Pressure suppression containment system
Gluntz, Douglas M.; Townsend, Harold E.
1994-03-15
A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto.
Pressure suppression containment system
Gluntz, D.M.; Townsend, H.E.
1994-03-15
A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of-coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto. 6 figures.
Gluntz, D.M.
1994-10-04
A pressure suppression system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and an enclosed gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The GDCS pool includes a plenum for receiving through an inlet the non-condensable gas carried with steam from the drywell following a loss-of-coolant accident (LOCA). A condenser is disposed in the GDCS plenum for condensing the steam channeled therein and to trap the non-condensable gas therein. A method of operation includes draining the GDCS pool following the LOCA and channeling steam released into the drywell following the LOCA into the GDCS plenum for cooling along with the non-condensable gas carried therewith for trapping the gas therein. 3 figs.
Gluntz, Douglas M.
1994-01-01
A pressure suppression system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and an enclosed gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The GDCS pool includes a plenum for receiving through an inlet the non-condensable gas carried with steam from the drywell following a loss-of-coolant accident (LOCA). A condenser is disposed in the GDCS plenum for condensing the steam channeled therein and to trap the non-condensable gas therein. A method of operation includes draining the GDCS pool following the LOCA and channeling steam released into the drywell following the LOCA into the GDCS plenum for cooling along with the non-condensable gas carried therewith for trapping the gas therein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillmann, C.W.; Townsend, H.E.; Nesbitt, L.B.
1992-02-25
This patent describes the operation of a nuclear reactor system, the system including a containment defining a drywall space wherein a nuclear reactor is disposed, there being a suppression pool in the containment with the suppression pool having a wetwell space above a level of the pool to which an non-condensable gases entering the suppression pool can vent. It comprises: continuously exhausting the wetwell space to remove gas mixture therefrom while admitting inflow of air from an atmospheric source thereof to the wetwell during normal operation by blocking off the inflow during a loss-of-coolant-accident whenever a pressure in the wetwellmore » space is above a predetermined value, and subjecting the gas subsequent to its removal from the wetwell to a treatment operation to separate any particulate material entrained therein from the gas mixture.« less
Loss of DHR sequences at Browns Ferry Unit One - accident-sequence analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D.H.; Grene, S.R.; Harrington, R.M.
1983-05-01
This study describes the predicted response of Unit One at the Browns Ferry Nuclear Plant to a postulated loss of decay heat removal (DHR) capability following scram from full power with the power conversion system unavailable. In accident sequences without DHR capability, the residual heat removal (RHR) system functions of pressure suppression pool cooling and reactor vessel shutdown cooling are unavailable. Consequently, all decay heat energy is stored in the pressure suppression pool with a concomitant increase in pool temperature and primary containment pressure. With the assumption that DHR capability is not regained during the lengthy course of this accidentmore » sequence, the containment ultimately fails by overpressurization. Although unlikely, this catastrophic failure might lead to loss of the ability to inject cooling water into the reactor vessel, causing subsequent core uncovery and meltdown. The timing of these events and the effective mitigating actions that might be taken by the operator are discussed in this report.« less
Gou, P.F.; Townsend, H.E.; Barbanti, G.
1994-04-05
A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.
Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo
1994-01-01
A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.
Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor
Gluntz, Douglas M.
1996-01-01
An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.
Best-estimate coupled RELAP/CONTAIN analysis of inadvertent BWR ADS valve opening transient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Muftuoglu, A.K.
1993-01-01
Noncondensible gases may become dissolved in boiling water reactor (BWR) water-level instrumentation during normal operations. Any dissolved noncondensible gases inside these water columns may come out of solution during rapid depressurization events and displace water from the reference leg piping, resulting in a false high level. Significant errors in water-level indication are not expected to occur until the reactor pressure vessel (RPV) pressure has dropped below [approximately]450 psig. These water level errors may cause a delay or failure in emergency core cooling system (ECCS) actuation. The RPV water level is monitored using the pressure of a water column having amore » varying height (reactor water level) that is compared to the pressure of a water column maintained at a constant height (reference level). The reference legs have small-diameter pipes with varying lengths that provide a constant head of water and are located outside the drywell. The amount of noncondensible gases dissolved in each reference leg is very dependent on the amount of leakage from the reference leg and its geometry and interaction of the reactor coolant system with the containment, i.e., torus or suppression pool, and reactor building. If a rapid depressurization causes an erroneously high water level, preventing automatic ECCS actuation, it becomes important to determine if there would be other adequate indications for operator response. In the postulated inadvertent opening of all seven automatic depressurization system (ADS) valves, the ECCS signal on high drywell pressure would be circumvented because the ADS valves discharge directly into the suppression pool. A best-estimate analysis of such an inadvertent opening of all ADS valves would have to consider the thermal-hydraulic coupling between the pool, drywell, reactor building, and RPV.« less
An efficient modeling method for thermal stratification simulation in a BWR suppression pool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haihua Zhao; Ling Zou; Hongbin Zhang
2012-09-01
The suppression pool in a BWR plant not only is the major heat sink within the containment system, but also provides major emergency cooling water for the reactor core. In several accident scenarios, such as LOCA and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; and the pool temperature distribution also affects the NPSHa (Available Net Positive Suction Head) and therefore the performance of the pump which draws cooling water back to the core. Current safetymore » analysis codes use 0-D lumped parameter methods to calculate the energy and mass balance in the pool and therefore have large uncertainty in prediction of scenarios in which stratification and mixing are important. While 3-D CFD methods can be used to analyze realistic 3D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, therefore long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. The POOLEX experiments at Finland, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, are used for validation. GOTHIC lumped parameter models are used to obtain boundary conditions for BMIX++ code and CFD simulations. Comparison between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data is discussed in detail.« less
Wnt Signaling Specifies Anteroposterior Progenitor Zone Identity in the Drosophila Visual Center.
Suzuki, Takumi; Trush, Olena; Yasugi, Tetsuo; Takayama, Rie; Sato, Makoto
2016-06-15
During brain development, various types of neuronal populations are produced from different progenitor pools to produce neuronal diversity that is sufficient to establish functional neuronal circuits. However, the molecular mechanisms that specify the identity of each progenitor pool remain obscure. Here, we show that Wnt signaling is essential for the specification of the identity of posterior progenitor pools in the Drosophila visual center. In the medulla, the largest component of the visual center, different types of neurons are produced from two progenitor pools: the outer proliferation center (OPC) and glial precursor cells (GPCs; also known as tips of the OPC). We found that OPC-type neurons are produced from the GPCs at the expense of GPC-type neurons when Wnt signaling is suppressed in the GPCs. In contrast, GPC-type neurons are ectopically induced when Wnt signaling is ectopically activated in the OPC. These results suggest that Wnt signaling is necessary and sufficient for the specification of the progenitor pool identity. We also found that Homothorax (Hth), which is temporally expressed in the OPC, is ectopically induced in the GPCs by suppression of Wnt signaling and that ectopic induction of Hth phenocopies the suppression of Wnt signaling in the GPCs. Thus, Wnt signaling is involved in regionalization of the fly visual center through the specification of the progenitor pool located posterior to the medulla by suppressing Hth expression. Brain consists of considerably diverse neurons of different origins. In mammalian brain, excitatory and inhibitory neurons derive from the dorsal and ventral telencephalon, respectively. Multiple progenitor pools also contribute to the neuronal diversity in fly brain. However, it has been unclear how differences between these progenitor pools are established. Here, we show that Wnt signaling, an evolutionarily conserved signaling, is involved in the process that establishes the differences between these progenitor pools. Because β-catenin signaling, which is under the control of Wnt ligands, specifies progenitor pool identity in the developing mammalian thalamus, Wnt signaling-mediated specification of progenitor pool identity may be conserved in insect and mammalian brains. Copyright © 2016 the authors 0270-6474/16/366503-11$15.00/0.
Patterns and Predictors of Tic Suppressibility in Youth With Tic Disorders
Conelea, Christine A.; Wellen, Brianna; Woods, Douglas W.; Greene, Deanna J.; Black, Kevin J.; Specht, Matthew; Himle, Michael B.; Lee, Han-Joo; Capriotti, Matthew
2018-01-01
Tic suppression is the primary target of tic disorder treatment, but factors that influence voluntary tic inhibition are not well understood. Several studies using the Tic Suppression Task have demonstrated significant inter-individual variability in tic suppressibility but have individually been underpowered to address correlates of tic suppression. The present study explored patterns and clinical correlates of reward-enhanced tic suppression in youth with tic disorders using a large, pooled dataset. Individual-level data from nine studies using the Tic Suppression Task were pooled, yielding a sample of 99 youth with tic disorders. Analyses examined patterns of tic suppressibility and the relationship between tic suppressibility and demographic and clinical characteristics. A large majority of youth demonstrated a high degree of tic suppression, but heterogeneous patterns of tic suppressibility were also observed. Better tic suppressibility was related to older age and more frequent tics but unrelated to other clinical variables, including presence of psychiatric comorbidity, psychotropic medication status, tic and premonitory urge severity, and self-rated tic suppressibility. The mechanisms underlying the observed heterogeneity in reward-enhanced tic suppressibility warrant further investigation. The Tic Suppression Task is a promising method for testing mechanistic hypotheses related to tic suppression. PMID:29875706
Patterns and Predictors of Tic Suppressibility in Youth With Tic Disorders.
Conelea, Christine A; Wellen, Brianna; Woods, Douglas W; Greene, Deanna J; Black, Kevin J; Specht, Matthew; Himle, Michael B; Lee, Han-Joo; Capriotti, Matthew
2018-01-01
Tic suppression is the primary target of tic disorder treatment, but factors that influence voluntary tic inhibition are not well understood. Several studies using the Tic Suppression Task have demonstrated significant inter-individual variability in tic suppressibility but have individually been underpowered to address correlates of tic suppression. The present study explored patterns and clinical correlates of reward-enhanced tic suppression in youth with tic disorders using a large, pooled dataset. Individual-level data from nine studies using the Tic Suppression Task were pooled, yielding a sample of 99 youth with tic disorders. Analyses examined patterns of tic suppressibility and the relationship between tic suppressibility and demographic and clinical characteristics. A large majority of youth demonstrated a high degree of tic suppression, but heterogeneous patterns of tic suppressibility were also observed. Better tic suppressibility was related to older age and more frequent tics but unrelated to other clinical variables, including presence of psychiatric comorbidity, psychotropic medication status, tic and premonitory urge severity, and self-rated tic suppressibility. The mechanisms underlying the observed heterogeneity in reward-enhanced tic suppressibility warrant further investigation. The Tic Suppression Task is a promising method for testing mechanistic hypotheses related to tic suppression.
Incompressible material point method for free surface flow
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zhang, Xiong; Sze, Kam Yim; Lian, Yanping; Liu, Yan
2017-02-01
To overcome the shortcomings of the weakly compressible material point method (WCMPM) for modeling the free surface flow problems, an incompressible material point method (iMPM) is proposed based on operator splitting technique which splits the solution of momentum equation into two steps. An intermediate velocity field is first obtained by solving the momentum equations ignoring the pressure gradient term, and then the intermediate velocity field is corrected by the pressure term to obtain a divergence-free velocity field. A level set function which represents the signed distance to free surface is used to track the free surface and apply the pressure boundary conditions. Moreover, an hourglass damping is introduced to suppress the spurious velocity modes which are caused by the discretization of the cell center velocity divergence from the grid vertexes velocities when solving pressure Poisson equations. Numerical examples including dam break, oscillation of a cubic liquid drop and a droplet impact into deep pool show that the proposed incompressible material point method is much more accurate and efficient than the weakly compressible material point method in solving free surface flow problems.
Control of reactor coolant flow path during reactor decay heat removal
Hunsbedt, Anstein N.
1988-01-01
An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.
Unexpected hemorrhage during robot-assisted laparoscopic prostatectomy: a case report.
Nakano, Shoko; Nakahira, Junko; Sawai, Toshiyuki; Kadono, Noriko; Minami, Toshiaki
2016-08-30
Robot-assisted laparoscopic prostatectomy is increasingly performed as a minimally invasive option for patients with organ-confined prostate cancer. This technique offers several advantages over other surgical methods. However, concerns have been raised over the effects of the steep head-down tilt necessary during the procedure. We present a case in which head-down positioning and abdominal insufflation masked the signs of an intraoperative hemorrhage. A 73-year-old Asian man developed severe hypotension caused by an unexpected hemorrhage during robot-assisted laparoscopic prostatectomy for prostate cancer. Although our patient's blood pressure steadily decreased during the procedure, his systolic blood pressure remained above 80 mmHg while he was tilted head downward at an angle of 28°. However, his blood pressure dropped immediately after he was returned to the horizontal position and abdominal insufflation - to create a pneumoperitoneum - was ceased at the end of surgery. We returned the patient to a head-down tilt to keep his blood pressure stable and began fluid infusion. Blood test results indicated that a hemorrhage was the cause of his hypotension. Open abdominal surgery was performed to stop the bleeding. The surgeons found blood pooling inside his abdomen from a longitudinal cut in a small arterial vessel in his abdominal wall, possibly a branch of his external iliac artery. The surgeons successfully controlled the hemorrhage and our patient was moved to our intensive care unit. Our patient recovered completely over the next few days, without any neurological deficits. We suspect that blood began to pool in our patient's superior abdomen during surgery, and that increased intra-abdominal pressure suppressed the hemorrhage. When our patient was returned to the horizontal position and insufflation of his abdomen was discontinued, the resulting increased rate of hemorrhage caused a sudden drop in blood pressure. Surgeons and anesthesiologists must understand the hemodynamic changes that result from head-down patient positioning and abdominal insufflation.
NASA Astrophysics Data System (ADS)
Dombrovsky, Leonid A.; Dembele, Siaka; Wen, Jennifer X.
2018-06-01
The computational analysis of downward motion and evaporation of water droplets used to suppress a typical transient pool fire shows local regions of a high volume fraction of relatively small droplets. These droplets are comparable in size with the infrared wavelength in the range of intense flame radiation. The estimated scattering of the radiation by these droplets is considerable throughout the entire spectrum except for a narrow region in the vicinity of the main absorption peak of water where the anomalous refraction takes place. The calculations of infrared radiation field in the model pool fire indicate the strong effect of scattering which can be observed experimentally to validate the fire computational model.
Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO
NASA Astrophysics Data System (ADS)
Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.
2012-12-01
One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.
Investigation of molten pool oscillation during GMAW-P process based on a 3D model
NASA Astrophysics Data System (ADS)
Wang, L. L.; Lu, F. G.; Cui, H. C.; Tang, X. H.
2014-11-01
In order to better reveal the oscillation mechanism of the pulsed gas metal arc welding (GMAW-P) process due to an alternately varied welding current, arc plasma and molten pool oscillation were simulated through a self-consistent three-dimensional model. Based on an experimental analysis of the dynamic variation of the arc plasma and molten pool captured by a high-speed camera, the model was validated by comparison of the measured and predicted results. The calculated results showed that arc pressure was the key factor causing the molten pool to oscillate. The variation in arc size and temperature from peak time to base time resulted in a great difference in the heat input and arc pressure acting on the molten pool. The surface deformation of the molten pool due to the varying degrees of arc pressure induced alternate displacement and backflow in the molten metal. The periodic iteration of deeper and shallower surface deformation, drain and backflow of molten metal caused the molten pool to oscillate at a certain frequency. In this condition, the arc pressure at the peak time is more than six times higher than that at the base time, and the maximum surface depression is 1.4 mm and 0.6 mm, respectively, for peak time and base time.
Reactor core isolation cooling system
Cooke, F.E.
1992-12-08
A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.
Reactor core isolation cooling system
Cooke, Franklin E.
1992-01-01
A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.
Shimakawa, Ginga; Shaku, Keiichiro; Miyake, Chikahiro
2018-01-01
Photosynthetic organisms oxidize P700 to suppress the production of reactive oxygen species (ROS) in photosystem I (PSI) in response to the lower efficiency of photosynthesis under high light and low CO 2 conditions. Previously, we found a positive relationship between reduction of plastoquinone (PQ) pool and oxidation of P700, which we named reduction-induced suppression of electron flow (RISE). In the RISE model, we proposed that the highly reduced state of the PQ pool suppresses Q-cycle turnover to oxidize P700 in PSI. Here, we tested whether RISE was relieved by the oxidation of the PQ pool, but not by the dissipation of the proton gradient (ΔpH) across the thylakoid membrane. Formation of ΔpH can also suppress electron flow to P700, because acidification on the luminal side of the thylakoid membrane lowers oxidation of reduced PQ in the cytochrome b 6 / f complex. We drove photosynthetic electron transport using H 2 O 2 -scavenging peroxidase reactions. Peroxidase reduces H 2 O 2 with electron donors regenerated along the photosynthetic electron transport system, thereby promoting the formation of ΔpH. Addition of H 2 O 2 to the cyanobacterium Synechococcus elongatus PCC 7942 under low CO 2 conditions induced photochemical quenching of chlorophyll fluorescence, enhanced NADPH fluorescence and reduced P700. Thus, peroxidase reactions relieved the RISE mechanism, indicating that P700 oxidation can be induced only by the reduction of PQ to suppress the production of ROS in PSI. Overall, our data suggest that RISE regulates the redox state of P700 in PSI in cooperation with ΔpH regulation.
Longo, G. O.; Morais, R. A.; Martins, C. D. L.; Mendes, T. C.; Aued, A. W.; Cândido, D. V.; de Oliveira, J. C.; Nunes, L. T.; Fontoura, L.; Sissini, M. N.; Teschima, M. M.; Silva, M. B.; Ramlov, F.; Gouvea, L. P.; Ferreira, C. E. L.; Segal, B.; Horta, P. A.; Floeter, S. R.
2015-01-01
The Southwestern Atlantic harbors unique and relatively understudied reef systems, including the only atoll in South Atlantic: Rocas atoll. Located 230 km off the NE Brazilian coast, Rocas is formed by coralline red algae and vermetid mollusks, and is potentially one of the most “pristine” areas in Southwestern Atlantic. We provide the first comprehensive and integrative description of the fish and benthic communities inhabiting different shallow reef habitats of Rocas. We studied two contrasting tide pool habitats: open pools, which communicate with the open ocean even during low tides, thus more exposed to wave action; and closed pools, which remain isolated during low tide and are comparatively less exposed. Reef fish assemblages, benthic cover, algal turfs and fish feeding pressure on the benthos remarkably varied between open and closed pools. The planktivore Thalassoma noronhanum was the most abundant fish species in both habitats. In terms of biomass, the lemon shark Negaprion brevirostris and the omnivore Melichtys niger were dominant in open pools, while herbivorous fishes (mainly Acanthurus spp.) prevailed in closed pools. Overall benthic cover was dominated by algal turfs, composed of articulated calcareous algae in open pools and non-calcified algae in closed pools. Feeding pressure was dominated by acanthurids and was 10-fold lower in open pools than in closed pools. Besides different wave exposure conditions, such pattern could also be related to the presence of sharks in open pools, prompting herbivorous fish to feed more in closed pools. This might indirectly affect the structure of reef fish assemblages and benthic communities. The macroalgae Digenea simplex, which is uncommon in closed pools and abundant in the reef flat, was highly preferred in herbivory assays, indicating that herbivory by fishes might be shaping this distribution pattern. The variations in benthic and reef fish communities, and feeding pressure on the benthos between open and closed pools suggest that the dynamics in open pools is mostly driven by physical factors and the tolerance of organisms to harsh conditions, while in closed pools direct and indirect effects of species interactions also play an important role. Understanding the mechanisms shaping biological communities and how they scale-up to ecosystem functioning is particularly important on isolated near-pristine systems where natural processes can still be studied under limited human impact. PMID:26061735
Longo, G O; Morais, R A; Martins, C D L; Mendes, T C; Aued, A W; Cândido, D V; de Oliveira, J C; Nunes, L T; Fontoura, L; Sissini, M N; Teschima, M M; Silva, M B; Ramlov, F; Gouvea, L P; Ferreira, C E L; Segal, B; Horta, P A; Floeter, S R
2015-01-01
The Southwestern Atlantic harbors unique and relatively understudied reef systems, including the only atoll in South Atlantic: Rocas atoll. Located 230 km off the NE Brazilian coast, Rocas is formed by coralline red algae and vermetid mollusks, and is potentially one of the most "pristine" areas in Southwestern Atlantic. We provide the first comprehensive and integrative description of the fish and benthic communities inhabiting different shallow reef habitats of Rocas. We studied two contrasting tide pool habitats: open pools, which communicate with the open ocean even during low tides, thus more exposed to wave action; and closed pools, which remain isolated during low tide and are comparatively less exposed. Reef fish assemblages, benthic cover, algal turfs and fish feeding pressure on the benthos remarkably varied between open and closed pools. The planktivore Thalassoma noronhanum was the most abundant fish species in both habitats. In terms of biomass, the lemon shark Negaprion brevirostris and the omnivore Melichtys niger were dominant in open pools, while herbivorous fishes (mainly Acanthurus spp.) prevailed in closed pools. Overall benthic cover was dominated by algal turfs, composed of articulated calcareous algae in open pools and non-calcified algae in closed pools. Feeding pressure was dominated by acanthurids and was 10-fold lower in open pools than in closed pools. Besides different wave exposure conditions, such pattern could also be related to the presence of sharks in open pools, prompting herbivorous fish to feed more in closed pools. This might indirectly affect the structure of reef fish assemblages and benthic communities. The macroalgae Digenea simplex, which is uncommon in closed pools and abundant in the reef flat, was highly preferred in herbivory assays, indicating that herbivory by fishes might be shaping this distribution pattern. The variations in benthic and reef fish communities, and feeding pressure on the benthos between open and closed pools suggest that the dynamics in open pools is mostly driven by physical factors and the tolerance of organisms to harsh conditions, while in closed pools direct and indirect effects of species interactions also play an important role. Understanding the mechanisms shaping biological communities and how they scale-up to ecosystem functioning is particularly important on isolated near-pristine systems where natural processes can still be studied under limited human impact.
Hydrostatic pressure-induced colon trauma from a pool whip.
Tong, T K; McGill, L; Tilden, S J
1989-03-01
Hydrostatic pressure-induced colon injury is a rare occurrence in the pediatric population. We present a case of massive hydroperitoneum following a pool whip-induced injury. Although tension pneumoperitoneum or hydroperitoneum is rare, prompt recognition and surgical intervention are essential.
Water inventory management in condenser pool of boiling water reactor
Gluntz, Douglas M.
1996-01-01
An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.
Water inventory management in condenser pool of boiling water reactor
Gluntz, D.M.
1996-03-12
An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.
Steinborn, A; Schmitt, E; Kisielewicz, A; Rechenberg, S; Seissler, N; Mahnke, K; Schaier, M; Zeier, M; Sohn, C
2012-01-01
Dysregulations concerning the composition and function of regulatory T cells (T(regs)) are assumed to be involved in the pathophysiology of complicated pregnancies. We used six-colour flow cytometric analysis to demonstrate that the total CD4(+) CD127(low+/-) CD25(+) forkhead box protein 3 (FoxP3)(+) T(reg) cell pool contains four distinct T(reg) subsets: DR(high+) CD45RA(-), DR(low+) CD45RA(-), DR(-) CD45RA(-) T(regs) and naive DR(-) CD45RA(+) T(regs). During the normal course of pregnancy, the most prominent changes in the composition of the total T(reg) cell pool were observed between the 10th and 20th weeks of gestation, with a clear decrease in the percentage of DR(high+) CD45RA(-) and DR(low+) CD45RA(-) T(regs) and a clear increase in the percentage of naive DR(-) CD45RA(+) T(regs). After that time, the composition of the total T(reg) cell pool did not change significantly. Its suppressive activity remained stable during normally progressing pregnancy, but decreased significantly at term. Compared to healthy pregnancies the composition of the total T(reg) cell pool changed in the way that its percentage of naive DR(-) CD45RA(+) T(regs) was reduced significantly in the presence of pre-eclampsia and in the presence of preterm labour necessitating preterm delivery (PL). Interestingly, its percentage of DR(high+) CD45RA(-) and DR(low+) CD45RA(-) T(regs) was increased significantly in pregnancies affected by pre-eclampsia, while PL was accompanied by a significantly increased percentage of DR(-) CD45RA(-) and DR(low+) CD45RA(-) T(regs). The suppressive activity of the total T(reg) cell pool was diminished in both patient collectives. Hence, our findings propose that pre-eclampsia and PL are characterized by homeostatic changes in the composition of the total T(reg) pool with distinct T(reg) subsets that were accompanied by a significant decrease of its suppressive activity. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.
NASA Technical Reports Server (NTRS)
Huff, R. G.; Groesbeck, D. E.
1975-01-01
A supersonic jet noise suppressor was tested with cold flow for acoustic and thrust characteristics at nozzle- to atmospheric-pressure ratios of 1.5 to 4.0. Jet noise suppression and spectral characteristics of the divergent, lobed, suppressor (DLS) nozzle with and without an ejector are presented. Suppression was obtained at nozzle pressure ratios of 2.5 to 4.0. The largest, maximum-lobe, sound pressure level suppression with a hard-wall ejector was 14.6 decibels at a nozzle pressure ratio of 3.5. The thrust loss was 2 percent. In general, low-frequency jet noise was suppressed, leaving higher frequencies essentially unchanged. Without the ejector the nozzle showed a thrust loss of 11 percent together with slightly poorer noise suppression.
Eckehard G. Brockerhoff; Mark Kimberley; Andrew M. Liebhold; Robert A. Haack; Joseph F. Cavey
2014-01-01
Biological invasions resulting from international trade can cause major environmental and economic impacts. Propagule pressure is perhaps the most important factor influencing establishment, although actual arrival rates of species are rarely recorded. Furthermore, the pool of potential invaders includes many species that vary in their arrival rate and establishment...
NASA Astrophysics Data System (ADS)
Or, Dani; Ruiz, Siul; Schymanski, Stanlislaus
2015-04-01
Soil structure is the delicate arrangement of solids and voids that facilitate numerous hydrological and ecological soil functions ranging from water infiltration and retention to gaseous exchange and mechanical anchoring of plant roots. Many anthropogenic activities affect soil structure, e.g. via tillage and compaction, and by promotion or suppression of biological activity and soil carbon pools. Soil biological activity is critical to the generation and maintenance of favorable soil structure, primarily through bioturbation by earthworms and root proliferation. The study aims to quantify the mechanisms, rates, and energetics associated with soil bioturbation, using a new biomechanical model to estimate stresses required to penetrate and expand a cylindrical cavity in a soil under different hydration and mechanical conditions. The stresses and soil displacement involved are placed in their ecological context (typical sizes, population densities, burrowing rates and behavior) enabling estimation of mechanical energy requirements and impacts on soil organic carbon pool (in the case of earthworms). We consider steady state plastic cavity expansion to determine burrowing pressures of earthworms and plant roots, akin to models of cone penetration representing initial burrowing into soil volumes. Results show that with increasing water content the strain energy decreases and suggest trade-offs between cavity expansion pressures and energy investment for different root and earthworm geometries and soil hydration. The study provides a quantitative framework for estimating energy costs of bioturbation in terms of soil organic carbon or the mechanical costs of soil exploration by plant roots as well as mechanical and hydration limits to such activities.
Targeting Transforming Growth Factor Beta to Enhance the Fracture Resistance of Bone
2013-01-01
Transforming Growth Factor Beta to Enhance the Fracture Resistance of Bone is to determine whether the suppression of TGF-β activity improves the fracture...effect primarily occurred in the old rats. Effect of TGF-β suppression on fracture resistance in female mice Since the suppression of TGF-β activity by...treated mice. This suggests that 1D11 treatment depleted the osteoprogenitor pool to some extent as inhibition of TGF-β activity in vivo may favor
Study of steam condensation at sub-atmospheric pressure: setting a basic research using MELCOR code
NASA Astrophysics Data System (ADS)
Manfredini, A.; Mazzini, M.
2017-11-01
One of the most serious accidents that can occur in the experimental nuclear fusion reactor ITER is the break of one of the headers of the refrigeration system of the first wall of the Tokamak. This results in water-steam mixture discharge in vacuum vessel (VV), with consequent pressurization of this container. To prevent the pressure in the VV exceeds 150 KPa absolute, a system discharges the steam inside a suppression pool, at an absolute pressure of 4.2 kPa. The computer codes used to analyze such incident (eg. RELAP 5 or MELCOR) are not validated experimentally for such conditions. Therefore, we planned a basic research, in order to have experimental data useful to validate the heat transfer correlations used in these codes. After a thorough literature search on this topic, ACTA, in collaboration with the staff of ITER, defined the experimental matrix and performed the design of the experimental apparatus. For the thermal-hydraulic design of the experiments, we executed a series of calculations by MELCOR. This code, however, was used in an unconventional mode, with the development of models suited respectively to low and high steam flow-rate tests. The article concludes with a discussion of the placement of experimental data within the map featuring the phenomenon characteristics, showing the importance of the new knowledge acquired, particularly in the case of chugging.
Suppression of the E. coli SOS response by dNTP pool changes.
Maslowska, Katarzyna H; Makiela-Dzbenska, Karolina; Fijalkowska, Iwona J; Schaaper, Roel M
2015-04-30
The Escherichia coli SOS system is a well-established model for the cellular response to DNA damage. Control of SOS depends largely on the RecA protein. When RecA is activated by single-stranded DNA in the presence of a nucleotide triphosphate cofactor, it mediates cleavage of the LexA repressor, leading to expression of the 30(+)-member SOS regulon. RecA activation generally requires the introduction of DNA damage. However, certain recA mutants, like recA730, bypass this requirement and display constitutive SOS expression as well as a spontaneous (SOS) mutator effect. Presently, we investigated the possible interaction between SOS and the cellular deoxynucleoside triphosphate (dNTP) pools. We found that dNTP pool changes caused by deficiencies in the ndk or dcd genes, encoding nucleoside diphosphate kinase and dCTP deaminase, respectively, had a strongly suppressive effect on constitutive SOS expression in recA730 strains. The suppression of the recA730 mutator effect was alleviated in a lexA-deficient background. Overall, the findings suggest a model in which the dNTP alterations in the ndk and dcd strains interfere with the activation of RecA, thereby preventing LexA cleavage and SOS induction. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael
The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.
Passive containment cooling system
Billig, P.F.; Cooke, F.E.; Fitch, J.R.
1994-01-25
A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.
Passive containment cooling system
Billig, Paul F.; Cooke, Franklin E.; Fitch, James R.
1994-01-01
A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Glover, M. G.; Mahmood, M. M.; Gott, S.; Garfin, S. R.; Ballard, R.; Murthy, G.; Brown, M. D.
1992-01-01
Swelling of the intervertebral disc nucleus pulposus is altered by posture and gravity. We have designed and tested a new osmometer for in vitro determination of nucleus pulposus swelling pressure. The functional principle of the osmometer involves compressing a sample of nucleus pulposus with nitrogen gas until saline pressure gradients across a 0.45 microns Millipore filter are eliminated. Swelling pressure of both pooled dog and pooled pig lumbar disc nucleus pulposus were measured on the new osmometer and compared to swelling pressures determined using the equilibrium dialysis technique. The osmometer measured swelling pressures comparable to those obtained by the dialysis technique. This osmometer provides a rapid, direct, and accurate measurement of swelling pressure of the nucleus pulposus.
Sub-Scale Analysis of New Large Aircraft Pool Fire-Suppression
2016-01-01
discrete ordinates radiation and single step Khan and Greeves soot model provided radiation and soot interaction. Agent spray dynamics were...Notable differences observed showed a modeled increase in the mockup surface heat-up rate as well as a modeled decreased rate of soot production...488 K SUPPRESSION STARTED Large deviation between sensors due to sensor alignment challenges and asymmetric fuel surface ignition Unremarkable
Choi, Yoon Seok; Lee, Jeewon; Lee, Hyun Woong; Chang, Dong-Yeop; Sung, Pil Soo; Jung, Min Kyung; Park, Jun Yong; Kim, Ja Kyung; Lee, Jung Il; Park, Hana; Cheong, Jae Youn; Suh, Kyung-Suk; Kim, Hyung Joon; Lee, June Sung; Kim, Kyung-Ah; Shin, Eui-Cheol
2015-08-01
Foxp3(+)CD4(+)CD25(+) regulatory T cells (Tregs) control immune responses, but their role in acute viral hepatitis remains elusive. Herein, we investigated alteration in the peripheral blood Treg population during acute hepatitis A (AHA) and its implication in the immune-mediated liver injury. The study included 71 patients with AHA, and peripheral blood mononuclear cells (PBMCs) were isolated. The suppressive activity of Treg population was determined by assessing anti-CD3/CD28-stimulated proliferation of Treg-depleted and reconstituted PBMCs. Treg cell frequency, phenotype and apoptosis in PBMCs were analysed by flow cytometry. The frequency of circulating Tregs was reduced during AHA. Moreover, the suppressive activity of the total Treg pool in the peripheral blood was attenuated during AHA. Treg frequency and suppressive activity of the Treg population inversely correlated with the serum alanine aminotransferase level. Fas was overexpressed on Tregs during AHA, suggesting their susceptibility to Fas-induced apoptosis. Indeed, increased apoptotic death was observed in Tregs of patients with AHA compared with healthy controls. In addition, agonistic anti-Fas treatment further increased apoptotic death of Tregs from patients with AHA. The decreased Treg frequency and Fas overexpression on Tregs were not observed in other acute liver diseases such as acute hepatitis B, acute hepatitis C and toxic/drug-induced hepatitis. The size of the Treg pool was contracted during AHA, resulting from apoptosis of Tregs induced by a Fas-mediated mechanism. Decrease in Treg numbers led to reduced suppressive activity of the Treg pool and consequently resulted in severe liver injury during AHA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
ATWS analysis for Browns Ferry Nuclear Plant Unit 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallman, R.J.; Jouse, W.C.
1985-01-01
Analyses of postulated Anticipated Transients Without Scram (ATWS) were performed at the Idaho National Engineering Laboratory (INEL). The Browns Ferry Nuclear Plant Unit 1 (BFNP1) was selected as the subject of this work because of the cooperation of the Tennessee Valley Authority (TVA). The work is part of the Severe Accident Sequence Analysis (SASA) Program of the US Nuclear Regulatory Commission (NRC). A Main Steamline Isolation Valve (MSIV) closure served as the transient initiator for these analyses, which proceeded a complete failure to scram. Results from the analyses indicate that operator mitigative actions are required to prevent overpressurization of themore » primary containment. Uncertainties remain concerning the effectiveness of key mitigative actions. The effectiveness of level control as a power reduction procedure is limited. Power level resulting from level control only reduce the Pressure Suppression Pool (PSP) heatup rate from 6 to 4F/min.« less
Del Prete, Gregory Q.; Shoemaker, Rebecca; Oswald, Kelli; Lara, Abigail; Trubey, Charles M.; Fast, Randy; Schneider, Douglas K.; Kiser, Rebecca; Coalter, Vicky; Wiles, Adam; Wiles, Rodney; Freemire, Brandi; Keele, Brandon F.; Estes, Jacob D.; Quiñones, Octavio A.; Smedley, Jeremy; Macallister, Rhonda; Sanchez, Rosa I.; Wai, John S.; Tan, Christopher M.; Alvord, W. Gregory; Hazuda, Daria J.; Piatak, Michael
2014-01-01
Nonhuman primate models are needed for evaluations of proposed strategies targeting residual virus that persists in HIV-1-infected individuals receiving suppressive combination antiretroviral therapy (cART). However, relevant nonhuman primate (NHP) models of cART-mediated suppression have proven challenging to develop. We used a novel three-class, six-drug cART regimen to achieve durable 4.0- to 5.5-log reductions in plasma viremia levels and declines in cell-associated viral RNA and DNA in blood and tissues of simian immunodeficiency virus SIVmac239-infected Indian-origin rhesus macaques, then evaluated the impact of treatment with the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA; Vorinostat) on the residual virus pool. Ex vivo SAHA treatment of CD4+ T cells obtained from cART-suppressed animals increased histone acetylation and viral RNA levels in culture supernatants. cART-suppressed animals each received 84 total doses of oral SAHA. We observed SAHA dose-dependent increases in acetylated histones with evidence for sustained modulation as well as refractoriness following prolonged administration. In vivo virologic activity was demonstrated based on the ratio of viral RNA to viral DNA in peripheral blood mononuclear cells, a presumptive measure of viral transcription, which significantly increased in SAHA-treated animals. However, residual virus was readily detected at the end of treatment, suggesting that SAHA alone may be insufficient for viral eradication in the setting of suppressive cART. The effects observed were similar to emerging data for repeat-dose SAHA treatment of HIV-infected individuals on cART, demonstrating the feasibility, utility, and relevance of NHP models of cART-mediated suppression for in vivo assessments of AIDS virus functional cure/eradication approaches. PMID:25182644
NASA Astrophysics Data System (ADS)
Aubrey, D. P.; Mims, J. T.; Oswald, S. W.; Teskey, R. O.; Mitchell, R. J.
2016-12-01
Allocation of assimilated carbon to storage provides a critical carbohydrate buffer when metabolic demands exceed current photosynthetic supply; however, our process-level understanding of controls on carbon storage pools and fluxes remains relatively poor. Recent studies have shifted the paradigm from the concept that stored carbon pools are a sink of low priority that accumulate passively when photosynthetic inputs exceed demand toward the concept that these pools are active sinks of high priority. It follows that allocation toward storage—at the expense of growth—is a trait that would be under selective pressure since species that allocate toward storage should be more resilient to disturbance. Using fire-dependent longleaf pine in a series of manipulative and observational studies, we explore how stored carbon dynamics are controlled by a combination of evolutionary, physiological, and ecological pressures. Our manipulative studies revealed large stored carbon pools in roots that maintained belowground metabolism for a year after current photosynthetic supply was restricted. Likewise, the concentration of stored carbon in the smallest, most metabolically active roots was not influenced until nearly one year later. Our observational studies indicated that stored carbon pools differ among closely related species with overlapping natural distributions, but evolutionary histories of different disturbance frequencies and thus, different selective pressures on carbon storage. Our comparisons of stored carbon pools between longleaf trees growing under xeric or mesic soil moisture regimes indicated that allocation toward storage exhibits plasticity through space and time in response to both short- and long-term variations in resource availability. We expect a continuum of responses to disturbances related to ecological niche and evolutionary adaptation that influence the availability of carbohydrates for metabolic demands. We also expect a continuum in stored carbon pools and metabolic buffering capacity among species as well as spatially, temporally, and developmentally within individual species.
Passive shut-down heat removal system
Hundal, Rolv; Sharbaugh, John E.
1988-01-01
An improved shut-down heat removal system for a liquid metal nuclear reactor of the type having a vessel for holding hot and cold pools of liquid sodium is disclosed herein. Generally, the improved system comprises a redan or barrier within the reactor vessel which allows an auxiliary heat exchanger to become immersed in liquid sodium from the hot pool whenever the reactor pump fails to generate a metal-circulating pressure differential between the hot and cold pools of sodium. This redan also defines an alternative circulation path between the hot and cold pools of sodium in order to equilibrate the distribution of the decay heat from the reactor core. The invention may take the form of a redan or barrier that circumscribes the inner wall of the reactor vessel, thereby defining an annular space therebetween. In this embodiment, the bottom of the annular space communicates with the cold pool of sodium, and the auxiliary heat exchanger is placed in this annular space just above the drawn-down level that the liquid sodium assumes during normal operating conditions. Alternatively, the redan of the invention may include a pair of vertically oriented, concentrically disposed standpipes having a piston member disposed between them that operates somewhat like a pressure-sensitive valve. In both embodiments, the cessation of the pressure differential that is normally created by the reactor pump causes the auxiliary heat exchanger to be immersed in liquid sodium from the hot pool. Additionally, the redan in both embodiments forms a circulation flow path between the hot and cold pools so that the decay heat from the nuclear core is uniformly distributed within the vessel.
Emergency cooling system and method
Oosterkamp, W.J.; Cheung, Y.K.
1994-01-04
An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.
Yoneshima, Yasuto; Abolhassani, Nona; Iyama, Teruaki; Sakumi, Kunihiko; Shiomi, Naoko; Mori, Masahiko; Shiomi, Tadahiro; Noda, Tetsuo; Tsuchimoto, Daisuke; Nakabeppu, Yusaku
2016-01-01
Deoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability. To explore the mechanisms of these phenotypes, we analysed ITPA-deficient human and mouse cells. We found that both growth suppression and accumulation of single-strand breaks in nuclear DNA of ITPA-deficient cells depended on MLH1/PMS2. The cell growth suppression of ITPA-deficient cells also depended on p53, but not on MPG, ENDOV or MSH2. ITPA deficiency significantly increased the levels of p53 protein and p21 mRNA/protein, a well-known target of p53, in an MLH1-dependent manner. Furthermore, MLH1 may also contribute to cell growth arrest by increasing the basal level of p53 activity. PMID:27618981
Suppression of span in sealed microcavity Fabry-Perot pressure sensors
NASA Astrophysics Data System (ADS)
Mishra, Shivam; Rajappa, Balasubramaniam; Chandra, Sudhir
2017-01-01
Optical microelectromechanical system pressure sensors working on the principle of extrinsic Fabry-Perot (FP) interferometer are designed and fabricated for pressure range of 1-bar absolute. Anodic bonding of silicon with glass is performed under atmospheric pressure to form FP cavity. This process results in entrapment of gas in the sealed microcavity. The effect of trapped gas is investigated on sensor characteristics. A closed-loop solution is derived for the deflection of the diaphragm of a sealed microcavity pressure sensor. Phenomenon of "suppression of span" is brought out. The sensors are tested using white light interferometry technique. The residual pressure of the trapped gas is estimated from the experiments. The developed model has been used to estimate the deflection sensitivity of the free diaphragm and the extent of suppression of span after bonding.
Photolytic removal of DBPs by medium pressure UV in swimming pool water.
Hansen, Kamilla M S; Zortea, Raissa; Piketty, Aurelia; Vega, Sergio Rodriguez; Andersen, Henrik Rasmus
2013-01-15
Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trichloronitromethane, dichloropropanone, trichloropropanone, and chloral hydrate. First order photolysis constants ranged 26-fold from 0.020 min(-1) for chloroform to 0.523 min(-1) for trichloronitromethane. The rate constants generally increased with bromine substitution. Using the UV removal of combined chlorine as an actinometer, the rate constants were recalculated to actual treatment doses of UV applied in a swimming pool. In an investigated public pool the UV dose was equivalent to an applied electrical energy of 1.34 kWh m(-3) d(-1) and the UV dose required to removed 90% of trichloronitromethane was 0.4 kWh m(-3) d(-1), while 2.6 kWh m(-3) d(-1) was required for chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes ranged from 0.6 to 3.1 kWh m(-3) d(-1). It was predicted thus that a beneficial side-effect of applying UV for removing combined chlorine from the pool water could be a significant removal of trichloronitromethane, chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes. Copyright © 2012 Elsevier B.V. All rights reserved.
Rasulov, Bahtijor; Hüve, Katja; Laisk, Agu; Niinemets, Ülo
2011-01-01
After darkening, isoprene emission continues for 20 to 30 min following biphasic kinetics. The initial dark release of isoprene (postillumination emission), for 200 to 300 s, occurs mainly at the expense of its immediate substrate, dimethylallyldiphosphate (DMADP), but the origin and controls of the secondary burst of isoprene release (dark-induced emission) between approximately 300 and 1,500 s, are not entirely understood. We used a fast-response gas-exchange system to characterize the controls of dark-induced isoprene emission by light, temperature, and CO2 and oxygen concentrations preceding leaf darkening and the effects of short light pulses and changing gas concentrations during dark-induced isoprene release in hybrid aspen (Populus tremula × Populus tremuloides). The effect of the 2-C-methyl-d-erythritol-4-phosphate pathway inhibitor fosmidomycin was also investigated. The integral of postillumination isoprene release was considered to constitute the DMADP pool size, while the integral of dark-induced emission was defined as the “dark” pool. Overall, the steady-state emission rate in light and the maximum dark-induced emission rate responded similarly to variations in preceding environmental drivers and atmospheric composition, increasing with increasing light, having maxima at approximately 40°C and close to the CO2 compensation point, and were suppressed by lack of oxygen. The DMADP and dark pool sizes were also similar through their environmental dependencies, except for high temperatures, where the dark pool significantly exceeded the DMADP pool. Isoprene release could be enhanced by short lightflecks early during dark-induced isoprene release, but not at later stages. Fosmidomycin strongly suppressed both the isoprene emission rates in light and in the dark, but the dark pool was only moderately affected. These results demonstrate a strong correspondence between the steady-state isoprene emission in light and the dark-induced emission and suggest that the dark pool reflects the total pool size of 2-C-methyl-d-erythritol-4-phosphate pathway metabolites upstream of DMADP. These metabolites are converted to isoprene as soon as ATP and NADPH become available, likely by dark activation of chloroplastic glycolysis and chlororespiration. PMID:21502186
The effect of newspaper coverage and political pressure on wildfire suppression costs
Geoffrey H Donovan; Jeffrey P Prestemon; Krista Gebert
2011-01-01
Controlling wildfire suppression expenditures has become a major public policy concern in the United States. However, most policy remedies have focused on the biophysical determinants of suppression costs: fuel loads and weather, for example. We show that two non-biophysical variablesânewspaper coverage and political pressureâhave a significant effect on wildfire...
Seymour, Roger S; Arndt, Joachim O
2004-03-01
Changes in orientation in a gravitational field markedly alter the patterns of blood pressure and flow in animals, especially tall or long ones such as giraffes or snakes. Vertical orientation tends to reduce blood flow and pressure in the head for two major reasons. First, the increased vertical blood column above the heart creates a gravitational hydrostatic pressure against which the heart must work. Second, expansion of dependent vessels in the lower extremities causes blood pooling and reduces return of venous blood to the heart, thereby lowering flow and pressure. For most animals, it is difficult to separate these two effects, but snakes offer the possibility of bending the animal in the region of the heart and manipulating the two ends of the body independently. We studied baroregulatory responses in terrestrial pythons (Liasis fuscus) and aquatic file snakes (Acrochordus arafurae) by tilting only the front or rear parts and then the whole animal. Changes in head blood pressure during partial tilts added up to the change during full tilt. The vertical distance to the head had twice as much influence on head blood pressure than did blood pooling in the pythons and four times as much in file snakes. This accounts for the cephalad location of the heart in terrestrial species compared with aquatic ones.
Control of pseudo-shock oscillation in scramjet inlet-isolator using periodical excitation
NASA Astrophysics Data System (ADS)
Su, Wei-Yi; Chen, Yun; Zhang, Feng-Rui; Tang, Piao-Ping
2018-02-01
To suppress the pressure oscillation, stabilize the shock train in the scramjet isolator and delay the hypersonic inlet unstart, flow control using periodic excitation was investigated with unsteady Reynolds averaged Navier-Stokes simulations. The results showed that by injecting air to manipulate the cowl reflected shock wave, the separation bubble induced by it was diminished and the pressure oscillations of the shock train were markedly suppressed. The power spectral density and standard deviation of wall pressure were significantly reduced. The simulations revealed that this active control method can raise the critical back pressure by 17.5% compared with the baseline, which would successfully delay the hypersonic inlet unstarts. The results demonstrated that this active control method is effective in suppressing pressure oscillation and delaying hypersonic inlet unstarts.
NASA Technical Reports Server (NTRS)
Ruff, Gary A.
2004-01-01
This report is concerned with the following topics regarding fire suppression:What is the relative effectiveness of candidate suppressants to extinguish a representative fire in reduced gravity, including high-O2 mole fraction, low -pressure environments? What are the relative advantages and disadvantages of physically acting and chemically-acting agents in spacecraft fire suppression? What are the O2 mole fraction and absolute pressure below which a fire cannot exist? What effect does gas-phase radiation play in the overall fire and post-fire environments? Are the candidate suppressants effective to extinguish fires on practical solid fuels? What is required to suppress non-flaming fires (smoldering and deep seated fires) in reduced gravity? How can idealized space experiment results be applied to a practical fire scenario? What is the optimal agent deployment strategy for space fire suppression?
Welding wire pressure sensor assembly
NASA Technical Reports Server (NTRS)
Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)
1994-01-01
The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.
dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.
Williams, Lindsey N; Marjavaara, Lisette; Knowels, Gary M; Schultz, Eric M; Fox, Edward J; Chabes, Andrei; Herr, Alan J
2015-05-12
Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.
Design and experimental validation of a flutter suppression controller for the active flexible wing
NASA Technical Reports Server (NTRS)
Waszak, Martin R.; Srinathkumar, S.
1992-01-01
The synthesis and experimental validation of an active flutter suppression controller for the Active Flexible Wing wind tunnel model is presented. The design is accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and extensive simulation based analysis. The design approach uses a fundamental understanding of the flutter mechanism to formulate a simple controller structure to meet stringent design specifications. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite modeling errors in predicted flutter dynamic pressure and flutter frequency. The flutter suppression controller was also successfully operated in combination with another controller to perform flutter suppression during rapid rolling maneuvers.
