mode transition caused by an increase of the voltage amplitude is accompanied by a non-linear change of the power density and a marked rise of the electron energy gain in chemo-ionization processes. This work was partly supported by the German Research Foundation within the Collaborative Research Centre Transregio 24.
Performance of an untethered micro-optical pressure sensor
NASA Astrophysics Data System (ADS)
Ioppolo, Tindaro; Manzo, Maurizio; Krueger, Paul
2012-11-01
We present analytical and computational studies of the performance of a novel untethered micro-optical pressure sensor for fluid dynamics measurements. In particular, resolution and dynamic range will be presented. The sensor concept is based on the whispering galley mode (WGM) shifts that are observed in micro-scale dielectric optical cavities. A micro-spherical optical cavity (liquid or solid) is embedded in a thin polymeric sheet. The applied external pressure perturbs the morphology of the optical cavity leading to a shift in its optical resonances. The optical sensors are interrogated remotely, by embedding quantum dots or fluorescent dye in the micro-optical cavity. This allows a free space coupling of excitation and monitoring of the optical modes without the need of optical fibers or other cabling. With appropriate excitation and monitoring equipment, the micro-scale sensors can be distributed over a surface (e.g., including flexible biological surfaces) to monitor the local pressure field. We acknowledge the financial support from the National Science Foundation through grant CBET-1133876 with Dr. Horst Henning Winter as the program director.
Parameter identification of a rotor supported in a pressurized bearing lubricated with water
NASA Technical Reports Server (NTRS)
Grant, John W.; Muszynska, Agnes; Bently, Donald E.
1994-01-01
A rig for testing an externally pressurized (hydrostatic), water-lubricated bearing was developed. Applying a nonsynchronous sweep frequency, rotating perturbation force with a constant amplitude as an input, rotor vibration response data was acquired in Bode and Dynamic Stiffness formats. Using this data, the parameters of the rotor/bearing system were identified. The rotor/bearing model was represented by the generalized (modal) parameters of the first lateral mode, with the rotational character of the fluid force taken into account.
PyzoFlex: a printed piezoelectric pressure sensing foil for human machine interfaces
NASA Astrophysics Data System (ADS)
Zirkl, M.; Scheipl, G.; Stadlober, B.; Rendl, C.; Greindl, P.; Haller, M.; Hartmann, P.
2013-09-01
Ferroelectric material supports both pyro- and piezoelectric effects that can be used for sensing pressures on large, bended surfaces. We present PyzoFlex, a pressure-sensing input device that is based on a ferroelectric material (PVDF:TrFE). It is constructed by a sandwich structure of four layers that can easily be printed on any substrate. The PyzoFlex foil is sensitive to pressure- and temperature changes, bendable, energy-efficient, and it can easily be produced by a screen-printing routine. Even a hovering input-mode is feasible due to its pyroelectric effect. In this paper, we introduce this novel, fully printed input technology and discuss its benefits and limitations.
NASA Astrophysics Data System (ADS)
Lee, Scott A.
2014-03-01
High-pressure Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the low-frequency vibrational modes of crystalline cytidine at 295 K by evaluating the logarithmic derivative of the vibrational frequency with respect to pressure: 1/ω dω/dP. Crystalline samples of molecular materials such as cytidine have vibrational modes that are localized within a molecular unit (``internal'' modes) as well as modes in which the molecular units vibrate against each other (``external'' modes). The value of the logarithmic derivative is a diagnostic probe of the nature of the eigenvector of the vibrational modes, making high pressure experiments a very useful probe for such studies. Internal stretching modes have low logarithmic derivatives while external as well as internal torsional and bending modes have higher logarithmic derivatives. All of the Raman modes below 200 cm-1 in cytidine are found to have high logarithmic derivatives, consistent with being either external modes or internal torsional or bending modes.
Fast ion beta limit measurements by collimated neutron detection in MST plasmas
NASA Astrophysics Data System (ADS)
Capecchi, William; Anderson, Jay; Bonofiglo, Phillip; Kim, Jungha; Sears, Stephanie
2015-11-01
Fast ion orbits in the reversed field pinch (RFP) are well ordered and classically confined despite magnetic field stochasticity generated by multiple tearing modes. Classical TRANSP modeling of a 1MW tangentially injected hydrogen neutral beam in MST deuterium plasmas predicts a core-localized fast ion density that can be up to 25% of the electron density and a fast ion beta of many times the local thermal beta. However, neutral particle analysis of an NBI-driven mode (presumably driven by a fast ion pressure gradient) shows mode-induced transport of core-localized fast ions and a saturated fast ion density. The TRANSP modeling is presumed valid until the onset of the beam-driven mode and gives an initial estimate of the volume-averaged fast ion beta of 1-2% (local core value up to 10%). A collimated neutron detector for fusion product profile measurements will be used to determine the spatial distribution of fast ions, allowing for a first measurement of the critical fast-ion pressure gradient required for mode destabilization. Testing/calibration data and initial fast-ion profiles will be presented. Characterization of both the local and global fast ion beta will be done for deuterium beam injection into deuterium plasmas for comparison to TRANSP predictions. Work supported by US DOE.
NASA Technical Reports Server (NTRS)
Decker, A. J.
2001-01-01
A neural-net inspection process has been combined with a bootstrap training procedure and electronic holography to detect changes or damage in a pressure-cycled International Space Station cold plate to be used for cooling instrumentation. The cold plate was excited to vibrate in a normal mode at low amplitude, and the neural net was trained by example to flag small changes in the mode shape. The NDE (nondestructive-evaluation) technique is straightforward but in its infancy; its applications are ad-hoc and uncalibrated. Nevertheless previous research has shown that the neural net can detect displacement changes to better than 1/100 the maximum displacement amplitude. Development efforts that support the NDE technique are mentioned briefly, followed by descriptions of electronic holography and neural-net processing. The bootstrap training procedure and its application to detection of damage in a pressure-cycled cold plate are discussed. Suggestions for calibrating and quantifying the NDE procedure are presented.
2012-01-01
Background Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Methods Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Results Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. Conclusions The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may provide an alternative to pressure support in circumstances where NIV is not available or poorly tolerated. PMID:23031537
Instability of rectangular jets
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Thies, Andrew T.
1993-01-01
The instability of rectangular jets is investigated using a vortex-sheet model. It is shown that such jets support four linearly independent families of instability waves. Within each family there are infinitely many modes. A way to classify these modes according to the characteristics of their mode shapes or eigenfunctions is proposed. It is demonstrated that the boundary element method can be used to calculate the dispersion relations and eigenfunctions of these instability wave modes. The method is robust and efficient. A parametric study of the instability wave characteristics has been carried out. A sample of the numerical results is reported here. It is found that the first and third modes of each instability wave family are corner modes. The pressure fluctuations associated with these instability waves are localized near the corners of the jet. The second mode, however, is a center mode with maximum fluctuations concentrated in the central portion of the jet flow. The center mode has the largest spatial growth rate. It is anticipated that as the instability waves propagate downstream the center mode would emerge as the dominant instability of the jet.
The influence of gas pressure on E↔H mode transition in argon inductively coupled plasmas
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Zhang, Zhong-kai; Cao, Jin-xiang; Liu, Yu; Yu, Peng-cheng
2018-03-01
Considering the gas pressure and radio frequency power change, the mode transition of E↔H were investigated in inductively coupled plasmas. It can be found that the transition power has almost the same trend decreasing with gas pressure, whether it is in H mode or E mode. However, the transition density increases slowly with gas pressure from E to H mode. The transition points of E to H mode can be understood by the propagation of electromagnetic wave in the plasma, while the H to E should be illustrated by the electric field strength. Moreover, the electron density, increasing with the pressure and power, can be attributed to the multiple ionization, which changes the energy loss per electron-ion pair created. In addition, the optical emission characteristics in E and H mode is also shown. The line ratio of I750.4 and I811.5, taken as a proxy of the density of metastable state atoms, was used to illustrate the hysteresis. The 750.4 nm line intensity, which has almost the same trend with the 811.5 nm line intensity in H mode, both of them increases with power but decreases with gas pressure. The line ratio of 811.5/750.4 has a different change rule in E mode and H mode, and at the transition point of H to E, it can be one significant factor that results in the hysteresis as the gas pressure change. And compared with the 811.5 nm intensity, it seems like a similar change rule with RF power in E mode. Moreover, some emitted lines with lower rate constants don't turn up in E mode, while can be seen in H mode because the excited state atom density increasing with the electron density.
Effect of fuel injection pressure on a heavy-duty diesel engine nonvolatile particle emission.
Lähde, Tero; Rönkkö, Topi; Happonen, Matti; Söderström, Christer; Virtanen, Annele; Solla, Anu; Kytö, Matti; Rothe, Dieter; Keskinen, Jorma
2011-03-15
The effects of the fuel injection pressure on a heavy-duty diesel engine exhaust particle emissions were studied. Nonvolatile particle size distributions and gaseous emissions were measured at steady-state engine conditions while the fuel injection pressure was changed. An increase in the injection pressure resulted in an increase in the nonvolatile nucleation mode (core) emission at medium and at high loads. At low loads, the core was not detected. Simultaneously, a decrease in soot mode number concentration and size and an increase in the soot mode distribution width were detected at all loads. Interestingly, the emission of the core was independent of the soot mode concentration at load conditions below 50%. Depending on engine load conditions, growth of the geometric mean diameter of the core mode was also detected with increasing injection pressure. The core mode emission and also the size of the mode increased with increasing NOx emission while the soot mode size and emission decreased simultaneously.
Current/Pressure Profile Effects on Tearing Mode Stability in DIII-D Hybrid Discharges
NASA Astrophysics Data System (ADS)
Kim, K.; Park, J. M.; Murakami, M.; La Haye, R. J.; Na, Yong-Su
2015-11-01
It is important to understand the onset threshold and the evolution of tearing modes (TMs) for developing a high-performance steady state fusion reactor. As initial and basic comparisons to determine TM onset, the measured plasma profiles (such as temperature, density, rotation) were compared with the calculated current profiles between a pair of discharges with/without n=1 mode based on the database for DIII-D hybrid plasmas. The profiles were not much different, but the details were analyzed to determine their characteristics, especially near the rational surface. The tearing stability index calculated from PEST3, Δ' tends to increase rapidly just before the n=1 mode onset for these cases. The modeled equilibrium with varying pressure or current profiles parametrically based on the reference discharge is reconstructed for checking the onset dependency on Δ' or neoclassical effects such as bootstrap current. Simulations of TMs with the modeled equilibrium using resistive MHD codes will also be presented and compared with experiments to determine the sensibility for predicting TM onset. Work supported by US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.
Usuda, Takashi; Kobayashi, Naoki; Takeda, Sunao; Kotake, Yoshifumi
2010-01-01
We have developed the non-invasive blood pressure monitor which can measure the blood pressure quickly and robustly. This monitor combines two measurement mode: the linear inflation and the linear deflation. On the inflation mode, we realized a faster measurement with rapid inflation rate. On the deflation mode, we realized a robust noise reduction. When there is neither noise nor arrhythmia, the inflation mode incorporated on this monitor provides precise, quick and comfortable measurement. Once the inflation mode fails to calculate appropriate blood pressure due to body movement or arrhythmia, then the monitor switches automatically to the deflation mode and measure blood pressure by using digital signal processing as wavelet analysis, filter bank, filter combined with FFT and Inverse FFT. The inflation mode succeeded 2440 measurements out of 3099 measurements (79%) in an operating room and a rehabilitation room. The new designed blood pressure monitor provides the fastest measurement for patient with normal circulation and robust measurement for patients with body movement or severe arrhythmia. Also this fast measurement method provides comfortableness for patients.
Dependence of Edge Profiles and Stability on Neutral Beam Power in NSTX
NASA Astrophysics Data System (ADS)
Travis, P.; Canal, G. P.; Osborne, T. H.; Maingi, R.; Sabbagh, S. A.; NSTX-U Team
2016-10-01
Studying the effect of neutral beam injected (NBI) power on edge plasma profiles and magnetohydrodynamic (MHD) stability is central to the understanding of edge-localized modes (ELMs). Higher heating power should quicken the development of pressure and current-driven peeling-ballooning modes. NSTX ELMy H-mode discharges with NBI power of 4, 5 and 6 MW were analyzed with a python-based set of analysis tools that fit plasma profiles, compute kinetic equilibria, and evaluate the MHD stability with the code ELITE. Electron density and temperature from Thomson scattering measurements, and ion density, temperature, and rotation from Charge Exchange Recombination Spectroscopy were inputs to the kinetic equilibrium fits. The power scan provides an opportunity to compare the stability calculations from the ELITE (ideal) and M3D-C1 (resistive) codes. Preliminary analysis shows that edge pressure profiles for the 5 and 6 MW discharges are comparable, suggesting they both reach a stability boundary. The 4 MW case shows lower edge pressure, which is likely limited by edge transport below the edge stability boundary. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.
The Relationships Between ELM Suppression, Pedestal Profiles, and Lithium Wall Coatings in NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.P. Boyle, R. Maingi, P.B. Snyder, J. Manickam, T.H. Osborne, R.E. Bell, B.P. LeBlanc, and the NSTX Team
2012-08-17
Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated to wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao; Yu, Peng-Cheng; Liu, Yu
2015-10-15
In our experiment, the transition points between the two operational modes of capacitive coupling (E mode) and inductive coupling (H mode) were investigated at a wide range of mercury vapor pressures in an inductively coupled plasma, varying with the input radio-frequency powers and the total filling pressures (10 Pa–30 Pa). The electron temperatures were calculated versus with the mercury vapor pressures for different values of the total filling pressures. The transition power points and electron density also were measured in this study. It is shown that the transition powers, whether the E to H mode transition or the H to E modemore » transition, are lower than that of the argon discharge, and these powers almost increase with the mercury vapor pressure rising. However, the transition electron density follows an inverse relationship with the mercury vapor pressures compared with the transition powers. In addition, at the lower pressures and higher mercury vapor pressures, an inverse hysteresis was observed clearly, which did not appear in the argon gas plasma. We suggest that all these results are attributed to the electron-neutral collision frequency changed with the additional mercury vapor pressures.« less
Pad-mode-induced instantaneous mode instability for simple models of brake systems
NASA Astrophysics Data System (ADS)
Oberst, S.; Lai, J. C. S.
2015-10-01
Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.
Modes of mechanical ventilation for the operating room.
Ball, Lorenzo; Dameri, Maddalena; Pelosi, Paolo
2015-09-01
Most patients undergoing surgical procedures need to be mechanically ventilated, because of the impact of several drugs administered at induction and during maintenance of general anaesthesia on respiratory function. Optimization of intraoperative mechanical ventilation can reduce the incidence of post-operative pulmonary complications and improve the patient's outcome. Preoxygenation at induction of general anaesthesia prolongs the time window for safe intubation, reducing the risk of hypoxia and overweighs the potential risk of reabsorption atelectasis. Non-invasive positive pressure ventilation delivered through different interfaces should be considered at the induction of anaesthesia morbidly obese patients. Anaesthesia ventilators are becoming increasingly sophisticated, integrating many functions that were once exclusive to intensive care. Modern anaesthesia machines provide high performances in delivering the desired volumes and pressures accurately and precisely, including assisted ventilation modes. Therefore, the physicians should be familiar with the potential and pitfalls of the most commonly used intraoperative ventilation modes: volume-controlled, pressure-controlled, dual-controlled and assisted ventilation. Although there is no clear evidence to support the advantage of any one of these ventilation modes over the others, protective mechanical ventilation with low tidal volume and low levels of positive end-expiratory pressure (PEEP) should be considered in patients undergoing surgery. The target tidal volume should be calculated based on the predicted or ideal body weight rather than on the actual body weight. To optimize ventilation monitoring, anaesthesia machines should include end-inspiratory and end-expiratory pause as well as flow-volume loop curves. The routine administration of high PEEP levels should be avoided, as this may lead to haemodynamic impairment and fluid overload. Higher PEEP might be considered during surgery longer than 3 h, laparoscopy in the Trendelenburg position and in patients with body mass index >35 kg/m(2). Large randomized trials are warranted to identify subgroups of patients and the type of surgery that can potentially benefit from specific ventilation modes or ventilation settings. Copyright © 2015 Elsevier Ltd. All rights reserved.
A computer model of the pediatric circulatory system for testing pediatric assist devices.
Giridharan, Guruprasad A; Koenig, Steven C; Mitchell, Michael; Gartner, Mark; Pantalos, George M
2007-01-01
Lumped parameter computer models of the pediatric circulatory systems for 1- and 4-year-olds were developed to predict hemodynamic responses to mechanical circulatory support devices. Model parameters, including resistance, compliance and volume, were adjusted to match hemodynamic pressure and flow waveforms, pressure-volume loops, percent systole, and heart rate of pediatric patients (n = 6) with normal ventricles. Left ventricular failure was modeled by adjusting the time-varying compliance curve of the left heart to produce aortic pressures and cardiac outputs consistent with those observed clinically. Models of pediatric continuous flow (CF) and pulsatile flow (PF) ventricular assist devices (VAD) and intraaortic balloon pump (IABP) were developed and integrated into the heart failure pediatric circulatory system models. Computer simulations were conducted to predict acute hemodynamic responses to PF and CF VAD operating at 50%, 75% and 100% support and 2.5 and 5 ml IABP operating at 1:1 and 1:2 support modes. The computer model of the pediatric circulation matched the human pediatric hemodynamic waveform morphology to within 90% and cardiac function parameters with 95% accuracy. The computer model predicted PF VAD and IABP restore aortic pressure pulsatility and variation in end-systolic and end-diastolic volume, but diminish with increasing CF VAD support.
Colombo, Davide; Cammarota, Gianmaria; Bergamaschi, Valentina; De Lucia, Marta; Corte, Francesco Della; Navalesi, Paolo
2008-11-01
Neurally adjusted ventilatory assist (NAVA) is a new mode wherein the assistance is provided in proportion to diaphragm electrical activity (EAdi). We assessed the physiologic response to varying levels of NAVA and pressure support ventilation (PSV). ICU of a University Hospital. Fourteen intubated and mechanically ventilated patients. DESIGN AND PROTOCOL: Cross-over, prospective, randomized controlled trial. PSV was set to obtain a VT/kg of 6-8 ml/kg with an active inspiration. NAVA was matched with a dedicated software. The assistance was decreased and increased by 50% with both modes. The six assist levels were randomly applied. Arterial blood gases (ABGs), tidal volume (VT/kg), peak EAdi, airway pressure (Paw), neural and flow-based timing. Asynchrony was calculated using the asynchrony index (AI). There was no difference in ABGs regardless of mode and assist level. The differences in breathing pattern, ventilator assistance, and respiratory drive and timing between PSV and NAVA were overall small at the two lower assist levels. At the highest assist level, however, we found greater VT/kg (9.1 +/- 2.2 vs. 7.1 +/- 2 ml/kg, P < 0.001), and lower breathing frequency (12 +/- 6 vs. 18 +/- 8.2, P < 0.001) and peak EAdi (8.6 +/- 10.5 vs. 12.3 +/- 9.0, P < 0.002) in PSV than in NAVA; we found mismatch between neural and flow-based timing in PSV, but not in NAVA. AI exceeded 10% in five (36%) and no (0%) patients with PSV and NAVA, respectively (P < 0.05). Compared to PSV, NAVA averted the risk of over-assistance, avoided patient-ventilator asynchrony, and improved patient-ventilator interaction.
Gulczyńska, Ewa; Zjawiona, Agnieszka; Sobolewska, Barbara; Gadzinowski, Janusz
2002-01-01
The authors compared efficacy of two different NCPAP techniques in VLBW newborn with respiratory insufficiency. Among the patients with IFD support the higher weaning rate and the lower supplemental oxygen requirement as well as secondary infections incidents was observed.
NASA Astrophysics Data System (ADS)
Tyagi, Shekhar; Sharma, Gaurav; Sathe, Vasant G.
2018-03-01
The competition and cooperation between ferroelectric and anti-ferro-distortion (AFD) instabilities are studied using pressure dependent Raman spectroscopy on polycrystalline powder samples of Sr1-x Ca x TiO3(x = 0.0, 0.06, 0.25, 0.35). For x = 0.0 composition, a broad polar mode is detected in the Raman spectra above 6 GPa, while for x = 0.06 composition, the polar modes appear well above 9 GPa where the AFD modes showed strong suppression. In x = 0.25 and 0.35 composition, the application of small pressure resulted in the appearance of strong AFD modes suppressing the polar modes. At elevated pressures, re-entrant polar modes are observed along with the broad AFD modes and some new peaks are also observed, signifying the lowering of local symmetry. The reappearance of polar modes is found to be related to pressure induced symmetry disorder at local level, suggesting its electronic origin. The re-entrant polar modes observed at higher pressure values are found to be significantly broad and asymmetric in nature, signifying the development of ferroelectric micro regions/nano domains coexisting with AFD. The lower symmetry at local length scale provides a conducive atmosphere for coexisting AFD and FE instabilities.
Mosquitoes drink with a burst in reserve: explaining pumping behavior with a fluid mechanics model
NASA Astrophysics Data System (ADS)
Chatterjee, Souvick; Socha, Jake; Stremler, Mark
2014-11-01
Mosquitoes drink using a pair of in-line pumps in the head that draw liquid food through the proboscis. Experimental observations with synchrotron x-ray imaging indicate two modes of drinking: a predominantly occurring continuous mode, in which the cibarial and pharyngeal pumps expand cyclically at a constant phase difference, and an occasional, isolated burst mode, in which the pharyngeal pump expansion is 10 to 30 times larger than in the continuous mode. We have used a reduced order model of the fluid mechanics to hypothesize an explanation of this variation in drinking behavior. Our model results show that the continuous mode is more energetically efficient, whereas the burst mode creates a large pressure drop across the proboscis, which could potentially be used to clear blockages. Comparisons with pump knock-out configurations demonstrate different functional roles of the pumps in mosquito feeding. This material is based upon work supported by the NSF under Grant No. #0938047.
Composite Overwrapped Pressure Vessels, A Primer
NASA Technical Reports Server (NTRS)
McLaughlan, Pat B.; Forth, Scott C.; Grimes-Ledesma, Lorie R.
2011-01-01
Due to the extensive amount of detailed information that has been published on composite overwrapped pressure vessels (COPVs), this document has been written to serve as a primer for those who desire an elementary knowledge of COPVs and the factors affecting composite safety. In this application, the word "composite" simply refers to a matrix of continuous fibers contained within a resin and wrapped over a pressure barrier to form a vessel for gas or liquid containment. COPVs are currently used at NASA to contain high pressure fluids in propulsion, science experiments, and life support applications. They have a significant weight advantage over all metal vessels but require unique design, manufacturing, and test requirements. COPVs also involve a much more complex mechanical understanding due to the interplay between the composite overwrap and the inner liner. A metallic liner is typically used in a COPV as a fluid permeation barrier. The liner design concepts and requirements have been borrowed from all-metal vessels. However, application of metallic vessel design standards to a very thin liner is not straightforward. Different failure modes exist for COPVs than for all-metal vessels, and understanding of these failure modes is at a much more rudimentary level than for metal vessels.
Apparatus and method for batch-wire continuous pumping
Fassbender, Alexander G.
1996-01-01
The apparatus of the present invention contains at least one pressure vessel having a separator defining two chambers within each pressure vessel. The separator slideably seals the two chambers. Feedstock is placed within a second chamber adjoining the first chamber via a feedstock pump operating in a high volume low head mode. A pressurizer operates in a low volume high pressure mode to pressurize the working fluid and the feedstock in the pressure vessels to a process operating pressure. A circulating pump operates in a high volume, low head mode to circulate feedstock through the process. A fourth pump is used for moving feedstock and product at a pressure below the process operating pressure.
Aeroelastic character of a National Aerospace Plane demonstrator concept
NASA Technical Reports Server (NTRS)
Spain, Charles V.; Zeiler, Thomas A.; Gibbons, Michael D.; Soistmann, David L.; Pozefsky, Peter; Dejesus, Rafael O.; Brannon, Cyprian P.
1993-01-01
The paper provides an analytical assessment of the flutter character of an unclassified National Aerospace Plane configuration known as the demonstrator. Linear subsonic, supersonic, and hypersonic analysis indicate that the vehicle is prone to body-freedom flutter resulting from the decrease in vibration frequency of the all-moveable wing at high flight dynamic pressures. As the wing-pivot frequency decreases, it couples with the vehicle short-period mode resulting in dynamic instability. A similar instability sometimes occurs when the pivot mode couples with the fuselage-bending mode. Also assessed, for supersonic flight conditions, are configuration variations that include relocation of the wing further aft on the lifting-body fuselage, and the addition of body flaps to the rear of the vehicle. These changes are destabilizing because they result in severe wing-pivot/fuselage-bending instabilities at dynamic pressures lower than the instabilities indicated for the original demonstrator. Finally, a two-point wing support and actuation system concept is proposed for the National Aerospace Plane, which if developed may (according to cursory analysis) enhance overall stability.
NASA Astrophysics Data System (ADS)
Pease, A. M.; Gramsch, S. A.
2017-12-01
Humite group minerals n(Mg.Fe)2SiO4 - (Mg,Fe)(OH)2 have been suggested as possible candidates for water storage and transport in the mantle, and clinohumite in particular has been proposed as the source of ilmenite lamellae in Alpine ultrahigh pressure metamorphic terranes via its decomposition at high pressure and temperature. In this study, a comparison is made between the Raman spectra of norbergite (n = 1) and clinohumite (n = 4) up to 15 GPa to correlate the structural and vibrational properties of these two members of the group. All observed vibrational modes in the Raman spectra of both minerals increase in frequency with pressure, although the change in frequencies with pressure is much steeper in norbergite than for clinohumite. In norbergite, antisymmetric stretching modes of the SiO4 tetrahedra merge, but no such merging of modes occurs in clinohumite. In addition, the intensity of the antisymmetric stretching mode for clinohumite decreases dramatically in pressure compared to the intensity of the symmetric stretching mode. In the spectra of norbergite, these two modes retain their relative intensities with increasing pressure. The most striking difference between the spectra of norbergite and clinohumite is in the deformation modes of the brucite layer, which within the clinohumite structure retain their intensities with increasing pressure, while these modes are not observed in the spectra of norbergite. The nature of the Raman spectra and their evolution with pressure are correlated with the structural properties of the two minerals in terms of the interactions between olivine and brucite layers and the crystal chemistry of the humite group minerals.
Vibration modes interference in the MEMS resonant pressure sensor
NASA Astrophysics Data System (ADS)
Zhang, Fangfang; Li, Anlin; Bu, Zhenxiang; Wang, Lingyun; Sun, Daoheng; Du, Xiaohui; Gu, Dandan
2017-11-01
A new type of coupled balanced-mass double-ended tuning fork resonator (CBDETF) pressure sensor is fabricated and tested. However, the low accuracy of the CBDETF pressure sensor is not satisfied to us. Based on systematic analysis and tests, the coupling effect between the operational mode and interference mode is considered to be the main cause for the sensor in accuracy. To solve this problem, the stiffness of the serpentine beams is increased to pull up the resonant frequency of the interfering mode and make it separate far from the operational mode. Finally, the accuracy of the CBDETF pressure sensor is improved from + /-0.5% to less than + /-0.03% of the Full Scale (F.S.).
Srivastava, Anmesh Kumar; Soni, Shyam Lal; Sharma, Dilip; Jain, Narayan Lal
2018-03-01
In this paper, the effect of injection pressure on the performance, emission, and combustion characteristics of a diesel-acetylene fuelled single cylinder, four-stroke, direct injection (DI) diesel engine with a rated power of 3.5 kW at a rated speed of 1500 rpm was studied. Experiments were performed in dual-fuel mode at four different injection pressures of 180, 190, 200, and 210 bar with a flow rate of 120 LPH of acetylene and results were compared with that of baseline diesel operation. Experimental results showed that highest brake thermal efficiency of 27.57% was achieved at injection pressure of 200 bar for diesel-acetylene dual-fuel mode which was much higher than 23.32% obtained for baseline diesel. Carbon monoxide, hydrocarbon, and smoke emissions were also measured and found to be lower, while the NO x emissions were higher at 200 bar in dual fuel mode as compared to those in other injection pressures in dual fuel mode and also for baseline diesel mode. Peak cylinder pressure, net heat release rate, and rate of pressure rise were also calculated and were higher at 200 bar injection pressure in dual fuel mode.
Jain, Rajnish K; Swaminathan, Srinivasan
2013-09-01
Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.
NASA Astrophysics Data System (ADS)
Bose, A.; Betti, R.; Woo, K. M.; Christopherson, A. R.; Shvarts, D.
2015-11-01
The impact of intermediate- and low-mode nonuniformities on the performance of inertial confinement fusion (ICF) implosions is investigated by a detailed study of hot-spot energetics. It is found that low- (1 ~ 2) and intermediate-mode (1 >= 10) asymmetries affect the hot-spot hydrodynamics in very different ways. It is observed that for low-mode asymmetries, the fusion yield decreases because of a significant reduction in hot-spot pressure while the neutron-averaged hot-spot volume remains comparable to that of unperturbed (clean) simulations. On the other hand, implosions with moderate-amplitude, intermediate-wavelength modes, which are amplified by the Rayleigh-Taylor instability (RTI), exhibit a fusion-yield degradation primarily caused by a reduction in the burn volume without significant degradation of the pressure. For very large amplitudes, the intermediate modes show a ``secondary piston effect,'' where the converging RTI spikes compress a much smaller volume, allowing for a secondary conversion of the shell's kinetic energy to internal energy at a central region. Understanding the effects of nonuniformities on the hot-spot energetics provides valuable insight in determining the causes of performance degradation in current ICF experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).
NASA Astrophysics Data System (ADS)
Krivosheev, S. I.; Magazinov, S. G.; Alekseev, D. I.
2018-01-01
At interaction of super strong magnetic fields with a solenoid material, a specific mode of the material flow forms. To describe this process, magnetohydrodynamic approximation is traditionally used. The formation of plastic shock-waves in material in a rapidly increasing pressure of 100 GPa/μs, can significantly alter the distribution of the physical parameters in the medium and affect the flow modes. In this paper, an analysis of supporting results of numerical simulations in comparison with available experimental data is presented.
Prediction and realization of ITER-like pedestal pressure in the high- B tokamak Alcator C-Mod
NASA Astrophysics Data System (ADS)
Hughes, Jerry
2017-10-01
Fusion power in a burning plasma will scale as the square of the plasma pressure, which is increased in a straightforward way by increasing magnetic field: Pfus p2 B4 . Experiments on Alcator C-Mod, a compact high- B tokamak, have tested predictive capability for pedestal pressure, at toroidal field BT up to 8T , and poloidal field BP up to 1T . These reactor-like fields enable C-Mod to approach an ITER predicted value of 90kPa . This is expected if, as in the EPED model, the pedestal is constrained by onset of kinetic ballooning modes (KBMs) and peeling-ballooning modes (PMB), yielding a pressure pedestal approximately as pped BT ×BP . One successful path to high confinement on C-Mod is the high-density (ne > 3 ×1020m-3) approach, pursued using enhanced D-alpha (EDAs) H-mode. In EDA H-mode, transport regulates both the pedestal profiles and the core impurity content, holding the pedestal stationary, at just below the PBM stability boundary. We have extended this stationary ELM-suppressed regime to the highest magnetic fields achievable on C-Mod, and used it to approach the maximum pedestal predicted by EPED at high density: pped 60kPa . Another approach to high pressure utilizes a pedestal limited by PBMs at low collisionality, where pressure increases with density and EPED predicts access to a higher ``Super H'' solution for pped. Experiments at reduced density (ne < 2 ×1020m-3) and strong plasma shaping (δ > 0.5) accessed these regimes on C-Mod, producing pedestals with world record pped 80kPa , at Tped 2keV . In both the high and low density approaches, the impact of the pedestal on core performance is substantial. Our exploration of high pedestal regimes yielded a volume-averaged pressure 〈 p 〉 > 2atm , a world record value for a magnetic fusion device. The results hold promise for the projection of pedestal pressure and overall performance of high field burning plasma devices. Supported by U.S. Department of Energy awards DE-FC02-99ER54512, DE-FG02-95ER54309, DE-FC02-06ER54873, DE-AC02-09CH11466, DE-SC0007880 using Alcator C-Mod, a DOE Office of Science User Facility.
Control rod drive hydraulic system
Ose, Richard A.
1992-01-01
A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.
Modifications to JLab 12 GeV Refrigerator and Wide Range Mix Mode Performance Testing Results
NASA Astrophysics Data System (ADS)
Knudsen, P.; Ganni, V.; Hasan, N.; Dixon, K.; Norton, R.; Creel, J.
2017-02-01
Analysis of data obtained during the spring 2013 commissioning of the new 4.5 K refrigeration system at Jefferson Lab (JLab) for the 12 GeV upgrade indicated a wide capacity range with good efficiency and minimal operator interaction. Testing also showed that the refrigerator required higher liquid nitrogen (LN) consumption for its pre-cooler than anticipated by the design. This does not affect the capacity of the refrigerator, but it does result in an increased LN utility cost. During the summer of 2015 the modifications were implemented by the cold box manufacturer, according to a design similar to the JLab 12 GeV cold box specification. Subsequently, JLab recommissioned the cold box and performed extensive performance testing, ranging from 20% to 100% of the design maximum capacity, and in various modes of operation, ranging from pure refrigeration, pure liquefaction, half-and-half mix mode and at selected design modes using the Floating Pressure - Ganni Cycle. The testing demonstrated that the refrigerator system has a good and fairly constant performance over a wide capacity range and different modes of operation. It also demonstrated the modifications resulted in a LN consumption that met the design for the pure refrigeration mode (which is the most demanding) and was lower than the design for the nominal and maximum capacity modes. In addition, a pulsed-load test, similar to what is expected for cryogenic systems supporting fusion experiments, was conducted to observe the response using the Floating Pressure - Ganni Cycle, which was stable and robust. This paper will discuss the results and analysis of this testing pertaining to the LN consumption, the system efficiency over a wide range of capacity and different modes and the behaviour of the system to a pulsed load.
Dynamic Behavior of Spicules Inferred from Perpendicular Velocity Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rahul; Verth, Gary; Erdélyi, Robertus
2017-05-10
Understanding the dynamic behavior of spicules, e.g., in terms of magnetohydrodynamic (MHD) wave mode(s), is key to unveiling their role in energy and mass transfer from the photosphere to corona. The transverse, torsional, and field-aligned motions of spicules have previously been observed in imaging spectroscopy and analyzed separately for embedded wave-mode identification. Similarities in the Doppler signatures of spicular structures for both kink and torsional Alfvén wave modes have led to the misinterpretation of the dominant wave mode in these structures and is a subject of debate. Here, we aim to combine line- of-sight (LOS) and plane-of-sky (POS) velocity componentsmore » using the high spatial/temporal resolution H α imaging-spectroscopy data from the CRisp Imaging SpectroPolarimeter based at the Swedish Solar Telescope to achieve better insight into the underlying nature of these motions as a whole. The resultant three-dimensional velocity vectors and the other derived quantities (e.g., magnetic pressure perturbations) are used to identify the MHD wave mode(s) responsible for the observed spicule motion. We find a number of independent examples where the bulk transverse motion of the spicule is dominant either in the POS or along the LOS. It is shown that the counterstreaming action of the displaced external plasma due to spicular bulk transverse motion has a similar Doppler profile to that of the m = 0 torsional Alfvén wave when this motion is predominantly perpendicular to the LOS. Furthermore, the inferred magnetic pressure perturbations support the kink wave interpretation of observed spicular bulk transverse motion rather than any purely incompressible MHD wave mode, e.g., the m = 0 torsional Alfvén wave.« less
m=1 diocotron mode damping in the Electron Diffusion Gauge (EDG) experiment
NASA Astrophysics Data System (ADS)
Paul, Stephen F.; Morrison, Kyle A.; Davidson, Ronald C.; Jenkins, Thomas G.
2002-01-01
The evolution of the amplitude of the m=1 diocotron mode is used to measure the background neutral pressure in the Electron Diffusion Gauge (EDG), a Malmberg-Penning trap. Below 5×10-8 Torr, the dependence on pressure scales as P1/4, and is sensitive to pressure changes as small as ΔP=5×10-11 Torr. Previous studies on the EDG showed that the diocotron mode is more strongly damped at higher neutral pressures. Both the diocotron mode damping rate and the plasma expansion rate depend similarly on experimental parameters, i.e., conditions which favor expansion also favor suppression of the diocotron mode. The sensitivity of the mode evolution is examined as a function of the resistive growth driving conditions, which are controlled by the amount of wall resistance connected to the trap.
System and method for continuous solids slurry depressurization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leininger, Thomas Frederick; Steele, Raymond Douglas; Yen, Hsien-Chin William
A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a differencemore » between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.« less
A minimalist operating mode for UKIRT
NASA Astrophysics Data System (ADS)
Kerr, Tom; Davis, Gary R.; Craig, Simon C.; Walther, Craig; Chuter, Tim
2012-09-01
In late 2010, driven by funding pressure from its governing body, the United Kingdom Infrared Telescope (UKIRT) underwent the most significant operational change in its history culminating in a new "minimalist mode" operation. Since 13th December 2010 this telescope, situated at the summit of Mauna Kea, Hawaii, has been operated remotely from the Joint Astronomy Centre in Hilo, with a priority on completing the UKIRT Infrared Deep Sky Survey (UKIDSS) but also continued support of other international programmes. In mid-2012, while remaining in minimalist mode, the observatory plans to start a new and ambitious near-infrared survey of the northern sky called the UKIRT Hemisphere Survey. The change to minimalist mode has resulted in the following: the cost of running the observatory has been reduced from 3.9M to 2.0M yet despite the changes, which included a reduction in staff and support, the UKIRT continues to operate at 90% efficiency, a level it has operated at for the last several years. The fault rate remains extremely low (approximately 3%) and has not been affected by remote operations and up until February 2012 no time-losing faults were attributed to operating remotely. This paper discusses the motivations behind the change to minimalist mode, the new mode of operation itself, the effect, if any, of the change on operational efficiency and the challenges facing a remotely operated telescope at a remote mountain site.
High-pressure Raman study of vibrational spectra in crystalline acetanilide
NASA Astrophysics Data System (ADS)
Sakai, Masamichi; Kuroda, Noritaka; Nishina, Yuichiro
1993-01-01
We have studied the effect of pressure on the low-frequency lattice modes and the amide-I (N-CO stretching) vibrational modes in crystalline acetanilide (C6H5NHCOCH3) in the temperature range 80-300 K by means of Raman spectroscopy. The Raman intensity of the 1650-cm-1 band, which appears upon cooling, is enhanced by applying pressure. The energy difference between the amide-I phonon (Ag mode) and the 1650-cm-1 bands does not change appreciably under pressure up to at least 4 GPa. These results are analyzed in terms of the self-trapped model in which a single lattice mode couples with the amide-I excitation by taking into account the effect of pressure on the low-frequency lattice modes and on the dipole-dipole interactions associated with the amide-I vibration. A band is observed at 30 cm-1 below the amide-I phonon band at low temperatures with a pressure above ~2 GPa.
Visualization of the Mode Shapes of Pressure Oscillation in a Cylindrical Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xin; Qi, Yunliang; Wang, Zhi
Our work describes a novel experimental method to visualize the mode shapes of pressure oscillation in a cylindrical cavity. Acoustic resonance in a cavity is a grand old problem that has been under investigation (using both analytical and numerical methods) for more than a century. In this article, a novel method based on high speed imaging of combustion chemiluminescence was presented to visualize the mode shapes of pressure oscillation in a cylindrical cavity. By generating high-temperature combustion gases and strong pressure waves simultaneously in a cylindrical cavity, the pressure oscillation can be inferred due to the chemiluminescence emissions of themore » combustion products. We can then visualized the mode shapes by reconstructing the images based on the amplitudes of the luminosity spectrum at the corresponding resonant frequencies. Up to 11 resonant mode shapes were clearly visualized, each matching very well with the analytical solutions.« less
Acoustic modes in fluid networks
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.; Clark, Robert W., Jr.; Doiron, Harold H.
1992-01-01
Pressure and flow rate eigenvalue problems for one-dimensional flow of a fluid in a network of pipes are derived from the familiar transmission line equations. These equations are linearized by assuming small velocity and pressure oscillations about mean flow conditions. It is shown that the flow rate eigenvalues are the same as the pressure eigenvalues and the relationship between line pressure modes and flow rate modes is established. A volume at the end of each branch is employed which allows any combination of boundary conditions, from open to closed, to be used. The Jacobi iterative method is used to compute undamped natural frequencies and associated pressure/flow modes. Several numerical examples are presented which include acoustic modes for the Helium Supply System of the Space Shuttle Orbiter Main Propulsion System. It should be noted that the method presented herein can be applied to any one-dimensional acoustic system involving an arbitrary number of branches.
Russell, W C; Greer, J R
2000-11-01
To assess the subjective feeling of comfort of healthy volunteers breathing on various modes of ventilation used in intensive care. A randomized, prospective, double-blinded, crossover trial using volunteers. An intensive care unit (ICU) in a teaching hospital. We compared, by using healthy volunteers, the subjective feeling of comfort of three modes of ventilation used during the weaning phase of critical illness. We used healthy volunteers to avoid other distracting influences of intensive care that may confound the primary feeling of comfort. The modes we compared were synchronized intermittent mandatory ventilation, assisted spontaneous breathing, and biphasic positive airway pressure. The imposed ventilation was comparable with 50% of the volunteers' normal respiratory effort. The volunteers breathed via a mouthpiece through a ventilator circuit, and the modes of ventilation were introduced in a randomized manner. We measured visual analog scores for comfort for the three modes of ventilation and collected a ranking order and open-ended comments. We demonstrated that at the level of support we imposed, assisted spontaneous breathing was the most comfortable mode of ventilation and that synchronized intermittent mandatory ventilation was the most uncomfortable. These results were strongly supported by both the ranking scale and comments of the volunteers. Assisted spontaneous breathing was the most comfortable mode of ventilation because the pattern was primarily determined by the volunteer. Synchronized intermittent mandatory ventilation was the most uncomfortable because the ventilatory pattern was imposed on the volunteers, leading to ventilator-volunteer dyssynchrony. We also conclude there is wide individual variation in the subjective feeling of comfort. Whereas the mode of ventilation in ICUs is based primarily on the physiologic needs of the patient, the feeling of comfort may be considered when choosing an appropriate mode of ventilation during the weaning phase of critical illness.
Pressure Dependence of the Radial Breathing Mode of Carbon Nanotubes: The Effect of Fluid Adsorption
NASA Astrophysics Data System (ADS)
Longhurst, M. J.; Quirke, N.
2007-04-01
The pressure dependence of shifts in the vibrational modes of individual carbon nanotubes is strongly affected by the nature of the pressure transmitting medium as a result of adsorption at the nanotube surface. The adsorbate is treated as an elastic shell which couples with the radial breathing mode (RBM) of the nanotube via van der Waal interactions. Using analytical methods as well as molecular simulation, we observe a low frequency breathing mode for the adsorbed fluid at ˜50cm-1, as well as diameter dependent upshifts in the RBM frequency with pressure, suggesting metallic nanotubes may wet more than semiconducting ones.
The "Overdrive" Mode in the "Complete Vocal Technique": A Preliminary Study.
Sundberg, Johan; Bitelli, Maddalena; Holmberg, Annika; Laaksonen, Ville
2017-09-01
"Complete Vocal Technique," or CVT, is an internationally widespread method for teaching voice. It classifies voicing into four types, referred to as "vocal modes," one of which is called "Overdrive." The physiological correlates of these types are unclear. This study presents an attempt to analyze its voice source and formant frequency characteristics. A male and a female expert of CVT sang a set of "Overdrive" and falsetto tones on the syllable /pᴂ/. The voice source could be analyzed by inverse filtering in the case of the male subject. Results showed that subglottal pressure, measured as the oral pressure during /p/ occlusion, was low in falsetto and high in "Overdrive", and it was strongly correlated with each of the voice source parameters. These correlations could be described in terms of equations. The deviations from these equations of the different voice source parameters for the various voice samples suggested that "Overdrive" phonation was produced with stronger vocal fold adduction than the falsetto tones. Further, the subject was also found to tune the first formant to the second partial in "Overdrive" tones. The results support the conclusion that the method used, to compensate for the influence of subglottal pressure on the voice source, seems promising to use for analyses of other CVT vocal modes and also for other types of phonation. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Byrne, K. P.; Marshall, S. E.
1983-01-01
A procedure for experimentally determining, in terms of the particle motions, the shapes of the low order acoustic modes in enclosures is described. The procedure is based on finding differentiable functions which approximate the shape functions of the low order acoustic modes when these modes are defined in terms of the acoustic pressure. The differentiable approximating functions are formed from polynomials which are fitted by a least squares procedure to experimentally determined values which define the shapes of the low order acoustic modes in terms of the acoustic pressure. These experimentally determined values are found by a conventional technique in which the transfer functions, which relate the acoustic pressures at an array of points in the enclosure to the volume velocity of a fixed point source, are measured. The gradient of the function which approximates the shape of a particular mode in terms of the acoustic pressure is evaluated to give the mode shape in terms of the particle motion. The procedure was tested by using it to experimentally determine the shapes of the low order acoustic modes in a small rectangular enclosure.
High pressure far infrared spectroscopy of ionic solids
NASA Technical Reports Server (NTRS)
Lowndes, R. P.
1974-01-01
A high-pressure far-infrared cell operating at up to truly hydrostatic pressures of 8 kbar is described and used to determine the anharmonic self-energies associated with the transverse optic modes of ionic solids in which q approximately equals zero. The cell allows far-infrared studies in the spectral range below 120 reciprocal cm. The transverse optic modes were investigated to determine their mode Gruneisen constants and the pressure dependence of their inverse lifetimes in RbI, CsI, and TlCl.
Lattice vibrations and electronic transitions in the rare-earth metals: praseodymium under pressure.
Olijnyk, Helmut; Grosshans, Walter A; Jephcoat, Andrew P
2004-12-17
Praseodymium was investigated by Raman spectroscopy under pressure. A negative pressure shift of the E(2g) mode is observed in the dhcp phase, which indicates that the initial structural sequence hcp-->Sm-type-->dhcp-->fcc as a whole in the regular lanthanides is associated with a softening of this mode. The pressure response of the phonon modes, observed in the monoclinic and alpha-uranium phases, where 4f bonding becomes important, is characteristic for anisotropic bonding properties.
Lattice Vibrations and Electronic Transitions in the Rare-Earth Metals: Praseodymium under Pressure
NASA Astrophysics Data System (ADS)
Olijnyk, Helmut; Grosshans, Walter A.; Jephcoat, Andrew P.
2004-12-01
Praseodymium was investigated by Raman spectroscopy under pressure. A negative pressure shift of the E2g mode is observed in the dhcp phase, which indicates that the initial structural sequence hcp→Sm-type→dhcp→fcc as a whole in the regular lanthanides is associated with a softening of this mode. The pressure response of the phonon modes, observed in the monoclinic and α-uranium phases, where 4f bonding becomes important, is characteristic for anisotropic bonding properties.
Inspection of Space Station Cold Plate Using Visual and Automated Holographic Techniques
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Melis, Matthew E.; Weiland, Kenneth E.
1999-01-01
Real-time holography has been used to confirm the presence of non-uniformity in the construction of an International Space Station cold plate. Ultrasonic C-scans have previously shown suspected areas of cooling fin disbonds. But both neural-net processed and visual holography did not evidence any progressive permanent changes resulting from 3000 pressurization and relaxation cycles of a Dash 8 cold plate. Neural-net and visual inspections were performed of characteristic patterns generated from electronic time-average holograms of the vibrating cold plate. Normal modes of vibration were excited at very low amplitudes for this purpose, The neural nets were trained to flag very small changes in the mode shapes as encoded in the characteristic patterns. Both the whole cold plate and a zoomed region were inspected. The inspections were conducted before, after, and during pressurization and relaxation cycles of the cold plate. A water-filled cold plate was pressurized to 120 psig (827 kPa) and relaxed for each cycle. Each cycle required 5 seconds. Both the artificial neural networks and the inspectors were unable to detect changes in the mode shapes of the relaxed cold plate. The cold plate was also inspected visually using real-time holography and double-exposure holography. Regions of non-uniformity correlating with the C-scans were apparent, but the interference patterns did not change after 3000 pressurization and relaxation cycles. These tests constituted the first practical application of a neural-net inspection technique developed originally with support from the Director's Discretionary Fund at the Glenn Research Center at Lewis Field.
New modes of assisted mechanical ventilation.
Suarez-Sipmann, F
2014-05-01
Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel
2008-01-01
Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Design Support of the feasibility of operating conditions and procedures is critical in such cases due to the possibility of startup/shutdown transients, moving shock structures, unsteady shock-boundary layer interactions and engine and diffuser unstart modes that can result in catastrophic failure. Analyses of such systems is difficult due to resolution requirements needed to accurately capture moving shock structures, shock-boundary layer interactions, two-phase flow regimes and engine unstart modes. In a companion paper, we will demonstrate with the use of CFD, steady analyses advanced capability to evaluate supersonic diffuser and steam ejector performance in the sub-scale A-3 facility. In this paper we will address transient issues with the operation of the facility especially at startup and shutdown, and assess risks related to afterburning due to the interaction of a fuel rich plume with oxygen that is a by-product of the steam ejectors. The primary areas that will be addressed in this paper are: (1) analyses of unstart modes due to flow transients especially during startup/ignition, (2) engine safety during the shutdown process (3) interaction of steam ejectors with the primary plume i.e. flow transients as well as probability of afterburning. In this abstract we discuss unsteady analyses of the engine shutdown process. However, the final paper will include analyses of a staged startup, drawdown of the engine test cell pressure, and risk assessment of potential afterburning in the facility. Unsteady simulations have been carried out to study the engine shutdown process in the facility and understand the physics behind the interactions between the steam ejectors, the test cell and the supersonic diffuser. As a first approximation, to understand the dominant unsteady mechanisms in the engine test cell and the supersonic diffuser, the turning duct in the facility was removed. As the engine loses power a rarefaction wave travels downstream that disrupts the shock cell structure in the supersonic diffuser. Flow from the test cell is seen to expand into the supersonic diffuser section and re-pressurizes the area around the nozzle along with a upstream traveling compression wave that emanates from near the first stage ejectors. Flow from the first stage ejector expands to the center of the duct and a new shock train is formed between the first and second stage ejectors. Both stage ejectors keep the facility pressurized and prevent any large amplitude pressure fluctuations from affecting the engine nozzle. The resultant pressure loads the nozzle experiences in the shutdown process are small.
Effect of pressure on the Raman-active modes of zircon (ZrSiO4): a first-principles study
NASA Astrophysics Data System (ADS)
Sheremetyeva, Natalya; Cherniak, Daniele J.; Watson, E. Bruce; Meunier, Vincent
2018-02-01
Density-functional theory (DFT) was employed in a first-principles study of the effects of pressure on the Raman-active modes of zircon (ZrSiO4), using both the generalized gradient and local density approximations (GGA and LDA, respectively). Beginning with the equilibrium structure at zero pressure, we conducted a calibration of the effect of pressure in a manner procedurally similar to an experimental calibration. For pressures between 0 and 7 GPa, we find excellent qualitative agreement of frequency-pressure slopes partial ω /partial P calculated from GGA DFT with results of previous experimental studies. In addition, we were able to rationalize the ω vs. P behavior based on details of the vibrational modes and their atomic displacements. Most of the partial ω /partial P slopes are positive as expected, but the symmetry of the zircon lattice also results in two negative slopes for modes that involve slight shearing and rigid rotation of SiO4 tetrahedra. Overall, LDA yields absolute values of the frequencies of the Raman-active modes in good agreement with experimental values, while GGA reproduces the shift in frequency with pressure especially well.
High Pressure Raman Spectroscopic Studies on CuInTe2 Quantum Dots
NASA Astrophysics Data System (ADS)
Yanxon, Howard; Kumar, Ravhi; HiPSEC-University of Nevada Las Vegas Team
High pressure Raman spectroscopy studies were performed on CuInTe2 Quantum Dots (QD) up to 7.7 GPa. At ambient conditions, the Raman modes of the QD loaded into a high-pressure diamond anvil cell (DAC) were observed at 125.1 cm-1 (A1 mode) and 142.8 cm-1 (B2 or E mode). As the pressure increases, the A1 mode starts to split above 2 GPa and shifts to the left as indication of a structural change. A pressure-induced phase transition was observed around 2.9 GPa due to the collapse of the modes with the appearance of a new Raman peaks. The phase transition observed in our experiments compare well with the characteristics of bulk and larger nanoparticles. Further, it could be concluded that the phase transition pressure observed mainly depends on the particle size. H.Y. thanks McNair foundation for fellowship award. He also acknowledges Melanie White, Jason Baker and Phuc Tran for help in the experiments. He thanks Michael Pravica for using the Raman facility.
Skaburskis, M; Helal, R; Zidulka, A
1987-10-01
Patients with noncardiogenic pulmonary edema requiring ventilatory assistance are usually supported with CPPV using positive end-expiratory pressure (PEEP), but CPPV requires endotracheal intubation and may decrease cardiac output (QT). The purpose of this study was to examine thoracoabdominal continuous negative pressure ventilation (CNPV) using external negative end-expiratory pressure (NEEP). The effects on gas exchange and hemodynamics were compared with those of CPPV with PEEP, with the premise that CNPV might sustain venous return and improve QT. In 6 supine, anesthetized and paralyzed dogs with oleic-acid-induced pulmonary edema, 30 min of CNPV was alternated twice with 30 min of CPPV. Positive and negative pressure ventilation were carefully matched for fractional inspired oxygen concentration (FIO2 = 0.56), breathing frequency, and tidal volume. In addition, we matched the increase in delta FRC obtained with the constant distending pressures produced by both modes of ventilation. An average of -9 cm H2O of NEEP produced the same delta FRC as 10.8 cm H2O of PEEP. Gas exchange did not differ significantly between the 2 modes. However, QT was 15.8% higher during CNPV than during CPPV (p less than 0.02). Mixed venous oxygen saturation also improved during CNPV compared with that during CPPV (58.3 versus 54.5%, p less than 0.01). Negative pressure ventilation using NEEP may be a viable alternative to positive pressure ventilation with PEEP in the management of critically ill patients with noncardiogenic pulmonary edema. It offers comparable improvement in gas exchange with the advantages of less cardiac depression and the possible avoidance of endotracheal intubation.
Modeling and control design of a wind tunnel model support
NASA Technical Reports Server (NTRS)
Howe, David A.
1990-01-01
The 12-Foot Pressure Wind Tunnel at Ames Research Center is being restored. A major part of the restoration is the complete redesign of the aircraft model supports and their associated control systems. An accurate trajectory control servo system capable of positioning a model (with no measurable overshoot) is needed. Extremely small errors in scaled-model pitch angle can increase airline fuel costs for the final aircraft configuration by millions of dollars. In order to make a mechanism sufficiently accurate in pitch, a detailed structural and control-system model must be created and then simulated on a digital computer. The model must contain linear representations of the mechanical system, including masses, springs, and damping in order to determine system modes. Electrical components, both analog and digital, linear and nonlinear must also be simulated. The model of the entire closed-loop system must then be tuned to control the modes of the flexible model-support structure. The development of a system model, the control modal analysis, and the control-system design are discussed.
Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Landt, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G
2013-01-25
The present contribution investigates the quantitation aspects of mass-sensitive detectors with nebulizing interface (ESI-MSD, ELSD, CAD) in the constant pressure gradient elution mode. In this operation mode, the pressure is controlled and maintained at a set value and the liquid flow rate will vary according to the inverse mobile phase viscosity. As the pressure is continuously kept at the allowable maximum during the entire gradient run, the average liquid flow rate is higher compared to that in the conventional constant flow rate operation mode, thus shortening the analysis time. The following three mass-sensitive detectors were investigated: mass spectrometry detector (MS), evaporative light scattering detector (ELSD) and charged aerosol detector (CAD) and a wide variety of samples (phenones, polyaromatic hydrocarbons, wine, cocoa butter) has been considered. It was found that the nebulizing efficiency of the LC-interfaces of the three detectors under consideration changes with the increasing liquid flow rate. For the MS, the increasing flow rate leads to a lower peak area whereas for the ELSD the peak area increases compared to the constant flow rate mode. The peak area obtained with a CAD is rather insensitive to the liquid flow rate. The reproducibility of the peak area remains similar in both modes, although variation in system permeability compromises the 'long-term' reproducibility. This problem can however be overcome by running a flow rate program with an optimized flow rate and composition profile obtained from the constant pressure mode. In this case, the quantification remains reproducibile, despite any occuring variations of the system permeability. Furthermore, the same fragmentation pattern (MS) has been found in the constant pressure mode compared to the customary constant flow rate mode. Copyright © 2012 Elsevier B.V. All rights reserved.
Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas
NASA Astrophysics Data System (ADS)
Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong
2016-05-01
In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)
A historical perspective on ventilator management.
Shapiro, B A
1994-02-01
Paralysis via neuromuscular blockade in ICU patients requires mechanical ventilation. This review historically addresses the technological advances and scientific information upon which ventilatory management concepts are based, with special emphasis on the influence such concepts have had on the use of neuromuscular blocking agents. Specific reference is made to the scientific information and technological advances leading to the newer concepts of ventilatory management. Information from > 100 major studies in the peer-reviewed medical literature, along with the author's 25 yrs of clinical experience and academic involvement in acute respiratory care is presented. Nomenclature related to ventilatory management is specifically defined and consistently utilized to present and interpret the data. Pre-1970 ventilatory management is traced from the clinically unacceptable pressure-limited devices to the reliable performance of volume-limited ventilators. The scientific data and rationale that led to the concept of relatively large tidal volume delivery are reviewed in the light of today's concerns regarding alveolar overdistention, control-mode dyssynchrony, and auto-positive end-expiratory pressure. Also presented are the post-1970 scientific rationales for continuous positive airway pressure/positive end-expiratory pressure therapy, avoidance of alveolar hyperxia, and partial ventilatory support techniques (intermittent mandatory ventilation/synchronized intermittent mandatory ventilation). The development of pressure-support devices is discussed and the capability of pressure-control techniques is presented. The rationale for more recent concepts of total ventilatory support to avoid ventilator-induced lung injury is presented. The traditional techniques utilizing volume-preset ventilators with relatively large tidal volumes remain valid and desirable for the vast majority of patients requiring mechanical ventilation. Neuromuscular blockade is best avoided in these patients. However, adequate analgesia, amnesia, and sedation are required. For patients with severe lung disease, alveolar overdistention and hyperoxia should be avoided and may be best accomplished by total ventilatory support techniques, such as pressure control. Total ventilatory support requires neuromuscular blockade and may not provide eucapnic ventilation.
Effects of fast ions on interchange modes in the Large Helical Device plasmas
NASA Astrophysics Data System (ADS)
Pinon, Jonhathan; Todo, Yasushi; Wang, Hao
2018-07-01
Effects of fast ions on the magnetohydrodynamic (MHD) instabilities in a Large Helical Device (LHD) plasma with the central beta value (=pressure normalized by the magnetic pressure) 4% have been investigated with hybrid simulations for energetic particles interacting with an MHD fluid. When fast ions are neglected, it is found that the dominant instability is an ideal interchange mode with the dominant harmonic m/n = 2/1, where m, n are respectively the poloidal and toroidal numbers. The spatial peak location of the m/n = 2/1 harmonic is close to the ι = 1/2 magnetic surface located at r/a = 0.29, where ι is the rotational transform and r/a is the normalized radius. The second unstable mode is a resistive interchange mode with m/n =3/2 that peaks at r/a = 0.65 nearby the ι = 2/3 surface, which grows more slowly than the m/n = 2/1 mode. The nonlinear coupling of the m/n = 3/2 and 2/1 mode results in the growth of the m/n = 5/3 mode and other modes leading to the global reduction and flattening of the pressure profile. When fast ions are considered with the central beta value 0.2% and the total pressure profile is kept the same, the ideal interchange mode with m/n = 2/1 located close to the plasma center is stabilized while the resistive interchange mode with m/n = 3/2 located far from the plasma center is less affected. The stabilization is attributed to the reduction of bulk pressure gradient, which is the dilution of the free energy source, because the energy transfer between the fast ions and the interchange modes is found to be negligible. For higher fast-ion pressure, Alfvén eigenmodes are destabilized by fast ions.
Effect of pressure on infrared spectra of ice 7
NASA Technical Reports Server (NTRS)
Holzapfel, W. B.; Seiler, B.; Nicol, M.
1983-01-01
The effect of pressure on the infrared spectra of H2O and D2O ice VII was studied at room temperature and pressures between 2 and 15 GPa with a Fourier transform infrared spectrometer and a diamond anvil high pressure cell. Two librational modes, one bending mode, and various overtone bands are well resolved. The stretching modes, nu sub 1 and nu sub 3 are poorly resolved due to overlap with diamond window absorption. Differences between the spectra of H2O and D2O are discussed.
Jubran, Amal; Grant, Brydon J.B.; Duffner, Lisa A.; Collins, Eileen G.; Lanuza, Dorothy M.; Hoffman, Leslie A.; Tobin, Martin J.
2013-01-01
Context Patients requiring prolonged mechanical ventilation (more than 21 days) are commonly weaned at long-term acute care hospitals (LTACHs). The most effective method of weaning such patients has not been investigated. Objective To compare weaning duration with pressure support versus unassisted breathing through a tracheostomy (trach collar) in patients transferred to a LTACH for weaning from prolonged ventilation. Design, Settings, and Participants Between 2000 and 2010, a randomized study was conducted in tracheotomized patients transferred to a single LTACH for weaning from prolonged ventilation. Of 500 patients who underwent a five-day screening procedure, 316 failed and were randomly assigned to wean with pressure support (n=155) or a trach collar (n=161). Six- and twelve-month survival was also determined. Main outcome measure Primary outcome was weaning duration. Secondary outcome was survival at six and twelve months after enrollment. Results Of 316 patients, four were withdrawn and not included in analysis. Of 152 patients in the pressure-support arm, 68 (44.7%) were weaned; 22 (14.5%) died. Of 160 patients in the trach-collar arm, 85 (53.1%) were weaned; 16 (10.0%) died. Median weaning time was shorter with trach collar than with pressure support: 15 [interquartile range, 8–25] versus 19 [12–31] days, p=0.004. The hazard ratio (HR) for successful weaning rate was higher with trach collar than with pressure support (HR, 1.43; 95% confidence interval [CI], 1.03–1.98, p<0.03) after adjusting for baseline clinical covariates. Trach collar achieved faster weaning than did pressure support among subjects who failed the screening procedure at 12–120 hours (HR, 3.33; 95% CI, 1.44–7.70, p<0.01), whereas weaning time was equivalent with the two methods in patients who failed the screening procedure within 0–12 hours. Mortality was equivalent in the pressure-support and trach-collar arms at six months (55.9% versus 51.3%; 4.7 difference, 95% CI −6.4 to 15.7%) and twelve months (66.4% versus 60.0%; 6.5 difference, 95% CI −4.2 to 17.1 %). Conclusion Among patients requiring prolonged mechanical ventilation and treated at a single long-term care facility, unassisted breathing through a tracheostomy, compared with pressure support, resulted in shorter median weaning time, although weaning mode had no effect on survival at 6 and 12 months. PMID:23340588
Jubran, Amal; Grant, Brydon J B; Duffner, Lisa A; Collins, Eileen G; Lanuza, Dorothy M; Hoffman, Leslie A; Tobin, Martin J
2013-02-20
Patients requiring prolonged mechanical ventilation (>21 days) are commonly weaned at long-term acute care hospitals (LTACHs). The most effective method of weaning such patients has not been investigated. To compare weaning duration with pressure support vs unassisted breathing through a tracheostomy collar in patients transferred to an LTACH for weaning from prolonged ventilation. Between 2000 and 2010, a randomized study was conducted in tracheotomized patients transferred to a single LTACH for weaning from prolonged ventilation. Of 500 patients who underwent a 5-day screening procedure, 316 did not tolerate the procedure and were randomly assigned to receive weaning with pressure support (n = 155) or a tracheostomy collar (n = 161). Survival at 6- and 12-month time points was also determined. Primary outcome was weaning duration. Secondary outcome was survival at 6 and 12 months after enrollment. Of 316 patients, 4 were withdrawn and not included in analysis. Of 152 patients in the pressure-support group, 68 (44.7%) were weaned; 22 (14.5%) died. Of 160 patients in the tracheostomy collar group, 85 (53.1%) were weaned; 16 (10.0%) died. Median weaning time was shorter with tracheostomy collar use (15 days; interquartile range [IQR], 8-25) than with pressure support (19 days; IQR, 12-31), P = .004. The hazard ratio (HR) for successful weaning rate was higher with tracheostomy collar use than with pressure support (HR, 1.43; 95% CI, 1.03-1.98; P = .033) after adjusting for baseline clinical covariates. Use of the tracheostomy collar achieved faster weaning than did pressure support among patients who did not tolerate the screening procedure between 12 and 120 hours (HR, 3.33; 95% CI, 1.44-7.70; P = .005), whereas weaning time was equivalent with the 2 methods in patients who did not tolerate the screening procedure within 0 to 12 hours. Mortality was equivalent in the pressure-support and tracheostomy collar groups at 6 months (55.92% vs 51.25%; 4.67% difference, 95% CI, -6.4% to 15.7%) and at 12 months (66.45% vs 60.00%; 6.45% difference, 95% CI, -4.2% to 17.1%). Among patients requiring prolonged mechanical ventilation and treated at a single long-term care facility, unassisted breathing through a tracheostomy, compared with pressure support, resulted in shorter median weaning time, although weaning mode had no effect on survival at 6 and 12 months. clinicaltrials.gov Identifier: NCT01541462.
De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2016-08-12
When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.
2010-01-01
Summary: Noninvasive positive pressure ventilation (NPPV) devices are used during sleep to treat patients with diurnal chronic alveolar hypoventilation (CAH). Bilevel positive airway pressure (BPAP) using a mask interface is the most commonly used method to provide ventilatory support in these patients. BPAP devices deliver separately adjustable inspiratory positive airway pressure (IPAP) and expiratory positive airway pressure (EPAP). The IPAP and EPAP levels are adjusted to maintain upper airway patency, and the pressure support (PS = IPAP-EPAP) augments ventilation. NPPV devices can be used in the spontaneous mode (the patient cycles the device from EPAP to IPAP), the spontaneous timed (ST) mode (a backup rate is available to deliver IPAP for the set inspiratory time if the patient does not trigger an IPAP/EPAP cycle within a set time window), and the timed (T) mode (inspiratory time and respiratory rate are fixed). During NPPV titration with polysomnography (PSG), the pressure settings, backup rate, and inspiratory time (if applicable) are adjusted to maintain upper airway patency and support ventilation. However, there are no widely available guidelines for the titration of NPPV in the sleep center. A NPPV Titration Task Force of the American Academy of Sleep Medicine reviewed the available literature and developed recommendations based on consensus and published evidence when available. The major recommendations derived by this consensus process are as follows: General Recommendations:The indications, goals of treatment, and side effects of NPPV treatment should be discussed in detail with the patient prior to the NPPV titration study.Careful mask fitting and a period of acclimatization to low pressure prior to the titration should be included as part of the NPPV protocol.NPPV titration with PSG is the recommended method to determine an effective level of nocturnal ventilatory support in patients with CAH. In circumstances in which NPPV treatment is initiated and adjusted empirically in the outpatient setting based on clinical judgment, a PSG should be utilized if possible to confirm that the final NPPV settings are effective or to make adjustments as necessary.NPPV treatment goals should be individualized but typically include prevention of worsening of hypoventilation during sleep, improvement in sleep quality, relief of nocturnal dyspnea, and providing respiratory muscle rest.When OSA coexists with CAH, pressure settings for treatment of OSA may be determined during attended NPPV titration PSG following AASM Clinical Guidelines for the Manual Titration of Positive Airway Pressure in Patients with Obstructive Sleep Apnea.Attended NPPV titration with PSG is the recommended method to identify optimal treatment pressure settings for patients with the obesity hypoventilation syndrome (OHS), CAH due to restrictive chest wall disease (RTCD), and acquired or central CAH syndromes in whom NPPV treatment is indicated.Attended NPPV titration with PSG allows definitive identification of an adequate level of ventilatory support for patients with neuromuscular disease (NMD) in whom NPPV treatment is planned. Recommendations for NPPV Titration Equipment:The NPPV device used for titration should have the capability of operating in the spontaneous, spontaneous timed, and timed mode.The airflow, tidal volume, leak, and delivered pressure signals from the NPPV device should be monitored and recorded if possible. The airflow signal should be used to detect apnea and hypopnea, while the tidal volume signal and respiratory rate are used to assess ventilation.Transcutaneous or end-tidal PCO2 may be used to adjust NPPV settings if adequately calibrated and ideally validated with arterial blood gas testing.An adequate assortment of masks (nasal, oral, and oronasal) in both adult and pediatric sizes (if children are being titrated), a source of supplemental oxygen, and heated humidification should be available. Recommendations for Limits of IPAP, EPAP, and PS Settings:The recommended minimum starting IPAP and EPAP should be 8 cm H2O and 4 cm H2O, respectively.The recommended maximum IPAP should be 30 cm H2O for patients ≥ 12 years and 20 cm H2O for patients < 12 years.The recommended minimum and maximum levels of PS are 4 cm H2O and 20 cm H2O, respectively.The minimum and maximum incremental changes in PS should be 1 and 2 cm H2O, respectively. Recommendations for Adjustment of IPAP, EPAP, and PS:IPAP and/or EPAP should be increased as described in AASM Clinical Guidelines for the Manual Titration of Positive Airway Pressure in Patients with Obstructive Sleep Apnea until the following obstructive respiratory events are eliminated (no specific order): apneas, hypopneas, respiratory effort-related arousals, and snoring.The pressure support (PS) should be increased every 5 minutes if the tidal volume is low (< 6 to 8 mL/kg)The PS should be increased if the arterial PCO2 remains 10 mm Hg or more above the PCO2 goal at the current settings for 10 minutes or more. An acceptable goal for PCO2 is a value less than or equal to the awake PCO2.The PS may be increased if respiratory muscle rest has not been achieved by NPPV treatment at the current settings for 10 minutes of more.The PS may be increased if the SpO2 remains below 90% for 5 minutes or more and tidal volume is low (< 6 to 8 mL/kg). Recommendations for Use and Adjustment of the Backup Rate/Respiratory Rate:A backup rate (i.e., ST mode) should be used in all patients with central hypoventilation, those with a significant number of central apneas or an inappropriately low respiratory rate, and those who unreliably trigger IPAP/EPAP cycles due to muscle weakness.The ST mode may be used if adequate ventilation or adequate respiratory muscle rest is not achieved with the maximum (or maximum tolerated) PS in the spontaneous mode.The starting backup rate should be equal to or slightly less than the spontaneous sleeping respiratory rate (minimum of 10 bpm).The backup rate should be increased in 1 to 2 bpm increments every 10 minutes if the desired goal of the backup rate has not been attained.The IPAP time (inspiratory time) should be set based on the respiratory rate to provide an inspiratory time (IPAP time) between 30% and 40% of the cycle time (60/respiratory rate in breaths per minute).If the spontaneous timed mode is not successful at meeting titration goals then the timed mode can be tried. Recommendations Concerning Supplemental Oxygen:Supplemental oxygen may be added in patients with an awake SpO2 < 88% or when the PS and respiratory rate have been optimized but the SpO2 remains < 90% for 5 minutes or more.The minimum starting supplemental oxygen rate should be 1 L/minute and increased in increments of 1 L/minute about every 5 minutes until an adequate SpO2 is attained (> 90%). Recommendations to Improve Patient Comfort and Patient-NPPV Device Synchrony:If the patient awakens and complains that the IPAP and/or EPAP is too high, pressure should be lowered to a level comfortable enough to allow return to sleep.NPPV device parameters (when available) such as pressure relief, rise time, maximum and minimum IPAP durations should be adjusted for patient comfort and to optimize synchrony between the patient and the NPPV device.During the NPPV titration mask refit, adjustment, or change in mask type should be performed whenever any significant unintentional leak is observed or the patient complains of mask discomfort. If mouth leak is present and is causing significant symptoms (e.g., arousals) use of an oronasal mask or chin strap may be tried. Heated humidification should be added if the patient complains of dryness or significant nasal congestion. Recommendations for Follow-Up:Close follow-up after initiation of NPPV by appropriately trained health care providers is indicated to establish effective utilization patterns, remediate side effects, and assess measures of ventilation and oxygenation to determine if adjustment to NPPV is indicated. Citation: Berry RB; Chediak A; Brown LK; Finder J; Gozal D; Iber C; Kushida CA; Morgenthaler T; Rowley JA; Davidson-Ward SL. Best clinical practices for the sleep center adjustment of noninvasive positive pressure ventilation (NPPV) in stable chronic alveolar hypoventilation syndromes. J Clin Sleep Med 2010;6(5):497-509. PMID:20957853
The Bar Mode Instability in Deleptonizing Fizzlers
NASA Astrophysics Data System (ADS)
Imamura, James N.; Durisen, R. H.
2009-01-01
Core collapse in massive rotating nonmagnetic stars may hangup before neutron star densities are reached when rotationally supported or partially rotation supported, hot, lepton-rich objects known as fizzlers form. For typical massive core masses, fizzlers may form if the core has angular momentum J > 1049 g cm2 s-1. Newly formed fizzlers are stable to secular and dynamic nonaxisymmetric instabilities because of the high electron fraction per baryon, Ye > 0.3, and high entropy per baryon, Sn = 1-2 k of fizzler material, and the long-term evolution of a fizzler to neutron star density is driven by deleptonization and cooling of the lepton-rich fizzler material. Both processes lead to pressure loss which causes the fizzler to contract and spin-up. All deleptonizing fizzlers eventually become subject to gravito-rotation-driven nonaxisymmetric instabilities before they reach neutron star density. We study the development of barlike instabilities in deleptonizing fizzlers. We find that vigorous growth in barlike modes occurs only after the bar mode dynamic instability threshold is passed. Because barlike modes break axial symmetry, a burst of gravitational wave (GW) radiation is produced as barlike modes develop. For typical fizzler properties, the GW radiation will have frequency 300-600 Hz with strains of 10-23-10-23, for fizzlers at distances of 15 Mpc ( Virgo cluster of galaxies). Fizzlers in the Virgo cluster would be easily detectable by the gravitational wave obervatory LIGO if the barlike mode persisted for several hundred cycles. We find that barlike modes in fizzlers persist for at least 15-30 cycles in our simulations, depending on the deleptonization rate.
Technology for noninvasive mechanical ventilation: looking into the black box
Navajas, Daniel; Montserrat, Josep M.
2016-01-01
Current devices for providing noninvasive respiratory support contain sensors and built-in intelligence for automatically modifying ventilation according to the patient's needs. These devices, including automatic continuous positive airway pressure devices and noninvasive ventilators, are technologically complex and offer a considerable number of different modes of ventilation and setting options, the details of which are sometimes difficult to capture by the user. Therefore, better predicting and interpreting the actual performance of these ventilation devices in clinical application requires understanding their functioning principles and assessing their performance under well controlled bench test conditions with simulated patients. This concise review presents an updated perspective of the theoretical basis of intelligent continuous positive airway pressure and noninvasive ventilation devices, and of the tools available for assessing how these devices respond under specific ventilation phenotypes in patients requiring breathing support. PMID:27730162
The Coupling between Earth's Inertial and Rotational Eigenmodes
NASA Astrophysics Data System (ADS)
Triana, S. A.; Rekier, J.; Trinh, A.; Laguerre, R.; Zhu, P.; Dehant, V. M. A.
2017-12-01
Wave motions in the Earth's fluid core, supported by the restoring action of both buoyancy (within the stably stratified top layer) and the Coriolis force, lead to the existence of global oscillation modes, the so-called gravito-inertial modes. These fluid modes can couple with the rotational modes of the Earth by exerting torques on the mantle and the inner core. Viscous shear stresses at the fluid boundaries, along with pressure and gravitation, contribute to the overall torque balance. Previous research by Rogister & Valette (2009) suggests that indeed rotational and gravito-inertial modes are coupled, thus shifting the frequencies of the Chandler Wobble (CW), the Free Core Nutation (FCN) and the Free Inner Core Nutation (FICN). Here we present the first results from a numerical model of the Earth's fluid core and its interaction with the rotational eigenmodes. In this first step we consider a fluid core without a solid inner core and we restrict to ellipticities of the same order as the Ekman number. We formulate the problem as a generalised eigenvalue problem that solves simultaneously the Liouville equation for the rotational modes (the torque balance), and the Navier-Stokes equation for the inertial modes.
High Performance Regimes in Alcator C-Mod at High Magnetic Field
NASA Astrophysics Data System (ADS)
Marmar, E. S.; Alcator C-Mod Team
2017-10-01
Alcator is the only divertor tokamak in the world capable of operating at magnetic fields up to 8 T, equaling and exceeding that planned for ITER. Using RF and microwave tools for auxiliary heating and current drive, C-Mod accesses high pressure, high density, reactor-relevant regimes with no external torque and equilibrated electrons and ions, with exclusive use of high-Z metal plasma-facing components. The 2016 experimental campaign focused on naturally ELM-suppressed, enhanced energy confinement regimes (including I-mode and EDA H-mode, and approaches to super-H-mode), with emphasis on operation at the highest fields (5
NASA Astrophysics Data System (ADS)
Liu, Lei; Zhang, Chi; Luo, Meng; Chen, Xi; Li, Dichen; Chen, Hualing
2017-08-01
Dielectric elastomers (DEs) have great potential for use as artificial muscles because of the following characteristics: electrical activity, fast and large deformation under stimuli, and softness as natural muscles. Inspired by the traditional McKibben actuators, in this study, we developed a cylindrical soft fiber-reinforced and electropneumatic DE artificial muscle (DEAM) by mimicking the spindle shape of natural muscles. Based on continuum mechanics and variation principle, the inhomogeneous actuation of DEAMs was theoretically modeled and calculated. Prototypes of DEAMs were prepared to validate the design concept and theoretical model. The theoretical predictions are consistent with the experimental results; they successfully predicted the evolutions of the contours of DEAMs with voltage. A pneumatically supported high prestretch in the hoop direction was achieved by our DEAM prototype without buckling the soft fibers sandwiched by the DE films. Besides, a continuously tunable prestretch in the actuation direction was achieved by varying the supporting pressure. Using the theoretical model, the failure modes, maximum actuations, and critical voltages were analyzed; they were highly dependent on the structural parameters, i.e., the cylinder aspect ratio, prestretch level, and supporting pressure. The effects of structural parameters and supporting pressure on the actuation performance were also investigated to optimize the DEAMs.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
NASA Astrophysics Data System (ADS)
Bansemer, Robert; Schmidt-Bleker, Ansgar; van Rienen, Ursula; Weltmann, Klaus-Dieter
2017-06-01
A novel flow-driven dielectric barrier discharge concept is presented, which uses a Venturi pump to transfer plasma-generated reactive oxygen and nitrogen species from a sub-atmospheric pressure (200{--}600 {mbar}) discharge region to ambient pressure and can be operated with air. By adjusting the working pressure of the device, the plasma chemistry can be tuned continuously from an ozone ({{{O}}}3)-dominated mode to a nitrogen oxides ({{NO}}x)-only mode. The plasma source is characterized focusing on the mechanisms effecting this mode change. The composition of the device’s output gas was determined using Fourier-transform infrared spectroscopy. The results are correlated to measurements of discharge chamber pressure and temperature as well as of input power. It is found that the mode-change temperature can be controlled by the discharge chamber pressure. The source concept is capable of generating an {{NO}}x-dominated plasma chemistry at gas temperatures distinctly below 400 {{K}}. Through mixing of the processed gas stream with a second flow of pressurized air required for the operation of the Venturi pump, the resulting product gas stream remains close to room temperature. A reduced zero-dimensional reaction kinetics model with only seven reactions is capable of describing the observed pressure- and temperature-dependence of the {{{O}}}3 to {{NO}}x mode-change.
Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto
2014-01-01
Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM.
Enhancement of Edge Stability with Lithium Wall Coatings in NSTX
NASA Astrophysics Data System (ADS)
Maingi, R.; Bell, R. E.; Leblanc, B. P.; Kaita, R.; Kaye, S. M.; Kugel, H. W.; Mansfield, D. K.; Osborne, T. H.
2008-11-01
ELM reduction or elimination while maintaining high confinement is essential for ITER, which has been designed for H-mode operation. Large ELMs are thought to be triggered by exceeding either edge current density and/or pressure gradient limits (peeling, ballooning modes). Stability calculations show that spherical tori should have access to higher pressure gradients and pedestal heights than higher R/a tokamaks, owing to access to second stability regimes[...1]. An ELM-free regime was recently observed in the NSTX following the application of lithium onto the graphite plasma facing components[......2]. ELMs were eliminated in phases[.....3], with the resulting pressure gradients and pedestal widths increasing substantially. Calculations with TRANSP have shown that the edge bootstrap current increased substantially, consistent with second stability access. These ELM-free discharges have a substantial improvement in energy confinement, up to the global βN˜ 5.5 limit. * Supported by US DOE DE-FG02-04ER54520, DE-AC-76CH03073, and DE-FC02-04ER54698. [.1] P. B. Snyder, et. al., Plasma Phys. Contr. Fusion 46 (2004) A131. [2] H. W. Kugel, et. al., Phys. Plasma 15 (2008) #056118. [3] D. M. Mansfield, et. al., J. Nucl. Materials (2009) submitted.
Gyrokinetic GDC turbulence simulations: confirming a new instability regime in LAPD plasmas
NASA Astrophysics Data System (ADS)
Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.
2016-10-01
Recent high-beta experiments at the LArge Plasma Device have found significant parallel magnetic fluctuations in the region of large pressure gradients. Linear gyrokinetic simulations show the dominant instability at these radii to be the gradient-driven drift coupling (GDC) mode, a non-textbook mode driven by pressure gradients and destabilized by the coupling of ExB and grad-B∥ drifts. Unlike in previous studies, the large parallel extent of the device allows for finite-kz versions of this instability in addition to kz = 0 . The locations of maximum linear growth match very well with experimentally observed peaks of B∥ fluctuations. Local nonlinear simulations reproduce many features of the observations fairly well, with the exception of Bperp fluctuations, for which experimental profiles suggest a source unrelated to pressure gradients. In toto, the results presented here show that turbulence and transport in these experiments are driven by the GDC instability, that important characteristics of the linear instability carry over to nonlinear simulations, and - in the context of validation - that the gyrokinetic framework performs surprisingly well far outside its typical area of application, increasing confidence in its predictive abilities. Supported by U.S. DOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirandola, Stefano; Mancini, Stefano; Vitali, David
2003-12-01
We study an isolated, perfectly reflecting, mirror illuminated by an intense laser pulse. We show that the resulting radiation pressure efficiently entangles a mirror vibrational mode with the two reflected optical sideband modes of the incident carrier beam. The entanglement of the resulting three-mode state is studied in detail and it is shown to be robust against the mirror mode temperature. We then show how this continuous-variable entanglement can be profitably used to teleport an unknown quantum state of an optical mode onto the vibrational mode of the mirror.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru; Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru
The influence of current density and pressure gradient profiles in the pedestal on the access to the regimes free from edge localized modes (ELMs) like quiescent H-mode in ITER is investigated. Using the simulator of MHD modes localized near plasma boundary based on the KINX code, calculations of the ELM stability were performed for the ITER plasma in scenarios 2 and 4 under variations of density and temperature profiles with the self-consistent bootstrap current in the pedestal. Low pressure gradient values at the separatrix, the same position of the density and temperature pedestals and high poloidal beta values facilitate reachingmore » high current density in the pedestal and a potential transition into the regime with saturated large scale kink modes. New version of the localized MHD mode simulator allows one to compute the growth rates of ideal peeling-ballooning modes with different toroidal mode numbers and to determine the stability region taking into account diamagnetic stabilization. The edge stability diagrams computations and sensitivity studies of the stability limits to the value of diamagnetic frequency show that diamagnetic stabilization of the modes with high toroidal mode numbers can help to access the quiescent H-mode even with high plasma density but only with low pressure gradient values at the separatrix. The limiting pressure at the top of the pedestal increases for higher plasma density. With flat density profile the access to the quiescent H-mode is closed even with diamagnetic stabilization taken into account, while toroidal mode numbers of the most unstable peeling-ballooning mode decrease from n = 10−40 to n = 3−20.« less
Wilson, W.B.
1960-05-31
A press was invented for subjecting specimens of bismuth, urania, yttria, or thoria to high pressures and temperatures. The press comprises die parts enclosing a space in which is placed an electric heater thermally insulated from the die parts so as not to damage them by heat. The die parts comprise two opposed inner frustoconical parts and an outer part having a double frustoconical recess receiving the inner parts. The die space decreases in size as the inner die parts move toward one another against the outer part and the inner parts, though very hard, do not fracture because of the mode of support provided by the outer part.
Park, Jaeyoung; Henins, Ivars
2005-06-21
The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.
The NASA Langley Isolator Dynamics Research Lab
NASA Technical Reports Server (NTRS)
Middleton, Troy F.; Balla, Robert J.; Baurle, Robert A.; Humphreys, William M.; Wilson, Lloyd G.
2010-01-01
The Isolator Dynamics Research Lab (IDRL) is under construction at the NASA Langley Research Center in Hampton, Virginia. A unique test apparatus is being fabricated to support both wall and in-stream measurements for investigating the internal flow of a dual-mode scramjet isolator model. The test section is 24 inches long with a 1-inch by 2-inch cross sectional area and is supplied with unheated, dry air through a Mach 2.5 converging-diverging nozzle. The test section is being fabricated with two sets (glass and metallic) of interchangeable sidewalls to support flow visualization and laser-based measurement techniques as well as static pressure, wall temperature, and high frequency pressure measurements. During 2010, a CFD code validation experiment will be conducted in the lab in support of NASA s Fundamental Aerodynamics Program. This paper describes the mechanical design of the Isolator Dynamics Research Lab test apparatus and presents a summary of the measurement techniques planned for investigating the internal flow field of a scramjet isolator model.
NASA Astrophysics Data System (ADS)
Mishra, Karuna Kara; Bevara, Samatha; Ravindran, T. R.; Patwe, S. J.; Gupta, Mayanak K.; Mittal, Ranjan; Krishnan, R. Venkata; Achary, S. N.; Tyagi, A. K.
2018-02-01
Herein we reported structural stability, vibrational and thermal properties of K2Ce[PO4]2, a relatively underexplored complex phosphate of tetravalent Ce4+ from in situ high-pressure Raman spectroscopic investigations up to 28 GPa using a diamond anvil cell. The studies identified the soft phonons that lead to a reversible phase transformation above 8 GPa, and a phase coexistence of ambient (PI) and high pressure (PII) phases in a wider pressure region 6-11 GPa. From a visual representation of the computed eigen vector displacements, the Ag soft mode at 82 cm-1 is assigned as a lattice mode of K+ cation. Pressure-induced positional disorder is apparent from the substantial broadening of internal modes and the disappearance of low frequency lattice and external modes in phase PII above 18 GPa. Isothermal mode Grüneisen parameters γi of the various phonon modes are calculated and compared for several modes. Using these values, thermal properties such as average Grüneisen parameter, and thermal expansion coefficient are estimated as 0.47, and 2.5 × 10-6 K-1, respectively. The specific heat value was estimated from all optical modes obtained from DFT calculations as 314 J-mol-1 K-1. Our earlier reported temperature dependence of phonon frequencies is used to decouple the "true anharmonic" (explicit contribution at constant volume) and "quasi harmonic" (implicit contribution brought out by volume change) contributions from the total anharmonicity. In addition to the 81 cm-1 Ag lattice mode, several other lattice and external modes of PO43- ions are found to be strongly anharmonic.
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad; Hylton, Sonya; Kartuzova, Olga
2017-01-01
Integral to all phases of NASA's projected space and planetary expeditions is affordable and reliable cryogenic fluid storage for use in propellant or life support systems. Cryogen vaporization due to heat leaks into the tank from its surroundings and support structure can cause self-pressurization relieved through venting. This has led to a desire to develop innovative pressure control designs based on mixing of the bulk tank fluid together with some form of active or passive cooling to allow storage of the cryogenic fluid with zero or reduced boil-off. The Zero-Boil-Off Tank (ZBOT) Experiments are a series of small scale tank pressurization and pressure control experiments aboard the International Space Station (ISS) that use a transparent volatile simulant fluid in a transparent sealed tank to delineate various fundamental fluid flow, heat and mass transport, and phase change phenomena that control storage tank pressurization and pressure control in microgravity. The hardware for ZBOT-1 flew to ISS on the OA-7 flight in April 2017 and operations are planned to begin in September 2017, encompassing more than 90 tests. This paper presents preliminary results from ZBOT's ground-based research delineating both pressurization and pressure reduction trends in the sealed test tank. Tank self-pressurization tests are conducted under three modes: VJ heating, strip heating and simultaneous VJ and strip heating in attempt to simulate heat leaks from the environment, the support structure and both. The jet mixing pressure control studies are performed either from an elevated uniform temperature condition or from thermally stratified conditions following a self-pressurization run. Jet flow rates are varied from 2-25 cm/s spanning a range of jet Re number in laminar, transitional, and turbulent regimes and a range of Weber numbers covering no ullage penetration, partial penetration and complete ullage penetration and break-up (only in microgravity). Numerical prediction of a two-phase CFD model are compared to experimental 1g results to both validate the model and also indicate the effect of the residual non-condensable gas on evolution of pressure and temperature distributions in the tank during pressurization and pressure control.
Mode Identification of High-Amplitude Pressure Waves in Liquid Rocket Engines
NASA Astrophysics Data System (ADS)
EBRAHIMI, R.; MAZAHERI, K.; GHAFOURIAN, A.
2000-01-01
Identification of existing instability modes from experimental pressure measurements of rocket engines is difficult, specially when steep waves are present. Actual pressure waves are often non-linear and include steep shocks followed by gradual expansions. It is generally believed that interaction of these non-linear waves is difficult to analyze. A method of mode identification is introduced. After presumption of constituent modes, they are superposed by using a standard finite difference scheme for solution of the classical wave equation. Waves are numerically produced at each end of the combustion tube with different wavelengths, amplitudes, and phases with respect to each other. Pressure amplitude histories and phase diagrams along the tube are computed. To determine the validity of the presented method for steep non-linear waves, the Euler equations are numerically solved for non-linear waves, and negligible interactions between these waves are observed. To show the applicability of this method, other's experimental results in which modes were identified are used. Results indicate that this simple method can be used in analyzing complicated pressure signal measurements.
NASA Astrophysics Data System (ADS)
Yu, Sizhe; Lu, Xinpei
2016-09-01
We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.
NASA Astrophysics Data System (ADS)
Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.
2016-02-01
In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.
Synthesis and Characterization of Hexagonal Boron Nitride as a Gate Dielectric
Jang, Sung Kyu; Youn, Jiyoun; Song, Young Jae; Lee, Sungjoo
2016-01-01
Two different growth modes of large-area hexagonal boron nitride (h-BN) film, a conventional chemical vapor deposition (CVD) growth mode and a high-pressure CVD growth mode, were compared as a function of the precursor partial pressure. Conventional self-limited CVD growth was obtained below a critical partial pressure of the borazine precursor, whereas a thick h-BN layer (thicker than a critical thickness of 10 nm) was grown beyond a critical partial pressure. An interesting coincidence of a critical thickness of 10 nm was identified in both the CVD growth behavior and in the breakdown electric field strength and leakage current mechanism, indicating that the electrical properties of the CVD h-BN film depended significantly on the film growth mode and the resultant film quality. PMID:27458024
Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor.
Nishiyama, Michiko; Sonobe, Masako; Watanabe, Kazuhiro
2016-09-01
In this paper, we present a pulse pressure waveform sensor that does not constrain a wearer's daily activity; the sensor uses hetero-core fiber optics. Hetero-core fiber sensors have been found to be sensitive to moderate bending. To detect minute pulse pressure changes from the radial artery at the wrist, we devised a fiber sensor arrangement using three-point bending supports. We analyzed and evaluated the measurement validity using wavelet transformation, which is well-suited for biological signal processing. It was confirmed that the detected pulse waveform had a fundamental mode frequency of around 1.25 Hz over the time-varying waveform. A band-pass filter with a range of frequencies from 0.85 to 1.7 Hz was used to pick up the fundamental mode. In addition, a high-pass filter with 0.85 Hz frequency eliminated arm motion artifacts; consequently, we achieved high signal-to-noise ratio. For unrestricted daily health management, it is desirable that pulse pressure monitoring can be achieved by simply placing a device on the hand without the sensor being noticed. Two types of arrangements were developed and demonstrated in which the pulse sensors were either embedded in a base, such as an armrest, or in a wearable device. A wearable device without cuff pressure using a sensitivity-enhanced fiber sensor was successfully achieved with a sensitivity of 0.07-0.3 dB with a noise floor lower than 0.01 dB for multiple subjects.
Characterization of Ventilatory Modes in Dragonfly Nymph
NASA Astrophysics Data System (ADS)
Roh, Chris; Saxton-Fox, Theresa; Gharib, Morteza
2013-11-01
A dragonfly nymph's highly modified hindgut has multiple ventilatory modes: hyperventilation (i.e. jet propulsion), gulping ventilation (extended expiratory phase) and normal ventilation. Each mode involves dynamic manipulation of the exit diameter and pressure. To study the different fluid dynamics associated with the three modes, Anisopteran larvae of the family Aeshnidae were tethered onto a rod for flow visualization. The result showed distinct flow structures. The hyperventilation showed a highly turbulent and powerful jet that occurred at high frequency. The gulping ventilation produced a single vortex at a moderate frequency. The normal ventilation showed two distinct vortices, a low-Reynolds number vortex, followed by a high-Reynolds number vortex. Furthermore, a correlation of the formation of the vortices with the movement of the sternum showed that the dragonfly is actively controlling the timing and the speed of the vortices to have them at equal distance from the jet exit at the onset of inspiration. This behavior prevents inspiration of the oxygen deficient expirated water, resulting in the maximization of the oxygen intake. Supported by NSF GRFP.
Implementation and Validation of an Impedance Eduction Technique
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.; Gerhold, Carl H.
2011-01-01
Implementation of a pressure gradient method of impedance eduction in two NASA Langley flow ducts is described. The Grazing Flow Impedance Tube only supports plane-wave sources, while the Curved Duct Test Rig supports sources that contain higher-order modes. Multiple exercises are used to validate this new impedance eduction method. First, synthesized data for a hard wall insert and a conventional liner mounted in the Grazing Flow Impedance Tube are used as input to the two impedance eduction methods, the pressure gradient method and a previously validated wall pressure method. Comparisons between the two results are excellent. Next, data measured in the Grazing Flow Impedance Tube are used as input to both methods. Results from the two methods compare quite favorably for sufficiently low Mach numbers but this comparison degrades at Mach 0.5, especially when the hard wall insert is used. Finally, data measured with a hard wall insert mounted in the Curved Duct Test Rig are used as input to the pressure gradient method. Significant deviation from the known solution is observed, which is believed to be largely due to 3-D effects in this flow duct. Potential solutions to this issue are currently being explored.
Stabilizing Effect of Resistivity towards ELM-free H-mode Discharge in Lithium-conditioned NSTX
NASA Astrophysics Data System (ADS)
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
2016-10-01
The stabilizing effect of edge resistivity on the edge localized modes (ELMs) has been recently recovered through analyzing NSTX experimental profiles of Lithium-conditioned ELM-free H-mode discharge. Comparative studies of ELM-free and a reference NSTX ELMy-H mode equilibriums have been performed using both resistive and 2-fluid MHD models implemented in the initial value extended MHD code NIMROD. Our results indicate that in addition to the pedestal profile refinement in electron pressure, the inclusion of enhanced resistivity due to the increase in the effective electric charge number Zeff, which is observed after Lithium-conditioning in experiment, is further required to account for the full stabilization of the low- n edge localized modes. Such a stabilization from the enhanced edge resistivity only becomes effective when the two-fluid diamagnetic and finite-Larmor-radius (FLR) effects are considered in the MHD model. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of the Chinese Academy of Sciences.
Acoustic waves in gases with strong pressure gradients
NASA Technical Reports Server (NTRS)
Zorumski, William E.
1989-01-01
The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.
Lee, Scott A; Pinnick, David A; Anderson, A
2015-01-01
Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline cytidine at 295 K and high pressures by evaluating the logarithmic derivative of the vibrational frequency ω with respect to pressure P: [Formula: see text]. Crystalline samples of molecular materials have strong intramolecular bonds and weak intermolecular bonds. This hierarchy of bonding strengths causes the vibrational optical modes localized within a molecular unit ("internal" modes) to be relatively high in frequency while the modes in which the molecular units vibrate against each other ("external" modes) have relatively low frequencies. The value of the logarithmic derivative is a useful diagnostic probe of the nature of the eigenvector of the vibrational modes because stretching modes (which are predominantly internal to the molecule) have low logarithmic derivatives while external modes have higher logarithmic derivatives. In crystalline cytidine, the modes at 85.8, 101.4, and 110.6 cm(-1) are external in which the molecules of the unit cell vibrate against each other in either translational or librational motions (or some linear combination thereof). All of the modes above 320 cm(-1) are predominantly internal stretching modes. The remaining modes below 320 cm(-1) include external modes and internal modes, mostly involving either torsional or bending motions of groups of atoms within a molecule.
NASA Astrophysics Data System (ADS)
O'Hagan, S.; Northern, J. H.; Gras, B.; Ewart, P.; Kim, C. S.; Kim, M.; Merritt, C. D.; Bewley, W. W.; Canedy, C. L.; Vurgaftman, I.; Meyer, J. R.
2016-06-01
The application of an interband cascade laser, ICL, to multi-mode absorption spectroscopy, MUMAS, in the mid-infrared region is reported. Measurements of individual mode linewidths of the ICL, derived from the pressure dependence of lineshapes in MUMAS signatures of single, isolated, lines in the spectrum of HCl, were found to be in the range 10-80 MHz. Multi-line spectra of methane were recorded using spectrally limited bandwidths, of approximate width 27 cm-1, defined by an interference filter, and consist of approximately 80 modes at spectral locations spanning the 100 cm-1 bandwidth of the ICL output. Calibration of the methane pressures derived from MUMAS data using a capacitance manometer provided measurements with an uncertainty of 1.1 %. Multi-species sensing is demonstrated by the simultaneous detection of methane, acetylene and formaldehyde in a gas mixture. Individual partial pressures of the three gases are derived from best fits of model MUMAS signatures to the data with an experimental error of 10 %. Using an ICL, with an inter-mode interval of ~10 GHz, MUMAS spectra were recorded at pressures in the range 1-10 mbar, and, based on the data, a potential minimum detection limit of the order of 100 ppmv is estimated for MUMAS at atmospheric pressure using an inter-mode interval of 80 GHz.
Bartoli, Carlo R.; Koenig, Steven C.; Ionan, Constantine; Gillars, Kevin J.; Mitchell, Mike E.; Austin, Erle H.; Gray, Laman A.; Pantalos, George M.
2014-01-01
OBJECTIVE Despite progress with adult ventricular assist devices (VADs), limited options exist to support pediatric patients with life-threatening heart disease. Extracorporeal membrane oxygenation (ECMO) remains the clinical standard. To characterize (patho)physiologic responses to different modes of mechanical unloading of the failing pediatric heart, ECMO was compared to either intraaortic balloon pump (IABP), pulsatile-flow (PF)VAD, or continuous-flow (CF)VAD support in a pediatric heart failure model. DESIGN Experimental. SETTING Large animal laboratory operating room. SUBJECTS Yorkshire piglets (n=47, 11.7±2.6 kg). INTERVENTIONS In piglets with coronary ligation-induced cardiac dysfunction, mechanical circulatory support devices were implanted and studied during maximum support. MEASUREMENTS and MAIN RESULTS Left ventricular, right ventricular, coronary, carotid, systemic arterial, and pulmonary arterial hemodynamics were measured with pressure and flow transducers. Myocardial oxygen consumption and total-body oxygen consumption (VO2) were calculated from arterial, venous, and coronary sinus blood sampling. Blood flow was measured in 17 organs with microspheres. Paired student t-tests compared baseline and heart failure conditions. One-way repeated-measures ANOVA compared heart failure, device support mode(s), and ECMO. Statistically significant (p<0.05) findings included: 1) improved left ventricular blood supply/demand ratio during PFVAD, CFVAD, and ECMO but not IABP support, 2) improved global myocardial blood supply/demand ratio during PFVAD, and CFVAD but not IABP or ECMO support, and 3) diminished pulsatility during ECMO and CFVAD but not IABP and PFVAD support. A profile of systems-based responses was established for each type of support. CONCLUSIONS Each type of pediatric VAD provided hemodynamic support by unloading the heart with a different mechanism that created a unique profile of physiological changes. These data contribute novel, clinically relevant insight into pediatric mechanical circulatory support and establish an important resource for pediatric device development and patient selection. PMID:24108116
Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments.
Shih, Hua-Ju; Shih, Po-Jen
2015-07-28
Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. Studies have noted that the heights of protein surfaces measured via the tapping mode of an atomic force microscope are ~25% smaller than those measured by other methods. This discrepancy may be attributable to the induced superficial hydrodynamic pressure, which is worth investigating. In this paper, we introduce a semi-analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is 20 times larger than the pressure without considering the tip effect; these results have not been motioned in other papers. Dominating factors, such as surface heights of protein surface, mechanical stiffness of protein increasing with loading velocity, and radius of tip affecting the local pressure of specimen, are also addressed in this study.
Structural Benchmark Tests of Composite Combustion Chamber Support Completed
NASA Technical Reports Server (NTRS)
Krause, David L.; Thesken, John C.; Shin, E. Eugene; Sutter, James K.
2005-01-01
A series of mechanical load tests was completed on several novel design concepts for extremely lightweight combustion chamber support structures at the NASA Glenn Research Center (http://www.nasa.gov/glenn/). The tests included compliance evaluation, preliminary proof loadings, high-strain cyclic testing, and finally residual strength testing of each design (see the photograph on the left). Loads were applied with single rollers (see the photograph on the right) or pressure plates (not shown) located midspan on each side to minimize the influence of contact stresses on corner deformation measurements. Where rollers alone were used, a more severe structural loading was produced than the corresponding equal-force pressure loading: the maximum transverse shear force existed over the entire length of each side, and the corner bending moments were greater than for a distributed (pressure) loading. Failure modes initiating at the corner only provided a qualitative indication of the performance limitations since the stress state was not identical to internal pressure. Configurations were tested at both room and elevated temperatures. Experimental results were used to evaluate analytical prediction tools and finite-element methodologies for future work, and they were essential to provide insight into the deformation at the corners. The tests also were used to assess fabrication and bonding details for the complicated structures. They will be used to further optimize the design of the support structures for weight performance and the efficacy of corner reinforcement.
Volume guarantee ventilation during surgical closure of patent ductus arteriosus.
Keszler, Martin; Abubakar, Kabir
2015-01-01
Surgical closure of patent ductus arteriosus (PDA) is associated with adverse outcomes. Surgical exposure requires retraction of the lung, resulting in decreased aeration and compliance. Optimal respiratory support for PDA surgery is unknown. Experience with volume guarantee (VG) ventilation at our institution led us to hypothesize that surgery would be better tolerated with automatic adjustment of pressure by VG to maintain tidal volume (VT) during retraction. The objective of this study was to describe ventilator support, VT, and oxygenation of infants supported with VG during PDA surgery. Ventilator variables, oxygen saturation, and heart rate were recorded during PDA surgery in a convenience sample of infants during PDA closure on VG. Pressure limit increased 11% and set VT was 26% lower during lung retraction. Fentanyl and pancuronium/vecuronium were used for anesthesia/muscle relaxation. Longitudinal data were analyzed by analysis of variance for repeated measures. Seven infants, 25.4 ± 1.5 weeks and 723 ± 141 g, underwent closure of PDA on VG at a mean age 29.9 days. No air leak, bradycardia, or death occurred. Target VT was maintained with a modest increase in inflation pressure. Oxygenation remained adequate. VG avoided hypoxemia and maintained adequate VT with only a modest increase in peak inflation pressure and thus may be a useful mode during PDA surgery. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
In situ vibrational spectroscopy of adsorbed nitrogen in porous carbon materials.
Ray, Paramita; Xu, Enshi; Crespi, Vincent H; Badding, John V; Lueking, Angela D
2018-05-25
This study uses in situ vibrational spectroscopy to probe nitrogen adsorption to porous carbon materials, including single-wall carbon nanotubes and Maxsorb super-activated carbon, demonstrating how the nitrogen Raman stretch mode is perturbed by adsorption. In all porous carbon samples upon N2 physisorption in the mesopore filling regime, the N2 Raman mode downshifts by ∼2 cm-1, a downshift comparable to liquid N2. The relative intensity of this mode increases as pressure is increased to saturation, and trends in the relative intensity parallel the volumetric gas adsorption isotherm. This mode with ∼2 cm-1 downshift is thus attributed to perturbations arising due to N2-N2 interactions in a condensed film. The mode is also observed for the activated carbon at 298 K, and the relative intensity once again parallels the gas adsorption isotherm. For select samples, a mode with a stronger downshift (>4 cm-1) is observed, and the stronger downshift is attributed to stronger N2-carbon surface interactions. Simulations for a N2 surface film support peak assignments. These results suggest that N2 vibrational spectroscopy could provide an indication of the presence or absence of porosity for very small quantities of samples.
Arctic Ocean Circulation Patterns Revealed by GRACE
NASA Astrophysics Data System (ADS)
Peralta-Ferriz, Cecilia; Morison, James H.; Wallace, John M.; Bonin, Jennifer A.; Zhang, Jinlun
2013-04-01
EOF analysis of non-seasonal, month-to-month variations in GRACE derived Arctic Ocean bottom pressure (OBP) yield three dominant modes. The first mode is a wintertime basin wide variation in mass associated with high atmospheric pressure (SLP) over Scandinavia. The second mode is a shift of mass from the central Arctic Ocean to the Siberian shelves due to low pressure over the basins, associated with the strength of the Arctic Oscillation. The third mode is a shift in mass between the Eastern and Western Siberian shelves, related to strength of the Beaufort High mainly in summer, and to eastward alongshore winds on the Barents Sea in winter. The PIOMAS and ECCO2 modeled OBP are consistent with the form of these modes and provide context in terms of variations in sea surface height. The models are used to investigate the ocean dynamics associated with each mode of OBP variability.
Optical phonon modes in rhombohedral boron monosulfide under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherednichenko, Kirill A.; IMPMC, UPMC Sorbonne Universités, CNRS UMR 7590, 75005 Paris; LSPM–CNRS, Université Paris Nord, 93430 Villetaneuse
2015-05-14
Raman spectra of rhombohedral boron monosulfide (r-BS) were measured under pressures up to 34 GPa at room temperature. No pressure-induced structural phase transition was observed, while strong pressure shift of Raman bands towards higher wavenumbers has been revealed. IR spectroscopy as a complementary technique has been used in order to completely describe the phonon modes of r-BS. All experimentally observed bands have been compared with theoretically calculated ones and modes assignment has been performed. r-BS enriched by {sup 10}B isotope was synthesized, and the effect of boron isotopic substitution on Raman spectra was observed and analyzed.
NASA Technical Reports Server (NTRS)
Thomas, Randy; Stueber, Thomas J.
2013-01-01
The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.
Optical Absorption and Raman Spectroscopy of Multiple Shocked Liquid Benzene to 10 GPa
NASA Astrophysics Data System (ADS)
Root, S.
2005-07-01
Liquid benzene samples were multiply shocked to peak pressures ranging from 3 GPa to 10 GPa to examine physical and chemical changes in benzene. A xenon flashlamp was used to probe the visible spectrum of benzene for loses in transmitted light intensity caused by changes in the electronic structure (absorption) or a possible liquid to solid phase transition (scattering). Raman spectroscopy was used to corroborate transmission measurements by examining changes in the benzene vibrational modes. The C-C symmetric ring breathing mode (992 cm-1), C-H symmetric stretch (3061 cm-1), along with several weaker modes at 607 cm-1, 1178 cm-1, 1586 cm-1, and 1606 cm-1 were monitored during shock loading. An EOS was developed to calculate the temperature of the shock compressed benzene. The present work has demonstrated that liquid benzene remains unchanged during multiple shock loading up to 10 GPa. Work supported by ONR and DOE.
NASA Astrophysics Data System (ADS)
Wilczek, Sebastian; Trieschmann, Jan; Schulze, Julian; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Derzsi, Aranka; Korolov, Ihor; Donkó, Zoltan
2013-09-01
The electron heating in capacitive discharges at very low pressures (~1 Pa) is dominated by stochastic heating. In this regime electrons are accelerated by the oscillating sheaths, traverse through the plasma bulk and interact with the opposite sheath. By varying the driving frequency or the gap size of the discharge, energetic electrons reach the sheath edge at different temporal phases, i.e., the collapsing or expanding phase, or the moment of minimum sheath width. This work reports numerical experiments based on Particle-In-Cell simulations which show that at certain frequencies the discharge switches abruptly from a low density mode in a high density mode. The inverse transition is also abrupt, but shows a significant hysteresis. This behavior is explained by the complex interaction of the bulk and the sheath. This work is supported by the German Research Foundation in the frame of TRR 87.
NASA Astrophysics Data System (ADS)
Boisvert, J.-S.; Sadeghi, N.; Margot, J.; Massines, F.
2017-01-01
Diffuse dielectric barrier discharges in atmospheric-pressure helium can be sustained over a wide range of excitation frequencies (from, but not restricted, 25 kHz to 15 MHz). The aim of the present paper is to identify the specific characteristics of the discharge modes that can be sustained in this frequency range, namely, the atmospheric-pressure Townsend-like discharge (APTD-L) mode, the atmospheric-pressure glow discharge (APGD) mode, the Ω mode, the hybrid mode, and the RF-α mode. This is achieved experimentally, by measuring the density of helium metastable atoms, which are known to play a driving role on the discharge kinetics. This density is measured by means of two absorption spectroscopy methods, one using a spectral lamp and the other one using a diode laser as a light source. The first one provides the time-averaged atom densities in the singlet He(21S) and triplet He(23S) metastable states, while with the second one we access the time-resolved density of He(23S) atoms. Time-averaged measurements indicate that the He(23S) density is relatively low in the APTD-L, the Ω and the RF-α modes ( <4 ×1016 m-3 ) slightly higher in the APGD mode ( 2 -7 ×1016 m-3 ), and still higher ( >1 ×1017 m-3 ) in the hybrid mode. The hybrid mode is exclusively observed for frequencies from 0.2 to 3 MHz. However, time-resolved density measurement shows that at 1 MHz and below, the hybrid mode is not continuously sustained. Instead, the discharge oscillates between the Ω and the hybrid mode with a switching frequency about the kilohertz. This explains the significantly lower power required to sustain the plasma as compared to above 1 MHz.