Directional Electrostatic Accretion Process Employing Acoustic Droplet Formation
NASA Technical Reports Server (NTRS)
Oeftering, Richard (Inventor)
1998-01-01
The present invention is directed to an apparatus for manufacturing a free standing solid metal part. In the present invention, metal droplets are ejected in a nozzleless fashion from a free surface pool of molten metal by applying focused acoustic radiation pressure. The acoustic radiation pressure is produced by high intensity acoustic tone bursts emitted from an acoustic source positioned at the bottom of the pool which directs the acoustic energy at the pool surface. The metal droplets are electrostatically charged so their trajectory can be controlled by electric fields that guide the droplets to predetermined points on a target. The droplets impinge upon the target and solidify with the target material. The accretion of the electrostatically directed solidified droplets forms the free standing metal part.
Desai, Milind Y; Gupta, Sandeep; Bomma, Chandra; Tandri, Harikrishna; Foo, Thomas K; Lima, Joao A C; Bluemke, David A
2005-01-01
Delayed post-contrast magnetic resonance (MR) imaging involves suppression of signal from myocardium using inversion times (TI) between 150-225 ms, when the myocardium appears dark and fibrotic scar appears bright. We noticed that at a TI optimized for signal suppression of the left ventricle (LV), the right ventricle (RV) appeared brighter. The purpose of this study was to evaluate the TI for signal suppression in RV compared to LV, and to try and identify the cause of this observation. Methods. We studied 31 patients (ages ranged from 17-79 years, 11 females) who had an MR scan on a 1.5 T GE scanner. Delayed post-contrast short-axis images were obtained 20 minutes after injection of 0.2 mmol/kg of intravenous gadolinium chelate. TI optimization was performed by acquiring a range of TI times within a single breath hold, in increments of 25 msec. The TI time that resulted in lowest signal for the RV arid LV was recorded. With the imaging sequence employed, the TI leading to LV signal suppression ranged from 150-225 ms. At the TI that resulted in LV signal suppression, the corrected signal from the RV was significantly higher as compared to the LV (29 +/- 13 au vs. 15 +/- 8 au, p < 0.001). The findings were similar using only the body coil. The TI required to suppress the RV was usually < or =150 msec. The observation persisted before and after gadolinium infusion. The TI for myocardial signal suppression appears to be different between LV and RV. Potential mechanisms include partial volume averaging with fat or blood pool (related to increased trabeculation) in the RV. Alternatively, increased blood pool signal (within Thebesian veins or arterioluminal communications) in RV compared to LV leads to altered TI times due to similar partial volume effects.
Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding
NASA Astrophysics Data System (ADS)
Naito, Yasuaki; Katayama, Seiji; Matsunawa, Akira
2003-03-01
Hybrid welding was carried out on Type 304 stainless steel plate under various conditions using YAG laser combined with TIG arc. During arc and laser-arc hybrid welding, arc voltage variation was measured, and arc plasma, laser-induced plume and evaporation spots as well as keyhole behavior and liquid flow in the molten pool were observed through CCD camera and X-ray real-time transmission apparatus. It was consequently found that hybrid welding possessed many features in comparison with YAG laser welding. The deepest weld bead could be produced when the YAG laser beam of high power density was shot on the molten pool made beforehand stably with TIG arc. A keyhole was long and narrow, and its behavior was rather stable inside the molten pool. It was also confirmed that porosity was reduced by the suppression of bubble formation in hybrid welding utilizing a laser of a moderate power density.
NASA Astrophysics Data System (ADS)
He, Xiuli
Nd: YAG Laser welding with hundreds of micrometers in laser beam diameter is widely used for assembly and closure of high reliability electrical and electronic packages for the telecommunications, aerospace and medical industries. However, certain concerns have to be addressed to obtain defect-free and structurally sound welds. During laser welding, Because of the high power density used, the pressures at the weld pool surface can be greater than the ambient pressure. This excess pressure provides a driving force for the vaporization to take place. As a result of vaporization for different elements, the composition in the weld pool may differ from that of base metal, which can result in changes in the microstructure and degradation of mechanical properties of weldments. When the weld pool temperatures are very high, the escaping vapor exerts a large recoil force on the weld pool surface, and as a consequence, tiny liquid metal particles may be expelled from the weld pool. Vaporization of alloying elements and liquid metal expulsion are the two main mechanisms of material loss. Besides, for laser welds with small length scale, heat transfer and fluid flow are different from those for arc welds with much larger length scale. Because of small weld pool size, rapid changes of temperature and very short duration of the laser welding process, physical measurements of important parameters such as temperature and velocity fields, weld thermal cycles, solidification and cooling rates are very difficult. The objective of the research is to quantitatively understand the influences of various factors on the heat transfer, fluid flow, vaporization of alloying elements and liquid metal expulsion in Nd:YAG laser welding with small length scale of 304 stainless steel. In this study, a comprehensive three dimensional heat transfer and fluid flow model based on the mass, momentum and energy conservation equations is relied upon to calculate temperature and velocity fields in the weld pool, weld thermal cycle, weld pool geometry and solidification parameters. Surface tension and buoyancy forces were considered for the calculation of transient weld pool convection. Very fine grids and small time steps were used to achieve accuracy in the calculations. The calculated weld pool dimensions were compared with the corresponding measured values to validate the model. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaluarachchi, Udhara S.; Taufour, Valentin; Bud'ko, Sergey L.
We report the temperature-pressure-magnetic eld phase diagram of the ferromagnetic Kondolattice CeTiGe 3 determined by means of electrical resistivity measurements. Measurements up to ~5.8GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe 3 orders ferromagnetically at T C =14 K. Application of pressure suppresses T C, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p>4.1GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3GPa. The critical pressures for the presumed quantummore » phase transitions are p1≅4.1GPa and p2≅5.3GPa. Above 4.1GPa, application of magnetic eld shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8T at 5.4GPa, where the rst order antiferromagneticferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.« less
Sapko, Michael J.; Cortese, Robert A.
1992-01-01
An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.
Quantum tricritical point in the temperature-pressure-magnetic field phase diagram of CeTiGe 3
Kaluarachchi, Udhara S.; Taufour, Valentin; Bud'ko, Sergey L.; ...
2018-01-22
We report the temperature-pressure-magnetic eld phase diagram of the ferromagnetic Kondolattice CeTiGe 3 determined by means of electrical resistivity measurements. Measurements up to ~5.8GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe 3 orders ferromagnetically at T C =14 K. Application of pressure suppresses T C, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p>4.1GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3GPa. The critical pressures for the presumed quantummore » phase transitions are p1≅4.1GPa and p2≅5.3GPa. Above 4.1GPa, application of magnetic eld shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8T at 5.4GPa, where the rst order antiferromagneticferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.« less
Corticocortical feedback increases the spatial extent of normalization.
Nassi, Jonathan J; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T
2014-01-01
Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a "normalization pool." Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing.
Corticocortical feedback increases the spatial extent of normalization
Nassi, Jonathan J.; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T.
2014-01-01
Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a “normalization pool.” Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing. PMID:24910596
29Si nuclear magnetic resonance study of URu 2Si 2 under pressure
Shirer, K. R.; Dioguardi, A. P.; Bush, B. T.; ...
2015-12-01
Here, we report 29Si nuclear magnetic resonance measurements of single crystals and aligned powders of URu 2Si 2 under pressure in the hidden order and paramagnetic phases. We find evidence for a reduction of the Knight shift with applied pressure, consistent with previous measurements of the static magnetic susceptibility. Previous measurements of the spin lattice relaxation time revealed a partial suppression of the density of states below 30 K. Here, we find that the temperature at which this suppression occurs is enhanced with applied pressure.
Investigation on Active Thermal Control Method with Pool Boiling Heat Transfer at Low Pressure
NASA Astrophysics Data System (ADS)
Sun, Chuang; Guo, Dong; Wang, Zhengyu; Sun, Fengxian
2018-06-01
In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The total setup was designed and performed to accomplish the experiment with the pressure range from 4.5 kPa to 20 kPa and the heat flux between 6 kW/m2 and 20 kW/m2. The chosen material of the heat surface was aluminium alloy and the test cavity had the capability of varying the direction for the heat surface from vertical to horizontal directions. Through this study, the steady and transient temperature of the heat surface at different pressures and directions were obtained. Although the temperature non-uniformity of the heat surface from the centre to the edge could reach 10°C for the aluminium alloy due to the varying pressures, the whole temperature results successfully satisfied with the thermal control requirements for electronic equipment, and the temperature control effect of the vertically oriented direction was better than that of the horizontally oriented direction. Moreover, the behaviour of bubbles generating and detaching from the heat surface was recorded by a high-resolution camera, so as to understand the pool boiling heat transfer mechanism at low-load heat flux. These pictures showed that the bubbles departure diameter becomes larger, and departure frequency was slower at low pressure, in contrast to 1.0 atm.
NASA Technical Reports Server (NTRS)
Matthew, J. R.
1980-01-01
A digital flutter suppression system was developed and mechanized for a significantly modified version of the 1/30-scale B-52E aeroelastic wind tunnel model. A model configuration was identified that produced symmetric and antisymmetric flutter modes that occur at 2873N/sq m (60 psf) dynamic pressure with violent onset. The flutter suppression system, using one trailing edge control surface and the accelerometers on each wing, extended the flutter dynamic pressure of the model beyond the design limit of 4788N/sq m (100 psf). The hardware and software required to implement the flutter suppression system were designed and mechanized using digital computers in a fail-operate configuration. The model equipped with the system was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center and results showed the flutter dynamic pressure of the model was extended beyond 4884N/sq m (102 psf).
Visualization of hump formation in high-speed gas metal arc welding
NASA Astrophysics Data System (ADS)
Wu, C. S.; Zhong, L. M.; Gao, J. Q.
2009-11-01
The hump bead is a typical weld defect observed in high-speed welding. Its occurrence limits the improvement of welding productivity. Visualization of hump formation during high-speed gas metal arc welding (GMAW) is helpful in the better understanding of the humping phenomena so that effective measures can be taken to suppress or decrease the tendency of hump formation and achieve higher productivity welding. In this study, an experimental system was developed to implement vision-based observation of the weld pool behavior during high-speed GMAW. Considering the weld pool characteristics in high-speed welding, a narrow band-pass and neutral density filter was equipped for the CCD camera, the suitable exposure time was selected and side view orientation of the CCD camera was employed. The events that took place at the rear portion of the weld pools were imaged during the welding processes with and without hump bead formation, respectively. It was found that the variation of the weld pool surface height and the solid-liquid interface at the pool trailing with time shows some useful information to judge whether the humping phenomenon occurs or not.
Multimodality of Ca2+ signaling in rat atrial myocytes.
Morad, Martin; Javaheri, Ashkan; Risius, Tim; Belmonte, Steve
2005-06-01
It has been suggested that the multiplicity of Ca(2+) signaling pathways in atrial myocytes may contribute to the variability of its function. This article reports on a novel Ca(2+) signaling cascade initiated by mechanical forces induced by "puffing" of solution onto the myocytes. Ca(i) transients were measured in fura-2 acetoxymethyl (AM) loaded cells using alternating 340- and 410-nm excitation waves at 1.2 kHz. Pressurized puffs of bathing solutions, applied by an electronically controlled micro-barrel system, activated slowly (approximately 300 ms) developing Ca(i) transients that lasted 1,693 +/- 68 ms at room temperature. Subsequent second and third puffs, applied at approximately 20 s intervals activated significantly smaller or no Ca(i) transients. Puff-triggered Ca(i) transients could be reactivated once again following caffeine (10 mM)-induced release of Ca(2+) from sarcoplasmic reticulum (SR). Puff-triggered Ca(i) transients were independent of [Ca(2+)](o), and activation of voltage-gated Ca(2+) or cationic stretch channels or influx of Ca(2+) on Na(+)/Ca(2+)exchanger, because puffing solution containing no Ca(2+), 10 microM diltiazem, 1 mM Cd(2+), 5 mM Ni(2+), or 100 microM Gd(3+) failed to suppress them. Puff-triggered Ca(i) transients were enhanced in paced compared to quiescent myocytes. Electrically activated Ca(i) transients triggered during the time course of puff-induced transients were unaltered, suggesting functionally separate Ca(2+) pools. Contribution of inositol 1,4,5-triphosphate (IP(3))-gated or mitochondrial Ca(2+) pools or modulation of SR stores by nitric oxide/nitric oxide synthase (NO/NOS) signaling were evaluated using 0.5 to 500 microM 2-aminoethoxydiphenyl borate (2-APB) and 0.1 to 1 microM carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and 1 mM Nomega-Nitro-L-arginine methyl ester (L-NAME) and 7-nitroindizole, respectively. Only FCCP appeared to significantly suppress the puff-triggered Ca(i) transients. It was concluded that neither Ca(2+) influx nor depolarization was required for activation of this signaling pathway. These studies suggest that pressurized puffs of solutions activate a mechanically sensitive receptor, which signals in turn the release of Ca(2+) from a limited Ca(2+) store of mitochondria. How mechanical forces are sensed and transmitted to mitochondria to induce Ca(2+) release and what role such a Ca(2+) signaling pathway plays in the physiology or pathophysiology of the heart remain to be worked out.
21 CFR 880.5780 - Medical support stocking.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Devices § 880.5780 Medical support stocking. (a) Medical support stocking to prevent the pooling of blood in the legs—(1) Identification. A medical support stocking to prevent the pooling of blood in the legs is a device that is constructed of elastic material and designed to apply controlled pressure to...
21 CFR 880.5780 - Medical support stocking.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Devices § 880.5780 Medical support stocking. (a) Medical support stocking to prevent the pooling of blood in the legs—(1) Identification. A medical support stocking to prevent the pooling of blood in the legs is a device that is constructed of elastic material and designed to apply controlled pressure to...
21 CFR 880.5780 - Medical support stocking.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Devices § 880.5780 Medical support stocking. (a) Medical support stocking to prevent the pooling of blood in the legs—(1) Identification. A medical support stocking to prevent the pooling of blood in the legs is a device that is constructed of elastic material and designed to apply controlled pressure to...
21 CFR 880.5780 - Medical support stocking.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Devices § 880.5780 Medical support stocking. (a) Medical support stocking to prevent the pooling of blood in the legs—(1) Identification. A medical support stocking to prevent the pooling of blood in the legs is a device that is constructed of elastic material and designed to apply controlled pressure to...
21 CFR 880.5780 - Medical support stocking.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Devices § 880.5780 Medical support stocking. (a) Medical support stocking to prevent the pooling of blood in the legs—(1) Identification. A medical support stocking to prevent the pooling of blood in the legs is a device that is constructed of elastic material and designed to apply controlled pressure to...
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Russell, C.; Bhat, B.; Fragomeni, J. M.
1998-01-01
Conditions under which molten metal detachments might occur in a space welding environment are analyzed. A weld pool detachment parameter specifying conditions for pool detachment by impact is derived and corroborated by experimental evidence. Impact detachment for the pool is unlikely. Impact detachment for a drop of metal on the end of the weld wire may be possible under extreme conditions. Other potential causes of molten metal detachment considered, vaporization pressure forces and wire flickout from the pool, did not appear to present significant detachment threats.
Estimated vapor pressure for WTP process streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, J.; Poirier, M.
Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused bymore » organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.« less
Automatic blood pressure measuring system (M091)
NASA Technical Reports Server (NTRS)
1977-01-01
The Leg Volume Measuring System is used to measure leg calf girth changes that occur during exposure to lower body negative pressure as a result of pooling of blood and other fluids in the lower extremities.
Pressurized storm sewer simulation : model enhancement.
DOT National Transportation Integrated Search
1991-01-01
A modified Pressurized Flow Simulation Model, PFSM, was developed and attached to the Federal Highway Administration, FHWA, Pool Funded PFP-HYDRA Package. Four hydrograph options are available for simulating inflow to a sewer system under surcharge o...
Carneiro, Gláucia; Togeiro, Sônia Maria; Hayashi, Lílian F; Ribeiro-Filho, Fernando Flexa; Ribeiro, Artur Beltrame; Tufik, Sérgio; Zanella, Maria Teresa
2008-08-01
Obstructive sleep apnea syndrome (OSAS) increases the risk of cardiovascular events. Sympathetic nervous system and hypothalamic-pituitary-adrenal (HPA) axis activation may be the mechanism of this relationship. The aim of this study was to evaluate HPA axis and ambulatory blood pressure monitoring in obese men with and without OSAS and to determine whether nasal continuous positive airway pressure therapy (nCPAP) influenced responses. Twenty-four-hour ambulatory blood pressure monitoring and overnight cortisol suppression test with 0.25 mg of dexamethasone were performed in 16 obese men with OSAS and 13 obese men controls. Nine men with severe apnea were reevaluated 3 mo after nCPAP therapy. Body mass index and blood pressure of OSAS patients and obese controls were similar. In OSAS patients, the percentage of fall in systolic blood pressure at night (P = 0.027) and salivary cortisol suppression postdexamethasone (P = 0.038) were lower, whereas heart rate (P = 0.022) was higher compared with obese controls. After nCPAP therapy, patients showed a reduction in heart rate (P = 0.036) and a greater cortisol suppression after dexamethasone (P = 0.001). No difference in arterial blood pressure (P = 0.183) was observed after 3 mo of nCPAP therapy. Improvement in cortisol suppression was positively correlated with an improvement in apnea-hypopnea index during nCPAP therapy (r = 0.799, P = 0.010). In conclusion, men with OSAS present increased postdexamethasone cortisol levels and heart rate, which were recovered by nCPAP.
Active Control of Fan Noise: Feasibility Study. Volume 4; Flyover System Noise Studies
NASA Technical Reports Server (NTRS)
Kraft, R. E.; Janardan, B. A.; Gliebe, P. R.; Kontos, G. C.
1996-01-01
An extension of a prior study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct, at least to the extent that they no longer protrude above the surrounding broadband noise levels. Thus, without considering the engineering details of the ANC system design, tone levels am arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios of 1.3, 1.45, 1.6, and 1.75. This report is an extension of an effort reported previously. The major conclusions drawn from the prior study, which was restricted to fan pressure ratios of 1.45 and 1.75, are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC. For a fan pressure ratio of 1.45, ANC appears to offer less effectiveness from passive treatment. In the present study, the other two fan pressure ratios are included in a more detailed examination of the benefits of the ANC suppression levels. The key results of this extended study are the following observations: (1) The maximum overall benefit obtained from suppression of BPF alone was 2.5 EPNdB at high fan speeds. The suppression benefit increases with increase in fan pressure ratio (FPR), (2) The maximum overall benefit obtained from suppression of the first three harmonics was 3 EPNdB at high speeds. Suppression benefit increases with increase in FPR, (3) At low FPR, only about 1.0 EPNdB maximum reduction was obtained. Suppression is primarily from reduction of BPF at high FPR values and from the combination of tones at low FPR, (4) The benefit from ANC is about the same as the benefit from passive treatment at fan pressure ratios of 1.75 and 1.60. At the two lower fan pressure ratios, the effectivness of treatment is much greater than that of ANC, and (5) No significant difference in ANC suppression behavior was found from the QCSEE engine database analysis compared to that of the E3 engine database, for the FPR = 1.3 engine cycle. The effects of ANC on EPNL noise reduction are difficult to generalize. It was found that the reduction obtained in any particular case depended upon the frequency of the tones and their shift with rpm, the amount of ANC suppression received by each tone (which depended on its protrusion from the background), and the NOY-value of the tone relative to the NOY-value of other tones and the peak broadband levels, because PNL is determined from the sum of the NOY-values.
Feng, Zhe; Hagos, Samson; Rowe, Angela K.; ...
2015-04-03
This paper investigates the mechanisms of convective cloud organization by precipitation-driven cold pools over the warm tropical Indian Ocean during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment / Dynamics of the MJO (AMIE/DYNAMO) field campaign. A high-resolution regional model simulation is performed using the Weather Research and Forecasting model during the transition from suppressed to active phases of the November 2011 MJO. The simulated cold pool lifetimes, spatial extent and thermodynamic properties agree well with the radar and ship-borne observations from the field campaign. The thermodynamic and dynamic structures of the outflow boundaries of isolated andmore » intersecting cold pools in the simulation and the associated secondary cloud populations are examined. Intersecting cold pools last more than twice as long, are twice as large, 41% more intense (measured by buoyancy), and 62% deeper than isolated cold pools. Consequently, intersecting cold pools trigger 73% more convective clouds than isolated ones. This is possibly due to stronger outflows that enhance secondary updraft velocities by up to 45%. However, cold pool-triggered convective clouds grow into deep convection not because of the stronger secondary updrafts at cloud base, but rather due to closer spacing (aggregation) between clouds and larger cloud clusters that formed along the cold pool boundaries when they intersect. The close spacing of large clouds moistens the local environment and reduces entrainment drying, allowing the clouds to further develop into deep convection. Implications to the design of future convective parameterization with cold pool-modulated entrainment rates are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyun, J.J.; Majumdar, D.
The paper describes TEMPEST, a simple computer program for the temperature and pressure estimation of a boiling fuel-steel pool in an LMFBR core. The time scale of interest of this program is large, of the order of ten seconds. Further, the vigorous boiling in the pool will generate a large contact, and hence a large heat transfer between fuel and steel. The pool is assumed to be a uniform mixture of fuel and steel, and consequently vapor production is also assumed to be uniform throughout the pool. The pool is allowed to expand in volume if there is steel meltingmore » at the walls. In this program, the total mass of liquid and vapor fuel is always kept constant, but the total steel mass in the pool may change by steel wall melting. Because of a lack of clear understanding of the physical phenomena associated with the progression of a fuel-steel mixture at high temperature, various input options have been built-in to enable one to perform parametric studies. For example, the heat transfer from the pool to the surrounding steel structure may be controlled by input values for the heat transfer coefficients, or, the heat transfer may be calculated by a correlation obtained from the literature. Similarly, condensation of vapor on the top wall can be specified by input values of the condensation coefficient; the program can otherwise calculate condensation according to the non-equilibrium model predictions. Meltthrough rates of the surrounding steel walls can be specified by a fixed melt-rate or can be determined by a fraction of the heat loss that goes to steel-melting. The melted steel is raised to the pool temperature before it is joined with the pool material. Several applications of this program to various fuel-steel pools in the FFTF and the CRBR cores are discussed.« less
Noise exposure and children's blood pressure and heart rate: the RANCH project
van Kempen, E; Van Kamp, I; Fischer, P; Davies, H; Houthuijs, D; Stellato, R; Clark, C; Stansfeld, S
2006-01-01
Background Conclusions that can be drawn from earlier studies on noise and children's blood pressure are limited due to inconsistent results, methodological problems, and the focus on school noise exposure. Objectives To investigate the effects of aircraft and road traffic noise exposure on children's blood pressure and heart rate. Methods Participants were 1283 children (age 9–11 years) attending 62 primary schools around two European airports. Data were pooled and analysed using multilevel modelling. Adjustments were made for a range of socioeconomic and lifestyle factors. Results After pooling the data, aircraft noise exposure at school was related to a statistically non‐significant increase in blood pressure and heart rate. Aircraft noise exposure at home was related to a statistically significant increase in blood pressure. Aircraft noise exposure during the night at home was positively and significantly associated with blood pressure. The findings differed between the Dutch and British samples. Negative associations were found between road traffic noise exposure and blood pressure, which cannot be explained. Conclusion On the basis of this study and previous scientific literature, no unequivocal conclusions can be drawn about the relationship between community noise and children's blood pressure. PMID:16728500
Detection of Geothermal Phosphite Using High Performance Liquid Chromatography
Pech, Herbe; Henry, Amanda; Khachikian, Crist S.; Salmassi, Tina M.; Hanrahan, Grady; Foster, Krishna L.
2009-01-01
Little is known about the pre-biotic mechanisms that initiated the bioavailability of phosphorus, an element essential to life. A better understanding of phosphorus speciation in modern earth environments representative of early earth, may help to elucidate the origins of bioavailable phosphorus. This paper presents the first quantitative measurements of phosphite in a pristine geothermal pool representative of early earth. Phosphite and phosphate were initially identified and quantified in geothermal pool and stream samples at Hot Creek Gorge near Mammoth Lakes, California using suppressed conductivity ion chromatography. Results confirmed the presence of 0.06 ± 0.02 μM of phosphite and 0.05 ± 0.01 μM of phosphate in a geothermal pool. In the stream, phosphite concentrations were below detection limit (0.04 μM) and phosphate was measured at 1.06 ± 0.36 μM. The presence of phosphite in the geothermal pool was confirmed using both chemical oxidation and ion chromatography/mass spectrometry. PMID:19921877
Rapid depressurization event analysis in BWR/6 using RELAP5 and contain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueftueoglu, A.K.; Feltus, M.A.
1995-09-01
Noncondensable gases may become dissolved in Boiling Water Reactor (BWR) water level instrumentation during normal operations. Any dissolved noncondensable gases inside these water columns may come out of solution during rapid depressurization events, and displace water from the reference leg piping resulting in a false high level. These water level errors may cause a delay or failure in actuation, or premature shutdown of the Emergency Core Cooling System. (ECCS). If a rapid depressurization causes an erroneously high water level, preventing automatic ECCS actuation, it becomes important to determine if there would be other adequate indications for operator response and othermore » signals for automatic actuation such as high drywell pressure. It is also important to determine the effect of the level signal on ECCS operation after it is being actuated. The objective of this study is to determine the detailed coupled containment/NSSS response during this rapid depressurization events in BWR/6. The selected scenarios involve: (a) inadvertent opening of all ADS valves, (b) design basis (DB) large break loss of coolant accident (LOCA), and (c) main steam line break (MSLB). The transient behaviors are evaluated in terms of: (a) vessel pressure and collapsed water level response, (b) specific transient boundary conditions, (e.g., scram, MSIV closure timing, feedwater flow, and break blowdown rates), (c) ECCS initiation timing, (d) impact of operator actions, (e) whether indications besides low-low water level were available. The results of the analysis had shown that there would be signals to actuate ECCS other than low reactor level, such as high drywell pressure, low vessel pressure, high suppression pool temperature, and that the plant operators would have significant indications to actuate ECCS.« less
Post-Pool Raise Spillway Prototype Test for Chief Joseph Dam, Columbia River, Washington.
1987-04-01
low as -5 and -10 ft of water would exist on the spillway crest under free-flow conditions with pool el 956.0 and 958.8, respectively. 5. Details of...magnitude and irregular frequency, varying from 0.2 to 3.1 ft of water at frequencies of I to 32 Hz. The lowest mean and low pressures recorded were -6.9 and...and -8.0 ft of water , respectively, were measured on the spillway center line at an H/H ratio of 1.31. These low pressures, which d texceed those of
What Causes Ankle Swelling During Pregnancy - And What Can I do About it?
... or walk in the pool. Although there's little research on the use of water pressure for foot and ankle swelling, standing or walking in a pool seems to help compress tissues in the legs and might provide ... Some research suggests that foot massage and reflexology, which involves ...
Influence of a Small Fraction of Individuals with Enhanced Mutations on a Population Genetic Pool
NASA Astrophysics Data System (ADS)
Cebrat, S.; Stauffer, D.
It has been observed that a higher mutation load could be introduced into the genomes of children conceived by assisted reproduction technology (fertilization in-vitro). This generates two effects — slightly higher mutational pressure on the whole genetic pool of population and inhomogeneity of mutation distributions in the genetic pool. Computer simulations of the Penna ageing model suggest that already a small fraction of births with enhanced number of new mutations can negatively influence the whole population.
Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells
Weick, Michael; Demb, Jonathan B.
2011-01-01
SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646
Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells.
Weick, Michael; Demb, Jonathan B
2011-07-14
Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. Copyright © 2011 Elsevier Inc. All rights reserved.
Modeling of the Temperature Field Recovery in the Oil Pool
NASA Astrophysics Data System (ADS)
Khabibullin, I. L.; Davtetbaev, A. Ya.; Mar'in, D. F.; Khisamov, A. A.
2018-05-01
This paper considers the problem on mathematical modeling of the temperature field recovery in the oil pool upon termination of injection of water into the pool. The problem is broken down into two stages: injection of water and temperature and pressure recovery upon termination of injection. A review of the existing mathematical models is presented, analytical solutions for a number of cases have been constructed, and a comparison of the analytical solutions of different models has been made. In the general form, the expression has been obtained that permits determining the temperature change in the oil pool upon termination of injection of water (recovery of the temperature field).
Tardif, Robert; Rodriguez, Manuel; Catto, Cyril; Charest-Tardif, Ginette; Simard, Sabrina
2017-08-01
The formation and concentration of disinfection by-products (DBPs) in pool water and the ambient air vary according to the type of water treatment process used. This exploratory study was aimed at investigating the short-term impact of modifications of the water treatment process on traditional DBP levels (e.g., trihalomethanes (THMs), chloramines) and emerging DBPs (e.g., Halonitromethanes, Haloketones, NDMA) in swimming pool water and/or air. A sampling program was carried to understand the impact of the following changes made successively to the standard water treatment process: activation of ultraviolet (UV) photoreactor, halt of air stripping with continuation of air extraction from the buffer tank, halt of air stripping and suppression of air extraction from the buffer tank, suppression of the polyaluminium silicate sulfate (PASS) coagulant. UV caused a high increase of Halonitromethanes (8.4 fold), Haloketones (2.1 fold), and THMs in the water (1.7 fold) and, of THMs in the air (1.6 fold) and contributed to reducing the level of chloramines in the air (1.6 fold) and NDMA in the water (2.1 fold). The results highlight the positive impact of air stripping in reducing volatile contaminants. The PASS did not change the presence of DBPs, except for the THMs, which decrease slightly with the use of this coagulant. This study shows that modifications affecting the water treatment process can rapidly produce important and variable impacts on DBP levels in water and air and suggests that implementation of any water treatment process to reduce DBP levels should take into account the specific context of each swimming pool. Copyright © 2017. Published by Elsevier B.V.
Three-dimensional modeling of the plasma arc in arc welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, G.; Tsai, H. L.; Hu, J.
2008-11-15
Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such asmore » an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.« less
Interfacial heat transfer in multiphase molten pools with gas injection
NASA Astrophysics Data System (ADS)
Bilbao Y Leon, Rosa Marina
1998-12-01
In the very unlikely event of a severe reactor accident involving core meltdown and pressure vessel failure, it is vital to identify the circumstances that would allow the molten core material to cool down and resolidify, bringing core debris to a safe and stable state. In this type of accident, the molten material which escapes from the reactor pressure vessel will accumulate as a molten pool in the reactor cavity below. To achieve coolability of the corium in this configuration it has been proposed to flood the cavity with water from above forming a layered structure where upward heat loss from the molten pool to the water will cause the core material to quench and solidify. The effectiveness of this procedure depends largely on the rate of upward heat loss as well as on the formation and stability of an upper crust. In this situation the molten pool becomes a three phase mixture: the solid and liquid slurry formed by the molten pool cooled to a temperature below the temperature of liquidus, agitated by the gases formed in the concrete ablation process. The present work quantifies the partition of the heat losses upward and downward considering the influence of the solid fraction in the pool and the viscosity effects, and the rate of heat loss through a solid layer. To complete this task a intermediate scale experimental test section has been designed and built at the University of Wisconsin - Madison, in which simulant materials are used to model the process of heat and mass transfer which involves the molten pool, the solid layer atop and the coolant layer above. The design includes volumetric heating, gas injection from the bottom and solids within the pool. New experimental results showing the heat transfer behavior for pools with different viscosities and various solid fractions are presented. The current results indicate a power split which favors heat transfer upward to the coolant simulant above by a 2:1 or 3:1 ratio. In addition, the power split is unaffected by the viscosity of the pool, the solid fractions in the pool and the superficial velocity.
Tanaka, Ryo; Umemura, Masanari; Narikawa, Masatoshi; Fujita, Takayuki; Yokoyama, Utako; Ishigami, Tomoaki; Kimura, Kazuo; Tamura, Kouichi; Ishikawa, Yoshihiro
2018-05-01
Mechanical stresses play important roles in the process of constructing and modifying heart structure. It has been well established that stretch force acting on cardiac fibroblasts induces fibrosis. However, the effects of compressive force, that is, hydrostatic pressure (HP), have not been well elucidated. We thus evaluated the effects of HP using a pressure-loading apparatus in human cardiac fibroblasts (HCFs) in vitro. In this study, high HP (200 mmHg) resulted in significant phosphorylation of Akt in HCFs. HP then greatly inhibited glycogen synthase kinase 3 (GSK-3)α, which acts downstream of the PI3K/Akt pathway. Similarly, HP suppressed mRNA transcription of inflammatory cytokine-6, collagen I and III, and matrix metalloproteinase 1, compared with an atmospheric pressure condition. Furthermore, HP inhibited collagen matrix production in a three-dimensional HCF culture. Taken together, high HP suppressed the differentiation of fibroblasts into the myofibroblast phenotype. HP under certain conditions suppressed cardiac fibrosis via Akt/GSK-3 signaling in HCFs. These results might help to elucidate the pathology of some types of heart disease. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehrke, Christopher R.; Radovanovic, Michael S.; Milam, David M.
2008-04-01
Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes x 70/mD and 5 holes x 35/mD) with 103-/gmm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70/mD before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around amore » 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load. High-speed movies of natural luminosity were acquired by viewing through a window in the cylinder wall and through a window in the piston to provide quasi-3D information about the combustion process. These movies revealed that advanced combustion phasing resulted in intense pool fires within the piston bowl, after the end of significant heat release. These pool fires are a result of fuel-films created when the injected fuel impinged on the piston surface. The emissions results showed a strong correlation with pool-fire activity. Smoke and NO/dx emissions rose steadily as pool-fire intensity increased, whereas HC and CO showed a dramatic increase with near-zero pool-fire activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, M. L.; Liu, B.; Hu, R. H.
In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with highermore » energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.« less
Cheema, Waqas A; Manasfi, Tarek; Kaarsholm, Kamilla M S; Andersen, Henrik R; Boudenne, Jean-Luc
2017-12-01
Several brominated disinfection by-products (DBPs) are formed in chlorinated seawater pools, due to the high concentration of bromide in seawater. UV irradiation is increasingly employed in freshwater pools, because UV treatment photodegrades harmful chloramines. However, in freshwater pools it has been reported that post-UV chlorination promotes the formation of other DBPs. To date, UV-based processes have not been investigated for DBPs in seawater pools. In this study, the effects of UV, followed by chlorination, on the concentration of three groups of DBPs were investigated in laboratory batch experiments using a medium-pressure UV lamp. Chlorine consumption increased following post-UV chlorination, most likely because UV irradiation degraded organic matter in the pool samples to more chlorine-reactive organic matter. Haloacetic acid (HAA) concentrations decreased significantly, due to photo-degradation, but the concentrations of trihalomethanes (THMs) and haloacetonitriles (HANs) increased with post-UV chlorination. Bromine incorporation in HAAs was significantly higher in the control samples chlorinated without UV irradiation but decreased significantly with UV treatment. Bromine incorporation was promoted in THM and HAN after UV and chlorine treatment. Overall, the accumulated bromine incorporation level in DBPs remained essentially unchanged in comparison with the control samples. Toxicity estimates increased with single-dose UV and chlorination, mainly due to increased HAN concentrations. However, brominated HANs are known in the literature to degrade following further UV treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of pressure and magnetic field on the electrical resistivity of TbB6
NASA Astrophysics Data System (ADS)
Sakai, Takeshi; Oomi, Gendo; Kunii, Satoru
2009-06-01
Electrical resistivity of a single crystal of TbB6 was studied under hydrostatic pressures up to 2.1 GPa and magnetic fields up to 9 T. The Néel temperature, rN, decreases linearly with increasing pressure: \\ddiff lnTN/\\ddiff P = 3.14×10-2 GPa-1 at zero external field. This pressure dependence of TN weakens as external fields increase. At ambient pressure, the magnetoresistance at 4.2 K is positive up to 4.8 T and becomes negative above 4.8 T. The positive magnetoresistance observed at ambient pressure is suppressed by applying pressure, which enhances the negative magnetoresistance. These results are interpreted in terms of the reduction of the scattering of conduction electrons, due to disordered magnetic moment being suppressed by derealization of 4f electrons at high pressure, and the magnetic field variation of the large transition probability between the ground state and the excited levels.
Suppression of Magnetic Order before the Superconducting Dome in MnP
NASA Astrophysics Data System (ADS)
Yano, Shin-ichiro; Lançon, Diane; Rønnow, Henrik M.; Hansen, Thomas C.; Ressouche, Eric; Qureshi, Navid; Ouladdiaf, Bachir; Gardner, Jason S.
2018-02-01
We have performed neutron diffraction experiments on the manganese superconductor, MnP, under applied pressure. Higher harmonics of the previously reported double helix (2δ and 3δ) at ambient pressure were observed and a new magnetic phases was discovered as hydrostatic pressure was applied to a polycrystalline sample below the pressure required to induce superconductivity. The double helix magnetic structure is suppressed by 0.7 GPa. A new incommensurate magnetic structure with propagation vector ˜ (0.25,0.25,0.125) was found at 1.5 GPa. The application of higher pressures results in the quenching of the incommensurate phase and broad, diffuse magnetic scattering develops before the superconducting phase. Single crystal studies complement the polycrystalline data confirming the magnetic propagation vector in the low pressure phase.
Diatomite Type Filters for Swimming Pools. Standard No. 9, Revised October, 1966.
ERIC Educational Resources Information Center
National Sanitation Foundation, Ann Arbor, MI.
Pressure and vacuum diatomite type filters are covered in this standard. The filters herein described are intended to be designed and used specifically for swimming pool water filtration, both public and residential. Included are the basic components which are a necessary part of the diatomite type filter such as filter housing, element supports,…
NASA Astrophysics Data System (ADS)
Jordan, P. D.
2015-12-01
Annual CO2 emissions from large fixed sources in the southern San Joaquin Valley and vicinity in California are about 20 million metric tons per year (MMT/Y). Cumulative net fluid production due to oil and gas extracted from below the minimum depth for geologic carbon storage (taken as 1,500 m) was 1.4 billion m3 at reservoir conditions as of 2010. At an average CO2 storage density of 0.5 metric tons per m3, this implies 35 years of storage capacity at current emission rates just to refill the vacated volume, neglecting possible reservoir consolidation. However, the production occurred from over 300 pools. The production rate relative to average pressure decline in the more productive pools analyzed suggests they could receive about 2 MMT/Y raising the field average pressure to nearly the fracturing pressure. This would require well fields as extensive as those used for production, instead of the single to few wells per project typically envisioned. Even then, the actual allowable injection rate to the larger pools would be less than 2 MMT/Y in order to keep pressures at the injection well below the fracture pressure. This implies storing 20 MMT/Y would require developing storage operations in tens of pools with hundreds, if not over a thousand, wells. This utilization of one of the basins with the most storage capacity in the state would result in reducing the state's fixed source emissions by only one eighth relative to current emissions. The number of fields and wells involved in achieving this suggests a different strategy might provide more capacity at similar cost. Specifically, staging wells that initially produce water in the vicinity of fewer injection wells could result in both more storage. This water could be directed to a shallower zone, or supplied to the surface at a similar cost. The commencement of ocean water desalination in the state indicates the economics of water supply might support treating this water for beneficial use, particularly if it has a lower salinity than sea water.
H-division quarterly report, October--December 1977. [Lawrence Livermore Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-02-10
The Theoretical EOS Group develops theoretical techniques for describing material properties under extreme conditions and constructs equation-of-state (EOS) tables for specific applications. Work this quarter concentrated on a Li equation of state, equation of state for equilibrium plasma, improved ion corrections to the Thomas--Fermi--Kirzhnitz theory, and theoretical estimates of high-pressure melting in metals. The Experimental Physics Group investigates properties of materials at extreme conditions of pressure and temperature, and develops new experimental techniques. Effort this quarter concerned the following: parabolic projectile distortion in the two-state light-gas gun, construction of a ballistic range for long-rod penetrators, thermodynamics and sound velocities inmore » liquid metals, isobaric expansion measurements in Pt, and calculation of the velocity--mass profile of a jet produced by a shaped charge. Code development was concentrated on the PELE code, a multimaterial, multiphase, explicit finite-difference Eulerian code for pool suppression dynamics of a hypothetical loss-of-coolant accident in a nuclear reactor. Activities of the Fluid Dynamics Group were directed toward development of a code to compute the equations of state and transport properties of liquid metals (e.g. Li) and partially ionized dense plasmas, jet stability in the Li reactor system, and the study and problem application of fluid dynamic turbulence theory. 19 figures, 5 tables. (RWR)« less
Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry
NASA Astrophysics Data System (ADS)
Colizza, Kevin; Mahoney, Keira E.; Yevdokimov, Alexander V.; Smith, James L.; Oxley, Jimmie C.
2016-11-01
Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression.
77 FR 19740 - Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant Accident
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0249] Water Sources for Long-Term Recirculation Cooling... Regulatory Guide (RG) 1.82, ``Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant... regarding the sumps and suppression pools that provide water sources for emergency core cooling, containment...
Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection
NASA Astrophysics Data System (ADS)
Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.
Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.
Melting Efficiency During Plasma Arc Welding
NASA Technical Reports Server (NTRS)
McClure, J.C.; Evans, D. M.; Tang, W.; Nunes, A. C.
1999-01-01
A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 aluminum. Arc Efficiency was measured calorimetrically and ranged between 48% and 66%. Melting efficiency depends on the weld pool shape. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Higher currents are thought to raise arc pressure and depress the liquid at the bottom of the weld pool causing a more nearly two dimensional heat flow condition.
STS-45 MS Foale in EMU is lowered into JSC's WETF pool for underwater test
1991-02-26
S91-30197 (1 March 1991) --- A wider shot of astronaut C. Michael Foale, mission specialist, standing on a platform which is part of a system that will lower him into a 25-ft. deep pool. Foale used the pool in the weightless environment training facility (WET-F) to rehearse a contingency extravehicular activity (EVA). Two SCUBA-equipped swimmers assist. Astronauts wear pressurized spacesuits configured for achieving a neutrally buoyant condition in the water to simulate both planned and contingency EVAs.
Kühlmann, Anne Y R; Etnel, Jonathan R G; Roos-Hesselink, Jolien W; Jeekel, Johannes; Bogers, Ad J J C; Takkenberg, Johanna J M
2016-04-19
Adverse effects, treatment resistance and high costs associated with pharmacological treatment of hypertension have led to growing interest in non-pharmacological complementary therapies such as music interventions. This meta-analysis aims to provide an overview of reported evidence on the efficacy of music interventions in the treatment of hypertension. A systematic literature search was conducted for publications on the effect of music interventions on blood pressure in adult hypertensive subjects published between January 1990-June 2014. Randomized controlled trials with a follow-up duration ≥28 days were included. Blood pressure measures were pooled using inverse variance weighting. Of the 1689 abstracts reviewed, 10 randomized controlled trials were included. Random-effects pooling of the music intervention groups showed a trend toward a decrease in mean systolic blood pressure (SBP) from 144 mmHg(95 % CI:137-152) to 134 mmHg(95 % CI:124-144), and in mean diastolic blood pressure (DBP) from 84 mmHg(95 % CI:78-89) to 78 mmHg(95 % CI:73-84). Fixed-effect analysis of a subgroup of 3 trials with valid control groups showed a significant decrease in pooled mean SBP and DBP in both intervention and control groups. A comparison between music intervention groups and control groups was not possible due to unavailable measures of dispersion. This systematic review and meta-analysis revealed a trend towards a decrease in blood pressure in hypertensive patients who received music interventions, but failed to establish a cause-effect relationship between music interventions and blood pressure reduction. Considering the potential value of this safe, low-cost intervention, well-designed, high quality and sufficiently powered randomized studies assessing the efficacy of music interventions in the treatment of hypertension are warranted.
3D finite element simulation of TIG weld pool
NASA Astrophysics Data System (ADS)
Kong, X.; Asserin, O.; Gounand, S.; Gilles, P.; Bergheau, J. M.; Medale, M.
2012-07-01
The aim of this paper is to propose a three-dimensional weld pool model for the moving gas tungsten arc welding (GTAW) process, in order to understand the main factors that limit the weld quality and improve the productivity, especially with respect to the welding speed. Simulation is a very powerful tool to help in understanding the physical phenomena in the weld process. A 3D finite element model of heat and fluid flow in weld pool considering free surface of the pool and traveling speed has been developed for the GTAW process. Cast3M software is used to compute all the governing equations. The free surface of the weld pool is calculated by minimizing the total surface energy. The combined effects of surface tension gradient, buoyancy force, arc pressure, arc drag force to drive the fluid flow is included in our model. The deformation of the weld pool surface and the welding speed affect fluid flow, heat flow and thus temperature gradients and molten pool dimensions. Welding trials study is presented to compare our numerical results with macrograph of the molten pool.
Measuring Time-Averaged Blood Pressure
NASA Technical Reports Server (NTRS)
Rothman, Neil S.
1988-01-01
Device measures time-averaged component of absolute blood pressure in artery. Includes compliant cuff around artery and external monitoring unit. Ceramic construction in monitoring unit suppresses ebb and flow of pressure-transmitting fluid in sensor chamber. Transducer measures only static component of blood pressure.
Reactor pressure vessel nozzle
Challberg, Roy C.; Upton, Hubert A.
1994-01-01
A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough.
Efficacy of Testosterone Suppression with Sustained-Release Triptorelin in Advanced Prostate Cancer.
Breul, Jürgen; Lundström, Eija; Purcea, Daniela; Venetz, Werner P; Cabri, Patrick; Dutailly, Pascale; Goldfischer, Evan R
2017-02-01
Androgen deprivation therapy (ADT) is a mainstay of treatment against advanced prostate cancer (PC). As a treatment goal, suppression of plasma testosterone levels to <50 ng/dl has been established over decades. Evidence is growing though that suppression to even lower levels may add further clinical benefit. Therefore, we undertook a pooled retrospective analysis on the efficacy of 1-, 3-, and 6-month sustained-release (SR) formulations of the gonadotropin-releasing hormone (GnRH) agonist triptorelin to suppress serum testosterone concentrations beyond current standards. Data of 920 male patients with PC enrolled in 9 prospective studies using testosterone serum concentrations as primary endpoint were pooled. Patients aged 42-96 years had to be eligible for ADT and to be either naïve to hormonal treatment or have undergone appropriate washout prior to enrolment. Patients were treated with triptorelin SR formulations for 2-12 months. Primary endpoints of this analysis were serum testosterone concentrations under treatment and success rates overall and per formulation, based on a testosterone target threshold of 20 ng/dl. After 1, 3, 6, 9, and 12 months of treatment, 79%, 92%, 93%, 90%, and 91% of patients reached testosterone levels <20 ng/dl, respectively. For the 1-, 3-, and 6-month formulations success rates ranged from 80-92%, from 83-93%, and from 65-97% with median (interquartile range) serum testosterone values of 2.9 (2.9-6.5), 5.0 (2.9-8.7), and 8.7 (5.8-14.1) ng/dl at study end, respectively. In the large majority of patients, triptorelin SR formulations suppressed serum testosterone concentrations to even <20 ng/dl. Testosterone should be routinely monitored in PC patients on ADT although further studies on the clinical benefit of very low testosterone levels and the target concentrations are still warranted.
Cyanuric acid (CA) has found application as a chlorine stabilizer in pool waters. The National Swimming Pool Foundation recommends CA levels between 30-50 ppm and a chlorine residual of 1.0-3.0 ppm. These chlorine levels are needed to destroy harmful pathogenic organisms. Develo...
Suzuki, Dai; Saito-Hakoda, Akiko; Ito, Ryo; Shimizu, Kyoko; Parvin, Rehana; Shimada, Hiroki; Noro, Erika; Suzuki, Susumu; Fujiwara, Ikuma; Kagechika, Hiroyuki; Rainey, William E; Kure, Shigeo; Ito, Sadayoshi; Yokoyama, Atsushi; Sugawara, Akira
2017-01-01
The effects of retinoids on adrenal aldosterone synthase gene (CYP11B2) expression and aldosterone secretion are still unknown. We therefore examined the effects of nuclear retinoid X receptor (RXR) pan-agonist PA024 on CYP11B2 expression, aldosterone secretion and blood pressure, to elucidate its potential as a novel anti-hypertensive drug. We demonstrated that PA024 significantly suppressed angiotensin II (Ang II)-induced CYP11B2 mRNA expression, promoter activity and aldosterone secretion in human adrenocortical H295R cells. Human CYP11B2 promoter functional analyses using its deletion and point mutants indicated that the suppression of CYP11B2 promoter activity by PA024 was in the region from -1521 (full length) to -106 including the NBRE-1 and the Ad5 elements, and the Ad5 element may be mainly involved in the PA024-mediated suppression. PA024 also significantly suppressed the Ang II-induced mRNA expression of transcription factors NURR1 and NGFIB that bind to and activate the Ad5 element. NURR1 overexpression demonstrated that the decrease of NURR1 expression may contribute to the PA024-mediated suppression of CYP11B2 transcription. PA024 also suppressed the Ang II-induced mRNA expression of StAR, HSD3β2 and CYP21A2, a steroidogenic enzyme group involved in aldosterone biosynthesis. Additionally, the PA024-mediated CYP11B2 transcription suppression was shown to be exerted via RXRα. Moreover, the combination of PPARγ agonist pioglitazone and PA024 caused synergistic suppressive effects on CYP11B2 mRNA expression. Finally, PA024 treatment significantly lowered both the systolic and diastolic blood pressure in Tsukuba hypertensive mice (hRN8-12 x hAG2-5). Thus, RXR pan-agonist PA024 may be a candidate anti-hypertensive drugs that acts via the suppression of aldosterone synthesis and secretion.
Meese, Tim S; Holmes, David J
2010-10-01
Most contemporary models of spatial vision include a cross-oriented route to suppression (masking from a broadly tuned inhibitory pool), which is most potent at low spatial and high temporal frequencies (T. S. Meese & D. J. Holmes, 2007). The influence of this pathway can elevate orientation-masking functions without exciting the target mechanism, and because early psychophysical estimates of filter bandwidth did not accommodate this, it is likely that they have been overestimated for this corner of stimulus space. Here we show that a transient 40% contrast mask causes substantial binocular threshold elevation for a transient vertical target, and this declines from a mask orientation of 0° to about 40° (indicating tuning), and then more gently to 90°, where it remains at a factor of ∼4. We also confirm that cross-orientation masking is diminished or abolished at high spatial frequencies and for sustained temporal modulation. We fitted a simple model of pedestal masking and cross-orientation suppression (XOS) to our data and those of G. C. Phillips and H. R. Wilson (1984) and found the dependency of orientation bandwidth on spatial frequency to be much less than previously supposed. An extension of our linear spatial pooling model of contrast gain control and dilution masking (T. S. Meese & R. J. Summers, 2007) is also shown to be consistent with our results using filter bandwidths of ±20°. Both models include tightly and broadly tuned components of divisive suppression. More generally, because XOS and/or dilution masking can affect the shape of orientation-masking curves, we caution that variations in bandwidth estimates might reflect variations in processes that have nothing to do with filter bandwidth.
NASA Astrophysics Data System (ADS)
Guiltinan, E. J.; Cardenas, M. B.; Cockrell, L.; Espinoza, N.
2017-12-01
The geologic sequestration of CO2 is widely considered a potential solution for decreasing anthropogenic atmospheric CO2 emissions. As CO2 rises buoyantly within a reservoir it pools beneath a caprock and a pressure is exerted upon the pores of the caprock proportionally to the height of the pool. The breakthrough pressure is the point at which CO2 begins to flow freely across the caprock. Understanding the mineralogical and grain size controls on breakthrough pressure is important for screening the security of CO2 sequestration sites. However, breakthrough pressure and permeability measurements on caprocks are difficult to conduct in a systematic manner given the variability in and heterogeneity of naturally occurring mudstones and shales causing significant noise and scatter in the literature. Recent work has even revealed the ability for CO2 to pass through thin shale beds at relatively low pressures. To broaden the understanding of shale breakthrough and permeability, we developed an approach that allows for the creation of resedimented mudstones at high effective stresses. Resedimented samples also include calcium carbonate cement. Using this technique, we explore the controls on entry pressure, breakthrough pressure, and permeability of synthetic mudstones. Understanding the effect of mineralogy and grain size on the permeability and breakthrough pressure of mudstones at reservoir stresses will help in the selection and uncertainty quantification of secure CO2 storage sites.
Suppression of diamagnetism by neutrals pressure in partially ionized, high-beta plasma
NASA Astrophysics Data System (ADS)
Shinohara, Shunjiro; Kuwahara, Daisuke; Yano, Kazuki; Fruchtman, Amnon
2016-12-01
Suppression of diamagnetism in a partially ionized plasma with high beta was experimentally investigated by the use of Langmuir and Hall sensor probes, focusing on a neutrals pressure effect. The plasma beta, which is the ratio of plasma to vacuum magnetic pressures, varied from ˜1% to >100% while the magnetic field varied from ˜120 G to ˜1 G. Here, a uniform magnetized argon plasma was operated mostly in an inductive mode, using a helicon plasma source of the Large Helicon Plasma Device [S. Shinohara et al., Phys. Plasmas 16, 057104 (2009)] with a diameter of 738 mm and an axial length of 4860 mm. Electron density varied from 5 × 1015 m-3 to <3 × 1018 m-3, while an argon fill pressure was varied from ˜0.02 Pa to 0.75 Pa as well as the magnetic field mentioned above, with the fixed radio frequency (rf) and power of 7 MHz and ˜3.5 kW, respectively. The observed magnetic field reduction rate, a decrease of the magnetic field divided by the vacuum one, was up to 18%. However, in a certain parameter regime, where the product of ion and electron Hall terms is a key parameter, the measured diamagnetic effect was smaller than that expected by the plasma beta. This suppressed diamagnetism is explained by the neutrals pressure replacing magnetic pressure in balancing plasma pressure. Diamagnetism is weakened if neutrals pressure is comparable to the plasma pressure and if the coupling of plasma and neutrals pressures by ion-neutral collisions is strong enough.
A microcomputer model for simulating pressurized flow in a storm sewer system : final report.
DOT National Transportation Integrated Search
1989-01-01
A review was made of several computer programs capable of simulating sewer flows under surcharge or pressurized flow conditions. A modified version of the EXTRAN module of the SYMM model, called PFSM, was developed and attached to the FHYA Pooled Fun...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... provide post accident design basis cooling. Therefore, the proposed change does not involve a significant... operating margin inherent in the design orifices of the RHR suppression pool cooling test return line and... information in comment submissions that you do not want to be publicly disclosed. The NRC posts all comment...
Reburns and their Impact on carbon pools, site productivity, and recovery [Chapter 13
Deborah S. Page-Dumroese; Terrie Jain; Jonathan E. Sandquist; Joanne M. Tirocke; John Errecart; Martin F. Jurgensen
2015-01-01
Prior to fire suppression and exclusion, wildfires and other disturbances (e.g., insects, disease, and weather) sustained ecosystem processes in many landscapes of the Western United States. However, wildfires have been increasing in size, frequency, and intensity in recent years (Kellogg and others 2008). Recognizing the value of wildfire, scientists and land...
Suppression effect of otoacoustic emissions in term and preterm infants.
Jesus, Natália Oliveira de; Angrisani, Rosanna Giaffredo; Maruta, Elaine Colombo; Azevedo, Marisa Frasson de
2016-01-01
This research aims at verifying the occurrence and magnitude of suppression effect of otoacoustic emissions evoked by transient stimulus in term and preterm infants, setting a benchmark for clinical use. The study sample consisted of 40 infants, with a rage of age from five days to four months, without any risk indicators for hearing loss and otoacoustic emissions present at birth: the 20 term and 20 preterm infants spent more than five days in the Neonatal Intensive Care Unit. Linear click was presented at 65 dB Sound Pressure Level, in blocks of 15 seconds without noise, and with contralateral noise at 60 dB Sound Pressure Level. The reduced response in the presence of noise indicates positive suppression effect. Mean values of suppression were established and the comparison between the groups was analyzed statistically. Suppression occurred in 100% of the children and did not vary as a function of ear side and between the groups. All children presented suppression regardless of the group. The average suppression obtained on the total population was 0.85 dB. The minimum recommended criterion for clinical use was a reduction of 0.20 dB in the overall response.
Afuwape, Olusoji A. T.; Wasser, Catherine R.; Schikorski, Thomas
2016-01-01
Key points Synaptic transmission is mediated by the release of neurotransmitters from synaptic vesicles in response to stimulation or through the spontaneous fusion of a synaptic vesicle with the presynaptic plasma membrane.There is growing evidence that synaptic vesicles undergoing spontaneous fusion versus those fusing in response to stimuli are functionally distinct.In this study, we acutely probe the effects of intravesicular free radical generation on synaptic vesicles that fuse spontaneously or in response to stimuli.By targeting vesicles that preferentially release spontaneously, we can dissociate the effects of intravesicular free radical generation on spontaneous neurotransmission from evoked neurotransmission and vice versa.Taken together, these results further advance our knowledge of the synapse and the nature of the different synaptic vesicle pools mediating neurotransmission. Abstract Earlier studies suggest that spontaneous and evoked neurotransmitter release processes are maintained by synaptic vesicles which are segregated into functionally distinct pools. However, direct interrogation of the link between this putative synaptic vesicle pool heterogeneity and neurotransmission has been difficult. To examine this link, we tagged vesicles with horseradish peroxidase (HRP) – a haem‐containing plant enzyme – or antibodies against synaptotagmin‐1 (syt1). Filling recycling vesicles in hippocampal neurons with HRP and subsequent treatment with hydrogen peroxide (H2O2) modified the properties of neurotransmitter release depending on the route of HRP uptake. While strong depolarization‐induced uptake of HRP suppressed evoked release and augmented spontaneous release, HRP uptake during mild activity selectively impaired evoked release, whereas HRP uptake at rest solely potentiated spontaneous release. Expression of a luminal HRP‐tagged syt1 construct and subsequent H2O2 application resulted in a similar increase in spontaneous release and suppression as well as desynchronization of evoked release, recapitulating the canonical syt1 loss‐of‐function phenotype. An antibody targeting the luminal domain of syt1, on the other hand, showed that augmentation of spontaneous release and suppression of evoked release phenotypes are dissociable depending on whether the antibody uptake occurred at rest or during depolarization. Taken together, these findings indicate that vesicles that maintain spontaneous and evoked neurotransmitter release preserve their identity during recycling and syt1 function in suppression of spontaneous neurotransmission can be acutely dissociated from syt1 function to synchronize synaptic vesicle exocytosis upon stimulation. PMID:27723113
LPT. EBOR (TAN646) interior, installing reactor in STF pool ("vault"). ...
LPT. EBOR (TAN-646) interior, installing reactor in STF pool ("vault"). Pressure vessel shows core barrel and outlet nozzle (next to man below) to inner duct weld, which is prepared and in position for stress relieving. Camera facing southeast. Photographer: Comiskey. Date: January 20, 1965. INEEL negative no. 65-239 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Safety System for Controlling Fluid Flow into a Suction Line
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2018-01-01
A safety system includes a sleeve fitted within a pool's suction line at its inlet. The sleeve terminates with a plate that resides within the suction line. The plate has holes formed therethrough. A housing defining distinct channels is fitted in the sleeve so that the distinct channels lie within the sleeve. Each of the distinct channels has a first opening on one end thereof and a second opening on another end thereof. The second openings reside in the sleeve. The first openings are in fluid communication with the water in the pool, and are distributed around a periphery of an area of the housing that prevents coverage of all the first openings when a human interacts therewith. A first sensor is coupled to the sleeve to sense pressure therein, and a second pressure sensor is coupled to the plate to sense pressure in one of the plates' holes.
Minichino, Amedeo; Singh, Fiza; Pineda, Jaime; Friederich, Elisabeth; Cadenhead, Kristin S
2016-04-30
There is evidence of genetic and neural system overlap in Autism Spectrum Disorder (ASD) and Early Psychosis (EP). Five datasets were pooled to compare mu suppression index (MSI), a proxy of mirror neuron activity, in EP, high functioning ASD, and healthy subjects (HS). ASDs and EPs with "active" negative symptoms showed significant differences in mu suppression, in response to Biological Motion/point-light display animation, compared to HS. Preliminary findings suggest that similar neural network deficits in ASD and EP could be driven by the expression of negative symptoms in the latter group of patients. These findings may aid future studies on EP and ASD and facilitate the formulation of new hypotheses regarding their pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Korchagova, V. N.; Kraposhin, M. V.; Marchevsky, I. K.; Smirnova, E. V.
2017-11-01
A droplet impact on a deep pool can induce macro-scale or micro-scale effects like a crown splash, a high-speed jet, formation of secondary droplets or thin liquid films, etc. It depends on the diameter and velocity of the droplet, liquid properties, effects of external forces and other factors that a ratio of dimensionless criteria can account for. In the present research, we considered the droplet and the pool consist of the same viscous incompressible liquid. We took surface tension into account but neglected gravity forces. We used two open-source codes (OpenFOAM and Gerris) for our computations. We review the possibility of using these codes for simulation of processes in free-surface flows that may take place after a droplet impact on the pool. Both codes simulated several modes of droplet impact. We estimated the effect of liquid properties with respect to the Reynolds number and Weber number. Numerical simulation enabled us to find boundaries between different modes of droplet impact on a deep pool and to plot corresponding mode maps. The ratio of liquid density to that of the surrounding gas induces several changes in mode maps. Increasing this density ratio suppresses the crown splash.
Krishnamoorthy, Gautham
2010-10-15
Decoupled radiative heat transfer calculations of 30 cm-diameter toluene and heptane pool fires are performed employing the discrete ordinates method. The composition and temperature fields within the fires are created from detailed experimental measurements of soot volume fractions based on absorption and emission, temperature statistics and correlations found in the literature. The measured temperature variance data is utilized to compute the temperature self-correlation term for modeling turbulence-radiation interactions. In the toluene pool fire, the presence of cold soot near the fuel surface is found to suppress the average radiation feedback to the pool surface by 27%. The performances of four gray and three non-gray radiative property models for the gases are also compared. The average variations in radiative transfer predictions due to differences in the spectroscopic and experimental databases employed in the property model formulations are found to be between 10% and 20%. Clear differences between the gray and non-gray modeling strategies are seen when the mean beam length is computed based on traditionally employed geometric relations. Therefore, a correction to the mean beam length is proposed to improve the agreement between gray and non-gray modeling in simulations of open pool fires. 2010 Elsevier B.V. All rights reserved.
Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.
Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang
2017-11-01
Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain fragmentation in a pure aluminum TIG weld during an ultrasonic-assisted TIG welding process. Copyright © 2017 Elsevier B.V. All rights reserved.
Emotion suppression affects cardiovascular responses to initial and subsequent laboratory stressors.
Quartana, Phillip J; Burns, John W
2010-09-01
The study of anger suppression and risk for cardiovascular disease has relied predominately on inspection of correlations between trait anger-in and cardiovascular risk factors and disease. This approach tells us little about whether inhibitory processes have anything to do with outcomes, and cannot speak to whether suppression of anger per se affects cardiovascular parameters. Drawing on the broader emotion regulation literature, we examined the effects of experimentally induced anger and general negative emotion in the context of expressive and experiential suppression on cardiovascular responses to initial and subsequent laboratory stressors. Of all participants, 201 healthy participants were randomly assigned to one of six conditions formed by crossing emotion (anxiety, anger) and suppression (experiential, expressive, control) conditions. Participants completed a mental arithmetic task with anxiety or anger induction under their respective suppression manipulation instructions, and subsequently were exposed to a cold pressor task. Systolic blood pressure (SBP), diastolic blood pressure, and heart rate values were obtained for each experimental epoch. More robust SBP responses to the initial stressor were evidenced for those in the expressive versus the control condition. In response to the subsequent stressor, those in the experiential suppression condition showed the most pronounced SBP responses, suggesting pronounced delayed effects of this type of suppression. Effects of suppression on SBP reactivity were indistinguishable across anxiety and anger conditions. Effortful suppression of negative emotion has immediate and delayed consequences for stress-induced cardiovascular reactivity. Theoretical and clinical significance of these findings are discussed.
30 CFR 75.1107-8 - Fire suppression devices; extinguishant supply systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-8... liquid chemical to protect attended equipment shall: (1) Be maintained at a pressure consistent with the...
30 CFR 75.1107-8 - Fire suppression devices; extinguishant supply systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-8... liquid chemical to protect attended equipment shall: (1) Be maintained at a pressure consistent with the...
Pressure dependence of the magnetic order in CrAs: a neutron diffraction investigation
Keller, L.; White, J. S.; Babkevich, P.; ...
2015-01-29
The suppression of magnetic order with pressure concomitant with the appearance of pressure-induced superconductivity was recently discovered in CrAs. Here we present a neutron diffraction study of the pressure evolution of the helimagnetic ground-state towards and in the vicinity of the superconducting phase. Neutron diffraction on polycrystalline CrAs was employed from zero pressure to 0.65 GPa and at various temperatures. The helimagnetic long-range order is sustained under pressure and the magnetic propagation vector does not show any considerable change. The average ordered magnetic moment is reduced from 1.73(2) μ B at ambient pressure to 0.4(1) μ B close to themore » critical pressure P c ≈ 0.7 GPa, at which magnetic order is completely suppressed. The width of the magnetic Bragg peaks strongly depends on temperature and pressure, showing a maximum in the region of the onset of superconductivity. In conclusion, we interpret this as associated with competing ground-states in the vicinity of the superconducting phase.« less
Pressure dependence of the magnetic order in CrAs: a neutron diffraction investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, L.; White, J. S.; Babkevich, P.
The suppression of magnetic order with pressure concomitant with the appearance of pressure-induced superconductivity was recently discovered in CrAs. Here we present a neutron diffraction study of the pressure evolution of the helimagnetic ground-state towards and in the vicinity of the superconducting phase. Neutron diffraction on polycrystalline CrAs was employed from zero pressure to 0.65 GPa and at various temperatures. The helimagnetic long-range order is sustained under pressure and the magnetic propagation vector does not show any considerable change. The average ordered magnetic moment is reduced from 1.73(2) μ B at ambient pressure to 0.4(1) μ B close to themore » critical pressure P c ≈ 0.7 GPa, at which magnetic order is completely suppressed. The width of the magnetic Bragg peaks strongly depends on temperature and pressure, showing a maximum in the region of the onset of superconductivity. In conclusion, we interpret this as associated with competing ground-states in the vicinity of the superconducting phase.« less
Zocco, D. A.; Hamlin, J. J.; Grube, K.; ...
2015-05-14
Here, we present electrical resistivity and ac-susceptibility measurements of GdTe 3, TbTe 3 and DyTe 3 performed under pressure. An upper charge-density-wave (CDW) is suppressed at a rate of dT CW,1/dP~ –85K/GPa. For TbTe 3 and DyTe 3, a second CDW below T CDW,2 increases with pressure until it reaches the T CDW,1(P) line. For GdTe 3, the lower CDW emerges as pressure is increased above ~1GPa. As these two CDW states are suppressed with pressure, superconductivity (SC) appears in the three compounds at lower temperatures. Ac-susceptibility experiments performed on TbTe 3 provide compelling evidence for bulk SC in themore » low-pressure region of the phase diagram. We provide measurements of superconducting critical fields and discuss the origin of a high-pressure superconducting phase occurring above 5 GPa.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Dong; Yan, X. Q.; Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871
It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J Multiplication-Sign B effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.
Numerical Analysis of the Effects of Normalized Plasma Pressure on RMP ELM Suppression in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlov, D. M.; Moyer, R.A.; Evans, T. E.
2010-01-01
The effect of normalized plasma pressure as characterized by normalized pressure parameter (beta(N)) on the suppression of edge localized modes (ELMs) using resonant magnetic perturbations (RMPs) is studied in low-collisionality (nu* <= 0.2) H-mode plasmas with low-triangularity ( = 0.25) and ITER similar shapes ( = 0.51). Experimental results have suggested that ELM suppression by RMPs requires a minimum threshold in plasma pressure as characterized by beta(N). The variations in the vacuum field topology with beta(N) due to safety factor profile and island overlap changes caused by variation of the Shafranov shift and pedestal bootstrap current are examined numerically withmore » the field line integration code TRIP3D. The results show very small differences in the vacuum field structure in terms of the Chirikov (magnetic island overlap) parameter, Poincare sections and field line loss fractions. These differences do not appear to explain the observed threshold in beta(N) for ELM suppression. Linear peeling-ballooning stability analysis with the ELITE code suggests that the ELMs which persist during the RMPs when beta(N) is below the observed threshold are not type I ELMs, because the pedestal conditions are deep within the stable regime for peeling-ballooning modes. These ELMs have similarities to type III ELMs or low density ELMs.« less
Chemical recovery process using break up steam control to prevent smelt explosions
Kohl, Arthur L.; Stewart, Albert E.
1988-08-02
An improvement in a chemical recovery process in which a hot liquid smelt is introduced into a dissolving tank containing a pool of green liquor. The improvement comprises preventing smelt explosions in the dissolving tank by maintaining a first selected superatmospheric pressure in the tank during normal operation of the furnace; sensing the pressure in the tank; and further impinging a high velocity stream of steam upon the stream of smelt whenever the pressure in the tank decreases below a second selected superatmospheric pressure which is lower than said first pressure.
Reactor pressure vessel nozzle
Challberg, R.C.; Upton, H.A.
1994-10-04
A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough. 2 figs.
High Expansion Foam for Protecting Large Volume Mission Critical Shipboard Spaces
2009-01-01
aqueous film - forming foam ( AFFF ) sprinklers designed only to combat Class B two-dimensional pool fires.1 The...Validation Tests, Series 1 – An Evaluation of Aqueous Film Foaming Foam ( AFFF ) Suppression Systems for Protection of LHA(R) Well Deck and Vehicle... firefighting system design. NRL further recognized that employing a traditional high expansion foam generator would impact shipboard
Effects of front-loading and stagger angle on endwall losses of high lift low pressure turbine vanes
NASA Astrophysics Data System (ADS)
Lyall, M. Eric
Past efforts to reduce the airfoil count in low pressure turbines have produced high lift profiles with unacceptably high endwall loss. The purpose of the current work is to suggest alternative approaches for reducing endwall losses. The effects of the fluid mechanics and high lift profile geometry are considered. Mixing effects of the mean flow and turbulence fields are decoupled to show that mean flow shear in the endwall wake is negligible compared to turbulent shear, indicating that turbulence dissipation is the primary cause of total pressure loss. The mean endwall flow field does influence total pressure loss by causing excessive wake growth and perhaps outright separation on the suction surface. For equivalent stagger angles, a front-loaded high lift profile will produce less endwall loss than one aft-loaded, primarily by suppressing suction surface flow separation. Increasing the stagger setting, however, increases the endwall loss due to the static pressure field generating a stronger blockage relative to the incoming endwall boundary layer flow and causing a larger mass of fluid to become entrained in the horseshoe vortex. In short, front-loading the pressure distribution suppresses suction surface separation whereas limiting the stagger angle suppresses inlet boundary layer separation. Results of this work suggest that a front-loaded low stagger profile be used at the endwall to reduce the endwall loss.
30 CFR 75.1107-3 - Fire suppression devices; approved components; installation requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-3... agency approved by the Secretary. (b) Where used, pressure vessels shall conform with the requirements of...
30 CFR 75.1107-3 - Fire suppression devices; approved components; installation requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-3... agency approved by the Secretary. (b) Where used, pressure vessels shall conform with the requirements of...
30 CFR 75.1107-3 - Fire suppression devices; approved components; installation requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-3... agency approved by the Secretary. (b) Where used, pressure vessels shall conform with the requirements of...
30 CFR 75.1107-3 - Fire suppression devices; approved components; installation requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-3... agency approved by the Secretary. (b) Where used, pressure vessels shall conform with the requirements of...
30 CFR 75.1107-3 - Fire suppression devices; approved components; installation requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1107-3... agency approved by the Secretary. (b) Where used, pressure vessels shall conform with the requirements of...
ELM suppression in helium plasmas with 3D magnetic fields
Evans, T. E.; Loarte, A.; Orlov, D. M.; ...
2017-06-21
Experiments in DIII-D, using non-axisymmetric magnetic perturbation fields in high-purity low toroidal rotation, 4He plasmas have resulted in Type-I edge localized mode (ELM) suppression and mitigation. Suppression is obtained in plasmas with zero net input torque near the L–H power threshold using either electron cyclotron resonant heating (ECRH) or balanced co- and counter-I p neutral beam injection (NBI) resulting in conditions equivalent to those expected in ITER's non-active operating phase. In low-power ECRH H-modes, periods with uncontrolled density and impurity radiation excursions are prevented by applying n = 3 non-axisymmetric magnetic perturbation fields. ELM suppression results from a reduction andmore » an outward shift of the electron pressure gradient peak compared to that in the high-power ELMing phase. Here, the change in the electron pressure gradient peak is primarily due to a drop in the pedestal temperature rather than the pedestal density.« less
ELM suppression in helium plasmas with 3D magnetic fields
NASA Astrophysics Data System (ADS)
Evans, T. E.; Loarte, A.; Orlov, D. M.; Grierson, B. A.; Knölker, M. M.; Lyons, B. C.; Cui, L.; Gohil, P.; Groebner, R. J.; Moyer, R. A.; Nazikian, R.; Osborne, T. H.; Unterberg, E. A.
2017-08-01
Experiments in DIII-D, using non-axisymmetric magnetic perturbation fields in high-purity low toroidal rotation, 4He plasmas have resulted in Type-I edge localized mode (ELM) suppression and mitigation. Suppression is obtained in plasmas with zero net input torque near the L-H power threshold using either electron cyclotron resonant heating (ECRH) or balanced co- and counter-I p neutral beam injection (NBI) resulting in conditions equivalent to those expected in ITER’s non-active operating phase. In low-power ECRH H-modes, periods with uncontrolled density and impurity radiation excursions are prevented by applying n = 3 non-axisymmetric magnetic perturbation fields. ELM suppression results from a reduction and an outward shift of the electron pressure gradient peak compared to that in the high-power ELMing phase. The change in the electron pressure gradient peak is primarily due to a drop in the pedestal temperature rather than the pedestal density.
McIntire, Sean; Boujie, Lee
2016-01-01
Inner ear barotrauma can occur when the gas-filled chambers of the ear have difficulty equalizing pressure with the outside environment after changes in ambient pressure. This can transpire even with small pressure changes. Hypobaric or hyperbaric environments can place significant stress on the structures of the middle and inner ear. If methods to equalize pressure between the middle ear and other connected gas-filled spaces (i.e., Valsalva maneuver) are unsuccessful, middle ear overpressurization can occur. This force can be transmitted to the fluid-filled inner ear, making it susceptible to injury. Damage specifically to the structures of the vestibulocochlear system can lead to symptoms of vertigo, hearing loss, and tinnitus. This article discusses the case of a 23-year-old male Marine who presented with symptoms of nausea and gait instability after performing underwater pool competency exercises to a maximum depth of 13 feet, without breathing compressed air. Diagnosis and management of inner ear barotrauma are reviewed, as is differentiation from inner ear decompression sickness. 2016.
Improved Binocular Outcomes Following Binocular Treatment for Childhood Amblyopia.
Kelly, Krista R; Jost, Reed M; Wang, Yi-Zhong; Dao, Lori; Beauchamp, Cynthia L; Leffler, Joel N; Birch, Eileen E
2018-03-01
Childhood amblyopia can be treated with binocular games or movies that rebalance contrast between the eyes, which is thought to reduce depth of interocular suppression so the child can experience binocular vision. While visual acuity gains have been reported following binocular treatment, studies rarely report gains in binocular outcomes (i.e., stereoacuity, suppression) in amblyopic children. Here, we evaluated binocular outcomes in children who had received binocular treatment for childhood amblyopia. Data for amblyopic children enrolled in two ongoing studies were pooled. The sample included 41 amblyopic children (6 strabismic, 21 anisometropic, 14 combined; age 4-10 years; ≤4 prism diopters [PD]) who received binocular treatment (20 game, 21 movies; prescribed 9-10 hours treatment). Amblyopic eye visual acuity and binocular outcomes (Randot Preschool Stereoacuity, extent of suppression, and depth of suppression) were assessed at baseline and at 2 weeks. Mean amblyopic eye visual acuity (P < 0.001) and mean stereoacuity improved (P = 0.045), and mean extent (P = 0.005) and depth of suppression (P = 0.003) were reduced from baseline at the 2-week visit (87% game adherence, 100% movie adherence). Depth of suppression was reduced more in children aged <8 years than in those aged ≥8 years (P = 0.004). Worse baseline depth of suppression was correlated with a larger depth of suppression reduction at 2 weeks (P = 0.001). After 2 weeks, binocular treatment in amblyopic children improved visual acuity and binocular outcomes, reducing the extent and depth of suppression and improving stereoacuity. Binocular treatments that rebalance contrast to overcome suppression are a promising additional option for treating amblyopia.
Mitsumata, Hiroshi; Mori, Toshio; Maeda, Tatsuo; Kita, Yoshiyuki; Kohatsu, Osamu
2006-02-01
We have established a simple method for assaying the quantity of soluble bromine in the discharge tubes of an extra-high-pressure mercury discharge lamp. Each discharge tube is destroyed in 5 ml of 10 mM sodium hydroxide, and the recovered sodium hydroxide solution is analyzed by suppressed-ion chromatography using gradient elution. We have clarified that this method can assay less than 1 microg of soluble bromine in a discharge tube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar Mejía, C., E-mail: Catalina.Salazar@cpfs.mpg.de; Mydeen, K.; Naumov, P.
2016-06-27
We report on the effect of hydrostatic pressure on the magnetic and structural properties of the shape-memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15}. Magnetization and x-ray diffraction experiments were performed at hydrostatic pressures up to 5 GPa using diamond anvil cells. Pressure stabilizes the martensitic phase, shifting the martensitic transition to higher temperatures, and suppresses the ferromagnetic austenitic phase. Above 3 GPa, where the martensitic-transition temperature approaches the Curie temperature in the austenite, the magnetization shows no longer indications of ferromagnetic ordering. We further find an extended temperature region with a mixture of martensite and austenite phases, which directly relates to themore » magnetic properties.« less
Pressure suppression containment system for boiling water reactor
Gluntz, Douglas M.; Nesbitt, Loyd B.
1997-01-01
A system for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs.
STS-45 MS Foale in EMU prepares for underwater exercises in JSC's WETF pool
1991-02-26
S91-30196 (1 March 1991) --- Astronaut C. Michael Foale, mission specialist, and Kathryn D. Sullivan, payload commander (barely visible in background), stand on a platform (out of frame) which is part of a system that will lower them into a 25-ft. deep pool. The payload commander and mission specialist used the pool in the weightless environment training facility (WET-F) to rehearse a contingency extravehicular activity (EVA). Astronauts wear pressurized spacesuits configured for achieving a neutrally buoyant condition in the water to simulate both planned and contingency EVAs. Two SCUBA-equipped swimmers assisting the training are seen in the background.
A light hydrocarbon fuel processor producing high-purity hydrogen
NASA Astrophysics Data System (ADS)
Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan
This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with <1 ppm CO, <3 ppm CO 2. The thermal efficiency is better than 67% operating at full load. This fuel processor has been integrated with a 5-kW fuel cell producing electricity and hot water.
An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion
Strasser, Rona; Zeituni-Molad, Michal; Bendelak, Keren; Rentsch, Doris; Ephros, Moshe; Wiese, Martin; Jardim, Armando; Myler, Peter J.; Zilberstein, Dan
2016-01-01
Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade. PMID:27043018
STS-52 Pilot Baker, in LES, dons parachute during JSC WETF bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Pilot Michael A. Baker is assisted with a training version of his Shuttle partial-pressure launch and entry suit (LES). A technician adjusts his parachute harness prior to the emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used in this simulation of a water landing.
Cantarero-Villanueva, I; Fernández-Lao, C; Caro-Morán, E; Morillas-Ruiz, J; Galiano-Castillo, N; Díaz-Rodríguez, L; Arroyo-Morales, M
2013-02-01
To investigate the impact of aquatic exercise on pressure pain threshold in breast cancer survivors with hormone therapy-associated arthralgia. Single-blind, controlled trial. Two major metropolitan hospitals and a Sport and Spa Club in Granada, Spain. Forty women aged 29-71 years with stage I-III breast cancer who reported arthralgia. Patients were allocated alternately to either aquatic exercise in a chest-high pool or usual care while on the waiting list; control patients received treatment later. The two-month hydrotherapy intervention consisted of 24 sessions 3 days per week. Each session included 5 minutes of warm-up, 15-20 minutes of aerobic exercise, 15 minutes of mobility exercise and 20 minutes of recovery techniques. Pressure pain threshold at neck, shoulder, hand and leg were evaluated as primary outcomes. Cancer-related fatigue, as measured by the Piper Fatigue Scale, body mass index and waist circumference were secondary outcomes. A 2 × 2 repeated-measure ANCOVA was used in this study. No adverse events or development of worsening of pain was observed. Almost all the participants in the intervention group (89%) adhered to the hydrotherapy programme. Participants experienced a decrease in pressure pain threshold measured in neck, hand, shoulder and leg, as measured by algometry pressure, and waist circumference; all P < 0.05. Cancer-related fatigue (P = 0.06) and body mass index (P = 0.42) did not show significant improvement. These data suggest that hydrotherapy in a chest-high pool may reduce the pain threshold and waist circumference in breast cancer survivors with hormone therapy-associated arthralgia.
Passive suppression of pogo on the space shuttle
NASA Technical Reports Server (NTRS)
Lock, M. H.; Rubin, S.
1974-01-01
A qualitative assessment of the tendency for pogo instability of the shuttle vehicle in the absence of suppression devices, and the effectiveness of two passive suppressors (the compliant accumulator and the resistive accumulator) in counteracting any tendency toward instability is provided. In addition, the relative effectiveness of three suppressor locations (the low pressure pump (LWOP) inlet and discharge and the high pressure pump (HPOP) inlet) is also evaluated. The primary conclusion of the study is that effective pogo suppression, with passive devices, can be accomplished at the HPOP inlet location but not at the LPOP locations. Other conclusions are drawn regarding the relative effectiveness of the two accumulator types and with respect to tentative accumulator design requirements. Finally, a number of recommendations are made regarding future studies.
Wu, D; Zheng, C Y; Qiao, B; Zhou, C T; Yan, X Q; Yu, M Y; He, X T
2014-08-01
It is shown that the transverse Rayleigh-Taylor-like (RT) instability in the hole-boring radiation pressure acceleration can be suppressed by using an elliptically polarized (EP) laser. A moderate J×B heating of the EP laser will thermalize the local electrons, which leads to the transverse diffusion of ions, suppressing the short wavelength perturbations of RT instability. A proper condition of polarization ratio is obtained analytically for the given laser intensity and plasma density. The idea is confirmed by two-dimensional particle-in-cell simulations, showing that the ion beam driven by the EP laser is more concentrated and intense compared with that of the circularly polarized laser.
Charge Order and Superconductivity in Underdoped YBa2 Cu3 O7 -δ under Pressure
NASA Astrophysics Data System (ADS)
Putzke, Carsten; Ayres, Jake; Buhot, Jonathan; Licciardello, Salvatore; Hussey, Nigel E.; Friedemann, Sven; Carrington, Antony
2018-03-01
In underdoped cuprates, an incommensurate charge density wave (CDW) order is known to coexist with superconductivity. A dip in Tc at the hole doping level where the CDW is strongest (np≃0.12 ) suggests that CDW order may suppress superconductivity. We investigate the interplay of charge order with superconductivity in underdoped YBa2 Cu3 O7 -δ by measuring the temperature dependence of the Hall coefficient RH(T ) at high magnetic field and at high hydrostatic pressure. We find that, although pressure increases Tc by up to 10 K at 2.6 GPa, it has very little effect on RH(T ). This suggests that pressure, at these levels, only weakly affects the CDW and that the increase in Tc with pressure cannot be attributed to a suppression of the CDW. We argue, therefore, that the dip in Tc at np≃0.12 at ambient pressure is probably not caused by the CDW formation.
Leung, Ting-Kai; Chen, Chien-Ho; Tsai, Shih-Ying; Hsiao, George; Lee, Chi-Ming
2012-10-31
The present study examined the effects of BIOCERAMIC on psychological stress-conditioned elevated heart rate, blood pressure and oxidative stress-suppressed cardiac contractility using in vivo and in vitro animal models. We investigated the effects of BIOCERAMIC on the in vivo cardiovascular hemodynamic parameters of rats by monitoring their heart rates, systolic blood pressure, mean blood pressure and diastolic blood pressure. Thereafter, we assayed its effects on the heart rate in an isolated frog heart with and without adrenaline stimulation, and on cardiac contractility under oxidative stress. BIOCERAMIC caused significant decreases in heart rates and systolic and mean blood pressure in the stress-conditioned heart rate rat models (P < 0.05), as well as in the experimental models of an isolated frog heart with and without adrenaline stimulation (P < 0.05), and normalized cardiac contractility under oxidative stress (P < 0.05). BIOCERAMIC may, therefore, normalize the effects of psychological stress and oxidative stress conditions.
Kohl, A.L.
1987-07-28
A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.
Kohl, Arthur L.
1987-07-28
A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.
Malard, Lucie A.; McGuigan, Katrina
2016-01-01
The intertidal zone is a transitional environment that undergoes daily environmental fluctuations as tides rise and fall. Relatively few fish species are adapted to endure the physiological pressures of this environment. This study focused on Bathygobius cocosensis (Gobiidae), a common intertidal fish in New South Wales, Australia. We investigated whether shore height impacted site fidelity, survival probability, fish size, and morphological traits with respect to tidal height. Mark-recapture methods were used over a five month period to determine if individuals in high shore pools had greater site fidelity; fish in high tide pools were more than twice as likely to be recaptured in their original pool than fish from low tide pools. High pool individuals were, on average, smaller with larger eyes and longer snouts relative to their size as compared to low pool individuals. We discuss several mechanisms that could cause the observed pattern in morphological variation. Ultimately, this study suggests that within species behaviour and morphology differ by tidal position for an intertidal fish. PMID:27547568
Malard, Lucie A; McGuigan, Katrina; Riginos, Cynthia
2016-01-01
The intertidal zone is a transitional environment that undergoes daily environmental fluctuations as tides rise and fall. Relatively few fish species are adapted to endure the physiological pressures of this environment. This study focused on Bathygobius cocosensis (Gobiidae), a common intertidal fish in New South Wales, Australia. We investigated whether shore height impacted site fidelity, survival probability, fish size, and morphological traits with respect to tidal height. Mark-recapture methods were used over a five month period to determine if individuals in high shore pools had greater site fidelity; fish in high tide pools were more than twice as likely to be recaptured in their original pool than fish from low tide pools. High pool individuals were, on average, smaller with larger eyes and longer snouts relative to their size as compared to low pool individuals. We discuss several mechanisms that could cause the observed pattern in morphological variation. Ultimately, this study suggests that within species behaviour and morphology differ by tidal position for an intertidal fish.
A Model of Freely Burning Pool Fires
1983-01-01
NDUBIZU ef l. is the fuel surface radiosity and the view factor between the plume and surface is 0. 11 2_ (281 Furthermore, the radius of the top of the...pressure build-up are very im- portant. NOMENCLATURE A area (M 2 ) B radiosity C specific heat at constant pressure (W-secikg .K) d diameter of fuel
Acute Exercise and Appetite-Regulating Hormones in Overweight and Obese Individuals: A Meta-Analysis
Deighton, Kevin; Atkinson, Jan Maria; Sari-Sarraf, Vahid; Atkinson, Greg
2016-01-01
In lean individuals, acute aerobic exercise is reported to transiently suppress sensations of appetite, suppress blood concentrations of acylated ghrelin (AG), and increase glucagon-like peptide-1 (GLP-1) and peptide-YY (PYY). Findings in overweight/obese individuals have yet to be synthesised. In this systematic review and meta-analysis, we quantified the effects that acute exercise has on AG and total PYY and GLP-1 in overweight/obese individuals. The potential for body mass index (BMI) to act as a moderator for AG was also explored. Six published studies (73 participants, 78% male, mean BMI: 30.6 kg·m−2) met the inclusion criteria. Standardised mean differences (SMDs) and standard errors were extracted for AG and total PYY and GLP-1 concentrations in control and exercise trials and synthesised using a random effects meta-analysis model. BMI was the predictor in metaregression for AG. Exercise moderately suppressed AG area-under-the-curve concentrations (pooled SMD: −0.34, 95% CI: −0.53 to −0.15). The magnitude of this reduction was greater for higher mean BMIs (pooled metaregression slope: −0.04 SMD/kg·m−2 (95% CI: −0.07 to 0.00)). Trivial SMDs were obtained for total PYY (0.10, 95% CI: −0.13 to 0.31) and GLP-1 (−0.03, 95% CI: −0.18 to 0.13). This indicates that exercise in overweight/obese individuals moderately alters AG in a direction that could be associated with decreased hunger and energy intake. This trial is registered with PROSPERO: CRD42014006265. PMID:28116150
Effects of Hydrostatic Pressure on Carcinogenic Properties of Epithelia.
Tokuda, Shinsaku; Kim, Young Hak; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Mishima, Michiaki; Furuse, Mikio
2015-01-01
The relationship between chronic inflammation and cancer is well known. The inflammation increases the permeability of blood vessels and consequently elevates pressure in the interstitial tissues. However, there have been only a few reports on the effects of hydrostatic pressure on cultured cells, and the relationship between elevated hydrostatic pressure and cell properties related to malignant tumors is less well understood. Therefore, we investigated the effects of hydrostatic pressure on the cultured epithelial cells seeded on permeable filters. Surprisingly, hydrostatic pressure from basal to apical side induced epithelial stratification in Madin-Darby canine kidney (MDCK) I and Caco-2 cells, and cavities with microvilli and tight junctions around their surfaces were formed within the multi-layered epithelia. The hydrostatic pressure gradient also promoted cell proliferation, suppressed cell apoptosis, and increased transepithelial ion permeability. The inhibition of protein kinase A (PKA) promoted epithelial stratification by the hydrostatic pressure whereas the activation of PKA led to suppressed epithelial stratification. These results indicate the role of the hydrostatic pressure gradient in the regulation of various epithelial cell functions. The findings in this study may provide clues for the development of a novel strategy for the treatment of the carcinoma.
Effects of Hydrostatic Pressure on Carcinogenic Properties of Epithelia
Tokuda, Shinsaku; Kim, Young Hak; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Mishima, Michiaki; Furuse, Mikio
2015-01-01
The relationship between chronic inflammation and cancer is well known. The inflammation increases the permeability of blood vessels and consequently elevates pressure in the interstitial tissues. However, there have been only a few reports on the effects of hydrostatic pressure on cultured cells, and the relationship between elevated hydrostatic pressure and cell properties related to malignant tumors is less well understood. Therefore, we investigated the effects of hydrostatic pressure on the cultured epithelial cells seeded on permeable filters. Surprisingly, hydrostatic pressure from basal to apical side induced epithelial stratification in Madin-Darby canine kidney (MDCK) I and Caco-2 cells, and cavities with microvilli and tight junctions around their surfaces were formed within the multi-layered epithelia. The hydrostatic pressure gradient also promoted cell proliferation, suppressed cell apoptosis, and increased transepithelial ion permeability. The inhibition of protein kinase A (PKA) promoted epithelial stratification by the hydrostatic pressure whereas the activation of PKA led to suppressed epithelial stratification. These results indicate the role of the hydrostatic pressure gradient in the regulation of various epithelial cell functions. The findings in this study may provide clues for the development of a novel strategy for the treatment of the carcinoma. PMID:26716691
Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection
NASA Astrophysics Data System (ADS)
Pang, Bin
Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant frequency was reduced by more than 20 dB with controlled liquid fuel injection method. Scaling issues were also investigated in this dump combustor to test the effectiveness of using pulsed liquid fuel injection strategies to suppress instabilities at higher power output conditions. With the liquid fuel injection control method, it was possible to suppress strong instabilities with initial amplitude of +/-5 psi down to the background noise level. The stable combustor operating range was also expanded from equivalence ratio of 0.75 to beyond 0.9.
Owen, Christopher G; Whincup, Peter H; Gilg, Julie A; Cook, Derek G
2003-11-22
To determine whether breast feeding in infancy compared with bottle feeding formula milk is associated with lower mean blood pressure at different ages. Systematic review. Embase, Medline, and Web of Science databases. Studies showing the effects of feeding in infancy on blood pressure at different ages. Pooled mean differences in blood pressure between breast fed infants and those bottle fed formula milk, based on random effects models. The pooled mean difference in systolic blood pressure was -1.10 mm Hg (95% confidence interval -1.79 to -0.42 mm Hg) but with significant heterogeneity between estimates (P < 0.001). The difference was largest in studies of < 300 participants (-2.05 mm Hg, -3.30 to -0.80 mm Hg), intermediate in studies of 300-1000 participants (1.13 mm Hg, -2.53 to 0.27 mm Hg), and smallest in studies of > 1000 participants (-0.16 mm Hg, -0.60 to 0.28 mm Hg). An Egger test but not Begg test was statistically significant for publication bias. The difference was unaltered by adjustment for current size and was independent of age at measurement of blood pressure and year of birth. Diastolic blood pressure was not significantly related to type of feeding in infancy. Selective publication of small studies with positive findings may have exaggerated claims that breast feeding in infancy reduces systolic blood pressure in later life. The results of larger studies suggest that feeding in infancy has at most a modest effect on blood pressure, which is of limited clinical or public health importance.
Intracranial Hypertension: Medication and Surgery
... and surgery in an effort to control their intracranial pressure. Drug Therapy Carbonic Anhydrase Inhibitors Carbonic anhydrase is ... suppressed, production of CSF decreases, which also lowers intracranial pressure. The most common carbonic anhydrase inhibitor and the ...
Government Doublethink: Protection or Suppression in Information.
ERIC Educational Resources Information Center
Drake, Miriam A.
2003-01-01
Discusses regulations and actions related to government withholding, suppressing, and altering information since September 11, 2001. Topics include conflicting goals of an informed citizenry versus national security, science and technology progress versus protection of sensitive information, and public health versus ideology; political pressure;…
Interfacial bubbles formed by plunging thin liquid films in a pool
NASA Astrophysics Data System (ADS)
Salkin, Louis; Schmit, Alexandre; David, Richard; Delvert, Alexandre; Gicquel, Eric; Panizza, Pascal; Courbin, Laurent
2017-06-01
We show that the immersion of a horizontally suspended thin film of liquid in a pool of the same fluid creates an interfacial bubble, that is, a bubble at the liquid-air interface. Varying the fluid properties, the film's size, and its immersion velocity, our experiments unveil two formation regimes characterized by either a visco-capillary or an inertio-capillary mechanism that controls the size of a produced bubble. To rationalize these results, we compare the pressure exerted by the air flow under a plunging film with the Laplace pressure needed to generate film dimpling, which subsequently yields air entrapment and the production of a bubble. This physical model explains the power-law variations of the bubble size with the governing dimensionless number for each regime.
Boiling Visualization and Critical Heat Flux Phenomena In Narrow Rectangular Gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. J. Kim; Y. H. Kim; S. J. Kim
2004-12-01
An experimental study was performed to investifate the pool boling critical hear flux (CHF) on one-dimensional inclined rectangular channels with narrow gaps by changing the orientation of a copper test heater assembly. In a pool of saturated water at atmospheric pressure, the test parameters include the gap sizes of 1,2,5, and 10 mm, andthe surface orientation angles from the downward facing position (180 degrees) to the vertical position (90 degress) respectively.
Improved Binocular Outcomes Following Binocular Treatment for Childhood Amblyopia
Kelly, Krista R.; Jost, Reed M.; Wang, Yi-Zhong; Dao, Lori; Beauchamp, Cynthia L.; Leffler, Joel N.; Birch, Eileen E.
2018-01-01
Purpose Childhood amblyopia can be treated with binocular games or movies that rebalance contrast between the eyes, which is thought to reduce depth of interocular suppression so the child can experience binocular vision. While visual acuity gains have been reported following binocular treatment, studies rarely report gains in binocular outcomes (i.e., stereoacuity, suppression) in amblyopic children. Here, we evaluated binocular outcomes in children who had received binocular treatment for childhood amblyopia. Methods Data for amblyopic children enrolled in two ongoing studies were pooled. The sample included 41 amblyopic children (6 strabismic, 21 anisometropic, 14 combined; age 4–10 years; ≤4 prism diopters [PD]) who received binocular treatment (20 game, 21 movies; prescribed 9–10 hours treatment). Amblyopic eye visual acuity and binocular outcomes (Randot Preschool Stereoacuity, extent of suppression, and depth of suppression) were assessed at baseline and at 2 weeks. Results Mean amblyopic eye visual acuity (P < 0.001) and mean stereoacuity improved (P = 0.045), and mean extent (P = 0.005) and depth of suppression (P = 0.003) were reduced from baseline at the 2-week visit (87% game adherence, 100% movie adherence). Depth of suppression was reduced more in children aged <8 years than in those aged ≥8 years (P = 0.004). Worse baseline depth of suppression was correlated with a larger depth of suppression reduction at 2 weeks (P = 0.001). Conclusions After 2 weeks, binocular treatment in amblyopic children improved visual acuity and binocular outcomes, reducing the extent and depth of suppression and improving stereoacuity. Binocular treatments that rebalance contrast to overcome suppression are a promising additional option for treating amblyopia. PMID:29625442
Castillo, Clarence F. G.; Ling, Maurice H. T.