Raman scattering study on the hidden order and antiferromagnetic phases in URu2-xFexSi2
NASA Astrophysics Data System (ADS)
Kung, Hsiang-Hsi; Ran, Sheng; Kanchanavatee, Noravee; Lee, Alexander; Krapivin, Viktor; Haule, Kristjan; Maple, M. Brian; Blumberg, Girsh
The heavy fermion compound URu2Si2 possesses an unusual ground state known as the ``hidden order'' (HO) phase below T = 17 . 5 K, which evolves into an large moment antiferromagnetic (LMAFM) phase under pressure. A recent Raman scattering study shows that an A2 g symmetry (D4 h) in-gap mode emerges in the HO phase, characterizing the excitation from a chirality density wave. Here, we report Raman scattering results for single crystal URu2-xFexSi2 with x <= 0 . 2 , where the Fe substitution acts as chemical pressure, shifting the system's ground state from HO to LMAFM. We found that the A2 g mode softens with doping, vanishes at the HO and LMAFM phase boundary, then re-emerges and hardens with doping in the LMAFM phase. The relations between the A2 g mode energy and the strength of the HO/LMAFM order parameters will be discussed in this talk. GB and HHK acknowledge support from DOE BES Award DE-SC0005463. AL and VK acknowledge NSF Award DMR-1104884. KH acknowledges NSF Award DMR-1405303. MBM, SR and NK acknowledge DOE BES Award DE-FG02-04ER46105 and NSF Award DMR 1206553.
NASA Astrophysics Data System (ADS)
Sherman, Justin; Azzari, Phillip; Crilly, P. B.; Duke-Tinson, Omar; James, Royce W.; Karama, Jackson; Page, E. J.; Schlank, Carter; Zuniga, Jonathan
2014-10-01
CGAPL is conducting small investigations in plasma physics and magneto-hydrodynamics buoy positioning. For data management, we are developing capability to analyze/digitize data with a National Instruments Data Acquisition board, 2 MS/s sampling rate (long time scale), and an Express Octopus card, 125 MS/s sampling rate (short scale). Sampling at 12 bits precision, we use LabVIEW as a programing language; GUIs will control variables in 1 or more concurrent runs and monitor of diagnostics. HPX utilizes high density (1013 cm3 up), low pressure (.01 T) Ar gas (fill pressure: on 104 mTorr order). Helicon/W Mode plasmas become a diagnostics test-bed for other investigations and a tool for future spacecraft propulsion devices. Plasmas created by directing energy into gas-filled Pyrex tube; power supply and matching box, up to 250 W power in 20-100 MHz frequencies, provide energy to ignite. Uniform magnetic field needed to reach the W-Mode. We employ an electromagnet to B-field while an acceleration coil positions plasma in vacuum chamber, facilitating analysis. Initial field requirements and accuracy calibration have been completed. Progress on development and implementation of probes and DAQ/GUI system will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.
NASA Astrophysics Data System (ADS)
Li, Xuechun; Li, Dian; Wang, Younian
2016-09-01
A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).
Vasconcelos, Renata S; Sales, Raquel P; Melo, Luíz H de P; Marinho, Liégina S; Bastos, Vasco Pd; Nogueira, Andréa da Nc; Ferreira, Juliana C; Holanda, Marcelo A
2017-05-01
Pressure support ventilation (PSV) is often associated with patient-ventilator asynchrony. Proportional assist ventilation (PAV) offers inspiratory assistance proportional to patient effort, minimizing patient-ventilator asynchrony. The objective of this study was to evaluate the influence of respiratory mechanics and patient effort on patient-ventilator asynchrony during PSV and PAV plus (PAV+). We used a mechanical lung simulator and studied 3 respiratory mechanics profiles (normal, obstructive, and restrictive), with variations in the duration of inspiratory effort: 0.5, 1.0, 1.5, and 2.0 s. The Auto-Trak system was studied in ventilators when available. Outcome measures included inspiratory trigger delay, expiratory trigger asynchrony, and tidal volume (V T ). Inspiratory trigger delay was greater in the obstructive respiratory mechanics profile and greatest with a effort of 2.0 s (160 ms); cycling asynchrony, particularly delayed cycling, was common in the obstructive profile, whereas the restrictive profile was associated with premature cycling. In comparison with PSV, PAV+ improved patient-ventilator synchrony, with a shorter triggering delay (28 ms vs 116 ms) and no cycling asynchrony in the restrictive profile. V T was lower with PAV+ than with PSV (630 mL vs 837 mL), as it was with the single-limb circuit ventilator (570 mL vs 837 mL). PAV+ mode was associated with longer cycling delays than were the other ventilation modes, especially for the obstructive profile and higher effort values. Auto-Trak eliminated automatic triggering. Mechanical ventilation asynchrony was influenced by effort, respiratory mechanics, ventilator type, and ventilation mode. In PSV mode, delayed cycling was associated with shorter effort in obstructive respiratory mechanics profiles, whereas premature cycling was more common with longer effort and a restrictive profile. PAV+ prevented premature cycling but not delayed cycling, especially in obstructive respiratory mechanics profiles, and it was associated with a lower V T . Copyright © 2017 by Daedalus Enterprises.
Touch-mode capacitive pressure sensor with graphene-polymer heterostructure membrane
NASA Astrophysics Data System (ADS)
Berger, Christian; Phillips, Rory; Pasternak, Iwona; Sobieski, Jan; Strupinski, Wlodek; Vijayaraghavan, Aravind
2018-01-01
We describe the fabrication and characterisation of a touch-mode capacitive pressure sensor (TMCPS) with a robust design that comprises a graphene-polymer heterostructure film, laminated onto the silicon dioxide surface of a silicon wafer, incorporating a SU-8 spacer grid structure. The spacer grid structure allows the flexible graphene-polymer film to be partially suspended above the substrate, such that a pressure on the membrane results in a reproducible deflection, even after exposing the membrane to pressures over 10 times the operating range. Sensors show reproducible pressure transduction in water submersion at varying depths under static and dynamic loading. The measured capacitance change in response to pressure is in good agreement with an analytical model of clamped plates in touch mode. The device shows a pressure sensitivity of 27.1 +/- 0.5 fF Pa-1 over a pressure range of 0.5 kPa-8.5 kPa. In addition, we demonstrate the operation of this device as a force-touch sensor in air.
NASA Astrophysics Data System (ADS)
Jiang, JianJun; Li, HePing; Dai, LiDong; Hu, HaiYing; Zhao, ChaoShuai
2016-03-01
The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC), to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E2 g 1 ,A1g, and 2LA(M)). Over our experimental temperature and pressure range (300-600 K and 1 atm-18.5 GPa), the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3-4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.
Hydroxyl functionalized polytriazole-co-polyoxadiazole as substrates for forward osmosis membranes.
Duong, Phuoc H H; Chisca, Stefan; Hong, Pei-Ying; Cheng, Hong; Nunes, Suzana P; Chung, Tai-Shung
2015-02-25
Hydroxyl functionalized polytriazole-co-polyoxadiazole (PTA-POD) copolymers have been synthesized and cast as promising highly thermally stable, chemically resistant, and antiorganic/biological fouling porous substrates for the fabrication of thin-film composite (TFC) forward osmosis (FO) membranes. The roles of PTA/POD ratios in the membrane substrates, TFC layers, and FO membrane performance have been investigated. This study demonstrates that the substrate fabricated from the copolymer containing 40 mol % PTA is optimal for the TFC membranes. Compared to the POD-TFC membrane, the 40 mol % PTA-TFC membrane exhibits a remarkable decrease in structural parameter (S) of more than 3.3 times. In addition, the 40 mol % PTA-TFC membrane is characterized by high water fluxes of 24.9 LMH and 47.2 LMH using 1 M NaCl as the draw solution and DI water as the feed under FO and pressure retarded osmosis (PRO) modes, respectively. Compared to a polysulfone (PSU) supported TFC-FO membrane under similar fabrication conditions, the 40% mol PTA-TFC membrane shows better FO performance and enhanced antifouling properties on the support (lower protein binding propensity and improved bacterial inhibition). Moreover, the performance of the 40 mol % PTA supported TFC-FO membrane can be improved to 37.5 LMH (FO mode)/78.4 LMH (PRO mode) and potentially higher by optimizing the support morphology, the TFC formation, and the post-treatment process. Hence, the use of newly developed hydroxyl functionalized polytriazole-co-polyoxadiazole copolymers may open up a new class of material for FO processes.
Acoustic system for material transport
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Trinh, E. H.; Wang, T. G.; Elleman, D. D.; Jacobi, N. (Inventor)
1983-01-01
An object within a chamber is acoustically moved by applying wavelengths of different modes to the chamber to move the object between pressure wells formed by the modes. In one system, the object is placed in one end of the chamber while a resonant mode, applied along the length of the chamber, produces a pressure well at the location. The frequency is then switched to a second mode that produces a pressure well at the center of the chamber, to draw the object. When the object reaches the second pressure well and is still traveling towards the second end of the chamber, the acoustic frequency is again shifted to a third mode (which may equal the first model) that has a pressure well in the second end portion of the chamber, to draw the object. A heat source may be located near the second end of the chamber to heat the sample, and after the sample is heated it can be cooled by moving it in a corresponding manner back to the first end of the chamber. The transducers for levitating and moving the object may be all located at the cool first end of the chamber.
Meridionally propagating interannual-to-interdecadal variability in a linear ocean-atmosphere model
NASA Technical Reports Server (NTRS)
Mehta, Vikram M.
1992-01-01
Meridional oscillation modes in a global, primitive-equation coupled ocean-atmosphere model have been analyzed in order to determine whether they contain such meridionally propagating modes as surface-pressure perturbations with years-to-decades oscillation periods. A two-layer global ocean model and a two-level global atmosphere model were then formulated. For realistic parameter values and basic states, meridional modes oscillating at periods of several years to several decades are noted to be present in the coupled ocean-atmosphere model; the oscillation periods, travel times, and meridional structures of surface pressure perturbations in one of the modes are found to be comparable to the corresponding characteristics of observed sea-level pressure perturbations.
Get a Grip: Substrate Orientation and Digital Grasping Pressures in Strepsirrhines.
Congdon, Kimberly A; Ravosa, Matthew J
2016-01-01
Skeletal functional morphology in primates underlies many fossil interpretations. Understanding the functional correlates of arboreal grasping is central to identifying locomotor signatures in extinct primates. We tested 3 predictions linking substrate orientation and digital grasping pressures: (1) below-branch pressures are greater than above-branch and vertical-branch pressures; (2) there is no difference in pressure exerted across digits within autopods at any substrate orientation, and (3) there is no difference in pressure exerted between homologous digits across autopods at any substrate orientation. Adult males and females from 3 strepsirrhine species crossed an artificial arboreal substrate oriented for above-, below- and vertical-branch locomotion. We compared digital pressures within and across behaviors via ANOVA and Tukey's Honest Significant Difference test. Results show limited support for all predictions: below-branch pressures exceeded vertical-branch pressures and above-branch pressures for some digits and species (prediction 1), lateral digits often exerted greater pressures than medial digits (prediction 2), and pedal digits occasionally exerted greater pressures than manual digits during above-branch and vertical orientations but less often for below-branch locomotion (prediction 3). We observed functional variability across autopods, substrate and species that could underlie morphological variation within and across primates. Future work should consider the complexity of arboreality when inferring locomotor modes in fossils. © 2016 S. Karger AG, Basel.
The growing role of noninvasive ventilation in patients requiring prolonged mechanical ventilation.
Hess, Dean R
2012-06-01
For many patients with chronic respiratory failure requiring ventilator support, noninvasive ventilation (NIV) is preferable to invasive support by tracheostomy. Currently available evidence does not support the use of nocturnal NIV in unselected patients with stable COPD. Several European studies have reported benefit for high intensity NIV, in which setting of inspiratory pressure and respiratory rate are selected to achieve normocapnia. There have also been studies reporting benefit for the use of NIV as an adjunct to exercise training. NIV may be useful as an adjunct to airway clearance techniques in patients with cystic fibrosis. Accumulating evidence supports the use of NIV in patients with obesity hypoventilation syndrome. There is considerable observational evidence supporting the use of NIV in patients with chronic respiratory failure related to neuromuscular disease, and one randomized controlled trial reported that the use of NIV was life-prolonging in patients with amyotrophic lateral sclerosis. A variety of interfaces can be used to provide NIV in patients with stable chronic respiratory failure. The mouthpiece is an interface that is unique in this patient population, and has been used with success in patients with neuromuscular disease. Bi-level pressure ventilators are commonly used for NIV, although there are now a new generation of intermediate ventilators that are portable, have a long battery life, and can be used for NIV and invasive applications. Pressure support ventilation, pressure controlled ventilation, and volume controlled ventilation have been used successfully for chronic applications of NIV. New modes have recently become available, but their benefits await evidence to support their widespread use. The success of NIV in a given patient population depends on selection of an appropriate patient, selection of an appropriate interface, selection of an appropriate ventilator and ventilator settings, the skills of the clinician, the motivation of the patient, and the support of the family. 2012 Daedalus Enterprises
Mechanical ventilation during extracorporeal membrane oxygenation.
Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol
2014-01-21
The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.
Mechanical ventilation during extracorporeal membrane oxygenation
2014-01-01
The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes. PMID:24447458
NASA Astrophysics Data System (ADS)
Goldman, Benjamin D.
The purpose of this dissertation is to study the aeroelastic stability of a proposed flexible thermal protection system (FTPS) for the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A flat, square FTPS coupon exhibits violent oscillations during experimental aerothermal testing in NASA's 8 Foot High Temperature Tunnel, leading to catastrophic failure. The behavior of the structural response suggested that aeroelastic flutter may be the primary instability mechanism, prompting further experimental investigation and theoretical model development. Using Von Karman's plate theory for the panel-like structure and piston theory aerodynamics, a set of aeroelastic models were developed and limit cycle oscillations (LCOs) were calculated at the tunnel flow conditions. Similarities in frequency content of the theoretical and experimental responses indicated that the observed FTPS oscillations were likely aeroelastic in nature, specifically LCO/flutter. While the coupon models can be used for comparison with tunnel tests, they cannot predict accurately the aeroelastic behavior of the FTPS in atmospheric flight. This is because the geometry of the flight vehicle is no longer a flat plate, but rather (approximately) a conical shell. In the second phase of this work, linearized Donnell conical shell theory and piston theory aerodynamics are used to calculate natural modes of vibration and flutter dynamic pressures for various structural models composed of one or more conical shells resting on several circumferential elastic supports. When the flight vehicle is approximated as a single conical shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case, as "hump-mode" flutter is possible. Aeroelastic models that consider the individual FTPS layers as separate shells exhibit asymmetric flutter at high dynamic pressures relative to the single shell models. Parameter studies also examine the effects of tension, shear modulus reduction, and elastic support stiffness. Limitations of a linear structural model and piston theory aerodynamics prompted a more elaborate evaluation of the flight configuration. Using nonlinear Donnell conical shell theory for the FTPS structure, the pressure buckling and aeroelastic limit cycle oscillations were studied for a single elastically-supported conical shell. While piston theory was used initially, a time-dependent correction factor was derived using transform methods and potential flow theory to calculate more accurately the low Mach number supersonic flow. Three conical shell geometries were considered: a 3-meter diameter 70° shell, a 3.7-meter 70° shell, and a 6-meter diameter 70° shell. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD vehicle. Though agreement between theoretical and experimental strains was poor, circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With piston theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. Pre-buckling pressure loads and the aerodynamic pressure correction factor were studied for all geometries, and these effects resulted in significantly lower flutter boundaries compared with piston theory alone. In the final phase of this work, the existing linear and nonlinear FTPS shell models were coupled with NASA's FUN3D Reynolds Averaged Navier Stokes CFD code, allowing for the most physically realistic flight predictions. For the linear shell structural model, the elastically-supported shell natural modes were mapped to a CFD grid of a 6-meter HIAD vehicle, and a linear structural dynamics solver internal to the CFD code was used to compute the aeroelastic response. Aerodynamic parameters for a proposed HIAD re-entry trajectory were obtained, and aeroelastic solutions were calculated at three points in the trajectory: Mach 1, Mach 2, and Mach 11 (peak dynamic pressure). No flutter was found at any of these conditions using the linear method, though oscillations (of uncertain origin) on the order of the shell thickness may be possible in the transonic regime. For the nonlinear shell structural model, a set of assumed sinusoidal modes were mapped to the CFD grid, and the linear structural dynamics equations were replaced by a nonlinear ODE solver for the conical shell equations. Successful calculation and restart of the nonlinear dynamic aeroelastic solutions was demonstrated. Preliminary results indicated that dynamic instabilities may be possible at Mach 1 and 2, with a completely stable solution at Mach 11, though further study is needed. A major benefit of this implementation is that the coefficients and mode shapes for the nonlinear conical shell may be replaced with those of other types of structures, greatly expanding the aeroelastic capabilities of FUN3D.
Mechanics of dual-mode dilative failure in subaqueous sediment deposits
NASA Astrophysics Data System (ADS)
You, Yao; Flemings, Peter; Mohrig, David
2014-07-01
We introduce dual-mode dilative failure with flume experiments. Dual-mode dilative failure combines slow and steady release of sediments by breaching with periodic sliding, which rapidly releases an internally coherent wedge of sediments. It occurs in dilative sandy deposits. This periodic slope failure results from cyclic evolution of the excess pore pressure in the deposit. Sliding generates large, transient, negative excess pore pressure that strengthens the deposit and allows breaching to occur. During breaching, negative excess pore pressure dissipates, the deposit weakens, and ultimately sliding occurs once again. We show that the sliding frequency is proportional to the coefficient of consolidation. We find that thicker deposits are more susceptible to dual-mode dilative failure. Discovery of dual-mode dilative failure provides a new mechanism to consider when interpreting the sedimentary deposits linked to submarine slope failures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.
The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less
NASA Astrophysics Data System (ADS)
Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; Nazikian, R.; Strait, E. J.; Chen, X.; Ferraro, N. M.; King, J. D.; Lyons, B. C.; Park, J.-K.
2016-05-01
The nature of the multi-modal n = 2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (Δ {φ\\text{UL}} ) between upper and lower in-vessel coils demonstrates that different n = 2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, the observed confinement degradation shares the same Δ {φ\\text{UL}} dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the Δ {φ\\text{UL}} dependence of both the global confinement and the n = 2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same Δ {φ\\text{UL}} dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.
Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; ...
2016-03-31
The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less
A model of energetic ion effects on pressure driven tearing modes in tokamaks
Halfmoon, M. R.; Brennan, D. P.
2017-06-05
Here, the effects that energetic trapped ions have on linear resistive magnetohydrodynamic (MHD) instabilities are studied in a reduced model that captures the essential physics driving or damping the modes through variations in the magnetic shear. The drift-kinetic orbital interaction of a slowing down distribution of trapped energetic ions with a resistive MHD instability is integrated to a scalar contribution to the perturbed pressure, and entered into an asymptotic matching formalism for the resistive MHD dispersion relation. Toroidal magnetic field line curvature is included to model trapping in the particle distribution, in an otherwise cylindrical model. The focus is onmore » a configuration that is driven unstable to the m/n = 2/1 mode by increasing pressure, where m is the poloidal mode number and n is the toroidal. The particles and pressure can affect the mode both in the core region where there can be low and reversed shear and outside the resonant surface in significant positive shear. The results show that the energetic ions damp and stabilize the mode when orbiting in significant positive shear, increasing the marginal stability boundary. However, the inner core region contribution with low and reversed shear can drive the mode unstable. This effect of shear on the energetic ion pressure contribution is found to be consistent with the literature. These results explain the observation that the 2/1 mode was found to be damped and stabilized by energetic ions in delta δf-MHD simulations of tokamak experiments with positive shear throughout, while the 2/1 mode was found to be driven unstable in simulations of experiments with weakly reversed shear in the core. This is also found to be consistent with related experimental observations of the stability of the 2/1 mode changing significantly with core shear.« less
A model of energetic ion effects on pressure driven tearing modes in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfmoon, M. R.; Brennan, D. P.
Here, the effects that energetic trapped ions have on linear resistive magnetohydrodynamic (MHD) instabilities are studied in a reduced model that captures the essential physics driving or damping the modes through variations in the magnetic shear. The drift-kinetic orbital interaction of a slowing down distribution of trapped energetic ions with a resistive MHD instability is integrated to a scalar contribution to the perturbed pressure, and entered into an asymptotic matching formalism for the resistive MHD dispersion relation. Toroidal magnetic field line curvature is included to model trapping in the particle distribution, in an otherwise cylindrical model. The focus is onmore » a configuration that is driven unstable to the m/n = 2/1 mode by increasing pressure, where m is the poloidal mode number and n is the toroidal. The particles and pressure can affect the mode both in the core region where there can be low and reversed shear and outside the resonant surface in significant positive shear. The results show that the energetic ions damp and stabilize the mode when orbiting in significant positive shear, increasing the marginal stability boundary. However, the inner core region contribution with low and reversed shear can drive the mode unstable. This effect of shear on the energetic ion pressure contribution is found to be consistent with the literature. These results explain the observation that the 2/1 mode was found to be damped and stabilized by energetic ions in delta δf-MHD simulations of tokamak experiments with positive shear throughout, while the 2/1 mode was found to be driven unstable in simulations of experiments with weakly reversed shear in the core. This is also found to be consistent with related experimental observations of the stability of the 2/1 mode changing significantly with core shear.« less
NASA Astrophysics Data System (ADS)
Charles, Christine; Liang, Wei; Raymond, Luke; Rivas-Davila, Juan; Boswell, Roderick W.
2017-08-01
A structurally supportive miniaturised low-weight (≤150 g) radiofrequency switch mode amplifier developed to power the small diameter Pocket Rocket electrothermal plasma micro-thruster called MiniPR is tested in vacuum conditions representative of space to demonstrate its suitability for use on nano-satellites such as `CubeSats'. Argon plasma characterisation is carried out by measuring the optical emission signal seen through the plenum window versus frequency (12.8-13.8 MHz) and the plenum cavity pressure increase (indicative of thrust generation from volumetric gas heating in the plasma cavity) versus power (1-15 Watts) with the amplifier operating at atmospheric pressure and a constant flow rate of 20 sccm. Vacuum testing is subsequently performed by measuring the operational frequency range of the amplifier as a function of gas flow rate. The switch mode amplifier design is finely tuned to the input impedance of the thruster ˜16 pF) to provide a power efficiency of 88 % at the resonant frequency and a direct feed to a low-loss (˜ 10 %) impedance matching network. This system provides successful plasma coupling at 1.54 Watts for all investigated flow rates (10-130 sccm) for cryogenic pumping speeds of the order of 6000 l.s^{-1} and a vacuum pressure of the order of ˜ 2x10^{-5} Torr during operation. Interestingly, the frequency bandwidth for which a plasma can be coupled increases from 0.04 to 0.4 MHz when the gas flow rate is increased, probably as a result of changes in the plasma impedance.
NASA Technical Reports Server (NTRS)
Slade, Kara N.; Tinker, Michael L.; Lassiter, John O.; Engberg, Robert
2000-01-01
Dynamic testing of an inflatable solar concentrator structure in a thermal vacuum chamber as well as in ambient laboratory conditions is described in detail. Unique aspects of modal testing for the extremely lightweight inflatable are identified, including the use of a noncontacting laser vibrometer measurement system. For the thermal vacuum environment, mode shapes and frequency response functions are compared for three different test article inflation pressures at room temperature. Modes that persist through all the inflation pressure regimes are identified, as well as modes that are unique for each pressure. In atmospheric pressure and room temperature conditions, dynamic measurements were obtained for the expected operational inflation pressure of 0.5 psig. Experimental mode shapes and frequency response functions for ambient conditions are described and compared to the 0.5 psig results from the thermal vacuum tests. Only a few mode shapes were identified that occurred in both vacuum and atmospheric environments. This somewhat surprising result is discussed in detail, and attributed at least partly to 1.) large differences in modal damping, and 2.) significant differences in the mass of air contained by the structure, in the two environments. Results of this investigation point out the necessity of testing inflatable space structures in vacuum conditions before they can be launched. Ground testing in atmospheric pressure is not sufficient for predicting on-orbit dynamics of non-rigidized inflatable systems.
L-H transitions driven by ion heating in scrape-off layer turbulence (SOLT) model simulations
NASA Astrophysics Data System (ADS)
Russell, D. A.; D'Ippolito, D. A.; Myra, J. R.
2015-11-01
The original SOLT model now includes the evolution of ion pressure consistent with drift-ordering. It is a two-dimensional, electrostatic reduced model wherein closure relations, obtained by integrating the equations along the B-field, model parallel physics that includes sheath-mediated current and heat flux in the scrape-off-layer and electron drift waves inside the separatrix. Low (L) and high (H) confinement regimes are observed in SOLT simulations, depending on the strength of an ion pressure (i.e., ion heating) source localized inside the separatrix: With increasing heating, particle and energy confinement times at first decrease in the L-mode then rise in the H-mode. The L-H transition is marked by distinct changes in sheared-flow profiles. The addition of ion pressure dynamics enables modeling the self-consistent interaction between the ion diamagnetic drift and the radial electric field (mean and zonal flows). The roles of these sheared flows in mediating the L-H transition are explored. A new diagnostic, based on the density correlation function, is applied to study blob velocities in different regimes. Work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-97ER54392.
Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto
2014-01-01
Objective: Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. Methods: This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Results: Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. Conclusions: The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM. PMID:25029653
Post-buckling of a pressured biopolymer spherical shell with the mode interaction
NASA Astrophysics Data System (ADS)
Zhang, Lei; Ru, C. Q.
2018-03-01
Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Walker, Bruce E.
2014-01-01
An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.
Mental workload as a key factor in clinical decision making.
Byrne, Aidan
2013-08-01
The decision making process is central to the practice of a clinician and has traditionally been described in terms of the hypothetico-deductive model. More recently, models adapted from cognitive psychology, such as the dual process and script theories have proved useful in explaining patterns of practice not consistent with purely cognitive based practice. The purpose of this paper is to introduce the concept of mental workload as a key determinant of the type of cognitive processing used by clinicians. Published research appears to be consistent with 'schemata' based cognition as the principle mode of working for those engaged in complex tasks under time pressure. Although conscious processing of factual data is also used, it may be the primary mode of cognition only in situations where time pressure is not a factor. Further research on the decision making process should be based on outcomes which are not dependant on conscious recall of past actions or events and include a measure of mental workload. This further appears to support the concept of the patient, within the clinical environment, as the most effective learning resource.
NASA Astrophysics Data System (ADS)
Otsubo, M.; Hardebeck, J.; Miyakawa, A.; Yamaguchi, A.; Kimura, G.
2017-12-01
Fluid-rock interactions along seismogenic faults are of great importance to understand fault mechanics. The fluid loss by the formation of mode I cracks (tension cracks) increases the fault strength and creates drainage asperities along the plate interface (Sibson, 2013, Tectonophysics). The Nobeoka Thrust, in southwestern Japan, is an on-land example of an ancient megasplay fault and provides an excellent record of deformation and fluid flow at seismogenic depths of a subduction zone (Kondo et al., 2005, Tectonics). We focus on (1) Pore fluid pressure loss, (2) Amount of fault strength recovery, and (3) Fluid circulation by the formation of mode I cracks in the post-seismic period around the fault zone of the Nobeoka Thrust. Many quartz veins that filled mode I crack at the coastal outcrops suggest a normal faulting stress regime after faulting of the Nobeoka Thrust (Otsubo et al., 2016, Island Arc). We estimated the decrease of the pore fluid pressure by the formation of the mode I cracks around the Nobeoka Thrust in the post-seismic period. When the pore fluid pressure exceeds σ3, veins filling mode I cracks are constructed (Jolly and Sanderson, 1997, Jour. Struct. Geol.). We call the pore fluid pressure that exceeds σ3 "pore fluid over pressure". The differential stress in the post-seismic period and the driving pore fluid pressure ratio P* (P* = (Pf - σ3) / (σ1 - σ3), Pf: pore fluid pressure) are parameters to estimate the pore fluid over pressure. In the case of the Nobeoka Thrust (P* = 0.4, Otsubo et al., 2016, Island Arc), the pore fluid over pressure is up to 20 MPa (assuming tensile strength = 10 MPa). 20 MPa is equivalent to <10% of the total pore fluid pressure around the Nobeoka Thrust (depth = 10 km, density = 2.7 kg/m3). When the pore fluid pressure decreases by 4%, the normalized pore pressure ratio λ* (λ* = (Pf - Ph) / (Pl - Ph), Pl: lithostatic pressure; Ph: hydrostatic pressure) changes from 0.95 to 0.86. In the case of the Nobeoka Thrust, the fault strength can increase by up to 10 MPa (assuming frictional coefficient = 0.6). 10 MPa is almost equivalent to the stress drop values in large trench type earthquakes. Hence, we suggest that the fluid loss caused by the formation of mode I cracks in the post-seismic period may play an important role by increasing frictional strength along the megasplay fault.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A., E-mail: amunoz@ull.es
The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet ismore » mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.« less
Effect of pressure on Zircon's (ZrSiO4) Raman active modes: a first-principles study
NASA Astrophysics Data System (ADS)
Sheremetyeva, Natalya; Cherniak, Daniele; Watson, Bruce; Meunier, Vincent
Zircon is a mineral commonly found in the Earth crust. Its remarkable properties have given rise to considerable attention. This includes possible inclusion of radioactive elements in natural samples, which allows for geochronological investigations. Subsequently, Zircon was proposed as possible host material for radioactive waste management. Internal radiation damage in zircon leads to the destruction of its crystal structure (an effect known as metamictization) which is subject to ongoing research. Recently, the effect of pressure and temperature on synthetic zircon has been analyzed experimentally using Raman spectroscopy which led to the calibration of zircon as a pressure sensor in diamond-anvil cell experiments. While there have been a number of theoretical studies, the effect of pressure on the Raman active modes of zircon has not been investigated theoretically. Here we present a first-principles pressure calibration of the Raman active modes in Zircon employing density-functional theory (DFT). We find excellent quantitative agreement of the slopes ∂ω / ∂P with the experimental ones and are able to rationalize the ω vs. P behavior based on the details of the vibrational modes.
Analysis of the nonlinearity of Asian summer monsoon intraseasonal variability using spherical PDFs
NASA Astrophysics Data System (ADS)
Jajcay, Nikola; Hannachi, Abdel
2013-04-01
The Asian summer monsoon (ASM) is a high-dimensional and highly complex phenomenon affecting more than one fifth of the world population. The intraseasonal component of the ASM undergoes periods of active and break phases associated respectively with enhanced and reduced rainfall over the Indian subcontinent and surroundings. In this paper the nonlinear nature of the intraseasonal monsoon variability is investigated using the leading EOFs of ERA-40 sea level pressure reanalyses field over the ASM region. The probability density function is then computed in spherical coordinates using a Epaneshnikov kernel method. Three significant modes are identified. They represent respectively (i) East - West mode with above normal sea level pressure over East China sea and below normal pressure over Himalayas, (ii) mode with above normal sea level pressure over East China sea (without compensating centre of opposite sign as in (i)) and (iii) mode with below normal sea level pressure over East China sea (same as (ii) but with opposite sign). Relationship to large scale flow are also investigated and discussed.
NASA Technical Reports Server (NTRS)
Smalley, Kurt B.; Tinker, Michael L.
2001-01-01
Dynamic characterization of a non-rigidized thin film inflatable antenna/solar concentrator structure with rigidized composite support struts is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of: (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "restart" eigen solution that uses the modified stiffness matrix. Unique problems encountered in modeling of this large 5-m lightweight inflatable are identified, including considerable difficulty in obtaining convergence in the nonlinear pressurization solution. It was found that the extremely thin polyimide film material (.001 in or I mil) presents tremendous problems in obtaining a converged solution when internal pressure loading is applied. It was concluded that the ratios of film thickness to other geometric dimensions such as torus cross-sectional and ring diameter and lenticular diameter are the critical parameters for convergence of the pressurization procedure. Comparison of finite element predictions for frequency and mode shapes with experimental results indicated reasonable agreement considering the complexity of the structure, the film-to-air interaction, and the nonlinear material properties of the film. It was also concluded that analysis should be done using different finite element to codes to determine if a more robust and stable solution can be obtained.
Duvetter, Thomas; Fraeye, Ilse; Sila, Daniel N; Verlent, Isabel; Smout, Chantal; Clynen, Elke; Schoofs, Liliane; Schols, Henk; Hendrickx, Marc; Van Loey, Ann
2006-01-01
Pectin was de-esterified with purified recombinant Aspergillus aculeatus pectin methyl esterase (PME) during isothermal-isobaric treatments. By measuring the release of methanol as a function of treatment time, the rate of enzymatic pectin conversion was determined. Elevated temperature and pressure were found to stimulate PME activity. The highest rate of PME-catalyzed pectin de-esterification was obtained when combining pressures in the range 200-300 MPa with temperatures in the range 50-55 degrees C. The mode of pectin de-esterification was investigated by characterizing the pectin reaction products by enzymatic fingerprinting. No significant effect of increasing pressure (300 MPa) and/or temperature (50 degrees C) on the mode of pectin conversion was detected.
Metabolic assessments during extra-vehicular activity.
Osipov YuYu; Spichkov, A N; Filipenkov, S N
1998-01-01
Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha' (ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.
Metabolic assessments during extra-vehicular activity
NASA Astrophysics Data System (ADS)
Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.
Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.
Carbon microgranule injection into NSTX-U discharges for edge diagnostic research
NASA Astrophysics Data System (ADS)
Lunsford, Robert; Roquemore, A. Lane; Scotti, Filippo; Mansfield, Dennis; Bortolon, Alessandro; Kaita, Robert; Maingi, Rajesh
2016-10-01
Microgranule injection is a versatile means for investigating edge plasmas in fusion devices. Employing a dual bladed rotary turbine, carbon microgranules ranging in diameter from 300 - 700 microns are radially injected into NSTX-U discharges at approximately 50 m/sec. Utilizing multiple high speed camera views, a 3D reconstruction of the injection geometry is created which characterizes the ablation rate and granule trajectory. By coupling this with a neutral gas shielding (NGS) ablation model, the granule mass deposition profile can be determined. Simulation projects a depositional barycenter near the pedestal shoulder for H-mode discharges, and 20 cm inboard of the LCFS for L-mode discharges. Spectroscopic measurements of this localized particle source can be used to characterize impurity transport within the discharge, and potentially allows for direct measurement of the safety factor profile (q). In addition, the transient pressure peaking resultant from injection into H-mode plasmas can also result in the prompt triggering of an edge localized mode (ELM). Work supported by DOE Contract No. DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro
2018-04-01
Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.
Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro
2018-04-27
Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.
The linear tearing instability in three dimensional, toroidal gyro-kinetic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornsby, W. A., E-mail: william.hornsby@ipp.mpg.de; Migliano, P.; Buchholz, R.
2015-02-15
Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro-kinetic turbulence code, GKW. The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate, and frequency of the mode were investigated by varying the current profile, collisionality, and the pressure gradients. Both collisionless and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absence of a pressure gradient is observed, which is attributed to toroidal finite Larmor-radius effects. When a pressure gradientmore » is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However, the island rotation reverses direction at high collisionality. The growth rate is found to follow a η{sup 1∕7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability analysis as performed by Hastie et al. using the same current and safety factor profiles but for cylindrical geometry, however, here a modification due to toroidal coupling and pressure effects is seen.« less
NASA Astrophysics Data System (ADS)
Oka, C.; Odagiri, K.; Nagano, H.
2017-12-01
Control of thermally induced liquid-vapor interface behavior at the contact surface of porous media is crucial for development of two-phase heat transfer devices such as loop heat pipes. The behavior experiences three modes with increase of heat flux, and the middle mode possesses the highest heat transfer performance. In this paper, the effect of improving wettability of the porous media is demonstrated experimentally and numerically for the first time, in particular with regard to the effect on a domain of the middle mode. Ethanol wettability of a porous stainless steel was improved via a facile method, which was a simple acid treatment. As a result, the domain of the middle mode was extended as a consequence of the wettability improvement. The mode transfers from the middle to the last one when the pressure drop in the liquid supply exceeds the capillary pressure of liquid bridges formed between the heating plate and the porous medium. Hence, the extension of the domain suggested that the capillary pressure was increased by the wettability improvement. This was verified via numerical calculation. The calculated capillary pressure was increased by 7% after improving wettability, which resulted in the extension of the domain of the middle mode.
Coupled modes of rainfall over China and the pacific sea surface temperature in boreal summertime
NASA Astrophysics Data System (ADS)
Li, Chun; Ma, Hao
2011-09-01
In addition, the possible atmospheric teleconnections of the coupled rainfall and SST modes were discussed. For the ENSO-NC mode, anomalous low-pressure and high-pressure over the Asian continent induces moisture divergence over North China and reduces summer rainfall there. For the WTP-YRV mode, East Asia-Pacific teleconnection induces moisture convergence over the Yangtze River valley and enhances the summer rainfall there. The TPMM SST and the summer rainfall anomalies over the YRVL are linked by a circumglobal, wave-train-like, atmospheric teleconnection.
Ideal magnetohydrodynamic theory for localized interchange modes in toroidal anisotropic plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Tonghui, E-mail: thshi@ipp.ac.cn; Wan, B. N.; Sun, Y.
2016-08-15
Ideal magnetohydrodynamic theory for localized interchange modes is developed for toroidal plasmas with anisotropic pressure. The work extends the existing theories of Johnson and Hastie [Phys. Fluids 31, 1609 (1988)], etc., to the low n mode case, where n is the toroidal mode number. Also, the plasma compressibility is included, so that the coupling of the parallel motion to perpendicular one, i.e., the so-called apparent mass effect, is investigated in the anisotropic pressure case. The singular layer equation is obtained, and the generalized Mercier's criterion is derived.
Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi
2017-08-04
A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.
Roberts, Calum T; Kortekaas, Rebecca; Dawson, Jennifer A; Manley, Brett J; Owen, Louise S; Davis, Peter G
2016-05-01
Heating and humidification of inspired gases is routine during neonatal non-invasive respiratory support. However, little is known about the temperature and humidity delivered to the upper airway. The International Standards Organization (ISO) specifies that for all patients with an artificial airway humidifiers should deliver ≥33 g/m(3) absolute humidity (AH). We assessed the oropharyngeal temperature and humidity during different non-invasive support modes in a neonatal manikin study. Six different modes of non-invasive respiratory support were applied at clinically relevant settings to a neonatal manikin, placed in a warmed and humidified neonatal incubator. Oropharyngeal temperature and relative humidity (RH) were assessed using a thermohygrometer. AH was subsequently calculated. Measured temperature and RH varied between devices. Bubble and ventilator continuous positive airway pressure (CPAP) produced temperatures >34°C and AH >38 g/m(3). Variable flow CPAP resulted in lower levels of AH than bubble or ventilator CPAP, and AH decreased with higher gas flow. High-flow (HF) therapy delivered by Optiflow Junior produced higher AH with higher gas flow, whereas with Vapotherm HF the converse was true. Different non-invasive devices deliver inspiratory gases of variable temperature and humidity. Most AH levels were above the ISO recommendation; however, with some HF and variable flow CPAP devices at higher gas flow this was not achieved. Clinicians should be aware of differences in the efficacy of heating and humidification when choosing modes of non-invasive respiratory support. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Ignition characterization of the GOX/ethanol propellant combination
NASA Technical Reports Server (NTRS)
Lawver, B. R.; Rousar, D. C.; Boyd, W. C.
1984-01-01
This paper describes the results of a study to define the ignition characteristics and thruster pulse mode capabilities of the GOX/ethanol propellant combination. Ignition limits were defined in terms of mixture ratio and cold flow pressure using a spark initiated torch igniter. Igniter tests were run over a wide range of cold flow pressure, propellant temperature and mixture ratio. The product of cold flow pressure and igniter chamber diameter was used to correlate mixture ratio regimes of ignition and nonignition. Engine ignition reliability and pulse mode capability were demonstrated using a 620 lbF thruster with an integrated torch igniter. The nominal chamber pressure and mixture ratio were 150 psia and 1.8, respectively, thruster tests were run over a wide range of chamber pressures and mixture ratios. The feasibility of thruster pulse mode operation with the non-hypergolic GOX/ethanol propellant combination was demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellicer-Porres, J., E-mail: Julio.Pellicer@uv.es; Segura, A.; Santamaría-Pérez, D.
We have measured high pressure α-quartz reflectance spectra in the mid infrared. We used single crystals, taking full profit of polarization. The quality of the spectra allows fitting the reflectance spectra. We have characterized the pressure evolution of E and A{sub 2} modes with increased precision, even in the spectral regions where they overlap. In addition, we have determined the TO-LO splitting of each mode. Some of the A{sub 2} modes show dramatic pressure variations of the LO-TO splitting, which cannot be explained only by changes in length and ionicity of individual bonds, requiring a new mechanism. We suggest thatmore » rotation of the SiO{sub 4} tetrahedra plays a fundamental role. We have also determined the evolution of the electronic dielectric constant under high pressure. We find that its pressure increment is mainly a volume effect, although the small increase in birefringence points to secondary changes associated to the electronic resonances.« less
Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading
NASA Astrophysics Data System (ADS)
Allahbakhsh, Hamidreza; Shariati, Mahmoud
2013-10-01
A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.
Shuttle sortie electro-optical instruments study
NASA Technical Reports Server (NTRS)
1974-01-01
A study to determine the feasibility of adapting existing electro-optical instruments (designed and sucessfully used for ground operations) for use on a shuttle sortie flight and to perform satisfactorily in the space environment is considered. The suitability of these two instruments (a custom made image intensifier camera system and an off-the-shelf secondary electron conduction television camera) to support a barium ion cloud experiment was studied for two different modes of spacelab operation - within the pressurized module and on the pallet.
On the Stability of Shocks with Particle Pressure
NASA Astrophysics Data System (ADS)
Finazzi, Stefano; Vietri, Mario
2008-11-01
We perform a linear stability analysis for corrugations of a Newtonian shock, with particle pressure included, for an arbitrary diffusion coefficient. We study first the dispersion relation for homogeneous media, showing that, besides the conventional pressure waves and entropy/vorticity disturbances, two new perturbation modes exist, dominated by the particles' pressure and damped by diffusion. We show that, due to particle diffusion into the upstream region, the fluid will be perturbed also upstream; we treat these perturbation in the short-wavelength (WKBJ) regime. We then show how to construct a corrugational mode for the shock itself, one, that is, where the shock executes free oscillations (possibly damped or growing) and sheds perturbations away from itself; this global mode requires the new modes. Then, using the perturbed Rankine-Hugoniot conditions, we show that this leads to the determination of the corrugational eigenfrequency. We solve numerically the equations for the eigenfrequency in the WKBJ regime for the models of Amato & Blasi, showing that they are stable. We then discuss the differences between our treatment and previous work.
NASA Astrophysics Data System (ADS)
Yurtseven, H.; Kavruk, D.
In this study, we calculate the Raman frequencies as a function of temperature for the fixed pressures of 706, 1080 and 6355 bars using the volume data for phase II of ammonium iodide. The Raman frequencies calculated here are for the translational optic ν5 TOM (125 cm-1) lattice mode that is located at the zone boundary (M point) of the Brillouin zone of phase II for NH4I. For this calculation the volume data obtained at zero pressure, is used through the mode Grüneisen parameter for the disordered phase II (β phase) which has the CsCl structure of NH4I. Our predicted frequencies of the ν5 TOM (125 cm-1) mode can be compared when the Raman data for this lattice mode is available at various temperatures for fixed pressures of 706, 1080 and 6355 bars in the disordered phase II of ammonium iodide.
NASA Astrophysics Data System (ADS)
Sesnic, S.; Holland, A.; Kaita, R.; Kaye, S. M.; Okabayashi, M.; Takahashi, H.; Asakura, N.; Bell, R. E.; Bernabei, S.; Chance, M. S.; Duperrex, P.-A.; Fonck, R. J.; Gammel, G. M.; Greene, G. J.; Hatcher, R. E.; Jardin, S. C.; Jiang, T.; Kessel, C. E.; Kugel, H. W.; Leblanc, B.; Levinton, F. M.; Manickam, J.; Ono, M.; Paul, S. F.; Powell, E. T.; Qin, Y.; Roberts, D. W.; Sauthoff, N. R.
1993-12-01
High frequency pressure driven modes have been observed in high poloidal beta discharges in the Princeton Beta Experiment Modification (PBX-M). These modes are excited in a non-axisymmetric equilibrium characterized by a large, low frequency mt = 1/nt = 1 island, and they are capable of expelling fast ions. The modes reside on or very close to the q = 1 surface and have mode numbers with either mh = nh or (less probably) mh/nh = mh/(mh-1), with mh varying between 3 and 10. Occasionally these modes are simultaneously localized in the vicinity of the ml = 2/nl = 1 island. The high frequency modes near the q = 1 surface also exhibit a ballooning character, being significantly stronger on the large major radius side of the plasma. When a large mt = 1/nt = 1 island is present, the mode is poloidally localized in the immediate vicinity of the X point of the island. The modes occur exclusively in high beta beam heated discharges and are likely to be driven by the beam ions. They can thus be a manifestation of either a toroidicity induced shear Alfven eigenmode (TAE) at q = (2mh+1)/2nh, a kinetic ballooning mode, or some other type of pressure driven (high β) mode. Most of the data are consistent with the theoretical predictions for the TAE gap mode. Since the high frequency modes in PBX-M, however, are found exclusively on or in the immediate neighbourhood of magnetic surfaces with low rational numbers (q = 1, 2,...), other possibilities are not excluded
Šesták, Jozef; Kahle, Vladislav
2014-07-11
Performing gradient liquid chromatography at constant pressure instead of constant flow rate has serious potential for shortening the analysis time and increasing the productivity of HPLC instruments that use gradient methods. However, in the constant pressure mode the decreasing column permeability during a long period of time negatively affects the repeatability of retention time. Thus a volume-based approach, in which the detector signal is plotted as a function of retention volume, must be taken into consideration. Traditional HPLC equipment, however, requires quite complex hardware and software modifications in order to work at constant pressure and in the volume-based mode. In this short communication, a low cost and easily feasible pressure-controlled extension of the previously described simple gradient liquid chromatography platform is proposed. A test mixture of four nitro esters was separated by 10-60% (v/v) acetone/water gradient and a high repeatability of retention volumes at 20MPa (RSD less than 0.45%) was realized. Separations were also performed at different values of pressure (20, 25, and 31MPa), and only small variations of the retention volumes (up to 0.8%) were observed. In this particular case, the gain in the analysis speed of 7% compared to the constant flow mode was realized at a constant pressure. Copyright © 2014 Elsevier B.V. All rights reserved.
Pressure dependence of the radial mode frequency in carbon nanotubes
NASA Astrophysics Data System (ADS)
Venkateswaran, Uma; Masica, D.; Sumanasekara, G.; Eklund, P.
2003-03-01
Recently, an analytical expression for the radial breathing mode frequency, ω_R, was derived by considering the oscillations of a thin hollow cylinder.[1] Using this result and the experimental pressure-dependence of the elastic and lattice constants of graphite, we show that the pressure derivative of ωR depends inversely on the nanotube diameter, D. Since ωR also depends inversely on D, the above result implies that the logarithmic pressure derivative of ω_R, i.e., dlnω_R/dP should be independent of D. We have performed high-pressure Raman scattering experiments on HiPCO-SWNT bundles using different laser excitations, thereby probing the radial modes from different diameter tubes. These measurements show an increase in dlnω_R/dP with increasing D. This difference between the predictions and experiments suggests that the main contribution to ω_R's pressure dependence in SWNT bundles stems from the tube-tube interactions within the bundle and from pressure-induced distortions to the tube cross-section. [1] G.D. Mahan, Phys. Rev. B 65, 235402 (2002).
Coupling of Low Speed Fan Stator Vane Unsteady Pressures to Duct Modes: Measured versus Predicted
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Heidelberg, Laurence J.; Envia, Edmane
1999-01-01
Uniform-flow annular-duct Green's functions are the essential elements of the classical acoustic analogy approach to the problem of computing the noise generated by rotor-stator interaction inside the fan duct. This paper investigates the accuracy of this class of Green's functions for predicting the duct noise levels when measured stator vane unsteady surface pressures are used as input to the theoretical formulation. The accuracy of the method is evaluated by comparing the predicted and measured acoustic power levels for the NASA 48 inch low speed Active Noise Control Fan. The unsteady surface pressures are measured,by an array of microphones imbedded in the suction and pressure sides of a single vane, while the duct mode levels are measured using a rotating rake system installed in the inlet and exhaust sections of the fan duct. The predicted levels are computed using properly weighted integrals of measured surface pressure distribution. The data-theory comparisons are generally quite good particularly when the mode cut-off criterion is carefully interpreted. This suggests that, at least for low speed fans, the uniform-flow annular-duct Green's function theory can be reliably used for prediction of duct mode levels if the cascade surface pressure distribution is accurately known.
NASA Astrophysics Data System (ADS)
Lupoglazoff, N.; Vuillot, F.
Some comparisons between firing tests and numerical simulations of vortex shedding via a simple test case called 'C1experimental' are presented. These experiments are performed to validate further numerical simulations, as well as to serve as a tool for facilitating interpretation. At ignition time, spectra of pressure are more complex: it is the effect of vortex pairings. For 6.5-mm burnt, the second longitudinal mode dominates. For 8-mm burnt, the first longitudinal mode dominates. For 11.5-mm burnt, there is only the first longitudinal mode, with a slight shift of the frequency value. Tables are presented which give the pressure oscillation amplitudes of 'C1experimental' with operating pressures, and these amplitudes relative to the corresponding operating pressure.
Some experiments related to L-star instability in rocket motors
NASA Technical Reports Server (NTRS)
Kumar, R. N.; Mcnamara, R. P.
1973-01-01
The role of solid phase heterogeneity on the low-pressure L-star instability of nonmetallized AP/PBAN propellants is explored. Four particle size distributions are employed in propellants that are otherwise identical. Over one hundred test firings were conducted in the 21/2 in. diameter L-star burner. Pressure time histories in the chamber and color movies of two firings constitute the raw data. An economical firing program was used which enables the interesting range of L-star values to be covered during a single firing (at a set mean pressure), through the variations in the depleting propellant volume. Time-independent combustion, Helmholtz mode, chuff mode, and the pressure-burst phenomena are revealed as the principal signatures. Of these, the Helmholtz mode is found to be the most ordered form of instability.
High-Pressure Synchrotron Infrared Absorption and Raman Spectroscopy of ζ-N_2
NASA Astrophysics Data System (ADS)
Gregoryanz, E.; Goncharov, A. F.; Mao, H. K.; Hemley, R. J.
2000-03-01
Infrared mid-IR and Raman spectra of high-pressure, low-temperature phases of solid nitrogen have been measured to above 40 GPa. The transition to the lower-symmetry ordered phase ζ at 21 GPa, reported by Schiferl et al. [1]. has been confirmed. We observe three Raman-active and two IR components of the nu2 stretching mode (disk-like molecules) and only one Raman-active component of the nu1 mode (sphere-like molecules). All the vibron modes increase frequency with pressure. The structure of ζ-N2 phase is discussed. [1] Schiferl et al., J. Phys. Chem., 89, 2324 (1985).
Reduced-Order Models for Acoustic Response Prediction
2011-07-01
pressure on the surface of a flight vehicle skin can have complex amplitude and phase content. However, the pressure is often assumed to be a plane ...were used in the simulations. The input spectrum excited the first two symmetric bending modes of the beam . These two modes occurred at 79.0 Hz...the modal amplitude vector and is a truncated set of uncoupled, mass normalized, mode shapes for the exterior acoustic domain. There are two
Cryogenic High-Pressure Shear-Coaxial Jets Exposed to Transverse Acoustic Forcing
2011-12-13
formation. Detailed studies on the development and growth of natural instabilities in a single circular jet6 or a single circular jet with coflow7...reveal two of the most significant natural modes of instability: the axisymmetric and the first azimuthal or helical modes. These modes have comparable... natural as well as externally imposed flow conditions such as pressure or velocity perturbations, affecting their development, may be used to assess
Automatic control of pressure support for ventilator weaning in surgical intensive care patients.
Schädler, Dirk; Engel, Christoph; Elke, Gunnar; Pulletz, Sven; Haake, Nils; Frerichs, Inéz; Zick, Günther; Scholz, Jens; Weiler, Norbert
2012-03-15
Despite its ability to reduce overall ventilation time, protocol-guided weaning from mechanical ventilation is not routinely used in daily clinical practice. Clinical implementation of weaning protocols could be facilitated by integration of knowledge-based, closed-loop controlled protocols into respirators. To determine whether automated weaning decreases overall ventilation time compared with weaning based on a standardized written protocol in an unselected surgical patient population. In this prospective controlled trial patients ventilated for longer than 9 hours were randomly allocated to receive either weaning with automatic control of pressure support ventilation (automated-weaning group) or weaning based on a standardized written protocol (control group) using the same ventilation mode. The primary end point of the study was overall ventilation time. Overall ventilation time (median [25th and 75th percentile]) did not significantly differ between the automated-weaning (31 [19-101] h; n = 150) and control groups (39 [20-118] h; n = 150; P = 0.178). Patients who underwent cardiac surgery (n = 132) exhibited significantly shorter overall ventilation times in the automated-weaning (24 [18-57] h) than in the control group (35 [20-93] h; P = 0.035). The automated-weaning group exhibited shorter ventilation times until the first spontaneous breathing trial (1 [0-15] vs. 9 [1-51] h; P = 0.001) and a trend toward fewer tracheostomies (17 vs. 28; P = 0.075). Overall ventilation times did not significantly differ between weaning using automatic control of pressure support ventilation and weaning based on a standardized written protocol. Patients after cardiac surgery may benefit from automated weaning. Implementation of additional control variables besides the level of pressure support may further improve automated-weaning systems. Clinical trial registered with www.clinicaltrials.gov (NCT 00445289).
Free boundary resistive modes in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huysmans, G.T.A.; Goedbloed, J.P.; Kerner, W.
1993-05-01
There exist a number of observations of magnetohydrodynamic (MHD) activity that can be related to resistive MHD modes localized near the plasma boundary. To study the stability of these modes, a free boundary description of the plasma is essential. The resistive plasma--vacuum boundary conditions have been implemented in the fully toroidal resistive spectral code CASTOR (Complex Alfven Spectrum in Toroidal Geometry) [[ital Proceedings] [ital of] [ital the] 18[ital th] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Physics], Berlin, edited by P. Bachmann and D. C. Robinson (European Physical Society, Petit-Lancy, Switzerland, 1991), p. 89].more » The influence of a free boundary, as compared to a fixed boundary on the stability of low-[ital m] tearing modes, is studied. It is found that the stabilizing (toroidal) effect of a finite pressure due the plasma compression is lost in the free boundary case for modes localized near the boundary. Since the stabilization due to the favorable average curvature in combination with a pressure gradient near the boundary is small, the influence of the pressure on the stability is much less important for free boundary modes than for fixed boundary modes.« less
Mode Behavior in Ultralarge Ring Lasers
NASA Astrophysics Data System (ADS)
Hurst, Robert B.; Dunn, Robert W.; Schreiber, K. Ulrich; Thirkettle, Robert J.; MacDonald, Graeme K.