2014-01-01
Antibiotics resistance is a serious biomedical issue as formally susceptible organisms gain resistance under its selective pressure. There have been contradictory results regarding the prevalence of resistance following withdrawal and disuse of the specific antibiotics. Here, we use experimental evolution in “digital organisms” to examine the rate of gain and loss of resistance under the assumption that there is no fitness cost for maintaining resistance. Our results show that selective pressure is likely to result in maximum resistance with respect to the selective pressure. During deselection as a result of disuse of the specific antibiotics, a large initial loss and prolonged stabilization of resistance are observed, but resistance is not lost to the stage of preselection. This suggests that a pool of partial persists organisms persist long after withdrawal of selective pressure at a relatively constant proportion. Hence, contradictory results regarding the prevalence of resistance following withdrawal and disuse of the specific antibiotics may be a statistical variation about constant proportion. Our results also show that subsequent reintroduction of the same selective pressure results in rapid regain of maximal resistance. Thus, our simulation results suggest that complete elimination of specific antibiotics resistance is unlikely after the disuse of antibiotics once a resistant pool of microorganisms has been established. PMID:24977157
Drinking water salinity and risk of hypertension: A systematic review and meta-analysis.
Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Huang, Cunrui; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia
2017-05-04
We summarized epidemiological studies assessing sodium in drinking water and changes in blood pressure or hypertension published in English from 1960 to 2015 from PubMed, Scopus, and Web of Science. We extracted data on blood pressure level or prevalence of hypertension and calculated pooled estimates using an inverse variance weighted random-effects model. The pooled standardized mean difference (SMD) in 7 studies (12 data sets) comparing the low and high water sodium exposure groups for systolic blood pressure (SBP) was 0.08 (95% CI, -0.17 to 0.34) and for diastolic blood pressure (DBP) was 0.23 (95% CI, 0.09-0.36). Of the 3 studies that assessed the association between high water sodium and odds of hypertension, 2 recent studies showed consistent findings of higher risk of hypertension. Our systematic review suggests an association between water sodium and human blood pressure (more consistently for DBP) but remain inconclusive because of the small number of studies (largely in young populations) and the cross-sectional design and methodological drawbacks. In the context of climate-change-related sea level rise and increasing saltwater intrusion into drinking water sources, further research is urgently warranted to investigate and guide intervention in this increasingly widespread problem.
The Relationships Between ELM Suppression, Pedestal Profiles, and Lithium Wall Coatings in NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.P. Boyle, R. Maingi, P.B. Snyder, J. Manickam, T.H. Osborne, R.E. Bell, B.P. LeBlanc, and the NSTX Team
2012-08-17
Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated to wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, D. P.; Maingi, R.; Snyder, P. B.
2011-01-01
Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated with wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX.« less
Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions
NASA Astrophysics Data System (ADS)
Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha
2016-09-01
Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale evaporation. A preliminary estimation of the bubble growth rates, measured by high speed videography, was undertaken and compared with classical bubble growth rate correlations. It was observed that the average bubble departure sizes on Sample B were larger as compared to plain wire, due to larger surface forces holding the bubble before departure. Bubble condensation in the thermal boundary layer was also captured.
Stability of Full Penetration, Flat Position Weld Pools
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.; Coan, Al. B.
1999-01-01
The dynamics of the dropthrough distance of a full penetration, flat position weld pool is described. Close to incipient root side penetration the dropthrough is metastable, so that a small drop in power can cause a loss of penetration if not followed soon enough by a compensating rise in power. The SPA (Soft Plasma Arc) process with higher pressure on top of the weld pool loses penetration more quickly than the GTA (Gas Tungsten Arc) process. 2195 aluminum-lithium alloy with a lower surface tension loses penetration more quickly than 2219 aluminum alloy. An instance of loss of penetration of a SPA weld in 2195 aluminum-lithium alloy is discussed in the light of the model.
Arterial and intraocular pressure changes after a single-session hot-water immersion.
Findikoglu, Gulin; Cetin, Ebru Nevin; Sarsan, Ayse; Senol, Hande; Yildirim, Cem; Ardic, Fusun
2015-01-01
The aim of this study is to investigate the effect of head-out hot-water immersion on the intraocular pressure (IOP) of healthy subjects and investigate whether this intervention alters cardiovascular and microcirculatory responses. METHODs: 16 male and 18 female healthy young adults were immersed in 39 degrees C water up to shoulder level for 20 minutes. Blood pressure (BP), heart rate (HR) and IOP were measured pre-immersion, post-immersion and five minutes after immersion on the same day. Tono-Pen was used to measure IOP. Mean arterial blood pressure (MAP), systolic pressure rate product (S-PRP), diastolic pressure rate product (D-PRP), pulse pressure (PP), mean ocular perfusion pressure (mean-OPP), systolic ocular perfusion pressure (S-OPP) and diastolic ocular perfusion pressure (D-OPP) were calculated. Systolic BP (SBP), diastolic BP (DBP), MAP, IOP, S-OPP, D-OPP and mean-OPP decreased; HR increased five minutes after immersion in the pool and post-immersion out of the pool significantly, compared to pre-immersion data (p < 0.05). HR, S-PRP and D-PRP measured five minutes after immersion were significantly higher from post-immersion (p < 0.05). PP and S-OPP were significantly different five minutes after immersion compared to pre-immersion. There was no statistically significant correlation between IOP and SBP, DBP, MAP, S-PRP, D-PRP, PP, S-OPP, D-OPP, or mean-OPP (p > 0.05). Physiological hemodynamic response to single head-out hot-water immersion caused a statistically significant decrease in IOP. Preliminary results could help to clarify vascular reactions and IOP changes during hot-water immersion that might be potentially therapeutic in glaucoma patients.
Le Cleach, Laurence; Trinquart, Ludovic; Do, Giao; Maruani, Annabel; Lebrun-Vignes, Benedicte; Ravaud, Philippe; Chosidow, Olivier
2014-08-03
Genital herpes is caused by herpes simplex virus 1 (HSV-1) or 2 (HSV-2). Some infected people experience outbreaks of genital herpes, typically, characterized by vesicular and erosive localized painful genital lesions. To compare the effectiveness and safety of three oral antiviral drugs (acyclovir, famciclovir and valacyclovir) prescribed to suppress genital herpes outbreaks in non-pregnant patients. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, the search portal of the World Health Organization International Clinical Trials Registry Platform and pharmaceutical company databases up to February 2014. We also searched US Food and Drug Administration databases and proceedings of seven congresses to a maximum of 10 years. We contacted trial authors and pharmaceutical companies. We selected parallel-group and cross-over randomized controlled trials including patients with recurrent genital herpes caused by HSV, whatever the type (HSV-1, HSV-2, or undetermined), with at least four recurrences per year (trials concerning human immunodeficiency virus (HIV)-positive patients or pregnant women were not eligible) and comparing suppressive oral antiviral treatment with oral acyclovir, famciclovir, and valacyclovir versus placebo or another suppressive oral antiviral treatment. Two review authors independently selected eligible trials and extracted data. The Risk of bias tool was used to assess risk of bias. Treatment effect was measured by the risk ratio (RR) of having at least one genital herpes recurrence. Pooled RRs were derived by conventional pairwise meta-analyses. A network meta-analysis allowed for estimation of all possible two-by-two comparisons between antiviral drugs. A total of 26 trials (among which six had a cross-over design) were included. Among the 6950 randomly assigned participants, 54% (range 0 to 100%) were female, mean age was 35 years (range 26 to 45.1), and the mean number of recurrences per year was 11 (range 6.3 to 17.8). Duration of treatment was two to 12 months. Risk of bias was considered high for half of the studies and unclear for the other half. A total of 14 trials compared acyclovir versus placebo, four trials compared valacyclovir versus placebo and 2 trials compared valacyclovir versus no treatment. Three trials compared famciclovir versus placebo. Two trials compared valacyclovir versus famciclovir and one trial compared acyclovir versus valacyclovir versus placebo.We analyzed data from 22 trials for the outcome: risk of having at least one clinical recurrence. We could not obtain the outcome data for four trials. In placebo-controlled trials, there was a low quality evidence that the risk of having at least one clinical recurrence was reduced with acyclovir (nine parallel-group trials, n = 2049; pooled RR 0.48, 95% confidence interval (CI) 0.39 to 0.58), valacyclovir (four trials, n = 1788; pooled RR 0.41, 95% CI 0.24 to 0.69), or famciclovir (two trials, n = 732; pooled RR 0.57, 95% CI 0.50 to 0.64). The six cross-over trials showed larger treatment effects on average than the parallel-group trials. We found evidence of a small-study effect for acyclovir placebo-controlled trials (adjusted pooled RR 0.61, 95% CI 0.49 to 0.75). In analyzing parallel-group trials by daily dose, no clear evidence was found of a dose-response relationship for any drug. In head-to-head trials, the risk of having at least one recurrence was increased with valacyclovir rather than acyclovir (one trial, n = 1345; RR 1.16, 95% CI 1.01 to 1.34) and was not significantly different from that seen with famciclovir as compared with valacyclovir (one trial, n = 320; RR 1.18, 95% CI 0.86 to 1.63).We included 16 parallel-arm trials in a network meta-analysis and we were unable to determine which of the drugs was most effective in reducing the risk of at least one clinical recurrence (after adjustment for small-study effects, pooled RR 0.83, 95% CI 0.61 to 1.11 for valacyclovir vs acyclovir; pooled RR 1.04, 95% CI, 0.71 to 1.49 for famciclovir vs acyclovir; and pooled RR 1.26, 95% CI 0.89 to 1.75 for famciclovir vs valacyclovir). Safety data were sought but were reported as total numbers of adverse events. Owing to risk of bias and inconsistency, there is low quality evidence that suppressive antiviral therapy with acyclovir, valacyclovir or famciclovir in pacients experiencing at least four recurrences of genital herpes per year decreases the number of pacients with at least one recurrence as compared with placebo. Network meta-analysis of the few direct comparisons and the indirect comparisons did not show superiority of one drug over another.
Bauerschmidt, S T; Novoa, D; Russell, P St J
2015-12-11
In 1964 Bloembergen and Shen predicted that Raman gain could be suppressed if the rates of phonon creation and annihilation (by inelastic scattering) exactly balance. This is only possible if the momentum required for each process is identical, i.e., phonon coherence waves created by pump-to-Stokes scattering are identical to those annihilated in pump-to-anti-Stokes scattering. In bulk gas cells, this can only be achieved over limited interaction lengths at an oblique angle to the pump axis. Here we report a simple system that provides dramatic Raman gain suppression over long collinear path lengths in hydrogen. It consists of a gas-filled hollow-core photonic crystal fiber whose zero dispersion point is pressure adjusted to lie close to the pump laser wavelength. At a certain precise pressure, stimulated generation of Stokes light in the fundamental mode is completely suppressed, allowing other much weaker phenomena such as spontaneous Raman scattering to be explored at high pump powers.
Merchant, Sana; Medow, Marvin S; Visintainer, Paul; Terilli, Courtney; Stewart, Julian M
2017-04-01
Neurovascular coupling (NVC) describes the link between an increase in task-related neural activity and increased cerebral blood flow denoted "functional hyperemia." We previously showed induced cerebral blood flow oscillations suppressed functional hyperemia; conversely functional hyperemia also suppressed cerebral blood flow oscillations. We used lower body negative pressure (OLBNP) oscillations to force oscillations in middle cerebral artery cerebral blood flow velocity (CBFv). Here, we used N-back testing, an intellectual memory challenge as a neural activation task, to test the hypothesis that OLBNP-induced oscillatory cerebral blood flow can reduce functional hyperemia and NVC produced by a working memory task and can interfere with working memory. We used OLBNP (-30 mmHg) at 0.03, 0.05, and 0.10 Hz and measured spectral power of CBFv at all frequencies. Neither OLBNP nor N-back, alone or combined, affected hemodynamic parameters. 2-Back power and OLBNP individually were compared with 2-back power during OLBNP. 2-Back alone produced a narrow band increase in oscillatory arterial pressure (OAP) and oscillatory cerebral blood flow power centered at 0.0083 Hz. Functional hyperemia in response to 2-back was reduced to near baseline and 2-back memory performance was decreased by 0.03-, 0.05-, and 0.10-Hz OLBNP. OLBNP alone produced increased oscillatory power at frequencies of oscillation not suppressed by added 2-back. However, 2-back preceding OLBNP suppressed OLBNP power. OLBNP-driven oscillatory CBFv blunts NVC and memory performance, while memory task reciprocally interfered with forced CBFv oscillations. This shows that induced cerebral blood flow oscillations suppress functional hyperemia and functional hyperemia suppresses cerebral blood flow oscillations. NEW & NOTEWORTHY We show that induced cerebral blood flow oscillations suppress functional hyperemia produced by a working memory task as well as memory task performance. We conclude that oscillatory cerebral blood flow produces causal reductions of memory task neurovascular coupling and memory task performance. Reductions of functional hyperemia are constrained by autoregulation. Copyright © 2017 the American Physiological Society.
Oyebola, Kolapo M; Idowu, Emmanuel T; Olukosi, Yetunde A; Awolola, Taiwo S; Amambua-Ngwa, Alfred
2017-06-29
The burden of falciparum malaria is especially high in sub-Saharan Africa. Differences in pressure from host immunity and antimalarial drugs lead to adaptive changes responsible for high level of genetic variations within and between the parasite populations. Population-specific genetic studies to survey for genes under positive or balancing selection resulting from drug pressure or host immunity will allow for refinement of interventions. We performed a pooled sequencing (pool-seq) of the genomes of 100 Plasmodium falciparum isolates from Nigeria. We explored allele-frequency based neutrality test (Tajima's D) and integrated haplotype score (iHS) to identify genes under selection. Fourteen shared iHS regions that had at least 2 SNPs with a score > 2.5 were identified. These regions code for genes that were likely to have been under strong directional selection. Two of these genes were the chloroquine resistance transporter (CRT) on chromosome 7 and the multidrug resistance 1 (MDR1) on chromosome 5. There was a weak signature of selection in the dihydrofolate reductase (DHFR) gene on chromosome 4 and MDR5 genes on chromosome 13, with only 2 and 3 SNPs respectively identified within the iHS window. We observed strong selection pressure attributable to continued chloroquine and sulfadoxine-pyrimethamine use despite their official proscription for the treatment of uncomplicated malaria. There was also a major selective sweep on chromosome 6 which had 32 SNPs within the shared iHS region. Tajima's D of circumsporozoite protein (CSP), erythrocyte-binding antigen (EBA-175), merozoite surface proteins - MSP3 and MSP7, merozoite surface protein duffy binding-like (MSPDBL2) and serine repeat antigen (SERA-5) were 1.38, 1.29, 0.73, 0.84 and 0.21, respectively. We have demonstrated the use of pool-seq to understand genomic patterns of selection and variability in P. falciparum from Nigeria, which bears the highest burden of infections. This investigation identified known genomic signatures of selection from drug pressure and host immunity. This is evidence that P. falciparum populations explore common adaptive strategies that can be targeted for the development of new interventions.
Method and apparatus for suppressing waves in a borehole
West, Phillip B.
2005-10-04
Methods and apparatus for suppression of wave energy within a fluid-filled borehole using a low pressure acoustic barrier. In one embodiment, a flexible diaphragm type device is configured as an open bottomed tubular structure for disposition in a borehole to be filled with a gas to create a barrier to wave energy, including tube waves. In another embodiment, an expandable umbrella type device is used to define a chamber in which a gas is disposed. In yet another embodiment, a reverse acting bladder type device is suspended in the borehole. Due to its reverse acting properties, the bladder expands when internal pressure is reduced, and the reverse acting bladder device extends across the borehole to provide a low pressure wave energy barrier.
Transient-Switch-Signal Suppressor
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.
Pressure suppression containment system for boiling water reactor
Gluntz, D.M.; Nesbitt, L.B.
1997-01-21
A system is disclosed for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs. 3 figs.
Cavitation erosion of silver plated coating at different temperatures and pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattori, Shuji; Motoi, Yoshihiro; Kikuta, Kengo
2014-04-11
Cavitation often occurs in inducer pumps used for space rockets. Silver plated coating on the inducer liner faces the damage of cavitation. Therefore, it is important to study about the cavitation erosion resistance for silver plated coating at several operating conditions in the inducer pumps. In this study, the cavitation erosion tests were carried for silver plated coating in deionized water and ethanol at several liquid temperatures (273K–400K) and pressures (0.10MPa–0.48MPa). The mass loss rate is evaluated in terms of thermodynamic parameter Σ proposed by Brennen [9], suppression pressure p–p{sub v} (p{sub v}: saturated vapor pressure) and acoustic impedance ρcmore » (ρ: density and c: sound speed). Cavitation bubble behaviors depending on the thermodynamic effect and the liquid type were observed by high speed video camera. The mass loss rate is formulated by thermodynamic parameter Σ, suppression pressure p–p{sub v} and acoustic impedance ρc.« less
NASA Technical Reports Server (NTRS)
Walsh, Daniel W.
1987-01-01
The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. This study examined the effects of oxide, halide, and sulfate additions to the weld plate on the keyhole and the weld pool. Changes in both the arc plasma character and the bead morphology were correlated to the chemical environment of the weld. Pool behavior was observed by adding flow markers to actual VPPA welds. A low temperature analog to the welding process was developed. The results of the study indicate that oxygen, even at low partial pressures, can disrupt the stable keyhole and weld pool. The results also indicate that the Marangoni surface tension driven flows dominate the weld pool over the range of welding currents studied.
Cao, Kaiwu; Xu, Jingsong; Shangguan, Qing; Hu, Weitong; Li, Ping; Cheng, Xiaoshu; Su, Hai
2015-01-01
To evaluate whether an association exists between an inter-arm systolic blood pressure difference (sIAD) and all-cause and cardiovascular mortality. We searched for cohort studies that evaluated the association of a sIAD and all-cause or cardiovascular mortality in the electronic databases Medline/PubMed and Embase (August 2014). Random effects models were used to calculate pooled hazard ratios (HRs) and 95% confidence intervals (CIs). Nine cohort studies (4 prospective and 5 retrospective) enrolling 15,617 participants were included. The pooled HR of all-cause mortality for a sIAD of ≥ 10 mm Hg was 1.53 (95% CI 1.14-2.06), and that for a sIAD of ≥ 15 mm Hg was 1.46 (1.13-1.88). Pooled HRs of cardiovascular mortality were 2.21 (95% CI 1.52-3.21) for a sIAD of ≥ 10mm Hg, and 1.89 (1.32-2.69) for a sIAD of ≥ 15 mm Hg. In the patient-based cohorts including hospital- and diabetes-based cohorts, both sIADs of ≥ 10 and ≥ 15 mm Hg were associated with increased all-cause (pooled HR 1.95, 95% CI 1.01-3.78 and 1.59, 1.06-2.38, respectively) and cardiovascular mortality (pooled HR 2.98, 95% CI 1.88-4.72 and 2.10, 1.07-4.13, respectively). In the community-based cohorts, however, only a sIAD of ≥ 15 mm Hg was associated with increased cardiovascular mortality (pooled HR 1.94, 95 % CI 1.12-3.35). In the patient populations, a sIAD of ≥ 10 or of ≥ 15 mm Hg could be a useful indictor for increased all-cause and cardiovascular mortality, and a sIAD of ≥ 15 mm Hg might help to predict increased cardiovascular mortality in the community populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Light shield and cooling apparatus. [high intensity ultraviolet lamp
NASA Technical Reports Server (NTRS)
Meador, T. G., Jr. (Inventor)
1974-01-01
A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.
Suppressed ion-scale turbulence in a hot high-β plasma
NASA Astrophysics Data System (ADS)
Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.
2016-12-01
An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.
Suppressed ion-scale turbulence in a hot high-β plasma
Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.
2016-01-01
An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements. PMID:28000675
Carter, H. Kennon; Mlekodaj, Ronald L.
1977-01-01
A seal is provided for allowing a thin flexible tape to be pulled from a high vacuum region (less than 10.sup.-.sup.6 torr) into atmospheric pressure. The tape first passes through a slit in an elastomer and thence through a pool of vacuum pump fluid into a differentially pumped volume. A second slit in an elastomer is the final seal element prior to exit of the tape to atmospheric pressure. The vacuum seal is utilized in a system for the rapid removal of samples, implanted in the surface of the tape, from a vacuum system to atmospheric pressure.
Pressure effects in the itinerant antiferromagnetic metal TiAu
Wolowiec, C. T.; Fang, Y.; McElroy, C. A.; ...
2017-06-07
Here, we report the pressure dependence of the Néel temperature T N up to P ≈ 27 GPa for the recently discovered itinerant antiferromagnet (IAFM) TiAu. The T N(P) phase boundary exhibits unconventional behavior in which the Néel temperature is enhanced from T N ≈ 33 K at ambient pressure to a maximum of T N ≈ 35 K occurring at P ≈ 5.5 GPa. Upon a further increase in pressure, T N is monotonically suppressed to ~22 K at P ≈ 27 GPa. We also find a crossover in the temperature dependence of the electrical resistivity ρ in themore » antiferromagnetic (AFM) phase that is coincident with the peak in T N(P), such that the temperature dependence of ρ = ρ 0 + A nT n changes from n≈3 during the enhancement of T N to n ≈ 2 during the suppression of T N. Based on an extrapolation of the T N(P) data to a possible pressure-induced quantum critical point, we estimate the critical pressure to be P c ≈ 45 GPa.« less
White, William B.; Cuadra, René H.; Lloyd, Eric; Bakris, George L.; Kupfer, Stuart
2016-01-01
Background: Angiotensin receptor blockers (ARBs) are preferred antihypertensive therapies in patients with type 2 diabetes mellitus (T2DM). Azilsartan medoxomil (AZL-M) is a potent ARB for the treatment of stages 1-2 hypertension. We compared the efficacy, safety, and metabolic effects of AZL-M to both valsartan (VAL) and olmesartan (OLM), separately in patients with impaired fasting glucose (prediabetes mellitus) and T2DM. Methods: A pooled analysis of 3821 patients from three separate randomized placebo-controlled trials comparing the effects of AZL-M (40 and 80 mg), OLM (40 mg), VAL (320 mg), and placebo on changes in ambulatory and clinic blood pressure (BP) among patients with hypertension and prediabetes mellitus or T2DM was performed. Two analysis pools were created to facilitate comparisons: Pool A included patients who received placebo, AZL-M or OLM and Pool B included those who received AZL-M or VAL. Within each pool, patients were stratified by glycemic subgroups (normoglycemic, prediabetes mellitus, or T2DM) based on hemoglobin A1c values. Changes from baseline in both 24-h and clinic SBP were the primary efficacy assessments. Results: Baseline 24-h mean SBPs were approximately 145 and 146 mmHg in the prediabetes mellitus and T2DM subgroups, respectively; corresponding clinic SBPs were approximately 158 and 159 mmHg. Baseline hemoglobin A1c values for each subgroup (both pools) were normoglycemic, 5.3%; prediabetes mellitus, 6.0%; and T2DM, 6.9%. Changes from baseline in 24-h or clinic SBP were significantly greater with AZL-M, 80 mg compared with either OLM 40 mg or VAL 320 mg in all subgroups in each pool. Safety and tolerability were similar among the active treatment and placebo subgroups. Conclusion: These analyses indicate that AZL-M, 80 mg/day lowers SBP by a greater magnitude than OLM or VAL at maximally approved doses in patients with prediabetes mellitus and T2DM. These findings have important clinical implications for this high-risk patient group. PMID:26766564
White, William B; Cuadra, René H; Lloyd, Eric; Bakris, George L; Kupfer, Stuart
2016-04-01
Angiotensin receptor blockers (ARBs) are preferred antihypertensive therapies in patients with type 2 diabetes mellitus (T2DM). Azilsartan medoxomil (AZL-M) is a potent ARB for the treatment of stages 1-2 hypertension. We compared the efficacy, safety, and metabolic effects of AZL-M to both valsartan (VAL) and olmesartan (OLM), separately in patients with impaired fasting glucose (prediabetes mellitus) and T2DM. A pooled analysis of 3821 patients from three separate randomized placebo-controlled trials comparing the effects of AZL-M (40 and 80 mg), OLM (40 mg), VAL (320 mg), and placebo on changes in ambulatory and clinic blood pressure (BP) among patients with hypertension and prediabetes mellitus or T2DM was performed. Two analysis pools were created to facilitate comparisons: Pool A included patients who received placebo, AZL-M or OLM and Pool B included those who received AZL-M or VAL. Within each pool, patients were stratified by glycemic subgroups (normoglycemic, prediabetes mellitus, or T2DM) based on hemoglobin A1c values. Changes from baseline in both 24-h and clinic SBP were the primary efficacy assessments. Baseline 24-h mean SBPs were approximately 145 and 146 mmHg in the prediabetes mellitus and T2DM subgroups, respectively; corresponding clinic SBPs were approximately 158 and 159 mmHg. Baseline hemoglobin A1c values for each subgroup (both pools) were normoglycemic, 5.3%; prediabetes mellitus, 6.0%; and T2DM, 6.9%. Changes from baseline in 24-h or clinic SBP were significantly greater with AZL-M, 80 mg compared with either OLM 40 mg or VAL 320 mg in all subgroups in each pool. Safety and tolerability were similar among the active treatment and placebo subgroups. These analyses indicate that AZL-M, 80 mg/day lowers SBP by a greater magnitude than OLM or VAL at maximally approved doses in patients with prediabetes mellitus and T2DM. These findings have important clinical implications for this high-risk patient group.
NASA Technical Reports Server (NTRS)
Jutras, R. R.
1976-01-01
The raw-acoustic data corrected to standard day, from acoustic tests performed on a 0.508-scale fan vehicle of a 111,300 newton thrust, full-size engine, which has application on an advanced transport aircraft, are presented. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec to achieve the desired pressure ratio in a single-stage fan with low radius ratio, and to maintain adequate stall margin. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized.
Liang, H R; Foltz, R L; Meng, M; Bennett, P
2003-01-01
The phenomena of ionization suppression in electrospray ionization (ESI) and enhancement in atmospheric pressure chemical ionization (APCI) were investigated in selected-ion monitoring and selected-reaction monitoring modes for nine drugs and their corresponding stable-isotope-labeled internal standards (IS). The results showed that all investigated target drugs and their co-eluting isotope-labeled IS suppress each other's ionization responses in ESI. The factors affecting the extent of suppression in ESI were investigated, including structures and concentrations of drugs, matrix effects, and flow rate. In contrast to the ESI results, APCI caused seven of the nine investigated target drugs and their co-eluting isotope-labeled IS to enhance each other's ionization responses. The mutual ionization suppression or enhancement between drugs and their isotope-labeled IS could possibly influence assay sensitivity, reproducibility, accuracy and linearity in quantitative liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). However, calibration curves were linear if an appropriate IS concentration was selected for a desired calibration range to keep the response factors constant. Copyright 2003 John Wiley & Sons, Ltd.
Soltz, Michael A.; Basalo, Ines M.; Ateshian, Gerard A.
2010-01-01
This study presents an analysis of the contact of a rippled rigid impermeable indenter against a cartilage layer, which represents a first simulation of the contact of rough cartilage surfaces with lubricant entrapment. Cartilage was modeled with the biphasic theory for hydrated soft tissues, to account for fluid flow into or out of the lubricant pool. The findings of this study demonstrate that under contact creep, the trapped lubricant pool gets depleted within a time period on the order of seconds or minutes as a result of lubricant flow into the articular cartilage. Prior to depletion, hydrostatic fluid load across the contact interface may be enhanced by the presence of the trapped lubricant pool, depending on the initial geometry of the lubricant pool. According to friction models based on the biphasic nature of the tissue, this enhancement in fluid load support produces a smaller minimum friction coefficient than would otherwise be predicted without a lubricant pool. The results of this study support the hypothesis that trapped lubricant decreases the initial friction coefficient following load application, independently of squeeze-film lubrication effects. PMID:14618917
Owen, Christopher G; Whincup, Peter H; Gilg, Julie A; Cook, Derek G
2003-01-01
Objective To determine whether breast feeding in infancy compared with bottle feeding formula milk is associated with lower mean blood pressure at different ages. Design Systematic review. Data sources Embase, Medline, and Web of Science databases. Study selection Studies showing the effects of feeding in infancy on blood pressure at different ages. Data extraction Pooled mean differences in blood pressure between breast fed infants and those bottle fed formula milk, based on random effects models. Data synthesis The pooled mean difference in systolic blood pressure was -1.10 mm Hg (95% confidence interval -1.79 to -0.42 mm Hg) but with significant heterogeneity between estimates (P < 0.001). The difference was largest in studies of < 300 participants (-2.05 mm Hg, -3.30 to -0.80 mm Hg), intermediate in studies of 300-1000 participants (1.13 mm Hg, -2.53 to 0.27 mm Hg), and smallest in studies of > 1000 participants (-0.16 mm Hg, -0.60 to 0.28 mm Hg). An Egger test but not Begg test was statistically significant for publication bias. The difference was unaltered by adjustment for current size and was independent of age at measurement of blood pressure and year of birth. Diastolic blood pressure was not significantly related to type of feeding in infancy. Conclusions Selective publication of small studies with positive findings may have exaggerated claims that breast feeding in infancy reduces systolic blood pressure in later life. The results of larger studies suggest that feeding in infancy has at most a modest effect on blood pressure, which is of limited clinical or public health importance. PMID:14630752
Optimization of valve opening process for the suppression of impulse exhaust noise
NASA Astrophysics Data System (ADS)
Li, Jingxiang; Zhao, Shengdun
2017-02-01
Impulse exhaust noise generated by the sudden impact of discharging flow of pneumatic systems has significant temporal characteristics including high sound pressure and rapid sound transient. The impulse noise exposures are more hazardous to hearing than the energy equivalent uniform noise exposures. This paper presents a novel approach to suppress the peak sound pressure as a major indicator of impulsiveness of the impulse exhaust noise by an optimization of the opening process of valve. Relationships between exhaust flow and impulse noise are described by thermodynamics and noise generating mechanism. Then an optimized approach by controlling the valve opening process is derived under a constraint of pre-setting exhaust time. A modified servo-direct-driven valve was designed and assembled in a typical pneumatic system for the verification experiments comparing with an original solenoid valve. Experimental results with groups of initial cylinder pressures and pre-setting exhaust times are shown to verify the effects of the proposed optimization. Some indicators of energy-equivalent and impulsiveness are introduced to discuss the effects of the noise suppressions. Relationship between noise reduction and exhaust time delay is also discussed.
Handbook of dehumidification technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brundrett, G.W.
1987-01-01
This book shows how dehumidification can alleviate environmental problems in human and industrial spheres which carry major cost implications. The applications of dehumidification, sorbent, air cycle and refrigerant are outlined but the main emphasis is placed on the refrigerant cycle because its applications and product range are the most extensive. A more detailed review of the main applications and opportunities such as housing condensation problems, protection and control in industry and energy saving for swimming pools then follows. Specialist sections on food and flowers and the drying of pressurized gases precede chapters on future developments, economic aspects and a usefulmore » list of further information sources including active research centres. The Contents discussed are: Introduction . Principles . Design considerations for refrigerant dehumidifiers . Domestic applications and dehumidifiers . Swimming pools . Industrial dehumidification . Food and flowers . Drying high pressure gases . Future trends . Economics . Further sources of information.« less
Remane, Daniela; Wissenbach, Dirk K; Meyer, Markus R; Maurer, Hans H
2010-04-15
In clinical and forensic toxicology, multi-analyte procedures are very useful to quantify drugs and poisons of different classes in one run. For liquid chromatographic/tandem mass spectrometric (LC/MS/MS) multi-analyte procedures, often only a limited number of stable-isotope-labeled internal standards (SIL-ISs) are available. If an SIL-IS is used for quantification of other analytes, it must be excluded that the co-eluting native analyte influences its ionization. Therefore, the effect of ion suppression and enhancement of fourteen SIL-ISs caused by their native analogues has been studied. It could be shown that the native analyte concentration influenced the extent of ion suppression and enhancement effects leading to more suppression with increasing analyte concentration especially when electrospray ionization (ESI) was used. Using atmospheric-pressure chemical ionization (APCI), methanolic solution showed mainly enhancement effects, whereas no ion suppression and enhancement effect, with one exception, occurred when plasma extracts were used under these conditions. Such differences were not observed using ESI. With ESI, eleven SIL-ISs showed relevant suppression effects, but only one analyte showed suppression effects when APCI was used. The presented study showed that ion suppression and enhancement tests using matrix-based samples of different sources are essential for the selection of ISs, particularly if used for several analytes to avoid incorrect quantification. In conclusion, only SIL-ISs should be selected for which no suppression and enhancement effects can be observed. If not enough ISs are free of ionization interferences, a different ionization technique should be considered. 2010 John Wiley & Sons, Ltd.
Pfeifer, Michael; Townsend, Raymond R; Davies, Michael J; Vijapurkar, Ujjwala; Ren, Jimmy
2017-02-27
Physiologic determinants, such as pulse pressure [difference between systolic blood pressure (SBP) and diastolic BP (DBP)], mean arterial pressure (2/3 DBP + 1/3 SBP), and double product [beats per minute (bpm) × SBP], are linked to cardiovascular outcomes. The effects of canagliflozin, a sodium glucose co-transporter 2 (SGLT2) inhibitor, on pulse pressure, mean arterial pressure, and double product were assessed in patients with type 2 diabetes mellitus (T2DM). This post hoc analysis was based on pooled data from four 26-week, randomized, double-blind, placebo-controlled studies evaluating canagliflozin in patients with T2DM (N = 2313) and a 6-week, randomized, double-blind, placebo-controlled, ambulatory BP monitoring (ABPM) study evaluating canagliflozin in patients with T2DM and hypertension (N = 169). Changes from baseline in SBP, DBP, pulse pressure, mean arterial pressure, and double product were assessed using seated BP measurements (pooled studies) or averaged 24-h BP assessments (ABPM study). Safety was assessed based on adverse event reports. In the pooled studies, canagliflozin 100 and 300 mg reduced SBP (-4.3 and -5.0 vs -0.3 mmHg) and DBP (-2.5 and -2.4 vs -0.6 mmHg) versus placebo at week 26. Reductions in pulse pressure (-1.8 and -2.6 vs 0.2 mmHg), mean arterial pressure (-3.1 and -3.3 vs -0.5 mmHg), and double product (-381 and -416 vs -30 bpm × mmHg) were also seen with canagliflozin 100 and 300 mg versus placebo. In the ABPM study, canagliflozin 100 and 300 mg reduced mean 24-h SBP (-4.5 and -6.2 vs -1.2 mmHg) and DBP (-2.2 and -3.2 vs -0.3 mmHg) versus placebo at week 6. Canagliflozin 300 mg provided reductions in pulse pressure (-3.3 vs -0.8 mmHg) and mean arterial pressure (-4.2 vs -0.6 mmHg) compared with placebo, while canagliflozin 100 mg had more modest effects on these parameters. Canagliflozin was generally well tolerated in both study populations. Canagliflozin improved all three cardiovascular physiologic markers, consistent with the hypothesis that canagliflozin may have beneficial effects on some cardiovascular outcomes in patients with T2DM. Trial registration ClinicalTrials.gov Identifier: NCT01081834 (registered March 2010); NCT01106677 (registered April 2010); NCT01106625 (registered April 2010); NCT01106690 (registered April 2010); NCT01939496 (registered September 2013).
Pressure-temperature phase diagrams of CaK(Fe1 -xNix)4As4 superconductors
NASA Astrophysics Data System (ADS)
Xiang, Li; Meier, William R.; Xu, Mingyu; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.
2018-05-01
The pressure dependence of the magnetic and superconducting transitions and that of the superconducting upper critical field are reported for CaK (Fe1-xNix) 4As4 , the first example of an Fe-based superconductor with spin-vortex-crystal-type magnetic ordering. Resistance measurements were performed on single crystals with two substitution levels (x =0.033 ,0.050 ) under hydrostatic pressures up to 5.12 GPa and in magnetic fields up to 9 T. Our results show that, for both compositions, magnetic transition temperatures TN are suppressed upon applying pressure; the superconducting transition temperatures Tc are suppressed by pressure as well, except for x =0.050 in the pressure region where TN and Tc cross. Furthermore, the pressure associated with the crossing of the TN and Tc lines also coincides with a minimum in the normalized slope of the superconducting upper critical field, consistent with a likely Fermi-surface reconstruction associated with the loss of magnetic ordering. Finally, at p ˜4 GPa, both Ni-substituted CaK (Fe1-xNix) 4As4 samples likely go through a half-collapsed-tetragonal phase transition, similar to the parent compound CaKFe4As4 .
NASA Astrophysics Data System (ADS)
Choi, E. S.; Graf, D.; Tokumoto, T.; Brooks, J. S.; Yamada, Jun-Ichi
2007-03-01
We have investigated transport and magnetization properties of β-(BDA-TTP)2MX4 (M=Fe, Ga and X=Cl, Br) as a function of pressure, temperature and magnetic field. The title material undergoes metal-insulator transitions above 100 K at ambient pressure. The insulating phase is suppressed with pressure and superconductivity eventually appears above Pc= 4.5 kbar (X=Cl) and 13 kbar (X=Br). The general temperature-pressure (TP) phase diagram is similar each other, while higher pressure is required for X=Br compounds to suppress the insulating state and induce the superconductivity. Pressure dependent DC magnetization studies on β-(BDA-TTP)2FeCl4 compound revealed that the AFM ordering persist well above Pc. In spite of similarity of phase diagram between M=Fe and M=Ga compounds, magnetoresistance results show distinct behaviors, which indicates the magnetic interaction with the conduction electrons are still effective. The comparison between X=Cl and X=Br compounds suggests the anion-size effect rather than the existence of localized magnetic moments plays more important role in determining the ground state.
Model of Draining of the Blast Furnace Hearth with an Impermeable Zone
NASA Astrophysics Data System (ADS)
Saxén, Henrik
2015-02-01
Due to demands of lower costs and higher productivity in the steel industry, the volume of operating blast furnaces has grown during the last decades. As the height is limited by the allowable pressure drop, the hearth diameter has grown considerably and, along with this, also draining-related problems. In this paper a mathematical model is developed for simulating the drainage in the case where an impermeable region exists in the blast furnace hearth. The model describes the quasi-stationary drainage process of a hearth with two operating tapholes, where the communication between the two pools of molten slag and iron can be controlled by parameterized expressions. The model also considers the case where the buoyancy of the liquids is sufficient for lifting the coke bed. The implications of different size of the liquid pools, communication between the pools, bed porosity, etc. are studied by simulation, and conclusions concerning their effect on the drainage behavior and evolution of the liquid levels in the hearth are drawn. The simulated liquid levels are finally demonstrated to give rise to a pressure profile acting on the hearth which agrees qualitatively with signals from strain gauges mounted in the hearth wall of an industrial ironmaking process.
2017-01-07
Raised blood pressure is an important risk factor for cardiovascular diseases and chronic kidney disease. We estimated worldwide trends in mean systolic and mean diastolic blood pressure, and the prevalence of, and number of people with, raised blood pressure, defined as systolic blood pressure of 140 mm Hg or higher or diastolic blood pressure of 90 mm Hg or higher. For this analysis, we pooled national, subnational, or community population-based studies that had measured blood pressure in adults aged 18 years and older. We used a Bayesian hierarchical model to estimate trends from 1975 to 2015 in mean systolic and mean diastolic blood pressure, and the prevalence of raised blood pressure for 200 countries. We calculated the contributions of changes in prevalence versus population growth and ageing to the increase in the number of adults with raised blood pressure. We pooled 1479 studies that had measured the blood pressures of 19·1 million adults. Global age-standardised mean systolic blood pressure in 2015 was 127·0 mm Hg (95% credible interval 125·7-128·3) in men and 122·3 mm Hg (121·0-123·6) in women; age-standardised mean diastolic blood pressure was 78·7 mm Hg (77·9-79·5) for men and 76·7 mm Hg (75·9-77·6) for women. Global age-standardised prevalence of raised blood pressure was 24·1% (21·4-27·1) in men and 20·1% (17·8-22·5) in women in 2015. Mean systolic and mean diastolic blood pressure decreased substantially from 1975 to 2015 in high-income western and Asia Pacific countries, moving these countries from having some of the highest worldwide blood pressure in 1975 to the lowest in 2015. Mean blood pressure also decreased in women in central and eastern Europe, Latin America and the Caribbean, and, more recently, central Asia, Middle East, and north Africa, but the estimated trends in these super-regions had larger uncertainty than in high-income super-regions. By contrast, mean blood pressure might have increased in east and southeast Asia, south Asia, Oceania, and sub-Saharan Africa. In 2015, central and eastern Europe, sub-Saharan Africa, and south Asia had the highest blood pressure levels. Prevalence of raised blood pressure decreased in high-income and some middle-income countries; it remained unchanged elsewhere. The number of adults with raised blood pressure increased from 594 million in 1975 to 1·13 billion in 2015, with the increase largely in low-income and middle-income countries. The global increase in the number of adults with raised blood pressure is a net effect of increase due to population growth and ageing, and decrease due to declining age-specific prevalence. During the past four decades, the highest worldwide blood pressure levels have shifted from high-income countries to low-income countries in south Asia and sub-Saharan Africa due to opposite trends, while blood pressure has been persistently high in central and eastern Europe. Wellcome Trust. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.
Comparison of heat transfer coefficients of open micro-channels and plain micro-fins
NASA Astrophysics Data System (ADS)
Kaniowski, Robert; Pastuszko, Robert
2018-06-01
The paper describes results of analysis of pool boiling heat transfer on enhanced surfaces. Two types of structural surfaces were used: open microchannel surfaces consisting of a system of parallel micro-channels 0.3 mm wide, from 0.2 to 0.5 mm deep and with a pitch of 0.6 mm, and plain micro-fins 0.5 mm in height, uniformly spaced on the base surface with a spacing from 0.6 to1.5 mm. Pool boiling data at atmospheric pressure were obtained for saturated water, ethanol and FC-72. The effects of micro-channel/micro-fin dimensions on heat transfer coefficient in nucleate pool boiling were examined. Substantial enhancement of heat transfer coefficient was observed.
Stuart, Andrew; Daughtrey, Emma R
2016-04-01
The medial olivocochlear (MOC) efferent reflex that modulates outer hair cell function has been shown to be more robust in musicians versus nonmusicians as evidenced in greater contralateral suppression of transient-evoked otoacoustic emissions (TEOAEs). All previous research comparing musical ability and MOC efferent strength has defined musicianship dichotomously (i.e., high-level music students or professional classical musicians versus nonmusicians). The objective of the study was to further explore contralateral suppression of TEOAEs among adults with a full spectrum of musicianship ranging from no history of musicianship to professional musicians. Musicianship was defined by both self-report and with an objective test to quantify individual differences in perceptual music skills. A single-factor between-subjects and correlational research designs were employed. Forty-five normal-hearing young adults participated. Participants completed a questionnaire concerning their music experience and completed the Brief Profile of Music Perception Skills (PROMS) to quantify perceptual musical skills across multiple musical domains (i.e., accent, melody, tempo, and tuning). TEOAEs were evaluated with 60 dB peak equivalent sound pressure level click stimuli with and without a contralateral 65 dB sound pressure level white noise suppressor. TEOAE suppression was expressed in two ways, absolute TEOAE suppression in dB and a normalized index of TEOAE suppression (i.e., percentage of suppression). Participants who considered themselves musicians scored significantly higher on all subscales and total Brief PROMS score (p < 0.05). There was no statistically significant difference between musicians and nonmusicians in absolute TEOAE suppression or percentage of TEOAE suppression (p > 0.05). There were no statistically significant correlations or linear predictive relationships between subscale or total Brief PROMS scores with absolute and percentage of TEOAE suppression (p > 0.05). The findings do not support the notion of a graded enhancement of MOC efferent suppression among adults with varied degrees of musicianship from nonmusicians to professional musicians. American Academy of Audiology.
Suppression of superconductivity in Fe chalcogenides by annealing: A reverse effect to pressure
NASA Astrophysics Data System (ADS)
Tong, Peng; Louca, Despina; Llobet, Anna; Yan, Jiaqiang; Arita, Ryotaro
2012-02-01
Superconductivity in FeTe1-xSex can be controlled by annealing, in the absence of extrinsic influences. Using neutron diffraction, we show that TC sensitively depends on the atomic configurations of the Te and Se ions. Low temperature annealing not only homogenizes the Te and Se ion distribution as previously observed, it suppresses TC because of changes in the chalcogen ions' z-parameter. In particular, the height of Te from the Fe basal plane is much reduced while that for Se shows a modest increase. These trends are reverse of the effects induced by pressure.
The roles of community biomass and species pools in the regulation of plant diversity
Grace, J.B.
2001-01-01
Considerable debate has developed over the importance of community biomass and species pools in the regulation of community diversity. Attempts to explain patterns of plant diversity as a function of community biomass or productivity have been only partially successful and in general, have explained only a fraction of the observed variation in diversity. At the same time studies that have focused on the importance of species pools have led some to conclude that diversity is primarily regulated in the short term by the size of the species pool rather than by biotic interactions. In this paper, I explore how community biomass and species pools may work in combination to regulate diversity in herbaceous plant communities. To address this problem, I employ a simple model in which the dynamics of species richness are a function of aboveground community biomass and environmentally controlled gradients in species pools. Model results lead to two main predictions about the role of biomass regulation: (1) Seasonal dynamics of richness will tend to follow a regular oscillation, with richness rising to peak values during the early to middle portion of the growing season and then declining during the latter part of the season. (2.) Seasonal dieback of aboveground tissues facilitates the long-term maintenance of high levels of richness in the community. The persistence of aboveground tissues and accumulation of litter are especially important in limiting the number of species through the suppression of recruitment. Model results also lead to two main predictions about the role of species pools: (1) The height and position of peak richness relative to community biomass will be influenced by the rate at which the species pool increases as available soil resources increase. (2) Variations in nonresource environmental factors (e.g. soil pH or soil salinity) have the potential to regulate species pools in a way that is uncorrelated with aboveground biomass. Under extreme conditions, such nonresource effects can create a unimodal envelope of biomass-richness values. Available evidence from the literature provides partial support for these predictions, though additional data are needed to provide more convincing tests.
Jiang, Danfeng; Kawagoe, Yukiko; Kuwasako, Kenji; Kitamura, Kazuo; Kato, Johji
2017-07-05
Increased blood pressure variability has been shown to be associated with cardiovascular morbidity and mortality. Recently we reported that continuous infusion of angiotensin II not only elevated blood pressure level, but also increased blood pressure variability in a manner assumed to be independent of blood pressure elevation in rats. In the present study, the effects of the angiotensin type I receptor blocker losartan and the calcium channel blocker azelnidipine on angiotensin II-induced blood pressure variability were examined and compared with that of the vasodilator hydralazine in rats. Nine-week-old male Wistar rats were subcutaneously infused with 240 pmol/kg/min angiotensin II for two weeks without or with oral administration of losartan, azelnidipine, or hydralazine. Blood pressure variability was evaluated using a coefficient of variation of blood pressure recorded every 15min under an unrestrained condition via an abdominal aortic catheter by a radiotelemetry system. Treatment with losartan suppressed both blood pressure elevation and augmentation of systolic blood pressure variability in rats infused with angiotensin II at 7 and 14 days. Azelnidipine also inhibited angiotensin II-induced blood pressure elevation and augmentation of blood pressure variability; meanwhile, hydralazine attenuated the pressor effect of angiotensin II, but had no effect on blood pressure variability. In conclusion, angiotensin II augmented blood pressure variability in an angiotensin type 1 receptor-dependent manner, and azelnidipine suppressed angiotensin II-induced augmentation of blood pressure variability, an effect mediated by the mechanism independent of the blood pressure-lowering action. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sang, Lina; Gutiérrez, Joffre; Cai, Chuanbing; Dou, Shixue; Wang, Xiaolin
2018-07-01
We report on the effect of in situ hydrostatic pressure on the enhancement of the in-magnetic-field critical current density parallel to the crystallographic c-axis and vortex pinning in epitaxial Y(Dy0.5)Ba2Cu3O7‑δ coated conductors prepared by metal organic deposition. Our results show that in situ hydrostatic pressure greatly enhances the critical current density at high fields and high temperatures. At 80 K and 5 T we observe a ten-fold increase in the critical current density under the pressure of 1.2 GPa, and the irreversibility line is shifted to higher fields without changing the critical temperature. The normalized magnetic relaxation rate shows that vortex creep rates are strongly suppressed due to applied pressure, and the pinning energy is significantly increased based on the collective creep theory. After releasing the pressure, we recover the original superconducting properties. Therefore, we speculate that the in situ hydrostatic pressure exerted on the coated conductor enhances the pinning of existing extended defects. This is totally different from what has been observed in REBa2Cu3O7‑δ melt-textured crystals, where the effect of pressure generates point-like defects.