2004-04-01
Contrary to expectations based on mode spacing, single-mode operation in very large He-Ne ring lasers may be achieved at intracavity power levels up to ~0.15 times the saturation intensity for the He-Ne transition. Homogeneous line broadening at a high total gas pressure of 4-6 Torr allows a single-peaked gain profile that suppresses closely spaced multiple modes. At startup, decay of initial multiple modes may take tens of seconds. The single remaining mode in each direction persists metastably as the cavity is detuned by many times the mode frequency spacing. A theoretical explanation requires the gain profile to be concave down and to satisfy an inequality related to slope and saturation at the operating frequency. Calculated metastable frequency ranges are greater than 150 MHz at 6 Torr and depend strongly on pressure. Examples of unusual stable mode configurations are shown, with differently numbered modes in the two directions and with multiple modes at a spacing of ~100 MHz.
Mode behavior in ultralarge ring lasers.
Hurst, Robert B; Dunn, Robert W; Schreiber, K Ulrich; Thirkettle, Robert J; MacDonald, Graeme K
2004-04-10
Contrary to expectations based on mode spacing, single-mode operation in very large He-Ne ring lasers may be achieved at intracavity power levels up to approximately0.15 times the saturation intensity for the He-Ne transition. Homogeneous line broadening at a high total gas pressure of 4-6 Torr allows a single-peaked gain profile that suppresses closely spaced multiple modes. At startup, decay of initial multiple modes may take tens of seconds. The single remaining mode in each direction persists metastably as the cavity is detuned by many times the mode frequency spacing. A theoretical explanation requires the gain profile to be concave down and to satisfy an inequality related to slope and saturation at the operating frequency. Calculated metastable frequency ranges are > 150 MHz at 6 Torr and depend strongly on pressure. Examples of unusual stable mode configurations are shown, with differently numbered modes in the two directions and with multiple modes at a spacing of approximately 100 MHz.
Gaffney, James; McAlpine, Alan; Kingan, Michael J
2018-06-01
An existing theoretical model to predict the pressure levels on an aircraft's fuselage is improved by incorporating a more physically realistic method to predict fan tone radiation from the intake of an installed turbofan aero-engine. Such a model can be used as part of a method to assess cabin noise. Fan tone radiation from a turbofan intake is modelled using the exact solution for the radiated pressure from a spinning mode exiting a semi-infinite cylindrical duct immersed in a uniform flow. This approach for a spinning duct mode incorporates scattering/diffraction by the intake lip, enabling predictions of the radiated pressure valid in both the forward and aft directions. The aircraft's fuselage is represented by an infinitely long, rigid cylinder. There is uniform flow aligned with the cylinder, except close to the cylinder's surface where there is a constant-thickness boundary layer. In addition to single mode calculations it is shown how the model may be used to rapidly calculate a multi-mode incoherent radiation from the engine intake. Illustrative results are presented which demonstrate the relative importance of boundary-layer shielding both upstream and downstream of the source, as well as examples of the fuselage pressure levels due to a multi-mode tonal source at high Helmholtz number.
Rose, Louise; Hawkins, Martyn
2008-10-01
The objective of this study was to identify the definitional criteria for the pressure-limited and time-cycled modes: airway pressure release ventilation (APRV) and biphasic positive airway pressure (BIPAP) available in the published literature. Systematic review. Medline, PubMed, Cochrane, and CINAHL databases (1982-2006) were searched using the following terms: APRV, BIPAP, Bilevel and lung protective strategy, individually and in combination. Two independent reviewers determined the paper eligibility and abstracted data from 50 studies and 18 discussion articles. Of the 50 studies, 39 (78%) described APRV, and 11 (22%) described BIPAP. Various study designs, populations, or outcome measures were investigated. Compared to BIPAP, APRV was described more frequently as extreme inverse inspiratory:expiratory ratio [18/39 (46%) vs. 0/11 (0%), P = 0.004] and used rarely as a noninverse ratio [2/39 (5%) vs. 3/11 (27%), P = 0.06]. One (9%) BIPAP and eight (21%) APRV studies used mild inverse ratio (>1:1 to < or =2:1) (P = 0.7), plus there was increased use of 1:1 ratio [7 (64%) vs. 12 (31%), P = 0.08] with BIPAP. In adult studies, the mean reported set inspiratory pressure (PHigh) was 6 cm H2O greater with APRV when compared to reports of BIPAP (P = 0.3). For both modes, the mean reported positive end expiratory pressure (PLow) was 5.5 cm H2O. Thematic review identified inconsistency of mode descriptions. Ambiguity exists in the criteria that distinguish APRV and BIPAP. Commercial ventilator branding may further add to confusion. Generic naming of modes and consistent definitional parameters may improve consistency of patient response for a given mode and assist with clinical implementation.
Effect of Different Levels of Pressure Relieving Air-Mattress Firmness on Cough Strength
Kamikawa, Norimichi; Taito, Shunsuke; Takahashi, Makoto; Sekikawa, Kiyokazu; Hamada, Hironobu
2016-01-01
Cough is an important host-defense mechanism. The elderly and patients who are severely ill cannot cough effectively when lying in the supine position. Furthermore, pressure relieving air-mattresses are recommended for preventing the development of pressure ulcers. In this study, we clarified whether or not the cough peak flow (CPF), an index of cough strength, is affected by different firmness levels of a pressure relieving air-mattress in healthy volunteers in the supine position. Fifty-two healthy young men participated. All the measurements were carried out on each participant in the supine position on a pressure relieving air-mattress. The participants were assessed at two firmness levels, a “hard” and “soft” mode. The CPF, forced vital capacity (FVC), maximal expiratory pressure (PEmax), and maximal inspiratory pressure (PImax) were determined for each mode. The sinking distance of the body into the mattress was measured without any activity and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax, and PImax were determined for each mode. The sinking distance of the body into the mattress was measured and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax and PImax values of the participants coughing on the mattress were significantly lower when the mattress was in “soft” than in “hard” mode. The differences between the sinking distances of the mattress in “soft” and “hard” modes were larger for the anterior superior iliac spine. A harder mattress may lead to increased CPF in healthy young men lying in the supine position, and increased CPF may be important for host defense. PMID:26741497
Effect of Different Levels of Pressure Relieving Air-Mattress Firmness on Cough Strength.
Kamikawa, Norimichi; Taito, Shunsuke; Takahashi, Makoto; Sekikawa, Kiyokazu; Hamada, Hironobu
2016-01-01
Cough is an important host-defense mechanism. The elderly and patients who are severely ill cannot cough effectively when lying in the supine position. Furthermore, pressure relieving air-mattresses are recommended for preventing the development of pressure ulcers. In this study, we clarified whether or not the cough peak flow (CPF), an index of cough strength, is affected by different firmness levels of a pressure relieving air-mattress in healthy volunteers in the supine position. Fifty-two healthy young men participated. All the measurements were carried out on each participant in the supine position on a pressure relieving air-mattress. The participants were assessed at two firmness levels, a "hard" and "soft" mode. The CPF, forced vital capacity (FVC), maximal expiratory pressure (PEmax), and maximal inspiratory pressure (PImax) were determined for each mode. The sinking distance of the body into the mattress was measured without any activity and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax, and PImax were determined for each mode. The sinking distance of the body into the mattress was measured and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax and PImax values of the participants coughing on the mattress were significantly lower when the mattress was in "soft" than in "hard" mode. The differences between the sinking distances of the mattress in "soft" and "hard" modes were larger for the anterior superior iliac spine. A harder mattress may lead to increased CPF in healthy young men lying in the supine position, and increased CPF may be important for host defense.
Rocket-Based Combined Cycle Flowpath Testing for Modes 1 and 4
NASA Technical Reports Server (NTRS)
Rice, Tharen
2002-01-01
Under sponsorship of the NASA Glenn Research Center (NASA GRC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built a five-inch diameter, Rocket-Based Combined Cycle (RBCC) engine to investigate mode 1 and mode 4 engine performance as well as Mach 4 inlet performance. This engine was designed so that engine area and length ratios were similar to the NASA GRC GTX engine is shown. Unlike the GTX semi-circular engine design, the APL engine is completely axisymmetric. For this design, a traditional rocket thruster was installed inside of the scramjet flowpath, along the engine centerline. A three part test series was conducted to determine Mode I and Mode 4 engine performance. In part one, testing of the rocket thruster alone was accomplished and its performance determined (average Isp efficiency = 90%). In part two, Mode 1 (air-augmented rocket) testing was conducted at a nominal chamber pressure-to-ambient pressure ratio of 100 with the engine inlet fully open. Results showed that there was neither a thrust increment nor decrement over rocket-only thrust during Mode 1 operation. In part three, Mode 4 testing was conducted with chamber pressure-to-ambient pressure ratios lower than desired (80 instead of 600) with the inlet fully closed. Results for this testing showed a performance decrease of 20% as compared to the rocket-only testing. It is felt that these results are directly related to the low pressure ratio tested and not the engine design. During this program, Mach 4 inlet testing was also conducted. For these tests, a moveable centerbody was tested to determine the maximum contraction ratio for the engine design. The experimental results agreed with CFD results conducted by NASA GRC, showing a maximum geometric contraction ratio of approximately 10.5. This report details the hardware design, test setup, experimental results and data analysis associated with the aforementioned tests.
Independent Orbiter Assessment (IOA): Analysis of the extravehicular mobility unit
NASA Technical Reports Server (NTRS)
Raffaelli, Gary G.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Extravehicular Mobility Unit (EMU) hardware. The EMU is an independent anthropomorphic system that provides environmental protection, mobility, life support, and communications for the Shuttle crewmember to perform Extravehicular Activity (EVA) in Earth orbit. Two EMUs are included on each baseline Orbiter mission, and consumables are provided for three two-man EVAs. The EMU consists of the Life Support System (LSS), Caution and Warning System (CWS), and the Space Suit Assembly (SSA). Each level of hardware was evaluated and analyzed for possible failure modes and effects. The majority of these PCIs are resultant from failures which cause loss of one or more primary functions: pressurization, oxygen delivery, environmental maintenance, and thermal maintenance. It should also be noted that the quantity of PCIs would significantly increase if the SOP were to be treated as an emergency system rather than as an unlike redundant element.
NASA Astrophysics Data System (ADS)
Park, Il-Seo; Kim, Kyung-Hyun; Kim, Tae-Woo; Kim, Kwan-Youg; Moon, Ho-Jun; Chung, Chin-Wook
2018-05-01
The evolution of plasma parameters during the transition from E- to H- and from H- to E-mode is measured at the wafer level two-dimensionally at low and high pressures. The plasma parameters, such as electron density and electron temperature, are obtained through a floating harmonic sideband method. During the E- to H-mode transition, while the electron kinetics remains in the non-local regime at low pressure, the electron kinetics is changed from the non-local to the local regime at high pressure. The two-dimensional profiles of the electron density at two different pressures have similar convex shape despite different electron kinetics. However, in the case of the electron temperature, at high pressure, the profiles of the electron temperature are changed from flat to convex shape. These results can be understood by the diffusion of the plasma to the wafer-level probe. Moreover, between the transition of E to H and reverse H to E, hysteresis is observed even at the wafer level. The hysteresis is clearly shown at high pressure compared to low pressure. This can be explained by a variation of collisional energy loss including effects of electron energy distribution function (bi-Maxwellian, Maxwellian, Druyvesteyn distribution) on the rate constant and multistep ionization of excited state atoms. During the E- to H-mode transition, Maxwellization is caused by increased electron‑electron collisions, which reduces the collisional energy loss at high pressure (Druyvesteyn distribution) and increases it at low pressure (bi-Maxwellian distribution). Thus, the hysteresis is intensified at high pressure because the reduced collisional energy loss leads to higher ionization efficiency.
Factors contributing to the failure of Humidified High-Flow Nasal Cannulae.
Teoh, Sophia; Clyde, Elizabeth; Dassios, Theodore; Greenough, Anne
2018-05-24
The use of humidified high-flow nasal cannulae (HHFNC) as an alternative mode of non-invasive ventilation (NIV) in neonates has become widespread. A survey of UK neonatal units showed the proportion using HHFNC had increased from 56% in 2012 to 87% in 2015 (1). A recently reported Cochrane Review (2) comparing the use of HHFNC against other NIV modes of ventilation immediately after birth or following extubation showed no significant difference in the rates of bronchopulmonary dysplasia (BPD) or death and no significant difference in the rates of treatment failure/reintubation. Benefits cited include a significantly reduced risk of nasal trauma as compared to continuous positive airway pressure (CPAP). Furthermore, both medical staff and parents (3) were found to prefer HHFNC to CPAP. Identification of infants in whom use of HHFNC as either a primary or step-down mode of respiratory support may be inappropriate might further reduce the failure rate of HHFNC. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Automated assessment of noninvasive filling pressure using color Doppler M-mode echocardiography
NASA Technical Reports Server (NTRS)
Greenberg, N. L.; Firstenberg, M. S.; Cardon, L. A.; Zuckerman, J.; Levine, B. D.; Garcia, M. J.; Thomas, J. D.
2001-01-01
Assessment of left ventricular filling pressure usually requires invasive hemodynamic monitoring to follow the progression of disease or the response to therapy. Previous investigations have shown accurate estimation of wedge pressure using noninvasive Doppler information obtained from the ratio of the wave propagation slope from color M-mode (CMM) images and the peak early diastolic filling velocity from transmitral Doppler images. This study reports an automated algorithm that derives an estimate of wedge pressure based on the spatiotemporal velocity distribution available from digital CMM Doppler images of LV filling.
Shuttle Orbiter Atmospheric Revitalization Pressure Control Subsystem
NASA Technical Reports Server (NTRS)
Walleshauser, J. J.; Ord, G. R.; Prince, R. N.
1982-01-01
The Atmospheric Revitalization Pressure Control Subsystem (ARPCS) provides oxygen partial pressure and total pressure control for the habitable atmosphere of the Shuttle for either a one atmosphere environment or an emergency 8 PSIA mode. It consists of a Supply Panel, Control Panel, Cabin Pressure Relief Valves and Electronic Controllers. The panels control and monitor the oxygen and nitrogen supplies. The cabin pressure relief valves protect the habitable environment from overpressurization. Electronic controllers provide proper mixing of the two gases. This paper describes the ARPCS, addresses the changes in hardware that have occurred since the inception of the program; the performance of this subsystem during STS-1 and STS-2; and discusses future operation modes.
Wavelength references for interferometry in air
NASA Astrophysics Data System (ADS)
Fox, Richard W.; Washburn, Brian R.; Newbury, Nathan R.; Hollberg, Leo
2005-12-01
Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of ±2×10-8 (3σ), with the wavelength accuracy limited to ±4×10-8 by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than Δ ν/ν˜3×10-9, limited by temperature correction residuals.
Wavelength references for interferometry in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Richard W.; Washburn, Brian R.; Newbury, Nathan R.
2005-12-20
Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of {+-}2x10-8(3{sigma}), with the wavelength accuracy limited to {+-}4x10-8by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than {delta} {nu}/{nu}{approx}3x10-9, limited by temperature correction residuals.
Wavelength references for interferometry in air.
Fox, Richard W; Washburn, Brian R; Newbury, Nathan R; Hollberg, Leo
2005-12-20
Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of +/- 2 x 10(-8) (3sigma), with the wavelength accuracy limited to +/- 4 x 10(-8) by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than deltav/v approximately 3 x 10(-9), limited by temperature correction residuals.
NASA Technical Reports Server (NTRS)
Simon, Richard A.
1987-01-01
Simulation circuit operates under remote, automatic, or manual control to produce electrical outputs similar to pressure transducer. Specific circuit designed for simulations of Space Shuttle main engine. General circuit concept adaptable to other simulation and control systems involving several operating modes. Switches and amplifiers respond to external control signals and panel control settings to vary differential excitation of resistive bridge. Output voltage or passive terminal resistance made to equal pressure transducer in any of four operating modes.
Statkiewicz-Barabach, Gabriela; Olszewski, Jacek; Mergo, Pawel; Urbanczyk, Waclaw.
2017-01-01
We present a comprehensive study of an in-line Mach-Zehnder intermodal interferometer fabricated in a boron-doped two-mode highly birefringent microstructured fiber. We observed different interference signals at the output of the interferometer, related to the intermodal interference of the fundamental and the first order modes of the orthogonal polarizations and a beating of the polarimetric signal related to the difference in the group modal birefringence between the fundamental and the first order modes, respectively. The proposed interferometer was tested for measurements of hydrostatic pressure and temperature for different alignments of the input polarizer with no analyzer at the output. The sensitivities to hydrostatic pressure of the intermodal interference signals for x- and y-polarizations had an opposite sign and were equal to 0.229 nm/MPa and −0.179 nm/MPa, respectively, while the temperature sensitivities for both polarizations were similar and equal 0.020 nm/°C and 0.019 nm/°C. In the case of pressure, for the simultaneous excitation of both polarization modes, we observed a displacement of intermodal fringes with a sensitivity depending on the azimuth of the input polarization state, as well as on the displacement of their envelope with a sensitivity of 2.14 nm/MPa, accompanied by a change in the fringes visibility. Such properties of the proposed interferometer allow for convenient adjustments to the pressure sensitivity of the intermodal fringes and possible applications for the simultaneous interrogation of temperature and pressure. PMID:28718796
Modernization and Activation of the NASA Ames 11- by 11-Foot Transonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Kmak, Frank J.
2000-01-01
The Unitary Plan Wind Tunnel (UPWT) was modernized to improve performance, capability, productivity, and reliability. Automation systems were installed in all three UPWT tunnel legs and the Auxiliaries facility. Major improvements were made to the four control rooms, model support systems, main drive motors, and main drive speed control. Pressure vessel repairs and refurbishment to the electrical distribution system were also completed. Significant changes were made to improve test section flow quality in the 11-by 11-Foot Transonic leg. After the completion of the construction phase of the project, acceptance and checkout testing was performed to demonstrate the capabilities of the modernized facility. A pneumatic test of the tunnel circuit was performed to verify the structural integrity of the pressure vessel before wind-on operations. Test section turbulence, flow angularity, and acoustic parameters were measured throughout the tunnel envelope to determine the effects of the tunnel flow quality improvements. The new control system processes were thoroughly checked during wind-off and wind-on operations. Manual subsystem modes and automated supervisory modes of tunnel operation were validated. The aerodynamic and structural performance of both the new composite compressor rotor blades and the old aluminum rotor blades was measured. The entire subsonic and supersonic envelope of the 11-by 11-Foot Transonic leg was defined up to the maximum total pressure.
One-Dimensional Contact Mode Interdigitated Center of Pressure Sensor (CMIPS)
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing; Kang, Jinho; Park, Cheol; Harrison, Joycelyn S.; Guerreiro, Nelson M.; Hubbard, James E.
2009-01-01
A one dimensional contact mode interdigitated center of pressure sensor (CMIPS) has been developed. The experimental study demonstrated that the CMIPS has the capability to measure the overall pressure as well as the center of pressure in one dimension, simultaneously. A theoretical model for the CMIPS is established here based on the equivalent circuit of the configuration of the CMIPS as well as the material properties of the sensor. The experimental results match well with theoretical modeling predictions. A system mapped with two or more pieces of the CMIPS can be used to obtain information from the pressure distribution in multi-dimensions.
Studying Townsend and glow modes in an atmospheric-pressure DBD using mass spectrometry
NASA Astrophysics Data System (ADS)
McKay, Kirsty; Donaghy, David; He, Feng; Bradley, James W.
2018-01-01
Ambient molecular beam mass spectrometry has been employed to examine the effects of the mode of operation and the excitation waveform on the ionic content of a helium-based atmospheric-pressure parallel plate dielectric barrier discharge. By applying 10 kHz microsecond voltage pulses with a nanosecond rise times and 10 kHz sinusoidal voltage waveforms, distinctly different glow and Townsend modes were produced, respectively. Results showed a significant difference in the dominant ion species between the two modes. In the Townsend mode, molecular oxygen ions, atomic oxygen anions and nitric oxide anions are the most abundant species, however, in the glow mode water clusters ions and hydrated nitric oxygen anions dominate. Several hypotheses are put forward to explain these differences, including low electron densities and energies in the Townsend mode, more efficient ionization of water molecules through penning ionization and charge exchange with other species in glow mode, and large temperature gradients due to the pulsed nature of the glow mode, leading to more favorable conditions for cluster formation.
Raman spectroscopy and lattice dynamics of MgSiO3-perovskite at high pressure
NASA Astrophysics Data System (ADS)
Hemley, R. J.; Cohen, R. E.; Yeganeh-Haeri, A.; Mao, H. K.; Weidner, D. J.; Ito, E.
Vibrational Raman spectra have been obtained for 50 to 100 μm single crystals of MgSiO3 perovskite in situ at high pressure. Seven bands were tracked as a function of pressure to 26 GPa using a diamond-anvil high-pressure cell with rare-gas pressure-transmitting media. The frequency shifts with pressure are positive, and no soft modes were observed, in agreement with the present and previous lattice dynamics calculations. Zero-pressure frequency shifts (dυi/dP)0 vary between 1.7 and 4.2 cm-1/GPa, which contrasts with the uniform shift of 2.6 cm-1/GPa for modes measured in high-pressure mid-infrared spectra. The mode-Grüneisen parameters γi, determined from the present data span the range 1.6-1.9, and are generally higher than those reported in the infrared study. The Raman data are interpreted using the lattice dynamics calculated from the potential-induced breathing (PIB) model, a Gordon-Kim approach that includes the effects of charge relaxation on the dynamics. Good agreement with the experimentally determined frequencies is obtained, particularly in the lower frequency range, in comparison with previous rigid-ion results. The high thermal expansivity for MgSiO3-perovskite is shown to be due to the comparatively high values for γi associated with the lower frequency modes. Thermal weighting of the individual γi is required for an accurate calculation of the thermal Grüneisen parameter γTH and thermal expansivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lijie; Hu, Qiwei; Lei, Li, E-mail: lei@scu.edu.cn
2015-11-14
ZnO-based semiconductor alloys, Li{sub (1−x)/2}Ga{sub (1−x)/2}Zn{sub x}O (x = 0.036–0.515) with a layered-rocksalt-type structure, have been prepared under high pressure. The composition, pressure, and temperature dependence of phonons have been studied by Raman spectroscopy. We observe two disorder-activated Raman (DAR) modes when the Zn composition x increases: a broad Raman peak at ca. 400 cm{sup −1} and a left-shoulder peak at ca. 530 cm{sup −1} on the low-frequency side of A{sub 1g} mode at ca. 580 cm{sup −1}, which can be explained by reference to the phonon density of states for rocksalt-type ZnO. With the increase of the pressure and temperature, the left-shoulder DAR modemore » induced by substitution does not change at the same pace with the A{sub 1g} mode at Brillouin-zone center. We find that ion substitution can be seen as a kind of chemical pressure, and the chemical pressure caused by internal substitution and the physical pressure caused by external compression have equivalent effects on the shortening of correlation length, the distortion of crystal lattice, and the change of atomic occupation.« less
NASA Astrophysics Data System (ADS)
Labombard, Brian
2013-10-01
A ``Mirror Langmuir Probe'' (MLP) diagnostic has been used to interrogate edge plasma profiles and turbulence in Alcator C-Mod with unprecedented detail, yielding fundamental insights on the Quasi-Coherent Mode (QCM) - a mode that regulates plasma density and impurities in EDA H-modes without ELMs. The MLP employs a fast-switching, self-adapting bias scheme, recording density, electron temperature and plasma potential simultaneously at high bandwidth (~1 MHz) on each of four separate electrodes on a scanning probe. Temporal dynamics are followed in detail; wavenumber-frequency spectra and phase relationships are readily deduced. Poloidal field fluctuations are recorded separately with a two-coil, scanning probe. Results from ohmic L-mode and H-mode plasmas are reported, including key observations of the QCM: The QCM lives in a region of positive radial electric field, with a mode width (~3 mm) that spans open and closed field line regions. Remarkably large amplitude (~30%), sinusoidal bursts in density, electron temperature and plasma potential fluctuations are observed that are in phase; potential lags density by at most 10 degrees. Propagation velocity of the mode corresponds to the sum of local E × B and electron diamagnetic drift velocities - quantities that are deduced directly from time-averaged profiles. Poloidal magnetic field fluctuations project to parallel current densities of ~5 amps/cm2 in the mode layer, with significant parallel electromagnetic induction. Electron force balance is examined, unambiguously identifying the mode type. It is found that fluctuations in parallel electron pressure gradient are roughly balanced by the sum of electrostatic and electromotive forces. Thus the primary mode structure of the QCM is that of a drift-Alfven wave. Work supported by US DoE award DE-FC02-99ER54512.
Polarization mode beating techniques for high-sensitivity intracavity sensing
NASA Astrophysics Data System (ADS)
Rosales-Garcia, Andrea
Several industries, including semiconductor, space, defense, medical, chemical and homeland security, demand precise and accurate measurements in the nanometer and sub-nanometer scale. Optical interferometers have been widely investigated due to its dynamic-range, non-contact and high-precision features. Although commercially available interferometers can have sub-nanometer resolution, the practical accuracy exceeds the nanometer range. The fast development of nanotechnology requires more sensitive, reliable, compact and lower cost alternatives than those in existence. This work demonstrates a compact, versatile, accurate and cost-effective fiber laser sensor based on intracavity polarization mode beating (PMB) techniques for monitoring intracavity phase changes with very high sensitivity. Fiber resonators support two orthogonal polarization modes that can behave as two independent lasing channels within the cavity. The fiber laser incorporates an intracavity polarizing beamsplitter that allows for adjusting independently the polarization modes. The heterodyne detection of the laser output produces a beating (PMB) signal, whose frequency is a function of the phase difference between the polarization modes. The optical phase difference is transferred from the optical frequency to a much lower frequency and thus electronic methods can be used to obtain very precise measurements. Upon changing the pathlength of one mode, changes iu the PMB frequency can be effectively measured. Furthermore, since the polarization nodes share the same cavity, the PMB technique provides a simple means to achieve suppression of common mode noise and laser source instabilities. Frequency changes of the PMB signal are evaluated as a function of displacement, intracavity pressure and air density. Refractive index changes of 10 -9 and sub-nanometer displacement measurements are readily attained. Increased refractive index sensitivity and sub-picometer displacement can be reached owing to the high finesse and resolution of the system. Experimental changes in the refractive index of air as a function of pressure are in good agreement with theoretical predictions. An alternative fiber laser configuration, which incorporates non-reciprocal elements, allows measuring the optical activity of enantiomeric mixtures using PMB techniques. The sensitivity attained through PMB techniques demonstrates a potential method for ultra-sensitive biochemical sensing and explosive detection.
Advanced high pressure engine study for mixed-mode vehicle applications
NASA Technical Reports Server (NTRS)
Luscher, W. P.; Mellish, J. A.
1977-01-01
High pressure liquid rocket engine design, performance, weight, envelope, and operational characteristics were evaluated for a variety of candidate engines for use in mixed-mode, single-stage-to-orbit applications. Propellant property and performance data were obtained for candidate Mode 1 fuels which included: RP-1, RJ-5, hydrazine, monomethyl-hydrazine, and methane. The common oxidizer was liquid oxygen. Oxygen, the candidate Mode 1 fuels, and hydrogen were evaluated as thrust chamber coolants. Oxygen, methane, and hydrogen were found to be the most viable cooling candidates. Water, lithium, and sodium-potassium were also evaluated as auxiliary coolant systems. Water proved to be the best of these, but the system was heavier than those systems which cooled with the engine propellants. Engine weight and envelope parametric data were established for candidate Mode 1, Mode 2, and dual-fuel engines. Delivered engine performance data were also calculated for all candidate Mode 1 and dual-fuel engines.
Wall Pressure Unsteadiness and Side Loads in Overexpanded Rocket Nozzles
NASA Technical Reports Server (NTRS)
Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.; Brown, Andrew M.; McDaniels, David M.
2012-01-01
Surveys of both the static and dynamic wall pressure signatures on the interior surface of a sub-scale, cold-flow and thrust optimized parabolic nozzle are conducted during fixed nozzle pressure ratios corresponding to FSS and RSS states. The motive is to develop a better understanding for the sources of off-axis loads during the transient start-up of overexpanded rocket nozzles. During FSS state, pressure spectra reveal frequency content resembling SWTBLI. Presumably, when the internal flow is in RSS state, separation bubbles are trapped by shocks and expansion waves; interactions between the separated flow regions and the waves produce asymmetric pressure distributions. An analysis of the azimuthal modes reveals how the breathing mode encompasses most of the resolved energy and that the side load inducing mode is coherent with the response moment measured by strain gauges mounted upstream of the nozzle on a flexible tube. Finally, the unsteady pressure is locally more energetic during RSS, albeit direct measurements of the response moments indicate higher side load activity when in FSS state. It is postulated that these discrepancies are attributed to cancellation effects between annular separation bubbles.
Effect of Pressure Anisotropy on the m = 1 Small Wavelength Modes in Z-Pinches
NASA Astrophysics Data System (ADS)
Faghihi, M.
1987-05-01
A generalization of Freidberg's perpendicular MHD model is used to investigate the effect of pressure anisotropy on the small wavelength internal kink (m = 1) mode instability in a Z-Pinch. A normal mode analysis of perturbed motion of an incompressible, collisionless and cylindrical plasma is performed. The stability criterion is (rΣB2)' <= 0, where Σ = 1 - (P|| - P⊥)/B2. It cannot be fulfilled without violation of the fire hose stability condition Σ >= 0.
Motivating Change from Lecture-Tutorial Modes to Less Traditional Forms of Teaching
ERIC Educational Resources Information Center
McLaren, Helen J.; Kenny, Paul L.
2015-01-01
Teaching academics are under pressure to move away from traditional lecture-tutorial teaching modes to less traditional forms. Such pressures are in addition to changes to funding arrangements and other developments that increasingly oblige universities to operate as businesses. The flow-on effects for teachers are increased student:staff ratios,…
Numerical study on the instabilities in H2-air rotating detonation engines
NASA Astrophysics Data System (ADS)
Liu, Yan; Zhou, Weijiang; Yang, Yunjun; Liu, Zhou; Wang, Jianping
2018-04-01
Numerical simulations of rotating detonation engines (RDEs) are performed using two-dimensional Euler equations and a detailed chemistry model of H2-air. Two propagation modes, the one-wave mode and the two-wave mode, are observed in the RDEs. The instabilities of the RDEs are studied and analyzed specifically. A low frequency instability and a high frequency instability are found from the pressure-time trace measured at a fixed location and the average density-time trace of the RDEs. For the low frequency instability, the pressure peak of the pressure-time trace oscillates with a low frequency while the average density is stable. The deviation between the measurement location and the location of the detonation wave results in the low frequency instability. For the high frequency instability, the average density of the RDEs oscillates regularly with a single frequency while the pressure oscillates irregularly with several frequencies. The oscillation of the detonation wave height results in the high frequency instability. Furthermore, the low frequency instability and the high frequency instability both occur in the one-wave and two-wave mode RDEs.
NASA Astrophysics Data System (ADS)
Praturi, Divya Sri; Girimaji, Sharath
2017-11-01
Nonlinear spectral energy transfer by triadic interactions is one of the foundational processes in fluid turbulence. Much of our current knowledge of this process is contingent upon pressure being a Lagrange multiplier with the only function of re-orienting the velocity wave vector. In this study, we examine how the nonlinear spectral transfer is affected in compressible turbulence when pressure is a true thermodynamic variable with a wave character. We perform direct numerical simulations of multi-mode evolution at different turbulent Mach numbers of Mt = 0.03 , 0.6 . Simulations are performed with initial modes that are fully solenoidal, fully dilatational and mixed solenoidal-dilatational. It is shown that solenoidal-solenoidal interactions behave in canonical manner at all Mach numbers. However, dilatational and mixed mode interactions are profoundly different. This is due to the fact that wave-pressure leads to kinetic-internal energy exchange via the pressure-dilatation mechanism. An important consequence of this exchange is that the triple correlation term, responsible for spectral transfer, experiences non-monotonic behavior resulting in inefficient energy transfer to other modes.
Superconductivity and hybrid soft modes in Ti Se 2
Maschek, M.; Rosenkranz, S.; Hott, R.; ...
2016-12-12
The interplay between superconductivity and charge-density-wave (CDW) order plays a central role in the layered transition-metal dichalcogenides. 1 T-TiSe 2 forms a prime example, featuring superconducting domes on intercalation as well as under applied pressure. Here, we present high energy-resolution inelastic x-ray scattering measurements of the CDW soft phonon mode in intercalated Cu xTiSe 2 and pressurized 1 T-TiSe 2 along with detailed ab-initio calculations for the lattice dynamical properties and phonon-mediated superconductivity. We find that the intercalation-induced superconductivity can be explained by a solely phonon-mediated pairing mechanism, while this is not possible for the superconducting phase under pressure. Wemore » argue that a hybridization of phonon and exciton modes in the pairing mechanism is necessary to explain the full observed temperature-pressure-intercalation phase diagram. Finally, these results indicate that 1 T-TiSe 2 under pressure is close to the elusive state of the excitonic insulator.« less
Liu, Hong; Zhao, Jijun; Wei, Dongqing; Gong, Zizheng
2006-03-28
The structural, vibrational, and electronic properties of solid nitromethane under hydrostatic pressure of up to 20 GPa have been studied using density functional theory. The changes of cell volume, the lattice constants, and the molecular geometry of solid nitromethane under hydrostatic loading are examined, and the bulk modulus B0 and its pressure derivative B0' are fitted from the volume-pressure relation. Our theoretical results are compared with available experiments. The change of electron band gap of nitromethane under high pressure is also discussed. Based on the optimized crystal structures, the vibrational frequencies for the internal and lattice modes of the nitromethane crystal at ambient and high pressures are computed, and the pressure-induced frequency shifts of these modes are discussed.
NASA Astrophysics Data System (ADS)
Virella, Juan C.; Prato, Carlos A.; Godoy, Luis A.
2008-05-01
The influence of nonlinear wave theory on the sloshing natural periods and their modal pressure distributions are investigated for rectangular tanks under the assumption of two-dimensional behavior. Natural periods and mode shapes are computed and compared for both linear wave theory (LWT) and nonlinear wave theory (NLWT) models, using the finite element package ABAQUS. Linear wave theory is implemented in an acoustic model, whereas a plane strain problem with large displacements is used in NLWT. Pressure distributions acting on the tank walls are obtained for the first three sloshing modes using both linear and nonlinear wave theory. It is found that the nonlinearity does not have significant effects on the natural sloshing periods. For the sloshing pressures on the tank walls, different distributions were found using linear and nonlinear wave theory models. However, in all cases studied, the linear wave theory conservatively estimated the magnitude of the pressure distribution, whereas larger pressures resultant heights were obtained when using the nonlinear theory. It is concluded that the nonlinearity of the surface wave does not have major effects in the pressure distribution on the walls for rectangular tanks.
Patterned Roughness for Cross-flow Transition Control at Mach 6
NASA Astrophysics Data System (ADS)
Arndt, Alexander; Matlis, Eric; Semper, Michael; Corke, Thomas
2017-11-01
Experiments are performed to investigate patterned discrete roughness for transition control on a sharp right-circular cone at an angle of attack at Mach 6.0. The approach to transition control is based on exciting less-amplified (subcritical) stationary cross-flow (CF) modes that suppress the growth of the more-amplified (critical) CF modes, and thereby delay transition. The experiments were performed in the Air Force Academy Ludwieg Tube which is a conventional (noisy) design. The cone model is equipped with a motorized 3-D traversing mechanism that mounts on the support sting. The traversing mechanism held a closely-spaced pair of fast-response total pressure Pitot probes. The model utilized a removable tip to exchange between different tip-roughness conditions. Mean flow distortion x-development indicated that the transition Reynolds number increased by 25% with the addition of the subcritical roughness. The energy in traveling disturbances was centered in the band of most amplified traveling CF modes predicted by linear theory. The spatial pattern in the amplitude of the traveling CF modes indicated a nonlinear (sum and difference) interaction between the stationary and traveling CF modes that might explain differences in Retrans between noisy and quiet environments. Air Force Grant FA9550-15-1-0278.
NASA Astrophysics Data System (ADS)
Counts, D. A.; Giuliani, J. L.; Peterson, S. H.; Han, Q. Y.; Sartwell, B. D.
1997-04-01
DC arc torches are proposed or in use for solid waste remediation at several sites. However, there is no consensus on the optimal mode of operation: transferred or non-transferred arc. As part of a project to investigate plasma treatment of shipboard waste, we have been investigating both modes at atmospheric pressure. This paper reports on the use of visible optical emission spectroscopy to determine the electron temperature, T_e, in the arc discharge for both the transferred and non transferred mode. In each case three industrial gases are compared, nitrogen, air and oxygen, at different flow rates and currents. Te is determined from the Balmer line ratio, wherein 5% hydrogen gas is added to the working gas in the torch flow. Variation of the emission with torch height and across the arc radius will be discussed. Recently, free arcs have shown evidence of non-LTE behavior in the arc mantle. Comparison of arc emission spectra as a function of radius for the transferred vs. non-transferred modes will be reported. Calorimetry results for the chamber walls, exhaust, and waste crucible will be correlated with the spectral results. This work was supported by the Office of Naval Research.
High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.
Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H
2011-07-29
A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society
Hybrid simulation of fishbone instabilities in the EAST tokamak
Shen, Wei; Wang, Feng; Fu, G. Y.; ...
2017-08-11
Hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven fishbone in the experimental advanced superconducting tokamak (EAST) experiment. Linear simulations show that a low frequency fishbone instability is excited at experimental value of beam ion pressure. The mode is mainly driven by low energy beam ions via precessional resonance. Our results are consistent with the experimental measurement with respect to mode frequency and mode structure. When the beam ion pressure is increased to exceed a critical value, the low frequency mode transits to a beta-induced Alfvenmore » eigenmode (BAE) with much higher frequency. This BAE is driven by higher energy beam ions. Nonlinear simulations show that the frequency of the low frequency fishbone chirps up and down with corresponding hole-clump structures in phase space, consistent with the Berk-Breizman theory. In addition to the low frequency mode, the high frequency BAE is excited during the nonlinear evolution. Furthermore, for the transient case of beam pressure fraction where the low and high frequency modes are simultaneously excited in the linear phase, only one dominant mode appears in the nonlinear phase with frequency jumps up and down during nonlinear evolution.« less
NASA Astrophysics Data System (ADS)
Pei, Youbin; Xiang, Nong; Hu, Youjun; Todo, Y.; Li, Guoqiang; Shen, Wei; Xu, Liqing
2017-03-01
Kinetic-MagnetoHydroDynamic hybrid simulations are carried out to investigate fishbone modes excited by fast ions on the Experimental Advanced Superconducting Tokamak. The simulations use realistic equilibrium reconstructed from experiment data with the constraint of the q = 1 surface location (q is the safety factor). Anisotropic slowing down distribution is used to model the distribution of the fast ions from neutral beam injection. The resonance condition is used to identify the interaction between the fishbone mode and the fast ions, which shows that the fishbone mode is simultaneously in resonance with the bounce motion of the trapped particles and the transit motion of the passing particles. Both the passing and trapped particles are important in destabilizing the fishbone mode. The simulations show that the mode frequency chirps down as the mode reaches the nonlinear stage, during which there is a substantial flattening of the perpendicular pressure of fast ions, compared with that of the parallel pressure. For passing particles, the resonance remains within the q = 1 surface, while, for trapped particles, the resonant location moves out radially during the nonlinear evolution. In addition, parameter scanning is performed to examine the dependence of the linear frequency and growth rate of fishbones on the pressure and injection velocity of fast ions.
Non-Intrusive Pressure/Multipurpose Sensor and Method
NASA Technical Reports Server (NTRS)
Smith, William C. (Inventor)
2001-01-01
Method and apparatus are provided for determining pressure using a non-intrusive sensor that is easily attachable to the plumbing of a pressurized system. A bent mode implementation and a hoop mode implementation of the invention are disclosed. Each of these implementations is able to nonintrusively measure pressure while fluid is flowing. As well, each implementation may be used to measure mass flow rate simultaneously with pressure. An ultra low noise control system is provided for making pressure measurements during gas flow. The control system includes two tunable digital bandpass filters with center frequencies that are responsive to a clock frequency. The clock frequency is divided by a factor of N to produce a driving vibrational signal for resonating a metal sensor section.
Variable pressure ionization detector for gas chromatography
Buchanan, Michelle V.; Wise, Marcus B.
1988-01-01
Method and apparatus for differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated at pressures ranging from atmospheric to less than 1 torr. Through variation of the pressure within the ECD cell, the organic compounds are induced to either capture or emit electrons. Differentiation of isomeric compounds can be obtianed when, at a given pressure, one isomer is in the emission mode and the other is in the capture mode. Output of the ECD is recorded by chromatogram. The invention also includes a method for obtaining the zero-crossing pressure of a compound, defined as the pressure at which the competing emission and capture reactions are balanced and which may be correlated to the electron affinity of a compound.
The characteristic analysis of Korean August rainfall using Self-Organizing Maps
NASA Astrophysics Data System (ADS)
Lee, S. H.; Seo, K. H.; Kim, J.
2016-12-01
The characteristics of the low-level pressure pattern during Korean August rainfall have been investigated using a neural network-based cluster analysis called self-organizing map (SOM). On the basis of various SOM mode analyses, five major phases of low-level pressure pattern are dynamically identified. The first mode occurs with a distinct circulation state corresponding to a strengthened subtropical high to the south of Korea and migratory low passing though north of Korea. The cold, dry inflow from the north by the cyclonic anomaly and warm, moist air produced by the WNPSH demonstrate the convective instability that provides reasonably intense precipitation over the Korean Peninsula. The second mode represents that low-level anticyclonic anomaly is located to the south of Korea and low-level anticyclonic anomaly is located over the Sea of Okhotsk. The two high pressure pattern conflict with each other forming front, which is identified as the frontal precipitation. The third mode represents local instability with no specific large-scale environmental condition; weak low-level jets, weak upper-level jets, no front, and no typhoon. The fourth mode is typhoon near Taiwan suppling a lot of water vapor in the Korean peninsula to be unloaded precipitation. This can be represented as an indirect-typhoon mode. The fifth mode can be classified as direct-typhoon mode, which typhoon passes though the Korea.
Extended MHD modeling of nonlinear instabilities in fusion and space plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germaschewski, Kai
A number of different sub-projects where pursued within this DOE early career project. The primary focus was on using fully nonlinear, curvilinear, extended MHD simulations of instabilities with applications to fusion and space plasmas. In particular, we performed comprehensive studies of the dynamics of the double tearing mode in different regimes and confi gurations, using Cartesian and cyclindrical geometry and investigating both linear and non-linear dynamics. In addition to traditional extended MHD involving Hall term and electron pressure gradient, we also employed a new multi-fluid moment model, which shows great promise to incorporate kinetic effects, in particular off-diagonal elements ofmore » the pressure tensor, in a fluid model, which is naturally computationally much cheaper than fully kinetic particle or Vlasov simulations. We used our Vlasov code for detailed studies of how weak collisions effect plasma echos. In addition, we have played an important supporting role working with the PPPL theory group around Will Fox and Amitava Bhattacharjee on providing simulation support for HED plasma experiments performed at high-powered laser facilities like OMEGA-EP in Rochester, NY. This project has support a great number of computational advances in our fluid and kinetic plasma models, and has been crucial to winning multiple INCITE computer time awards that supported our computational modeling.« less
Measurement and analysis of combustion response to transverse combustion instability
NASA Astrophysics Data System (ADS)
Pomeroy, Brian R.
This research aimed to gain a better understanding of the response of a gas-centered swirl coaxial injector to transverse combustion instability. The goals of the research were to develop a combustion chamber that would be able to spontaneously produce transverse combustion instability at elevated pressures and temperatures. Methods were also developed to analyze high-speed video images to understand the response of the injector. A combustion chamber was designed that produced high levels of instabilities. The chamber was capable of pressures as high as 1034 kPa (150 psi) and operated using decomposed 90% hydrogen peroxide and JP-8. The chamber used an array of seven gas-centered swirl coaxial injectors that exhibited linear instability to drive the transverse oscillations. The injector elements would operate in a monopropellant configuration flowing only decomposed hydrogen peroxide or in a bipropellant configuration. The location of the bipropellant injectors could be varied to change the level of the instability in the chamber from 10% of the chamber pressure up to 70% of the chamber pressure. A study element was placed in the center of the chamber where it was observed simultaneously by two high-speed video cameras which recorded a backlit video to show the location of the fuel spray and the location of the emitted CH* chemiluminescence. The videos were synchronized with high frequency pressure measurements to gain a full understanding of the physics in the combustion chamber. Results showed that the study element was coupled with the first mode velocity wave. This was expected due to the first mode velocity anti-node being located in the center of the chamber. The velocity is an absolute maximum twice during each cycle so the coupling with the second mode pressure was also investigated showing a possible coupling with both the velocity and pressure. The results of the first mode velocity showed that, as the velocity wave traveled through the chamber, the fuel spray was first displaced into an oxidizer rich region and secondly followed by a reaction in the direction of travel of the velocity wave as the peak velocity traveled through the region. The deflection into the oxidizer rich region was especially apparent in high-level instabilities. In low-level instabilities, the velocity wave was not strong enough to fully displace the fuel, and instead the oxidizer core was deflected into the fuel annulus causing a reaction in the direction of travel of the velocity wave. Neighboring oxidizer only injectors caused a lower reaction upstream as the neighboring oxidizer was deflected into the fuel annulus. The region of the fluctuating emitted light agreed well in size, shape and location with a correlation between the first mode velocity and combustion leading to the conclusion that the first mode is highly coupled with velocity. The second mode variance did not agree well with either the velocity or pressure correlation leading to a conclusion that it is coupled with both velocity and pressure. When comparing the variance to the pressure or velocity correlation, parts of the variance compared in shape and location to the pressure or velocity correlation, however, this was not true for all regions of response. This leads to a conclusion that both the pressure and velocity can be affecting the second mode. The second mode chemiluminescence emission occurs when the velocity is nearly zero in the chamber leading to the reaction to not be deflected and occurring downstream of the injector. At the same time, the second mode pressure is a minimum so an increase in mass flow could be responsible for the increased reaction. The methods and combustion chamber used to study the response of an injector can be used in the future to study any injector or combination of injectors placed at various locations in the chamber to study pressure or velocity coupling. The chemiluminescence data can be used to develop transfer functions for use in low fidelity computational models and can be used to validate high fidelity CFD.
NASA Astrophysics Data System (ADS)
Wu, Schuman
1989-12-01
In a low-temperature environment, the thin-section scale rock-deformation mode is primarily a function of confining pressure and total strain at geological strain rates. A deformation mode diagram is constructed from published experimental data by plotting the deformation mode on a graph of total strain versus the confining pressure. Four deformation modes are shown on the diagram: extensional fracturing, mesoscopic faulting, incipient faulting, and uniform flow. By determining the total strain and the deformation mode of a naturally deformed sample, the confining pressure and hence the depth at which the rock was deformed can be evaluated. The method is applied to normal faults exposed on the gently dipping southeast limb of the Birmingham anticlinorium in the Red Mountain expressway cut in Birmingham, Alabama. Samples of the Ordovician Chickamauga Limestone within and adjacent to the faults contain brittle structures, including mesoscopic faults and veins, and ductile deformation features including calcite twins, intergranular and transgranular pressure solution, and deformed burrows. During compaction, a vertical shortening of about 45 to 80% in shale is indicated by deformed burrows and relative compaction of shale to burrows, about 6% in limestone by stylolites. The normal faults formed after the Ordovician rocks were consolidated because the faults and associated veins truncate the deformed burrows and stylolites, which truncate the calcite cement. A total strain of 2.0% was caused by mesoscopic faults during normal faulting. A later homogenous deformation, indicated by the calcite twins in veins, cement and fossil fragments, has its major principal shortening strain in the dip direction at a low angle (about 22°) to bedding. The strain magnitude is about 2.6%. By locating the observed data on the deformation mode diagram, it is found that the normal faulting characterized by brittle deformation occurred under low confining pressure (< 18 MPa) at shallow depth (< 800 m), and the homogenous horizontal compression characterized by uniform flow occurred under higher confining pressure (at least 60 MPa) at greater depth (> 2.5 km).
Lattice dynamics of the lanthanides: Samarium at high pressure
NASA Astrophysics Data System (ADS)
Olijnyk, H.; Jephcoat, A. P.
2005-02-01
Sm was studied by Raman spectroscopy at pressures up to 20 GPa. The Raman-active phonon modes, both of the Sm-type phase and the dhcp phase, show a frequency decrease as pressure increases. There is evidence that the entire structural sequence hcp → Sm-type → dhcp → fcc under pressure for the individual regular lanthanides is associated with softening of certain acoustic and optical-phonon modes as well as elastic anomalies. Comparison is made to corresponding transitions between close-packed lattices in other metals and possible relations to the lanthanide's electronic structure are addressed.
NASA Astrophysics Data System (ADS)
Peng, Q.; Liang, Chao; Ji, Wei; de, Suvranu
2013-03-01
We investigated the mechanical properties of graphene and graphane using first-principles calculations based on density-functional theory. A conventional unitcell containing a hexagonal ring made of carbon atoms was chosen to capture the finite wave vector ``soft modes'', which affect the the fourth and fifth elastic constants considerably. Graphane has about 2/3 ultimate strengths in all three tested deformation modes - armchair, zigzag, and biaxial- compared to graphene. However, graphane has larger ultimate strains in zigzag deformation, and smaller in armchair deformation. We obtained the second, third, fourth, and fifth order elastic constants for a rigorous continuum description of the elastic response. Graphane has a relatively low in-plane stiffness of 240 N/m which is about 2/3 of that of graphene, and a very small Poisson ratio of 0.078, 44% of that of graphene. The pressure dependence of the second order elastic constants were predicted from the third order elastic constants. The Poisson's ratio monotonically decreases with increasing pressure. Acknowledge the financial support from DTRA Grant # BRBAA08-C-2-0130, the U.S. NRCFDP # NRC-38-08-950, and U.S. DOE NEUP Grant #DE-NE0000325.
An Experimental Investigation of Fluid Flow and Heating in Various Resonance Tube Modes
NASA Technical Reports Server (NTRS)
Sarohia, V.; Back, L. H.; Roschke, E. J.; Pathasarathy, S. P.
1976-01-01
Experiments have been performed to study resonance phenomena in tubes excited by underexpanded jet flows. This investigation comprised the following: Study of the various resonance tube modes under a wide range of nozzle pressure, spacing between nozzle and tube mouth, and different tube length; the effects of these modes on the endwall pressure and gas temperature; flow visualization of both jet and tube flows by spark shadowgraph technique; and measurement of wave speed inside the tube by the laser-schlieren techniques. An extensive study of the free-jet flow was undertaken to explain important aspects of various modes of operation of resonance tube flows.
Superconductivity in graphite intercalation compounds
Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; ...
2015-02-26
This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less
Comments on settling chamber design for quiet, blowdown wind tunnels
NASA Technical Reports Server (NTRS)
Beckwith, I. E.
1981-01-01
Transfer of an existing continous circuit supersonic wind tunnel to Langley and its operation there as a blowdown tunnel is planned. Flow disturbance requirements in the supply section and methods for reducing the high level broad band acoustic disturbances present in typical blowdown tunnels are reviewed. Based on recent data and the analysis of two blowdown facilities at Langley, methods for reducing the total turbulence levels in the settling chamber, including both acoustic and vorticity modes, to less than one percent are recommended. The pertinent design details of the damping screens and honeycomb and the recommended minimum pressure drop across the porous components providing the required two orders of magnitude attenuation of acoustic noise levels are given. A suggestion for the support structure of these high pressure drop porous components is offered.
Ebad-Allah, J; Baldassarre, L; Sing, M; Claessen, R; Brabers, V A M; Kuntscher, C A
2013-01-23
The optical properties of magnetite at room temperature were studied by infrared reflectivity measurements as a function of pressure up to 8 GPa. The optical conductivity spectrum consists of a Drude term, two sharp phonon modes, a far-infrared band at around 600 cm(-1) and a pronounced mid-infrared absorption band. With increasing pressure both absorption bands shift to lower frequencies and the phonon modes harden in a linear fashion. Based on the shape of the MIR band, the temperature dependence of the dc transport data, and the occurrence of the far-infrared band in the optical conductivity spectrum, the polaronic coupling strength in magnetite at room temperature should be classified as intermediate. For the lower energy phonon mode an abrupt increase of the linear pressure coefficient occurs at around 6 GPa, which could be attributed to minor alterations of the charge distribution among the different Fe sites.
Pressure-anisotropy-induced nonlinearities in the kinetic magnetorotational instability
NASA Astrophysics Data System (ADS)
Squire, J.; Quataert, E.; Kunz, M. W.
2017-12-01
In collisionless and weakly collisional plasmas, such as hot accretion flows onto compact objects, the magnetorotational instability (MRI) can differ significantly from the standard (collisional) MRI. In particular, pressure anisotropy with respect to the local magnetic-field direction can both change the linear MRI dispersion relation and cause nonlinear modifications to the mode structure and growth rate, even when the field and flow perturbations are very small. This work studies these pressure-anisotropy-induced nonlinearities in the weakly nonlinear, high-ion-beta regime, before the MRI saturates into strong turbulence. Our goal is to better understand how the saturation of the MRI in a low-collisionality plasma might differ from that in the collisional regime. We focus on two key effects: (i) the direct impact of self-induced pressure-anisotropy nonlinearities on the evolution of an MRI mode, and (ii) the influence of pressure anisotropy on the `parasitic instabilities' that are suspected to cause the mode to break up into turbulence. Our main conclusions are: (i) The mirror instability regulates the pressure anisotropy in such a way that the linear MRI in a collisionless plasma is an approximate nonlinear solution once the mode amplitude becomes larger than the background field (just as in magnetohyrodynamics). This implies that differences between the collisionless and collisional MRI become unimportant at large amplitudes. (ii) The break up of large-amplitude MRI modes into turbulence via parasitic instabilities is similar in collisionless and collisional plasmas. Together, these conclusions suggest that the route to magnetorotational turbulence in a collisionless plasma may well be similar to that in a collisional plasma, as suggested by recent kinetic simulations. As a supplement to these findings, we offer guidance for the design of future kinetic simulations of magnetorotational turbulence.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach
2017-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.
NASA Astrophysics Data System (ADS)
Osterhoudt, Curtis F.; Marston, Philip L.
2003-04-01
A simple target for simulating narrow low-frequency resonances of cylinders is an open metal pipe completely filled with water. We have previously described how the high-Q organ-pipe modes having a pressure node near each end are easily observed in backscattering experiments with small cylinders [C. F. Osterhoudt and P. L. Marston, J. Acoust. Soc. Am. 110, 2773 (2001)]. The resonance occurs because of the strong reflection of internal acoustic waves from the open ends of the pipe [H. Levine and J. Schwinger, Phys. Rev. 73, 383-406 (1948)]. In the present research, the dependence of the backscattering amplitude on the orientation of the cylinder is measured and modeled. The tilt angle dependence is affected by the symmetry of the organ pipe mode. An approximation was also developed for the backscattering amplitude at high Q resonances based on energy conservation, reciprocity, and the optical theorem. While this analysis applies to cylinders suspended in water away from boundaries, the organ-pipe modes studied may be useful for investigating scattering processes for buried or partially buried cylinders. [Research supported in part by ONR.
Gluntz, Douglas M.; Taft, William E.
1994-01-01
A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.
NASA Astrophysics Data System (ADS)
Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.
2018-02-01
The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.