Dome of magnetic order inside the nematic phase of sulfur-substituted FeSe under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Li; Kaluarachchi, Udhara; Bohmer, Anna
2017-07-18
The pressure dependence of the structural, magnetic, and superconducting transitions and of the superconducting upper critical field were studied in sulfur-substituted Fe ( Se 1 - x S x ) . We performed resistance measurements on single crystals with three substitution levels ( x = 0.043 , 0.096, 0.12) under hydrostatic pressures up to 1.8 GPa and in magnetic fields up to 9 T and were compared to data on pure FeSe. Our results illustrate the effects of chemical and physical pressure on Fe ( Se 1 - x S x ). Furthermore, on increasing sulfur content, magnetic order inmore » the low-pressure range is strongly suppressed to a small domelike region in the phase diagrams. But, T s is much less suppressed by sulfur substitution, and T c of Fe ( Se 1 - x S x ) exhibits similar nonmonotonic pressure dependence with a local maximum and a local minimum present in the low-pressure range for all x . The local maximum in T c coincides with the emergence of the magnetic order above T c . At this pressure the slope of the upper critical field decreases abruptly, which may indicate a Fermi-surface reconstruction. The minimum of T c correlates with a broad maximum of the upper critical field slope normalized by T c .« less
Schlossberger, V; Schober, L; Rehnitz, J; Schaier, M; Zeier, M; Meuer, S; Schmitt, E; Toth, B; Strowitzki, T; Steinborn, A
2013-11-01
Are there differences in composition of the total regulatory T cell (Treg) pool and distinct Treg subsets (naïve CD45RA(+)-Tregs, HLA-DR(-)- and HLA-DR(+)-memory Tregs) between successfully and non-successfully IVF/ICSI-treated women? Non-successfully IVF/ICSI-treated women have a decreased percentage of naïve CD45RA(+)-Tregs and an increased percentage of HLA-DR(-)-memory Tregs within the total Treg pool. Immunosuppressive Tregs play a significant role in human reproduction and studies have shown that their number and function are reduced in reproductive failure and complications of pregnancy such as pre-eclampsia and preterm labor. However, no data exist concerning the importance of Tregs for a successful outcome following assisted reproduction technologies. Blood samples were obtained from 210 women undergoing IVF/ICSI treatment, where 14 patients were excluded due to biochemical pregnancy or missed abortion. Age control blood samples were collected from 20 neonates and 176 healthy female volunteers. The study was performed between October 2010 and March 2012. In this study, we determined prospectively the quantity and composition of the total CD4(+)CD127(low+/-)CD25(+)FoxP3(+)-Treg pool and three different Treg subsets (naïve CD45RA(+)-Tregs, HLA-DR(-)- and HLA-DR(+)-memory Tregs) in all women undergoing IVF/ICSI treatment. We examined whether there were differences between those who became pregnant (n = 36) and those who did not (n = 160). The blood samples were collected within 1 h before the embryo transfer and analyzed by six-color flow cytometry. In order to evaluate these results with regard to the normal age-related changes in composition of the total Treg pool, the same analysis was performed using samples of umbilical cord blood and from healthy female volunteers aged between 17 and 76 years. The composition of the total Treg pool was documented for successfully IVF/ICSI-treated women (n = 5) throughout their pregnancy and we assessed the suppressive activity of each Treg subset in pregnant (n = 10) compared with non-pregnant women (n = 10) using suppression assays. The percentage of CD4(+)CD127(low+/-)CD25(+)FoxP3(+)-Tregs within the total CD4(+)-T cell pool did not change with age and did not differ between IVF/ICSI-treated women who did or did not become pregnant. For the total Treg pool, the percentage of the naïve CD45RA(+)-Tregs decreased continuously, while the percentage of HLA-DR(-)- and HLA-DR(+)-memory Tregs increased with aging. From the age of about 40 years, the increase in HLA-DR(+)-memory Tregs in particular became less pronounced, indicating that conversion of naïve CD45RA(+)Tregs into HLA-DR(+)-memory Tregs decreases with age. Women who did not achieve a pregnancy with IVF/ICSI were older than those who did (P < 0.01). However, multiple logistic regression analysis revealed that irrespective of age, the percentage of naïve CD45RA(+)-Tregs within the total Treg pool was decreased (P < 0.05), while the percentage of HLA-DR(-)-memory Tregs was increased (P < 0.01) in women who did not become pregnant compared with those who did. At the beginning of pregnancy, naïve CD45RA(+)-Tregs showed a major decrease but increased again during pregnancy and these cells showed a higher suppressive activity (P < 0.0001) in pregnant compared with non-pregnant women. There was a large variation in the percentages of the Treg subsets within the total Treg pool between successfully and non-successfully IVF/ICSI-treated women. Therefore, their determination would not allow us to predict the IVF/ICSI outcome with sufficient specificity and sensitivity. We did not examine the antigen specificity of the Treg subsets and therefore could not discern whether the naïve CD45RA(+)-Tregs recognized maternal or paternal antigens. Our findings suggest that Tregs, especially the naïve CD45RA(+)-Treg subset, may play a role in determining the probability of both becoming pregnant and maintenance of the pregnancy. This work was supported by the German Research Council (DFG) grant STE 885/3-2 (to A.S.). All authors declare to have no conflict of interest.
Shu, Liqin; Huang, Kun
2018-07-01
Evidence suggests that supplementation of vitamin D cannot decrease blood pressure in normal populations. However, in randomized controlled trials (RCTs) with vitamin D deficient participants (defined as baseline serum 25[OH]D levels <30 ng/mL or 50 nmol/L), this effect is inconsistent and under debate. Thus, we performed this systematic review and meta-analysis to evaluate whether vitamin D supplementation could affect blood pressure parameters in vitamin D-deficient subjects. The PubMed, Web of Science, ScienceDirect, and Cochrane library databases were searched. Extracted data were pooled as weighted mean differences with 95% confidence intervals to evaluate the effects. Subgroup analysis was further conducted according to the characteristics of included studies. Seven RCTs that contained 560 participants were included in our meta-analysis. The pooled weighted mean difference of peripheral diastolic blood pressure was -1.65 mm Hg (95% confidence interval: -3.05 to -0.25, I 2 = 30.3%). No significant effect of vitamin D supplementation was found on other parameters. Subgroup analysis showed a significant decrease in peripheral systolic blood pressure and diastolic blood pressure in Asia, 8 weeks of intervention, and more than 5000 IU of daily vitamin D supplementation subgroups. For vitamin D-deficient patients, there is a small but significant fall in peripheral blood pressure but no significant fall in other blood pressure parameters with vitamin D supplementation. Further RCTs with large numbers of participants is still warranted to confirm these effects. Copyright © 2018 American Heart Association. Published by Elsevier Inc. All rights reserved.
Flutter suppression for the Active Flexible Wing - Control system design and experimental validation
NASA Technical Reports Server (NTRS)
Waszak, M. R.; Srinathkumar, S.
1992-01-01
The synthesis and experimental validation of a control law for an active flutter suppression system for the Active Flexible Wing wind-tunnel model is presented. The design was accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach relied on a fundamental understanding of the flutter mechanism to formulate understanding of the flutter mechanism to formulate a simple control law structure. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in the design model. The flutter suppression controller was also successfully operated in combination with a rolling maneuver controller to perform flutter suppression during rapid rolling maneuvers.
Chamizo, V D; Rodríguez, C A; Sánchez, J; Mármol, F
2016-09-01
The effects of early environmental enrichment (EE) and voluntary wheel running on the preference for using a landmark or pool geometry when solving a simple spatial task in adult male and female rats were assessed. After weaning, rats were housed in same-sex pairs in enriched or standard cages (EE and control groups) for two and a half months. Then the rats were trained in a triangular-shaped pool to find a hidden platform whose location was defined in terms of these two sources of information, a landmark outside the pool and a particular corner of the pool. As expected, enriched rats reached the platform faster than control animals, and males and females did not differ. Enriched rats also performed better on subsequent test trials without the platform with the cues individually presented (either pool geometry or landmark). However, on a preference test without the platform, a clear sex difference was found: Females spent more time in an area of the pool that corresponded to the landmark, whereas males spent more time in the distinctive corner of the pool. The present EE protocol did not alter females' preference for the landmark cue. The results agree with the claim that environmental enrichment is a consequence of a reduced anxiety response (measured by thigmotaxis) during cognitive testing. A possible implication of ancestral selection pressures is discussed.
2018-03-19
Change in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure. We pooled 1018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP) and prevalence of raised blood pressure by sex and 10-year age group from 20-29 years to 70-79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probit-transformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure. In 2005-16, at the same level of population mean SBP and DBP, men and women in South Asia and in Central Asia, the Middle East and North Africa would have the highest prevalence of raised blood pressure, and men and women in the high-income Asia Pacific and high-income Western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association. Change in mean blood pressure is the main driver of the worldwide change in the prevalence of raised blood pressure, but change in the high-blood-pressure tail of the distribution has also contributed to the change in prevalence, especially in older age groups.
Model-Based Self-Tuning Multiscale Method for Combustion Control
NASA Technical Reports Server (NTRS)
Le, Dzu, K.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.
2006-01-01
A multi-scale representation of the combustor dynamics was used to create a self-tuning, scalable controller to suppress multiple instability modes in a liquid-fueled aero engine-derived combustor operating at engine-like conditions. Its self-tuning features designed to handle the uncertainties in the combustor dynamics and time-delays are essential for control performance and robustness. The controller was implemented to modulate a high-frequency fuel valve with feedback from dynamic pressure sensors. This scalable algorithm suppressed pressure oscillations of different instability modes by as much as 90 percent without the peak-splitting effect. The self-tuning logic guided the adjustment of controller parameters and converged quickly toward phase-lock for optimal suppression of the instabilities. The forced-response characteristics of the control model compare well with those of the test rig on both the frequency-domain and the time-domain.
NASA Technical Reports Server (NTRS)
Frenklach, M.
1983-01-01
Soot formation in toluene-, benzene-, and acetylene-oxygen-argon mixtures was investigated to study soot formation in a combustion environment. High concentrations of oxygen completely suppress soot formation. The addition of oxygen at relatively low concentrations uniformly suppresses soot formation at high pressures, while at relatively lower pressures it suppresses soot formation at higher temperatures while promoting soot production at lower temperatures. The observed behavior indicates that oxidation reactions compete with ring fragmentation. The main conclusion to be drawn from the results is that the soot formation mechanism is probably the same for the pyrolysis and oxidation of hydrocarbons. That is, the addition of oxygen does not alter the soot route but rather promotes or inhibits this route by means of competitive reactions. An approach to empirical modeling of soot formation during pyrolysis of aromatic hydrocarbons is also presented.
Modeling of Plasma Pressure Effects on ELM Suppression With RMP in DIII-D
NASA Astrophysics Data System (ADS)
Orlov, D. M.; Moyer, R. A.; Mordijck, S.; Evans, T. E.; Osborne, T. H.; Snyder, P. B.; Unterberg, E. A.; Fenstermacher, M. E.
2009-11-01
Resonant magnetic perturbations (RMPs) are used to control the pedestal pressure gradient in both low and high (ν3^*) DIII-D plasmas. In this work we have analyzed several discharges with different levels of triangularity, different neutral beam injection power levels, and with, βN ranging from 1.5 to 2.3. The field line integration code TRIP3D was used to model the magnetic perturbation in ELMing and ELM suppressed phases during the RMP pulse. The results of this modeling showed very little effect of βN on the structure of the vacuum magnetic field during ELM suppression using n=3 RMPs. Kinetic equilibrium reconstructions showed a decrease in bootstrap current during RMP. Linear peeling-ballooning stability analysis performed with the ELITE code suggested that the ELMs, which persist during RMP, i.e. ELMing still is observed, are not Type I ELMs. Identification of these Dα spikes is an ongoing work.
... or blood pooling where the catheter is inserted Blood clot that goes to arteries in your leg, heart, ... cooking oils Cholesterol and lifestyle Controlling your high blood pressure Dietary fats explained Fast food tips Heart attack - discharge Heart disease - risk factors ...
Evolution of ferromagnetism in charge ordered manganite: An effect of external pressure
NASA Astrophysics Data System (ADS)
Dash, S.; Pradhan, M. K.; Rao, T. Lakshmana
2018-05-01
Detailed magnetic measurements of the Pr0.75Na0.25MnO3 polycrystalline sample have been carried out under external hydrostatic pressure upto 10kbar. Pressure strongly suppresses the first order magnetic transition, while thermal hysteresis narrows down progressively and then disappears with increase in pressure. The significant enhancement of the field cooled magnetization value at different pressures is due to the antiferromagnetic to ferromagnetic transformation, while ruling out any contribution from the domain alignment within the ferromagnetic phase.
Pool boiling from rotating and stationary spheres in liquid nitrogen
NASA Technical Reports Server (NTRS)
Cuan, Winston M.; Schwartz, Sidney H.
1988-01-01
Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.
Evaporation for Lithium Bromide Aqueous Solution in a Falling Film Heater under Reduced Pressures
NASA Astrophysics Data System (ADS)
Matsuda, Akira; Ide, Tetsuo; Yukino, Keiji
Experiments on evaporation for water and lithium bromide (LiBr) aqueous solution were made in a externally heated wetted-wall column under reduced pressures. For water, evaporation rate increased slightly as feed rate decreased. The heat transfer coefficients of falling film agreed with those for filmwise condensation. For LiBr solution, evaporation rate decreased and outlet temperature of LiBr solution increased as feed rate decreased. The equations of continuity, diffusion and energy which assume that only water moves to the surface and LiBr doesn't move through falling film of LiBr solution were solved numerically. Calculated values of evaporation rate and outlet temperature of solution agreed with experimental results. The results of this work were compared with pool boiling data reported previously, and it was shown that falling film heater is superior to pool boiling heater concerning heat transfer.
NASA Astrophysics Data System (ADS)
Zou, J. L.; He, Y.; Wu, S. K.; Huang, T.; Xiao, R. S.
2015-12-01
The deep penetration-welding threshold (DPWT) is the critical value that describes the welding mode transition from the thermal conduction to the deep penetration. The objective of this research is to clarify the DPWT induced by the lasers with wavelength of 1 μm (1-μm laser), based on experimental observation and theoretical analysis. The experimental results indicated that the DPWT was the ratio between laser power and laser spot diameter (P/d) rather than laser power density (P/S). The evaporation threshold was smaller than the DPWT, while the jump threshold of the evaporated mass flux in the molten pool surface was consistent with the DPWT. Based on the force balance between the evaporation recoil pressure and the surface tension pressure at the gas-liquid interface of the molten pool as well as the temperature field, we developed a self-focusing model, which further confirmed the experimental results.
Pool Boiling Heat Transfer on structured Surfaces
NASA Astrophysics Data System (ADS)
Addy, J.; Olbricht, M.; Müller, B.; Luke, A.
2016-09-01
The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knaab, H.; Knecht, K.
The need for pool-site inspection and examination of fuel assemblies was recognized by Kraftwerk Union Aktiengesellschaft with the commissioning of the first nuclear power stations. A wet sipping method has demonstrated high reliability in detection of leaking fuel assemblies. The visual inspection system is a versatile tool. It can be supplemented by attaching devices for oxide thickness measurement or surface replication. Repair of leaking pressurized water reactor fuel assemblies has improved fuel utilization. Applied methods and typical results are described.
Preliminary Design of Critical Function Monitoring System of PGSFR
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-07-01
A PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is under development at Korea Atomic Energy Research Institute. A critical function monitoring system of the PGSFR is preliminarily studied. The functions of CFMS are to display critical plant variables related to the safety of the plant during normal and accident conditions and guide the operators corrective actions to keep the plant in a safe condition and mitigate the consequences of accidents. The minimal critical functions of the PGSFR are composed of reactivity control, reactor core cooling, reactor coolant system integrity, primary heat transfer system(PHTS) heat removal, sodium water reaction mitigation, radiation controlmore » and containment conditions. The variables and alarm legs of each critical function of the PGSFR are as follows; - Reactivity control: The variables of reactivity control function are power range neutron flux instrumentation, intermediate range neutron flux instrumentation, source range neutron flux instrumentation, and control rod bottom contacts. The alarm leg to display the reactivity controls consists of status of control drop malfunction, high post trip power and thermal reactivity addition. - Reactor core cooling: The variables are PHTS sodium level, hot pool temperature of PHTS, subassembly exit temperature, cold pool temperature of the PHTS, PHTS pump current, and PHTS pump breaker status. The alarm leg consists of high core delta temperature, low sodium level of the PHTS, high subassembly exit temperature, and low PHTS pump load. - Reactor coolant system integrity: The variables are PHTS sodium level, cover gas pressure, and safeguard vessel sodium level. The alarm leg is composed of low sodium level of PHTS, high cover gas pressure and high sodium level of the safety guard vessel. - PHTS heat removal: The variables are PHTS sodium level, hot pool temperature of PHTS, core exit temperature, cold pool temperature of the PHTS, flow rate of passive residual heat removal system, flow rate of active residual heat removal system, and temperatures of air heat exchanger temperature of residual heat removal systems. The alarm legs are composed of two legs of a 'passive residual heat removal system not cooling' and 'active residual heat removal system not cooling'. - Sodium water reaction mitigation: The variables are intermediate heat transfer system(IHTS) pressure, pressure and temperature and level of sodium dump tank, the status of rupture disk, hydrogen concentration in IHTS and direct variable of sodium-water-reaction measure. The alarm leg consists of high IHTS pressure, the status of sodium water reaction mitigation system and the indication of direct measure. - Radiation control: The variables are radiation of PHTS, radiation of IHTS, and radiation of containment purge. The alarm leg is composed of high radiation of PHTS and IHTS, and containment purge system. - Containment condition: The variables are containment pressure, containment isolation status, and sodium fire. The alarm leg consists of high containment pressure, status of containment isolation and status of sodium fire. (authors)« less
Lu, Yi; Zhao, Ming; Liu, Jin-Jun; He, Xi; Yu, Xiao-Jiang; Liu, Long-Zhu; Sun, Lei; Chen, Li-Na; Zang, Wei-Jin
2017-09-01
Cardiac hypertrophy is associated with autonomic imbalance, characterized by enhanced sympathetic activity and withdrawal of parasympathetic control. Increased parasympathetic function improves ventricular performance. However, whether pyridostigmine, a reversible acetylcholinesterase inhibitor, can offset cardiac hypertrophy induced by pressure overload remains unclear. Hence, this study aimed to determine whether pyridostigmine can ameliorate pressure overload-induced cardiac hypertrophy and identify the underlying mechanisms. Rats were subjected to either sham or constriction of abdominal aorta surgery and treated with or without pyridostigmine for 8 weeks. Vagal activity and cardiac function were determined using PowerLab. Cardiac hypertrophy was evaluated using various histological stains. Protein markers for cardiac hypertrophy were quantitated by Western blot and immunoprecipitation. Pressure overload resulted in a marked reduction in vagal discharge and a profound increase in cardiac hypertrophy index and cardiac dysfunction. Pyridostigmine increased the acetylcholine levels by inhibiting acetylcholinesterase in rats with pressure overload. Pyridostigmine significantly attenuated cardiac hypertrophy based on reduction in left ventricular weight/body weight, suppression of the levels of atrial natriuretic peptide, brain natriuretic peptide and β-myosin heavy chain, and a reduction in cardiac fibrosis. These effects were accompanied by marked improvement of cardiac function. Additionally, pyridostigmine inhibited the CaN/NFAT3/GATA4 pathway and suppressed Orai1/STIM1 complex formation. In conclusion, pressure overload resulted in cardiac hypertrophy, cardiac dysfunction and a significant reduction in vagal discharge. Pyridostigmine attenuated cardiac hypertrophy and improved cardiac function, which was related to improved cholinergic transmission efficiency (decreased acetylcholinesterase and increased acetylcholine), inhibition of the CaN/NFAT3/GATA4 pathway and suppression of the interaction of Orai1/STIM1. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Mechanism of rapid suppression of cell expansion in cucumber hypocotyls after blue-light irradiation
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1988-01-01
Rapid suppression of hypocotyl elongation by blue light in cucumber (Cucumis sativus L.) was studied to examine possible hydraulic and wall changes responsible for diminished growth. Cell-sap osmotic pressure, measured by vapor-pressure osmometry, was not decreased by blue light; turgor pressure, measured by the pressure-probe technique, remained constant during the growth inhibition; and stem hydraulic conductance, measured by dynamic and static methods, was likewise unaffected by blue light. Wall yielding properties were assessed by the pressure-block technique for in-vivo stress relaxation. Blue light reduced the initial rate of relaxation by 77%, but had little effect on the final amount of relaxation. The results demonstrate that blue irradiation acts to decrease the wall yielding coefficient, but not the yield threshold. Stress-strain (Instron) analysis showed that irradiation of the seedlings had little effect on the mechanical extensibilities of the isolated wall. The results indicate that blue light can reduce cell-wall loosening without affecting bulk viscoelastic properties, and indicate a chemorheological mechanism of cell-wall expansion.
The Basis of the Syllable Hierarchy: Articulatory Pressures or Universal Phonological Constraints?
Zhao, Xu; Berent, Iris
2018-02-01
Across languages, certain syllable types are systematically preferred to others (e.g., [Formula: see text] lbif, where [Formula: see text] indicates a preference). Previous research has shown that these preferences are active in the brains of individual speakers, they are evident even when none of these syllable types exists in participants' language, and even when the stimuli are presented in print. These results suggest that the syllable hierarchy cannot be reduced to either lexical or auditory/phonetic pressures. Here, we examine whether the syllable hierarchy is due to articulatory pressures. According to the motor embodiment view, the perception of a linguistic stimulus requires simulating its production; dispreferred syllables (e.g., lbif) are universally disliked because their production is harder to simulate. To address this possibility, we assessed syllable preferences while articulation was mechanically suppressed. Our four experiments each found significant effects of suppression. Remarkably, people remained sensitive to the syllable hierarchy regardless of suppression. Specifically, results with auditory materials (Experiments 1-2) showed strong effects of syllable structure irrespective of suppression. Moreover, syllable structure uniquely accounted for listeners' behavior even when controlling for several phonetic characteristics of our auditory materials. Results with printed stimuli (Experiments 3-4) were more complex, as participants in these experiments relied on both phonological and graphemic information. Nonetheless, readers were sensitive to most of the syllable hierarchy (e.g., [Formula: see text]), and these preferences emerged when articulation was suppressed, and even when the statistical properties of our materials were controlled via a regression analysis. Together, these findings indicate that speakers possess broad grammatical preferences that are irreducible to either sensory or motor factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, John R.; Brubaker, Erik; Vetter, Kai
In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. Furthermore, the expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate.more » Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. In the three areas we analyzed, San Francisco, Downtown Oakland, and Berkeley, all demonstrated a suppression in the background rate of over 50% for the range of sky-view factors measured. This effect, which is due to the shielding of cosmic-ray produced neutrons by surrounding buildings, was comparable to the pressure influence which yielded a 32% suppression in the count rate over the range of pressures measured.« less
NASA Astrophysics Data System (ADS)
Jian, Xiaoxia; Wu, ChuanSong; Zhang, Guokai; Chen, Ji
2015-11-01
A 3D model is developed to perform numerical investigation on the coupled interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding. By considering the traveling of the plasma arc along the welding direction, unified governing equations are solved in the whole domain including the torch, plasma arc, keyhole, weld pool and workpiece, which involves different physical mechanisms in different zones. The local thermodynamic equilibrium-diffusion approximation is used to treat the interface between the plasma arc and weld pool, and the volume-of-fluid method is used to track the evolution of the keyhole wall. The interaction effects between the plasma arc, keyhole and weld pool as well as the heat, mass and pressure transport phenomena in the whole welding domain are quantitatively simulated. It is found that when the torch is moving along the joint line, the axis of the keyhole channel tilts backward, and the envelope of molten metal surrounding the keyhole wall inside the weld pool is unsymmetrical relative to the keyhole channel. The plasma arc welding tests are conducted, and the predicted keyhole dimensions and the fusion zone shape are in agreement with the experimentally measured results.
NASA Astrophysics Data System (ADS)
Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi
2016-01-01
A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was extended. Additionally, we designed a sound insulator so as to realize a similar distribution of the particle velocity to that obtained using the optimized window function. Sound radiation was suppressed using a sound insulator put above the vibrating surface in the simulation using the three-dimensional finite element method. On the basis of this finding, it was suggested that near-field acoustic communication which suppressed sound radiation can be realized by applying the optimized window function to the particle velocity field.
NASA Technical Reports Server (NTRS)
Stimpert, D. L.
1973-01-01
A lift fan exhaust suppression system to meet future VTOL aircraft noise goals was designed and tested. The test vehicle was a 1.3 pressure ratio, 36 inch (91.44 cm) diameter lift fan with two chord rotor to stator spacing. A two splitter fan exhaust suppression system thirty inches (76.2 cm) long achieved 10 PNdB exhaust suppression in the aft quadrant compared to a design value of 20 PNdB. It was found that a broadband noise floor limited the realizable suppression. An analytical investigation of broadband noise generated by flow over the treatment surfaces provided very good agreement with the measured suppression levels and noise floor sound power levels. A fan thrust decrement of 22% was measured for the fully suppressed configuration of which 11.1% was attributed to the exhaust suppression hardware.
NASA Technical Reports Server (NTRS)
Kopasakis, George
2004-01-01
An adaptive feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even the downstream turbine blades. This can significantly decrease the safe operating lives of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors under NASA's Propulsion and Power Program. This control methodology has been developed and tested in a partnership of the NASA Glenn Research Center, Pratt & Whitney, United Technologies Research Center, and the Georgia Institute of Technology. Initial combustor rig testing of the controls algorithm was completed during 2002. Subsequently, the test results were analyzed and improvements to the method were incorporated in 2003, which culminated in the final status of this controls algorithm. This control methodology is based on adaptive phase shifting. The combustor pressure oscillations are sensed and phase shifted, and a high-frequency fuel valve is actuated to put pressure oscillations into the combustor to cancel pressure oscillations produced by the instability.
Pressure-enhanced superconductivity in quasi-1D cobalt carbide Sc3CoC4
NASA Astrophysics Data System (ADS)
Wang, Enyu; Zhu, Xiyu; Wen, Hai-Hu
2016-07-01
We have successfully synthesized the quasi-1D cobalt carbide Sc3CoC4 by using the arc-melting technique which is similar to that of the previous reports. An incomplete superconducting transition is detected at ambient pressure. In addition, two anomalies have been observed at 72 K and 143 K both from resistivity and magnetic susceptibility measurements. According to previous studies, it was argued that they correspond to the 1D Peierls-type distortion and charge-density-wave transitions, respectively. By applying a pressure, the transition at about 72 K is quickly suppressed, which is accompanied by the occurrence of a complete superconducting transition at about 4.5 K. Moreover, the DC magnetic susceptibility under high pressures also reveals the enhancement of superconductivity. We attribute this enhancement of superconductivity to the suppression of the Peierls-type distortion at about 72 K and probably together with the promoted Josephson coupling between the [CoC4] ∞ one-dimensional ribbons.
Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO
NASA Astrophysics Data System (ADS)
Guo, Jing; Simonson, Jack; Sun, Liling; Wu, Qi; Guo, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian
2014-03-01
The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.
Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO
NASA Astrophysics Data System (ADS)
Guo, Jing; Simonson, J. W.; Sun, Liling; Wu, Qi; Gao, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian
2013-08-01
The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.
Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO.
Guo, Jing; Simonson, J W; Sun, Liling; Wu, Qi; Gao, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian
2013-01-01
The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.
Habazettl, H; Stahn, Alexander; Nitsche, Andrea; Nordine, Michael; Pries, A R; Gunga, H-C; Opatz, O
2016-01-01
We hypothesized that lower body microvessels are particularly challenged during exposure to gravity and hypergravity leading to failure of resistance vessels to withstand excessive transmural pressure during hypergravitation and gravitation-dependent microvascular blood pooling. Using a short-arm human centrifuge (SAHC), 12 subjects were exposed to +1Gz, +2Gz and +1Gz, all at foot level, for 4 min each. Laser Doppler imaging and near-infrared spectroscopy were used to measure skin perfusion and tissue haemoglobin concentrations, respectively. Pretibial skin perfusion decreased by 19% during +1Gz and remained at this level during +2Gz. In the dilated area, skin perfusion increased by 24 and 35% during +1Gz and +2Gz, respectively. In the upper arm, oxygenated haemoglobin (Hb) decreased, while deoxy Hb increased with little change in total Hb. In the calf muscle, O2Hb and deoxy Hb increased, resulting in total Hb increase by 7.5 ± 1.4 and 26.6 ± 2.6 µmol/L at +1Gz and +2Gz, respectively. The dynamics of Hb increase suggests a fast and a slow component. Despite transmural pressures well beyond the upper myogenic control limit, intact lower body resistance vessels withstand these pressures up to +2Gz, suggesting that myogenic control may contribute only little to increased vascular resistance. The fast component of increasing total Hb indicates microvascular blood pooling contributing to soft tissue capacitance. Future research will have to address possible alterations of these acute adaptations to gravity after deconditioning by exposure to micro-g.
Nucleate pool boiling in the long duration low gravity environment of the space shuttle
NASA Technical Reports Server (NTRS)
Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.
1993-01-01
The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment', flown on the Space Transportation System STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kw/so m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10 min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kw/so m. The wall superheat at the inception of boiling varied between 2 to 13 C.
Nucleate pool boiling in the long duration low gravity environment of the Space Shuttle
NASA Technical Reports Server (NTRS)
Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.
1993-01-01
The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment,' flown on the Space Transportation System, STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kW/sq m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10-min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kW/sq m. The wall superheat at the inception of boiling varied between 2 to 13 C.
Suppression of superconductivity in Fe chalcogenides by annealing: A reverse effect to pressure
NASA Astrophysics Data System (ADS)
Louca, Despina; Yan, Jiaqiang; Llobet, Anna; Arita, Ryotaro
2011-08-01
Superconductivity in FeTe1-xSex can be controlled by annealing in the absence of extrinsic influences. Using neutron diffraction, we show that the superconducting transition temperature (TC) sensitively depends on the atomic configurations of the Te and Se ions. Low-temperature annealing not only homogenizes the Te and Se ion distribution, it suppresses TC because of changes in the chalcogen ion’s z parameter. In particular, the height of Te from the Fe basal plane is much reduced while that for Se shows a modest increase. These trends are the reverse of the effects induced by pressure.
Suppression of angiogenesis by atmospheric pressure plasma in human aortic endothelial cells
NASA Astrophysics Data System (ADS)
Gweon, Bomi; Kim, Hyeonyu; Kim, Kijung; Kim, Mina; Shim, Eunyoung; Kim, Sunja; Choe, Wonho; Shin, Jennifer H.
2014-03-01
Atmospheric pressure plasma (APP) has been recognized as a promising tool for cancer therapy based on its ability to remove cancer cells by causing apoptosis and necrosis. However, the effect of APP on the neighboring tissues of tumors remains unknown. Moreover, the role of APP on the vessels near tumors could be very important, because once a tumor becomes vascularized, the potential for metastasis can increase dramatically. We show in the present study that APP can induce cell cycle arrest in endothelial cells and further suppress the angiogenesis process. These results strongly support the use of APP in cancer treatment.
Jacome, Daniel E
2010-07-01
A 42-year-old farmer developed persistent mid-facial segmental pain and Meige's syndrome several months after suffering facial trauma and a fracture of the nose. He was not afflicted by systemic ailments, had no family history of movement disorder and no history of exposure to neuroleptic drugs. He was capable of suppressing his facial pain by performing a ritual that included forcefully tilting his head backwards, lowering of his eyelids and applying strong pressure to his nasion. Exceptionally dystonic movements and elaborate behavioral rituals may serve as a mechanism of pain suppression. Copyright 2010 Elsevier B.V. All rights reserved.
Health Insurance: The Trade-Off Between Risk Pooling and Moral Hazard.
1989-12-01
bias comes about because we suppress the intercept term in estimating VFor the power, the test is against 1, - 1. With this transform, the risk...dealing with the same utility function. As one test of whether families behave in the way economic theory suggests, we have also fitted a probit model of...nonparametric alternative to test our results’ sensitivity to the assumption of a normal error in both the theoretical and empirical models of the
Pressure-temperature phase diagrams of CaK ( Fe 1 – x Ni x ) 4 As 4 superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Li; Meier, William R.; Xu, Mingyu
Here, the pressure dependence of the magnetic and superconducting transitions and that of the superconducting upper critical field are reported for CaK(Fe 1–xNi x) 4As 4, the first example of an Fe-based superconductor with spin-vortex-crystal-type magnetic ordering. Resistance measurements were performed on single crystals with two substitution levels (x = 0.033,0.050) under hydrostatic pressures up to 5.12 GPa and in magnetic fields up to 9 T. Our results show that, for both compositions, magnetic transition temperatures T N are suppressed upon applying pressure; the superconducting transition temperatures T c are suppressed by pressure as well, except for x = 0.050more » in the pressure region where T N and T c cross. Furthermore, the pressure associated with the crossing of the T N and T c lines also coincides with a minimum in the normalized slope of the superconducting upper critical field, consistent with a likely Fermi-surface reconstruction associated with the loss of magnetic ordering. Lastly, at p ~ 4 GPa, both Ni-substituted CaK(Fe 1–xNi x) 4As 4 samples likely go through a half-collapsed-tetragonal phase transition, similar to the parent compound CaKFe 4As 4.« less
Pressure effects on magnetic pair-breaking in Mn- and Eu-substituted BaFe{sub 2}As{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosa, P. F. S., E-mail: ferrari@ifi.unicamp.br; University of California, Irvine, California 92697-4574; Garitezi, T. M.
2014-05-07
We report a combined study of hydrostatic pressure (P ≤ 25 kbar) and chemical substitution on the magnetic pair-breaking effect in Eu- and Mn-substituted BaFe{sub 2}As{sub 2} single crystals. At ambient pressure, both substitutions suppress the superconducting (SC) transition temperature (T{sub c}) of BaFe{sub 2–x}Co{sub x}As{sub 2} samples slightly under the optimally doped region, indicating the presence of a pair-breaking effect. At low pressures, an increase of T{sub c} is observed for all studied compounds followed by an expected decrease at higher pressures. However, in the Eu dilute system, T{sub c} further increases at higher pressure along with a narrowingmore » of the SC transition, suggesting that a pair-breaking mechanism reminiscent of the Eu Kondo single impurity regime is being suppressed by pressure. Furthermore, Electron Spin Resonance (ESR) measurements indicate the presence of Mn{sup 2+} and Eu{sup 2+} local moments and the microscopic parameters extracted from the ESR analysis reveal that the Abrikosov–Gor'kov expression for magnetic pair-breaking in a conventional sign-preserving superconducting state cannot describe the observed reduction of T{sub c}.« less
Pressure-temperature phase diagrams of CaK ( Fe 1 – x Ni x ) 4 As 4 superconductors
Xiang, Li; Meier, William R.; Xu, Mingyu; ...
2018-05-22
Here, the pressure dependence of the magnetic and superconducting transitions and that of the superconducting upper critical field are reported for CaK(Fe 1–xNi x) 4As 4, the first example of an Fe-based superconductor with spin-vortex-crystal-type magnetic ordering. Resistance measurements were performed on single crystals with two substitution levels (x = 0.033,0.050) under hydrostatic pressures up to 5.12 GPa and in magnetic fields up to 9 T. Our results show that, for both compositions, magnetic transition temperatures T N are suppressed upon applying pressure; the superconducting transition temperatures T c are suppressed by pressure as well, except for x = 0.050more » in the pressure region where T N and T c cross. Furthermore, the pressure associated with the crossing of the T N and T c lines also coincides with a minimum in the normalized slope of the superconducting upper critical field, consistent with a likely Fermi-surface reconstruction associated with the loss of magnetic ordering. Lastly, at p ~ 4 GPa, both Ni-substituted CaK(Fe 1–xNi x) 4As 4 samples likely go through a half-collapsed-tetragonal phase transition, similar to the parent compound CaKFe 4As 4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snepvangers, J.J.M.
Equipment and results are described connected with irradiation studies of UO/sub 2/ fuels, fuel element testing in pressurized water loops, graphite irradiation, and steel irradiations with and without temperature control. The apparatus described is associated with a 20-Mw pool-type research reactor. (T.F.H.)
NASA Technical Reports Server (NTRS)
Kontos, Karen B.; Kraft, Robert E.; Gliebe, Philip R.
1996-01-01
The Aircraft Noise Predication Program (ANOPP) is an industry-wide tool used to predict turbofan engine flyover noise in system noise optimization studies. Its goal is to provide the best currently available methods for source noise prediction. As part of a program to improve the Heidmann fan noise model, models for fan inlet and fan exhaust noise suppression estimation that are based on simple engine and acoustic geometry inputs have been developed. The models can be used to predict sound power level suppression and sound pressure level suppression at a position specified relative to the engine inlet.
Westerweel, Peter E.; Joles, Jaap A.; den Ouden, Krista; Goldschmeding, Roel; Rookmaaker, Maarten B.; Verhaar, Marianne C.
2012-01-01
Background/Aims ACE inhibitor (ACE-I) treatment effectively inhibits proteinuria and ameliorates the course of various renal diseases. In experimental glomerulonephritis, however, angiotensin II (AngII) infusion has also been shown to be renoprotective. We evaluated the long-term (28 days) course of anti-Thy1 glomerulonephritis in animals with suppressed AngII formation by ACE-I treatment. Methods Brown Norway rats received perindopril (2.8 mg/kg/day, n = 12), dihydropyridine calcium-antagonist amlodipine (Ca-A; 13 mg/kg/day, n = 6) or were left untreated (n = 14). All animals were monitored for blood pressure, proteinuria, and creatinine clearance after anti-Thy1 injection. Renal histology was assessed at day 7 and 28. Results Systolic blood pressure was equally reduced by ACE-I and Ca-A treatment. AngII suppression prevented development of proteinuria, but did not protect against glomerular microaneurysm formation or reduction in creatinine clearance. After resolution of the microaneurysms, animals with suppressed AngII production showed a modest increase in glomerulosclerosis and vasculopathic thickening of intrarenal vessels. Conclusions In anti-Thy1 glomerulonephritis, suppression of AngII formation does not protect against the induction of glomerular damage and is associated with mild aggravation of adverse renal fibrotic remodeling. Proteinuria, however, is effectively prevented by ACE-I treatment. Ca-A treatment did not affect the course of glomerulonephritis, indicating that ACE-I effects are blood pressure independent. PMID:22479264
Litter and dead wood dynamics in ponderosa pine forests along a 160-year chronosequence.
Hall, S A; Burke, I C; Hobbs, N T
2006-12-01
Disturbances such as fire play a key role in controlling ecosystem structure. In fire-prone forests, organic detritus comprises a large pool of carbon and can control the frequency and intensity of fire. The ponderosa pine forests of the Colorado Front Range, USA, where fire has been suppressed for a century, provide an ideal system for studying the long-term dynamics of detrital pools. Our objectives were (1) to quantify the long-term temporal dynamics of detrital pools; and (2) to determine to what extent present stand structure, topography, and soils constrain these dynamics. We collected data on downed dead wood, litter, duff (partially decomposed litter on the forest floor), stand structure, topographic position, and soils for 31 sites along a 160-year chronosequence. We developed a compartment model and parameterized it to describe the temporal trends in the detrital pools. We then developed four sets of statistical models, quantifying the hypothesized relationship between pool size and (1) stand structure, (2) topography, (3) soils variables, and (4) time since fire. We contrasted how much support each hypothesis had in the data using Akaike's Information Criterion (AIC). Time since fire explained 39-80% of the variability in dead wood of different size classes. Pool size increased to a peak as material killed by the fire fell, then decomposed rapidly to a minimum (61-85 years after fire for the different pools). It then increased, presumably as new detritus was produced by the regenerating stand. Litter was most strongly related to canopy cover (r2 = 77%), suggesting that litter fall, rather than decomposition, controls its dynamics. The temporal dynamics of duff were the hardest to predict. Detrital pool sizes were more strongly related to time since fire than to environmental variables. Woody debris peak-to-minimum time was 46-67 years, overlapping the range of historical fire return intervals (1 to > 100 years). Fires may therefore have burned under a wide range of fuel conditions, supporting the hypothesis that this region's fire regime was mixed severity.
Naranjo, Ramon C.; Niswonger, Richard G.; Stone, Mark; Davis, Clinton; McKay, Alan
2012-01-01
We describe an approach for calibrating a two-dimensional (2-D) flow model of hyporheic exchange using observations of temperature and pressure to estimate hydraulic and thermal properties. A longitudinal 2-D heat and flow model was constructed for a riffle-pool sequence to simulate flow paths and flux rates for variable discharge conditions. A uniform random sampling approach was used to examine the solution space and identify optimal values at local and regional scales. We used a regional sensitivity analysis to examine the effects of parameter correlation and nonuniqueness commonly encountered in multidimensional modeling. The results from this study demonstrate the ability to estimate hydraulic and thermal parameters using measurements of temperature and pressure to simulate exchange and flow paths. Examination of the local parameter space provides the potential for refinement of zones that are used to represent sediment heterogeneity within the model. The results indicate vertical hydraulic conductivity was not identifiable solely using pressure observations; however, a distinct minimum was identified using temperature observations. The measured temperature and pressure and estimated vertical hydraulic conductivity values indicate the presence of a discontinuous low-permeability deposit that limits the vertical penetration of seepage beneath the riffle, whereas there is a much greater exchange where the low-permeability deposit is absent. Using both temperature and pressure to constrain the parameter estimation process provides the lowest overall root-mean-square error as compared to using solely temperature or pressure observations. This study demonstrates the benefits of combining continuous temperature and pressure for simulating hyporheic exchange and flow in a riffle-pool sequence. Copyright 2012 by the American Geophysical Union.
Carcel, Cheryl; Sato, Shoichiro; Zheng, Danni; Heeley, Emma; Arima, Hisatomi; Yang, Jie; Wu, Guojun; Chen, Guofang; Zhang, Shihong; Delcourt, Candice; Lavados, Pablo; Robinson, Thompson; Lindley, Richard I; Wang, Xia; Chalmers, John; Anderson, Craig S
2016-07-01
To determine the association of hyponatremia at presentation with clinical and imaging outcomes in patients with acute intracerebral hemorrhage. Retrospective pooled analysis of prospectively collected data from 3,243 participants of the pilot and main phases of the Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trials 1 and 2 (international, multicenter, open, blinded endpoint, randomized controlled trials designed to assess the effects of early intensive blood pressure lowering in patients with acute intracerebral hemorrhage). Clinical hospital sites in 21 countries. Patients with predominantly mild-moderate severity of spontaneous intracerebral hemorrhage within 6 hours of onset and elevated systolic blood pressure (150-220 mm Hg) were included in the study. Patients were assigned to receive intensive (target systolic blood pressure, < 140 mm Hg within 1 hr) or guideline-recommended (target systolic blood pressure, < 180 mm Hg) blood pressure-lowering therapy. Presentation hyponatremia was defined as serum sodium less than 135 mEq/L. The primary outcome was death at 90 days. Multivariable logistic regression was used to assess the association of hyponatremia with important clinical events. Of 3,002 patients with available data, 349 (12%) had hyponatremia. Hyponatremia was associated with death (18% vs 11%; multivariable-adjusted odds ratio, 1.81; 95% CI, 1.28-2.57; p < 0.001) and larger baseline intracerebral hemorrhage volume (multivariable adjusted, p = 0.046) but not with baseline perihematomal edema volume nor with growth of intracerebral hemorrhage or perihematomal edema during the initial 24 hours. Hyponatremia at presentation is associated with increased mortality in patients with predominantly deep and modest volume intracerebral hemorrhage through mechanisms that seem independent of growth in intracerebral hemorrhage or perihematomal edema.
Cesana, Giancarlo; Sega, Roberto; Ferrario, Marco; Chiodini, Paolo; Corrao, Giovanni; Mancia, Giuseppe
2003-01-01
The extent to which psychosocial stress concurs to raise blood pressure is still uncertain. Here the association between job strain and office blood pressure in a pooled analysis of four population samples from northern Italy is assessed. Four surveys assessing prevalence of major coronary risk factors were performed in 1986, 1990, 1991, and 1993 in area "Brianza" (Milan), a World Health Organization-MONItoring cardiovascular disease (WHO-MONICA) Project collaborating center. Ten year age- and gender-stratified independent samples were randomly recruited from the 25- to 64-year-old residents. The methods used to assess coronary risk factors strictly adhered to the MONICA manual, were kept constant, and underwent internal and external quality controls. Job strain was investigated through the administration to employed participants of a questionnaire derived from the Karasek model, assessing job demand/control latitude. Analysis was restricted to 25- to 54-year-old participants, untreated for hypertension (1799 men and 1010 women). Among men, there was a 3 mm Hg increase of systolic blood pressure (p<.001) moving from low to high strain job categories. This difference was independent from age, education, body mass index, alcohol intake, smoking habits, leisure time physical activity, and survey. No relevant differences among job strain categories were found in women and for diastolic blood pressure in both gender groups. These results carried out on a large population-based sample confirm previous findings obtained adopting ambulatory blood pressure measurements in more restricted samples of population or patients. Further research is needed to clarify the relationship between perceived work stress and blood pressure in women.
NASA Technical Reports Server (NTRS)
Jutras, R. R.
1976-01-01
The acoustic tests and data analysis for a 0.508-scale fan vehicle of a 111,300 newton (25,000 pound) thrust, full-size engine, which would have application on an advanced transport aircraft, is described. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec (1,650 ft/sec) to achieve the desired pressure ratio in a single-stage fan with low radius ratio (0.38), and to maintain adequate stall margin. The fan has 44 tip-shrouded rotor blades and 90 outlet guide vanes. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels (20 EPNdB) below current Federal Air Regulation noise standards for a full-scale fan at the takeoff, cutback, and approach conditions. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized. The suppressed fan noise was shown to be consistent with the proposed federal regulation on aircraft noise.
A fundamental study of nucleate pool boiling under microgravity
NASA Technical Reports Server (NTRS)
Ervin, Jamie S.; Merte, Herman, Jr.
1991-01-01
An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.
High-voltage pulse generator developed for wide-gap spark chambers
NASA Technical Reports Server (NTRS)
Keller, L. P.; Walschon, E. G.
1968-01-01
Low-inductance, high-capacitance Marx pulse generator provides for minimization of internal inductance and suppression of external electromagnetic radiation. The spark gaps of the generator are enclosed in a pressurized nitrogen atmosphere which allows the charging voltage to be varied by changing the nitrogen pressure.
Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS
Lai, Xiaofang; Liu, Ying; Lu, Xujie; ...
2016-08-08
Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change ofmore » anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Lastly, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.« less
Keefe, Douglas H.; Schairer, Kim S.
2011-01-01
An insert ear-canal probe including sound source and microphone can deliver a calibrated sound power level to the ear. The aural power absorbed is proportional to the product of mean-squared forward pressure, ear-canal area, and absorbance, in which the sound field is represented using forward (reverse) waves traveling toward (away from) the eardrum. Forward pressure is composed of incident pressure and its multiple internal reflections between eardrum and probe. Based on a database of measurements in normal-hearing adults from 0.22 to 8 kHz, the transfer-function level of forward relative to incident pressure is boosted below 0.7 kHz and within 4 dB above. The level of forward relative to total pressure is maximal close to 4 kHz with wide variability across ears. A spectrally flat incident-pressure level across frequency produces a nearly flat absorbed power level, in contrast to 19 dB changes in pressure level. Calibrating an ear-canal sound source based on absorbed power may be useful in audiological and research applications. Specifying the tip-to-tail level difference of the suppression tuning curve of stimulus frequency otoacoustic emissions in terms of absorbed power reveals increased cochlear gain at 8 kHz relative to the level difference measured using total pressure. PMID:21361437
Antiferromagnetism in pressure-amorphized Fe2SiO4
Kruger, M.B.; Jeanloz, R.; Pasternak, M.P.; Taylor, R.D.; Snyder, B.S.; Stacy, A.M.; Bohlen, S.R.
1992-01-01
Amorphous Fe2SiO4 synthesized at elevated pressures exhibits a Ne??el transition at a temperature identical to that observed in the crystalline form, TN = 65 (??2) kelvin at zero pressure. This behavior contrasts sharply with observations on other disordered systems, such as spin glasses, which characteristically exhibit strong "frustration" of the spins and consequent marked suppression of the Ne??el transition.
2014-11-01
networks were trained to predict an individual’s electrocardiogram (ECG) and arterial blood pressure ( ABP ) waveform data, which can potentially help...various ESN architectures for prediction tasks, and establishes the benefits of using ESN architecture designs for predicting ECG and ABP waveforms...arterial blood pressure ( ABP ) waveforms immediately prior to the machine generated alarms. When tested, the algorithm suppressed approximately 59.7
Dibaba, Daniel T; Xun, Pengcheng; Song, Yiqing; Rosanoff, Andrea; Shechter, Michael; He, Ka
2017-09-01
Background: To our knowledge, the effect of magnesium supplementation on blood pressure (BP) in individuals with preclinical or noncommunicable diseases has not been previously investigated in a meta-analysis, and the findings from randomized controlled trials (RCTs) have been inconsistent. Objective: We sought to determine the pooled effect of magnesium supplementation on BP in participants with preclinical or noncommunicable diseases. Design: We identified RCTs that were published in English before May 2017 that examined the effect of magnesium supplementation on BP in individuals with preclinical or noncommunicable diseases through PubMed, ScienceDirect, Cochrane, clinicaltrials.gov, SpringerLink, and Google Scholar databases as well as the reference lists from identified relevant articles. Random- and fixed-effects models were used to estimate the pooled standardized mean differences (SMDs) with 95% CIs in changes in BP from baseline to the end of the trial in both systolic blood pressure (SBP) and diastolic blood pressure (DBP) between the magnesium-supplementation group and the control group. Results: Eleven RCTs that included 543 participants with follow-up periods that ranged from 1 to 6 mo (mean: 3.6 mo) were included in this meta-analysis. The dose of elemental magnesium that was used in the trials ranged from 365 to 450 mg/d. All studies reported BP at baseline and the end of the trial. The weighted overall effects indicated that the magnesium-supplementation group had a significantly greater reduction in both SBP (SMD: -0.20; 95% CI: -0.37, -0.03) and DBP (SMD: -0.27; 95% CI: -0.52, -0.03) than did the control group. Magnesium supplementation resulted in a mean reduction of 4.18 mm Hg in SBP and 2.27 mm Hg in DBP. Conclusion: The pooled results suggest that magnesium supplementation significantly lowers BP in individuals with insulin resistance, prediabetes, or other noncommunicable chronic diseases. © 2017 American Society for Nutrition.
Cool pool development. Quarterly technical report No. 1, April-June 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, K.
1979-10-15
The Cool Pool is a passive cooling system consisting of a shaded, evaporating roof pond which thermosiphons cool water into water-filled, metal columns (culvert pipes) located within the building living space. The water in the roof pond is cooled by evaporation, convection and radiation. Because the water in the pool and downcomer is colder and denser than the water in the column a pressure difference is created and the cold water flows from the pool, through the downcomer and into the bottom of the column. The warm column water rises and flows through a connecting pipe into the pool. Itmore » is then cooled and the cycle repeats itself. The system requires no pumps. The water column absorbs heat from the building interior primarily by convection and radiation. Since the column is radiating at a significantly lower temperature than the interior walls it plays a double role in human comfort. Not only does it cool the air by convection but it provides a heat sink to which people can radiate. Since thermal radiation is important to the cooling of people, the cold water column contributes substantially to their feelings of comfort. Research on the Cool Pool system includes the following major tasks: control of biological organisms and debris in the roof pond and water cylinders; development of a heat exchanger; experimental investigation of the system's thermal performance; and development of a predictive computer simulation of the Cool Pool. Progress in these tasks is reported.« less
NASA Astrophysics Data System (ADS)
Crosman, E.; Horel, J.; Blaylock, B. K.; Foster, C.
2014-12-01
High wintertime ozone concentrations in rural areas associated with oil and gas development and high particulate concentrations in urban areas have become topics of increasing concern in the Western United States, as both primary and secondary pollutants become trapped within stable wintertime boundary layers. While persistent cold air pools that enable such poor wintertime air quality are typically associated with high pressure aloft and light winds, the complex physical processes that contribute to the formation, maintenance, and decay of persistent wintertime temperature inversions are only partially understood. In addition, obtaining sufficiently accurate numerical weather forecasts and meteorological simulations of cold air pools for input into chemical models remains a challenge. This study examines the meteorological processes associated with several wintertime pollution episodes in Utah's Uintah and Salt Lake Basins using numerical Weather Research and Forecasting model simulations and observations collected from the Persistent Cold Air Pool and Uintah Basin Ozone Studies. The temperature, vertical structure, and winds within these cold air pools was found to vary as a function of snow cover, snow albedo, land use, cloud cover, large-scale synoptic flow, and episode duration. We evaluate the sensitivity of key atmospheric features such as stability, planetary boundary layer depth, local wind flow patterns and transport mechanisms to variations in surface forcing, clouds, and synoptic flow. Finally, noted deficiencies in the meteorological models of cold air pools and modifications to the model snow and microphysics treatment that have resulted in improved cold pool simulations will be presented.
T follicular helper and T follicular regulatory cells have different TCR specificity
Maceiras, Ana Raquel; Almeida, Silvia Cristina Paiva; Mariotti-Ferrandiz, Encarnita; Chaara, Wahiba; Jebbawi, Fadi; Six, Adrien; Hori, Shohei; Klatzmann, David; Faro, Jose; Graca, Luis
2017-01-01
Immunization leads to the formation of germinal centres (GCs) that contain both T follicular helper (Tfh) and T follicular regulatory (Tfr) cells. Whether T-cell receptor (TCR) specificity defines the differential functions of Tfh and Tfr cells is unclear. Here we show that antigen-specific T cells after immunization are preferentially recruited to the GC to become Tfh cells, but not Tfr cells. Tfh cells, but not Tfr cells, also proliferate efficiently on restimulation with the same immunizing antigen in vitro. Ex vivo TCR repertoire analysis shows that immunization induces oligoclonal expansion of Tfh cells. By contrast, the Tfr pool has a TCR repertoire that more closely resembles that of regulatory T (Treg) cells. Our data thus indicate that the GC Tfh and Tfr pools are generated from distinct TCR repertoires, with Tfh cells expressing antigen-responsive TCRs to promote antibody responses, and Tfr cells expressing potentially autoreactive TCRs to suppress autoimmunity. PMID:28429709
Rai, Priyamvada
2010-11-28
Activation of persistent DNA damage response (DDR) signaling is associated with the induction of a permanent proliferative arrest known as cellular senescence, a phenomenon intrinsically linked to both tissue aging as well as tumor suppression. The DNA damage observed in senescent cells has been attributed to elevated levels of reactive oxygen species (ROS), failing DNA damage repair processes, and/or oncogenic activation. It is not clear how labile molecules such as ROS are able to damage chromatin-bound DNA to a sufficient extent to invoke persistent DNA damage and DDR signaling. Recent evidence suggests that the nucleotide pool is a significant target for oxidants and that oxidized nucleotides, once incorporated into genomic DNA, can lead to the induction of a DNA strand break-associated DDR that triggers senescence in normal cells and in cells sustaining oncogene activation. Evasion of this DDR and resulting senescence is a key step in tumor progression. This review will explore the role of oxidation in the nucleotide pool as a major effector of oxidative stress-induced genotoxic damage and DDR in the context of cellular senescence and tumorigenic transformation. 2010 Elsevier B.V. All rights reserved.
What is limiting more flexible fire management—public or agency pressure?
Toddi A. Steelman; Sarah M. McCaffrey
2011-01-01
Conventional wisdom within American federal fire management agencies suggests that external influence such as community or political pressure for aggressive suppression are key factors circumscribing the ability to execute less aggressive fire management strategies. Thus, a better understanding of external constraints on fire management options is essential. This...
Design and test of a compact optics system for the pool boiling experiment
NASA Technical Reports Server (NTRS)
Ling, Jerri S.; Laubenthal, James R.
1990-01-01
The experiment described seeks to improve the understanding of the fundamental mechanisms that constitute nucleate pool boiling. The vehicle for accomplishing this is an investigation, including tests to be conducted in microgravity and coupled with appropriate analyses, of the heat transfer and vapor bubble dynamics associated with nucleation, bubble growth/collapse and subsequent motion, considering the interrelations between buoyancy, momentum and surface tension which will govern the motion of the vapor and surrounding liquid, as a function of the heating rate at the heat transfer surface and the temperature level and distribution in the bulk liquid. The experiment is designed to be contained within the confines of a Get-Away-Special Canister (GAS Can) installed in the bay of the space shuttle. When the shuttle reaches orbit, the experiment will be turned on and testing will proceed automatically. In the proposed Pool Boiling Experiment a pool of liquid, initially at a precisely defined pressure and temperature, will be subjected to a step imposed heat flux from a semitransparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. Transient measurements of the heater surface and fluid temperatures near the surface will be made, noting especially the conditions at the onset of boiling, along with motion photography of the boiling process in two simultaneous views, from beneath the heating surface and from the side. The conduct of the experiment and the data acquisition will be completely automated and self-contained. For the initial flight, a total of nine tests are proposed, with three levels of heat flux and three levels of subcooling. The design process used in the development and check-out of the compact photographic/optics system for the Pool Boiling Experiment is documented.
Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing
NASA Astrophysics Data System (ADS)
Shi, Z.; Bonneville, S.; Krom, M. D.; Carslaw, K. S.; Jickells, T. D.; Baker, A. R.; Benning, L. G.
2011-02-01
We investigated the iron (Fe) dissolution kinetics of African (Tibesti) and Asian (Beijing) dust samples at acidic pH with the aim of reproducing the low pH conditions in atmospheric aerosols. The Beijing dust and three size fractions of the Tibesti dust (<20 μm: PM20; <10 μm: PM10; and <2.5 μm: PM2.5) were dissolved at pH 1, 2 and/or 3 for up to 1000 h. In the first 10 min, all dust samples underwent an extremely fast Fe solubilisation. Subsequently, the Fe dissolution proceeded at a much slower rate before reaching a stable dissolution plateau. The time-dependant Fe dissolution datasets were best described by a model comprising three acid-extractable Fe pools each dissolving according to first-order kinetics. The dissolution rate constant k (h-1) of each pool was independent of the source (Saharan or Asian) and the size (PM20, PM10 or PM2.5) of the dust but highly dependent on pH. The "fast" Fe pool had a k (25 h-1 at pH = 1) of a similar magnitude to "dry" ferrihydrite nanoparticles and/or poorly crystalline Fe(III) oxyhydroxide, while the "intermediate" and "slow" Fe pools had k values respectively 50-60 times and 3000-4000 times smaller than the "fast" pool. The "slow" Fe pool was likely to consist of both crystalline Fe oxide phases (i.e., goethite and/or hematite) and Fe contained in the clay minerals. The initial mass of the "fast", "intermediate" and "slow" Fe pools represented respectively about 0.5-2%, 1-3% and 15-40% of the total Fe in the dust samples. Furthermore, we showed that in systems with low dust/liquid ratios, Fe can be dissolved from all three pools, whereas at high dust/liquid ratios (e.g., in aerosols), sufficient Fe may be solubilised from the "fast" phase to dominate the Fe dissolved and to suppress the dissolution of Fe from the other Fe pools. These data demonstrated that dust/liquid ratio and pH are fundamental parameters controlling Fe dissolution kinetics in the dust. In order to reduce errors in atmospheric and climate models, these fundamental controlling factors need to be included.
"Notice how you feel": an alternative to detached concern among hospice volunteers.
Fox, John
2006-09-01
Medical schools teach physicians to practice "detached concern," a simultaneous emotional distance from and sensitivity toward their patients. Medical students learn detachment to protect themselves from emotion-laden experiences, including death and dying, by employing mechanisms of defense and adjustment, such as suppression and repression of emotions. In this study, the author inquires whether hospice volunteers are trained for and practice detached concern and finds that hospice volunteers are trained for concern. They are concerned for the well-being of patients and their families. The author argues that concern is a social product that can be trained; hospice volunteers are not trained to suppress and repress their emotions, and the hospice as an institution produces and transmits cultural norms, values, and practices surrounding death and dying, thus maintaining a pool of concerned volunteers.
Unusual Enhancement of Magnetization by Pressure in the Antiferro-Quadrupole-Ordered Phase in CeB6
NASA Astrophysics Data System (ADS)
Ikeda, Suguru; Sera, Masafumi; Hane, Shingo; Uwatoko, Yoshiya; Kosaka, Masashi; Kunii, Satoru
2007-06-01
The effect of pressure on CeB6 was investigated by the measurement of the magnetization (M) under pressure, and we obtained the following results. The effect of pressure on M in phase I is very small. By applying pressure, TQ is enhanced, but TN and the critical field from the antiferromagnetic (AFM) phase III to the antiferro-quadrupole (AFQ) phase II (HcIII--II) are suppressed, as previously reported. The magnetization curve in phase III shows the characteristic shoulder at H˜ HcIII--II/2 at ambient pressure. This shoulder becomes much more pronounced by applying pressure. Both HcIII--II and the magnetic field, where a shoulder is seen in the magnetization curve in phase III, are largely suppressed by pressure. In phase II, the M-T curve at a low magnetic field exhibits an unusual concave temperature dependence below TQ down to TN. Thus, we found that the lower the magnetic field, the larger the enhancement of M in both phases III and II. To clarify the origin of the unusual pressure effect of M, we performed a mean-field calculation for the 4-sublattice model using the experimental results of dTQ/dP>0 and dTN/dP<0 and assuming the positive pressure dependence of the Txyz-antiferro-octupole (AFO) interaction. The characteristic features of the pressure effect of M obtained by the experiments could be reproduced well by the mean-field calculation. We found that the origin of the characteristic effect of pressure on CeB6 is the change in the subtle balance between the AFM interaction and the magnetic field-induced-effective FM interaction induced by the coexistence of the Oxy-AFQ and Txyz-AFO interactions under pressure.
Elstad, C A; Meadows, G G
1993-01-01
We previously showed that restriction of tyrosine (Tyr) and phenylalanine (Phe) in vivo dramatically suppresses the metastatic phenotype of B16-BL6 (BL6) murine melanoma. Present results indicate a direct effect of Tyr and Phe restriction on the tumor in the absence of host selection pressures. Lung colonizing ability of BL6 is dramatically suppressed after one passage in vitro in media containing low levels of Tyr and Phe. This antimetastatic effect is immediate, stable for at least 5 in vitro passages in Tyr and Phe restricted media, and evident event after levels of Tyr and Phe are restored to normal. Heterogeneity for lung colonizing ability is suppressed, as evidence by fewer tumor colonies formed by clones following i.v. inoculation into mice fed normal diet. This suppression of BL6 metastatic phenotype is not due to differential clearance and retention in the lung or to decreased growth, but is specific for these two amino acids. As the mechanism(s) for the antitumor effects of Tyr and Phe restriction are detailed, the relevance of Tyr and Phe restriction as an early adjuvant to effective cancer treatment can be explored.
Sugiura, Yuki; Honda, Kurara; Kondo, Koki; Miura, Masayuki
2017-01-01
Adapting the energy metabolism state to changing bioenergetic demands is essential for mammalian development accompanying massive cell proliferation and cell differentiation. However, it remains unclear how developing embryos meet the changing bioenergetic demands during the chorioallantoic branching (CB) stage, when the maternal-fetal exchange of gases and nutrients is promoted. In this study, using metabolome analysis with mass-labeled glucose, we found that developing embryos redirected glucose carbon flow into the pentose phosphate pathway via suppression of the key glycolytic enzymes PFK-1 and aldolase during CB. Concomitantly, embryos exhibited an increase in lactate pool size and in the fractional contribution of glycolysis to lactate biosynthesis. Imaging mass spectrometry visualized lactate-rich tissues, such as the dorsal or posterior neural tube, somites and head mesenchyme. Furthermore, we found that the heterochronic gene Lin28a could act as a regulator of the metabolic changes observed during CB. Perturbation of glucose metabolism rewiring by suppressing Lin28a downregulation resulted in perinatal lethality. Thus, our work demonstrates that developing embryos rewire glucose metabolism following CB for normal development. PMID:28049690
How voluntary prenatal diagnosis and selective abortion increase the abnormal human gene pool.
Boss, J A
1990-06-01
It is often assumed that prenatal diagnosis followed by the selective abortion of "defective" fetuses has a positive eugenic effect. Although mandatory selective abortion of "defective" fetuses and, more important, carriers would tend to reduce the number of deleterious genes in the gene pool, the present program of voluntary prenatal diagnosis and selective abortion actually increases the number of deleterious genes. This raises the issue of freedom of choice regarding selective abortion and societal pressure on parents to undergo prenatal testing and to abort their fetus should it have a genetic disorder or be a carrier of one.
Pressure Suppresses Serotonin Release by Guinea Pig Striatal Synaptosomes
1988-01-01
neurological syndrome. Brit J Pharmacol 1982; 76:447-452. 5. Wardley-Smith B, Meldrum BS. Effect of excitatory amino acid antagonists on !he high pressure...Res 1974; 1:,-28. *14. IBichard AR, Little HIJ. Drugs that increase Y-aminobutyric acid tr.ansmission prm ict PF..atnst * I the high pressure...Effects of high pressure of heliox on the striatal 5-HIAA and ascorbic acid rates in the rat. Cent Etud Rech Bio-Physiol Rep 84-08. 1984:35. 7
Competition for ammonia influences the structure of chemotrophic communities in geothermal springs.
Hamilton, Trinity L; Koonce, Evangeline; Howells, Alta; Havig, Jeff R; Jewell, Talia; de la Torre, José R; Peters, John W; Boyd, Eric S
2014-01-01
Source waters sampled from Perpetual Spouter hot spring (pH 7.03, 86.4°C), Yellowstone National Park, WY, have low concentrations of total ammonia, nitrite, and nitrate, suggesting nitrogen (N) limitation and/or tight coupling of N cycling processes. Dominant small-subunit rRNA sequences in Perpetual Spouter source sediments are closely affiliated with the ammonia-oxidizing archaeon "Candidatus Nitrosocaldus yellowstonii" and the putatively nitrogen-fixing (diazotrophic) bacterium Thermocrinis albus, respectively, suggesting that these populations may interact at the level of the bioavailable N pool, specifically, ammonia. This hypothesis was evaluated by using a combination of geochemical, physiological, and transcriptomic analyses of sediment microcosms. Amendment of microcosms with allylthiourea, an inhibitor of ammonia oxidation, decreased rates of acetylene reduction (a proxy for N2 fixation) and nitrite production (a proxy for ammonia oxidation) and decreased transcript levels of structural genes involved in both nitrogen fixation (nifH) and ammonia oxidation (amoA). In contrast, amendment of microcosms with ammonia stimulated nitrite production and increased amoA transcript levels while it suppressed rates of acetylene reduction and decreased nifH transcript levels. Sequencing of amplified nifH and amoA transcripts from native sediments, as well as microcosms, at 2 and 4 h postamendment, indicates that the dominant and responsive populations involved in ammonia oxidation and N2 fixation are closely affiliated with Ca. Nitrosocaldus yellowstonii and T. albus, respectively. Collectively, these results suggest that ammonia-oxidizing archaea, such as Ca. Nitrosocaldus yellowstonii, have an apparent affinity for ammonia that is higher than that of the diazotrophs present in this ecosystem. Depletion of the bioavailable N pool through the activity of ammonia-oxidizing archaea likely represents a strong selective pressure for the inclusion of organisms capable of nitrogen fixation in geothermal communities. These observations help to explain the strong pattern in the codistribution of ammonia-oxidizing archaea and diazotrophs in circumneutral-to-alkaline geothermal springs.
Competition for Ammonia Influences the Structure of Chemotrophic Communities in Geothermal Springs
Hamilton, Trinity L.; Koonce, Evangeline; Howells, Alta; Havig, Jeff R.; Jewell, Talia; de la Torre, José R.; Peters, John W.
2014-01-01
Source waters sampled from Perpetual Spouter hot spring (pH 7.03, 86.4°C), Yellowstone National Park, WY, have low concentrations of total ammonia, nitrite, and nitrate, suggesting nitrogen (N) limitation and/or tight coupling of N cycling processes. Dominant small-subunit rRNA sequences in Perpetual Spouter source sediments are closely affiliated with the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii” and the putatively nitrogen-fixing (diazotrophic) bacterium Thermocrinis albus, respectively, suggesting that these populations may interact at the level of the bioavailable N pool, specifically, ammonia. This hypothesis was evaluated by using a combination of geochemical, physiological, and transcriptomic analyses of sediment microcosms. Amendment of microcosms with allylthiourea, an inhibitor of ammonia oxidation, decreased rates of acetylene reduction (a proxy for N2 fixation) and nitrite production (a proxy for ammonia oxidation) and decreased transcript levels of structural genes involved in both nitrogen fixation (nifH) and ammonia oxidation (amoA). In contrast, amendment of microcosms with ammonia stimulated nitrite production and increased amoA transcript levels while it suppressed rates of acetylene reduction and decreased nifH transcript levels. Sequencing of amplified nifH and amoA transcripts from native sediments, as well as microcosms, at 2 and 4 h postamendment, indicates that the dominant and responsive populations involved in ammonia oxidation and N2 fixation are closely affiliated with Ca. Nitrosocaldus yellowstonii and T. albus, respectively. Collectively, these results suggest that ammonia-oxidizing archaea, such as Ca. Nitrosocaldus yellowstonii, have an apparent affinity for ammonia that is higher than that of the diazotrophs present in this ecosystem. Depletion of the bioavailable N pool through the activity of ammonia-oxidizing archaea likely represents a strong selective pressure for the inclusion of organisms capable of nitrogen fixation in geothermal communities. These observations help to explain the strong pattern in the codistribution of ammonia-oxidizing archaea and diazotrophs in circumneutral-to-alkaline geothermal springs. PMID:24242238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minagawa, T.; Nakaya, C.; Iida, H.
1974-05-01
Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated componentnent which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virusmore » as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither uv-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. (auth)« less
Minagawa, Tomonori; Nakaya, Chikako; Iida, Hiroo
1974-01-01
Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated component which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virus as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither UV-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. PMID:4207526
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, K.H.; Kim, M.H.
Quenching experiments of hot solid spheres in dilute aqueous solutions of polyethylene oxide polymer have been conducted for the purpose of investigating the physical mechanisms of the suppression of vapor explosions in this polymer solutions. Two spheres of 22.2mm and 9.5mm-diameter were tested in the polymer solutions of various concentrations at 30{degrees}C. Minimum film boiling temperature ({Delta}T{sub MFB}) in this highly-subcooled liquid rapidly decreased from over 700{degrees}c for pure water to about 150{degrees}C as the polymer concentration was increased up to 300ppm for 22.2mm sphere, and it decreased to 350{degrees}C for 9.5mm sphere. This rapid reduction of minimum film boilingmore » temperature in the PEO aqueous solutions can explain its ability of the suppression of spontaneous vapor explosions. The ability of suppression of vapor explosions by dilute polyethylene oxide solutions against an external trigger pressure was tested by dropping molten tin into the polymer solutions at 25{degrees}C. It was observed that in 50ppm solutions more mass fragmented than in pure water, but produced weaker explosion pressures. The explosion was completely suppressed in 300ppm solutions with the external trigger. The debris size distributions of fine fragments smaller than 0.7mm were shown almost identical regardless of the polymer concentrations.« less
Gravitational haemodynamics and oedema prevention in the giraffe
NASA Technical Reports Server (NTRS)
Hargens, Alan R.; Millard, Ronald W.; Pettersson, Knut; Johansen, Kjell
1987-01-01
The question of how giraffes avoid pooling of blood and tissue fluid (edema) in dependent tissues of their extremities is addressed. As monitored by radiotelemetry, the blood and tissue fluid pressures that govern transcapillary exchange vary greatly with exercise. These pressures, combined with a tight skin layer, move fluid upward against gravity. The skin thus functions like a natural antigravity suit. Other mechanisms that prevent edema include precapillary vasoconstriction and low permeability of capillaries to plasma proteins.
Category 5 Suppressive Shield (TDP)
1975-10-01
side- on overpressure. 3.1.3 Quasi -static Pressure. Pressure levels as measured by the PCB101A02 trans- ducers were in general difficult to...apparent: (1) The observed quasi -static pressures PnM are in general somewhnl less than the OOOiipomMng calculated values based on closed-box...explained by off-center combustion of the illuminant mix and directional convection of the reaction pro- ducts. Posttest ash deposits on the floor
Davis, John R.; Brubaker, Erik; Vetter, Kai
2017-03-29
In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. Furthermore, the expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate.more » Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. In the three areas we analyzed, San Francisco, Downtown Oakland, and Berkeley, all demonstrated a suppression in the background rate of over 50% for the range of sky-view factors measured. This effect, which is due to the shielding of cosmic-ray produced neutrons by surrounding buildings, was comparable to the pressure influence which yielded a 32% suppression in the count rate over the range of pressures measured.« less
Unconventional resistivity at the border of metallic antiferromagnetism in NiS2
NASA Astrophysics Data System (ADS)
Niklowitz, P. G.; Alireza, P. L.; Steiner, M. J.; Lonzarich, G. G.; Braithwaite, D.; Knebel, G.; Flouquet, J.; Wilson, J. A.
2008-03-01
We report low-temperature and high-pressure measurements of the electrical resistivity ρ(T) of the antiferromagnetic compound NiS2 in its high-pressure metallic state. The form of ρ(T,p) suggests the presence of a quantum phase transition at a critical pressure pc=76±5kbar . Near pc , the temperature variation of ρ(T) is similar to that observed in NiS2-xSex near the critical composition x=1 , where metallic antiferromagnetism is suppressed at ambient pressure. In both cases, ρ(T) varies approximately as T1.5 over a wide range below 100K . This lets us assume that the high-pressure metallic phase of stoichiometric NiS2 also develops itinerant antiferromagnetism, which becomes suppressed at pc . However, on closer analysis, the resistivity exponent in NiS2 exhibits an undulating variation with temperature not seen in NiSSe (x=1) . This difference in behavior may be due to the effects of spin-fluctuation scattering of charge carriers on cold and hot spots of the Fermi surface in the presence of quenched disorder, which is higher in NiSSe than in stoichiometric NiS2 .
Liang, Zhou; Xin, Wei; Qiang, Liu; Xiang, Cai; Bang-Hua, Liao; Jin, Yang; De-Yi, Luo; Hong, Li; Kun-Jie, Wang
2017-06-01
Abnormal intravesical pressure results in a series of pathological changes. We investigated the effects of hydrostatic pressure and muscarinic receptors on the release of inflammatory cytokines in rat and human bladder smooth muscle cells (HBSMCs). Animal model of bladder outlet obstruction was induced by urethra ligation. HBSMCs were subjected to elevated hydrostatic pressure and/or acetylcholine (Ach). Macrophage infiltration in the bladder wall was determined by immunohistochemical staining. The expression of inflammatory genes was measured by RT-PCR, ELISA and immunofluorescence. In obstructed bladder, inflammatory genes and macrophage infiltration were remarkably induced. When HBSMCs were subjected to 200-300 cm H 2 O pressure for 2-24 h in vitro, the expressions of IL-6 and RANTES were significantly increased. Hydrostatic pressure promoted the protein levels of phospho-NFκB p65 and phospho-ERK1/2 as well as muscarinic receptors. Moreover, NFκB or ERK1/2 inhibitors suppressed pressure-induced inflammatory genes mRNA. When cells were treated with 1 μM acetylcholine for 6 h, a significant increase in IL-6 mRNA expression was detected. Acetylcholine also enhanced pressure-induced phospho-NFκB p65 and IL-6 protein expression. Additionally, pressure-induced IL-6 was partially suppressed by muscarinic receptors antagonists. Hydrostatic pressure and muscarinic receptors were involved in the secretion of inflammatory cytokines in HBSMCs, indicating a pro-inflammatory effect of the two factors in the pathological process of BOO. © 2016 Wiley Periodicals, Inc.
Innate immune responses of equine monocytes cultured in equine platelet lysate.
Naskou, Maria C; Norton, Natalie A; Copland, Ian B; Galipeau, Jacques; Peroni, John F
2018-01-01
Platelet lysate (PL) has been extensively used for the laboratory expansion of human mesenchymal stem cells (MSC) in order to avoid fetal bovine serum (FBS) which has been associated with immune-mediated host reactions and transmission of bovine-origin microbial contaminants. Before suggesting the routine use of PL for MSC culture, we wanted to further investigate whether PL alone might trigger inflammatory responses when exposed to reactive white blood cells such as monocytes. Our objectives were to evaluate the inflammatory profile of equine monocytes cultured with equine PL (ePL) and to determine if ePL can modulate the expression of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated monocytes. In a first experiment, equine monocytes were isolated and incubated with donor horse serum (DHS), FBS, six individual donors ePL or pooled ePL from all horses. In a second experiment, monocytes were stimulated with E. coli LPS in the presence of 1, 5 or 10% DHS and/or pooled ePL. After 6h of incubation, cell culture supernatants were assayed via ELISA for production of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and Interleukin 1β (IL-1β) as well as for the anti-inflammatory Interleukin 10 (IL-10). Equine monocytes incubated with pooled ePL produced significantly less TNF-α and significantly more IL-10 than monocytes incubated in FBS. A statistically significant difference was not identified for the production of IL-1β. The second experiment showed that pooled ePL added to LPS-stimulated equine monocytes resulted in a significant reduction in TNF-α and IL-1β production. IL-10 production was not significantly upregulated by the addition of ePL to LPS-stimulated monocytes. Finally, the addition of ePL to LPS-stimulated monocytes in the presence of various concentrations of DHS resulted to statistically significant decrease of TNF-α and IL-1β compared to the control groups. This is the first study to demonstrate that ePL suppresses the release of pro-inflammatory cytokines from stimulated equine monocytes. These results encourage further exploration of PL as a homologous media substitute for FBS but also opens the possibility of investigating its use as means to suppress cell-mediated inflammation. Published by Elsevier B.V.
Ganzlin, Peter W; Gundale, Michael J; Becknell, Rachel E; Cleveland, Cory C
2016-07-01
Decades of fire suppression following extensive timber harvesting have left much of the forest in the intermountain western United States exceedingly dense, and forest restoration techniques (i.e., thinning and prescribed fire) are increasingly being used in an attempt to mitigate the effects of severe wildfire, to enhance tree growth and regeneration, and to stimulate soil nutrient cycling. While many of the short-term effects of forest restoration have been established, the long-term effects on soil biogeochemical and ecosystem processes are largely unknown. We assessed the effects of commonly used forest restoration treatments (thinning, burning, and thinning + burning) on nutrient cycling and other ecosystem processes 11 yr after restoration treatments were implemented in a ponderosa pine (Pinus ponderosa var. scopulorum)/Douglas fir (Pseudotsuga menziesii var. glauca) forest at the Lubrecht Fire and Fire Surrogates Study (FFS) site in western Montana, USA. Despite short-term (<3 yr) increases in soil inorganic nitrogen (N) pools and N cycling rates following prescribed fire, long-term soil N pools and N mineralization rates showed only subtle differences from untreated control plots. Similarly, despite a persistent positive correlation between fuels consumed in prescribed burns and several metrics of N cycling, variability in inorganic N pools decreased significantly since treatments were implemented, indicating a decline in N spatial heterogeneity through time. However, rates of net nitrification remain significantly higher in a thin + burn treatment relative to other treatments. Short-term declines in forest floor carbon (C) pools have persisted in the thin + burn treatment, but there were no significant long-term differences among treatments in extractable soil phosphorus (P). Finally, despite some short-term differences, long-term foliar nutrient concentrations, litter decomposition rates, and rates of free-living N fixation in the experimental plots were not different from control plots, suggesting nutrient cycles and ecosystem processes in temperate coniferous forests are resilient to disturbance following long periods of fire suppression. Overall, this study provides forest managers and policymakers valuable information showing that the effects of these commonly used restoration prescriptions on soil nutrient cycling are ephemeral and that use of repeated treatments (i.e., frequent fire) will be necessary to ensure continued restoration success. © 2016 by the Ecological Society of America.
Design and test of three active flutter suppression controllers
NASA Technical Reports Server (NTRS)
Christhilf, David M.; Waszak, Martin R.; Adams, William M.; Srinathkumar, S.; Mukhopadhyay, Vivek
1991-01-01
Three flutter suppression control law design techniques are presented. Each uses multiple control surfaces and/or sensors. The first uses linear combinations of several accelerometer signals together with dynamic compensation to synthesize the modal rate of the critical mode for feedback to distributed control surfaces. The second uses traditional tools (pole/zero loci and Nyquist diagrams) to develop a good understanding of the flutter mechanism and produce a controller with minimal complexity and good robustness to plant uncertainty. The third starts with a minimum energy Linear Quadratic Gaussian controller, applies controller order reduction, and then modifies weight and noise covariance matrices to improve multi-variable robustness. The resulting designs were implemented digitally and tested subsonically on the Active Flexible Wing (AFW) wind tunnel model. Test results presented here include plant characteristics, maximum attained closed-loop dynamic pressure, and Root Mean Square control surface activity. A key result is that simultaneous symmetric and antisymmetric flutter suppression was achieved by the second control law, with a 24 percent increase in attainable dynamic pressure.
Real-Time Adaptive Control of Flow-Induced Cavity Tones
NASA Technical Reports Server (NTRS)
Kegerise, Michael A.; Cabell, Randolph H.; Cattafesta, Louis N.
2004-01-01
An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. The adaptive control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. The algorithm was also able t o maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Controller performance was evaluated with a measure of output disturbance rejection and an input sensitivity transfer function. The results suggest that disturbances entering the cavity flow are colocated with the control input at the cavity leading edge. In that case, only tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary broadband pressure reduction is not possible. In the control-algorithm development, the cavity dynamics are treated as linear and time invariant (LTI) for a fixed Mach number. The experimental results lend support this treatment.
Systemic and Renal-Specific Sympathoinhibition in Obesity Hypertension
Lohmeier, Thomas E.; Iliescu, Radu; Liu, Boshen; Henegar, Jeffrey R.; Maric-Bilkan, Christine; Irwin, Eric D.
2012-01-01
Chronic pressure-mediated baroreflex activation suppresses renal sympathetic nerve activity. Recent observations indicate that chronic electrical activation of the carotid baroreflex produces sustained reductions in global sympathetic activity and arterial pressure. Thus, we investigated the effects of global and renal specific suppression of sympathetic activity in dogs with sympathetically-mediated, obesity-induced hypertension by comparing the cardiovascular, renal, and neurohormonal responses to chronic baroreflex activation and bilateral surgical renal denervation. After control measurements, the diet was supplemented with beef fat while sodium intake was held constant. After 4 weeks on the high-fat, when body weight had increased ~a 50%, fat intake was reduced to a level that maintained this body weight. This weight increase was associated with an increase in mean arterial pressure from 100±2 to 117±3 mm Hg and heart rate from 86±3 to 130±4 bpm. The hypertension was associated with a marked increase in cumulative sodium balance despite ~ a 35% increase in GFR. The importance of increased tubular reabsorption to sodium retention was further reflected by ~ a 35% decrease in fractional sodium excretion. Subsequently, both chronic baroreflex activation (7 days) and renal denervation decreased plasma renin activity and abolished the hypertension. However, baroreflex activation also suppressed systemic sympathetic activity and tachycardia and reduced glomerular hyperfiltration while increasing fractional sodium excretion. In contrast, GFR increased further after renal denervation. Thus, by improving autonomic control of cardiac function and diminishing glomerular hyperfiltration, suppression of global sympathetic activity by baroreflex activation may have beneficial effects in obesity beyond simply attenuating hypertension. PMID:22184321
Jet noise suppression by porous plug nozzles
NASA Technical Reports Server (NTRS)
Bauer, A. B.; Kibens, V.; Wlezien, R. W.
1982-01-01
Jet noise suppression data presented earlier by Maestrello for porous plug nozzles were supplemented by the testing of a family of nozzles having an equivalent throat diameter of 11.77 cm. Two circular reference nozzles and eight plug nozzles having radius ratios of either 0.53 or 0.80 were tested at total pressure ratios of 1.60 to 4.00. Data were taken both with and without a forward motion or coannular flow jet, and some tests were made with a heated jet. Jet thrust was measured. The data were analyzed to show the effects of suppressor geometry on nozzle propulsive efficiency and jet noise. Aerodynamic testing of the nozzles was carried out in order to study the physical features that lead to the noise suppression. The aerodynamic flow phenomena were examined by the use of high speed shadowgraph cinematography, still shadowgraphs, extensive static pressure probe measurements, and two component laser Doppler velocimeter studies. The different measurement techniques correlated well with each other and demonstrated that the porous plug changes the shock cell structure of a standard nozzle into a series of smaller, periodic cell structures without strong shock waves. These structures become smaller in dimension and have reduced pressure variations as either the plug diameter or the porosity is increased, changes that also reduce the jet noise and decrease thrust efficiency.
Modulation of the Major Paths of Carbon in Photorespiratory Mutants of Synechocystis
Huege, Jan; Goetze, Jan; Schwarz, Doreen; Bauwe, Hermann; Hagemann, Martin; Kopka, Joachim
2011-01-01
Background Recent studies using transcript and metabolite profiles of wild-type and gene deletion mutants revealed that photorespiratory pathways are essential for the growth of Synechocystis sp. PCC 6803 under atmospheric conditions. Pool size changes of primary metabolites, such as glycine and glycolate, indicated a link to photorespiration. Methodology/Principal Findings The 13C labelling kinetics of primary metabolites were analysed in photoautotrophically grown cultures of Synechocystis sp. PCC 6803 by gas chromatography-mass spectrometry (GC-MS) to demonstrate the link with photorespiration. Cells pre-acclimated to high CO2 (5%, HC) or limited CO2 (0.035%, LC) conditions were pulse-labelled under very high (2% w/w) 13C-NaHCO3 (VHC) conditions followed by treatment with ambient 12C at HC and LC conditions, respectively. The 13C enrichment, relative changes in pool size, and 13C flux of selected metabolites were evaluated. We demonstrate two major paths of CO2 assimilation via Rubisco in Synechocystis, i.e., from 3PGA via PEP to aspartate, malate and citrate or, to a lesser extent, from 3PGA via glucose-6-phosphate to sucrose. The results reveal evidence of carbon channelling from 3PGA to the PEP pool. Furthermore, 13C labelling of glycolate was observed under conditions thought to suppress photorespiration. Using the glycolate-accumulating ΔglcD1 mutant, we demonstrate enhanced 13C partitioning into the glycolate pool under conditions favouring photorespiration and enhanced 13C partitioning into the glycine pool of the glycine-accumulating ΔgcvT mutant. Under LC conditions, the photorespiratory mutants ΔglcD1 and ΔgcvT showed enhanced activity of the additional carbon-fixing PEP carboxylase pathway. Conclusions/Significance With our approach of non-steady-state 13C labelling and analysis of metabolite pool sizes with respective 13C enrichments, we identify the use and modulation of major pathways of carbon assimilation in Synechocystis in the presence of high and low inorganic carbon supplies. PMID:21283704
Brunt, Vienna E; Miner, Jennifer A; Kaplan, Paul F; Halliwill, John R; Strycker, Lisa A; Minson, Christopher T
2013-10-01
The individual effects of estrogen and progesterone on baroreflex function remain poorly understood. We sought to determine how estradiol (E2) and progesterone (P4) independently alter the carotid-cardiac and carotid-vasomotor baroreflexes in young women by using a hormone suppression and exogenous add-back design. Thirty-two young women were divided into two groups and studied under three conditions: 1) after 4 days of endogenous hormone suppression with a gonadotropin releasing hormone antagonist (control condition), 2) after continued suppression and 3 to 4 days of supplementation with either 200 mg/day oral progesterone (N = 16) or 0.1 to 0.2 mg/day transdermal 17β-estradiol (N = 16), and 3) after continued suppression and 3 to 4 days of supplementation with both hormones. Changes in heart rate (HR), mean arterial pressure (MAP), and femoral vascular conductance (FVC) were measured in response to 5 s of +50 mmHg external neck pressure to unload the carotid baroreceptors. Significant hormone effects on the change in HR, MAP, and FVC from baseline at the onset of neck pressure were determined using mixed model covariate analyses accounting for P4 and E2 plasma concentrations. Neither P4 (P = 0.95) nor E2 (P = 0.95) affected the HR response to neck pressure. Higher P4 concentrations were associated with an attenuated fall in FVC (P = 0.01), whereas higher E2 concentrations were associated with an augmented fall in FVC (P = 0.02). Higher E2 was also associated with an augmented rise in MAP (P = 0.01). We conclude that progesterone blunts whereas estradiol enhances carotid-vasomotor baroreflex sensitivity, perhaps explaining why no differences in sympathetic baroreflex sensitivity are commonly reported between low and high combined hormone phases of the menstrual cycle.
Brunt, Vienna E.; Miner, Jennifer A.; Kaplan, Paul F.; Halliwill, John R.; Strycker, Lisa A.
2013-01-01
The individual effects of estrogen and progesterone on baroreflex function remain poorly understood. We sought to determine how estradiol (E2) and progesterone (P4) independently alter the carotid-cardiac and carotid-vasomotor baroreflexes in young women by using a hormone suppression and exogenous add-back design. Thirty-two young women were divided into two groups and studied under three conditions: 1) after 4 days of endogenous hormone suppression with a gonadotropin releasing hormone antagonist (control condition), 2) after continued suppression and 3 to 4 days of supplementation with either 200 mg/day oral progesterone (N = 16) or 0.1 to 0.2 mg/day transdermal 17β-estradiol (N = 16), and 3) after continued suppression and 3 to 4 days of supplementation with both hormones. Changes in heart rate (HR), mean arterial pressure (MAP), and femoral vascular conductance (FVC) were measured in response to 5 s of +50 mmHg external neck pressure to unload the carotid baroreceptors. Significant hormone effects on the change in HR, MAP, and FVC from baseline at the onset of neck pressure were determined using mixed model covariate analyses accounting for P4 and E2 plasma concentrations. Neither P4 (P = 0.95) nor E2 (P = 0.95) affected the HR response to neck pressure. Higher P4 concentrations were associated with an attenuated fall in FVC (P = 0.01), whereas higher E2 concentrations were associated with an augmented fall in FVC (P = 0.02). Higher E2 was also associated with an augmented rise in MAP (P = 0.01). We conclude that progesterone blunts whereas estradiol enhances carotid-vasomotor baroreflex sensitivity, perhaps explaining why no differences in sympathetic baroreflex sensitivity are commonly reported between low and high combined hormone phases of the menstrual cycle. PMID:23873800
Bioagents and silicon promoting fast early upland rice growth.
de Sousa, Thatyane Pereira; de Souza, Alan Carlos Alves; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; Cortês, Marcio Vinicius; Pinheiro, Hugo Alves; da Silva, Gisele Barata
2018-02-01
Upland rice can overcome major challenges through the insertion of silicate fertilization and the presence of plant growth-promoting microorganisms (PGPMs) during its cultivation, as these factors promote an increase in vigor and plant disease resistance. Two consecutive experiments were conducted to evaluate the beneficial effects of silicon fertilization combined with the PGPM, Pseudomonas fluorensces, Burkholderia pyrrocinia, and a pool of Trichoderma asperellum, in upland rice seedlings, cultivar BRS Primavera CL: (a) E1, selecting PGPM type and Si doses for rice growth promotion and leaf blast supression, and (b) E2, evaluating physiological characteristics correlated with mechanisms involved in the higher vegetative growth in highlighted treatments from E1. In E1, 2 Si t ha -1 combined with the application of T. asperellum pool or PGPM mixture increased 54% in root dry matter biomass and 35 and 65% in shoot and root lengths, respectively; it also suppressed 99% of rice blast severity. In E2, shoot and root dry matter biomass and length, photosynthetic rate, water use efficiency, total soluble sugar, and chloroplastidic pigments were superior in BRS Primavera CL seedlings treated with 2 Si t ha -1 and T. asperellum pool or PGPM mixture. Higher salicilic and jasmonic acid levels were found in seedlings treated with Si and T. asperellum pool, individually. These physiological characteristics may explain, in part, the higher vigor of upland rice seedlings promoted by the synergistic effect between silicate fertilization and beneficial microorganisms.
Kollias, Anastasios; Dafni, Maria; Poulidakis, Emmanouil; Ntineri, Angeliki; Stergiou, George S
2014-12-01
In children, out-of-office blood pressure (BP) assessment (especially ambulatory monitoring) is regarded as indispensable for accurate hypertension diagnosis. This article reviewed the evidence on the association between out-of-office BP measurements and preclinical organ damage indices in children. A systematic review and meta-analysis of 93 relevant articles (1974-2012) was performed. Analysis of 10 studies (n = 480, pooled age 14.4 years, with hypertension 33%, renal disease 27%, type 1 diabetes 10%) revealed a significant association between systolic ambulatory BP and left ventricular mass index (LVMI), with pooled correlation coefficient r = 0.40 [95% confidence interval (CI) 0.30-0.50]. Eleven studies reported data on LVMI differences between normotensive (n = 428) and hypertensive children (n = 432), with higher values in the latter group by 6.53 g/m(2.7) (95% CI 4.73-8.33). A moderate association was found between systolic ambulatory BP and carotid intima-media thickness (three studies, n = 231, age 13.3 years, pooled r = 0.32, 95% CI 0.21-0.44), as well as between diastolic ambulatory BP and urine albumin excretion (five studies, n = 355, age 13.1 years, type 1 diabetes 42%, reflux nephropathy 28%, pooled r = 0.32, 95% CI 0.05-0.58). Two studies reported on the association between home BP and LVMI, with one of them showing comparable coefficients as for ambulatory monitoring. The available evidence suggests a moderate but significant association between ambulatory BP and preclinical organ damage, mainly based on studies in nephropathy and/or diabetes. More data are needed in essential hypertension without nephropathy or diabetes, as well as with home measurements.
A Fundamental Study of Nucleate Pool Boiling Under Microgravity
NASA Technical Reports Server (NTRS)
Ervin, Jamie S.; Merte, Herman, Jr.
1996-01-01
An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.
Role of peripheral pooling in porcine Escherichia coli sepsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teule, G.J.; von Lingen, A.; Verwey von Vught, M.A.
In anesthesized pigs the effects of E. coli (2 X 10(8)/kg) on hemodynamics and red cell distribution were studied. After injection of 99m-Tc red cells (15 mCi), regional radioactivity was followed during 3 hours. Gated bloodpool studies were performed to measure end-diastolic volumes (EDV). Escherichia coli E. coli was infused in 14 pigs, while 7 animals served as controls. E. coli resulted in an early increase in pulmonary arterial pressure. Systemic arterial pressure decreased gradually, while cardiac output did not change significantly. The gated studies revealed that especially left ventricular end-diastolic volume (LVEDV) declined, to 50% of the basal value.more » Regional radioactivity did not change over lungs, liver and abdomen. Splenic activity declined markedly. Over the hindlimb a significant increase (29 +/- 8%) was observed. It is concluded that E. coli infusion in pigs induces a hemodynamic pattern similar to human sepsis. The decrease in LVEDV is probably related to peripheral pooling and a change in right ventricle (RV) performance.« less
Sanctions as honest signals--the evolution of pool punishment by public sanctioning institutions.
Schoenmakers, Sarah; Hilbe, Christian; Blasius, Bernd; Traulsen, Arne
2014-09-07
In many species, mutual cooperation is stabilized by forms of policing and peer punishment: if cheaters are punished, there is a strong selective pressure to cooperate. Most human societies have complemented, and sometimes even replaced, such peer punishment mechanisms with pool punishment, where punishment is outsourced to central institutions such as the police. Even before free-riding occurs, such institutions require investments, which could serve as costly signals. Here, we show with a game theoretical model that this signaling effect in turn can be crucial for the evolution of punishment institutions: In the absence of such signals, pool punishment is only stable with second-order punishment and can only evolve when individuals have the freedom not to take part in any interaction. With such signals, individuals can opportunistically adjust their behavior, which promotes the evolution of stable pool punishment even in situations where no one can stand aside. Thus, the human propensity to react opportunistically to credible punishment threats is often sufficient to establish stable punishment institutions and to maintain high levels of cooperation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sanctions as honest signals – The evolution of pool punishment by public sanctioning institutions
Schoenmakers, Sarah; Hilbe, Christian; Blasius, Bernd; Traulsen, Arne
2014-01-01
In many species, mutual cooperation is stabilized by forms of policing and peer punishment: if cheaters are punished, there is a strong selective pressure to cooperate. Most human societies have complemented, and sometimes even replaced, such peer punishment mechanisms with pool punishment, where punishment is outsourced to central institutions such as the police. Even before free-riding occurs, such institutions require investments, which could serve as costly signals. Here, we show with a game theoretical model that this signaling effect in turn can be crucial for the evolution of punishment institutions: In the absence of such signals, pool punishment is only stable with second-order punishment and can only evolve when individuals have the freedom not to take part in any interaction. With such signals, individuals can opportunistically adjust their behavior, which promotes the evolution of stable pool punishment even in situations where no one can stand aside. Thus, the human propensity to react opportunistically to credible punishment threats is often sufficient to establish stable punishment institutions and to maintain high levels of cooperation. PMID:24768866
ARC and Melting Efficiency of Plasma ARC Welds
NASA Technical Reports Server (NTRS)
McClure, J. C.; Nunes, A. C.; Evans, D. M.
1999-01-01
A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 Aluminum. Arc efficiency was measured calorimetrically and ranged between 48% and 66% for the conditions of the welds. Arc efficiency depends in different ways on voltage and current. The voltage effect dominates. Raising voltage while reducing current increases arc efficiency. Longer, higher voltage arcs are thought to transfer a greater portion of arc power to the workpiece through shield gas convection. Melting efficiency depends upon weld pool shape as well as arc efficiency. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Increased plasma gas flow does the same thing. Higher currents are thought to raise arc pressure and depress liquid at the bottom of the weld pool. More arc power then transfers to the workpiece through increasing plasma gas convection. If the power is held constant, the reduced voltage lowers the arc efficiency, while the pool shape change increases the melting efficiency,
Dan-Glauser, Elise S.; Gross, James J.