2003-07-20
known, that at atmospheric pressure in oxygen- I" - contained gases a various modes of discharge can be realized in the needle -to-plane electrode geometry... needle -to-plane electrode system was located in the discharge chamber (volume I dmi3) with controlled gas feeding. The gas pressure was an atmospheric...The 3. Experimental results positive DC voltage was applied to the needle electrode . The discharge voltage was varied from 3 to 15kV. The analysis of
Su, Mei; Huai, De; Cao, Juan; Ning, Ding; Xue, Rong; Xu, Meijie; Huang, Mao; Zhang, Xilong
2018-03-01
Although bilevel positive airway pressure (Bilevel PAP) therapy is usually used for overlap syndrome (OS), there is still a portion of OS patients in whom Bilevel PAP therapy could not simultaneously eliminate residual apnea events and hypercapnia. The current study was expected to explore whether auto-trilevel positive airway pressure (auto-trilevel PAP) therapy with auto-adjusting end expiratory positive airway pressure (EEPAP) can serve as a better alternative for these patients. From January of 2014 to June of 2016, 32 hypercapnic OS patients with stable chronic obstructive pulmonary diseases (COPD) and moderate-to-severe obstructive sleep apnea syndrome (OSAS) were recruited. Three variable modes of positive airway pressure (PAP) from the ventilator (Prisma25ST, Weinmann Inc., Germany) were applicated for 8 h per night. We performed the design of each mode at each night with an interval of two nights with no PAP treatment as a washout period among different modes. In Bilevel-1 mode (Bilevel-1), the expiratory positive airway pressure (EPAP) delivered from Bilevel PAP was always set as the lowest PAP for abolishment of snoring. For each patient, the inspiratory positive airway pressure (IPAP) was constantly set the same as the minimal pressure for keeping end-tidal CO 2 (ETCO 2 ) ≤45 mmHg for all three modes. However, the EPAP issued by Bilevel PAP in Bilevel-2 mode (Bilevel-2) was kept 3 cmH 2 O higher than that in Bilevel-1. In auto-trilevel mode (auto-trilevel) with auto-trilevel PAP, the initial part of EPAP was fixed at the same PAP as that in Bilevel-1 while the EEPAP was automatically regulated to rise at a range of ≤4 cmH 2 O based on nasal airflow wave changes. Comparisons were made for parameters before and during or following treatment as well as among different PAP therapy modes. The following parameters were compared such as nocturnal apnea hypopnea index (AHI), minimal SpO 2 (minSpO 2 ), arousal index, sleep structure and efficiency, morning PaCO 2 , and daytime Epworth Sleepiness Scale (ESS). Compared with the parameters before PAP therapies, during each mode of PAP treatment, significant reduction was detected in nocturnal AHI, arousal index, morning PaCO 2 , and daytime ESS while significant elevation was revealed in nocturnal minSpO 2 and sleep efficiency (all P < 0.01). Comparison among three PAP modes indicated that under the same IPAP, the auto-trilevel PAP mode could result in the lowest arousal index, daytime ESS, and the highest sleep efficiency. Compared with Bilevel-1, it was detected that (a) AHI was lower but minSpO 2 was higher in both Bilevel-2 and auto-trilevel (all P < 0.05) and (b) morning PaCO 2 showed no statistical difference from that in auto-trilevel but displayed higher in Bilevel-2 (P < 0.05). Compared with Bilevel-2, in auto-trilevel, both AHI and minSpO 2 showed no obvious changes (all P > 0.05) except with a lower morning PaCO 2 (P < 0.05). Auto-trilevel PAP therapy was superior over conventional Bilevel PAP therapy for hypercapnic OS patients with their OSAS moderate to severe, since auto-trilevel PAP was more efficacious in synchronous elimination of residual obstructive apnea events and CO 2 retention as well as in obtaining a better sleep quality and milder daytime drowsiness.
NASA Astrophysics Data System (ADS)
Jarosiński, Marek; Pachytel, Radomir
2017-04-01
Depending on the pressure distribution within Stimulated Reservoir Volume (SRV), a different modes of hydraulic fracturing or tectonic fracture reactivation are active. Hydraulic pressure-driven shortening or expansion of reservoir produces changes in stress field that results in decrease of differential stress either by increasing of horizontal stress minimum (Shmin) or/and by decreasing of horizontal stress maximum (SHmax). For further considerations we assume initial strike-slip stress regime which prevails in the Polish part of the Lower Paleozoic Baltic Basin (BB), as well as in majority of the USA shale basins. The data come from vertical and horizontal shale gas exploration wells drilled from one pad located in the middle of the BB. Structural survey of a long core interval combined with stress analysis based on microfrac tests and fracturing tests allow to reconstruct the initial structural and geomechanical state of reservoir. Further geomechanical evolution of the SRV depends on the hydraulic pressure bubble growth, which is in general unknown. However, the state of pressure can be determined close to the injection borehole and in the front of the SRV migrating in time. In our case, we are able to distinguish four stimulation zones characterized by increasingly diverse stimulation modes and successively closer to the borehole injection zone: (1) shear on preexisting fractures generates microseismic events that produce open fractures propped by their natural asperities being impenetrable for proppant grains; (2) above + initial hydraulic opening of natural fractures that are preferentially oriented to the Shmin, which favors microseismic events triggered by secondary shear on bedding planes and produces open spaces supported by natural fracture asperities and fine-grained proppant; (3) above + failure of primary hydraulic fractures, which increases extensional component of the microseismic events and opens space for coarse-grained proppant; (4) above + opening of horizontal bedding fractures, that do not prevail any microseismic mechanism, stabilizes the stresses at the level close to the thrust fault regime and opens space for large amount of proppant. This stimulation mode is undesirable because horizontal bedding fractures do not drain shale matrix efficiently due to low vertical permeability of shale and sealing of bedding planes by high clay content that enhances embedment effect on proppant. The number and order of stimulation zones is site- or basin-specific and may not apply directly to other locations. In the case of strong mechanical layering the stimulation mode can also vary among formations. Large number of preferentially oriented natural fractures (like in majority of boreholes in the BB), may cause the technological hydraulic fractures to play a subordinate role. Because in the BB tectonic fractures are filled with calcite, it may negatively influence gas drainage to stimulated fractures. In our scenario, also the primary shear failure mode is not achieved due to low differential stress in respect to compressive strength of shale. The shape of stimulation zones might not be regular but adjusted to the pattern of stimulated fractures creating principal pathways for hydraulic pressure propagation into reservoir. Bearing in mind the sequence of stimulation mode zones we are able to better understand the pattern of microseismic events and predict, to some extend, the proppant distribution within SRV.
Basumatary, Ashim Kumar; Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G
2016-06-01
This work describes the removal of Cr (VI) from aqueous solution in cross flow mode using MCM-41, MCM-48 and FAU zeolite membranes prepared on circular shaped porous ceramic support. Ceramic support was manufactured using locally available clay materials via a facile uni-axial compaction method followed by sintering process. A hydrothermal technique was employed for the deposition of zeolites on the ceramic support. The porosity of ceramic support (47%) is reduced by the formation of MCM-41 (23%), MCM-48 (22%) and FAU (33%) zeolite layers. The pore size of the MCM-41, MCM-48 and FAU membrane is found to be 0.173, 0.142, and 0.153 μm, respectively, which is lower than that of the support (1.0 μm). Cross flow ultrafiltration experiments of Cr (VI) were conducted at five different applied pressures (69-345 kPa) and three cross flow rates (1.11 × 10(-7) - 2.22 × 10(-7) m(3)/s). The filtration studies inferred that the performance of the fabricated zeolite composite membranes is optimum at the maximum applied pressure (345 kPa) and the highest rejection is obtained with the lowest cross flow rate (1.11 × 10(-7) m(3)/s) for all three zeolite membrane. The permeate flux of MCM-41, MCM-48 and FAU zeolite composite membranes are almost remained constant in the entire duration of the separation process. The highest removal of 82% is shown by FAU membrane, while MCM-41 and MCM-48 display 75% and 77% of Cr (VI) removal, respectively for the initial feed concentration of 1000 ppm with natural pH of the solution at an applied pressure of 345 kPa. Copyright © 2016 Elsevier Ltd. All rights reserved.
Geyer, Michael; Büschken, Meike; Buchhorn, Gottfried H.; Spahn, Gunter; Klinger, Hans-Michael
2009-01-01
The aim of the study was to evaluate the time-zero mechanical and footprint properties of a suture-bridge technique for rotator cuff repair in an animal model. Thirty fresh-frozen sheep shoulders were randomly assigned among three investigation groups: (1) cyclic loading, (2) load-to-failure testing, and (3) tendon–bone interface contact pressure measurement. Shoulders were cyclically loaded from 10 to 180 N and displacement to gap formation of 5- and 10-mm at the repair site. Cycles to failure were determined. Additionally, the ultimate tensile strength and stiffness were verified along with the mode of failure. The average contact pressure and pressure pattern were investigated using a pressure-sensitive film system. All of the specimens resisted against 3,000 cycles and none of them reached a gap formation of 10 mm. The number of cycles to 5-mm gap formation was 2,884.5 ± 96.8 cycles. The ultimate tensile strength was 565.8 ± 17.8 N and stiffness was 173.7 ± 9.9 N/mm. The entire specimen presented a unique mode of failure as it is well known in using high strength sutures by pulling them through the tendon. We observed a mean contact pressure of 1.19 ± 0.03 MPa, applied on the footprint area. The fundamental results of our study support the use of a suture-bridge technique for optimising the conditions of the healing biology of a reconstructed rotator cuff tendon. Nevertheless, an individual estimation has to be done if using the suture-bridge technique clinically. Further investigation is necessary to evaluate the cell biological healing process in order to achieve further sufficient advancements in rotator cuff repair. PMID:19826786
2010-01-01
incidence of ventilator-associated pneumonia ( VAP ) in patients with inha- lation injury when supported with HFPV compared with conventional modes of...mean ratio of PaO2 to FIO2 was 58 6 with a mean positive end- expiratory pressure of 22 2 cm H2O before rescue. Two of these patients were...a sample size of 110 patients in each arm would have been required to detect a difference in VAP with 80% power. A multicentered study would be
Dynamics of large-diameter water pipes in hydroelectric power plants
NASA Astrophysics Data System (ADS)
Pavić, G.; Chevillotte, F.; Heraud, J.
2017-04-01
An outline is made of physical behaviour of water - filled large pipes. The fluid-wall coupling, the key factor governing the pipe dynamics, is discussed in some detail. Different circumferential pipe modes and the associated cut-on frequencies are addressed from a theoretical as well as practical point of view. Major attention is paid to the breathing mode in view of its importance regarding main dynamic phenomena, such as water hammer. Selected measurement results done at EDF are presented to demonstrate how an external, non-intrusive sensor can detect pressure pulsations of the breathing mode in a pressure pipe. Differences in the pressure measurement using intrusive and non-intrusive sensors reveal the full complexity of large-diameter pipe dynamics.
On Three-dimensional Structures in Relativistic Hydrodynamic Jets
NASA Astrophysics Data System (ADS)
Hardee, Philip E.
2000-04-01
The appearance of wavelike helical structures on steady relativistic jets is studied using a normal mode analysis of the linearized fluid equations. Helical structures produced by the normal modes scale relative to the resonant (most unstable) wavelength and not with the absolute wavelength. The resonant wavelength of the normal modes can be less than the jet radius even on highly relativistic jets. High-pressure regions helically twisted around the jet beam may be confined close to the jet surface, penetrate deeply into the jet interior, or be confined to the jet interior. The high-pressure regions range from thin and ribbon-like to thick and tubelike depending on the mode and wavelength. The wave speeds can be significantly different at different wavelengths but are less than the flow speed. The highest wave speed for the jets studied has a Lorentz factor somewhat more than half that of the underlying flow speed. A maximum pressure fluctuation criterion found through comparison between theory and a set of relativistic axisymmetric jet simulations is applied to estimate the maximum amplitudes of the helical, elliptical, and triangular normal modes. Transverse velocity fluctuations for these asymmetric modes are up to twice the amplitude of those associated with the axisymmetric pinch mode. The maximum amplitude of jet distortions and the accompanying velocity fluctuations at, for example, the resonant wavelength decreases as the Lorentz factor increases. Long-wavelength helical surface mode and shorter wavelength helical first body mode generated structures should be the most significant. Emission from high-pressure regions as they twist around the jet beam can vary significantly as a result of angular variation in the flow direction associated with normal mode structures if they are viewed at about the beaming angle θ=1/γ. Variation in the Doppler boost factor can lead to brightness asymmetries by factors up to 6 as long-wavelength helical structure produced by the helical surface mode winds around the jet. Higher order surface modes and first body modes produce less variation. Angular variation in the flow direction associated with the helical mode appears consistent with precessing jet models that have been proposed to explain the variability in 3C 273 and BL Lac object AO 0235+164. In particular, cyclic angular variation in the flow direction produced by the normal modes could produce the activity seen in BL Lac object OJ 287. Jet precession provides a mechanism for triggering the helical modes on multiple length scales, e.g., the galactic superluminal GRO J1655-40.
Martínez, M A; Aguirre, A; Sánchez, M; Nevado, A; Laguna, I; Torre, A; Manuel, E; Villar, C; García-Puig, J
1999-12-11
In the present study we evaluated the influence of the observer's status--physician or nurse--on blood pressure levels and the relationship among clinic blood pressure measurement with ambulatory blood pressure and left ventricle mass. Cross sectional study performed in seven primary care centers. Participating physicians and nurses were trained for blood pressure measurement prior to the study and subsequently retrained at 3 month intervals during the study. Patients included in the study were 122 subjects with mild to moderate hypertension who underwent the following study protocol: a) measurement of clinic blood pressure by physician and nurse, in an independent fashion, on 3 visits; b) clinic-epidemiologic questionnaire; c) conventional hematological and biochemical study; d) electrocardiogram; e) 24-hour ambulatory blood pressure monitoring, f) M-mode and Doppler echocardiography (only in 58 subjects). Nurse-measured blood pressure levels were higher than those determined by physicians (mean differences: 3.9 [6.7] mmHg in systolic blood pressure and 2.6 [5.4] mmHg in diastolic blood pressure). The blood pressure level differences between the two observers were higher in female patients and subjects with low educational level, independently of the observer's gender. Nurse-measured blood pressure was more closely related to ambulatory blood pressure and left ventricle mass than physician-measured blood pressure. Nurse-measured blood pressure levels are lower than those determined by physicians and more closely related to ambulatory blood pressure and left ventricle mass than physician-measured blood pressure. These data support that nurses, instead of doctors, should routinely measure blood pressure in primary care centers.
Nonlinear MHD simulations of QH-mode DIII-D plasmas and implications for ITER high Q scenarios
NASA Astrophysics Data System (ADS)
Liu, F.; Huijsmans, G. T. A.; Loarte, A.; Garofalo, A. M.; Solomon, W. M.; Hoelzl, M.; Nkonga, B.; Pamela, S.; Becoulet, M.; Orain, F.; Van Vugt, D.
2018-01-01
In nonlinear MHD simulations of DIII-D QH-mode plasmas it has been found that low n kink/peeling modes (KPMs) are unstable and grow to a saturated kink-peeling mode. The features of the dominant saturated KPMs, which are localised toroidally by nonlinear coupling of harmonics, such as mode frequencies, density fluctuations and their effect on pedestal particle and energy transport, are in good agreement with the observations of the edge harmonic oscillation typically present in DIII-D QH-mode experiments. The nonlinear evolution of MHD modes including both kink-peeling modes and ballooning modes, is investigated through MHD simulations by varying the pedestal current and pressure relative to the initial conditions of DIII-D QH-mode plasma. The edge current and pressure at the pedestal are key parameters for the plasma either saturating to a QH-mode regime or a ballooning mode dominant regime. The influence of E × B flow and its shear on the QH-mode plasma has been investigated. E × B flow shear has a strong stabilisation effect on the medium to high-n modes but is destabilising for the n = 2 mode. The QH-mode extrapolation results of an ITER Q = 10 plasma show that the pedestal currents are large enough to destabilise n = 1-5 KPMs, leading to a stationary saturated kink-peeling mode.
SPR Hydrostatic Column Model Verification and Validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettin, Giorgia; Lord, David; Rudeen, David Keith
2015-10-01
A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extendedmore » nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.« less
Topological superfluids confined in a nanoscale slab geometry
NASA Astrophysics Data System (ADS)
Saunders, John
2013-03-01
Nanofluidic samples of superfluid 3He provide a route to explore odd-parity topological superfluids and their surface, edge and defect-bound excitations under well controlled conditions. We have cooled superfluid 3He confined in a precisely defined nano-fabricated cavity to well below 1 mK for the first time. We fingerprint the order parameter by nuclear magnetic resonance, exploiting a SQUID NMR spectrometer of exquisite sensitivity. We demonstrate that dimensional confinement, at length scales comparable to the superfluid Cooper-pair diameter, has a profound influence on the superfluid order of 3He. The chiral A-phase is stabilized at low pressures, in a cavity of height 650 nm. At higher pressures we observe 3He-B with a surface induced planar distortion. 3He-B is a time-reversal invariant topological superfluid, supporting gapless Majorana surface states. In the presence of the small symmetry breaking NMR static magnetic field we observe two possible B-phase states of the order parameter manifold, which can coexist as domains. Non-linear NMR on these states enables a measurement of the surface induced planar distortion, which determines the spectral weight of the surface excitations. The expected structure of the domain walls is such that, at the cavity surface, the line separating the two domains is predicted to host fermion zero modes, protected by symmetry and topology. Increasing confinement should stabilize new p-wave superfluid states of matter, such as the quasi-2D gapped A phase, which breaks time reversal symmetry, has a protected chiral edge mode, and may host half-quantum vortices with a Majorana zero-mode at the core. We discuss experimental progress toward this phase, through measurements on a 100 nm cavity. On the other hand, a cavity height of 1000 nm may stabilize a novel ``striped'' superfluid with spatially modulated order parameter. Supported by EPSRC (UK) GR/J022004/1 and European Microkelvin Consortium, FP7 grant 228464
30 CFR 250.616 - Blowout prevention equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pressure rating of the BOP system and system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the... pressure limitations that will be applied during each mode of pressure control. (b) The minimum BOP system...
30 CFR 250.616 - Blowout prevention equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pressure rating of the BOP system and system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the... pressure limitations that will be applied during each mode of pressure control. (b) The minimum BOP system...
30 CFR 250.615 - Blowout prevention equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pressure rating of the BOP system and system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the... pressure limitations that will be applied during each mode of pressure control. (b) The minimum BOP system...
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2007-01-01
A treatment of the modal decomposition of the pressure field in a combustor as determined by two pressure time history measurements is developed herein. It is applied to a Pratt and Whitney PW4098 engine combustor over a range of operating conditions. For modes other than the plane wave the assumption is made that there are distinct frequency bands in which the individual modes, including the plane wave mode, overlap such that if circumferential mode m and circumferential mode m-1 are present then circumferential mode m-2 is not. In the analysis used herein at frequencies above the first cutoff mode frequency, only pairs of circumferential modes are individually present at each frequency. Consequently, this is a restricted modal analysis. As part of the analysis one specifies mode cut-on frequencies. This creates a set of frequencies that each mode spans. One finding was the successful use of the same modal span frequencies over a range of operating conditions for this particular engine. This suggests that for this case the cut-on frequencies are in proximity at each operating condition. Consequently, the combustion noise spectrum related to the circumferential modes might not change much with operating condition.
High Pressure Behavior of Zircon at Room Temperature
NASA Astrophysics Data System (ADS)
Reichmann, H. J.; Rocholl, A.
2016-12-01
Zircon, ZrSiO4, is an ubiquitous mineral in the Earth's crust, forming under a wide range of metamorphic and igneous conditions. Its high content in certain trace elements (REE, Hf, Th, U) and due to its isotopic information, together with its chemical and physical robustness makes zircon an unique geochemical tool and geochronometer. Despite its geological importance there is a disagreement regarding the responds of zircon to elevated pressure, especially about the commencement of a pressure - induced structural phase transition. At elevated pressure zircon (I41/amd) undergoes a pressure induced phase transition to the scheelite structure (I41/a) . In the low pressure and high pressure phase, the (SiO4)4- tetrahedral units are present. However, the onset of the phase transition at room temperature is not well defined: zircon - scheelite transitions have been reported in a pressure regime ranging from 20 to 30 GPa (e.g. Ono et al., 2004). To clarify this issue, we performed Raman spectroscopy measurement up to 60 GPa on a non-metamict single crystal zircon sample (reference material 91500; Wiedenbeck et al., 1995; Wiedenbeck et al., 2004). A closer look at the external lattice modes at 201 cm-1 shows a decreasing of the wavenumbers with increasing pressure up to 21 GPa followed by a steep increase. The lattice modes at 213 and 224 cm-1 also exhibit a subtle kink in this pressure range. This pressure coincides with that one reported for the zircon - scheelite transition (van Westrenen et al., 2004). Another interesting issue is the behavior of the internal modes at higher pressures. The ν3 stretching modes at about 1000 cm-1show distinct discontinuities at 31 GPa accompanied by the emerging of new features in the Raman spectrum suggesting another, pressure triggered modification in the zircon structure. References: Ono, Funakoshi, Nakajima, Tange, and Katsura (2004) Contr. Mineral. Petrol., 147, 505-509. Van Westrenen, Frank, Hanchar, Fei, Finch, and Zha (2004) American Mineralogist, 89, 197-203. Wiedenbeck et al., (1995) Geostandards Newsletter, 19, 1-23. Wiedenbeck et al. (2004) Geostandards and Geoanalytical Research, 28, 9-39.
NASA Technical Reports Server (NTRS)
Harrington, W. W.
1973-01-01
The reduction is discussed of the discrete tones generated by jet engines which is essential for jet aircraft to meet present and proposed noise standards. The discrete tones generated by the blades and vanes propagate in the inlet and exhaust duct in the form of spiraling acoustic waves, or spinning modes. The reduction of these spinning modes by the cancellation effect of the combination of two acoustic fields was investigated. The spinning mode synthesizer provided the means for effective study of this noise reduction scheme. Two sets of electrical-acoustical transducers located in an equally-spaced circular array simultaneously generate a specified spinning mode and the cancelling mode. Analysis of the wave equation for the synthesizer established the optimum cancelling array acoustic parameters for maximum sound pressure level reduction. The parameter dependence of the frequency ranges of propagation of single, specified circumferential modes generated by a single array, and of effective cancellation of the modes generated by two arrays, was determined. Substantial sound pressure level reduction was obtained for modes within these limits.
The effect of pressure anisotropy on ballooning modes in tokamak plasmas
NASA Astrophysics Data System (ADS)
Johnston, A.; Hole, M. J.; Qu, Z. S.; Hezaveh, H.
2018-06-01
Edge Localised Modes are thought to be caused by a spectrum of magnetohydrodynamic instabilities, including the ballooning mode. While ballooning modes have been studied extensively both theoretically and experimentally, the focus of the vast majority of this research has been on isotropic plasmas. The prevalence of pressure anisotropy in modern tokamaks thus motivates further study of these modes. This paper presents a numerical analysis of ballooning modes in anisotropic equilibria. The investigation was conducted using the newly-developed codes HELENA+ATF and MISHKA-A, which adds anisotropic physics to equilibria and stability analysis. We have examined the impact of anisotropy on the stability of an n = 30 ballooning mode, confirming results conform to previous calculations in the isotropic limit. Growth rates of ballooning modes in equilibria with different levels of anisotropy were then calculated using the stability code MISHKA-A. The key finding was that the level of anisotropy had a significant impact on ballooning mode growth rates. For {T}\\perp > {T}| | , typical of ICRH heating, the growth rate increases, while for {T}\\perp < {T}| | , typical of neutral beam heating, the growth rate decreases.
Potential Acceptability of a Pediatric Ventilator Management Computer Protocol.
Sward, Katherine A; Newth, Christopher J L; Khemani, Robinder G; Page, Kent; Meert, Kathleen L; Carcillo, Joseph A; Shanley, Thomas P; Moler, Frank W; Pollack, Murray M; Dalton, Heidi J; Wessel, David L; Berger, John T; Berg, Robert A; Harrison, Rick E; Doctor, Allan; Dean, J Michael; Holobkov, Richard; Jenkins, Tammara L; Nicholson, Carol E
2017-11-01
To examine issues regarding the granularity (size/scale) and potential acceptability of recommendations in a ventilator management protocol for children with pediatric acute respiratory distress syndrome. Survey/questionnaire. The eight PICUs in the Collaborative Pediatric Critical Care Research Network. One hundred twenty-two physicians (attendings and fellows). None. We used an online questionnaire to examine attitudes and assessed recommendations with 50 clinical scenarios. Overall 80% of scenario recommendations were accepted. Acceptance did not vary by provider characteristics but did vary by ventilator mode (high-frequency oscillatory ventilation 83%, pressure-regulated volume control 82%, pressure control 75%; p = 0.002) and variable adjusted (ranging from 88% for peak inspiratory pressure and 86% for FIO2 changes to 69% for positive end-expiratory pressure changes). Acceptance did not vary based on child size/age. There was a preference for smaller positive end-expiratory pressure changes but no clear granularity preference for other variables. Although overall acceptance rate for scenarios was good, there was little consensus regarding the size/scale of ventilator setting changes for children with pediatric acute respiratory distress syndrome. An acceptable protocol could support robust evaluation of ventilator management strategies. Further studies are needed to determine if adherence to an explicit protocol leads to better outcomes.
Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments
NASA Astrophysics Data System (ADS)
Chang, Zuoyang
1996-11-01
Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K.-L. Wong and S. Zweben, Princeton Plasma Physics Lab. Department of Physics, University of California, Irvine, CA 92717 ^*Work supported by the U.S. Department of Energy DoE Contract No. DE-AC02-76CH03073.
Correlation of vibrational modes and DX-like centers in GaN : O
NASA Astrophysics Data System (ADS)
Wetzel, C.; , J. W. Ager, III; Topf, M.; Meyer, B. K.; Amano, H.; Akasaki, I.
1999-12-01
Vibrational modes in O-doped GaN have been observed at 544 cm-1 in Raman spectroscopy. Under perturbation of large hydrostatic pressure the mode appears as a set of three different lines Q1⋯3 whose relative intensities change by pressure. A switching between the modes occurs near 10 and 20 GPa and is found to correlate with the electron capture process to the DX-like state of O. We employ a simple oscillator model to predict the vibrational frequencies of ON. A localization energy of 23 cm-1 with respect to the optical phonon band is predicted. This is in reasonable agreement with the observed vibrational frequencies. Therefore, we assign the Q modes to the local vibration of O on N site in GaN. Modes Q1⋯3 are tentatively assigned to three different charge states of the O defect center.
FLOW-i ventilator performance in the presence of a circle system leak.
Lucangelo, Umberto; Ajčević, Miloš; Accardo, Agostino; Borelli, Massimo; Peratoner, Alberto; Comuzzi, Lucia; Zin, Walter A
2017-04-01
Recently, the FLOW-i anaesthesia ventilator was developed based on the SERVO-i intensive care ventilator. The aim of this study was to test the FLOW-i's tidal volume delivery in the presence of a leak in the breathing circuit. We ventilated a test lung model in volume-, pressure-, and pressure-regulated volume-controlled modes (VC, PC, and PRVC, respectively) with a FLOW-i. First, the circuit remained airtight and the ventilator was tested with fresh gas flows of 6, 1, and 0.3 L/min in VC, PC, and PRVC modes and facing 4 combinations of different resistive and elastic loads. Second, a fixed leak in the breathing circuit was introduced and the measurements repeated. In the airtight system, FLOW-i maintained tidal volume (VT) and circuit pressure at approximately the set values, independently of respiratory mode, load, or fresh gas flow. In the leaking circuit, set VT = 500 mL, FLOW-i delivered higher VTs in PC (about 460 mL) than in VC and PRVC, where VTs were substantially less than 500 mL. Interestingly, VT did not differ appreciably from 6 to 0.3 L/min of fresh air flow among the 3 ventilatory modes. In the absence of leakage, peak inspiratory pressures were similar, while they were 35-45 % smaller in PRVC and VC than in PC mode in the presence of leaks. In conclusion, FLOW-i maintained VT (down to fresh gas flows of 0.3 L/min) to 90 % of its preset value in PC mode, which was 4-5 times greater than in VC or PRVC modes.
Proposed Schematics for an Advanced Development Lunar Portable Life Support System
NASA Technical Reports Server (NTRS)
Conger, Bruce; Chullen, Cinda; Barnes, Bruce; Leavitt, Greg
2010-01-01
The latest development of the NASA space suit is an integrated assembly made up of primarily a Pressure Garment System (PGS) and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen (O2) subsystem, a ventilation subsystem, and a thermal subsystem. This paper baselines a detailed schematic of the PLSS to provide a basis for current and future PLSS development efforts. Both context diagrams and detailed schematics describe the hardware components and overall functions for all three of the PLSS subsystems. The various modes of operations for the PLSS are also presented. A comparison of the proposed PLSS to the Apollo and Shuttle PLSS designs is presented, highlighting several anticipated improvements over the historical PLSS architectures.
Portable Life Support Subsystem Thermal Hydraulic Performance Analysis
NASA Technical Reports Server (NTRS)
Barnes, Bruce; Pinckney, John; Conger, Bruce
2010-01-01
This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.
Romero, Louis A.; Torczynski, John R.; Clausen, Jonathan R.; ...
2015-11-16
Herein, we show how introducing a small amount of gas can completely change the motion of a solid object in a viscous liquid during vibration. We analyze an idealized system exhibiting this behavior: a piston moving in a liquid-filled housing, where the gaps between the piston and the housing are narrow and depend on the piston position. Recent experiments have shown that vibration causes some gas to move below the piston and the piston to subsequently move downward and compress its supporting spring. Herein, we analyze the analogous but simpler situation in which the gas regions are replaced by bellowsmore » with similar pressure-volume relationships. We show that these bellows form a spring (analogous to the pneumatic spring formed by the gas regions) which enables the piston and the liquid to oscillate in a mode that does not exist without this spring. This mode is referred to here as the Couette mode because the liquid in the gaps moves essentially in Couette flow (i.e., with almost no component of Poiseuille flow). Since Couette flow by itself produces extremely low damping, the Couette mode has a strong resonance. We show that, near this resonance, the dependence of the gap geometry on the piston position produces a large rectified (net) force on the piston during vibration. As a result, this force can be much larger than the piston weight and the strength of its supporting spring and is in the direction that decreases the flow resistance of the gap geometry.« less
Research on the Diesel Engine with Sliding Mode Variable Structure Theory
NASA Astrophysics Data System (ADS)
Ma, Zhexuan; Mao, Xiaobing; Cai, Le
2018-05-01
This study constructed the nonlinear mathematical model of the diesel engine high-pressure common rail (HPCR) system through two polynomial fitting which was treated as a kind of affine nonlinear system. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for affine nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrated that sliding-mode variable structure control algorithm shows favourable control performances which are overcoming the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.
Design of a Collapse-Mode CMUT With an Embossed Membrane for Improving Output Pressure.
Yu, Yuanyu; Pun, Sio Hang; Mak, Peng Un; Cheng, Ching-Hsiang; Wang, Jiujiang; Mak, Pui-In; Vai, Mang I
2016-06-01
Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a competitive alternative to piezoelectric ultrasonic transducers, especially in medical ultrasound imaging and therapeutic ultrasound applications, which require high output pressure. However, as compared with piezoelectric ultrasonic transducers, the output pressure capability of CMUTs remains to be improved. In this paper, a novel structure is proposed by forming an embossed vibrating membrane on a CMUT cell operating in the collapse mode to increase the maximum output pressure. By using a beam model in undamped conditions and finite-element analysis simulations, the proposed embossed structure showed improvement on the maximum output pressure of the CMUT cell when the embossed pattern was placed on the estimated location of the peak deflection. As compared with a uniform membrane CMUT cell worked in the collapse mode, the proposed CMUT cell can yield the maximum output pressure by 51.1% and 88.1% enhancement with a single embossed pattern made of Si3N4 and nickel, respectively. The maximum output pressures were improved by 34.9% (a single Si3N4 embossed pattern) and 46.7% (a single nickel embossed pattern) with the uniform membrane when the center frequencies of both original and embossed CMUT designs were similar.
Mosquito drinking with a burst in reserve: explaining behavior with a fluid mechanics model
NASA Astrophysics Data System (ADS)
Chatterjee, Souvick; Socha, Jake; Stremler, Mark
2014-03-01
Mosquitoes drink using a pair of in-line pumps in the head that draw liquid food through a long drinking channel, or proboscis. Experimental observations indicate two modes of drinking: a predominantly occurring continuous mode, in which the cibarial and pharyngeal pumps expand cyclically at a constant phase difference, and an isolated burst mode, in which the pharyngeal pump expansion is several orders of magnitude larger than in the continuous mode. We use a reduced order model of the fluid mechanics to hypothesize an explanation of this naturally occurring drinking behavior. Our model results show that the continuous mode is the more efficient mode in terms of energy expenditure, and the burst mode creates a large pressure difference across the proboscis. We speculate that the mosquito uses this pressure drop to clear blockages in the proboscis. We compared the two-pump system with one-pump configurations, as found in some other insects like butterflies, and show that the two pumps have unique roles in mosquito feeding.
The frequency dependence of the discharge properties in a capacitively coupled oxygen discharge
NASA Astrophysics Data System (ADS)
Gudmundsson, J. T.; Snorrason, D. I.; Hannesdottir, H.
2018-02-01
We use the one-dimensional object-oriented particle-in-cell Monte Carlo collision code oopd1 to explore the evolution of the charged particle density profiles, electron heating mechanism, the electron energy probability function (EEPF), and the ion energy distribution in a single frequency capacitively coupled oxygen discharge, with driving frequency in the range 12-100 MHz. At a low driving frequency and low pressure (5 and 10 mTorr), a combination of stochastic (α-mode) and drift ambipolar (DA) heating in the bulk plasma (the electronegative core) is observed and the DA-mode dominates the time averaged electron heating. As the driving frequency or pressure are increased, the heating mode transitions into a pure α-mode, where electron heating in the sheath region dominates. At low pressure (5 and 10 mTorr), this transition coincides with a sharp decrease in electronegativity. At low pressure and low driving frequency, the EEPF is concave. As the driving frequency is increased, the number of low energy electrons increases and the relative number of higher energy electrons (>10 eV) increases. At high driving frequency, the EEPF develops a convex shape or becomes bi-Maxwellian.
NASA Astrophysics Data System (ADS)
Verma, S. B.; Stark, R.; Nuerenberger-Genin, C.; Haidn, O.
2010-06-01
An experimental investigation has been carried out to study the effect of test environment on transition characteristics and the flow unsteadiness associated with the transition modes of a dual-bell nozzle. Cold-gas tests using gaseous nitrogen were carried out in (i) a horizontal test-rig with nozzle exhausting into atmospheric conditions and, (ii) a high altitude simulation chamber with nozzle operation under self-evacuation mode. Transient tests indicate that increasing δP 0/ δt (the rate of stagnation chamber pressure change) reduces the amplitude of pressure fluctuations of the separation shock at the wall inflection point. This is preferable from the viewpoint of lowering the possible risk of any structural failure during the transition mode. Sea-level tests show 15-17% decrease in the transition nozzle pressure ratio (NPR) during subsequent tests in a single run primarily due to frost formation in the nozzle extension up to the wall inflection location. Frost reduces the wall inflection angle and hence, the transition NPR. However, tests inside the altitude chamber show nearly constant NPR value during subsequent runs primarily due to decrease in back temperature with decrease in back pressure that prevents any frost formation.
NASA Astrophysics Data System (ADS)
Chen, Xi; Burrell, K. H.; Osborne, T. H.; Barada, K.; Ferraro, N. M.; Garofalo, A. M.; Groebner, R. J.; McKee, G. R.; Petty, C. C.; Porkolab, M.; Rhodes, T. L.; Rost, J. C.; Snyder, P. B.; Solomon, W. M.; Yan, Z.; The DIII-D Team
2017-08-01
New experimental studies and modelling of the coherent edge harmonic oscillation (EHO), which regulates the conventional Quiescent H-mode (QH-mode) edge, validate the proposed hypothesis of edge rotational shear in destabilizing the low-n kink-peeling mode as the additional drive mechanism for the EHO. The observed minimum edge E × B shear required for the EHO decreases linearly with pedestal collisionality ν \\text{e}\\ast , which is favorable for operating QH-mode in machines with low collisionality and low rotation such as ITER. In addition, the QH-mode regime in DIII-D has recently been found to bifurcate into a new ‘wide-pedestal’ state at low torque in double-null shaped plasmas, characterized by increased pedestal height, width and thermal energy confinement (Burrell 2016 Phys. Plasmas 23 056103, Chen 2017 Nucl. Fusion 57 022007). This potentially provides an alternate path for achieving high performance ELM-stable operation at low torque, in addition to the low-torque QH-mode sustained with applied 3D fields. Multi-branch low-k and intermediate-k turbulences are observed in the ‘wide-pedestal’. New experiments support the hypothesis that the decreased edge E × B shear enables destabilization of broadband turbulence, which relaxes edge pressure gradients, improves peeling-ballooning stability and allows a wider and thus higher pedestal. The ability to accurately predict the critical E × B shear for EHO and maintain high performance QH-mode at low torque is an essential requirement for projecting QH-mode operation to ITER and future machines.
NASA Astrophysics Data System (ADS)
Giri, Ashutosh; Hopkins, Patrick E.
2017-12-01
Fullerene condensed-matter solids can possess thermal conductivities below their minimum glassy limit while theorized to be stiffer than diamond when crystallized under pressure. These seemingly disparate extremes in thermal and mechanical properties raise questions into the pressure dependence on the thermal conductivity of C60 fullerite crystals, and how the spectral contributions to vibrational thermal conductivity changes under applied pressure. To answer these questions, we investigate the effect of strain on the thermal conductivity of C60 fullerite crystals via pressure-dependent molecular dynamics simulations under the Green-Kubo formalism. We show that the thermal conductivity increases rapidly with compressive strain, which demonstrates a power-law relationship similar to their stress-strain relationship for the C60 crystals. Calculations of the density of states for the crystals under compressive strains reveal that the librational modes characteristic in the unstrained case are diminished due to densification of the molecular crystal. Over a large compression range (0-20 GPa), the Leibfried-Schlömann equation is shown to adequately describe the pressure dependence of thermal conductivity, suggesting that low-frequency intermolecular vibrations dictate heat flow in the C60 crystals. A spectral decomposition of the thermal conductivity supports this hypothesis.
Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J
2017-01-01
Introduction High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient–ventilator asynchrony (PVA). Patients and methods Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Results Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings (P=0.017). Conclusion High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA. PMID:28138234
Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J
2017-01-01
High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient-ventilator asynchrony (PVA). Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings ( P =0.017). High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA.
Gluntz, D.M.; Taft, W.E.
1994-12-20
A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.
Arndt, Andreas; Nüsser, Peter; Graichen, Kurt; Müller, Johannes; Lampe, Bernhard
2008-10-01
A control strategy for rotary blood pumps meeting different user-selectable control objectives is proposed: maximum support with the highest feasible flow rate versus medium support with maximum ventricular washout and controlled opening of the aortic valve (AoV). A pulsatility index (PI) is calculated from the pressure difference, which is deduced from the axial thrust measured by the magnetic bearing of the pump. The gradient of PI with respect to pump speed (GPI) is estimated via online system identification. The outer loop of a cascaded controller regulates GPI to a reference value satisfying the selected control objective. The inner loop controls the PI to a reference value set by the outer loop. Adverse pumping states such as suction and regurgitation can be detected on the basis of the GPI estimates and corrected by the controller. A lumped-parameter computer model of the assisted circulation was used to simulate variations of ventricular contractility, pulmonary venous pressure, and aortic pressure. The performance of the outer control loop was demonstrated by transitions between the two control modes. Fast reaction of the inner loop was tested by stepwise reduction of venous return. For maximum support, a low PI was maintained without inducing ventricular collapse. For maximum washout, the pump worked at a high PI in the transition region between the opening and the permanently closed AoV. The cascaded control of GPI and PI is able to meet different control objectives and is worth testing in vitro and in vivo.
Near-field sound radiation of fan tones from an installed turbofan aero-engine.
McAlpine, Alan; Gaffney, James; Kingan, Michael J
2015-09-01
The development of a distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is reported. The key objective is to examine a canonical problem: how to predict the pressure field due to a distributed source located near an infinite, rigid cylinder. This canonical problem is a simple representation of an installed turbofan, where the distributed source is based on the pressure pattern generated by a spinning duct mode, and the rigid cylinder represents an aircraft fuselage. The radiation of fan tones can be modelled in terms of spinning modes. In this analysis, based on duct modes, theoretical expressions for the near-field acoustic pressures on the cylinder, or at the same locations without the cylinder, have been formulated. Simulations of the near-field acoustic pressures are compared against measurements obtained from a fan rig test. Also, the installation effect is quantified by calculating the difference in the sound pressure levels with and without the adjacent cylindrical fuselage. Results are shown for the blade passing frequency fan tone radiated at a supersonic fan operating condition.
NASA Astrophysics Data System (ADS)
Yang, Shaohua; Long, Wei; Chen, Yajun
2018-03-01
In this paper, the control mechanism and mathematical description of the microfluidic flow in the microfluidic process of the PDMS membrane type pneumatic micro-valve were studied. The velocity and pressure variation law of the velocity field inside micro valve was analyzed by numerical simulation method. The influence of the two kinds of inlet drive modes on the working effect and the pressure flow characteristics of the pneumatic micro-valve was studied. The structure of the elastic solid valve diaphragm under the dual action of the airway and the liquid channel was analyzed. Deformation and stress distribution. The results show that the gas flow in the gas flow channel under the diaphragm by the vacuum part of the role of the formation of a suction gas vortex, pressure-driven mode was easier under the diaphragm to produce a strong gas vortex, resulting in internal and external pressure to promote diaphragm cut-off liquid channel; In the pressure pneumatic mode, the stress at both ends of the diaphragm was smaller, the membrane was not easy to tear failure.
NASA Astrophysics Data System (ADS)
Cai, Le; Mao, Xiaobing; Ma, Zhexuan
2018-02-01
This study first constructed the nonlinear mathematical model of the high-pressure common rail (HPCR) system in the diesel engine. Then, the nonlinear state transformation was performed using the flow’s calculation and the standard state space equation was acquired. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrate that sliding-mode variable structure control algorithm shows favorable control performances and overcome the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.
Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Fleeter, Sanford
1993-01-01
The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes which have detrimental effects on the experimental data. Acoustic treatment is proposed to rectify this problem.
Effects of simulated flight on the structure and noise of underexpanded jets
NASA Technical Reports Server (NTRS)
Norum, T. D.; Shearin, J. G.
1984-01-01
Mean plume static and pitot pressures and far-field acoustic pressure were measured for an underexpanded convergent nozzle in simulated flight. Results show that supersonic jet mixing noise behaves in flight in the same way that subsonic jet mixing noise does. Regarding shock-associated noise, the frequencies of both screech and peak broadband shock noise were found to decrease with flight speed. The external flow determines the dominant screech mode over a wide range of nozzle pressure rations. Change in the screech mode strongly affects both the development of the downstream shock structure and the characteristic frequency of the broadband shock-associated noise. When no mode change occurs, the main effect of the external flow is to stretch the axial development of the shock cells.
NASA Astrophysics Data System (ADS)
Gillet, Philippe; Guyot, Francois; Malezieux, Jean-Marie
1989-12-01
High pressure (up to 2.7 GPa) and high temperature (up to 1000 K) Raman spectra of Ca 2GeO 4 (olivine form) have been recorded. Measurements of the pressure- and temperature-induced frequency shifts of 14 modes have been performed. The classical mode Gruneisen parameter and a corresponding parameter related to temperature variation are calculated. For the high frequency modes (GeO stretching) we calculate these parameters with local tetrahedral elastic parameters. From these parameters anharmonic parameters are calculated for each Raman active mode. The effect of anharmonicity on the specific heat is calculated and compared with calorimetric data. Taking anharmonicity into account leads to a departure from the Dulong and Petit limit of the order of 2% at 1000 K and more than 6% at 2000 K, in good accord with experimental data. We propose that, eventually, such effects might be significant in the calculations of thermodynamic properties of mantle silicates like forsterite and its polymorphs.
Clutch pressure estimation for a power-split hybrid transmission using nonlinear robust observer
NASA Astrophysics Data System (ADS)
Zhou, Bin; Zhang, Jianwu; Gao, Ji; Yu, Haisheng; Liu, Dong
2018-06-01
For a power-split hybrid transmission, using the brake clutch to realize the transition from electric drive mode to hybrid drive mode is an available strategy. Since the pressure information of the brake clutch is essential for the mode transition control, this research designs a nonlinear robust reduced-order observer to estimate the brake clutch pressure. Model uncertainties or disturbances are considered as additional inputs, thus the observer is designed in order that the error dynamics is input-to-state stable. The nonlinear characteristics of the system are expressed as the lookup tables in the observer. Moreover, the gain matrix of the observer is solved by two optimization procedures under the constraints of the linear matrix inequalities. The proposed observer is validated by offline simulation and online test, the results have shown that the observer achieves significant performance during the mode transition, as the estimation error is within a reasonable range, more importantly, it is asymptotically stable.
NASA Astrophysics Data System (ADS)
Yu, S. D.; Chang, L. X.; Yang, H. B.; Liu, B. B.; Hou, Y. Y.; Wang, L.; Yao, M. G.; Cui, T.; Zou, G. T.
2007-10-01
The structural behavior of a W/WS2 fullerene-like nanosphere with a core-shell structure has been studied in the hydrostatic pressure range from atmospheric pressure to 18 GPa by Raman spectroscopy using a methanol-ethanol-water mixture (16:3:1) as the pressure transmitting medium (PTM). We found that it is interesting that the intensity ratio of the LA+TA mode and the A1g mode changes with increasing pressure. We attribute this change to the shape transformation of an inorganic fullerene-like IF-W/WS2 nanosphere under high hydrostatic pressure. By comparing the Raman spectra of an IF-W/WS2 nanosphere released from high pressure with that of the original one, we found that the change in morphology is reversible. This indicates that the spherical shape of the IF-W/WS2 has excellent behavior in resisting compression.
Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments
NASA Technical Reports Server (NTRS)
Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet
2004-01-01
This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2006-01-01
A treatment of the modal decomposition of the pressure field in a combustor as determined by two Kulite pressure measurements is developed herein. It is applied to a Pratt & Whitney PW4098 engine combustor over a range of operating conditions. For modes other than the plane wave the new part of the treatment is the assumption that there are distinct frequency bands in which the individual modes, including the plane wave mode, overlap such that if circumferential mode m and circumferential mode m-1 are present than circumferential mode m 2 is not. Consequently, in the analysis used herein at frequencies above the first cut-off mode frequency, only pairs of circumferential modes are individually present at each frequency. Consequently, this is a restricted modal analysis. A new result is that the successful use of the same modal span frequencies over a range of operating conditions for this particular engine suggests that the temperature, T, and the velocity, v, of the flow at each operating condition are related by c(sup 2)-v(sup 2) = a constant where c is the speed of sound.
High-pressure behavior of CaMo O4
NASA Astrophysics Data System (ADS)
Panchal, V.; Garg, N.; Poswal, H. K.; Errandonea, D.; Rodríguez-Hernández, P.; Muñoz, A.; Cavalli, E.
2017-09-01
We report a high-pressure study of tetragonal scheelite-type CaMo O4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMo O4 . We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active and infrared-active modes. In addition, based on calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMo O4 . The reported results are of interest for the many technological applications of this oxide.
Nonlinear Diamagnetic Stabilization of Double Tearing Modes in Cylindrical MHD Simulations
NASA Astrophysics Data System (ADS)
Abbott, Stephen; Germaschewski, Kai
2014-10-01
Double tearing modes (DTMs) may occur in reversed-shear tokamak configurations if two nearby rational surfaces couple and begin reconnecting. During the DTM's nonlinear evolution it can enter an ``explosive'' growth phase leading to complete reconnection, making it a possible driver for off-axis sawtooth crashes. Motivated by similarities between this behavior and that of the m = 1 kink-tearing mode in conventional tokamaks we investigate diamagnetic drifts as a possible DTM stabilization mechanism. We extend our previous linear studies of an m = 2 , n = 1 DTM in cylindrical geometry to the fully nonlinear regime using the MHD code MRC-3D. A pressure gradient similar to observed ITB profiles is used, together with Hall physics, to introduce ω* effects. We find the diamagnetic drifts can have a stabilizing effect on the nonlinear DTM through a combination of large scale differential rotation and mechanisms local to the reconnection layer. MRC-3D is an extended MHD code based on the libMRC computational framework. It supports nonuniform grids in curvilinear coordinates with parallel implicit and explicit time integration.
Characterization of broadband fluctuations in wide-pedestal QH-mode plasmas on DIII-D
NASA Astrophysics Data System (ADS)
Muscatello, C. M.; Burrell, K. H.; Luhmann, N. C., Jr.; McKee, G. R.; Tobias, B.
2016-10-01
Edge broadband fluctuations observed in wide pedestal quiescent H-mode plasmas may play an important role in driving transport necessary for stabilizing the edge to kink-peeling modes, thought to lead to ELMs. Density fluctuation measurements from BES and MIR independently observe periodic bursts in the pedestal that show up spectrally as broadband fluctuations. The period of the fluctuation bursts correlate with the period of enhanced bicoherence in the frequency range of the fluctuations, suggesting nonlinear coupling of turbulence. Time-delay estimation analysis of the 2D BES data shows strong evidence of a low-frequency zonal flow in the pedestal with a period matching that of the bursts. The carbon pressure gradient and E × B velocity, determined from CER, and ECE emission also oscillate with the same period. This behavior can be described as a quasi-stationary, limit-cycle oscillation and modeled by a set of predator-prey equations relating the zonal flow, equilibrium flow, and turbulence amplitude. Supported by the US DOE under DE-FC02-04ER54698, DE-FG02-99ER54531, DE-AC02-09CH11466.
Simulation of stationary glow patterns in dielectric barrier discharges at atmospheric pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fucheng, E-mail: hdlfc@hbu.cn; He, Yafeng; Dong, Lifang
2014-12-15
Self-organized stationary patterns in dielectric barrier discharges operating in glow regime at atmospheric pressure are investigated by a self-consistent two-dimensional fluid model. The simulation results show that two different modes, namely, the diffuse mode and the static patterned mode, can be formed in different ranges of the driving frequency. The discharge operates in Townsend regime in the diffuse mode, while it operates in a glow regime inside the filaments and in a Townsend regime outside the filaments in the stable pattered mode. The forming process of the stationary filaments can be divided into three stages, namely, destabilizing stage, self-assembling stage,more » and stable stage. The space charge associated with residual electron density and surface charge is responsible for the formation of these stationary glow patterns.« less
The resonance of twin supersonic jets
NASA Technical Reports Server (NTRS)
Morris, Philip J.
1989-01-01
This paper presents an analytical study of the resonant interaction between twin supersonic jets. An instability wave model is used to describe the large scale coherent structures in the jet mixing layers. A linearized shock cell model is also given for the jets when operating off design. The problem's geometry admits four types of normal modes associated with each azimuthal mode number in the single jet. The stability of these modes is examined for both a vortex sheet model of the jet and a jet flow represented by realistic profiles. The growth rates of each mode number and type are found to vary with jet separation and mixing layer thickness and Strouhal number. Contours of equal pressure level are obtained for each mode. The region close to the symmetry axis is found to have the greatest pressure fluctuation amplitude.
Study on Combustion Oscillation of Premixed Flame with Pilot Fuel at Elevated Pressures
NASA Astrophysics Data System (ADS)
Ohtsuka, Masaya; Yoshida, Shohei; Hirata, Yoshitaka; Kobayashi, Nariyoshi
Acoustically-coupled combustion oscillation is studied for premixed flame with pilot fuel to be used in gas turbine combustors. Premixed gas is passed through swirl vanes and burnt with the centrally injected pilot fuel. The dependencies of pressure, fuel to air ratio, premixed fuel rate, inlet velocity and air temperature on the combustion oscillation are investigated. Two kinds of oscillation modes of ˜100Hz and ˜350Hz are activated according to inlet velocities. Fluctuating pressures are amplified when the premixed fuel rate is over ˜80% at elevated pressures. The fluctuating pressure peak moves to a higher premixed fuel ratio region with increased pressure or fuel to air ratio for the Helmholz type mode. Combustion oscillation occurs when the pilot fuel velocity is changed proportionally with the flame length.
NASA Astrophysics Data System (ADS)
Xu, Xiaobin; Liu, Yangqian; Gao, Fuyu; Song, Ningfang
2018-07-01
Hollow-core photonic bandgap fibers (HC-PBFs) are suitable for spaceborne fiber optical gyroscopes owing to their excellent environmental adaptability. However, hundreds of small holes full of air at one atmosphere of pressure can make the HC-PBF sensitive to external atmospheric pressure. In this study, we investigated the phase sensitivity of the fundamental mode to external atmospheric pressure for the HC-PBF, and the experimental result indicates that the phase sensitivity is approximately 1.6 × 10-5 ppm/Pa, which is mostly contributed by the change in the pressure-induced length. Through the choice of coating, the phase sensitivity to external atmospheric pressure can be reduced by about a factor of five compared to current HC-PBFs, and the excellent temperature performance can be maintained at the same time.
Prediction of the acoustic pressure above periodically uneven facings in industrial workplaces
NASA Astrophysics Data System (ADS)
Ducourneau, J.; Bos, L.; Planeau, V.; Faiz, Adil; Skali Lami, Salah; Nejade, A.
2010-05-01
The aim of this work is to predict sound pressure in front of wall facings based on periodic sound scattering surface profiles. The method involves investigating plane wave reflections randomly incident upon an uneven surface. The waveguide approach is well suited to the geometries usually encountered in industrial workplaces. This method simplifies the profile geometry by using elementary rectangular volumes. The acoustic field in the profile interstices can then be expressed as the superposition of waveguide modes. In past work, walls considered are of infinite dimensions and are subjected to a periodic surface profile in only one direction. We therefore generalise this approach by extending its applicability to "double-periodic" wall facings. Free-field measurements have been taken and the observed agreement between numerical and experimental results supports the validity of the waveguide method.
Real-Time Feedback Control of Flow-Induced Cavity Tones. Part 1; Fixed-Gain Control
NASA Technical Reports Server (NTRS)
Kegerise, M. A.; Cabell, R. H.; Cattafesta, L. N., III
2006-01-01
A generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The control algorithm demonstrated multiple Rossiter-mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. Controller performance was evaluated with a measure of output disturbance rejection and an input sensitivity transfer function. The results suggest that disturbances entering the cavity flow are collocated with the control input at the cavity leading edge. In that case, only tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary broadband pressure reduction is not possible with the present sensor/actuator arrangement. In the control-algorithm development, the cavity dynamics were treated as linear and time invariant (LTI) for a fixed Mach number. The experimental results lend support to that treatment.
NASA Astrophysics Data System (ADS)
Lee, Min-Hyong; Lee, Hyo-Chang; Chung, Chin-Wook
2008-12-01
Collisionless heating of low energy electrons was observed in low pressure argon rf-biased inductively coupled plasmas (ICPs) by measurement of the electron energy distribution function (EEDF). When only capacitive power (bias) was supplied, the EEDF in the discharge was a bi-Maxwellian distribution with two electron groups. It was found that the low energy electrons were heated up significantly even with a little inductive power (<20 W) even when the discharge was in E mode. Due to the low gas pressure and low temperature of low energy electrons (close to the energy of the Ramsauer minimum), the collisional heating of low energy electrons appears to be negligible. Therefore, this effective heating of the low energy electrons showed a direct experimental evidence of the collisionless heating by inductive field. The significant heating of low energy electrons in E mode indicates that collisionless heating in the skin layer is an important electron heating mechanism of low pressure ICP even when the discharge is in E mode.