2011-01-01
This study examines the early affective consequences of two close forms of suppression. Participants (N=37) were shown negative, positive, and neutral pictures and cued either to attend to the pictures, or to perform expressive or physiological suppression (i.e. reduce body reactions). Continuous measures of experience, expressivity, and autonomic responses showed that both suppression strategies produced rapid response modulation. Common effects of the two strategies included a transient increase in negative feeling, a durable decrease in positive feeling, and a decrease in expressivity, cardiovascular activity, and oxygenation. The two strategies were significantly different only in response to positive stimuli, with physiological suppression showing a larger decrease in experience intensity and blood pressure. These results suggest a strong overlap between the two suppression strategies in terms of their early impact on emotional responses. PMID:21361967
Role of cavities and hydration in the pressure unfolding of T4 lysozyme
Nucci, Nathaniel V.; Fuglestad, Brian; Athanasoula, Evangelia A.; Wand, A. Joshua
2014-01-01
It is well known that high hydrostatic pressures can induce the unfolding of proteins. The physical underpinnings of this phenomenon have been investigated extensively but remain controversial. Changes in solvation energetics have been commonly proposed as a driving force for pressure-induced unfolding. Recently, the elimination of void volumes in the native folded state has been argued to be the principal determinant. Here we use the cavity-containing L99A mutant of T4 lysozyme to examine the pressure-induced destabilization of this multidomain protein by using solution NMR spectroscopy. The cavity-containing C-terminal domain completely unfolds at moderate pressures, whereas the N-terminal domain remains largely structured to pressures as high as 2.5 kbar. The sensitivity to pressure is suppressed by the binding of benzene to the hydrophobic cavity. These results contrast to the pseudo-WT protein, which has a residual cavity volume very similar to that of the L99A–benzene complex but shows extensive subglobal reorganizations with pressure. Encapsulation of the L99A mutant in the aqueous nanoscale core of a reverse micelle is used to examine the hydration of the hydrophobic cavity. The confined space effect of encapsulation suppresses the pressure-induced unfolding transition and allows observation of the filling of the cavity with water at elevated pressures. This indicates that hydration of the hydrophobic cavity is more energetically unfavorable than global unfolding. Overall, these observations point to a range of cooperativity and energetics within the T4 lysozyme molecule and illuminate the fact that small changes in physical parameters can significantly alter the pressure sensitivity of proteins. PMID:25201963
Effect of pressure on the metamagnetic transition of DyB 6 single crystal
NASA Astrophysics Data System (ADS)
Sakai, T.; Oomi, G.; Uwatoko, Y.; Kunii, S.
2007-03-01
The effects of pressure on the magnetization ( M) and the magnetostriction (MS) for DyB 6 single crystal have been measured at 4.2 K. It is found that the M loops are insensitive to pressure, whereas the large MS with magnitude of 0.5% at 5 T at ambient pressure is rapidly suppressed by applying pressure. The metamagnetic transition field HM in the M curve increases slightly by applying pressure with the rate of increase, ∂ ln HM/∂ P, of 0.03 GPa -1, which is almost the same value as that for TN, 0.04 GPa -1.
Polska, Elzbieta; Simader, Christian; Weigert, Günter; Doelemeyer, Arno; Kolodjaschna, Julia; Scharmann, Ole; Schmetterer, Leopold
2007-08-01
To test the hypothesis that human choroidal blood flow (ChBF) may depend, not only on ocular perfusion pressure (OPP), but also on absolute mean arterial pressure (MAP) and intraocular pressure (IOP). There were two study days in an open design. On the first day, OPP was varied by elevating IOP during a squatting-induced increase in MAP (28 subjects). On the second day, only the IOP was increased (17 subjects). IOP was raised in stepwise increments by using the suction cup Subfoveal ChBF (laser Doppler flowmetry), MAP, and IOP were assessed, and OPP was calculated as (2/3)(MAP - IOP). For correlation analysis, data from all subjects were pooled according to IOP and MAP, and correlation analyses were performed. When data from study day 1 were grouped according to IOP, no correlation was observed between ChBF and MAP; but ChBFs were lower, the higher the IOP (P < 0.001). When data were grouped according to MAP, a significant correlation was found between ChBF and IOP (P < 0.001), but correlations were independent of MAP. When data of study day 2 were pooled according to IOP, a correlation between ChBF and OPP was seen only at IOP > 40 mm Hg (P < 0.05). The data confirm previously published observations that the choroid shows some autoregulatory capacity during changes in OPP. In addition, the data indicate that the choroid regulates its blood flow better during exercise-induced changes in MAP than during an experimental increase in IOP.
Jamnongkan, Wassana; Thanan, Raynoo; Techasen, Anchalee; Namwat, Nisana; Loilome, Watcharin; Intarawichian, Piyapharom; Titapun, Attapol; Yongvanit, Puangrat
2017-07-01
Labile iron pool is a cellular source of ions available for Fenton reactions resulting in oxidative stress. Living organisms avoid an excess of free irons by a tight control of iron homeostasis. We investigated the altered expression of iron regulatory proteins and iron discrimination in the development of liver fluke-associated cholangiocarcinoma. Additionally, the levels of labile iron pool and the functions of transferrin receptor-1 on cholangiocarcinoma development were also identified. Iron deposition was determined using the Prussian blue staining method in human cholangiocarcinoma tissues. We investigated the alteration of iron regulatory proteins including transferrin, transferrin receptor-1, ferritin, ferroportin, hepcidin, and divalent metal transporter-1 in cholangiocarcinoma tissues using immunohistochemistry. The clinicopathological data of cholangiocarcinoma patients and the expressions of proteins were analyzed. Moreover, the level of intracellular labile iron pool in cholangiocarcinoma cell lines was identified by the RhoNox-1 staining method. We further demonstrated transferrin receptor-1 functions on cell proliferation and migration upon small interfering RNA for human transferrin receptor 1 transfection. Results show that Iron was strongly stained in tumor tissues, whereas negative staining was observed in normal bile ducts of healthy donors. Interestingly, high iron accumulation was significantly correlated with poor prognosis of cholangiocarcinoma patients. The expressions of iron regulatory proteins in human cholangiocarcinoma tissues and normal liver from cadaveric donors revealed that transferrin receptor-1 expression was increased in the cancer cells of cholangiocarcinoma tissues when compared with the adjacent normal bile ducts and was significantly correlated with cholangiocarcinoma metastasis. Labile iron pool level and transferrin receptor-1 expression were significantly increased in KKU-214 and KKU-213 when compared with cholangiocyte cells (MMNK1). Additionally, the suppression of transferrin receptor-1 expression significantly decreased intracellular labile iron pool, cholangiocarcinoma migration, and cell proliferation when compared with control media and control small interfering RNA. In Conclusion, high expression of transferrin receptor-1 resulting in iron uptake contributes to increase in the labile iron pool which plays roles in cholangiocarcinoma progression with aggressive clinical outcomes.
Liquid neon heat transfer as applied to a 30 tesla cryomagnet
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1975-01-01
A 30-tesla magnet design is studied which calls for forced convection liquid neon heat transfer in small coolant channels. The design also requires suppressing boiling by subjecting the fluid to high pressures through use of magnet coils enclosed in a pressure vessel which is maintained at the critical pressure of liquid neon. This high pressure reduces the possibility of the system flow instabilities which may occur at low pressures. The forced convection heat transfer data presented were obtained by using a blowdown technique to force the fluid to flow vertically through a resistance heated, instrumented tube.
Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer
NASA Technical Reports Server (NTRS)
Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas
2011-01-01
The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and test scale. The amplitude and frequency of oscillations varied considerably over the pump s operating space, making it difficult to predict blade loads.
Air Pressure, Humidity and Stroke Occurrence: A Systematic Review and Meta-Analysis.
Cao, Yongjun; Wang, Xia; Zheng, Danni; Robinson, Thompson; Hong, Daqing; Richtering, Sarah; Leong, Tzen Hugh; Salam, Abdul; Anderson, Craig; Hackett, Maree L
2016-07-05
An influence of climate upon stroke risk is biologically plausible and supported by epidemiological evidence. We aimed to determine whether air pressure (AP) and humidity are associated with hospital stroke admission. We searched MEDLINE, Embase, PsycINFO, CINAHL, Web of Science, and GEOBASE, from inception to 16 October 2015 to identify relevant population-based observational studies. Where possible, data were pooled for meta-analysis with odds ratios (OR) and corresponding 95% confidence intervals (CI) by means of the random-effect method. We included 11 studies with a total of 314,385 patients. The effect of AP was varied across studies for ischemic stroke (IS) and subarachnoid haemorrhage (SAH). Pooled ORs (95%CI) associated with 1 hPa increase in AP for the risk of IS, intracerebral hemorrhage (ICH) and SAH were 1.00 (0.99-1.01), 1.01 (0.99-1.02) and 1.02 (0.97-1.07) respectively. The pooled ORs (95%CI) associated with 1 percent increase in humidity for the risk of IS and ICH were 1.00 (1.00-1.01) and 1.00 (0.99-1.01) respectively. This review shows that there is no evidence of a relationship between AP or humidity and the occurrence of hospital admission for stroke. Further research is needed to clarify the extent and nature of any relationship between AP, humidity and stroke in different geographical areas.
Unusual pressure dependence of the multipolar interactions in CexLa1-xB6
NASA Astrophysics Data System (ADS)
Ikeda, S.; Umeo, K.; Tou, H.; Sera, M.; Iga, F.; Kunii, S.
We performed the mean field calculation of the magnetization under pressure for the four sublattice model to understand the unusual pressure effect of CeB6. The calculated results are in good agreement with the experimental results and the canted ferromagnetic ground state is predicted to appear at higher pressure. We studied the electrical resistivity of Ce0.75La0.25B6 under pressure. We found that the phase III is rapidly suppressed by pressure and T increases with pressure. At P=0.6 GPa, the direct phase transition from IV to II is found, which will be the clue to understanding the phase IV.
NASA Astrophysics Data System (ADS)
Choi, E. S.; Graf, D.; Brooks, J. S.; Yamada, J.; Tokumoto, M.
2004-04-01
We investigate the pressure-temperature phase diagram of β -(BDA-TTP){2}MCl{4} (M=Ga, Fe), which shows a metal-insulator (MI) transition around 120 K at ambient pressure. By applying pressure, the insulating phase is suppressed. When the pressure is higher than 5.5 kbar, the superconducting phase appears in both salts with Tc ˜ 3 K for M=Ga and 2.2 K for M=Fe. We also observed Shubnikov-de Haas (SdH) oscillations at high magnetic field in both salts, where the SdH frequencies are found to be very similar each other. Key words. organic superconductor, pressure, phase diagram.
ATR prohibits replication catastrophe by preventing global exhaustion of RPA.
Toledo, Luis Ignacio; Altmeyer, Matthias; Rask, Maj-Britt; Lukas, Claudia; Larsen, Dorthe Helena; Povlsen, Lou Klitgaard; Bekker-Jensen, Simon; Mailand, Niels; Bartek, Jiri; Lukas, Jiri
2013-11-21
ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.
Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing
NASA Astrophysics Data System (ADS)
Shi, Z.; Bonneville, S.; Krom, M. D.; Carslaw, K. S.; Jickells, T. D.; Baker, A. R.; Benning, L. G.
2010-11-01
We investigated the iron (Fe) dissolution kinetics of African (Tibesti) and Asian (Beijing) dust samples at acidic pH with the aim of reproducing the low pH conditions in atmospheric aerosols. The Beijing dust and three size fractions of the Tibesti dust (<20 μm: PM20; <10 μm: PM10; and <2.5 μm: PM2.5) were dissolved at pH 1, 2 and/or 3 for up to 1000 h. In the first 10 min, all dust samples underwent an extremely fast Fe solubilisation. Subsequently, the Fe dissolution proceeded at a much slower rate before reaching a stable dissolution plateau. The time-dependant Fe dissolution datasets were best described by a model comprising three acid-extractable Fe pools each dissolving according to first-order kinetics. The dissolution rate constant k of each pool was independent of the source (Saharan or Asian) and the size (PM20, PM10 or PM2.5) of the dust but highly dependent on pH. The "fast" Fe pool had a k (25 h-1 at pH=1) of a similar magnitude to "dry" ferrihydrite nanoparticles and/or poorly crystalline Fe(III) oxyhydroxide, while the "intermediate" and "slow" Fe pools had k values respectively 50-60 times and 3000-4000 times smaller than the "fast" pool. The "slow" Fe pool was likely to consist of both crystalline Fe oxide phases (i.e., goethite and/or hematite) and Fe contained in the clay minerals. The initial mass of the "fast", "intermediate" and "slow" Fe pools represented respectively about 0.5-2%, 1-3% and 15-40% of the total Fe in the dust samples. Furthermore, we showed that in systems with low dust/liquid ratios, Fe can be dissolved from all three phases, whereas at high dust/liquid ratios (e.g., in aerosols), sufficient Fe is solubilised from the "fast" phase to dominate the Fe dissolved and to suppress the dissolution of Fe from the other Fe pools. These data demonstrated that dust/liquid ratio and pH are fundamental parameters controlling Fe dissolution kinetics in the dust. In order to reduce errors in atmospheric and climate models, these fundamental controlling factors need to be included.
Effect of high hydrostatic pressure processing on in vitro digestion of milk proteins and fats
USDA-ARS?s Scientific Manuscript database
The use of high hydrostatic pressure processing (HPP) is increasing in popularity in the food industry. Its ability to modify milk proteins and fats suggests that it may be useful in creating foods that suppress appetite; however, its effect on the digestibility of proteins and fats is unclear. The...
Effect of sheath gas in atmospheric-pressure plasma jet for potato sprouting suppression
NASA Astrophysics Data System (ADS)
Nishiyama, S.; Monma, M.; Sasaki, K.
2016-09-01
Recently, low-temperature atmospheric-pressure plasma jets (APPJs) attract much interest for medical and agricultural applications. We try to apply APPJs for the suppression of potato sprouting in the long-term storage. In this study, we investigated the effect of sheath gas in APPJ on the suppression efficiency of the potato sprouting. Our APPJ was composed of an insulated thin wire electrode, a glass tube, a grounded electrode which was wound on the glass tube, and a sheath gas nozzle which was attached at the end of the glass tube. The wire electrode was connected to a rectangular-waveform power supply at a frequency of 3 kHz and a voltage of +/- 7 kV. Helium was fed through the glass tube, while we tested dry nitrogen, humid nitrogen, and oxygen as the sheath gas. Eyes of potatoes were irradiated by APPJ for 60 seconds. The sprouting probability was evaluated at two weeks after the plasma irradiation. The sprouting probability was 28% when we employed no sheath gases, whereas an improved probability of 10% was obtained when we applied dry nitrogen as the sheath gas. Optical emission spectroscopy was carried out to diagnose the plasma jet. It was suggested that reactive species originated from nitrogen worked for the efficient suppression of the potato sprouting.
Suppression of Helmholtz resonance using inside acoustic liner
NASA Astrophysics Data System (ADS)
Hong, Zhiliang; Dai, Xiwen; Zhou, Nianfa; Sun, Xiaofeng; Jing, Xiaodong
2014-08-01
When a Helmholtz resonator is exposed to grazing flow, an unstable shear layer at the opening can cause the occurrence of acoustic resonance under appropriate conditions. In this paper, in order to suppress the flow-induced resonance, the effects of inside acoustic liners placed on the side wall or the bottom of a Helmholtz resonator are investigated. Based on the one-dimensional sound propagation theory, the time domain impedance model of a Helmholtz resonator with inside acoustic liner is derived, and then combined with a discrete vortex model the resonant behavior of the resonator under grazing flow is simulated. Besides, an experiment is conducted to validate the present model, showing significant reduction of the peak sound pressure level achieved by the use of the side-wall liners. And the simulation results match reasonably well with the experimental data. The present results reveal that the inside acoustic liner can not only absorb the resonant sound pressure, but also suppress the fluctuation motion of the shear layer over the opening of the resonator. In all, the impact of the acoustic liners is to dampen the instability of the flow-acoustic coupled system. This demonstrates that it is a convenient and effective method for suppressing Helmholtz resonance by using inside acoustic liner.
High blood pressure and visual sensitivity
NASA Astrophysics Data System (ADS)
Eisner, Alvin; Samples, John R.
2003-09-01
The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.
NASA Astrophysics Data System (ADS)
Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning
2013-03-01
Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.
The Tropical Western Hemisphere Warm Pool
NASA Astrophysics Data System (ADS)
Wang, C.; Enfield, D. B.
2002-12-01
The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.
Active Control of Combustor Instability Shown to Help Lower Emissions
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Chang, Clarence T.
2002-01-01
In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would not be effective for control. Testing in the combustor rig showed that open-loop pulsing of the fuel was, in fact, able to effectively modulate the combustor pressure. To suppress the combustor pressure oscillations due to thermoacoustic instabilities, it is desirable to time the injection of the fuel so that it interferes with the instability. A closed-loop control scheme was developed that uses combustion pressure feedback and a phase-shifting controller to time the fuel-injection pulses. Some suppression of the pressure oscillations at the 280-Hz instability frequency was demonstrated (see the next figure). However, the overall peak-to- peak pressure oscillations in the combustor were only mildly reduced. Improvements to control hardware and control methods are being continued to gain improved closed-loop reduction of the pressure oscillations.pulse the fuel at
Molybdenum-copper and tungsten-copper alloys and method of making
Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.
1989-05-23
Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.
NASA Astrophysics Data System (ADS)
Tyagi, Shekhar; Sharma, Gaurav; Sathe, Vasant G.
2018-03-01
The competition and cooperation between ferroelectric and anti-ferro-distortion (AFD) instabilities are studied using pressure dependent Raman spectroscopy on polycrystalline powder samples of Sr1-x Ca x TiO3(x = 0.0, 0.06, 0.25, 0.35). For x = 0.0 composition, a broad polar mode is detected in the Raman spectra above 6 GPa, while for x = 0.06 composition, the polar modes appear well above 9 GPa where the AFD modes showed strong suppression. In x = 0.25 and 0.35 composition, the application of small pressure resulted in the appearance of strong AFD modes suppressing the polar modes. At elevated pressures, re-entrant polar modes are observed along with the broad AFD modes and some new peaks are also observed, signifying the lowering of local symmetry. The reappearance of polar modes is found to be related to pressure induced symmetry disorder at local level, suggesting its electronic origin. The re-entrant polar modes observed at higher pressure values are found to be significantly broad and asymmetric in nature, signifying the development of ferroelectric micro regions/nano domains coexisting with AFD. The lower symmetry at local length scale provides a conducive atmosphere for coexisting AFD and FE instabilities.
Nazikian, R; Paz-Soldan, C; Callen, J D; deGrassie, J S; Eldon, D; Evans, T E; Ferraro, N M; Grierson, B A; Groebner, R J; Haskey, S R; Hegna, C C; King, J D; Logan, N C; McKee, G R; Moyer, R A; Okabayashi, M; Orlov, D M; Osborne, T H; Park, J-K; Rhodes, T L; Shafer, M W; Snyder, P B; Solomon, W M; Strait, E J; Wade, M R
2015-03-13
Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal that reduces the perpendicular electron flow there to near zero. These events occur simultaneously with an increase in the inner-wall magnetic response. These observations are consistent with strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulations using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearinglike structures as the plasma transitions out of ELM suppression.
Nazikian, Raffi; Paz-Soldan, Carlos; Callen, James D.; ...
2015-03-12
Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal which reduces the perpendicular electron flow to near zero. These events occur simultaneously with an increase in the inner wall magnetic response. These observations are consistent strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulationsmore » using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearing-like structures as the plasma transitions out of ELM suppression.« less
Chai, Weiwen; Cooney, Robert V; Franke, Adrian A; Bostick, Roberd M
2013-09-01
To estimate the effects of calcium or vitamin D supplementation or a combination of both on blood pressure and serum lipid and carotenoid levels. Ninety-two colorectal adenoma patients were randomized in a pilot, double-blind, placebo-controlled clinical trial of supplemental vitamin D3 800 IU and elemental calcium 2.0 g (as calcium carbonate) alone or in combination in divided doses twice daily with meals over 6 months. Relative to placebo, mean serum triglycerides decreased 30% (P = .10) and 32% (P = .10) in the calcium and calcium plus vitamin D3 treatment groups, respectively. When the two calcium intervention groups were pooled and compared with the pooled noncalcium groups, the estimated supplemental calcium treatment effects were statistically significant for triglycerides (P = .04). Similar but nonstatistically significant decreases (5%-7%) were observed for serum total cholesterol levels. Mean systolic blood pressure increased 6% (P = .08) in the calcium group; otherwise, there were no appreciable changes in systolic or diastolic blood pressures in any active treatment group. Mean serum total carotenoid levels decreased 14% (P = .07) in the calcium and 9% (P = .10) in the calcium plus vitamin D3 groups. Our results suggest that supplemental calcium alone or combined with vitamin D3 but not vitamin D3 alone may reduce serum lipids and lipophilic micronutrients. Copyright © 2013 Elsevier Inc. All rights reserved.
Aeroacoustic Characteristics of a Rectangular Multi-Element Supersonic Jet Mixer-Ejector Nozzle
NASA Technical Reports Server (NTRS)
Raman, Ganesh; Taghavi, Ray
1996-01-01
This paper provides a unique, detailed evaluation of the acoustics and aerodynamics of a rectangular multi-element supersonic jet mixer-ejector noise suppressor. The performance of such mixer-ejectors is important in aircraft engine application for noise suppression and thrust augmentation. In contrast to most prior experimental studies on ejectors that reported either aerodynamic or acoustic data, our work documents both types of data. We present information on the mixing, pumping, ejector wall pressure distribution, thrust augmentation and noise suppression characteristics of four simple, multi-element, jet mixer-ejector configurations. The four configurations included the effect of ejector area ratio (AR = ejector area/primary jet area) and the effect of non-parallel ejector walls. We also studied in detail the configuration that produced the best noise suppression characteristics. Our results show that ejector configurations that produced the maximum maximum pumping (entrained flow per secondary inlet area) also exhibited the lowest wall pressures in the inlet region, and the maximum thrust augmentation. When cases having the same total mass flow were compared, we found that noise suppression trends corresponded with those for pumping. Surprisingly, the mixing (quantified by the peak Mach number, and flow uniformity) at the ejector exit exhibited no relationship to the noise suppression at moderate primary jet fully expanded Mach numbers (Mj is less than 1.4). However, the noise suppression dependence on the mixing was apparent at higher Mj. The above observations are justified by noting that the mixing at the ejector exit is ot a strong factor in determining the radiated noise when noise produced internal to the ejector dominates the noise field outside the ejector.
Off-Axis Driven Current Effects on ETB and ITB Formations based on Bifurcation Concept
NASA Astrophysics Data System (ADS)
Pakdeewanich, J.; Onjun, T.; Chatthong, B.
2017-09-01
This research studies plasma performance in fusion Tokamak system by investigating parameters such as plasma pressure in the presence of an edge transport barrier (ETB) and an internal transport barrier (ITB) as the off-axis driven current position is varied. The plasma is modeled based on the bifurcation concept using a suppression function that can result in formation of transport barriers. In this model, thermal and particle transport equations, including both neoclassical and anomalous effects, are solved simultaneously in slab geometry. The neoclassical coefficients are assumed to be constant while the anomalous coefficients depend on gradients of local pressure and density. The suppression function, depending on flow shear and magnetic shear, is assumed to affect only on the anomalous channel. The flow shear can be calculated from the force balance equation, while the magnetic shear is calculated from the given plasma current. It is found that as the position of driven current peak is moved outwards from the plasma center, the central pressure is increased. But at some point it stars to decline, mostly when the driven current peak has reached the outer half of the plasma. The higher pressure value results from the combination of ETB and ITB formations. The drop in central pressure occurs because ITB stats to disappear.
Morin, Manon; Ropers, Delphine; Letisse, Fabien; Laguerre, Sandrine; Portais, Jean-Charles; Cocaign-Bousquet, Muriel; Enjalbert, Brice
2016-05-01
Metabolic control in Escherichia coli is a complex process involving multilevel regulatory systems but the involvement of post-transcriptional regulation is uncertain. The post-transcriptional factor CsrA is stated as being the only regulator essential for the use of glycolytic substrates. A dozen enzymes in the central carbon metabolism (CCM) have been reported as potentially controlled by CsrA, but its impact on the CCM functioning has not been demonstrated. Here, a multiscale analysis was performed in a wild-type strain and its isogenic mutant attenuated for CsrA (including growth parameters, gene expression levels, metabolite pools, abundance of enzymes and fluxes). Data integration and regulation analysis showed a coordinated control of the expression of glycolytic enzymes. This also revealed the imbalance of metabolite pools in the csrA mutant upper glycolysis, before the phosphofructokinase PfkA step. This imbalance is associated with a glucose-phosphate stress. Restoring PfkA activity in the csrA mutant strain suppressed this stress and increased the mutant growth rate on glucose. Thus, the carbon storage regulator system is essential for the effective functioning of the upper glycolysis mainly through its control of PfkA. This work demonstrates the pivotal role of post-transcriptional regulation to shape the carbon metabolism. © 2016 John Wiley & Sons Ltd.
Sun, X; Shang, W; Wang, Z; Liu, X; Fang, X; Ke, M
2016-10-01
This study investigated the effectiveness of diaphragm biofeedback training (DBT) for patients with gastroesophageal reflux disease (GERD). A total of 40 patients with GERD treated at the Peking Union Medical College Hospital between September 2004 and July 2006 were randomized to receive DBT and rabeprazole proton pump inhibitor (PPI) or rabeprazole alone. The DBT + rabeprazole group received DBT during the 8-week initial treatment; the rabeprazole group did not. During the 6-month follow up, all patients took acid suppression according to their reflux symptoms, and the patients in the DBT + rabeprazole group were required to continue DBT. The primary outcome (used for power analysis) was the amount of acid suppression used at 6 months. Secondary outcomes were reflux symptoms, health-related quality of life (HRQL), and esophageal motility differences after the 8-week treatment compared with baseline. Acid suppression usage significantly decreased in the DBT + rabeprazole group compared with the rabeprazole group at 6 months (P < 0.05). At 8 weeks, reflux symptoms and GERD-HRQL were significantly improved in both groups (P < 0.05), without difference between them. Crural diaphragm tension (CDT) and gastroesophageal junction pressure (GEJP) significantly increased in the DBT + rabeprazole group (P < 0.05), but without change in lower esophageal sphincter (LES) pressure. There was no significant change in CDT, GEJP, and LES pressure compared with baseline in the rabeprazole group. In conclusion, long-term DBT could reduce acid suppression usage by enhancing the anti-reflux barrier, providing a non-pharmacological maintenance therapy and reducing medical costs for patients with GERD. © 2015 International Society for Diseases of the Esophagus.
36 CFR 9.41 - Operating standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., all high pressure facilities, fences shall be built for protection of unit visitors and wildlife, and... feet of the banks of perennial, intermittent or ephemeral watercourses; or within 500 feet of the high pool shoreline of natural or man-made impoundments; or within 500 feet of the mean high tideline; or...
Another Brick in the Wall? Increased Challenges Face the Physical Campus
ERIC Educational Resources Information Center
Kadamus, James A.
2014-01-01
Presidents, trustees, and senior administrators at New England colleges and universities all feel the pressures: keep tuition down, be competitive academically, and make sure the physical campus draws talent from a shrinking pool of traditional high school graduates and new nontraditional students. Given resource limitations, something's got to…
Determinants of Successful Internationalisation Processes in Business Schools
ERIC Educational Resources Information Center
Bradford, Henry; Guzmán, Alexander; Trujillo, María-Andrea
2017-01-01
We analyse the internationalisation process in business schools as a response to the globalisation phenomena and argue that environmental pressures, isomorphic forces, the pool of internal resources and the alignment of the process with the institution's general strategic plan are the main determinants of a successful internationalisation process.…
Podgórska, Anna; Borysiuk, Klaudia; Tarnowska, Agata; Jakubiak, Monika; Burian, Maria; Rasmusson, Allan G.
2018-01-01
Environmental stresses, including ammonium (NH4+) nourishment, can damage key mitochondrial components through the production of surplus reactive oxygen species (ROS) in the mitochondrial electron transport chain. However, alternative electron pathways are significant for efficient reductant dissipation in mitochondria during ammonium nutrition. The aim of this study was to define the role of external NADPH-dehydrogenase (NDB1) during oxidative metabolism of NH4+-fed plants. Most plant species grown with NH4+ as the sole nitrogen source experience a condition known as “ammonium toxicity syndrome”. Surprisingly, transgenic Arabidopsis thaliana plants suppressing NDB1 were more resistant to NH4+ treatment. The NDB1 knock-down line was characterized by milder oxidative stress symptoms in plant tissues when supplied with NH4+. Mitochondrial ROS accumulation, in particular, was attenuated in the NDB1 knock-down plants during NH4+ treatment. Enhanced antioxidant defense, primarily concerning the glutathione pool, may prevent ROS accumulation in NH4+-grown NDB1-suppressing plants. We found that induction of glutathione peroxidase-like enzymes and peroxiredoxins in the NDB1-surpressing line contributed to lower ammonium-toxicity stress. The major conclusion of this study was that NDB1 suppression in plants confers tolerance to changes in redox homeostasis that occur in response to prolonged ammonium nutrition, causing cross tolerance among plants. PMID:29747392
Chemical Pressure Effects in Layered Manganites
NASA Astrophysics Data System (ADS)
Moritomo, Yutaka; Maruyama, Yousuke; Nakamura, Arao
1998-03-01
Lattice effects on the magnetic and transport properties have been investigated for layered-type doped mangaites. The insulator-to-metal transition temperature for La_1.2Sr_1.8Mn_2O7 (T_C=130 K) is significantly suppressed with chemical substitution of the trivalent La^3+ ions to smaller Nd^3+ (or Sm^3+) ions(Y. Moritomo et al), Phys. Rev. B56(1997)R7057. Similarly, the charge-ordering temperature for La_0.5Sr_1.5MnO4 (T_CO=230 K) is suppresses with chemical substitution(Y. Moritomo et al), Phys. Rev. B56, in press. Systematic x-ray as well as neutron diffraction measurements have revealed that above chemical pressure enhances the static Jahn-Teller distortion of the MnO6 octahedra in both the system. We will explain the suppressions of TC and T_CO in terms of the increasing d_3z^2-r^2 character in the occupied eg state. Our observation indicates that the chemical pressure effects are qualitatively different between the cubic and layered manganites systems. The authors are grateful to K. Ohoyama and M. Ohashi for their help in neutron diffraction measurements, and to S. Mori for his help in electron diffraction measurements. This work was supported by a Grant-In-Aid for Scientific Research from the Ministry of Education, Science, Sport and Culture and from PRESTO, Japan Scienece and Technology Corporation (JST), Japan.
Miyazawa, Hidenobu; Yamaguchi, Yoshifumi; Sugiura, Yuki; Honda, Kurara; Kondo, Koki; Matsuda, Fumio; Yamamoto, Takehiro; Suematsu, Makoto; Miura, Masayuki
2017-01-01
Adapting the energy metabolism state to changing bioenergetic demands is essential for mammalian development accompanying massive cell proliferation and cell differentiation. However, it remains unclear how developing embryos meet the changing bioenergetic demands during the chorioallantoic branching (CB) stage, when the maternal-fetal exchange of gases and nutrients is promoted. In this study, using metabolome analysis with mass-labeled glucose, we found that developing embryos redirected glucose carbon flow into the pentose phosphate pathway via suppression of the key glycolytic enzymes PFK-1 and aldolase during CB. Concomitantly, embryos exhibited an increase in lactate pool size and in the fractional contribution of glycolysis to lactate biosynthesis. Imaging mass spectrometry visualized lactate-rich tissues, such as the dorsal or posterior neural tube, somites and head mesenchyme. Furthermore, we found that the heterochronic gene Lin28a could act as a regulator of the metabolic changes observed during CB. Perturbation of glucose metabolism rewiring by suppressing Lin28a downregulation resulted in perinatal lethality. Thus, our work demonstrates that developing embryos rewire glucose metabolism following CB for normal development. © 2017. Published by The Company of Biologists Ltd.
Forced synchronization and asynchronous quenching in a thermo-acoustic system
NASA Astrophysics Data System (ADS)
Mondal, Sirshendu; Pawar, Samadhan A.; Sujith, Raman
2017-11-01
Forced synchronization, which has been extensively studied in theory and experiments, occurs through two different mechanisms known as phase locking and asynchronous quenching. The latter indicates the suppression of oscillation amplitude. In most practical combustion systems such as gas turbine engines, the main concern is high amplitude pressure oscillations, known as thermo-acoustic instability. Thermo-acoustic instability is undesirable and needs to be suppressed because of its damaging consequences to an engine. In the present study, a systematic experimental investigation of forced synchronization is performed in a prototypical thermo-acoustic system, a Rijke tube, in its limit cycle operation. Further, we show a qualitatively similar behavior using a reduced order model. In the phase locking region, the simultaneous occurrence of synchronization and resonant amplification leads to high amplitude pressure oscillations. However, a reduction in the amplitude of natural oscillations by about 78% of the unforced amplitude is observed when the forcing frequency is far lower than the natural frequency. This shows the possibility of suppression of the oscillation amplitude through asynchronous quenching in thermo-acoustic systems.
Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach
NASA Technical Reports Server (NTRS)
Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.
2003-01-01
"Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.
Enhancement of Helium exhaust by resonant magnetic perturbations in DIII-D
NASA Astrophysics Data System (ADS)
Hinson, E. T.; Schmitz, O.; Collins, C.; Paz-Soldan, C.; Bykov, I.; Moyer, R. A.; Unterberg, E. A.; Briesemeister, A.; McLean, A. G.; Watkins, J.; Wang, H.
2017-10-01
Clear evidence of enhanced He exhaust during RMP ELM suppression has been obtained for the first time in a series of lower single null H-mode discharges with and without RMP in DIII-D. During RMP, reduced midplane He density measurements from CER and faster neutral He decay times after a 100ms He puff provided evidence for faster outward transport. Additionally, during RMP, neutral He pressure in the lower pumping plenum increased, while D2 pressure was similar to the no RMP case. A spectrometer viewing the divertor shelf in the scrape off layer measured consistently increased He-I light during RMP ELM suppression. These two measurements indicate an improved retention of He in the unconfined region, which is important for enhanced He removal. Consequently, the effective helium confinement time, τ*p,He, measured for conditions in this work was reduced by >35% when RMP ELM suppression was obtained. Work supported by US DOE DE-FC02-04ER54698, DE-SC00013911, DE-FG02-07ER54917, DE-AC52-07NA27344, DE-AC05-00OR22725, DE-AC04-94AL85000.
Processes Leading to Beaded Channels Formation in Central Yakutia
NASA Astrophysics Data System (ADS)
Tarbeeva, A. M.; Lebedeva, L.; Efremov, V. S.; Krylenko, I. V.; Surkov, V. V.
2017-12-01
Beaded channels, consisting of deepened and widened pools and connecting narrow runs, are common fluvial forms in permafrost regions. Recent studies have shown that beaded channels are very important for connecting alluvial rivers with headwater lakes allowing fish passage and foraging habitats, as well as regulating river runoff. Beaded channels are known as typical thermokarst landforms; however, there is no evidence of their origin and formative processes. Geomorphological analyzes of beaded channels have been completed in several permafrost regions including field observations of Shestakovka River in Central Yakutia. The study aims to recognize the modern exogenic processes and formative mechanisms of beaded river channels. We show that beaded channel of Shestakovka River form in the perennially frozen sand with low ice content, leading us to hypothesize that thermokarst is not the main process of formation. Due to the significant volume of water, the pools don't freeze over entirely during winters, even under harsh climatic conditions. As a result, lenses of pressurized water remain under surface ice underlain by perennially thawed sediments. The presence of thawed sediments under the pools and frozen sediments under the runs leads to uneven thermoerosion of the riverbed during floods, providing the beaded form of the channel. In addition, freezing of pools during winter leads to pressure increasing under ice cover and formation of ice mounds, which crack several times during winter leading to disturbance of riverbanks. Many 1st to 3rd order streams have a specific transitional meandering-to-beaded form resembling the shape of unconfined meandering rivers, but consisting of pools and runs. However, such channels exhibit no evidences of present-day erosion of concave banks and sediment accumulation at the convex banks as typically being observed in normally meandering rivers. Such forms of channels indicates that their formation occurred by the greater channel-forming flow discharges in the past. Transition to the beaded channel planform took place only later, presumably as a result of climate changes. Reduction of water runoff and freezing over of taliks leaded to activation of cryogenic processes (thermokarst, uneven thermoerosion, disturbance of riverbanks during the cracking of ice mounds).
Fire Suppression by Halon 2402, Volume 1
1987-10-01
Department of Environmental Medicine , The Medical College of Wisconsin, July 1973. 34. Gaydos, J. C., Colonel, MC, Director, Occupational and...ejected as a liquid ), better fuel- nerting capacity (lower vapor pressure). and improved flame suppression (possibly resulting \\from the presence of...of 0.05, 0.10, 0.20, and 0.25 inch; Velocity of 45 ft/s; Ambient Temperature of 70 OF; Liquid Temperature of 50 OF; and Initial Angle of 0 Degrees
Suppression of extraneous thermal noise in cavity optomechanics.
Zhao, Yi; Wilson, Dalziel J; Ni, K-K; Kimble, H J
2012-02-13
Extraneous thermal motion can limit displacement sensitivity and radiation pressure effects, such as optical cooling, in a cavity-optomechanical system. Here we present an active noise suppression scheme and its experimental implementation. The main challenge is to selectively sense and suppress extraneous thermal noise without affecting motion of the oscillator. Our solution is to monitor two modes of the optical cavity, each with different sensitivity to the oscillator's motion but similar sensitivity to the extraneous thermal motion. This information is used to imprint "anti-noise" onto the frequency of the incident laser field. In our system, based on a nano-mechanical membrane coupled to a Fabry-Pérot cavity, simulation and experiment demonstrate that extraneous thermal noise can be selectively suppressed and that the associated limit on optical cooling can be reduced.
Molybdenum-copper and tungsten-copper alloys and method of making
Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.
1989-05-23
Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquefying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper. 6 figs.
The US Navy/Canadian DCIEM research initiative on pressure breathing physiology
NASA Technical Reports Server (NTRS)
Whitley, Phillip E.
1994-01-01
Development of improved positive pressure breathing garments for altitude and acceleration protection has occurred without collection of sufficient physiological data to understand the mechanisms of the improvement. Furthermore, modeling of the predicted response of future enhanced garments is greatly hampered by this lack of information. A joint, international effort is under way between Canada's Defense and Civil Institute for Environmental Medicine (DCIEM) and the US Navy's Naval Air Warfare Center Aircraft Division, Warminster (NAWCACDIVWAR). Using a Canadian subject pool, experiments at both the DCIEM altitude facility and the NAWCADIVWAR Dynamic Flight Simulator have been conducted to determine the cardiovascular and respiratory consequences of high levels of positive pressure breathing for altitude and positive pressure breathing for acceleration protection. Various improved pressure breathing garments were used to collect comparative physiological and performance data. New pressure breathing level and durahon capabilities have been encountered. Further studies will address further improvements in pressure suit design and correlation of altitude and acceleration data.
Crack-free conditions in welding of glass by ultrashort laser pulse.
Miyamoto, Isamu; Cvecek, Kristian; Schmidt, Michael
2013-06-17
The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field.
Innovations in cardiac transplantation.
Hasan, Reema; Ela, Ashraf Abou El; Goldstein, Daniel
2017-03-16
As the number of people living with heart failure continues to grow, future treatments will focus on efficient donor organ donation and ensuring safe and durable outcomes. This review will focus on organ procurement, graft surveillance and emerging therapies. Preliminary studies into donation after cardiac death have indicated that this may be an effective means to increase the donor pool. Novel preservation techniques that include ex-vivo perfusion to improve donor metabolic stabilization prior to implantation may also expand the donor pool. Biomarkers, including circulating-free DNA, are emerging that could replace the endomyocardial biopsy for acute graft rejection, but we lack a risk predictive biomarker in heart transplantation. Novel immune suppressants are being investigated. Emerging therapeutics to reduce the development of chronic allograft vasculopathy are yet to be found. This review highlights the most recent studies and future possible therapies that will improve outcomes in cardiac transplantation. Larger clinical trials are currently taking place and will be needed in the future to develop and sustain current trends toward better survival rates with cardiac transplantation.
Active noise control using a steerable parametric array loudspeaker.
Tanaka, Nobuo; Tanaka, Motoki
2010-06-01
Arguably active noise control enables the sound suppression at the designated control points, while the sound pressure except the targeted locations is likely to augment. The reason is clear; a control source normally radiates the sound omnidirectionally. To cope with this problem, this paper introduces a parametric array loudspeaker (PAL) which produces a spatially focused sound beam due to the attribute of ultrasound used for carrier waves, thereby allowing one to suppress the sound pressure at the designated point without causing spillover in the whole sound field. First the fundamental characteristics of PAL are overviewed. The scattered pressure in the near field contributed by source strength of PAL is then described, which is needed for the design of an active noise control system. Furthermore, the optimal control law for minimizing the sound pressure at control points is derived, the control effect being investigated analytically and experimentally. With a view to tracking a moving target point, a steerable PAL based upon a phased array scheme is presented, with the result that the generation of a moving zone of quiet becomes possible without mechanically rotating the PAL. An experiment is finally conducted, demonstrating the validity of the proposed method.
Flutter suppression digital control law design and testing for the AFW wind tunnel model
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1994-01-01
The design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind-tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory, and it also involved control law order reduction, a gain root-locus study, and use of previous experimental results. A 23 percent increase in the open-loop flutter dynamic pressure was demonstrated during the wind-tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.
Flutter suppression digital control law design and testing for the AFW wind tunnel model
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1992-01-01
Design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory, and involved control law order reduction, a gain root-locus study and use of previous experimental results. A 23 percent increase in the open-loop flutter dynamic pressure was demonstrated during the wind tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.
Flutter suppression digital control law design and testing for the AFW wind-tunnel model
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1992-01-01
Design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a string mounted fixed-in-roll aeroelastic wind tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory and involved control law order reduction, a gain root-locus study, and the use of previous experimental results. A 23 percent increase in open-loop flutter dynamic pressure was demonstrated during the wind tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.
Impact of Dobutamine in Patients With Septic Shock: A Meta-Regression Analysis.
Nadeem, Rashid; Sockanathan, Shivani; Singh, Mukesh; Hussain, Tamseela; Kent, Patrick; AbuAlreesh, Sarah
2017-05-01
Septic shock frequently requires vasopressor agents. Conflicting evidence exists for use of inotropes in patients with septic shock. Data from English studies on human adult septic shock patients were collected. A total of 83 studies were reviewed, while 11 studies with 21 data sets including 239 patients were pooled for meta-regression analysis. For VO2, pooled difference in means (PDM) was 0.274. For cardiac index (CI), PDM was 0.783. For delivery of oxygen, PDM was -0.890. For heart rate, PDM was -0.714. For left ventricle stroke work index, PDM was 0.375. For mean arterial pressure, PDM was -0.204. For mean pulmonary artery pressure, PDM was 0.085. For O2 extraction, PDM was 0.647. For PaCO2, PDM was -0.053. For PaO2, PDM was 0.282. For pulmonary artery occlusive pressure, PDM was 0.270. For pulmonary capillary wedge pressure, PDM was 0.300. For PVO2, PDM was -0.492. For right atrial pressure, PDM was 0.246. For SaO2, PDM was 0.604. For stroke volume index, PDM was 0.446. For SvO2, PDM was -0.816. For systemic vascular resistance, PDM was -0.600. For systemic vascular resistance index, PDM was 0.319. Meta-regression analysis was performed for VO2, DO2, CI, and O2 extraction. Age was found to be significant confounding factor for CI, DO2, and O2 extraction. APACHE score was not found to be a significant confounding factor for any of the parameters. Dobutamine seems to have a positive effect on cardiovascular parameters in patients with septic shock. Prospective studies with larger samples are required to further validate this observation.
Role of NO in the control of choroidal blood flow during a decrease in ocular perfusion pressure.
Simader, Christian; Lung, Solveig; Weigert, Günther; Kolodjaschna, Julia; Fuchsjäger-Mayrl, Gabriele; Schmetterer, Leopold; Polska, Elzbieta
2009-01-01
The study was conducted to investigate whether the L-arginine/nitric oxide system plays a role in choroidal blood flow (ChBF) regulation during a decrease in ocular perfusion pressure (OPP). Experiments were performed on 3 days in a randomized double-masked, placebo-controlled, three-way crossover design. On different study days, subjects received intravenous infusions of N(G)-monomethyl-L-arginine (L-NMMA), phenylephrine, or placebo. Intraocular pressure was raised in stepwise increments using the suction cup Choroidal blood flow (ChBF, laser Doppler flowmetry), mean arterial blood pressure (MAP), and IOP were assessed. Ocular perfusion pressure was calculated as OPP = 23(MAP - IOP). For correlation analysis all OPP/ChBF data pairs from all subjects were pooled independent of time point of measurement. Then, the pooled data were sorted according to OPP, and correlation analyses were performed. L-NMMA and phenylephrine increased resting OPP by +17% +/- 18% and +14% +/- 21%, respectively (P < 0.05). L-NMMA reduced resting ChBF by -21% +/- 17% (P < 0.05). The relative decrease in OPP during suction cup application was comparable with all drugs administered. The decrease in OPP was paralleled by a significant decrease in ChBF (maximum between -39% and -47%), which was less pronounced, however, than the decrease in OPP (maximum between -69% and -74%). Neither placebo nor L-NMMA, nor phenylephrine, influenced the OPP/ChBF relationship. The data confirm previously published observations that the choroid shows some regulatory capacity during reduced OPP. The L-arginine/nitric oxide-system plays a role in the maintenance of basal vascular tone but seems not to be involved in the choroidal vasodilator response when IOP is increased.
Cardiovascular regulatory response to lower body negative pressure following blood volume loss
NASA Technical Reports Server (NTRS)
Shimizu, M.; Ghista, D. N.; Sandler, H.
1979-01-01
An attempt is made to explain the cardiovascular regulatory responses to lower body negative pressure (LBNP) stress, both in the absence of and following blood or plasma volume loss, the latter being factors regularly observed with short- or long-term recumbency or weightlessness and associated with resulting cardiovascular deconditioning. Analytical expressions are derived for the responses of mean venous pressure and blood volume pooled in the lower body due to LBNP. An analysis is presented for determining the HR change due to LBNP stress following blood volume loss. It is concluded that the reduced orthostatic tolerance following long-term space flight or recumbency can be mainly attributed to blood volume loss, and that the associated cardiovascular responses characterizing this orthostatic intolerance is elicited by the associated central venous pressure response.
Involvement of the raphe in the respiratory effects of gigantocellular area activation.
Richard, C A; Stremel, R W
1990-07-01
Previous reports indicate that the nucleus reticularis gigantocellularis (NGC) of the brainstem reticular formation is involved in inhibitory respiratory and cardiovascular reflexes. Stimulation of portions of the nearby bulbar raphe complex, specifically the raphe magnus (RM), have also been shown to suppress phrenic activity and to decrease blood pressure and heart rate. Since synaptic connectivity between the NGC and the RM has been demonstrated, we hypothesized that the RM may be involved in the cardiopulmonary effects of NGC stimulation. This study found that electrolytic lesions in the raphe magnus attenuated the inhibitory respiratory effects but not the cardiovascular suppression due to NGC stimulation. Lesions in the raphe magnus also lowered resting blood pressure and resting breath frequency. We conclude that the RM may mediate part of the NGC-mediated respiratory effects.
Characteristics of Mesoscale Organization in WRF Simulations of Convection during TWP-ICE
NASA Technical Reports Server (NTRS)
Del Genio, Anthony D.; Wu, Jingbo; Chen, Yonghua
2013-01-01
Compared to satellite-derived heating profiles, the Goddard Institute for Space Studies general circulation model (GCM) convective heating is too deep and its stratiform upper-level heating is too weak. This deficiency highlights the need for GCMs to parameterize the mesoscale organization of convection. Cloud-resolving model simulations of convection near Darwin, Australia, in weak wind shear environments of different humidities are used to characterize mesoscale organization processes and to provide parameterization guidance. Downdraft cold pools appear to stimulate further deep convection both through their effect on eddy size and vertical velocity. Anomalously humid air surrounds updrafts, reducing the efficacy of entrainment. Recovery of cold pool properties to ambient conditions over 5-6 h proceeds differently over land and ocean. Over ocean increased surface fluxes restore the cold pool to prestorm conditions. Over land surface fluxes are suppressed in the cold pool region; temperature decreases and humidity increases, and both then remain nearly constant, while the undisturbed environment cools diurnally. The upper-troposphere stratiform rain region area lags convection by 5-6 h under humid active monsoon conditions but by only 1-2 h during drier break periods, suggesting that mesoscale organization is more readily sustained in a humid environment. Stratiform region hydrometeor mixing ratio lags convection by 0-2 h, suggesting that it is strongly influenced by detrainment from convective updrafts. Small stratiform region temperature anomalies suggest that a mesoscale updraft parameterization initialized with properties of buoyant detrained air and evolving to a balance between diabatic heating and adiabatic cooling might be a plausible approach for GCMs.