Numerical Simulation and Quantitative Uncertainty Assessment of Microchannel Flow
NASA Astrophysics Data System (ADS)
Debusschere, Bert; Najm, Habib; Knio, Omar; Matta, Alain; Ghanem, Roger; Le Maitre, Olivier
2002-11-01
This study investigates the effect of uncertainty in physical model parameters on computed electrokinetic flow of proteins in a microchannel with a potassium phosphate buffer. The coupled momentum, species transport, and electrostatic field equations give a detailed representation of electroosmotic and pressure-driven flow, including sample dispersion mechanisms. The chemistry model accounts for pH-dependent protein labeling reactions as well as detailed buffer electrochemistry in a mixed finite-rate/equilibrium formulation. To quantify uncertainty, the governing equations are reformulated using a pseudo-spectral stochastic methodology, which uses polynomial chaos expansions to describe uncertain/stochastic model parameters, boundary conditions, and flow quantities. Integration of the resulting equations for the spectral mode strengths gives the evolution of all stochastic modes for all variables. Results show the spatiotemporal evolution of uncertainties in predicted quantities and highlight the dominant parameters contributing to these uncertainties during various flow phases. This work is supported by DARPA.
NASA Technical Reports Server (NTRS)
Javan, A.
1979-01-01
A tunable multiatmospheric pulsed CO2 laser with emphasis on experimental features and supporting theoretical analyses important to differential absorption lidar and Doppler lidar measurement of pollutants and wind velocities is reported. The energy deposition and the means to produce the uniform high density plasma in the multiatmospheric medium, through UV preionization of an organic seed gas is discussed. Design features of the pulsed CO2 laser are presented. The radiative processes which are operative and prevent the laser from breaking into oscillations in a large number of modes over its broad amplification bandwidth are described. The mode competition for the transient pulsed laser oscillation in a standing wave and traveling wave ring laser configuration is discussed and contrasted with the approach to steady state oscillations. The latter findings are important to transient injection locking for production of a highly stable pulsed CO2 laser output.
Acoustic buffeting by infrasound in a low vibration facility.
MacLeod, B P; Hoffman, J E; Burke, S A; Bonn, D A
2016-09-01
Measurement instruments and fabrication tools with spatial resolution on the atomic scale require facilities that mitigate the impact of vibration sources in the environment. One approach to protection from vibration in a building's foundation is to place the instrument on a massive inertia block, supported on pneumatic isolators. This opens the questions of whether or not a massive floating block is susceptible to acoustic forces, and how to mitigate the effects of any such acoustic buffeting. Here this is investigated with quantitative measurements of vibrations and sound pressure, together with finite element modeling. It is shown that a particular concern, even in a facility with multiple acoustic enclosures, is the excitation of the lowest fundamental acoustic modes of the room by infrasound in the low tens of Hz range, and the efficient coupling of the fundamental room modes to a large inertia block centered in the room.
Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Mike; Chen, Weibo; Paul, Heather L.; Jennings, Mallory A.
2011-01-01
Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in a future space suit Portable Life Support Systems (PLSS). The blower assembly includes a custom-designed motor that has significantly improved in efficiency during this development effort. The blower was tested at both nominal and buddy mode operating points and head/flow performance and power consumption were measured. The blower was operated for over 1000 hours to demonstrate safe operation in an oxygen test loop at prototypical pressures. In addition, the blower demonstrated operation with the introduction of simulated lunar dust.
Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa
NASA Astrophysics Data System (ADS)
O'Bannon, Earl; Williams, Quentin
2016-10-01
The Raman and Cr3+ and V2+ luminescence spectra of beryl and emerald have been characterized up to 15.0 and 16.4 GPa, respectively. The Raman spectra show that an E 1g symmetry mode at 138 cm-1 shifts negatively by -4.57 (±0.55) cm-1/GPa, and an extrapolation of the pressure dependence of this mode indicates that a soft-mode transition should occur near 12 GPa. Such a transition is in accord with prior theoretical results. Dramatic changes in Raman mode intensities and positions occur between 11.2 and 15.0 GPa. These changes are indicative of a phase transition that primarily involves tilting and mild distortion of the Si6O18 rings. New Raman modes are not observed in the high-pressure phase, which indicates that the local bonding environment is not altered dramatically across the transition (e.g., changes in coordination do not occur). Both sharp line and broadband luminescence are observed for both Cr3+ and V2+ in emerald under compression to 16.4 GPa. The R-lines of both Cr3+ and V2+ shift to lower energy (longer wavelength) under compression. Both R-lines of Cr3+ split at ~13.7 GPa, and the V2+ R1 slope changes at this pressure and shifts more rapidly up to ~16.4 GPa. The Cr3+ R-line splitting and FWHM show more complex behavior, but also shift in behavior at ~13.7 GPa. These changes in the pressure dependency of the Cr3+ and V2+ R-lines and the changes in R-line splitting and FWHM at ~13.7 GPa further demonstrate that a phase transition occurs at this pressure, in good agreement with our Raman results. The high-pressure phase of beryl appears to have two Al sites that become more regular under compression. Hysteresis is not observed in our Raman or luminescence spectra on decompression, suggesting that this transition is second order in nature: The occurrence of a second-order transition near this pressure is also in accord with prior theoretical results. We speculate that the high-pressure phase (beryl-II) might be a mildly modulated structure, and/or that extensive twinning occurs across this transition.
A Raman Spectroscopic Study of Kernite to 25 GPa
NASA Astrophysics Data System (ADS)
Silva, M. E.; O'Bannon, E. F., III; Williams, Q. C.
2015-12-01
A Raman spectroscopic study of kernite to 25 GPaMarcus Silva, Earl O'Bannon III, and Quentin Williams Department of Earth & Planetary Sciences, University of California Santa Cruz The Raman spectrum of kernite (Na2B4O6(OH)2·3(H2O)) has been characterized up to ~25 GPa in order to explore pressure-induced changes in a structurally novel mineral that contains mixed coordination borate groups (three- and four-fold), and both hydroxyl units and water. During compression, all of the ~30 modes monitored shift positively and monotonically until ~2.2 GPa where a few low frequency modes disappear and tetrahedral borate modes merge. The low frequency modes that disappear at ~2.2 GPa are likely associated with Na vibrations, and their disappearance suggests that dramatic changes occur in the Na sites at ~2.2 GPa. The merging of the boron bending and stretching modes at ~2.2 GPa suggests that the local symmetry of the BO4 tetrahedra changes at this pressure, and likely becomes more symmetric. The remaining modes shift positively up to ~7.4 GPa where a second notable change occurs. All but 5 modes (with initial frequencies of 150, 166, 289, 307, and 525 cm-1) disappear at ~7.4 GPa. This indicates that a second phase transition has occurred which affects both the BO3H and BO4 groups: based on the loss of modes, this transition may be associated with disordering of the crystal. These 5 modes persist and shift monotonically up to ~25 GPa. On decompression, the 5 modes shift smoothly down to ~2.0 GPa where a few new modes appear in the spectrum. When fully decompressed to room pressure, the Raman spectrum of the recovered sample is significantly different from the ambient spectrum of the initial sample. Thus, our results are suggest a phase transition occurring at 2.2 GPa with changes in the Na and tetrahedral boron sites, followed by an additional transition at 7.4 GPa that may involve disordering of the crystal. In the latter transition, at least the BO3H groups appear to be destabilized, implying that the three-fold coordination of boron groups is, in contrast to the case of carbon, unstable in crystalline phases at relatively modest pressure conditions.
NASA Astrophysics Data System (ADS)
Ben Neriah, Asaf; Paster, Amir
2017-10-01
Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode.
Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.
2001-01-01
Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.
Roth, Guy; Assor, Avi
2012-08-01
This research focuses on offspring's perceptions of their parents' usage of conditional regard and autonomy-supportive practices in response to the offspring's experiences of negative emotion. Participants were 174 college students (60% were females). As predicted from self-determination theory (Ryan & Deci, 2000), students' perceptions of parents as hinging their regard on students' expression or suppression of negative emotions predicted a maladaptive pattern of emotion regulation and intimacy capacity. In contrast, autonomy-supportive parenting predicted more adaptive emotion regulation and intimacy patterns. Also as predicted, emotion-regulation mode mediated the relations between parental practices and intimacy capacity. The innovative aspect of the study is the finding that parents who use conditional regard to encourage children's expression (sharing) of negative emotions may actually undermine their children's socioemotional capacities. Copyright © 2011 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Scattering-free optical levitation of a cavity mirror.
Guccione, G; Hosseini, M; Adlong, S; Johnsson, M T; Hope, J; Buchler, B C; Lam, P K
2013-11-01
We demonstrate the feasibility of levitating a small mirror using only radiation pressure. In our scheme, the mirror is supported by a tripod where each leg of the tripod is a Fabry-Perot cavity. The macroscopic state of the mirror is coherently coupled to the supporting cavity modes allowing coherent interrogation and manipulation of the mirror motion. The proposed scheme is an extreme example of the optical spring, where a mechanical oscillator is isolated from the environment and its mechanical frequency and macroscopic state can be manipulated solely through optical fields. We model the stability of the system and find a three-dimensional lattice of trapping points where cavity resonances allow for buildup of optical field sufficient to support the weight of the mirror. Our scheme offers a unique platform for studying quantum and classical optomechanics and can potentially be used for precision gravitational field sensing and quantum state generation.
Comparison of two modes of delivery of an exercise prescription scheme.
Foley, Louise; Maddison, Ralph; Jones, Zanta; Brown, Paul; Davys, Anne
2011-07-08
Green Prescription (GRx) referrals from health professionals have been shown to be effective for increasing the physical activity levels of patients. Little is known about which methods of delivering the programme represents the best value for money. The purpose of this paper was to compare the cost and outcomes of two modes of delivery of a GRx programme. One mode offered phone support involving monthly telephone calls over a 3-4 month period to encourage physical activity participation. A second mode offered community support via weekly face-to-face support group meetings in which physical activities were offered. The evaluation involved staff interviews, patient interviews and analysis of GRx records for the 2007 calendar year. There was a large rate of drop-out (68%) from GRx referral to registration. For those who registered, there was a clear preference for community support, and engagement of Maori and Pacific peoples was higher in this mode of delivery. The proportion (but not absolute number) of people who successfully completed their mode of delivery was higher with phone support. However, participants in community support self-reported a significantly greater number of days of exercise per week than those in phone support. The total expected cost per person for phone support was $102.07 and $108.15 for community support. A greater proportion of participants in community support were very satisfied overall with their mode of delivery. The two modes were comparable in cost and outcomes, though there was greater penetration of target ethnic populations in community support. Providing a choice of GRx mode of delivery allows participants to choose based on their personal and cultural needs.
Reduction of dissipation in a thermal engine by means of periodic changes of external constraintsa)
NASA Astrophysics Data System (ADS)
Escher, Claus; Ross, John
1985-03-01
We consider a thermal engine driven by chemical reactions, which take place in a continuous flow, stirred tank reactor fitted with a movable piston. Work can be produced by means of a heat engine coupled to the products and to an external heat bath, and by the piston. Two modes of operation are compared, each with fixed input rate of chemicals: one with periodic variation of an external constraint [mode (b)], in which we vary the external pressure, and one without such variation [mode (a)]. We derive equations for the total power output in each of the two modes. The power output in mode (b) can be larger than that of mode (a) for the same chemical throughput and for the same average value of the external pressure. For a particularly simple case it is shown that the total power output in mode (b) is larger than that in (a) if work is done by the piston. At the same time the entropy production is decreased and the efficiency is increased. The possibility of an increased power output is due to the proper control of the relative phase of the externally varied constraint and its conjugate variable, the external pressure and the volume. This control is achieved by the coupling of nonlinear kinetics to the externally varied constraint. Details of specific mechanisms and the occurrence of resonance phenomena are presented in the following article.
Stability at high performance in the MAST spherical tokamak
NASA Astrophysics Data System (ADS)
Buttery, R. J.; Akers, R.; Arends, E.; Conway, N. J.; Counsell, G. F.; Cunningham, G.; Gimblett, C. G.; Gryaznevich, M.; Hastie, R. J.; Hole, M. J.; Lehane, I.; Martin, R.; Patel, A.; Pinfold, T.; Sauter, O.; Taylor, D.; Turri, G.; Valovic, M.; Walsh, M. J.; Wilson, H. R.; MAST Team
2004-09-01
The development of reliable H-modes on MAST, together with advances in heating power and a range of high spatial resolution diagnostics, has provided a platform to enable MAST to address some of the most important issues of tokamak stability. In particular the high bgr potential of the spherical tokamak is highlighted with stable operation at bgrN ~ 5-6, bgrT ~ 16% and bgrp up to ~2. Magnetic diagnostic evaluation of the global bgr parameters is independently confirmed by kinetic profile data. Calculations indicate that the bgrN values are in the vicinity of no-wall stability limits. Studies of neoclassical tearing modes (NTMs) have been extended to explore their effects and develop avoidance strategies. Experiments have demonstrated that sawteeth play a strong role in triggering NTMs—by avoiding large sawteeth a much higher bgrN value has been reached. The significance of NTMs is confirmed, with large islands observed using the 300 point Thomson scattering diagnostic, and locking of large n = 1 modes frequently leading to disruptions, which become more rapid at low q95. The role of error fields has been explored. H-mode plasmas are also limited by edge localized modes (ELMs), with confinement degraded as the ELM frequency rises. However, in contrast to the conventional tokamak, the ELMs in high performing regimes on MAST (HIPB98Y2 ~ 1) appear to be type III in nature. Modelling using the ELITE code, which incorporates finite n corrections, identifies instability to peeling modes, consistent with a type III interpretation. It also shows considerable scope to raise pressure gradients before ballooning type modes (perhaps associated with type I ELMs) occur. The calculations show that narrow pedestals can support much stronger pressure gradients than might be expected from simple n = infin ballooning calculations. Finally sawteeth are shown to degrade confinement by ~10-15% in particular cases examined. They are observed not to remove the q = 1 surface in the cases where snakes are present—various physics models of the sawteeth are now being explored. Thus research on MAST is not only demonstrating stable operation at high performance levels and developing methods to control instabilities; it is also providing detailed tests of the stability physics and models applicable to conventional tokamaks, such as ITER.
NASA Technical Reports Server (NTRS)
Pal, S.; Kalitan, D.; Woodward, R. D.; Santoro, R. J.
2004-01-01
A uni-element liquid propellant combustion performance and instability study for liquid RP-1 and hot oxygen-rich pre-burner products was conducted, at a chamber pressure of about 1000 psi. using flush and recessed swirl injectors. High-frequency pressure transducer measurements were analyzed to yield the characteristic frequencies which were compared to expected frequencies of the chamber. Modes, which were discovered to be present within the main chamber included, the first longitudinal, detected at approximately 1950 Hz, and the second longitudinal mode at approximately 3800 Hz. An additional first longitudinal quarter wave mode was measured at a frequency of approximately 23000 Hz for the recessed swirl injector configuration. The characteristic instabilities resulting from these experiments were relatively weak averaging 0.2% to 0.3% of the chamber pressure.
NASA Astrophysics Data System (ADS)
Yusop, Hanafi M.; Ghazali, M. F.; Yusof, M. F. M.; PiRemli, M. A.; Karollah, B.; Rusman
2017-10-01
Pressure transient signal occurred due to sudden changes in fluid propagation filled in pipelines system, which is caused by rapid pressure and flow fluctuation in a system, such as closing and opening valve rapidly. The application of Hilbert-Huang Transform (HHT) as the method to analyse the pressure transient signal utilised in this research. However, this method has the difficulty in selecting the suitable IMF for the further post-processing, which is Hilbert Transform (HT). This paper proposed the implementation of Integrated Kurtosis-based Algorithm for z-filter Technique (I-kaz) to kurtosis ratio (I-kaz-Kurtosis) for that allows automatic selection of intrinsic mode function (IMF) that’s should be used. This work demonstrated the synthetic pressure transient signal generates using transmission line modelling (TLM) in order to test the effectiveness of I-kaz as the autonomous selection of intrinsic mode function (IMF). A straight fluid network was designed using TLM fixing with higher resistance at some point act as a leak and connecting to the pipe feature (junction, pipefitting or blockage). The analysis results using I-kaz-kurtosis ratio revealed that the method can be utilised as an automatic selection of intrinsic mode function (IMF) although the noise level ratio of the signal is lower. I-kaz-kurtosis ratio is recommended and advised to be implemented as automatic selection of intrinsic mode function (IMF) through HHT analysis.
Multi-muscle synergies in an unusual postural task: quick shear force production.
Robert, Thomas; Zatsiorsky, Vladimir M; Latash, Mark L
2008-05-01
We considered a hypothetical two-level hierarchy participating in the control of vertical posture. The framework of the uncontrolled manifold (UCM) hypothesis was used to explore the muscle groupings (M-modes) and multi-M-mode synergies involved in the stabilization of a time profile of the shear force in the anterior-posterior direction. Standing subjects were asked to produce pulses of shear force into a target using visual feedback while trying to minimize the shift of the center of pressure (COP). Principal component analysis applied to integrated muscle activation indices identified three M-modes. The composition of the M-modes was similar across subjects and the two directions of the shear force pulse. It differed from the composition of M-modes described in earlier studies of more natural actions associated with large COP shifts. Further, the trial-to-trial M-mode variance was partitioned into two components: one component that does not affect a particular performance variable (V(UCM)), and its orthogonal component (V(ORT)). We argued that there is a multi-M-mode synergy stabilizing this particular performance variable if V(UCM) is higher than V(ORT). Overall, we found a multi-M-mode synergy stabilizing both shear force and COP coordinate. For the shear force, this synergy was strong for the backward force pulses and nonsignificant for the forward pulses. An opposite result was found for the COP coordinate: the synergy was stronger for the forward force pulses. The study shows that M-mode composition can change in a task-specific way and that two different performance variables can be stabilized using the same set of elemental variables (M-modes). The different dependences of the ΔV indices for the shear force and COP coordinate on the force pulse direction supports applicability of the principle of superposition (separate controllers for different performance variables) to the control of different mechanical variables in postural tasks. The M-mode composition allows a natural mechanical interpretation.
X-Divertor Geometries for Deeper Detachment Without Degrading the DIII-D H-Mode
NASA Astrophysics Data System (ADS)
Covele, Brent; Kotschenreuther, M. T.; Valanju, P. M.; Mahajan, S. M.; Leonard, A. W.; Hyatt, A. W.; McLean, A. G.; Thomas, D. M.; Guo, H. Y.; Watkins, J. G.; Makowski, M. A.; Hill, D. N.
2015-11-01
Recent DIII-D experiments comparing the standard divertor (SD) and X-Divertor (XD) geometries show heat and particle flux reduction at the divertor target plate. The XD features large poloidal flux expansion, increased connection length, and poloidal field line flaring, quantified by the Divertor Index. Both SD and XD were pushed deep into detachment with increased gas puffing, until core energy confinement and pedestal pressure were substantially reduced. As expected, outboard target heat fluxes are significantly reduced in the XD compared to the SD under similar upstream plasma conditions, even at low Greenwald fraction. The high-triangularity (floor) XD cases show larger reduction in temperature, heat, and particle flux relative to the SD in all cases, while low-triangularity (shelf) XD cases show more modest reductions over the SD. Consequently, heat flux reduction and divertor detachment may be achieved in the XD with less gas puffing and higher pedestal pressures. Further causative analysis, as well as detailed modeling with SOLPS, is underway. These initial experiments suggest the XD as a promising candidate to achieve divertor heat flux control compatible with robust H-mode operation. Work supported by US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-04ER54754, and DE-FG02-04ER54742.
Chowdhury, Olie; Wedderburn, Catherine J; Duffy, Donovan; Greenough, Anne
2012-10-01
Continuous positive airway pressure (CPAP) is widely used in neonatal units both as a primary mode of respiratory support and following extubation from mechanical ventilation. In this review, the evidence for CPAP use particularly in prematurely born infants is considered. Studies comparing methods of CPAP generation have yielded conflicting results, but meta-analysis of randomised trials has demonstrated that delivering CPAP via short nasal prongs is most effective in preventing re-intubation. At present, there is insufficient evidence to establish the safety or efficacy of high flow nasal cannulae for prematurely born infants. Observational studies highlighted that early CPAP use rather than intubation and ventilation was associated with a lower incidence of bronchopulmonary dysplasia (BPD), but this has not been confirmed in three large randomised trials. Meta-analysis of the results of randomised trials has demonstrated that use of CPAP reduces extubation failure, particularly if a CPAP level of 5 cm H2O or more is used. Nasal injury can occur and is related to the length of time CPAP is used; weaning CPAP by pressure rather than by "time-cycling" reduces the weaning time and may reduce BPD. In conclusion, further studies are required to identify the optimum mode of CPAP generation and it is important that prematurely born infants are weaned from CPAP as soon as possible.
NASA Astrophysics Data System (ADS)
Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui
2018-01-01
Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.
Fuel cell system shutdown with anode pressure control
Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.
2002-01-01
A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.
Enhanced methods for operating refueling station tube-trailers to reduce refueling cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Reddi, Krishna
A method and apparatus are provided for operating a refueling station including source tube-trailers and at least one compressor to reduce refueling cost. The refueling station includes a gaseous fuel supply source including a plurality of tanks on a tube trailer coupled to a first control unit, and high pressure buffer storage having predefined capacity coupled to a second control unit and the first tanks by a pressure control valve and the first control unit, and at least one compressor. The refueling station is operated at different modes depending on a state of the refueling station at the beginning ofmore » each operational mode. The refueling system is assessed at the end of each operational mode to identify the state of the system and select a next mode of operation. The operational modes include consolidating hydrogen, or any gaseous fuel, within the tubes mounted on the trailer.« less
Multiple time scale analysis of pressure oscillations in solid rocket motors
NASA Astrophysics Data System (ADS)
Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan
2018-03-01
In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.
On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.
Nath, Saurabh; Boreyko, Jonathan B
2016-08-23
Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.
Indices of climate change based on patterns from CMIP5 models, and the range of projections
NASA Astrophysics Data System (ADS)
Watterson, I. G.
2018-05-01
Changes in temperature, precipitation, and other variables simulated by 40 current climate models for the 21st century are approximated as the product of the global mean warming and a spatial pattern of scaled changes. These fields of standardized change contain consistent features of simulated change, such as larger warming over land and increased high-latitude precipitation. However, they also differ across the ensemble, with standard deviations exceeding 0.2 for temperature over most continents, and 6% per degree for tropical precipitation. These variations are found to correlate, often strongly, with indices based on those of modes of interannual variability. Annular mode indices correlate, across the 40 models, with regional pressure changes and seasonal rainfall changes, particularly in South America and Europe. Equatorial ocean warming rates link to widespread anomalies, similarly to ENSO. A Pacific-Indian Dipole (PID) index representing the gradient in warming across the maritime continent is correlated with Australian rainfall with coefficient r of - 0.8. The component of equatorial warming orthogonal to this index, denoted EQN, has strong links to temperature and rainfall in Africa and the Americas. It is proposed that these indices and their associated patterns might be termed "modes of climate change". This is supported by an analysis of empirical orthogonal functions for the ensemble of standardized fields. Can such indices be used to help constrain projections? The relative similarity of the PID and EQN values of change, from models that have more skilful simulation of the present climate tropical pressure fields, provides a basis for this.
Dual-throat thruster thermal model
NASA Technical Reports Server (NTRS)
Ewen, R. L.; Obrien, C. J.; Matthews, L. W.
1986-01-01
The dual-throat engine is one of the dual nozzle engine concepts studied for advanced space transportation applications. It provides a thrust change and an in-flight area ratio change through the use of two concentric combustors with their throats arranged in series. Test results are presented for a dual throat thruster burning gaseous oxygen and hydrogen at primary (inner) chamber pressures from 380 to 680 psia. Heat flux profiles were obtained from calorimetric cooling channels in the inner nozzle, outer or secondary chamber and the tip of the inner nozzle. Data were obtained for two nozzle spacings over a chamber pressure ratio (secondary/primary) range of 0.45 to 0.83 with both chambers firing (Mode I). Fluxes near the end of the inner nozzle were significantly higher than in Mode II when only the inner chamber was fired, due to the flow separation and recirculation caused by the back pressure imposed by the secondary chamber. As the pressure ratio increased, these heat fluxes increased and the region of high heat flux relative to Mode II extended farther upstream. The use of the gaseous hydrogen bleed flow in the secondary chamber to control heat fluxes in the primary plume attachment region was investigated in Mode II testing. A thermal model of a dual throat thruster was developed and upgraded using the experimental data.
Control of External Kink Instability
NASA Astrophysics Data System (ADS)
Navratil, Gerald
2004-11-01
A fundamental pressure and current limiting phenomenon in magnetically confined plasmas for fusion energy is the long wavelength ideal-MHD kink mode. These modes have been extensively studied in tokamak and reversed field pinch (RFP) devices. They are characterized by significant amplitude on the boundary of the confined plasma and can therefore be controlled by manipulation of the external boundary conditions. In the past ten years, the theoretically predicted stabilizing effect of a nearby conducting wall has been documented in experiments, which opens the possibility of a significant increase in maximum stable plasma pressure. While these modes are predicted to remain unstable when the stabilizing wall is resistive, their growth rates are greatly reduced from the hydrodynamic time scale to the time scale of magnetic diffusion through the resistive wall. These resistive wall slowed kink modes have been identified as limiting phenomena in tokamak (DIII-D, PBX-M, HBT-EP, JT-60U, JET, NSTX) and RFP (HBTX, Extrap, T2R) devices. The theoretical prediction of stabilization to nearly the ideal wall pressure limit by toroidal plasma rotation and/or active feedback control using coils has recently been realized experimentally. Sustained, stable operation at double the no-wall pressure limit has been achieved. Discovery of the phenomenon of resonant field amplification by marginally stable kink modes and its role in the momentum balance of rotationally stabilized plasmas has emerged as a key feature. A theoretical framework, based on an extension of the very successful treatment of the n=0 axisymmetric mode developed in the early 1990's, to understand the stabilization mechanisms and model the performance of active feedback control systems is now established. This allows design of kink control systems for burning plasma experiments like ITER.
Supporting Multiple Cognitive Processing Styles Using Tailored Support Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuan Q. Tran; Karen M. Feigh; Amy R. Pritchett
According to theories of cognitive processing style or cognitive control mode, human performance is more effective when an individual’s cognitive state (e.g., intuition/scramble vs. deliberate/strategic) matches his/her ecological constraints or context (e.g., utilize intuition to strive for a "good-enough" response instead of deliberating for the "best" response under high time pressure). Ill-mapping between cognitive state and ecological constraints are believed to lead to degraded task performance. Consequently, incorporating support systems which are designed to specifically address multiple cognitive and functional states e.g., high workload, stress, boredom, and initiate appropriate mitigation strategies (e.g., reduce information load) is essential to reduce plantmore » risk. Utilizing the concept of Cognitive Control Models, this paper will discuss the importance of tailoring support systems to match an operator's cognitive state, and will further discuss the importance of these ecological constraints in selecting and implementing mitigation strategies for safe and effective system performance. An example from the nuclear power plant industry illustrating how a support system might be tailored to support different cognitive states is included.« less
Pressure-induced amorphization of La{sub 1/3}TaO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noked, O., E-mail: noked@bgu.ac.il; Physics Department, Ben-Gurion University, Beer Sheva 84105; Melchior, A.
2013-06-15
La{sub 1/3}TaO{sub 3}, an A-site cation deficient perovskite, has been studied under pressure by synchrotron X-ray powder diffraction and Raman spectroscopy. It undergoes irreversible pressure induced amorphization at P=18.5 GPa. An almost linear unit cell volume decrease vs. pressure is observed from ambient pressure up to the phase transition. The Raman spectroscopy also shows amorphization at the same pressure, with positive shifts of all modes as a function of pressure. The pressure dependence of the E{sub g} and A{sub 1g} Raman modes arising from the octahedral oxygen network is discussed. - Graphical abstract: La{sub 1/3}Tao{sub 3} exhibits linear pressure–volume relationmore » until irreversible pressure induced amorphization at 18.5 Gpa. - Highlights: • La{sub 1/3}TaO{sub 3} has been studied under pressure by synchrotron XRD and Raman spectroscopy. • La{sub 1/3}TaO{sub 3} undergoes irreversible pressure induced amorphization around 18.5 GPa. • The transition is manifested in both XRD and Raman measurements. • A linear P–V relation is observed from ambient pressure up to the phase transition.« less
Normal Mode Analysis on the Relaxation of AN Excited Nitromethane Molecule in Argon Bath
NASA Astrophysics Data System (ADS)
Rivera-Rivera, Luis A.; Wagner, Albert F.
2017-06-01
In our previous work [Rivera-Rivera et al. J. Chem. Phys. 142, 014303 (2015).] classical molecular dynamics simulations followed, in an Ar bath, the relaxation of nitromethane (CH_3NO_2) instantaneously excited by statistically distributing 50 kcal/mol among all its internal degrees of freedom. The 300 K Ar bath was at pressures of 10 to 400 atm. Both rotational and vibrational energies exhibited multi-exponential decay. This study explores mode-specific mechanisms at work in the decay process. With the separation of rotation and vibration developed by Rhee and Kim [J. Chem. Phys. 107, 1394 (1997).], one can show that the vibrational kinetic energy decomposes only into vibrational normal modes while the rotational and Coriolis energies decompose into both vibrational and rotational normal modes. Then the saved CH_3NO_2 positions and momenta can be converted into mode-specific energies whose decay over 1000 ps can be monitored. The results identify vibrational and rotational modes that promote/resist energy lost and drive multi-exponential behavior. In addition to mode-specificity, the results show disruption of IVR with increasing pressure.
The radial-azimuthal stability of accretion disks - Gas pressure contributions
NASA Technical Reports Server (NTRS)
Mckee, M. R.
1991-01-01
A radial-azimuthal stability analysis of a thin, alpha disk accretion flow is presented. The proportion of radiation pressure, Pr, of the unperturbed flow is allowed to vary according to the parameter beta = Pr/P, where P is the total pressure. As is the case for a purely radial analysis, the disk is stable for beta equal to or less than 0.6. However, the coupling of radial and azimuthal perturbations eliminates the viscous instability for such nonradial modes for all values of beta. The group velocity of the retrograde thermal mode is calculated as a function of beta.
Gorczyca, Agnes; Moizan, Virginie; Chizallet, Celine; Proux, Olivier; Del Net, William; Lahera, Eric; Hazemann, Jean-Louis; Raybaud, Pascal; Joly, Yves
2014-11-10
Platinum nanoclusters highly dispersed on γ-alumina are widely used as heterogeneous catalysts. To understand the chemical interplay between the Pt nanoparticles, the support, and the reductive atmosphere, we performed X-ray absorption near edge structure (XANES) in situ experiments recorded in high energy resolution fluorescence detection (HERFD) mode. Spectra are assigned by comparison with simulated XANES spectra on models obtained by molecular dynamics (DFT-MD). We propose platinum cluster morphologies and quantify the hydrogen coverages compatible with XANES spectra recorded at variable hydrogen pressures and temperatures. Using cutting-edge methodologies to assign XANES spectra, this work gives unequalled atomic insights into the characterization of supported nanoclusters. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying.
Ganguly, Arnab; Nail, Steven L; Alexeenko, Alina
2013-05-01
The study is aimed at quantifying the relative contribution of key heat transfer modes in lyophilization. Measurements of vial heat transfer rates in a laboratory-scale freeze-dryer were performed using pure water, which was partially sublimed under various conditions. The separation distance between the shelf and the vial was systematically varied, and sublimation rates were determined gravimetrically. The heat transfer rates were observed to be independent of separation distance between the vial and the shelf and linearly dependent on pressure in the free molecular flow limit, realized at low pressures (<50 mTorr). However, under higher pressures (>120 mTorr), heat transfer rates were independent of pressure and inversely proportional to separation distance. Previous heat transfer studies in conventional freeze-drying cycles have attributed a dominant portion of the total heat transfer to radiation, the rest to conduction, whereas convection has been found to be insignificant. Although the measurements reported here confirm the significance of the radiative and gas conduction components, the convective component has been found to be comparable to the gas conduction contribution at pressures greater than 100 mTorr. The current investigation supports the conclusion that the convective component of the heat transfer cannot be ignored in typical laboratory-scale freeze-drying conditions. Copyright © 2013 Wiley Periodicals, Inc.
Scales, Jeffrey A; Butler, Marguerite A
2016-01-01
Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
NASA Technical Reports Server (NTRS)
Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.
1996-01-01
In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eun J.; Oh, Sang Youp; Kim, Ho Y.
2010-11-15
Because of thermal fluid-property dependence, atomization stability (or flow regime) can change even at fixed operating conditions when subject to temperature change. Particularly at low temperatures, fuel's high viscosity can prevent a pressure-swirl (or simplex) atomizer from sustaining a centrifugal-driven air core within the fuel injector. During disruption of the air core inside an injector, spray characteristics outside the nozzle reflect a highly unstable, nonlinear mode where air core length, Sauter mean diameter (SMD), cone angle, and discharge coefficient variability. To better understand injector performance, these characteristics of the pressure-swirl atomizer were experimentally investigated and data were correlated to Reynoldsmore » numbers (Re). Using a transparent acrylic nozzle, the air core length, SMD, cone angle, and discharge coefficient are observed as a function of Re. The critical Reynolds numbers that distinguish the transition from unstable mode to transitional mode and eventually to a stable mode are reported. The working fluids are diesel and a kerosene-based fuel, referred to as bunker-A. (author)« less
NASA Astrophysics Data System (ADS)
Lüttgens, U.; Dülcks, Th.; Röllgen, F. W.
1992-04-01
The ion formation in both electrohydrodynamic (EH) and electrospray (ES) mass spectrometry (MS) is based on the electrohydrodynamic disintegration of sample solutions which are passed through a capillary biased at high potential. Vacuum is applied in EH and atmospheric pressure in ES MS. For glycerol applied as solvent in EH MS optical studies of its disintegration behavior revealed a change from axial spray modes to a rim emission mode in vacuum and a change from axial spray modes to a droplet ejection mode at atmospheric pressure conditions with increasing potential. EH MS investigations of the ion emission from only one or a few emission sites at the rim of the capillary showed a pulsed ion emission whose frequency increased with applied potential. The pulsed ion emission is attributed to an imbalance between the supply and loss of liquid at an emission site. By lowering the surface tension of glycerol with dodecyl sulfate sodium salt an increase of mass spectral ion intensity by more than one order of magnitude could be observed.
Condensation model for the ESBWR passive condensers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revankar, S. T.; Zhou, W.; Wolf, B.
2012-07-01
In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data frommore » separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)« less
Magnetic evaluation of hydrogen pressures changes on MHD fluctuations in IR-T1 tokamak plasma
NASA Astrophysics Data System (ADS)
Alipour, Ramin; Ghanbari, Mohamad R.
2018-04-01
Identification of tokamak plasma parameters and investigation on the effects of each parameter on the plasma characteristics is important for the better understanding of magnetohydrodynamic (MHD) activities in the tokamak plasma. The effect of different hydrogen pressures of 1.9, 2.5 and 2.9 Torr on MHD fluctuations of the IR-T1 tokamak plasma was investigated by using of 12 Mirnov coils, singular value decomposition and wavelet analysis. The parameters such as plasma current, loop voltage, power spectrum density, energy percent of poloidal modes, dominant spatial structures and temporal structures of poloidal modes at different plasma pressures are plotted. The results indicate that the MHD activities at the pressure of 2.5 Torr are less than them at other pressures. It also has been shown that in the stable area of plasma and at the pressure of 2.5 Torr, the magnetic force and the force of plasma pressure are in balance with each other and the MHD activities are at their lowest level.
Energetic-particle-induced geodesic acoustic mode.
Fu, G Y
2008-10-31
A new energetic particle-induced geodesic acoustic mode (EGAM) is shown to exist. The mode frequency and mode structure are determined nonperturbatively by energetic particle kinetic effects. In particular the EGAM frequency is found to be substantially lower than the standard GAM frequency. The radial mode width is determined by the energetic particle drift orbit width and can be fairly large for high energetic particle pressure and large safety factor. These results are consistent with the recent experimental observation of the beam-driven n=0 mode in DIII-D.
Origin of negative thermal expansion in Zn2GeO4 revealed by high pressure study
NASA Astrophysics Data System (ADS)
Cheng, Xuerui; Yuan, Jie; Zhu, Xiang; Yang, Kun; Liu, Miao; Qi, Zeming
2018-03-01
Zn2GeO4, as an open-framework structure compound, exhibits negative thermal expansion (NTE) below room temperature. In this work, we investigated the structural stability and phonon modes employing the x-ray diffraction and Raman spectroscopy under high pressure up to 23.0 GPa within a diamond anvil cell, and we observed that a pressure-induced irreversible amorphization took place around 10.1 GPa. Bulk modulus, pressure coefficients, and Grüneisen parameters were measured for the initial rhombohedral structure. Several low-frequency rigid-unit modes are found to have negative Grüneisen parameter, which accounts for the primary part of NTE in Zn2GeO4. These results further confirm the hypothesis that the pressure-induced amorphization and the negative thermal expansion are correlated phenomena.
Radial breathing mode of carbon nanotubes subjected to axial pressure
2011-01-01
In this paper, a theoretical analysis of the radial breathing mode (RBM) of carbon nanotubes (CNTs) subjected to axial pressure is presented based on an elastic continuum model. Single-walled carbon nanotubes (SWCNTs) are described as an individual elastic shell and double-walled carbon nanotubes (DWCNTs) are considered to be two shells coupled through the van der Waals force. The effects of axial pressure, wave numbers and nanotube diameter on the RBM frequency are investigated in detail. The validity of these theoretical results is confirmed through the comparison of the experiment, calculation and simulation. Our results show that the RBM frequency is linearly dependent on the axial pressure and is affected by the wave numbers. We concluded that RBM frequency can be used to characterize the axial pressure acting on both ends of a CNT. PMID:21834961
The Impact of Social Pressure and Monetary Incentive on Cognitive Control.
Ličen, Mina; Hartmann, Frank; Repovš, Grega; Slapničar, Sergeja
2016-01-01
We compare the effects of two prominent organizational control mechanisms-social pressure and monetary incentive-on cognitive control. Cognitive control underlies the human ability to regulate thoughts and actions in the pursuit of behavioral goals. Previous studies show that monetary incentives can contribute to goal-oriented behavior by activating proactive control. There is, however, much less evidence of how social pressure affects cognitive control and task performance. In a within-subject experimental design, we tested 47 subjects performing the AX-CPT task to compare the activation of cognitive control modes under social pressure and monetary incentive beyond mere instructions to perform better. Our results indicate that instructing participants to improve their performance on its own leads to a significant shift from a reactive to a proactive control mode and that both social pressure and monetary incentive further enhance performance.
High-sensitivity pressure sensor based on fiber Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Wu, Yue; Xu, Yao; Yang, Yuguang; Jin, Wenxing; Jiang, Youchao; Shen, Ya; Jian, Shuisheng
2017-10-01
In this paper we propose and experimentally demonstrate an optical fiber structure sensor based on a Mach-Zehnder interferometer for pressure measurement. The fiber sensor is composed of a single-mode-no-core-single-mode structure, a section of capillary pure silica tube and refractive index matching fluid (RIMF). As the pressure decreases, the sealed air in the tube expands and the liquid level of the RIMF increases, which causes a wavelength shift of the interferometer. The measurement of the pressure variation can thus be achieved by monitoring the wavelength shift. The experimental results agree well with the numerical simulation, and a maximum pressure sensitivity of 266.6 nm Mpa-1 is achieved experimentally. Furthermore, the proposed fiber sensor has the potential to obtain higher sensitivity by enlarging the length of the air cavity.
Pressure effect on hydrogen tunneling and vibrational spectrum in α-Mn
Kolesnikov, Alexander I; Podlesnyak, Andrey A; Sadykov, Ravil A.; ...
2016-10-03
Here in this paper, the pressure effect on the tunneling mode and vibrational spectra of hydrogen in α-MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α-Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α-Mn at 100 kbar, when the estimatedmore » tunneling splitting of the hydrogen ground state exceeds the barrier height.« less
Pressure effect on hydrogen tunneling and vibrational spectrum in α-Mn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesnikov, Alexander I; Podlesnyak, Andrey A; Sadykov, Ravil A.
Here in this paper, the pressure effect on the tunneling mode and vibrational spectra of hydrogen in α-MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α-Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α-Mn at 100 kbar, when the estimatedmore » tunneling splitting of the hydrogen ground state exceeds the barrier height.« less
Effects of magnetic islands on drift wave instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, P., E-mail: jiangp@pku.edu.cn; Department of Physics and Astronomy, University of California, Irvine, California 92697; Lin, Z., E-mail: zhihongl@uci.edu
2014-12-15
Magnetic islands have been implemented in the gyrokinetic toroidal code to study the effects of the islands on microturbulence. The pressure profile flattening is verified in the simulation with the islands. Simulations of ion temperature gradient instability find that different toroidal modes are linearly coupled together and that toroidal spectra become broader when the island width increases. The real frequencies and growth rates of different toroidal modes approach each other with the averaged value independent of the island width. The linear mode structures are enhanced at the island separatrices and weakened at the island centers, consistent with the flattening ofmore » the pressure profile inside the islands.« less
Evidence of rayleigh-hertz surface waves and shear stiffness anomaly in granular media.
Bonneau, L; Andreotti, B; Clément, E
2008-09-12
Using the nonlinear dependence of sound propagation speed with pressure, we evidence the anomalous elastic softness of a granular packing in the vicinity of the jamming transition. Under gravity and close to a free surface, the acoustic propagation is only possible through surface modes guided by the stiffness gradient. These Rayleigh-Hertz modes are evidenced in a controlled laboratory experiment. The shape and the dispersion relation of both transverse and sagittal modes are compared to the prediction of nonlinear elasticity including finite size effects. These results allow one to access the elastic properties of the packing under vanishing confining pressure.
Joseph, P F
2017-10-01
This paper describes a measurement technique that allows the modal amplitude distribution to be determined in ducts with mean flow and reflections. The method is based only on measurements of the acoustic pressure two-point coherence at the duct wall. The technique is primarily applicable to broadband sound fields in the high frequency limit and whose mode amplitudes are mutually incoherent. The central assumption underlying the technique is that the relative mode amplitude distribution is independent of frequency. The two-microphone method proposed in this paper is also used to determine the transmitted sound power and far field pressure directivity.
Multi-species detection using multi-mode absorption spectroscopy (MUMAS)
NASA Astrophysics Data System (ADS)
Northern, J. H.; Thompson, A. W. J.; Hamilton, M. L.; Ewart, P.
2013-06-01
The detection of multiple species using a single laser and single detector employing multi-mode absorption spectroscopy (MUMAS) is reported. An in-house constructed, diode-pumped, Er:Yb:glass micro-laser operating at 1,565 nm with 10 modes separated by 18 GHz was used to record MUMAS signals in a gas mixture containing C2H2, N2O and CO. The components of the mixture were detected simultaneously by identifying multiple transitions in each of the species. By using temperature- and pressure-dependent modelled spectral fits to the data, partial pressures of each species in the mixture were determined with an uncertainty of ±2 %.
Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Scott I.; Lee, Bok Jik; Shepherd, Joseph E.
In this paper, the propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane–oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half ofmore » the Chapman–Jouguet detonation velocity (D CJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3–2.0 m or 317–488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 D CJ and 0.95 D CJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas demonstrated trajectories that varied from stable to limit cycles to aperiodic motion with decreasing initial pressure. Finally, the results indicate that galloping detonation is a persistent phenomenon at long tube lengths.« less
Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen
Jackson, Scott I.; Lee, Bok Jik; Shepherd, Joseph E.
2016-03-24
In this paper, the propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane–oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half ofmore » the Chapman–Jouguet detonation velocity (D CJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3–2.0 m or 317–488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 D CJ and 0.95 D CJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas demonstrated trajectories that varied from stable to limit cycles to aperiodic motion with decreasing initial pressure. Finally, the results indicate that galloping detonation is a persistent phenomenon at long tube lengths.« less
Measurements and Computations of Second-Mode Instability Waves in Three Hypersonic Wind Tunnels
NASA Technical Reports Server (NTRS)
Berridge, Dennis C.; Casper, Katya M.; Rufer, Shann J.; Alba, Christopher R.; Lewis, Daniel R.; Beresh, Steven J.; Schneider, Steven P.
2010-01-01
High-frequency pressure-fluctuation measurements were made in AEDC Tunnel 9 at Mach 10 and the NASA Langley 15-Inch Mach 6 and 31-Inch Mach 10 tunnels. Measurements were made on a 7deg-half-angle cone model. Pitot measurements of freestream pressure fluctuations were also made in Tunnel 9 and the Langley Mach-6 tunnel. For the first time, second-mode waves were measured in all of these tunnels, using 1-MHz-response pressure sensors. In Tunnel 9, second-mode waves could be seen in power spectra computed from records as short as 80 micro-s. The second-mode wave amplitudes were observed to saturate and then begin to decrease in the Langley tunnels, indicating wave breakdown. Breakdown was estimated to occur near N approx. equals 5 in the Langley Mach-10 tunnel. The unit-Reynolds-number variations in the data from Tunnel 9 were too large to see the same processes. In Tunnel 9, the measured transition locations were found to be at N = 4.5 using thermocouples, and N = 5.3 using 50-kHz-response pressure sensors. What appears to be a very long transitional region was observed at a unit Reynolds number of 13.5 million per meter in Tunnel 9. These results were consistent with the high-frequency pressure fluctuation measurements. High-frequency pressure fluctuation measurements indicated that transition did occur in the Langley Mach-6 tunnel, but the location of transition was not precisely determined. Unit Reynolds numbers in the Langley Mach-10 tunnel were too low to observe transition. More analysis of this data set is expected in the future.
Ben Neriah, Asaf; Paster, Amir
2017-10-01
Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode. Copyright © 2017 Elsevier B.V. All rights reserved.
The JCMT Gould Belt Survey: first results from SCUBA-2 observations of the Cepheus Flare region
NASA Astrophysics Data System (ADS)
Pattle, K.; Ward-Thompson, D.; Kirk, J. M.; Di Francesco, J.; Kirk, H.; Mottram, J. C.; Keown, J.; Buckle, J.; Beaulieu, S. F.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Hatchell, J.; Jenness, T.; Johnstone, D.; Nutter, D.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Walker-Smith, S.; Hogerheijde, M. R.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coudé, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Rumble, D.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.
2017-02-01
We present observations of the Cepheus Flare obtained as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Legacy Survey (GBLS) with the SCUBA-2 instrument. We produce a catalogue of sources found by SCUBA-2, and separate these into starless cores and protostars. We determine masses and densities for each of our sources, using source temperatures determined by the Herschel Gould Belt Survey. We compare the properties of starless cores in four different molecular clouds: L1147/58, L1172/74, L1251 and L1228. We find that the core mass functions for each region typically show shallower-than-Salpeter behaviour. We find that L1147/58 and L1228 have a high ratio of starless cores to Class II protostars, while L1251 and L1174 have a low ratio, consistent with the latter regions being more active sites of current star formation, while the former are forming stars less actively. We determine that if modelled as thermally supported Bonnor-Ebert spheres, most of our cores have stable configurations accessible to them. We estimate the external pressures on our cores using archival 13CO velocity dispersion measurements and find that our cores are typically pressure confined, rather than gravitationally bound. We perform a virial analysis on our cores, and find that they typically cannot be supported against collapse by internal thermal energy alone, due primarily to the measured external pressures. This suggests that the dominant mode of internal support in starless cores in the Cepheus Flare is either non-thermal motions or internal magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhanlong; College of Physics, Jilin University, Changchun 130012; Shan Xiaoning
2012-07-09
The current paper investigates stimulated Raman scattering (SRS) when laser-induced plasma is formed in heavy water by focusing an intense pulsed 532 nm Nd:YAG laser beam at room temperature. An unexpected low-frequency SRS line attributed to the lattice translational modes of ice-VII (D{sub 2}O) is observed. The pressure of the plasma shockwave is estimated using low-frequency SRS line shift.
NASA Technical Reports Server (NTRS)
Beeson, Harold D.; Davis, Dennis D.; Ross, William L., Sr.; Tapphorn, Ralph M.
2002-01-01
This document represents efforts accomplished at the NASA Johnson Space Center White Sands Test Facility (WSTF) in support of the Enhanced Technology for Composite Overwrapped Pressure Vessels (COPV) Program, a joint research and technology effort among the U.S. Air Force, NASA, and the Aerospace Corporation. WSTF performed testing for several facets of the program. Testing that contributed to the Task 3.0 COPV database extension objective included baseline structural strength, failure mode and safe-life, impact damage tolerance, sustained load/impact effect, and materials compatibility. WSTF was also responsible for establishing impact protection and control requirements under Task 8.0 of the program. This included developing a methodology for establishing an impact control plan. Seven test reports detail the work done at WSTF. As such, this document contributes to the database of information regarding COPV behavior that will ensure performance benefits and safety are maintained throughout vessel service life.
Parallel closure theory for toroidally confined plasmas
NASA Astrophysics Data System (ADS)
Ji, Jeong-Young; Held, Eric D.
2017-10-01
We solve a system of general moment equations to obtain parallel closures for electrons and ions in an axisymmetric toroidal magnetic field. Magnetic field gradient terms are kept and treated using the Fourier series method. Assuming lowest order density (pressure) and temperature to be flux labels, the parallel heat flow, friction, and viscosity are expressed in terms of radial gradients of the lowest-order temperature and pressure, parallel gradients of temperature and parallel flow, and the relative electron-ion parallel flow velocity. Convergence of closure quantities is demonstrated as the number of moments and Fourier modes are increased. Properties of the moment equations in the collisionless limit are also discussed. Combining closures with fluid equations parallel mass flow and electric current are also obtained. Work in collaboration with the PSI Center and supported by the U.S. DOE under Grant Nos. DE-SC0014033, DE-SC0016256, and DE-FG02-04ER54746.
Mao, Yiyin; Li, Junwei; Cao, Wei; Ying, Yulong; Sun, Luwei; Peng, Xinsheng
2014-03-26
The scalable fabrication of continuous and defect-free metal-organic framework (MOF) films on the surface of polymeric hollow fibers, departing from ceramic supported or dense composite membranes, is a huge challenge. The critical way is to reduce the growth temperature of MOFs in aqueous or ethanol solvents. In the present work, a pressure-assisted room temperature growth strategy was carried out to fabricate continuous and well-intergrown HKUST-1 films on a polymer hollow fiber by using solid copper hydroxide nanostrands as the copper source within 40 min. These HKUST-1 films/polyvinylidenefluoride (PVDF) hollow fiber composite membranes exhibit good separation performance for binary gases with selectivity 116% higher than Knudsen values via both inside-out and outside-in modes. This provides a new way to enable for scale-up preparation of HKUST-1/polymer hollow fiber membranes, due to its superior economic and ecological advantages.
A generalized theory for eccentric and misalignment effects in high-pressure annular seals
NASA Technical Reports Server (NTRS)
Chen, W. C.; Jackson, E. D.
1986-01-01
High-pressure annular seal leakage and dynamic coefficients vary with eccentricity and misalignment. Recent seal leakage data with both concentric and fully eccentric alignments support the seal leakage model with surface roughness and eccentricity effects included. In this paper, the seal dynamic coefficient calculation has been generalized and allows direct calculation of the seal dynamic coefficients at any circumferential location. The generalized solution agrees with the results obtained by using the calculated values of an earlier paper and performing a coordinate transformation. The analysis results coincide with the measured data in showing that the stiffness and damping matrices of seal coefficients are not skew symmetric, and the main diagonal seal coefficients are not equal. The measured direct stiffnesses were found higher than predicted by the concentric seal theory, but this may be explained by the presence of eccentricity in the test operating mode.
Debonding Stress Concentrations in a Pressurized Lobed Sandwich-Walled Generic Cryogenic Tank
NASA Technical Reports Server (NTRS)
Ko, William L.
2004-01-01
A finite-element stress analysis has been conducted on a lobed composite sandwich tank subjected to internal pressure and cryogenic cooling. The lobed geometry consists of two obtuse circular walls joined together with a common flat wall. Under internal pressure and cryogenic cooling, this type of lobed tank wall will experience open-mode (a process in which the honeycomb is stretched in the depth direction) and shear stress concentrations at the junctures where curved wall changes into flat wall (known as a curve-flat juncture). Open-mode and shear stress concentrations occur in the honeycomb core at the curve-flat junctures and could cause debonding failure. The levels of contributions from internal pressure and temperature loading to the open-mode and shear debonding failure are compared. The lobed fuel tank with honeycomb sandwich walls has been found to be a structurally unsound geometry because of very low debonding failure strengths. The debonding failure problem could be eliminated if the honeycomb core at the curve-flat juncture is replaced with a solid core.
NASA Astrophysics Data System (ADS)
Kim, K.; Roh, J.
2009-12-01
The first three principal modes of wintertime surface temperature variability in Seoul, Korea (126.59°E, 37.33°N) are extracted from the 1979-2008 observed records via cyclostationary EOF (CSEOF) analysis. Then, physically consistent patterns of several key physical variables over East Asia (97.5°-152.5°E×22.5°-72.5°N) are derived from the NCEP/NCAR reanalysis data in order to understand the physical and dynamical mechanisms of the derived CSEOF modes. The first mode represents the seasonal cycle, the principle physical mechanism of which is associated with the continent/ocean sea level pressure contrast. The second mode mainly describes overall wintertime warming or cooling. The third mode depicts subseasonal fluctuations of surface temperature. Sea level pressure anomalies to the west of Korea (eastern China) and those with an opposite sign to the east of Korea (Japan) are a major physical mechanism both for the second mode and the third mode. These sea level pressure anomalies with opposite signs alter the amount of warm air to the south of Korea, which, in turn, varies the surface temperature in Korea. The PC time series of the seasonal cycle is significantly correlated with the East Asian winter monsoon index and exhibits a conspicuous downward trend. The PC time series of the second mode exhibits a positive trend. These trends imply that the wintertime surface temperature in Korea has increased and the seasonal cycle has weakened gradually in the past 30 years; the sign of greenhouse warming is clear in both PC time series. The seasonal cycle has decreased since the impact of warming as reflected in the sea level pressure change is much stronger over the continent than over the ocean; greater sea level pressure decrease over the continent than over the ocean reduces the wintertime sea level pressure contrast between the continent and the ocean thereby weakening the seasonal cycle. The ~7-day oscillations, also called the three-cold-day/four-warm-day events, are clearly seen in the second and the third CSEOF modes. The ~7-day oscillations are a major component of high-frequency variability in much of the analysis domain and are a manifestation of Rossby waves. Rossby waves aloft result in the concerted variation of physical variables in the atmospheric column; the nature of this response is of nearly barotropic and is clearly felt at the surface. Due to the stronger mean zonal wind, the disturbances by Rossby waves propagate eastward at ~8-12 m/sec; the passing of Rossby waves with alternating signs produces the ~7-day temperature oscillations in Korea. Thus, it is the speed of eastward propagation of Rossby waves not the phase speed of Rossby waves that determines the period of oscillations.
NASA Astrophysics Data System (ADS)
Huo, Xinming; Tang, Fei; Zhang, Xiaohua; Chen, Jin; Zhang, Yan; Guo, Cheng'an; Wang, Xiaohao
2016-10-01
The rectilinear ion trap (RIT) has gradually become one of the preferred mass analyzers for portable mass spectrometers because of its simple configuration. In order to enhance the performance, including sensitivity, quantitation capability, throughput, and resolution, a novel RIT mass spectrometer with dual pressure chambers was designed and characterized. The studied system constituted a quadrupole linear ion trap (QLIT) in the first chamber and a RIT in the second chamber. Two control modes are hereby proposed: Storage Quadrupole Linear Ion Trap-Rectilinear Ion Trap (SQLIT-RIT) mode, in which the QLIT was used at high pressure for ion storage and isolation, and the RIT was used for analysis; and Analysis Quadrupole Linear Ion Trap-Rectilinear Ion Trap (AQLIT-RIT) mode, in which the QLIT was used for ion storage and cooling. Subsequently, synchronous scanning and analysis were carried out by QLIT and RIT. In SQLIT-RIT mode, signal intensity was improved by a factor of 30; the limit of quantitation was reduced more than tenfold to 50 ng mL-1, and an optimal duty cycle of 96.4% was achieved. In AQLIT-RIT mode, the number of ions coexisting in the RIT was reduced, which weakened the space-charge effect and reduced the mass shift. Furthermore, the mass resolution was enhanced by a factor of 3. The results indicate that the novel control modes achieve satisfactory performance without adding any system complexity, which provides a viable pathway to guarantee good analytical performance in miniaturization of the mass spectrometer.
Leu, Mathilde; Marciniak, Alice; Chamberland, Julien; Pouliot, Yves; Bazinet, Laurent; Doyen, Alain
2017-09-01
Ultrafiltration (UF) is largely used in the dairy industry to generate milk and whey protein concentrate for standardization of milk or production of dairy ingredients. Recently, it was demonstrated that high hydrostatic pressure (HHP) extended the shelf life of milk and improved rennet coagulation and cheese yield. Pressurization also modified casein micelle size distribution and promoted aggregation of whey proteins. These changes are likely to affect UF performance. Consequently, this study determined the effect of skim milk pressurization (300 and 600 MPa, 5 min) on UF performance in terms of permeate flux decline and fouling. The effect of HHP on milk proteins was first studied and UF was performed in total recycle mode at different transmembrane pressures to determine optimal UF operational parameters and to evaluate the effect of pressurization on critical and limiting fluxes. Ultrafiltration was also performed in concentration mode at a transmembrane pressure of 345 kPa for 130 or 140 min to evaluate the decline of permeate flux and to determine fouling resistances. It was observed that average casein micelle size decreased by 32 and 38%, whereas β-lactoglobulin denaturation reached 30 and 70% at 300 and 600 MPa, respectively. These results were directly related to UF performance because initial permeate fluxes in total recycle mode decreased by 25% at 300 and 600 MPa compared with nonpressurized milk, critical flux, and limiting flux, which were lower during UF of milk treated with HHP. During UF in concentration mode, initial permeate fluxes were 30% lower at 300 and 600 MPa compared with the control, but the total flux decline was higher for nonpressurized milk (62%) compared with pressure-treated milk (30%). Fouling resistances were similar, whatever the treatment, except at 600 MPa where irreversible fouling was higher. Characterization of the fouling layer showed that caseins and β-lactoglobulin were mainly involved in membrane fouling after UF of pressure-treated milk. Our results demonstrate that HHP treatment of skim milk drastically decreased UF performance. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meletov, K. P., E-mail: mele@issp.ac.ru; Konarev, D. V.; Tolstikova, A. O.
2015-06-15
The Raman spectra of crystals of C{sub 60} fullerene-cadmium diethyldithiocarbamate molecular donor-acceptor complexes (Cd(dedtc){sub 2}){sub 2} · C{sub 60} were measured at pressures of up to 17 GPa, and the crystal lattice parameters of these complexes were determined at pressures of up to 6 GPa. An increase in pressure up to ∼2 GPa leads to changes in the Raman spectra, which are manifested by splitting of the intramolecular H{sub g}(1)-H{sub g}(8) phonon modes and by softening of the A{sub g}(2) mode of the C{sub 60} molecule. A further increase in pressure up to 17 GPa does not induce significant newmore » changes to the Raman spectra, while a decrease is accompanied by the reverse transformation at a pressure of about 2 GPa. The pressure dependence of the lattice parameters also exhibits a reversible feature at 2 GPa related to a jumplike decrease in compressibility. All these data are indicative of a phase transition in the vicinity of 2 GPa related to the formation of covalent bonds between C{sub 60} molecules and, probably, the appearance of C{sub 120} dimers in fullerene layers. It was also found that, in the pressure interval from 2 to 6.3 GPa, the Raman spectra of complexes exhibit photoinduced transformations under prolonged exposure to laser radiation with a wavelength of λ = 532 nm and power density up to 5000 W/cm{sup 2}. These changes are manifested by splitting and softening of the A{sub g}(2) mode and resemble analogous changes accompanying the photopolymerization of C{sub 60} fullerene. The intensity of new bands exhibits exponential growth with increasing exposure time. The photopolymer yield depends on both the laser radiation power and external pressure. The A{sub g}(2) mode splitting under irradiation can be related to the formation of photo-oligomers with various numbers of intermolecular covalent bonds per C{sub 60} molecule.« less
NASA Astrophysics Data System (ADS)
Smith, Robert William
Many electrically driven thermoacoustic refrigerators have employed corrugated metal bellows to couple work from an electro-mechanical transducer to the working fluid typically. An alternative bellows structure to mediate this power transfer is proposed: a laminated hollow cylinder comprised of alternating layers of rubber and metal 'hoop-stack'. Fatigue and visoelastic power dissipation in the rubber are critical considerations; strain energy density plays a role in both. Optimal aspect ratios for a rectangle corss-section in the rubber, for given values of bellows axial strain and oscillatory pressure loads are discussed. Comparisons of tearing energies estimated from known load cases and those obtained by finite element analysis for candidate dimensions are presented. The metal layers of bellows are subject to an out-of-plane buckling instability for the case of external pressure loading; failure of this type was experimentally observed. The proposed structure also exhibits column instability when subject to internal pressure, as do metal bellows. For hoop-stack bellows, shear deflection cannot be ignored and this leads to column instability for both internal and external pressures, the latter being analogous to the case of tension buckling of a beam. During prototype bellows testing, transverse modes of vibration are believed to have been excited parametrically as a consequence of the oscillatory pressures. Some operating frequencies of interest in this study lie above the cut-on frequency at which Timoshenko beam theory (TBT) predicts multiple phase speeds; it is shown that TBT fails to accurately predict both mode shapes and resonance frequencies in this regime. TBT is also shown to predict multiple phase speeds in the presence of axial tension, or external pressures, at magnitudes of interest in this study, over the entire frequency spectrum. For modes below cut-on absent a pressure differential (or equivalently, axial load) TBT predicts decreasing resonance frequencies for both internal external static pressure, and converges on known, valid static buckling solutions. Parametric stability in the presence of oscillatory pressure is discussed for such modes; periodic solutions to the Whittaker-Hill equation are pursued to illustrate the shape of the parametric instability regions, and contrasted with results of the more well-known Mathieu equation.
Ultra-low frequency Raman spectroscopy of SWNTs under high pressure
NASA Astrophysics Data System (ADS)
Shen, Y.; Quirke, N.; Zerulla, D.
2016-09-01
Radial deformation phenomena of carbon nanotubes (CNTs) are attracting increased attention because even minimal changes of the CNT's cross section can result in significant changes of their electronic and optical properties. It is therefore important to have the ability to sensitively probe and characterize this radial deformation. High pressure Raman spectroscopy offers a general and powerful method to study such effects in SWNTs. In this experimental work, we focus in particular on one theoretically predicted Raman vibrational mode, the so-called "Squash Mode" (SM), named after its vibrational mode pattern, which has an E2g symmetry representation and exists at shifts below the radial breathing mode (RBM) region. The Squash mode was predicted to be more sensitive to environmental changes than the RBM. Here we report on a detailed, experimental detection of SMs of aligned SWNT arrays with peaks as close as 18 cm-1 to the laser excitation energy. Furthermore, we investigate how the SM of aligned CNT arrays reacts when exposed to a high pressure environment of up to 9 GPa. The results confirm the theoretical predictions regarding the angular and polarization dependent variations of the SM's intensity with respect to their excitation. Furthermore, clear Raman upshifts of SM under pressures of up to 9 GPa are presented. The relative changes of these upshifts, and hence the sensitivity, are much higher than that of RBMs because of larger radial displacement of some of the participating carbon atoms during the SM vibration. These novel ultra-sensitive Raman SM shifts of SWNTs provide enhanced sensitivity and demonstrate new opportunities for nano-optical sensors applications.
Filament-reinforced metal composite pressure vessel evaluation and performance demonstration
NASA Technical Reports Server (NTRS)
Landes, R. E.
1976-01-01
Two different Kevlar-49 filament-reinforced metal sphere designs were developed, and six vessels of each type were fabricated and subjected to fatigue cycling, sustained loading, and hydrostatic burst. The 61 cm (24 inch) diameter Kevlar-49/cryoformed 301 stainless steel pressure vessels demonstrated the required pressure cycle capability, burst factor of safety, and a maximum pressure times volume divided by weight (pV/W) performance of 210 J/g (834 000 in-lb/lbm) at burst; this represented a 25 to 30% weight saving over the lightest weight comparable, 6A1-4V Ti, homogeneous pressure vessel. Both the Kevlar/stainless steel design and the 97 cm (38 inch) diameter Kevlar-49/2219-T62 aluminum sphere design demonstrated nonfragmentation and controlled failure mode features when pressure cycled to failure at operating pressure. When failure occurred during pressure cycling, the mode was localized leakage and not catastrophic. Kevlar/stainless steel vessels utilized a unique conical boss design, and Kevlar/aluminum vessels incorporated a tie-rod to carry port loads; both styles of polar fittings performed as designed during operational testing of the vessels.
Mechanical behavior and localized failure modes in a porous basalt from the Azores
NASA Astrophysics Data System (ADS)
Loaiza, S.; Fortin, J.; Schubnel, A.; Gueguen, Y.; Vinciguerra, S.; Moreira, M.
2012-10-01
Basaltic rocks are the main component of the oceanic upper crust, thus of potential interest for water and geothermal resources, storage of CO2 and volcanic edifice stability. In this work, we investigated experimentally the mechanical behavior and the failure modes of a porous basalt, with an initial connected porosity of 18%. Results were acquired under triaxial compression experiments at confining pressure in the range of 25-200 MPa on water saturated samples. In addition, a purely hydrostatic test was also performed to reach the pore collapse critical pressure P*. During hydrostatic loading, our results show that the permeability is highly pressure dependent, which suggests that the permeability is mainly controlled by pre-existing cracks. When the sample is deformed at pressure higher than the pore collapse pressure P*, some very small dilatancy develops due to microcracking, and an increase in permeability is observed. Under triaxial loading, two modes of deformation can be highlighted. At low confining pressure (Pc < 50 MPa), the samples are brittle and shear localization occurs. For confining pressure > 50 MPa, the stress-strain curves are characterized by strain hardening and volumetric compaction. Stress drops are also observed, suggesting that compaction may be localized. The presence of compaction bands is confirmed by our microstructure analysis. In addition, the mechanical data allows us to plot the full yield surface for this porous basalt, which follows an elliptic cap as previously observed in high porosity sandstones and limestones.
Enhanced H-mode pedestals with lithium injection in DIII-D
Osborne, Thomas H.; Jackson, Gary L.; Yan, Zheng; ...
2015-05-08
Periods of edge localized mode (ELM)-free H-mode with increased pedestal pressure and width were observed in the DIII-D tokamak when density fluctuations localized to the region near the separatrix were present. Injection of a powder of 45 μm diameter lithium particles increased the duration of the enhanced pedestal phases to up to 350 ms, and also increased the likelihood of a transition to the enhanced phase. Lithium injection at a level sufficient for triggering the extended enhanced phases resulted in significant lithium in the plasma core, but carbon and other higher Z impurities as well as radiated power levels weremore » reduced. Recycling of the working deuterium gas appeared unaffected by this level of lithium injection. The ion scale, k θ ρ s ~ 0.1–0.2, density fluctuations propagated in the electron drift direction with f ~ 80 kHz and occurred in bursts every ~1 ms. The fluctuation bursts correlated with plasma loss resulting in a flattening of the pressure profile in a region near the separatrix. This localized flattening 2 allowed higher overall pedestal pressure at the peeling-ballooning stability limit and higher pressure than expected under the EPED model due to reduction of the pressure gradient below the “ballooning critical profile”. Furthermore, reduction of the ion pressure by lithium dilution may contribute to the long ELM-free periods.« less
Axial crack propagation and arrest in pressurized fuselage
NASA Technical Reports Server (NTRS)
Kosai, M.; Shimamoto, A.; Yu, C.-T.; Walker, S. I.; Kobayashi, A. S.; Tan, P.
1994-01-01
The crack arrest capability of a tear strap in a pressurized precracked fuselage was studied through instrumented axial rupture tests of small scale models of an idealized fuselage. Upon pressurization, rapid crack propagation initiated at an axial through crack along the stringer and immediately kinked due to the mixed modes 1 and 2 state caused by the one-sided opening of the crack flap. The diagonally running crack further turned at the tear straps. Dynamic finite element analysis of the rupturing cylinder showed that the crack kinked and also ran straight in the presence of a mixed mode state according to a modified two-parameter crack kinking criterion.
NASA Technical Reports Server (NTRS)
Hass, Neal E.; Cabell, Karen F.; Storch, Andrea M.
2010-01-01
The initial phase of hydrocarbon-fueled ground tests supporting Flight 2 of the Hypersonic International Flight Research Experiment (HIFiRE) Program has been conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF). The HIFiRE Program, an Air Force-lead international cooperative program includes eight different flight test experiments designed to target specific challenges of hypersonic flight. The second of the eight planned flight experiments is a hydrocarbon-fueled scramjet flight test intended to demonstrate dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools. A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink, direct-connect ground test article that duplicates both the flowpath lines and the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests are to verify the operability of the HIFiRE isolator/combustor across the Mach 6.0-8.0 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition prior to the HiFIRE payload Critical Design Review. Although the phase I test plans include testing over the Mach 6 to 8 flight simulation range, only Mach 6 testing will be reported in this paper. Experimental results presented here include flowpath surface pressure, temperature, and heat flux distributions that demonstrate the operation of the flowpath over a small range of test conditions around the nominal Mach 6 simulation, as well as a range of fuel equivalence ratios and fuel injection distributions. Both ethylene and a mixture of ethylene and methane (planned for flight) were tested. Maximum back pressure and flameholding limits, as well as a baseline fuel schedule, that covers the Mach 5.84-6.5 test space have been identified.
Developing physics basis for the snowflake divertor in the DIII-D tokamak
Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; ...
2018-02-01
Recent DIII-D results demonstrate that the snowflake (SF) divertor geometry (cf. standard divertor) enables significant manipulation of divertor heat transport for heat spreading and reduction in attached and radiative divertor regimes, between and during edge localized modes (ELMs), while maintaining good H-mode confinement. Snowflake divertor configurations have been realized in the DIII-D tokamak for several seconds in H-mode discharges with heating power PNBImore » $$\\leqslant$$ 4-5 MW and a range of plasma currents Ip = 0.8-1.2 MA. In this work, inter-ELM transport and radiative SF divertor properties are studied. Significant impact of geometric properties on SOL and divertor plasma parameters, including increased poloidal magnetic flux expansion, divertor magnetic field line length and divertor volume, is confirmed. In the SF-minus configuration, heat deposition is affected by the geometry, and peak divertor heat fluxes are significantly reduced. In the SF-plus and near-exact SF configurations, divertor peak heat flux reduction and outer strike point heat flux profile broadening are observed. Inter-ELM sharing of power and particle fluxes between the main and additional snowflake divertor strike points has been demonstrated. The additional strike points typically receive up to 10-15% of total outer divertor power. Measurements of electron pressure and poloidal beta !p support the theoretically proposed churning mode that is driven by toroidal curvature and vertical pressure gradient in the weak poloidal field region. A comparison of the 4-4.5 MW NBI-heated H-mode plasmas with radiative SF divertor and the standard radiative divertor (both induced with additional gas puffing) shows a nearly complete power detachment and broader divertor radiated power distribution in the SF, as compared to a partial detachment and peaked localized radiation in the standard divertor. However, insignificant difference in the detachment onset w.r.t. density between the SF and the standard divertor was found. The results complement the initial SF divertor studies in the NSTX and DIII-D tokamaks and contribute to the physics basis of the SF divertor as a power exhaust concept for future tokamaks.« less
Developing physics basis for the snowflake divertor in the DIII-D tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.
Recent DIII-D results demonstrate that the snowflake (SF) divertor geometry (cf. standard divertor) enables significant manipulation of divertor heat transport for heat spreading and reduction in attached and radiative divertor regimes, between and during edge localized modes (ELMs), while maintaining good H-mode confinement. Snowflake divertor configurations have been realized in the DIII-D tokamak for several seconds in H-mode discharges with heating power PNBImore » $$\\leqslant$$ 4-5 MW and a range of plasma currents Ip = 0.8-1.2 MA. In this work, inter-ELM transport and radiative SF divertor properties are studied. Significant impact of geometric properties on SOL and divertor plasma parameters, including increased poloidal magnetic flux expansion, divertor magnetic field line length and divertor volume, is confirmed. In the SF-minus configuration, heat deposition is affected by the geometry, and peak divertor heat fluxes are significantly reduced. In the SF-plus and near-exact SF configurations, divertor peak heat flux reduction and outer strike point heat flux profile broadening are observed. Inter-ELM sharing of power and particle fluxes between the main and additional snowflake divertor strike points has been demonstrated. The additional strike points typically receive up to 10-15% of total outer divertor power. Measurements of electron pressure and poloidal beta !p support the theoretically proposed churning mode that is driven by toroidal curvature and vertical pressure gradient in the weak poloidal field region. A comparison of the 4-4.5 MW NBI-heated H-mode plasmas with radiative SF divertor and the standard radiative divertor (both induced with additional gas puffing) shows a nearly complete power detachment and broader divertor radiated power distribution in the SF, as compared to a partial detachment and peaked localized radiation in the standard divertor. However, insignificant difference in the detachment onset w.r.t. density between the SF and the standard divertor was found. The results complement the initial SF divertor studies in the NSTX and DIII-D tokamaks and contribute to the physics basis of the SF divertor as a power exhaust concept for future tokamaks.« less
Physics-based analysis and control of human snoring
NASA Astrophysics Data System (ADS)
Sanchez, Yaselly; Wang, Junshi; Han, Pan; Xi, Jinxiang; Dong, Haibo
2017-11-01
In order to advance the understanding of biological fluid dynamics and its effects on the acoustics of human snoring, the study pursued a physics-based computational approach. From human magnetic resonance image (MRI) scans, the researchers were able to develop both anatomically and dynamically accurate airway-uvula models. With airways defined as rigid, and the uvula defined as flexible, computational models were created with various pharynx thickness and geometries. In order to determine vortex shedding with prescribed uvula movement, the uvula fluctuation was categorized by its specific parameters: magnitude, frequency, and phase lag. Uvula vibration modes were based on one oscillation, or one harmonic frequency, and pressure probes were located in seven different positions throughout the airway-uvula model. By taking fast Fourier transforms (FFT) from the pressure probe data, it was seen that four harmonics were created throughout the simulation within one oscillation of uvula movement. Of the four harmonics, there were two pressure probes which maintained high amplitudes and led the researcher to believe that different vortices formed with different snoring frequencies. This work is supported by the NSF Grant CBET-1605434.
NASA Astrophysics Data System (ADS)
Peralta Ferriz, C.; Morison, J.
2014-12-01
Since 2003, the Gravity Recovery and Climate Experiment (GRACE) satellite system has provided the means of investigating month-to-month to inter-annual variability of, among many other things, Arctic Ocean circulation over the entire Arctic Basin. Such a comprehensive picture could not have been achieved with the limited in situ pressure observations available. Results from the first 10 years of ocean bottom pressure measurements from GRACE in the Arctic Ocean reveal distinct patterns of ocean variability that are strongly associated with changes in large-scale atmospheric circulation (Peralta-Ferriz et al., 2014): the leading mode of variability being a wintertime basin-coherent mass change driven by winds in the Nordic Seas; the second mode of variability corresponding to a mass signal coherent along the Siberian shelves, and driven by the Arctic Oscillation; and the third mode being a see-saw between western and eastern Arctic shelves, also driven by the large-scale wind patterns. In order to understand Arctic Ocean changes, it is fundamental to continue to track ocean bottom pressure. Our concern is what to do if the present GRACE system, which is already well beyond its design lifetime, should fail before its follow-on is launched, currently estimated to be in 2017. In this work, we regress time series of pressure from the existing and potential Arctic Ocean bottom pressure recorder locations against the fundamental modes of bottom pressure variation. Our aim is to determine the optimum combination of in situ measurements to represent the broader scale variability now observed by GRACE. With this understanding, we can be better prepared to use in situ observations to at least partially cover a possible gap in GRACE coverage. Reference:Peralta-Ferriz, Cecilia, James H. Morison, John M. Wallace, Jennifer A. Bonin, Jinlun Zhang, 2014: Arctic Ocean Circulation Patterns Revealed by GRACE. J. Climate, 27, 1445-1468. doi: http://dx.doi.org/10.1175/JCLI-D-13-00013.1
Wake Instabilities Behind Discrete Roughness Elements in High Speed Boundary Layers
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Li, Fei; Chang, Chau-Lyan; Norris, Andrew; Edwards, Jack
2013-01-01
Computations are performed to study the flow past an isolated, spanwise symmetric roughness element in zero pressure gradient boundary layers at Mach 3.5 and 5.9, with an emphasis on roughness heights of less than 55 percent of the local boundary layer thickness. The Mach 5.9 cases include flow conditions that are relevant to both ground facility experiments and high altitude flight ("cold wall" case). Regardless of the Mach number, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The higher Mach number cases reveal a variety of instability mode shapes with velocity fluctuations concentrated in different localized regions of high base flow shear. The high shear regions vary from the top of a mushroom shaped structure characterizing the centerline streak to regions that are concentrated on the sides of the mushroom. Unlike the Mach 3.5 case with nearly same values of scaled roughness height k/delta and roughness height Reynolds number Re(sub kk), the odd wake modes in both Mach 5.9 cases are significantly more unstable than the even modes of instability. Additional computations for a Mach 3.5 boundary layer indicate that the presence of a roughness element can also enhance the amplification of first mode instabilities incident from upstream. Interactions between multiple roughness elements aligned along the flow direction are also explored.
Monazite-type SrCr O 4 under compression
Gleissner, J.; Errandonea, Daniel; Segura, A.; ...
2016-10-20
We report a high-pressure study of monoclinic monazite-type SrCrO 4 up to 26 GPa. Therein we combined x-ray diffraction, Raman, and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO 4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO 4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO 4. We determined the pressure evolution of the band gap for the low- and high-pressure phasesmore » as well as the frequencies and pressure dependencies of the Raman-active modes. In all three phases most Raman modes harden under compression, however the presence of low-frequency modes which gradually soften is also detected. In monazite-type SrCrO 4, the band gap blueshifts under compression, but the transition to the scheelite phase causes an abrupt decrease of the band gap in SrCrO 4. Calculations showed good agreement with experiments and were used to better understand the experimental results. From x-ray-diffraction studies and calculations we determined the pressure dependence of the unit-cell parameters of the different phases and their ambient-temperature equations of state. The results are compared with the high-pressure behavior of other monazites, in particular PbCrO 4. A comparison of the high-pressure behavior of the electronic properties of SrCrO 4 (SrWO 4) and PbCrO 4 (PbWO 4) will also be made. Lastly, the possible occurrence of a third structural phase transition is discussed.« less
Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.
2014-07-01
A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width asmore » a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less
Energy efficient fluid powered linear actuator with variable area
Lind, Randall F.; Love, Lonnie J.
2016-09-13
Hydraulic actuation systems having variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.
Global plasma oscillations in electron internal transport barriers in TCV
NASA Astrophysics Data System (ADS)
Udintsev, V. S.; Sauter, O.; Asp, E.; Fable, E.; Goodman, T. P.; Turri, G.; Graves, J. P.; Scarabosio, A.; Zhuang, G.; Zucca, C.; TCV Team
2008-12-01
In the Tokamak à Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q >= 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.
High-pressure Raman spectra and DFT calculations of L-tyrosine hydrochloride crystal
NASA Astrophysics Data System (ADS)
dos Santos, C. A. A. S. S.; Carvalho, J. O.; da Silva Filho, J. G.; Rodrigues, J. L.; Lima, R. J. C.; Pinheiro, G. S.; Freire, P. T. C.; Façanha Filho, P. F.
2018-02-01
High-pressure Raman spectra of L-tyrosine hydrochloride crystal were obtained from 1.0 atm to 7.0 GPa in the 90-1800 cm-1 spectral region. At atmospheric pressure, the Raman spectrum was obtained in the 50-3200 cm-1 spectral range and the assignment of the normal modes based on density functional theory calculations was provided. We found good correspondence between the calculated and the observed intramolecular geometry parameters. This confirms the correct assignment of the normal modes, since it was crucial to understand the meaning of the changes observed in particular Raman active modes. Here we show that bands associated with internal modes undergo slight modifications during compression. However, an inversion of the relative intensity of bands around 125 cm-1 as well as a change of slope dω/dP from 1.0 to 1.5 GPa was understood as a conformational change involving a torsion of the L-tyrosine molecule. As a consequence, it is possible to conclude that the crystal remained in the same monoclinic structure in the 1 atm-7.0 GPa interval, although conformational change of the molecule was verified. A comparison of our results with other selected studies provided insights about the role of the amino acid side chain on the arrangement of hydrogen bonds. Finally, when the pressure was released back to 1 atm, the Raman spectrum was recovered and no hysteresis was observed.
The Impact of Social Pressure and Monetary Incentive on Cognitive Control
Ličen, Mina; Hartmann, Frank; Repovš, Grega; Slapničar, Sergeja
2016-01-01
We compare the effects of two prominent organizational control mechanisms—social pressure and monetary incentive—on cognitive control. Cognitive control underlies the human ability to regulate thoughts and actions in the pursuit of behavioral goals. Previous studies show that monetary incentives can contribute to goal-oriented behavior by activating proactive control. There is, however, much less evidence of how social pressure affects cognitive control and task performance. In a within-subject experimental design, we tested 47 subjects performing the AX-CPT task to compare the activation of cognitive control modes under social pressure and monetary incentive beyond mere instructions to perform better. Our results indicate that instructing participants to improve their performance on its own leads to a significant shift from a reactive to a proactive control mode and that both social pressure and monetary incentive further enhance performance. PMID:26903901
Pressure-Induced Phase Transitions of n-Tridecane
NASA Astrophysics Data System (ADS)
Yamashita, Motoi
Pressure-induced phase transition behavior of n-tridecane from the ordered phase through the rotator phase into the liquid phase has been investigated by using Fourier transform infrared spectroscopy at 25 °C. The transition between the ordered and rotator phases has been observed in the pressure range of 270-220 MPa and the transition between the rotator and liquid phases has been observed in the pressure range of 171-112 MPa, within the experimental error of ±50 MPa. The populations of the -gtg- + -gtg'-, -gg- and gt- defects determined from the methylene wagging mode are smaller in the rotator phase than in the liquid phase and are smaller under higher pressure in both of the rotator and liquid phases. A relationship has been found between the conformation and the intensity of the 890 cm-1 band, which has been assigned as the methyl rocking mode and has been considered as insensitive to conformation.
Optically driven self-oscillations of a silica nanospike at low gas pressures
NASA Astrophysics Data System (ADS)
Xie, Shangran; Pennetta, Riccardo; Noskov, Roman E.; Russell, Philip St. J.
2016-09-01
We report light-driven instability and optomechanical self-oscillation of a fused silica "nanospike" at low gas pressures. The nanospike (tip diameter 400 nm), fabricated by thermally tapering and HF-etching a single mode fiber (SMF), was set pointing at the endface of a hollow-core photonic crystal fiber (HC-PCF) into the field created by the fundamental optical mode emerging from the HC-PCF. At low pressures, the nanospike became unstable and began to self-oscillate for optical powers above a certain threshold, acting like a phonon laser or "phaser". Because the nanospike is robustly connected to the base, direct measurement of the temporal dynamics of the instability is possible. The experiment sheds light on why particles escape from optical traps at low pressures.
Observations of ELM stabilization during neutral beam injection in DIII-D
NASA Astrophysics Data System (ADS)
Bortolon, Alessandro; Kramer, Gerrit; Diallo, Ahmed; Knolker, Matthias; Maingi, Rajesh; Nazikian, Raffi; Degrassie, John; Osborne, Thomas
2017-10-01
Edge localized modes (ELMs) are generally interpreted as peeling-ballooning instabilities, driven by the pedestal current and pressure gradient, with other subdominant effects possibly relevant close to marginal stability. We report observations of transient stabilization of type-I ELMs during neutral beam injection (NBI), emerging from a combined dataset of DIII-D ELMy H-mode plasmas with moderate heating obtained through pulsed NBI waveforms. Statistical analysis of ELM onset times indicates that, in the selected dataset, the likelihood of onset of an ELM lowers significantly during NBI modulation pulses, with the stronger correlation found with counter-current NBI. The effect is also found in rf-heated H-modes, where ELMs appear inhibited when isolated diagnostic beam pulses are applied. Coherent average analysis is used to determine how plasma density, temperature, rotation as well as beam ion quantities evolve during a NB modulation cycle, finding relatively small changes ( 3%) of pedestal Te and ne and toroidal and poloidal rotation variations up to 5 km/s. The effect of these changes on pedestal stability will be discussed. Work supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466.
Overview of Recent DIII-D Experimental Results
NASA Astrophysics Data System (ADS)
Fenstermacher, Max
2015-11-01
Recent DIII-D experiments have added to the ITER physics basis and to physics understanding for extrapolation to future devices. ELMs were suppressed by RMPs in He plasmas consistent with ITER non-nuclear phase conditions, and in steady state hybrid plasmas. Characteristics of the EHO during both standard high torque, and low torque enhanced pedestal QH-mode with edge broadband fluctuations were measured, including edge localized density fluctuations with a microwave imaging reflectometer. The path to Super H-mode was verified at high beta with a QH-mode edge, and in plasmas with ELMs triggered by Li granules. ITER acceptable TQ mitigation was obtained with low Ne fraction Shattered Pellet Injection. Divertor ne and Te data from Thomson Scattering confirm predicted drift-driven asymmetries in electron pressure, and X-divertor heat flux reduction and detachment were characterized. The crucial mechanisms for ExB shear control of turbulence were clarified. In collaboration with EAST, high beta-p scenarios were obtained with 80 % bootstrap fraction, high H-factor and stability limits, and large radius ITBs leading to low AE activity. Work supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC52-07NA27344.
High-pressure structural and vibrational properties of monazite-type BiPO4, LaPO4, CePO4, and PrPO4
NASA Astrophysics Data System (ADS)
Errandonea, D.; Gomis, O.; Rodríguez-Hernández, P.; Muñoz, A.; Ruiz-Fuertes, J.; Gupta, M.; Achary, S. N.; Hirsch, A.; Manjon, F. J.; Peters, L.; Roth, G.; Tyagi, A. K.; Bettinelli, M.
2018-02-01
Monazite-type BiPO4, LaPO4, CePO4, and PrPO4 have been studied under high pressure by ab initio simulations and Raman spectroscopy measurements in the pressure range of stability of the monazite structure. A good agreement between experimental and theoretical Raman-active mode frequencies and pressure coefficients has been found which has allowed us to discuss the nature of the Raman-active modes. Besides, calculations have provided us with information on how the crystal structure is modified by pressure. This information has allowed us to determine the equation of state and the isothermal compressibility tensor of the four studied compounds. In addition, the information obtained on the polyhedral compressibility has been used to explain the anisotropic axial compressibility and the bulk compressibility of monazite phosphates. Finally, we have carried out a systematic discussion on the high-pressure behavior of the four studied phosphates in comparison to results of previous studies.
NASA Astrophysics Data System (ADS)
SAKAMOTO, H.; HAYASHI, F.; SUGIURA, S.; TSUJIKAWA, M.
2002-02-01
This study investigated the effect of steady noise, fluctuating noise and music on circulatory function. Pulse-wave and blood pressure were continuously measured in 35 healthy young females who listened to three types of music or were exposed to steady noise or fluctuating noise, synchronized with each type of music with respect to intensity variations. The pulse-wave did not change during any exposure conditions. Regarding blood pressure, several modes were observed. The critical level for a blood pressure change was estimated to be 54 LAeqduring exposure to steady noise. The frequency of high-intensity peaks in the mode of sound fluctuation was associated with elevation in blood pressure. The blood pressure change was analyzed by distinguishing the intensity variation in sound fluctuation from other attributes of music. The effects of music on blood pressure were modified not only by the melody and timbre of the music but also by emotional responses during listing.
Characteristics of Capacity Coupled Discharge in Atmospheric Pressure Air
NASA Astrophysics Data System (ADS)
Sasaki, Tadahiro; Omukai, Reina; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya; Mase, Hiroshi; Sato, Noriyoshi
This paper describes characteristics of capacity coupled discharge in atmospheric pressure air with focusing influence of gap length of point-to-plane electrode configuration on input power into the discharge. The discharge can be quenched in short time duration by inserting a small capacitance capacitor between the electrode and the ground. We employed a needle electrode and a coaxial cable as the quenching capacitor. The discharge was successfully quenched within 25 ns in duration according to 9.4 pF in a capacitance of the quenching capacitor. The discharge was classified as two modes; a spark mode and a corona mode. At the spark mode, the power consumed in the discharge plasma was almost 10 times as large as that of a conventional dielectric barrier discharge. At the corona mode, the consumed energy was almost same value with that of the dielectric barrier discharge. A velocity of the discharge development was obtained to be 3×105 m/s by an optical measurement.
NASA Technical Reports Server (NTRS)
Trefny, Charles J.; Dippold, Vance F., III; Yungster, Shaye
2017-01-01
The dual-mode free-jet combustor concept, pictured in figure 1, is described. It was introduced in 2010 as a wide- operating-range propulsion device using a novel supersonic free-jet combustion process. The unique feature of the free-jet combustor pictured in figure 1a, is supersonic combustion in an unconfined free-jet that traverses a larger subsonic combustion chamber to a variable nozzle. During this mode of operation, the propulsive stream is not in contact with the combustor walls, and equilibrates to the combustion chamber pressure. To a first order, thermodynamic efficiency is similar to that of a traditional scramjet under the assumption of constant-pressure combustion. Qualitatively, a number of possible benefits to this approach are obvious.
NASA Technical Reports Server (NTRS)
Woods, D. Tod; Holzer, Thomas E.; Macgregor, Keith B.
1990-01-01
Lower transition region models with a balance between mechanical heating and radiative losses are expanded to include wave pressure effects. The models are used to study the simple damping length form of the heating function. The results are compared to the results obtained by Woods et al. (1990) for solutions in the lower transition region. The results suggest that a mixture of fast-mode and slow-mode waves may provide the appropriate heating mechanism in the lower transition region, with the decline in effective vertical wave speed caused by the refraction and eventual total reflection of the fast-mode wave resulting from the decreasing atmospheric density.
Introduction to the Portable Life Support Schematic and Technology Development Components
NASA Technical Reports Server (NTRS)
Conger, Bruce
2008-01-01
Conger presented the operations and functions of the baseline Constellation Program (CxP) Portable Life Support System (PLSS) schematic and key development technologies. He explained the functional descriptions of the schematic components in the fluid systems of the PLSS for multiple operational scenarios. PLSS subsystems include the oxygen subsystem, the ventilation subsystem, and the thermal subsystem. He also presented the operational PLSS modes: Nominal EVA mode, Umbilical - no recharge mode, Umbilical - with recharge mode, BENDS mode, BUDDY mode, Secondary oxygen mode, and the PLSS-removed umbilical mode.
An experimental-theoretical study of free vibrations of plates on elastic point supports
NASA Technical Reports Server (NTRS)
Leuner, T. R.
1972-01-01
A theoretical and experimental study is made to investigate the effect on plate vibrations of varying the stiffness of corner elastic point supports. A theoretical model is developed using a Rayleigh-Ritz analysis which approximates the plate mode shapes as products of free-free beam modes. The elastic point supports are modelled both as massless translational springs, and springs with tip masses. The tip masses are included to better represent the experimental supports. An experiment is constructed using the bending stiffness of horizontal beams to support a square plate at its four corners. The stiffness of these supports can be varied over such a range that the plate fundamental frequency is lowered to 40% of the rigid support frequency. The variation with support stiffness of the frequencies of the first eight plate modes is measured, and compared with the theoretical results. The plate mode shapes for rigid supports are analyzed using holographic interferometry. There is excellent agreement between the theoretical and experimental results, except for high plate modes where the theoretical model is demonstrated to be inadequate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itasse, Maxime, E-mail: Maxime.Itasse@onera.fr; Brazier, Jean-Philippe, E-mail: Jean-Philippe.Brazier@onera.fr; Léon, Olivier, E-mail: Olivier.Leon@onera.fr
2015-08-15
Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequencymore » matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.« less
Developing physics basis for the snowflake divertor in the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meyer, W. H.; Ryutov, D. D.; Kolemen, E.; Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.; Watkins, J.
2018-03-01
Recent DIII-D results demonstrate that the snowflake (SF) divertor geometry (see standard divertor) enables significant manipulation of divertor heat transport for heat spreading and reduction in attached and radiative divertor regimes, between and during edge localized modes (ELMs), while maintaining good H-mode confinement. Snowflake divertor configurations have been realized in the DIII-D tokamak for several seconds in H-mode discharges with heating power P_NBI ≤slant 4 -5 MW and a range of plasma currents I_p=0.8-1.2 MA. In this work, inter-ELM transport and radiative SF divertor properties are studied. Significant impact of geometric properties on SOL and divertor plasma parameters, including increased poloidal magnetic flux expansion, divertor magnetic field line length and divertor volume, is confirmed. In the SF-minus configuration, heat deposition is affected by the geometry, and peak divertor heat fluxes are significantly reduced. In the SF-plus and near-exact SF configurations, divertor peak heat flux reduction and outer strike point heat flux profile broadening are observed. Inter-ELM sharing of power and particle fluxes between the main and additional snowflake divertor strike points has been demonstrated. The additional strike points typically receive up to 10-15% of total outer divertor power. Measurements of electron pressure and poloidal beta βp support the theoretically proposed churning mode that is driven by toroidal curvature and vertical pressure gradient in the weak poloidal field region. A comparison of the 4-4.5 MW NBI-heated H-mode plasmas with radiative SF divertor and the standard radiative divertor (both induced with additional gas puffing) shows a nearly complete power detachment and broader divertor radiated power distribution in the SF, as compared to a partial detachment and peaked localized radiation in the standard divertor. However, insignificant difference in the detachment onset w.r.t. density between the SF and the standard divertor was found. The results complement the initial SF divertor studies conducted in high-power H-mode discharges in the NSTX and DIII-D tokamaks, and, along with snowflake divertor results from TCV and other tokamaks, contribute to the physics basis of the SF divertor as a power exhaust concept for future high power density tokamaks.
Personnel safety with pressurized gas systems
Cadwallader, Lee C.; Zhao, Haihua
2016-09-08
In this study, selected accident case histories are described that illustrate the potential modes of injury from gas jets, pressure-driven missiles, and asphyxiants. Gas combustion hazards are also briefly mentioned. Using high-pressure helium and nitrogen, estimates of safe exclusion distances are calculated for differing pressures, temperatures, and breach sizes. Some sources for gas system reliability values are also cited.
Navigation assistance: a trade-off between wayfinding support and configural learning support.
Münzer, Stefan; Zimmer, Hubert D; Baus, Jörg
2012-03-01
Current GPS-based mobile navigation assistance systems support wayfinding, but they do not support learning about the spatial configuration of an environment. The present study examined effects of visual presentation modes for navigation assistance on wayfinding accuracy, route learning, and configural learning. Participants (high-school students) visited a university campus for the first time and took a predefined assisted tour. In Experiment 1 (n = 84, 42 females), a presentation mode showing wayfinding information from eye-level was contrasted with presentation modes showing wayfinding information included in views that provided comprehensive configural information. In Experiment 2 (n = 48, 24 females), wayfinding information was included in map fragments. A presentation mode which always showed north on top of the device was compared with a mode which rotated according to the orientation of the user. Wayfinding accuracy (deviations from the route), route learning, and configural learning (direction estimates, sketch maps) were assessed. Results indicated a trade-off between wayfinding and configural learning: Presentation modes providing comprehensive configural information supported the acquisition of configural knowledge at the cost of accurate wayfinding. The route presentation mode supported wayfinding at the cost of configural knowledge acquisition. Both presentation modes based on map fragments supported wayfinding. Individual differences in visual-spatial working memory capacity explained a considerable portion of the variance in wayfinding accuracy, route learning, and configural learning. It is concluded that learning about an unknown environment during assisted navigation is based on the integration of spatial information from multiple sources and can be supported by appropriate visualization. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Mukerji, A; Sarmiento, K; Lee, B; Hassall, K; Shah, V
2017-01-01
Non-invasive high-frequency ventilation (NIHFV), a relatively new modality, is gaining popularity despite limited data. We sought to evaluate the effectiveness of NIHFV versus bi-phasic continuous positive airway pressure (BP-CPAP) in preterm infants failing CPAP. Infants with BW<1250 g on CPAP were randomly assigned to NIHFV or BP-CPAP if they met pre-determined criteria for CPAP failure. Infants were eligible for randomization after 72 h age and until 2000 g. Guidelines for adjustment of settings and criteria for failure of assigned mode were implemented. The primary aim was to assess feasibility of a larger trial. In addition, failure of assigned non-invasive respiratory support (NRS) mode, invasive mechanical ventilation (MV) 72 h and 7 days post-randomization, and bronchopulmonary dysplasia (BPD) were assessed. Thirty-nine infants were randomized to NIHFV (N=16) or BP-CPAP (N=23). There were no significant differences in mean (s.d.) postmenstrual age (28.6 (1.5) versus 29.0 (2.3) weeks, P=0.47), mean (s.d.) weight at randomization (965.0 (227.0) versus 958.1 (310.4) g, P=0.94) or other baseline demographics between the groups. Failure of assigned NRS mode was lower with NIHFV (37.5 versus 65.2%, P=0.09), although not statistically significant. There were no differences in rates of invasive MV 72 h and 7 days post-randomization or BPD. NIHFV was not superior to BP-CPAP in this pilot study. Effectiveness of NIHFV needs to be proven in larger multi-center, appropriately powered trials before widespread implementation.
NASA Astrophysics Data System (ADS)
Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.
2011-12-01
A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program
NASA Astrophysics Data System (ADS)
Tallman, Robert E.
Raman scattering is utilized to explore the effects of applied pressure and strain on anharmonic phonon interactions and nucleation of structural transitions in several bulk and nanoparticle semiconductor systems. The systems investigated are bulk ZnS and ZnSe in several isotopic compositions, InP/CdS core/shell nanoparticles exhibiting confined and surface optical Raman modes, and amorphous selenium films undergoing photo-induced crystallization. The anharmonic decay of long-wavelength optical modes into two-phonon acoustic combinations modes is studied in 64Zn32S, 64Zn34S, natZnatS bulk crystals by measuring the TO(Gamma) Raman line-shape as a function of applied hydrostatic pressure. The experiments are carried out at room temperature and 16K for pressures up to 150 kbars using diamond-anvil cells. The most striking effects occur in 68Zn32S where the TO(Gamma) peak narrows by a factor of 10 and increases in intensity at pressures for which the TO(Gamma) frequency has been tuned into a gap in the two-phonon density of states (DOS). In all the isotopic compositions, the observed phonon decay processes can be adequately explained by a second order perturbation treatment of the anharmonic coupling between TO(Gamma) and TA + LA combinations at various critical points, combined with an adiabatic bond-charge model for the phonon DOS and the known mode Gruneisen parameters. Bulk ZnSe crystals exhibit very different behavior. Here we find that anharmonic decay alone can not explain the excessive (˜ 60 cm-1 ) broadening in the TO(Gamma) Raman peak observed as the pressure approaches to within 50kbar of the ZB -> B1 phase transition (at P ˜ 137 kbar). Rather the broadening appears to arise from antecedent nucleation of structural changes within nanoscopic domains, with the mechanism for line-shape changes being mode mixing via localization and disorder instead of anharmonicity. To sort out these contributions, pressure experiments on natural ZnSe and on isotopically pure 68Zn76Se are compared. Again we use an appropriate bond-charge model to obtain the phonon DOS. It is concluded that the antecedent nucleation mechanism is much more important in ZnSe than in ZnS. In order to further investigate interactions of vibrational modes in spatially confined systems, pressure-Raman experiments are carried out on InP/CdS core/shell nanoparticles. This system differs from most other core/shell nanoparticles systems, in that the near degeneracy of the bulk InP TO(Gamma) and CdS LO(Gamma) phonons leads to possible cross-interface mode coupling. Different confined and surface (or interface) optical modes are studied as a function of pressure up 65 kbar at 373 and 230 K. The results are compared with the predictions of dielectric continuum theory using a phenomenological macroscopic approach (PMA) to include the pressure dependence. Three different pressure media are employed, and the effects on the surface modes of their different static dielectric constants are investigated. The pressure-shifts of the observed confined and surface modes are well accounted for without the need to include cross-interface coupling. We conclude that the conventional boundary condition, of vanishing phonon amplitude at the heterointerface, remains valid in the InP/CdS nanoparticle system, in spite of the near degeneracy of the bulk optical phonons. Photo-induced crystallization in amorphous selenium (a-Se) was also explored in this dissertation, as another example of a nanoscopic nucleation process influenced by strain, in this case internal strain. In order to observe photo-crystallization, the Raman spectra of commercial a-Se films used as targets in high-gain avalanche rushing photodetectors (HARP) cameras was studied at temperatures in the range 260 - 330 K. We find a rich temperature behavior that reflects the competition of changes in viscosity and strain, and defines four distinct regimes. These results are in qualitative accord with a theory by R.B.Stephens treating the effects of local strain on the secondary growth of crystalline nuclei in a-Se. We were able to conclude that the growth of trigonal selenium is driven by local strain, and that the relaxation of this strain field around the glass transition temperature suppresses crystalline growth until thermally assisted processes accelerate the photo-crystallization at higher temperatures. The observed nucleation kinetics was also found to be relevant to understanding the formation of blemishes in the output images of advanced HARP video cameras.
Nonlinear ballooning modes in tokamaks: stability and saturation
NASA Astrophysics Data System (ADS)
Ham, C. J.; Cowley, S. C.; Brochard, G.; Wilson, H. R.
2018-07-01
The nonlinear dynamics of magneto-hydrodynamic ballooning mode perturbations is conjectured to be characterised by the motion of isolated elliptical flux tubes. The theory of stability, dynamics and saturation of such tubes in tokamaks is developed using a generalised Archimedes’ principle. The equation of motion for a tube moving against a drag force in a general axisymmetric equilibrium is derived and then applied to a simplified ‘s–α’ equilibrium. The perturbed nonlinear tube equilibrium (saturated) states are investigated in an ‘s–α’ equilibrium with specific pressure and magnetic shear profiles. The energy of these nonlinear (ballooning) saturated states is calculated. In some cases, particularly at low magnetic shear, these finitely displaced states can have a lower energy than the equilibrium state even if the profile is linearly stable to ballooning modes (infinitesimal tube displacements) at all radii. Thus nonlinear ballooning modes can be metastable. The amplitude of the saturated tube displacement in such cases can be as large as the pressure gradient scale length. We conjecture that triggering a transition into these filamentary states can lead to hard instability limits. A short survey of different pressure profiles is presented to illustrate the variety of behaviour of perturbed elliptical flux tubes.
Aerodynamic and acoustic effects of abrupt frequency changes in excised larynges.
Alipour, Fariborz; Finnegan, Eileen M; Scherer, Ronald C
2009-04-01
To determine the aerodynamic and acoustic effects due to a sudden change from chest to falsetto register or vice versa. It was hypothesized that the continuous change in subglottal pressure and flow rate alone (pressure-flow sweep [PFS]) can trigger a mode change in the canine larynx. Ten canine larynges were each mounted over a tapered tube that supplied pressurized, heated, and humidified air. Glottographic signals were recorded during each PFS experiment, during which airflow was increased in a gradual manner for a period of 20-30 s. Abrupt changes in fundamental frequency (F(0)) and mode of vibration occurred during the PFS in the passive larynx without any change in adduction or elongation. The lower frequency mode of oscillation of the vocal folds, perceptually identified as the chest register, had relatively large amplitude oscillation, significant vocal fold contact, a rich spectral content, and a relatively loud audio signal. The higher frequency mode of oscillation, perceptually identified as falsetto, had little or no vocal fold contact and a dominant first partial. Relatively abrupt F(0) changes also occurred for gradual adduction changes, with the chest register corresponding to greater adduction, falsetto to less adduction.
NASA Astrophysics Data System (ADS)
Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team
2017-01-01
The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huysmans, G.T.A.; Kerner, W.; Borba, D.
1995-05-01
The active excitation of global Alfven modes using the saddle coils in the Joint European Torus (JET) [{ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion} {ital Research} 1984, Proceedings of the 10th International Conference, London (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 11] as the external antenna, will provide information on the damping of global modes without the need to drive the modes unstable. For the modeling of the Alfven mode excitation, the toroidal resistive magnetohydrodynamics (MHD) code CASTOR (Complex Alfven Spectrum in TORoidal geometry) [18{ital th} {ital EPS} {ital Conference} {ital On} {italmore » Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Physics}, Berlin, 1991, edited by P. Bachmann and D. C. Robinson (The European Physical Society, Petit-Lancy, 1991), Vol. 15, Part IV, p. 89] has been extended to calculate the response to an external antenna. The excitation of a high-performance, high beta JET discharge is studied numerically. In particular, the influence of a finite pressure is investigated. Weakly damped low-{ital n} global modes do exist in the gaps in the continuous spectrum at high beta. A pressure-driven global mode is found due to the interaction of Alfven and slow modes. Its frequency scales solely with the plasma temperature, not like a pure Alfven mode with a density and magnetic field.« less
Nasreen, Farzana; Antonio, Daniel; VanGennep, Derrick; ...
2016-02-15
© 2016 IOP Publishing Ltd. We report a study of high pressure x-ray absorption (XAS) performed in the partial fluorescence yield mode (PFY) at the U L 3 edge (0-28.2 GPa) and single crystal x-ray diffraction (SXD) (0-20 GPa) on the UCd 11 heavy fermion compound at room temperature. Under compression, the PFY-XAS results show that the white line is shifted by +4.1(3) eV at the highest applied pressure of 28.2 GPa indicating delocalization of the 5f electrons. The increase in full width at half maxima and decrease in relative amplitude of the white line with respect to the edgemore » jump point towards 6d band broadening under high pressure. A bulk modulus of K 0 = 62(1) GPa and its pressure derivative, = 4.9(2) was determined from high pressure SXD results. Both the PFY-XAS and diffraction results do not show any sign of a structural phase transition in the applied pressure range.« less
NASA Astrophysics Data System (ADS)
Hussain, S.; Qazi, H. I. A.; Badar, M. A.
2014-03-01
An experimental investigation to characterize the properties and highlight the benefits of atmospheric pressure radio-frequency dielectric-barrier discharge (rf DBD) with dielectric electrodes fabricated by anodizing aluminium substrate is presented. The current-voltage characteristics and millisecond images are used to distinguish the α and γ modes. This atmospheric rf DBD is observed to retain the discharge volume without constriction in γ mode. Optical emission spectroscopy demonstrates that the large discharge current leads to more abundant reactive species in this plasma source.
Energy efficient fluid powered linear actuator with variable area and concentric chambers
Lind, Randall F.; Love, Lonnie J.
2016-11-15
Hydraulic actuation systems having concentric chambers, variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.
NASA Astrophysics Data System (ADS)
Bose, A.; Betti, R.; Mangino, D.; Woo, K. M.; Patel, D.; Christopherson, A. R.; Gopalaswamy, V.; Mannion, O. M.; Regan, S. P.; Goncharov, V. N.; Edgell, D. H.; Forrest, C. J.; Frenje, J. A.; Gatu Johnson, M.; Yu Glebov, V.; Igumenshchev, I. V.; Knauer, J. P.; Marshall, F. J.; Radha, P. B.; Shah, R.; Stoeckl, C.; Theobald, W.; Sangster, T. C.; Shvarts, D.; Campbell, E. M.
2018-06-01
This paper describes a technique for identifying trends in performance degradation for inertial confinement fusion implosion experiments. It is based on reconstruction of the implosion core with a combination of low- and mid-mode asymmetries. This technique was applied to an ensemble of hydro-equivalent deuterium-tritium implosions on OMEGA which achieved inferred hot-spot pressures ≈56 ± 7 Gbar [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)]. All the experimental observables pertaining to the core could be reconstructed simultaneously with the same combination of low and mid-modes. This suggests that in addition to low modes, which can cause a degradation of the stagnation pressure, mid-modes are present which reduce the size of the neutron and x-ray producing volume. The systematic analysis shows that asymmetries can cause an overestimation of the total areal density in these implosions. It is also found that an improvement in implosion symmetry resulting from correction of either the systematic mid or low modes would result in an increase in the hot-spot pressure from 56 Gbar to ≈ 80 Gbar and could produce a burning plasma when the implosion core is extrapolated to an equivalent 1.9 MJ symmetric direct illumination [Bose et al., Phys. Rev. E 94, 011201(R) (2016)].
Bose, A.; Betti, R.; Mangino, D.; ...
2018-05-29
This paper describes a technique for identifying trends in performance degradation for inertial con finement fusion implosion experiments. It is based on reconstruction of the implosion core with a combination of low- and mid-mode asymmetries. This technique was applied to an ensemble of hydro-equivalent deuterium-tritium implosions on OMEGA that achieved inferred hot-spot pressures ≈56 ± 7 Gbar [S. Regan et al., Phys. Rev. Lett. 117, 025001 (2016)]. All the experimental observables pertaining to the core could be reconstructed simultaneously with the same combination of low and mid modes. This suggests that in addition to low modes, that can cause amore » degradation of the stagnation pressure, mid modes are present that reduce the size of the neutron and x-ray producing volume. The systematic analysis shows that asymmetries can cause an overestimation of the total areal density in these implosions. Finally, it is also found that an improvement in implosion symmetry resulting from correction of either the systematic mid or low modes would result in an increase of the hot-spot pressure from 56 Gbar to ≈ 80 Gbar and could produce a burning plasma when the implosion core is extrapolated to an equivalent 1.9 MJ symmetric direct illumination [A. Bose et al., Phys. Rev. E 94, 011201(R) (2016)].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, A.; Betti, R.; Mangino, D.
This paper describes a technique for identifying trends in performance degradation for inertial con finement fusion implosion experiments. It is based on reconstruction of the implosion core with a combination of low- and mid-mode asymmetries. This technique was applied to an ensemble of hydro-equivalent deuterium-tritium implosions on OMEGA that achieved inferred hot-spot pressures ≈56 ± 7 Gbar [S. Regan et al., Phys. Rev. Lett. 117, 025001 (2016)]. All the experimental observables pertaining to the core could be reconstructed simultaneously with the same combination of low and mid modes. This suggests that in addition to low modes, that can cause amore » degradation of the stagnation pressure, mid modes are present that reduce the size of the neutron and x-ray producing volume. The systematic analysis shows that asymmetries can cause an overestimation of the total areal density in these implosions. Finally, it is also found that an improvement in implosion symmetry resulting from correction of either the systematic mid or low modes would result in an increase of the hot-spot pressure from 56 Gbar to ≈ 80 Gbar and could produce a burning plasma when the implosion core is extrapolated to an equivalent 1.9 MJ symmetric direct illumination [A. Bose et al., Phys. Rev. E 94, 011201(R) (2016)].« less
NASA Astrophysics Data System (ADS)
Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.
2013-09-01
Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B 0) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B 0(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P th and the magnetic pressure P B, distributing against the temporal scale and the angle θxB between B 0(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of θxB. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B 0(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T ∥ derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.
Infragravity waves on fringing reefs in the tropical Pacific: Dynamic setup
NASA Astrophysics Data System (ADS)
Becker, J. M.; Merrifield, M. A.; Yoon, H.
2016-05-01
Cross-shore pressure and current observations from four fringing reefs of lengths ranging from 135 to 420 m reveal energetic low-frequency (˜0.001-0.05 Hz) motions. The spatial structure and temporal amplitudes of an empirical orthogonal function analysis of the pressure measurements suggest the dominant low-frequency variability is modal. Incoming and outgoing linear flux estimates also support partially standing modes on the reef flat during energetic events. A cross-covariance analysis suggests that breakpoint forcing excites these partially standing modes, similar to previous findings at other steep reefs. The dynamics of Symonds et al. (1982) with damping are applied to a step reef, with forcing obtained by extending a point break model of Vetter et al. (2010) for breaking wave setup to the low-frequency band using the shoaled envelope of the incident free surface elevation. A one parameter, linear analytical model for the reef flat free surface elevation is presented, which describes between 75% and 97% of the variance of the observed low-frequency shoreline significant wave height for all reefs considered over a range of conditions. The linear model contains a single dimensionless parameter that is the ratio of the inertial to dissipative time scales, and the observations from this study exhibit more low-frequency variability when the dissipative time scale is greater than the inertial time scale for the steep reefs considered.
Flight evaluation of an extended engine life mode on an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, Lawrence P.; Conners, Timothy R.
1992-01-01
An integrated flight and propulsion control system designed to reduce the rate of engine deterioration was developed and evaluated in flight on the NASA Dryden F-15 research aircraft. The extended engine life mode increases engine pressure ratio while reducing engine airflow to lower the turbine temperature at constant thrust. The engine pressure ratio uptrim is modulated in real time based on airplane maneuver requirements, flight conditions, and engine information. The extended engine life mode logic performed well, significantly reducing turbine operating temperature. Reductions in fan turbine inlet temperature of up to 80 F were obtained at intermediate power and up to 170 F at maximum augmented power with no appreciable loss in thrust. A secondary benefit was the considerable reduction in thrust-specific fuel consumption. The success of the extended engine life mode is one example of the advantages gained from integrating aircraft flight and propulsion control systems.
Phenomena of oscillations in atmospheric pressure direct current glow discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fu-cheng; Yan, Wen; Wang, De-zhen
2013-12-15
Self-sustained oscillations in a dc glow discharge with a semiconductor layer at atmospheric pressure were investigated by means of a one-dimensional fluid model. It is found that the dc glow discharge initially becomes unstable in the subnormal glow region and gives rise to oscillations of plasma parameters. A variety of oscillations with one or more frequencies have been observed under different conditions. The discharge oscillates between the glow discharge mode and the Townsend discharge mode in the oscillations with large amplitude while operates in the subnormal glow discharge mode all the while in the oscillations with small amplitude. Fourier Transformmore » spectra of oscillations reveal the transition mechanism between different oscillations. The effects of semiconductor conductivity on the oscillation frequency of the dominant mode, gas voltage, as well as the discharge current have also been analyzed.« less
Access to a new plasma edge state with high density and pressures using the quiescent H mode
Solomon, Wayne M.; Snyder, Philip B.; Burrell, Keith H.; ...
2014-09-24
A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. As a result, calculations of themore » pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less
Linear aerospike engine study. [for reusable launch vehicles
NASA Technical Reports Server (NTRS)
Diem, H. G.; Kirby, F. M.
1977-01-01
Parametric data on split-combustor linear engine propulsion systems are presented for use in mixed-mode single-stage-to-orbit (SSTO) vehicle studies. Preliminary design data for two selected engine systems are included. The split combustor was investigated for mixed-mode operations with oxygen/hydrogen propellants used in the inner combustor in Mode 2, and in conjunction with either oxygen/RP-1, oxygen/RJ-5, O2/CH4, or O2/H2 propellants in the outer combustor for Mode 1. Both gas generator and staged combustion power cycles were analyzed for providing power to the turbopumps of the inner and outer combustors. Numerous cooling circuits and cooling fluids (propellants) were analyzed and hydrogen was selected as the preferred coolant for both combustors and the linear aerospike nozzle. The maximum operating chamber pressure was determined to be limited by the availability of hydrogen coolant pressure drop in the coolant circuit.
NASA Astrophysics Data System (ADS)
Cankurtaran, M.; Saunders, G. A.; Wang, Q.; Ford, P. J.; Alberts, H. L.
1992-12-01
A comprehensive experimental study has been made of the elastic and nonlinear acoustic behavior of a dilute Cr alloy as it undergoes a commensurate (C)-incommensurate (I) spin-density-wave transition. Simultaneous measurements of the temperature dependence of ultrasonic wave velocity and attenuation of longitudinal and shear 10-MHz ultrasonic waves propagated along both the [100] and the [110] direction of Cr-0.3 at. % Ru alloy single crystal have been made in the temperature range 200-300 K. The temperature dependence of ultrasonic attenuation for each mode is characterized by a spikelike peak centered at TCI (=238.6 K) (on cooling) and at TIC (=255.6 K) (on warming). The velocities of both longitudinal and shear ultrasonic waves exhibit a large and steep increase at TCI on cooling and a similar drop at TIC on warming with a pronounced hysteresis between TIC and TCI. These observations show that the transition between the commensurate and incommensurate phases is first order. Measurements of the effects of hydrostatic pressure (up to 0.15 GPa) on the velocities of ultrasonic waves, which were made at several fixed temperatures between 248 and 297 K, show similar features: a steep increase at PCI (increasing pressure) and a similar drop at PIC (decreasing pressure) with a well-defined hysteresis. Both TCI and TIC increase strongly and approximately linearly with pressure, the mean values of dTCI/dP and dTIC/dP being (333+/-3) K/GPa and (277+/-5) K/GPa, respectively. The pressure and temperature dependencies of the anomalies in the ultrasonic wave velocity have been used to locate both the C-I and I-C boundaries on the magnetic P-T phase diagram. There is a triple point (at about 315 K and 0.22 GPa) where the paramagnetic, commensurate, and incommensurate spin-density-wave phases coexist. Results for the complete sets of the elastic stiffness tensor components and their hydrostatic pressure derivatives have been used to evaluate the acoustic-mode Grüneisen parameters in both the commensurate and incommensurate phases. These quantify the vibrational anharmonicity of each acoustic phonon mode in the long-wavelength limit and establish which acoustic modes interact strongly with the spin-density waves. Pronounced longitudinal acoustic-mode softening under pressure results in negative Grüneisen parameters, a particularly marked feature of the commensurate phase.
Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family.
Alechaga, Élida; Moyano, Encarnación; Galceran, M Teresa
2013-11-01
In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H](+) dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M-H](-), while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high-resolution mass spectrometry in a quadrupole-Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N-(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS(3) and MS(4) spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high-performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.
Nonlinear panel flutter in a rarefied atmosphere - Aerodynamic shear stress effects
NASA Technical Reports Server (NTRS)
Resende, Hugo B.
1991-01-01
The panel flutter phenomenon is studied assuming free-molecule flow. This kind of analysis is relevant in the case of hypersonic flight vehicles traveling at high altitudes, especially in the leeward portion of the vehicle. In these conditions the aerodynamic shear can be expected to be considerably larger than the pressure at a given point, so that the effects of such a loading are incorporated into the structural model. This is accomplished by introducing distributed longitudinal and bending moment loads. The former can lead to buckling of the panel, with the second mode in the case of a simply-supported panel playing a important role, and becoming the dominant mode in the solution. The presence of equivalent springs in the longitudinal direction at the panel's ends also becomes of relative importance, even for the evaluation of the linear flutter parameter. Finally, the behavior of the system is studied in the presence of applied compressive forces, that is, classical buckling.
Computations of Vertical Displacement Events with Toroidal Asymmetry
NASA Astrophysics Data System (ADS)
Sovinec, C. R.; Bunkers, K. J.
2017-10-01
Nonlinear numerical MHD modeling with the NIMROD code [https://nimrodteam.org] is being developed to investigate asymmetry during vertical displacement events. We start from idealized up/down symmetric tokamak equilibria with small levels of imposed toroidally asymmetric field errors. Vertical displacement results when removing current from one of the two divertor coils. The Eulerian reference-frame modeling uses temperature-dependent resistivity and anisotropic thermal conduction to distinguish the hot plasma region from surrounding cold, low-density conditions. Diffusion through a resistive wall is slow relative to Alfvenic scales but much faster than resistive plasma diffusion. Loss of the initial edge pressure and current distributions leads to a narrow layer of parallel current, which drives low-n modes that may be related to peeling-dominated ELMs. These modes induce toroidal asymmetry in the conduction current, which connects the simulated plasma to the wall. Work supported by the US DOE through Grant Numbers DE-FG02-06ER54850 and DE-FC02-08ER54975.
Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.
Fot, Evgenia V; Izotova, Natalia N; Yudina, Angelika S; Smetkin, Aleksei A; Kuzkov, Vsevolod V; Kirov, Mikhail Y
2017-01-01
The discontinuation of mechanical ventilation after coronary surgery may prolong and significantly increase the load on intensive care unit personnel. We hypothesized that automated mode using INTELLiVENT-ASV can decrease duration of postoperative mechanical ventilation, reduce workload on medical staff, and provide safe ventilation after off-pump coronary artery bypass grafting (OPCAB). The primary endpoint of our study was to assess the duration of postoperative mechanical ventilation during different modes of weaning from respiratory support (RS) after OPCAB. The secondary endpoint was to assess safety of the automated weaning mode and the number of manual interventions to the ventilator settings during the weaning process in comparison with the protocolized weaning mode. Forty adult patients undergoing elective OPCAB were enrolled into a prospective single-center study. Patients were randomized into two groups: automated weaning ( n = 20) using INTELLiVENT-ASV mode with quick-wean option; and protocolized weaning ( n = 20), using conventional synchronized intermittent mandatory ventilation (SIMV) + pressure support (PS) mode. We assessed the duration of postoperative ventilation, incidence and duration of unacceptable RS, and the load on medical staff. We also performed the retrospective analysis of 102 patients (standard weaning) who were weaned from ventilator with SIMV + PS mode based on physician's experience without prearranged algorithm. Realization of the automated weaning protocol required change in respiratory settings in 2 patients vs. 7 (5-9) adjustments per patient in the protocolized weaning group. Both incidence and duration of unacceptable RS were reduced significantly by means of the automated weaning approach. The FiO 2 during spontaneous breathing trials was significantly lower in the automated weaning group: 30 (30-35) vs. 40 (40-45) % in the protocolized weaning group ( p < 0.01). The average time until tracheal extubation did not differ in the automated weaning and the protocolized weaning groups: 193 (115-309) and 197 (158-253) min, respectively, but increased to 290 (210-411) min in the standard weaning group. The automated weaning system after off-pump coronary surgery might provide postoperative ventilation in a more protective way, reduces the workload on medical staff, and does not prolong the duration of weaning from ventilator. The use of automated or protocolized weaning can reduce the duration of postoperative mechanical ventilation in comparison with non-protocolized weaning based on the physician's decision.
Buehler, S; Lozano-Zahonero, S; Schumann, S; Guttmann, J
2014-12-01
In mechanical ventilation, a careful setting of the ventilation parameters in accordance with the current individual state of the lung is crucial to minimize ventilator induced lung injury. Positive end-expiratory pressure (PEEP) has to be set to prevent collapse of the alveoli, however at the same time overdistension should be avoided. Classic approaches of analyzing static respiratory system mechanics fail in particular if lung injury already prevails. A new approach of analyzing dynamic respiratory system mechanics to set PEEP uses the intratidal, volume-dependent compliance which is believed to stay relatively constant during one breath only if neither atelectasis nor overdistension occurs. To test the success of this dynamic approach systematically at bedside or in an animal study, automation of the computing steps is necessary. A decision support system for optimizing PEEP in form of a Graphical User Interface (GUI) was targeted. Respiratory system mechanics were analyzed using the gliding SLICE method. The resulting shapes of the intratidal compliance-volume curve were classified into one of six categories, each associated with a PEEP-suggestion. The GUI should include a graphical representation of the results as well as a quality check to judge the reliability of the suggestion. The implementation of a user-friendly GUI was successfully realized. The agreement between modelled and measured pressure data [expressed as root-mean-square (RMS)] tested during the implementation phase with real respiratory data from two patient studies was below 0.2 mbar for data taken in volume controlled mode and below 0.4 mbar for data taken in pressure controlled mode except for two cases with RMS < 0.6 mbar. Visual inspections showed, that good and medium quality data could be reliably identified. The new GUI allows visualization of intratidal compliance-volume curves on a breath-by-breath basis. The automatic categorisation of curve shape into one of six shape-categories provides the rational decision-making model for PEEP-titration.
Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor
NASA Astrophysics Data System (ADS)
Hazarika, D.; Pegu, D. S.
2013-03-01
This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.
NASA Technical Reports Server (NTRS)
Ville, J. M.; Silcox, R. J.
1980-01-01
The radiation of sound from an inlet as a function of flow velocity, frequency, duct mode structure, and inlet geometry was examined by using a spinning mode synthesizer to insure a given space-time structure inside the duct. Measurements of the radiation pattern (amplitude and phase) and of the pressure reflection coefficient were obtained over an azimuthal wave number range of 0 to 6 and a frequency range up to 5000 Hz for an unflanged duct and a bellmouth. The measured radiated field and pressure reflection coefficient without flow for the unflanged duct agree reasonably well with theory. The influence of the inlet contour appears to be very drastic near the cut-on frequency of a mode and reasonable agreement is found between the bellmouth pressure reflection coefficient and a infinite hyperboloidal inlet theory. It is also shown that the flow has a weak effect on the amplitude of the directivity factor but significantly shifts the directivity factor phase. The influence of the flow on the modulus of the pressure reflection coefficient is found to be well described by a theoretical prediction.
Kinetic electromagnetic instabilities in an ITB plasma with weak magnetic shear
NASA Astrophysics Data System (ADS)
Chen, W.; Yu, D. L.; Ma, R. R.; Shi, P. W.; Li, Y. Y.; Shi, Z. B.; Du, H. R.; Ji, X. Q.; Jiang, M.; Yu, L. M.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Ding, X. T.; Dong, J. Q.; Wang, Z. X.; Wei, H. L.; Cao, J. Y.; Song, S. D.; Song, X. M.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.
2018-05-01
Kinetic Alfvén and pressure gradient driven instabilities are very common in magnetized plasmas, both in space and the laboratory. These instabilities will be easily excited by energetic particles (EPs) and/or pressure gradients in present-day fusion and future burning plasmas. This will not only cause the loss and redistribution of the EPs, but also affect plasma confinement and transport. Alfvénic ion temperature gradient (AITG) instabilities with the frequency ω_BAE<ω<ω_TAE and the toroidal mode numbers n=2{-}8 are found to be unstable in NBI internal transport barrier plasmas with weak shear and low pressure gradients, where ω_BAE and ω_TAE are the frequencies of the beta- and toroidicity-induced Alfvén eigenmodes, respectively. The measured results are consistent with the general fishbone-like dispersion relation and kinetic ballooning mode equation, and the modes become more unstable the smaller the magnetic shear is in low pressure gradient regions. The interaction between AITG activity and EPs also needs to be investigated with greater attention in fusion plasmas, such as ITER (Tomabechi and The ITER Team 1991 Nucl. Fusion 31 1135), since these fluctuations can be enhanced by weak magnetic shear and EPs.
Influence of Particle Morphology on 3D Kinematic Behavior and Strain Localization of Sheared Sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alshibli, Khalid A.; Jarrar, Maha F.; Druckrey, Andrew M.
The constitutive behavior of sheared sand is highly influenced by particle morphology, gradation, mineralogy, specimen density, loading condition, stress path, and boundary conditions. The current literature lacks a three-dimensional (3D) systematic experimental study that investigates the influence of particle morphology, confining pressure, and specimen density on the failure mode of sheared sand. In this paper, surface texture, roundness, and sphericity of three uniform sands and glass beads with similar grain size were quantified by using 3D images of particles. In situ nondestructive 3D synchrotron microcomputed tomography (SMT) was used to monitor the deformation of medium-dense and very dense dry sandmore » specimens that were tested under axisymmetric triaxial loading condition at 15 and 400 kPa confining pressures. The particles were identified and tracked in 3D as shearing progressed within the specimens, and maps of incremental particle translation and rotation were developed and used to uncover the relationship between particle morphology, specimen density, and confining pressure on the deformation and failure mode of sheared sand. This paper discusses the relationship between the failure mode and particle morphology, specimen density, and confining pressure.« less
Delamination of Composite Cylinders
NASA Astrophysics Data System (ADS)
Davies, Peter; Carlsson, Leif A.
The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.
Frequency domain analysis of knock images
NASA Astrophysics Data System (ADS)
Qi, Yunliang; He, Xin; Wang, Zhi; Wang, Jianxin
2014-12-01
High speed imaging-based knock analysis has mainly focused on time domain information, e.g. the spark triggered flame speed, the time when end gas auto-ignition occurs and the end gas flame speed after auto-ignition. This study presents a frequency domain analysis on the knock images recorded using a high speed camera with direct photography in a rapid compression machine (RCM). To clearly visualize the pressure wave oscillation in the combustion chamber, the images were high-pass-filtered to extract the luminosity oscillation. The luminosity spectrum was then obtained by applying fast Fourier transform (FFT) to three basic colour components (red, green and blue) of the high-pass-filtered images. Compared to the pressure spectrum, the luminosity spectra better identify the resonant modes of pressure wave oscillation. More importantly, the resonant mode shapes can be clearly visualized by reconstructing the images based on the amplitudes of luminosity spectra at the corresponding resonant frequencies, which agree well with the analytical solutions for mode shapes of gas vibration in a cylindrical cavity.
Raman spectroscopy in transition metals and alloys at ultrahigh pressures.
NASA Astrophysics Data System (ADS)
Goncharov, Alexander; Gregoryanz, Eugene; Struzhkin, Viktor; Hemley, Russell; Mao, Ho-Kwang; Merkel, Sebastien; Huang, Eugene
2001-03-01
We present the results of Raman measurements of hexagonal close-packed phases of Fe, Fe_(1-x)Nix (x=0.01-0.2), Re up to megabar pressures (>100 GPa). We compare frequencies and their pressure dependences of the Raman-active E_2g mode for different compositions. We find a substantial decrease in the phonon frequency for Fe:Ne alloy compared to pure Fe, which is tentatively attributed to magneto-elastic coupling. We also determine the mode Grüneisen parameters and compare them to other experimental results and theoretical calculations. The data for pure Fe and Re are used to determine the pressure dependence of the C_44 shear elastic modulus [1,2]. [1] A. P. Jephcoat, H. Olijnyk, K. Refson, Eos 80, F929 (1999). [2] S. Merkel et al., Science 288, 1626 (2000).
Enhancing pressure ulcer prevention using wound dressings: what are the modes of action?
Call, Evan; Pedersen, Justin; Bill, Brian; Black, Joyce; Alves, Paulo; Brindle, C Tod; Dealey, Carol; Santamaria, Nick; Clark, Michael
2015-08-01
Recent clinical research has generated interest in the use of sacral wound dressings as preventive devices for patients at risk of ulceration. This study was conducted to identify the modes of action through which dressings can add to pressure ulcer prevention, for example, shear and friction force redistribution and pressure distribution. Bench testing was performed using nine commercially available dressings. The use of dressings can reduce the amplitude of shear stress and friction reaching the skin of patients at risk. They can also effectively redirect these forces to wider areas which minimises the mechanical loads upon skeletal prominences. Dressings can redistribute pressure based upon their effective Poisson ratio and larger deflection areas, providing greater load redistribution. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Quality Management and Control of Low Pressure Cast Aluminum Alloy
NASA Astrophysics Data System (ADS)
Zhang, Dianxi; Zhang, Yanbo; Yang, Xiufan; Chen, Zhaosong; Jiang, Zelan
2018-01-01
This paper briefly reviews the history of low pressure casting and summarizes the major production processes of low pressure casting. It briefly introduces the quality management and control of low pressure cast aluminum alloy. The main processes include are: preparation of raw materials, Melting, refining, physical and chemical analysis, K-mode inspection, sand core, mold, heat treatment and so on.
On pressure-frequency relations in the excised larynx.
Alipour, Fariborz; Scherer, Ronald C
2007-10-01
The purpose of this study was to find relationships between subglottal pressure (P(s)) and fundamental frequency (F(0)) of phonation in excised larynx models. This included also the relation between F(0) and its rate of change with pressure (dFdP). Canine larynges were prepared and mounted over a tapered tube that supplied pressurized, heated, and humidified air. Glottal adduction was accomplished either by using two-pronged probes to press the arytenoids together or by passing a suture to simulate lateral cricoarytenoid muscle activation. The pressure-frequency relation was obtained through a series of pressure-flow sweep experiments that were conducted for eight excised canine larynges. It was found that, at set adduction and elongation levels, the pressure-frequency relation is nonlinear, and is highly influenced by the adduction and elongation. The results indicated that for the lower phonation mode, the average rate of change of frequency with pressure was 2.9+/-0.7 Hzcm H(2)O, and for the higher mode was 5.3+/-0.5 Hzcm H(2)O for adduction changes and 8.2+/-4.4 Hzcm H(2)O for elongation changes. The results suggest that during speech and singing, the dFdP relationships are taken into account.
DELZON, SYLVAIN; DOUTHE, CYRIL; SALA, ANNA; COCHARD, HERVE
2010-01-01
Resistance to water-stress induced cavitation is an important indicator of drought tolerance in woody species and is known to be intimately linked to the anatomy of the xylem. However, the actual mechanical properties of the pit membrane are not well known and the exact mode of air-seeding by which cavitation occurs is still uncertain. We examined the relationship between cavitation resistance and bordered pit structure and function in 40 coniferous species. Xylem pressure inducing 50% loss of hydraulic conductance (P50, a proxy for cavitation resistance) varied widely among species, from −2.9 to −11.3 MPa. The valve effect of the pit membrane, measured as a function of margo flexibility and torus overlap, explained more variation in cavitation-resistance than simple anatomical traits such as pit membrane, pit aperture or torus size. Highly cavitation resistant species exhibited both a high flexibility of the margo and a large overlap between the torus and the pit aperture, allowing the torus to tightly seal the pit aperture. Our results support the hypothesis of seal capillary-seeding as the most likely mode of air-seeding, and suggest that the adhesion of the torus to the pit border may be the main determinant of cavitation resistance in conifers. PMID:20636490
Flux-driven turbulence GDB simulations of the IWL Alcator C-Mod L-mode edge compared with experiment
NASA Astrophysics Data System (ADS)
Francisquez, Manaure; Zhu, Ben; Rogers, Barrett
2017-10-01
Prior to predicting confinement regime transitions in tokamaks one may need an accurate description of L-mode profiles and turbulence properties. These features determine the heat-flux width upon which wall integrity depends, a topic of major interest for research aid to ITER. To this end our work uses the GDB model to simulate the Alcator C-Mod edge and contributes support for its use in studying critical edge phenomena in current and future tokamaks. We carried out 3D electromagnetic flux-driven two-fluid turbulence simulations of inner wall limited (IWL) C-Mod shots spanning closed and open flux surfaces. These simulations are compared with gas puff imaging (GPI) and mirror Langmuir probe (MLP) data, examining global features and statistical properties of turbulent dynamics. GDB reproduces important qualitative aspects of the C-Mod edge regarding global density and temperature profiles, within reasonable margins, and though the turbulence statistics of the simulated turbulence follow similar quantitative trends questions remain about the code's difficulty in exactly predicting quantities like the autocorrelation time A proposed breakpoint in the near SOL pressure and the posited separation between drift and ballooning dynamics it represents are examined This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).
Delzon, Sylvain; Douthe, Cyril; Sala, Anna; Cochard, Herve
2010-12-01
Resistance to water-stress induced cavitation is an important indicator of drought tolerance in woody species and is known to be intimately linked to the anatomy of the xylem. However, the actual mechanical properties of the pit membrane are not well known and the exact mode of air-seeding by which cavitation occurs is still uncertain. We examined the relationship between cavitation resistance and bordered pit structure and function in 40 coniferous species. Xylem pressure inducing 50% loss of hydraulic conductance (P(50), a proxy for cavitation resistance) varied widely among species, from -2.9 to -11.3 MPa. The valve effect of the pit membrane, measured as a function of margo flexibility and torus overlap, explained more variation in cavitation-resistance than simple anatomical traits such as pit membrane, pit aperture or torus size. Highly cavitation resistant species exhibited both a high flexibility of the margo and a large overlap between the torus and the pit aperture, allowing the torus to tightly seal the pit aperture. Our results support the hypothesis of seal capillary-seeding as the most likely mode of air-seeding, and suggest that the adhesion of the torus to the pit border may be the main determinant of cavitation resistance in conifers. © 2010 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Dnestrovskij, Yu. N.; Vershkov, V. A.; Danilov, A. V.; Dnestrovskij, A. Yu.; Zenin, V. N.; Lysenko, S. E.; Melnikov, A. V.; Shelukhin, D. A.; Subbotin, G. F.; Cherkasov, S. V.
2018-01-01
In ohmically heated (OH) plasma with low recycling, an improved particle confinement (IPC) mode is established during gas puffing. However, after gas puffing is switched off, this mode is retained only for about 100 ms, after which an abrupt phase transition into the low particle confinement (LPC) mode occurs in the entire plasma cross section. During such a transition, energy transport due to heat conduction does not change. The phase transition in OH plasma is similar to the effect of density pump-out from the plasma core, which occurs after electron cyclotron heating (ECH) is switched on. Analysis of the measured plasma pressure profiles in the T-10 tokamak shows that, after gas puffing in the OH mode is switched off, the plasma pressure profile in the IPC stage becomes more peaked and, after the peakedness exceeds a certain critical value, the IPC-LPC transition occurs. Similar processes are also observed during ECH. If the pressure profile is insufficiently peaked during ECH, then the density pump-out effect comes into play only after the critical peakedness of the pressure profile is reached. In the plasma core, the density and pressure profiles are close to the corresponding canonical profiles. This allows one to derive an expression for the particle flux within the canonical profile model and formulate a criterion for the IPC-LPC transition. The time evolution of the plasma density profile during phase transitions was simulated for a number of T-10 shots with ECH and high recycling. The particle transport coefficients in the IPC and LPC phases, as well as the dependences of these coefficients on the ECH power, are determined.
A low-dimensional approach to closed-loop control of a Mach 0.6 jet
NASA Astrophysics Data System (ADS)
Low, Kerwin R.; Berger, Zachary P.; Kostka, Stanislav; ElHadidi, Basman; Gogineni, Sivaram; Glauser, Mark N.
2013-04-01
Simultaneous time-resolved measurements of the near-field hydrodynamic pressure field, 2-component streamwise velocity field, and far-field acoustics are taken for an un-heated, axisymmetric Mach 0.6 jet in co-flow. Synthetic jet actuators placed around the periphery of the nozzle lip provide localized perturbations to the shear layer. The goal of this study was to develop an understanding of how the acoustic nature of the jet responds to unsteady shear layer excitation, and subsequently how this can be used to reduce the far-field noise. Review of the cross-correlations between the most energetic low-order spatial Fourier modes of the pressure and the far-field region reveals that mode 0 has a strong correlation and mode 1 has a weak correlation with the far-field. These modes are emulated with the synthetic jet array and used as drivers of the developing shear layer. In open loop forcing configurations, there is energy transfer among spatial scales, enhanced mixing, a reconfiguration of the low-dimensional spatial structure, and an increase in the overall sound pressure level (OASPL). In the closed loop configuration, changes to these quantities are more subtle but there is a reduction in the overall fluctuating sound pressure level OASPLf by 1.35 dB. It is argued that this reduction is correlated with the closed loop control feeding back the dynamical low-order information measured in the largest noise producing region.
Ultrasonic attenuation and velocity in AS/3501-6 graphite/epoxy fiber composite
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Nayebhashemi, H.; Lee, S. S.
1979-01-01
The ultrasonic group velocity and attenuation were measured as a function of frequency for longitudinal and shear waves in the epoxy matrix (3501-6) and in the principal directions of the unidirectional graphite/epoxy composite (AS/3501-6). Tests were conducted in the frequency ranges 0.25 Mz to 14 MHz and 0.5 Mz to 3 MHz for longitudinal and shear wave modes, respectively. The attenuation increased with frequency for all wave modes, but the group velocity was independent of frequency for all wave modes. The effects of pressure and couplant at the transducer-specimen interface were studied and it was found that for each transducer type there exists a frequency dependent 'saturation pressure' corresponding to the maximum output signal amplitude.
NASA Technical Reports Server (NTRS)
Cabell, Karen; Hass, Neal; Storch, Andrea; Gruber, Mark
2011-01-01
A series of hydrocarbon-fueled direct-connect scramjet ground tests has been completed in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) at simulated Mach 8 flight conditions. These experiments were part of an initial test phase to support Flight 2 of the Hypersonic International Flight Research Experimentation (HIFiRE) Program. In this flight experiment, a hydrocarbon-fueled scramjet is intended to demonstrate transition from dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink test article that duplicates both the flowpath lines and a majority of the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests were to verify the operability of the HIFiRE isolator/combustor across the simulated Mach 6-8 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition. Both of these objectives were achieved prior to the HiFIRE Flight 2 payload Critical Design Review. Mach 8 ground test results are presented in this report, including flowpath surface pressure distributions that demonstrate the operation of the flowpath in scramjet-mode over a small range of test conditions around the nominal Mach 8 simulation, as well as over a range of fuel equivalence ratios. Flowpath analysis using ground test data is presented elsewhere; however, limited comparisons with analytical predictions suggest that both scramjet-mode operation and the combustion performance objective are achieved at Mach 8 conditions.
f-Mode Secular Instabilities in Deleptonizing Fizzlers
NASA Astrophysics Data System (ADS)
Imamura, James N.; Durisen, Richard H.
2004-12-01
Fizzlers are intermediate states that may form between white dwarf and neutron star densities during the collapse of massive rotating stars. This paper studies the gravitational radiation reaction (GRR) driven f-mode secular instabilities of fizzlers with angular momentum distributions h(mc) appropriate to the core collapse of massive rotating stars, where h is the specific angular momentum and mc is the cylindrical mass fraction. For core collapses that maintain axial symmetry, the h(mc) of the remnant reflects the conditions in the precollapse stellar core, and, thus, the h(mc) will resemble that of a uniformly rotating star supported by the pressure of relativistically degenerate electrons. Such an h(mc) concentrates most angular momentum toward the equatorial region of the object. The onset of f-mode secular instabilities in such fizzlers is affected strongly by the h(mc), whereas instability depends only weakly on compressibility. For a broad range of fizzler equations of state and the core h(mc), the f-mode secular instability thresholds drop to T/W~0.034-0.042, 0.019-0.021, and 0.012-0.0135, for m=2, 3, and 4, respectively. These same thresholds with the Maclaurin spheroid h(mc) are T/W=0.13-0.15, 0.10-0.11, and 0.08-0.09, respectively. The growth times τgw for GRR-driven m=2 modes are long. For fizzlers with specific angular momentum J/M~1.5×1016 cm2 s-1 and T/W<~0.24 (ρc<~1014 g cm-3), τgw>400 s. For these fizzlers, τgw>>τde, the deleptonization timescale, and GRR-driven secular instabilities will not grow along a deleptonizing fizzler sequence except, possibly, at T/W near the dynamic bar mode instability threshold, T/W~0.27.
Mechanical behavior and localized failure modes in a porous basalt from the Azores
NASA Astrophysics Data System (ADS)
Loaiza, S.; Fortin, J.; Schubnel, A.; Guéguen, Y.; Moreira, M.; Vinciguerra, S.
2012-04-01
Basaltic rocks are the main component of the oceanic upper crust. This is of potential interest for water and geothermal resources, or for storage of CO2. The aim of our work is to investigate experimentally the mechanical behavior and the failure modes of porous basalt as well as the permeability evolution during deformation. Cylindrical basalt samples, from the Azores, of 30 mm in diameter and 60 mm in length were deformed the triaxial cell of the Laboratoire de Geologie at the Ecole Normale Supérieure (Paris) at room temperature and at a constant axial strain rate of 10-5 s-1. The initial porosity of the sample was 18%. The Geodesign triaxial cell can reach 300MPa confining pressure; axial load is performed through a piston and can reach 900 MPa (for a 30mm diameter sample); maximum pore pressure is 100MPa (applied using two precision volumetric pumps). In our study, a set of experiments were performed at confining pressure in the range of 25-290 MPa. The samples were deformed under saturated conditions at a constant pore pressure of 5MPa. Two volumetric pumps kept the pore pressure constant, and the pore volume variations were recorded. The evolution of the porosity was calculated from the total volume variation inside the volumetric pumps. Permeability measurements were performed using the steady-state technique. Our result shows that two modes of deformation can be highlighted in this basalt. At low confining pressure (Pc < 50 MPa), the differential stress attains a peak before the sample undergoes strain softening; the failure of sample occurs by shear localization. Yet, the brittle regime is commonly observed in this low Pc range, the experiments performed at confining pressure higher than 50 MPa, show a totally different mode of deformation. In this second mode of deformation, an appreciable inelastic porosity reduction is observed. Comparing to the hydrostatic loading, the rock sample started to compact beyond a critical stress state; and from then, strain hardening, with stress drops are observed. Such a behavior is characteristic of the formation of compaction localization, due to grain crushing and pore collapse. In addition, this inelastic compaction is accompanied by a decrease of permeability, indicating that these compaction bands or zones act as barrier for fluid flow, in agreement with observations done in sandstone (Fortin et al., 2005). Further studies, including microstructural observations carried out by mapping the compaction bands or zones throughout a mosaic of SEM images at high resolution and acoustic emission recording will be carried in order to confirm the formation of compaction localization, and the micromechanisms (pore collapse and grain crushing) taking place in this second mode of deformation.
Variable optical attenuator and dynamic mode group equalizer for few mode fibers.
Blau, Miri; Weiss, Israel; Gerufi, Jonathan; Sinefeld, David; Bin-Nun, Moran; Lingle, Robert; Grüner-Nielsen, Lars; Marom, Dan M
2014-12-15
Variable optical attenuation (VOA) for three-mode fiber is experimentally presented, utilizing an amplitude spatial light modulator (SLM), achieving up to -28dB uniform attenuation for all modes. Using the ability to spatially vary the attenuation distribution with the SLM, we also achieve up to 10dB differential attenuation between the fiber's two supported mode group (LP₀₁ and LP₁₁). The spatially selective attenuation serves as the basis of a dynamic mode-group equalizer (DME), potentially gain-balancing mode dependent optical amplification. We extend the experimental three mode DME functionality with a performance analysis of a fiber supporting 6 spatial modes in four mode groups. The spatial modes' distribution and overlap limit the available dynamic range and performance of the DME in the higher mode count case.
NASA Technical Reports Server (NTRS)
Slater, John W.; Saunders, John D.
2010-01-01
Methods of computational fluid dynamics were applied to simulate the aerodynamics within the turbine flowpath of a turbine-based combined-cycle propulsion system during inlet mode transition at Mach 4. Inlet mode transition involved the rotation of a splitter cowl to close the turbine flowpath to allow the full operation of a parallel dual-mode ramjet/scramjet flowpath. Steady-state simulations were performed at splitter cowl positions of 0deg, -2deg, -4deg, and -5.7deg, at which the turbine flowpath was closed half way. The simulations satisfied one objective of providing a greater understanding of the flow during inlet mode transition. Comparisons of the simulation results with wind-tunnel test data addressed another objective of assessing the applicability of the simulation methods for simulating inlet mode transition. The simulations showed that inlet mode transition could occur in a stable manner and that accurate modeling of the interactions among the shock waves, boundary layers, and porous bleed regions was critical for evaluating the inlet static and total pressures, bleed flow rates, and bleed plenum pressures. The simulations compared well with some of the wind-tunnel data, but uncertainties in both the windtunnel data and simulations prevented a formal evaluation of the accuracy of the simulation methods.
Pulse-periodic generation of supershort avalanche electron beams and X-ray emission
NASA Astrophysics Data System (ADS)
Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.
2014-05-01
Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.
NASA Astrophysics Data System (ADS)
Kikuchi, Yusuke; Maegawa, Takuya; Otsubo, Akira; Nishimura, Yoshimi; Nagata, Masayoshi; Yatsuzuka, Mitsuyasu
2018-05-01
Two discharge modes, α and γ, of a repetitive nanosecond pulsed helium glow discharge at a gas pressure of 10 kPa in the repetition frequency range from 20 to 600 kHz are reported for the first time. The pulsed glow discharge is produced in a pair of parallel plate metal electrodes without insertion of dielectrics. The α mode discharge is volumetrically produced in the electrode gap at a low-repetition frequency, whereas the γ mode discharge is localized at the cathode surface at a high-repetition frequency. At high-repetition frequency, the time interval between voltage pulses is shorter than the lifetime of the afterglow produced by the preceding discharge. Then, the γ mode discharge is maintained by a large number of secondary electrons emitted from the cathode exposed to high-density ions and metastable helium atoms in the afterglow. In the α mode discharge with a low-repetition frequency operation, primary electrons due to gas ionization dominate the ionization process. Thus, a large discharge voltage is needed for the excitation of the α mode discharge. It is established that the bifurcation of α-γ discharge mode, accompanied by a decrease in the discharge voltage, occurs at the high-repetition frequency of ∼120 kHz.
Laminar and turbulent flow modes of cold atmospheric pressure argon plasma jet
NASA Astrophysics Data System (ADS)
Basher, Abdulrahman H.; Mohamed, Abdel-Aleam H.
2018-05-01
Laminar and turbulent flow modes of a cold atmospheric pressure argon plasma jet are investigated in this work. The effects of the gas flow rate, applied voltage, and frequency on each plasma mode and on intermodal transitions are characterized using photographic, electrical, and spectroscopic techniques. Increasing the gas flow rate increases the plasma jet length in the laminar mode. Upon transition to the turbulent mode, increasing the gas flow rate leads to a decrease in the plasma jet length. The flow rate at which the jet transitions from laminar to turbulent increases with the applied voltage. The presence of nitric oxide (NO) radicals is indicated by the emission spectra of the turbulent plasmas only, while excited Ar, N2, OH, and O excited species are produced in both laminar and turbulent modes. With no distinctive behavior observed upon transition between the two operating modes, the power consumption was found to be insensitive to gas flow rate variation, while the energy density was found to decrease exponentially with the gas flow rate. Rotational and vibrational temperature measurements of the two plasma modes indicated that they are of the non-thermal equilibrium plasma type. Since they offer NO radicals while maintaining the benefits of the laminar plasma jet, the turbulent plasma jet is more useful than its laminar counterpart in biomedical applications.
High pressure study on molecular mobility of leucrose
NASA Astrophysics Data System (ADS)
Kaminski, K.; Kaminska, E.; Hensel-Bielowka, S.; Pawlus, S.; Paluch, M.; Ziolo, J.
2008-08-01
Broadband dielectric measurements on leucrose were performed under ambient and high pressure. We showed that in this disaccharide, there are two secondary relaxation modes, a slower one sensitive to pressure and a faster one that is not. This finding clearly indicates that the faster secondary relaxation originates from the intramolecular motion. This conclusion contradicted previous interpretations of this mode observed for trehalose and maltitol, systems very closely related to leucrose. In addition, pressure sensitivity of the slower relaxation confirms our recent interpretation about the character of this process. Furthermore, we discovered that unlike the faster relaxation, the slower secondary relaxation is sensitive to the thermodynamic history of measurements. Finally, monitoring the changes in maximum loss of the slower secondary relaxation measured at the same pressure and temperature conditions for glasses obtained via different thermodynamic routes enabled us to draw a conclusion about the density of the formed glasses. Our observations may be helpful in establishing a new method of suppressing crystallization of amorphous drugs.
A reaction cell for ambient pressure soft x-ray absorption spectroscopy
NASA Astrophysics Data System (ADS)
Castán-Guerrero, C.; Krizmancic, D.; Bonanni, V.; Edla, R.; Deluisa, A.; Salvador, F.; Rossi, G.; Panaccione, G.; Torelli, P.
2018-05-01
We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.
A Numerical Model of Hercules A by Magnetic Tower
NASA Astrophysics Data System (ADS)
Nakamura, Masanori; Tregillis, I. L.; Li, H.; Li, S.
2009-01-01
We apply magnetohydrodynamic (MHD) modeling to the radio galaxy Hercules A for investigating the jet-driven shock, jet/lobe transition, wiggling, and magnetic field distribution associated with this source. The model consists of magnetic tower jets in a galaxy cluster environment. The profile of underlying ambient gas plays an important role in jet-lobe morphology. The balance between the magnetic pressure generated by axial current and the ambient gas pressure can determine the lobe radius. The jet body is confined jointly by the external pressure and gravity inside the cluster core radius, while outside this radius it expands radially to form fat lobes in a steeply decreasing ambient thermal pressure gradient. The current-carrying jets are responsible for generating a strong, tightly wound helical magnetic field. This magnetic configuration will be unstable against the current-driven kink mode and it visibly grows beyond the cluster core radius where a separation between the jet forward and return currents occurs. The reversed pinch profile of global magnetic field associated with the jet and lobes produces projected magnetic-vector distributions aligned with the jet flow and the lobe edge. AGN-driven shock powered by the expanding magnetic tower jet surrounds the jet/lobe structure and heats the ambient ICM. The lobes expand subsonically; no obvious hot spots are produced at the heads of lobes. Several key features in our MHD modeling may be qualitatively supported by the observations of Hercules A. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. It was supported by the Laboratory Directed Research and Development Program at LANL and by IGPP at LANL.
Helicon Modes Driven by Ionosheric 0+ Ions in the Plasma Sheet Region
NASA Technical Reports Server (NTRS)
Lakhina, Gurbax S.; Tsurutani, Bruce T.
1996-01-01
It is shown that the precence of ionospheric-origin oxygen ion beams with anisotropic pressure can excite helicon modes in the near-Earth plasma shet region provided their Alfvenic Mach numbers lie in a certain range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, W P; Burrell, K H; Casper, T A
2004-12-03
The quiescent H (QH) mode, an edge localized mode (ELM)-free, high-confinement mode, combines well with an internal transport barrier to form quiescent double barrier (QDB) stationary state, high performance plasmas. The QH-mode edge pedestal pressure is similar to that seen in ELMing phases of the same discharge, with similar global energy confinement. The pedestal density in early ELMing phases of strongly pumped counter injection discharges drops and a transition to QH-mode occurs, leading to lower calculated edge bootstrap current. Plasmas current ramp experiment and ELITE code modeling of edge stability suggest that QH-modes lie near an edge current stability boundary.more » At high triangularity, QH-mode discharges operate at higher pedestal density and pressure, and have achieved ITER level values of {beta}{sub PED} and {nu}*. The QDB achieves performance of {alpha}{sub N}H{sub 89} {approx} 7 in quasi-stationary conditions for a duration of 10 tE, limited by hardware. Recently we demonstrated stationary state QDB discharges with little change in kinetic and q profiles (q{sub 0} > 1) for 2 s, comparable to ELMing ''hybrid scenarios'', yet without the debilitating effects of ELMs. Plasma profile control tools, including electron cyclotron heating and current drive and neutral beam heating, have been demonstrated to control simultaneously the q profile development, the density peaking, impurity accumulation and plasma beta.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadwallader, Lee C.; Zhao, Haihua
In this study, selected accident case histories are described that illustrate the potential modes of injury from gas jets, pressure-driven missiles, and asphyxiants. Gas combustion hazards are also briefly mentioned. Using high-pressure helium and nitrogen, estimates of safe exclusion distances are calculated for differing pressures, temperatures, and breach sizes. Some sources for gas system reliability values are also cited.
Multiscale Pressure-Balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Liping; Zhang, Lei; Feng, Xueshang
2017-02-10
Observations of solar wind turbulence indicate the existence of multiscale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multiscale PBSs and in particular their formation in compressive magnetohydrodynamic turbulence. By the use of the higher-order Godunov code Athena, a driven compressible turbulence with an imposed uniform guide field is simulated. The simulation results show that both the magnetic pressure and the thermal pressure exhibit a turbulent spectrum with a Kolmogorov-like power law, and that in many regions of the simulation domain they are anticorrelated. The computed wavelet cross-coherence spectra of themore » magnetic pressure and the thermal pressure, as well as their space series, indicate the existence of multiscale PBSs, with the small PBSs being embedded in the large ones. These multiscale PBSs are likely to be related to the highly oblique-propagating slow-mode waves, as the traced multiscale PBS is found to be traveling in a certain direction at a speed consistent with that predicted theoretically for a slow-mode wave propagating in the same direction.« less
Ultrasonic level sensors for liquids under high pressure
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.
1986-01-01
An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.
Pressure Oscillations and Structural Vibrations in Space Shuttle RSRM and ETM-3 Motors
NASA Technical Reports Server (NTRS)
Mason, D. R.; Morstadt, R. A.; Cannon, S. M.; Gross, E. G.; Nielsen, D. B.
2004-01-01
The complex interactions between internal motor pressure oscillations resulting from vortex shedding, the motor's internal acoustic modes, and the motor's structural vibration modes were assessed for the Space Shuttle four-segment booster Reusable Solid Rocket Motor and for the five-segment engineering test motor ETM-3. Two approaches were applied 1) a predictive procedure based on numerically solving modal representations of a solid rocket motor s acoustic equations of motion and 2) a computational fluid dynamics two-dimensional axi-symmetric large eddy simulation at discrete motor burn times.
Vilkov, Andrey N.; Gamage, Chaminda M.; Misharin, Alexander S.; Doroshenko, Vladimir M.; Tolmachev, Dmitry A.; Tarasova, Irina A.; Kharybin, Oleg N.; Novoselov, Konstantin P.; Gorshkov, Michael V.
2007-01-01
A new Fourier Transform Ion Cyclotron Resonance mass spectrometer based on a permanent magnet with an atmospheric pressure ionization source was designed and constructed. A mass resolving power (full-width-at-half-maximum) of up to 80,000 in the electron ionization mode and 25,000 in the electrospray mode was obtained. Also, a mass measurement accuracy at low-ppm level has been demonstrated for peptide mixtures in a mass range of up to 1,200 m/z in the isotopically resolved mass spectra. PMID:17587594
New technologies of mining stratal minerals and their computation
NASA Astrophysics Data System (ADS)
Beysembayev, K. M.; Reshetnikova, O. S.; Nokina, Z. N.; Teliman, I. V.; Asmagambet, D. K.
2018-03-01
The paper considers the systems of flat and volumetric modeling of controlling long-wall faces for schemes with rock collapse of the immediate and main roof and smooth lowering of the remaining layers, as well as in forming a vault over the face. Stress distributions are obtained for the reference pressure zone. They are needed for recognizing the active state of the long-wall face in the feedback mode. The project of the system “support - lateral rocks” is represented by a multidimensional network base. Its connections reflect the elements of the system or rocks, workings, supports with nodes and parts. The connections reflect the logic of the operation of machines, assemblies and parts, and the types of their mechanical connections. At the nodes of the base, there are built-in systems of object-oriented programming languages. This allows combining spatial elements of the system into a simple neural network.
NASA Technical Reports Server (NTRS)
Duhon, D. D.
1975-01-01
The shuttle orbital maneuvering system (OMS) pressure-volume-temperature (P-V-T) propellant gaging module computes the quantity of usable OMS propellant remaining based on the real gas P-V-T relationship for the propellant tank pressurant, helium. The OMS P-V-T propellant quantity gaging error was determined for four sets of instrumentation configurations and accuracies with the propellant tank operating in the normal constant pressure mode and in the blowdown mode. The instrumentation inaccuracy allowance for propellant leak detection was also computed for these same four sets of instrumentation. These gaging errors and leak detection allowances are presented in tables designed to permit a direct comparison of the effectiveness of the four instrumentation sets. The results show the magnitudes of the improvements in propellant quantity gaging accuracies and propellant leak detection allowances which can be achieved by employing more accurate pressure and temperature instrumentation.
Ortiz, Aurélie U; Boutin, Anne; Fuchs, Alain H; Coudert, François-Xavier
2013-06-06
We provide the first molecular dynamics study of the mechanical instability that is the cause of pressure-induced amorphization of zeolitic imidazolate framework ZIF-8. By measuring the elastic constants of ZIF-8 up to the amorphization pressure, we show that the crystal-to-amorphous transition is triggered by the mechanical instability of ZIF-8 under compression, due to shear mode softening of the material. No similar softening was observed under temperature increase, explaining the absence of temperature-induced amorphization in ZIF-8. We also demonstrate the large impact of the presence of adsorbate in the pores on the mechanical stability and compressibility of the framework, increasing its shear stability. This first molecular dynamics study of ZIF mechanical properties under variations of pressure, temperature, and pore filling opens the way to a more comprehensive understanding of their mechanical stability, structural transitions, and amorphization.
2007-02-01
N2 Halocarbon WK-872450-000 Discharge head, plain nut Halocarbon WK-934208-000 Swivel adapter Halocarbon 06-118262-001 Pressure switch Halocarbon...06-118263-001 Pressure switch Halocarbon 81-486536-000 Pressure switch Halocarbon 81-981332-000 X-proof pressure switch Halocarbon 81-871072-001...90-100121-001 67 kg (125 lb.) Cyl w/LLI 82-878751-000 Lever Pressure Op Actuator6 06-118263-001 Pressure Switch 119.9 400.0 3.8 27.6 Pressure
Sghaireen, Mohd G
2015-06-01
The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p < .05). The highest fracture loads were associated with metal-ceramic crowns supported by titanium abutments (p = .000). IPS Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.
On the linear stability of sheared and magnetized jets without current sheets - relativistic case
NASA Astrophysics Data System (ADS)
Kim, Jinho; Balsara, Dinshaw S.; Lyutikov, Maxim; Komissarov, Serguei S.
2018-03-01
In our prior series of papers, we studied the non-relativistic and relativistic linear stability analysis of magnetized jets that do not have current sheets. In this paper, we extend our analysis to relativistic jets with a velocity shear and a similar current sheet free structure. The jets that we study are realistic because we include a velocity shear, a current sheet free magnetic structure, a relativistic velocity and a realistic thermal pressure so as to achieve overall pressure balance in the unperturbed jet. In order to parametrize the velocity shear, we apply a parabolic profile to the jets' 4-velocity. We find that the velocity shear significantly improves the stability of relativistic magnetized jets. This fact is completely consistent with our prior stability analysis of non-relativistic, sheared jets. The velocity shear mainly plays a role in stabilizing the short wavelength unstable modes for the pinch as well as the kink instability modes. In addition, it also stabilizes the long wavelength fundamental pinch instability mode. We also visualize the pressure fluctuations of each unstable mode to provide a better physical understanding of the enhanced stabilization by the velocity shear. Our overall conclusion is that combining velocity shear with a strong and realistic magnetic field makes relativistic jets even more stable.
NASA Astrophysics Data System (ADS)
Vagnoni, Elena; Andolfatto, Loïc; Favrel, Arthur; Avellan, François
2016-11-01
The penetration of the electrical grid by intermittent renewable energy sources induces grid fluctuations which must be compensated in order to guarantee the stability of the grid. Hydropower plants can supply reactive power to ensure the grid stabilization by operating in condenser mode. In this operating mode, the turbine operates with the tail water depressed to let the runner spin in air to reduce the power consumption. Pressurized air is injected in the draft tube cone to maintain the water level below the runner and this induces air-water interaction phenomena which cause important power losses. Flow visualization and pressure fluctuation measurements are performed in a reduced scale physical model of a Francis turbine operating in condenser mode to investigate the dynamics of the air-water interaction in the draft tube cone which causes the sloshing motion of the free surface. An image post-processing method is developed, enabling a quantitative description of the sloshing motion. The latter depends on the Froude number. By increasing the value of the Froude number, the amplitude of the sloshing motion decreases, as well as the amplitude of the pressure fluctuations. The frequency of the sloshing motion corresponds to the first natural frequency of the water volume.
Numerical investigation and experimental development on VM-PT cryocooler operating below 4 K
NASA Astrophysics Data System (ADS)
Zhang, Tong; Pan, Changzhao; Zhou, Yuan; Wang, Junjie
2016-12-01
Vuilleumier coupling pulse tube (VM-PT) cryocooler is a novel kind of cryocooler capable of attaining liquid helium temperature which had been experimentally verified. Depending on different coupling modes and phase shifters, VM-PT cryocooler can be designed in several configurations. This paper presents a numerical investigation on three typical types of VM-PT cryocoolers, which are gas-coupling mode with room temperature phase shifter (GCRP), gas-coupling mode with cold phase shifter (GCCP) and thermal-coupling mode with cold phase shifter (TCCP). Firstly, three configurations are optimized on operating parameters to attain lower no-load temperature. Then, based on the simulation results, distributions of acoustic power, enthalpy flow, pressure wave, and volume flow rate are presented and discussed to better understand the energy flow characteristics and coupling mechanism. Meanwhile, analyses of phase relationship and exergy loss are also performed. Furthermore, a GCCP experimental system with optimal comprehensive performance among three configurations was built and tested. Experimental results showed good consistency with the simulations. Finally, a no-load temperature of 3.39 K and cooling power of 9.75 mW at 4.2 K were obtained with a pressure ratio of 1.7, operating frequency of 1.22 Hz and mean pressure of 1.5 MPa.
NASA Technical Reports Server (NTRS)
Firstenberg, M. S.; Vandervoort, P. M.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.
2000-01-01
OBJECTIVES: We hypothesized that color M-mode (CMM) images could be used to solve the Euler equation, yielding regional pressure gradients along the scanline, which could then be integrated to yield the unsteady Bernoulli equation and estimate noninvasively both the convective and inertial components of the transmitral pressure difference. BACKGROUND: Pulsed and continuous wave Doppler velocity measurements are routinely used clinically to assess severity of stenotic and regurgitant valves. However, only the convective component of the pressure gradient is measured, thereby neglecting the contribution of inertial forces, which may be significant, particularly for nonstenotic valves. Color M-mode provides a spatiotemporal representation of flow across the mitral valve. METHODS: In eight patients undergoing coronary artery bypass grafting, high-fidelity left atrial and ventricular pressure measurements were obtained synchronously with transmitral CMM digital recordings. The instantaneous diastolic transmitral pressure difference was computed from the M-mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation and was compared to the catheter measurements. RESULTS: From 56 beats in 16 hemodynamic stages, inclusion of the inertial term ([deltapI]max = 1.78+/-1.30 mm Hg) in the noninvasive pressure difference calculation significantly increased the temporal correlation with catheter-based measurement (r = 0.35+/-0.24 vs. 0.81+/-0.15, p< 0.0001). It also allowed an accurate approximation of the peak pressure difference ([deltapc+I]max = 0.95 [delta(p)cathh]max + 0.24, r = 0.96, p<0.001, error = 0.08+/-0.54 mm Hg). CONCLUSIONS: Inertial forces are significant components of the maximal pressure drop across the normal mitral valve. These can be accurately estimated noninvasively using CMM recordings of transmitral flow, which should improve the understanding of diastolic filling and function of the heart.