Condensation of vapor bubble in subcooled pool
NASA Astrophysics Data System (ADS)
Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.
2017-02-01
We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.
Induced defences in an endangered amphibian in response to an introduced snake predator.
Moore, Robin D; Griffiths, Richard A; O'Brien, Cliona M; Murphy, Adam; Jay, David
2004-09-01
Introduced species have contributed significantly to the extinction of endemic species on islands. They also create new selection pressures on their prey that may result in modified life history strategies. Introduced viperine snakes ( Natrix maura) have been implicated in the decline of the endemic midwife toad of Mallorca ( Alytes muletensis). A comparison of A. muletensis tadpoles in natural pools with and without snakes showed that those populations subject to snake predation possessed longer tails with narrower tail fins but deeper tail muscles. Field and laboratory experiments showed that these changes in tail morphology could be induced by chemical and tactile cues from snakes. Populations of tadpoles that were subject to snake predation also displayed clear bimodal size-frequency distributions, with intermediate-sized tadpoles missing from the pools completely. Tadpoles in pools frequented by snakes developed faster in relation to their body size than those in pools without snakes. Variation in morphology between toad populations may therefore be caused by a combination of size-selective predation and tadpole plasticity. The results of this study indicate that the introduction of alien species can result in selection for induced defences, which may facilitate coexistence between predator and prey under certain conditions.
Lei, Qiang; Lv, Yunhui; Li, Kai; Ma, Lei; Du, Guodong; Xiang, Yan; Li, Xuqing
2017-01-01
ABSTRACT Objective: To evaluate systematically the effects of continuous positive airway pressure (CPAP) on blood pressure in patients with resistant hypertension and obstructive sleep apnea (OSA). Methods: The Cochrane Library, PubMed, ScienceDirect, and the Web of Science were searched for studies investigating the effects of CPAP on blood pressure in patients with resistant hypertension and OSA. The selected studies underwent quality assessment and meta-analysis, as well as being tested for heterogeneity. Results: Six randomized controlled trials were included in the meta-analysis. The pooled estimates of the changes in mean systolic blood pressure and mean diastolic blood pressure (as assessed by 24-h ambulatory blood pressure monitoring) were −5.40 mmHg (95% CI: −9.17 to −1.64; p = 0.001; I2 = 74%) and −3.86 mmHg (95% CI: −6.41 to −1.30; p = 0.00001; I2 = 79%), respectively. Conclusions: CPAP therapy can significantly reduce blood pressure in patients with resistant hypertension and OSA. PMID:28767770
Study on Surface Depression of Ti-6Al-4V with Ultrahigh-Frequency Pulsed Gas Tungsten Arc Welding
NASA Astrophysics Data System (ADS)
Mingxuan, Yang; Zhou, Yang; Bojin, Qi
2015-08-01
Molten pool surface depression was observed with the arc welding process that was caused by arc pressure. It was supposed to have a significant effect on fluid in the molten pool that was important for the microstructure and joint properties. The impact of arc force was recognized as the reason for the surface depression during arc welding. The mathematical distribution of arc force was produced with the exponent and parabola models. Different models showed different concentrations and attenuations. The comparison between them was discussed with the simulation results. The volume of fluid method was picked up with the arc force distribution model. The surface depression was caused by the arc force. The geometry of the surface depression was discussed with liquid metal properties. The welding process was carried out with different pulsed frequencies. The results indicated the forced depression exists in molten pool and the geometry of depression was hugely due to the arc force distribution. The previous work calculated the depression in the center with force balance at one point. The other area of gas shielding was resistant by the reverse gravity from the feedback of liquid metal that was squeezed out. The article discusses the pressure effect with free deformation that allowed resistance of liquid and was easy to compare with different distributions. The curve profiles were studied with the arc force distributions, and exponent model was supposed to be more accurate to the as-weld condition.
The Boiling eXperiment Facility (BXF) for the Microgravity Science Glovebox (MSG)
NASA Technical Reports Server (NTRS)
McQuillen, John; Chao, David; Vergilii, Frank
2006-01-01
Boiling is an effective means of cooling by removing heat from surfaces through vaporization of a working fluid. It is also affected by both the magnitude and direction of gravity. By conducting pool boiling tests in microgravity, the effect of buoyancy n the overall boiling process and the relative magnitude of other phenomena can be assessed. The Boiling eXperiment Facility (BXF) is being built for the Microgravity Science Glovebox. This facility will conduct two pool boiling studies. The first study the Microheater Array Boiling Experiment (MABE) uses two 96 element microheater arrays, 2.7 mm and 7.0 mm in size, to measure localized hear fluxes while operating at a constant temperature. The other experiment, the Nucleate Pool Boiling eXperiment (NPBX) uses a 85 mm diameter heater wafer that has been "seeded" with five individually-controlled nucleation sites to study bubble nucleation, growth, coalescence and departure. The BXF uses normal-perfluorohexane as the test fluid and will operate between pressures of 60 to 244 Pa. and temperatures of 35 to 60 C. Both sets of experimental heaters are highly instrumented. Pressure and bulk fluid temperature measurements will be made with standard rate video. A high speed video system will be used to visualize the boiling process through the bottom of the MABE heater arrays. The BXF is currently scheduled to fly on Utilization Flight-13A.1 to the ISS with facility integration into the MSG and operation during Increment 15
Particulate-matter content of 11 cephalosporin injections: conformance with USP limits.
Parkins, D A; Taylor, A J
1987-05-01
The particulate-matter content of 11 dry-powder cephalosporin injections was determined using a modified version of the official United States Pharmacopeial Convention (USP) method for particulate matter in small-volume injections (SVIs). Ten vials of each cephalosporin product were each constituted with 10 mL of Water for Injections BP that had been filtered through a 0.22-micron membrane. The pooled contents of the 10 vials for each product were allowed to stand under reduced pressure to ensure removal of gas bubbles. Particulate-matter content was determined using a HIAC/Royco particle counter on six 10-mL samples obtained from the pooled solutions for each product. All solution preparation and particle counting was performed in a horizontal-laminar-airflow hood. Modifications of the USP method used in this study included the use of six rather than two samples from each pooled solution, the addition of diluent to the injections through the rubber closure with a needle instead of into the open container, and changes in the degassing method. Particle counts for all products examined were lower than USP limits for SVIs. All but two products contained less than 15% of USP limits for particles greater than or equal to 10 microns in effective diameter and particles greater than or equal to 25 microns in effective diameter. The standard USP method for degassing (standing for two minutes) was inadequate. Application of reduced pressure for up to 10 minutes was necessary for thorough degassing of products.(ABSTRACT TRUNCATED AT 250 WORDS)
Air Pressure, Humidity and Stroke Occurrence: A Systematic Review and Meta-Analysis
Cao, Yongjun; Wang, Xia; Zheng, Danni; Robinson, Thompson; Hong, Daqing; Richtering, Sarah; Leong, Tzen Hugh; Salam, Abdul; Anderson, Craig; Hackett, Maree L.
2016-01-01
Background/Aims: An influence of climate upon stroke risk is biologically plausible and supported by epidemiological evidence. We aimed to determine whether air pressure (AP) and humidity are associated with hospital stroke admission. Methods: We searched MEDLINE, Embase, PsycINFO, CINAHL, Web of Science, and GEOBASE, from inception to 16 October 2015 to identify relevant population-based observational studies. Where possible, data were pooled for meta-analysis with odds ratios (OR) and corresponding 95% confidence intervals (CI) by means of the random-effect method. Results: We included 11 studies with a total of 314,385 patients. The effect of AP was varied across studies for ischemic stroke (IS) and subarachnoid haemorrhage (SAH). Pooled ORs (95%CI) associated with 1 hPa increase in AP for the risk of IS, intracerebral hemorrhage (ICH) and SAH were 1.00 (0.99–1.01), 1.01 (0.99–1.02) and 1.02 (0.97–1.07) respectively. The pooled ORs (95%CI) associated with 1 percent increase in humidity for the risk of IS and ICH were 1.00 (1.00–1.01) and 1.00 (0.99–1.01) respectively. Conclusion: This review shows that there is no evidence of a relationship between AP or humidity and the occurrence of hospital admission for stroke. Further research is needed to clarify the extent and nature of any relationship between AP, humidity and stroke in different geographical areas. PMID:27399733
Performance Evaluation of Pressure Transducers for Water Impacts
NASA Technical Reports Server (NTRS)
Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean
2012-01-01
The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.
Coating Thermoelectric Devices To Suppress Sublimation
NASA Technical Reports Server (NTRS)
Sakamoto, Jeffrey; Caillat, Thierry; Fleurial, Jean-Pierre; Snyder, G. Jeffrey
2007-01-01
A technique for suppressing sublimation of key elements from skutterudite compounds in advanced thermoelectric devices has been demonstrated. The essence of the technique is to cover what would otherwise be the exposed skutterudite surface of such a device with a thin, continuous film of a chemically and physically compatible metal. Although similar to other sublimation-suppression techniques, this technique has been specifically tailored for application to skutterudite antimonides. The primary cause of deterioration of most thermoelectric materials is thermal decomposition or sublimation - one or more elements sublime from the hot side of a thermoelectric couple, changing the stoichiometry of the device. Examples of elements that sublime from their respective thermoelectric materials are Ge from SiGe, Te from Pb/Te, and now Sb from skutterudite antimonides. The skutterudite antimonides of primary interest are CoSb3 [electron-donor (n) type] and CeFe(3-x)Co(x)Sb12 [electron-acceptor (p) type]. When these compounds are subjected to typical operating conditions [temperature of 700 C and pressure <10(exp -5) torr (0.0013 Pa)], Sb sublimes from their surfaces, with the result that Sb depletion layers form and advance toward their interiors. As the depletion layer advances in a given device, the change in stoichiometry diminishes the thermal-to-electric conversion efficiency of the device. The problem, then, is to prevent sublimation, or at least reduce it to an acceptably low level. In preparation for an experiment on suppression of sublimation, a specimen of CoSb3 was tightly wrapped in a foil of niobium, which was selected for its chemical stability. In the experiment, the wrapped specimen was heated to a temperature of 700 C in a vacuum of residual pressure <10(exp -5) torr (0.0013 Pa), then cooled and sectioned. Examination of the sectioned specimen revealed that no depletion layer had formed, indicating the niobium foil prevented sublimation of antimony at 700 C. This was a considerable improvement, considering that uncoated CoSb3 had been found to decompose to form the lowest antimonide at the surface at only 600 C. Evidently, because the mean free path of Sb at the given temperature and pressure was of the order of tens of centimeters, any barrier closer than tens of centimeters (as was the niobium foil) would have suppressed transport of Sb vapor, thereby suppressing sublimation of Sb
Response of local vascular volumes to lower body negative pressure stress
NASA Technical Reports Server (NTRS)
Wolthuis, R. A.; Leblanc, A.; Carpentier, W. A.; Bergman, S. A., Jr.
1975-01-01
The present study involved an intravenous injection of radioactive iodinated serum albumin, equilibration of this isotope within the vascular space, and the continuous measurement of isotope activity over selected anatomical areas before, during and following multiple human LBNP tests. Both rate and magnitude of vascular pooling were distinctly different within each of five selected lower body anatomical areas. In the upper body, all areas except the abdomen showed depletions from their resting vascular volumes during LBNP. The presence of uniquely different pooling patterns in the lower body, the apparent stability of abdominal vascular volumes, and a possible decrease in cerebral blood volume during LBNP represent the major findings of this study.
Mei, Viung C.; Chen, Fang C.
1997-01-01
A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.
Mei, V.C.; Chen, F.C.
1997-04-22
A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.
NASA Technical Reports Server (NTRS)
Cuan, Winston M.; Schwartz, Sidney H.
1988-01-01
Results are presented for a preliminary experiment involving a saturated pool boiling at 1 atm from rotating 2 and 3 inch diameter spheres which were immersed in LN2. Additional results are presented for a stationary 2 inch diameter sphere quenched in LN2, which were obtained with a more versatile and complete experimental apparatus. The speed of the rotational tests varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere.
Young, Erica B; Berges, John A; Dring, Matthew J
2009-04-01
Intertidal macroalgae Fucus and Laminaria experience seasonally fluctuating inorganic N supply. This study examined the effects of long-term N deprivation, recovery following N resupply, and effects of elevated ammonium and nitrate exposure on N acquisition in intertidal algae using manipulations of N supply in tank culture. Over 15 weeks of N deprivation, internal N and nitrate reductase activity (NRA) declined, but maximum quantum yield of PSII was unaffected in Fucus serratus and Fucus vesiculosus. Low NRA was maintained despite no external nitrate availability and depletion of internal pools, suggesting a constitutive NRA, insensitive to N supply. Nitrate resupplied to N-starved thalli was rapidly taken up and internal nitrate pools and NRA increased. Exposure to elevated (50 microM) nitrate over 4 days stimulated nitrate uptake and NRA in Laminaria digitata and F. serratus. Exposure to elevated ammonium suppressed NRA in L. digitata but not in F. serratus. This novel insensitivity of NRA to ammonium in Fucus contrasts with regulation of NRA in other algae and higher plants. Ammonium suppression of NRA in L. digitata was not via inhibition of nitrate uptake and was independent of nitrate availability. L. digitata showed a higher capacity for internal nitrate storage when exposed to elevated ambient nitrate, but NRA was lower than in Fucus. All species maintained nitrate assimilation capacity in excess of nitrate uptake capacity. N uptake and storage strategies of these intertidal macroalgae are adaptive to life in fluctuating N supply, and distinct regulation of N metabolism in Fucus vs Laminaria may relate to position in the intertidal zone.
Mitchell, Mark A; Adamson, Trinka W; Singleton, Charles B; Roundtree, Marlana K; Bauer, Rudy W; Acierno, Mark J
2007-02-01
To evaluate a combination of 2 nonantibiotic microbicide compounds, sodium hypochlorite (NaOCl) and polyhexamethylene biguanide (PHMB), as a treatment to suppress or eliminate Salmonella spp from red-eared slider (RES) turtle (Trachemys scripta elegans) eggs and hatchlings. 2,738 eggs from 8 turtle farms in Louisiana. Eggs were randomly sorted into 3 or, when sufficient eggs were available, 4 treatment groups as follows: control, pressure-differential egg treatment with NaOCl and gentamicin, NaOCl and PHMB bath treatment, and pressure-differential egg treatment with NaOCl and PHMB. Bacterial cultures were performed from specimens of eggs and hatchlings and evaluated for Salmonella spp. RES turtle eggs treated with NaOCl and PHMB as a bath (odds ratio [OR], 0.2 [95% confidence interval (CI), 0.1 to 0.3]) or as a pressure-differential dip (OR, 0.01 [95% CI, 0.001 to 0.07]) or with gentamicin as a pressure-differential dip (OR, 0.1 [95% CI, 0.06 to 0.2]) were significantly less likely to have Salmonella-positive culture results than control-group eggs. Concern over reptile-associated salmonellosis in children in the United States is so great that federal regulations prohibit the sale of turtles that are < 10.2 cm in length. Currently, turtle farms treat eggs with gentamicin solution. Although this has reduced Salmonella shedding, it has also resulted in antimicrobial resistance. Results of our study indicate that a combination of NaOCl and PHMB may be used to suppress or eliminate Salmonella spp on RES turtle eggs and in hatchlings.
NASA Technical Reports Server (NTRS)
Bartunek, J.; Weinberg, E. O.; Tajima, M.; Rohrbach, S.; Katz, S. E.; Douglas, P. S.; Lorell, B. H.; Schneider, M. (Principal Investigator)
2000-01-01
BACKGROUND: Chronic N(G)-nitro-L-arginine methyl ester (L-NAME), which inhibits nitric oxide synthesis, causes hypertension and would therefore be expected to induce robust cardiac hypertrophy. However, L-NAME has negative metabolic effects on protein synthesis that suppress the increase in left ventricular (LV) mass in response to sustained pressure overload. In the present study, we used L-NAME-induced hypertension to test the hypothesis that adaptation to pressure overload occurs even when hypertrophy is suppressed. METHODS AND RESULTS: Male rats received L-NAME (50 mg. kg(-1). d(-1)) or no drug for 6 weeks. Rats with L-NAME-induced hypertension had levels of systolic wall stress similar to those of rats with aortic stenosis (85+/-19 versus 92+/-16 kdyne/cm). Rats with aortic stenosis developed a nearly 2-fold increase in LV mass compared with controls. In contrast, in the L-NAME rats, no increase in LV mass (1. 00+/-0.03 versus 1.04+/-0.04 g) or hypertrophy of isolated myocytes occurred (3586+/-129 versus 3756+/-135 microm(2)) compared with controls. Nevertheless, chronic pressure overload was not accompanied by the development of heart failure. LV systolic performance was maintained by mechanisms of concentric remodeling (decrease of in vivo LV chamber dimension relative to wall thickness) and augmented myocardial calcium-dependent contractile reserve associated with preserved expression of alpha- and beta-myosin heavy chain isoforms and sarcoplasmic reticulum Ca(2+) ATPase (SERCA-2). CONCLUSIONS: When the expected compensatory hypertrophic response is suppressed during L-NAME-induced hypertension, severe chronic pressure overload is associated with a successful adaptation to maintain systolic performance; this adaptation depends on both LV remodeling and enhanced contractility in response to calcium.
Aubé, Martin; Roby, Johanne; Kocifaj, Miroslav
2013-01-01
Artificial light at night can be harmful to the environment, and interferes with fauna and flora, star visibility, and human health. To estimate the relative impact of a lighting device, its radiant power, angular photometry and detailed spectral power distribution have to be considered. In this paper we focus on the spectral power distribution. While specific spectral characteristics can be considered harmful during the night, they can be considered advantageous during the day. As an example, while blue-rich Metal Halide lamps can be problematic for human health, star visibility and vegetation photosynthesis during the night, they can be highly appropriate during the day for plant growth and light therapy. In this paper we propose three new indices to characterize lamp spectra. These indices have been designed to allow a quick estimation of the potential impact of a lamp spectrum on melatonin suppression, photosynthesis, and star visibility. We used these new indices to compare various lighting technologies objectively. We also considered the transformation of such indices according to the propagation of light into the atmosphere as a function of distance to the observer. Among other results, we found that low pressure sodium, phosphor-converted amber light emitting diodes (LED) and LED 2700 K lamps filtered with the new Ledtech's Equilib filter showed a lower or equivalent potential impact on melatonin suppression and star visibility in comparison to high pressure sodium lamps. Low pressure sodium, LED 5000 K-filtered and LED 2700 K-filtered lamps had a lower impact on photosynthesis than did high pressure sodium lamps. Finally, we propose these indices as new standards for the lighting industry to be used in characterizing their lighting technologies. We hope that their use will favor the design of new environmentally and health-friendly lighting technologies.
Aubé, Martin; Roby, Johanne; Kocifaj, Miroslav
2013-01-01
Artificial light at night can be harmful to the environment, and interferes with fauna and flora, star visibility, and human health. To estimate the relative impact of a lighting device, its radiant power, angular photometry and detailed spectral power distribution have to be considered. In this paper we focus on the spectral power distribution. While specific spectral characteristics can be considered harmful during the night, they can be considered advantageous during the day. As an example, while blue-rich Metal Halide lamps can be problematic for human health, star visibility and vegetation photosynthesis during the night, they can be highly appropriate during the day for plant growth and light therapy. In this paper we propose three new indices to characterize lamp spectra. These indices have been designed to allow a quick estimation of the potential impact of a lamp spectrum on melatonin suppression, photosynthesis, and star visibility. We used these new indices to compare various lighting technologies objectively. We also considered the transformation of such indices according to the propagation of light into the atmosphere as a function of distance to the observer. Among other results, we found that low pressure sodium, phosphor-converted amber light emitting diodes (LED) and LED 2700 K lamps filtered with the new Ledtech’s Equilib filter showed a lower or equivalent potential impact on melatonin suppression and star visibility in comparison to high pressure sodium lamps. Low pressure sodium, LED 5000 K-filtered and LED 2700 K-filtered lamps had a lower impact on photosynthesis than did high pressure sodium lamps. Finally, we propose these indices as new standards for the lighting industry to be used in characterizing their lighting technologies. We hope that their use will favor the design of new environmentally and health-friendly lighting technologies. PMID:23861808
Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.
Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W
2015-03-16
The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C. Copyright © 2014 Elsevier B.V. All rights reserved.
Immigration and Higher Education: The Crisis and the Opportunities.
ERIC Educational Resources Information Center
Stewart, David W.
1991-01-01
Changes in immigration patterns bring problems and opportunities to higher education. New federal law significantly changes the ethnic and skills mix of the immigrant pool. Issues emerging include potential brain drain; pressure for curriculum change; language as a barrier to access; and the rights of illegal immigrants to higher education. (MSE)
NASA Astrophysics Data System (ADS)
Wengler, C.; Addy, J.; Luke, A.
2018-03-01
Due to high energy demand required for chemical processes, refrigeration and process industries the increase of efficiency and performance of thermal systems especially evaporators is indispensable. One of the possibilities to meet this purpose are investigations in enhancement of the heat transfer in nucleate boiling where high heat fluxes at low superheat are transferred. In the present work, the heat transfer in pool boiling is investigated with pure R134a over wide ranges of reduced pressures and heat fluxes. The heating materials of the test tubes are aluminum and stainless steel. The influence of the thermal conductivity on the heat transfer coefficients is analysed by the surface roughness of sandblasted surfaces. The heat transfer coefficient increases with increasing thermal conductivity, surface roughness and reduced pressures. The experimental results show a small degradation of the heat transfer coefficients between the two heating materials aluminum and stainless steel. In correlation with the VDI Heat Atlas, the experimental results are matching well with the predictions but do not accurately consider the stainless steel material reference properties.
Effectiveness and safety of valsartan in children aged 6 to 16 years with hypertension.
Wells, Thomas; Blumer, Jeffrey; Meyers, Kevin E C; Neto, Jose P R; Meneses, Rejane; Litwin, Mieczysław; Vande Walle, Johan; Solar-Yohay, Susan; Shi, Victor; Han, Guangyang
2011-05-01
The effectiveness and safety of valsartan have not been assessed in hypertensive children. Therefore, hypertensive patients aged 6 to 16 years (n=261) were randomized to receive weight-stratified low- (10/20 mg), medium- (40/80 mg), or high-dose (80/160 mg) valsartan for 2 weeks. After 2 weeks, patients were randomized to a 2-week placebo-controlled withdrawal phase. Dose-dependent reductions in sitting systolic blood pressure (SSBP) and sitting diastolic blood pressure (SDBP) were observed after 2 weeks (low dose, -7.9/-4.6 mm Hg; medium dose, -9.6/-5.8 mm Hg; high dose, -11.5/-7.4 mm Hg [P<.0001 for all groups]). During the withdrawal phase, SSBP and SDBP were both lower in the pooled valsartan group than in the pooled placebo group (SSBP, -2.7 mm Hg [P=.0368]; SDBP, -3.0 mm Hg [P=.0047]). Similar efficacy was observed in all subgroups. Valsartan was well tolerated and headache was the most commonly observed adverse event during both the double-blind and 52-week open-label phases. © 2011 Wiley Periodicals, Inc.
Yu, Lulu; Kronen, Ryan J; Simon, Laura E; Stoll, Carolyn R T; Colditz, Graham A; Tuuli, Methodius G
2018-02-01
The objective of the study was to assess the effect of prophylactic negative-pressure wound therapy on surgical site infections and other wound complications in women after cesarean delivery. We searched Ovid Medline, Embase, SCOPUS, Cochrane Database of Systematic Reviews, and ClinicalTrials.gov. We included randomized controlled trials and observational studies comparing prophylactic negative-pressure wound therapy with standard wound dressing for cesarean delivery. The primary outcome was surgical site infection after cesarean delivery. Secondary outcomes were composite wound complications, wound dehiscence, wound seroma, endometritis, and hospital readmission. Heterogeneity was assessed using Higgin's I 2 . Relative risks with 95% confidence intervals were calculated using random-effects models. Six randomized controlled trials and 3 cohort studies in high-risk mostly obese women met inclusion criteria and were included in the meta-analysis. Six were full-text articles, 2 published abstracts, and 1 report of trial results in ClinicalTrials.gov. Studies were also heterogeneous in the patients included and type of negative-pressure wound therapy device. The risk of surgical site infection was significantly lower with the use of prophylactic negative-pressure wound therapy compared with standard wound dressing (7 studies: pooled risk ratio, 0.45; 95% confidence interval, 0.31-0.66; adjusted risk ratio, -6.0%, 95% confidence interval, -10.0% to -3.0%; number needed to treat, 17, 95% confidence interval, 10-34). There was no evidence of significant statistical heterogeneity (I 2 = 9.9%) or publication bias (Egger P = .532). Of the secondary outcomes, only composite wound complications were significantly reduced in patients receiving prophylactic negative-pressure wound therapy compared with standard dressing (9 studies: pooled risk ratio, 0.68, 95% confidence interval, 0.49-0.94). Studies on the effectiveness of prophylactic negative-pressure wound therapy at cesarean delivery are heterogeneous but suggest a reduction in surgical site infection and overall wound complications. Larger definitive trials are needed to clarify the clinical utility of prophylactic negative-pressure wound therapy after cesarean delivery. Copyright © 2017 Elsevier Inc. All rights reserved.
Yoshitomi, Takeshi; Zorumski, Charles F.; Izumi, Yukitoshi
2011-01-01
Purpose. High levels of glutamate can be toxic to retinal GCs. Thus, effective buffering of extracellular glutamate is important in preserving retinal structure and function. GLAST, a major glutamate transporter in the retina, and glutamine synthetase (GS) regulate extracellular glutamate accumulation and prevent excitotoxicity. This study was an examination of changes in function and expression of GLAST and GS in ex vivo rat retinas exposed to acute increases in ambient pressure. Methods. Ex vivo rat retinas were exposed to elevated hydrostatic pressure for 24 hours. The expression of GLAST and GS were examined using immunochemistry and real-time PCR analysis. Also examined were the effects of (2S,3S)-3-[3-[4-(trifluoromethyl) benzoylamino] benzyloxy] aspartate (TFB-TBOA), an inhibitor of glutamate transporters, and l-methionine-S-sulfoximine (MSO), an inhibitor of GS. Results. In this acute model, Western blot and real-time RT-PCR analyses revealed that substantially (75 mm Hg), but not moderately (35 mm Hg), elevated pressure depressed GLAST expression, diminished GS activity, and induced axonal swelling between the GC layer and the inner limiting membrane. However, at the moderately elevated pressure (35 mm Hg), administration of either TFB-TBOA or MSO also induced axonal swelling and excitotoxic neuronal damage. MSO did not depress GLAST expression but TFB-TBOA significantly suppressed GS, suggesting that downregulation of GS during pressure loading may result from impaired GLAST expression. Conclusions. The retina is at risk during acute intraocular pressure elevation due to downregulation of GS activity resulting from depressed GLAST expression. PMID:21775659
Ishikawa, Makoto; Yoshitomi, Takeshi; Zorumski, Charles F; Izumi, Yukitoshi
2011-08-22
PURPOSE. High levels of glutamate can be toxic to retinal GCs. Thus, effective buffering of extracellular glutamate is important in preserving retinal structure and function. GLAST, a major glutamate transporter in the retina, and glutamine synthetase (GS) regulate extracellular glutamate accumulation and prevent excitotoxicity. This study was an examination of changes in function and expression of GLAST and GS in ex vivo rat retinas exposed to acute increases in ambient pressure. METHODS. Ex vivo rat retinas were exposed to elevated hydrostatic pressure for 24 hours. The expression of GLAST and GS were examined using immunochemistry and real-time PCR analysis. Also examined were the effects of (2S,3S)-3-[3-[4-(trifluoromethyl) benzoylamino] benzyloxy] aspartate (TFB-TBOA), an inhibitor of glutamate transporters, and l-methionine-S-sulfoximine (MSO), an inhibitor of GS. RESULTS. In this acute model, Western blot and real-time RT-PCR analyses revealed that substantially (75 mm Hg), but not moderately (35 mm Hg), elevated pressure depressed GLAST expression, diminished GS activity, and induced axonal swelling between the GC layer and the inner limiting membrane. However, at the moderately elevated pressure (35 mm Hg), administration of either TFB-TBOA or MSO also induced axonal swelling and excitotoxic neuronal damage. MSO did not depress GLAST expression but TFB-TBOA significantly suppressed GS, suggesting that downregulation of GS during pressure loading may result from impaired GLAST expression. CONCLUSIONS. The retina is at risk during acute intraocular pressure elevation due to downregulation of GS activity resulting from depressed GLAST expression.
Chappell, Thomas M; Kennedy, George G
2018-06-21
Imidacloprid is widely used to manage tomato spotted wilt disease (TSW) in tobacco, tomato, and pepper, caused by Tomato spotted wilt orthotospovirus (TSWV) and spread by the tobacco thrips, Frankliniella fusca Hinds (Thysanoptera: Thripidae). Imidacloprid suppresses transmission of TSWV by reducing probing and feeding by adult thrips on treated plants, thereby reducing the probability of transmission by infectious thrips. Because imidacloprid does not reduce probing and feeding on treated plants to zero, the reduction in transmission probability per viruliferous thrips can be offset by an increase in the number of viruliferous thrips challenging treated plants. A composite of these effects which we call 'pathogen pressure' experienced by plants is a function of thrips population size, the proportion of those thrips that are viruliferous, and the probability that viruliferous thrips successfully inoculate plants. To better understand the relationship between imidacloprid's effect on virus transmission, pathogen pressure, and TSW incidence in tobacco, we modeled TSW incidence as a function of the two most important variables affecting components of pathogen pressure, temperature, and precipitation, and the dependence of imidacloprid's effect on pathogen pressure. A model incorporating imidacloprid's effect as a reduction in pathogen pressure was found to be more descriptive than models incorporating the effect as a reduction in TSW incidence. Results reveal maximum proportional reduction in TSW incidence resulting from imidacloprid use is associated with minimal potential TSW incidence. As pathogen pressure increases, potential TSW incidence approaches 100%, and the benefits of imidacloprid use are highest at intermediate levels of pathogen pressure.
What initial condition of inflation would suppress the large-scale CMB spectrum?
Chen, Pisin; Lin, Yu -Hsiang
2016-01-08
There is an apparent power deficit relative to the Λ CDM prediction of the cosmic microwave background spectrum at large scales, which, though not yet statistically significant, persists from WMAP to Planck data. Proposals that invoke some form of initial condition for the inflation have been made to address this apparent power suppression, albeit with conflicting conclusions. By studying the curvature perturbations of a scalar field in the Friedmann-Lemaître-Robertson-Walker universe parameterized by the equation of state parameter w, we find that the large-scale spectrum at the end of inflation reflects the superhorizon spectrum of the initial state. The large-scale spectrummore » is suppressed if the universe begins with the adiabatic vacuum in a superinflation (w < –1) or positive-pressure (w > 0) era. In the latter case, there is however no causal mechanism to establish the initial adiabatic vacuum. On the other hand, as long as the universe begins with the adiabatic vacuum in an era with –1 < w < 0, even if there exists an intermediate positive-pressure era, the large-scale spectrum would be enhanced rather than suppressed. In conclusion, we further calculate the spectrum of a two-stage inflation model with a two-field potential and show that the result agrees with that obtained from the ad hoc single-field analysis.« less
Lobarinas, Edward; Scott, Ryan; Spankovich, Christopher; Le Prell, Colleen G
2016-01-01
Firearm discharges produce hazardous levels of impulse noise that can lead to permanent hearing loss. In the present study, we evaluated the effects of suppression, ammunition, and barrel length on AR-15 rifles. Sound levels were measured left/right of a user's head, and 1-m left of the muzzle, per MIL-STD-1474-D, under both unsuppressed and suppressed conditions. Nine commercially available AR-15 rifles and 14 suppressors were used. Suppressors significantly decreased peak dB SPL at the 1-m location and the left ear location. However, under most rifle/ammunition conditions, levels remained above 140 dB peak SPL near a user's right ear. In a subset of conditions, subsonic ammunition produced values near or below 140 dB peak SPL. Overall suppression ranged from 7-32 dB across conditions. These data indicate that (1) suppressors reduce discharge levels to 140 dB peak SPL or below in only a subset of AR-15 conditions, (2) shorter barrel length and use of muzzle brake devices can substantially increase exposure level for the user, and (3) there are significant left/right ear sound pressure differences under suppressed conditions as a function of the AR-15 direct impingement design that must be considered during sound measurements to fully evaluate overall efficacy.
Nakamura, Yuichi; Suzuki, Satoshi; Saitoh, Shu-ichi; Takeishi, Yasuchika
2013-01-01
After an acute myocardial infarction (MI), neurohumoral systems including renin-angiotensin-aldosterone system (RAAS) are activated which in turn aggravate cardiac remodeling. Angiotensin receptor blockers (ARBs) are useful drugs for suppression of RAAS. The purpose of this study was to evaluate a new ARB, azilsartan, for suppressing cardiac remodeling and progression to heart failure after MI. We created MI by left anterior descending coronary artery ligation in male mice, and these mice were orally administered saline (0.2 mL) in the control group (Group C), 0.1 mg/kg/d of azilsartan in the low dose group (Group L), and 1.0 mg/kg/d in the high dose group (Group H) everyday. Blood pressure was decreased in Group H, but not in Group L, compared to Group C. At 2 weeks after MI creation, infarct size and fibrotic change at the site remote to the myocardial infarcted area were attenuated in Group L and Group H compared to Group C. Echocardiography revealed that cardiac remodeling was suppressed in Group L and Group H compared to Group C. Increases of mRNA expression levels related to fibrotic change were attenuated in Group L and Group H compared to Group C. The new ARB, azilsartan, had a cardiac remodeling suppression effect after MI, and this effect was observed without blood pressure lowering.
Pressure effect on the long-range order in CeB6
NASA Astrophysics Data System (ADS)
Sera, M.; Ikeda, S.; Iwakubo, H.; Uwatoko, Y.; Hane, S.; Kosaka, M.; Kunii, S.
2006-08-01
The pressure effect of CeB6 was investigated. The pressure dependence of the Néel temperature, TN and the critical field from the antiferro-magnetic phase III to antiferro-quadrupolar phase II, HcIII-II of CeB6 exhibits the unusual pressure dependence that the suppression rate of HcIII-II is much larger than that of TN. In order to explain this unusual result, we have performed the mean field calculation for the 4-sublattice model assuming that the pressure dependence of TN, the antiferro-octupolar and quadrupolar temperatures, Toct and TQ as follows; dTN/dP<0, dToct/dP>dTQ/dP>0 and could explain the unusual pressure dependence of TN and HcIII-II.
Pazos, Valérie; Mongrain, Rosaire; Tardif, Jean-Claude
2010-06-01
Clinical studies on lipid-lowering therapy have shown that changing the composition of lipid pools reduced significantly the risk of cardiac events associated with plaque rupture. It has been shown also that changing the composition of the lipid pool affects its mechanical properties. However, knowledge about the mechanical properties of human atherosclerotic lesions remains limited due to the difficulty of the experiments. This paper aims to assess the feasibility of characterizing a lipid pool embedded in the wall of a pressurized vessel using finite-element simulations and an optimization algorithm. Finite-element simulations of inflation experiments were used together with nonlinear least squares algorithm to estimate the material model parameters of the wall and of the inclusion. An optimal fit of the simulated experiment and the real experiment was sought with the parameter estimation algorithm. The method was first tested on a single-layer polyvinyl alcohol (PVA) cryogel stenotic vessel, and then, applied on a double-layered PVA cryogel stenotic vessel with a lipid inclusion.
Genét, Gustav Folmer; Bentzer, Peter; Ostrowski, Sisse Rye; Johansson, Pär Ingemar
2017-03-01
Traumatic brain injury and hemorrhagic shock is associated with blood-brain barrier (BBB) breakdown and edema formation. Recent animal studies have shown that fresh frozen plasma (FFP) resuscitation reduces brain swelling and improves endothelial function compared to isotonic NaCl (NS). The aim of this study was to investigate whether pooled and pathogen-reduced plasma (OctaplasLG ® [OCTA]; Octapharma, Stockholm, Sweden) was comparable to FFP with regard to effects on brain water content, BBB permeability, and plasma biomarkers of endothelial glycocalyx shedding and cell damage. After fluid percussion brain injury, hemorrhage (20 mL/kg), and 90-min shock, 48 male Sprague-Dawley rats were randomized to resuscitation with OCTA, FFP, or NS (n = 16/group). Brain water content (wet/dry weight) and BBB permeability (transfer constant for 51 Cr-EDTA) were measured at 24 h. Plasma osmolality, oncotic pressure, and biomarkers of systemic glycocalyx shedding (syndecan-1) and cell damage (histone-complexed DNA) were measured at 0 and 23 h. At 24 h, brain water content was 80.44 ± 0.39%, 80.82 ± 0.82%, and 81.15 ± 0.86% in the OCTA, FFP, and NS groups (lower in OCTA vs. NS; p = 0.026), with no difference in BBB permeability. Plasma osmolality and oncotic pressures were highest in FFP and OCTA resuscitated, and osmolality was further highest in OCTA versus FFP (p = 0.027). In addition, syndecan-1 was highest in FFP and OCTA resuscitated (p = 0.010). These results suggest that pooled solvent-detergent (SD)-treated plasma attenuates the post-traumatic increase in brain water content, and that this effect may, in part, be explained by a high crystalloid and colloid osmotic pressure in SD-treated plasma.
External Squeeze-Film Damper For Hydrostatic Bearing
NASA Technical Reports Server (NTRS)
Buckmann, Paul S.
1992-01-01
External squeeze-film damping device suppresses vibrations of rapidly turning shaft supported by pivoted-pad hydrostatic bearing in high-pressure/high-power-density turbomachine. Stacked disks provide damping and clearance for alignment.
Cheng, Zheng-Jun; Wang, Yun-Bing; Chen, Long; Gong, Jian-Ping; Zhang, Wei
2018-04-18
The aim of this meta-analysis is to compare the differences in postoperative markers of the hepatic function under different intra-abdominal pressures in laparoscopic cholecystectomy (LC). Several databases were searched for control studies, and then the weighted data were pooled with random-effect models. A total of 11 studies involving 865 patients were included. The meta-analysis reveals that the level of the aspartate aminotransferase and alanine transaminase of the low-pressure group has a lower postoperative increase than the moderate-pressure group (P<0.001). The level of the aspartate aminotransferase and alanine transaminase of the moderate-pressure group has a lower postoperative increase than the high-pressure group (P<0.001). Totally, the effect of lower pressure LC on postoperative hepatic functions is less significant than that of the higher one. Potential subgroup analysis does not modify these results. The recommended pressure in LC is suggested to be lower so as to result in a better surgical safety, especially for special populations.
Bodell, Lindsay P.; Brown, Tiffany A.; Keel, Pamela K.
2016-01-01
Weight suppression predicts the onset and maintenance of bulimic syndromes. Despite this finding, no study has examined psychological mechanisms contributing to these associations using a longitudinal design. Given societal pressures to be thin and an actual history of higher weight, it is possible that greater weight suppression contributes to increased fear of gaining weight and preoccupation with being thin, which increase vulnerability to eating disorders. The present study investigated whether greater drive for thinness mediates associations between weight suppression and bulimic symptoms over long-term follow-up. Participants were women (n = 1190) and men (n = 509) who completed self-report surveys in college and 10- and 20- years later. Higher weight suppression at baseline predicted higher bulimic symptoms at 20-year follow-up (p < .001), while accounting for demographic variables and baseline bulimic symptoms, body mass index, and drive for thinness. Increased drive for thinness at 10-year follow-up mediated this effect. Findings highlight the long-lasting effect of weight suppression on bulimic symptoms and suggest that preoccupation with thinness may help maintain this association. Future studies would benefit from incorporating other hypothesized consequences of weight suppression, including biological factors, into risk models. PMID:27808544
Denudation of metal powder layers in laser powder bed fusion processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Manyalibo J.; Guss, Gabe; Khairallah, Saad A.
Understanding laser interaction with metal powder beds is critical in predicting optimum processing regimes in laser powder bed fusion additive manufacturing of metals. In this work, we study the denudation of metal powders that is observed near the laser scan path as a function of laser parameters and ambient gas pressure. We show that the observed depletion of metal powder particles in the zone immediately surrounding the solidified track is due to a competition between outward metal vapor flux directed away from the laser spot and entrainment of powder particles in a shear flow of gas driven by a metalmore » vapor jet at the melt track. Between atmospheric pressure and ~10 Torr of Ar gas, the denuded zone width increases with decreasing ambient gas pressure and is dominated by entrainment from inward gas flow. The denuded zone then decreases from 10 to 2.2 Torr reaching a minimum before increasing again from 2.2 to 0.5 Torr where metal vapor flux and expansion from the melt pool dominates. In addition, the dynamics of the denudation process were captured using high-speed imaging, revealing that the particle movement is a complex interplay among melt pool geometry, metal vapor flow, and ambient gas pressure. The experimental results are rationalized through finite element simulations of the melt track formation and resulting vapor flow patterns. The results presented here represent new insights to denudation and melt track formation that can be important for the prediction and minimization of void defects and surface roughness in additively manufactured metal components.« less
Denudation of metal powder layers in laser powder bed fusion processes
Matthews, Manyalibo J.; Guss, Gabe; Khairallah, Saad A.; ...
2016-05-20
Understanding laser interaction with metal powder beds is critical in predicting optimum processing regimes in laser powder bed fusion additive manufacturing of metals. In this work, we study the denudation of metal powders that is observed near the laser scan path as a function of laser parameters and ambient gas pressure. We show that the observed depletion of metal powder particles in the zone immediately surrounding the solidified track is due to a competition between outward metal vapor flux directed away from the laser spot and entrainment of powder particles in a shear flow of gas driven by a metalmore » vapor jet at the melt track. Between atmospheric pressure and ~10 Torr of Ar gas, the denuded zone width increases with decreasing ambient gas pressure and is dominated by entrainment from inward gas flow. The denuded zone then decreases from 10 to 2.2 Torr reaching a minimum before increasing again from 2.2 to 0.5 Torr where metal vapor flux and expansion from the melt pool dominates. In addition, the dynamics of the denudation process were captured using high-speed imaging, revealing that the particle movement is a complex interplay among melt pool geometry, metal vapor flow, and ambient gas pressure. The experimental results are rationalized through finite element simulations of the melt track formation and resulting vapor flow patterns. The results presented here represent new insights to denudation and melt track formation that can be important for the prediction and minimization of void defects and surface roughness in additively manufactured metal components.« less
Effects of surface tension and intraluminal fluid on mechanics of small airways.
Hill, M J; Wilson, T A; Lambert, R K
1997-01-01
Airway constriction is accompanied by folding of the mucosa to form ridges that run axially along the inner surface of the airways. The mucosa has been modeled (R. K. Lambert. J. Appl. Physiol. 71:666-673, 1991) as a thin elastic layer with a finite bending stiffness, and the contribution of its bending stiffness to airway elastance has been computed. In this study, we extend that work by including surface tension and intraluminal fluid in the model. With surface tension, the pressure on the inner surface of the elastic mucosa is modified by the pressure difference across the air-liquid interface. As folds form in the mucosa, intraluminal fluid collects in pools in the depressions formed by the folds, and the curvature of the air-liquid interface becomes nonuniform. If the amount of intraluminal fluid is small, < 2% of luminal volume, the pools of intraluminal fluid are small, the air-liquid interface nearly coincides with the surface of the mucosa, and the area of the air-liquid interface remains constant as airway cross-sectional area decreases. In that case, surface energy is independent of airway area, and surface tension has no effect on airway mechanics. If the amount of intraluminal fluid is > 2%, the area of the air-liquid interface decreases as airway cross-sectional area decreases. and surface tension contributes to airway compression. The model predicts that surface tension plus intraluminal fluid can cause an instability in the area-pressure curve of small airways. This instability provides a mechanism for abrupt airway closure and abrupt reopening at a higher opening pressure.
NASA Astrophysics Data System (ADS)
Hanna, Mina J.; Zhao, Han; Lee, Jack C.
2012-10-01
We analyze the anomalous I-V behavior in SiN prepared by plasma enhanced chemical vapor deposition for use as a gate insulator in AlGaN/GaN metal insulator semiconductor heterostructure filed effect transistors (HFETs). We observe leakage current across the dielectric with opposite polarity with respect to the applied electric field once the voltage sweep reaches a level below a determined threshold. This is observed as the absolute minimum of the leakage current does not occur at minimum voltage level (0 V) but occurs earlier in the sweep interval. Curve-fitting analysis suggests that the charge-transport mechanism in this region is Poole-Frenkel current, followed by Schottky emission due to band bending. Despite the current anomaly, the sample devices have shown a notable reduction of leakage current of over 2 to 6 order of magnitudes compared to the standard Schottky HFET. We show that higher pressures and higher silane concentrations produce better films manifesting less trapping. This conforms to our results that we reported in earlier publications. We found that higher chamber pressure achieves higher sheet carrier concentration that was found to be strongly dependent on the trapped space charge at the SiN/GaN interface. This would suggest that a lower chamber pressure induces more trap states into the SiN/GaN interface.
Using heat as a tracer to estimate spatially distributed mean residence times in the hyporheic zone
NASA Astrophysics Data System (ADS)
Naranjo, R. C.; Pohll, G. M.; Stone, M. C.; Niswonger, R. G.; McKay, W. A.
2013-12-01
Biogeochemical reactions that occur in the hyporheic zone are highly dependent on the time solutes are in contact with riverbed sediments. In this investigation, we developed a two-dimensional longitudinal flow and solute transport model to estimate the spatial distribution of mean residence time in the hyporheic zone along a riffle-pool sequence to gain a better understanding of nitrogen reactions. A flow and transport model was developed to estimate spatially distributed mean residence times and was calibrated using observations of temperature and pressure. The approach used in this investigation accounts for the mixing of ages given advection and dispersion. Uncertainty of flow and transport parameters was evaluated using standard Monte-Carlo analysis and the generalized likelihood uncertainty estimation method. Results of parameter estimation indicate the presence of a low-permeable zone in the riffle area that induced horizontal flow at shallow depth within the riffle area. This establishes shallow and localized flow paths and limits deep vertical exchange. From the optimal model, mean residence times were found to be relatively long (9 - 40 days). The uncertainty of hydraulic conductivity resulted in a mean interquartile range of 13 days across all piezometers and was reduced by 24% with the inclusion of temperature and pressure observations. To a lesser extent, uncertainty in streambed porosity and dispersivity resulted in a mean interquartile range of 2.2- and 4.7 days, respectively. Alternative conceptual models demonstrate the importance of accounting for the spatial distribution of hydraulic conductivity in simulating mean residence times in a riffle-pool sequence. It is demonstrated that spatially variable mean residence time beneath a riffle-pool system does not conform to simple conceptual models of hyporheic flow through a riffle-pool sequence. Rather, the mixing behavior between the river and the hyporheic flow are largely controlled by layered heterogeneity and anisotropy of the subsurface.
Meditation and blood pressure: a meta-analysis of randomized clinical trials.
Shi, Lu; Zhang, Donglan; Wang, Liang; Zhuang, Junyang; Cook, Rebecca; Chen, Liwei
2017-04-01
We meta-analyzed the effect of meditation on blood pressure (BP), including both transcendental meditation and non-transcendental meditation interventions. We identified randomized controlled trials (RCTs) that examined the BP responses to meditation interventions through a systematic literature search of the PubMed, ABI/INFORM, MEDLINE, EMBASE, PsycINFO, and CINAHL databases (from January 1980 to October 2015). We meta-analyzed the change in SBP and DBP, stratified by type of meditation (transcendental meditation vs. non-transcendental meditation intervention) and by type of BP measurement [ambulatory BP monitoring (ABPM) vs. non-ABPM measurement]. Nineteen studies met the eligibility criteria. Among the studies using the ABPM measurement, the pooled SBP effect estimate was -2.49 mmHg [95% confidence interval (CI): -7.51, 2.53] for transcendental meditation intervention (statistically insignificant) and -3.77 mmHg (95% CI: -5.33, -2.21) for non-transcendental meditation interventions, whereas the pooled DBP effect estimate was -4.26 mmHg (95% CI: -6.21, -2.31) for transcendental meditation interventions and -2.18 mmHg (95% CI: -4.28, -0.09) for non-transcendental meditation interventions. Among the studies using the non-ABPM measurement, the pooled SBP effect estimate from transcendental meditation interventions was -5.57 mmHg (95% CI: -7.41, -3.73) and was -5.09 mmHg with non-transcendental meditation intervention (95% CI: -6.34, -3.85), whereas the pooled effect size in DBP change for transcendental meditation interventions was -2.86 mmHg (95% CI: -4.27, -1.44) and was -2.57 mmHg (95% CI: -3.36, -1.79) for non-transcendental meditation interventions. Non-transcendental meditation may serve as a promising alternative approach for lowering both SBP and DBP. More ABPM-measured transcendental meditation interventions might be needed to examine the benefit of transcendental meditation intervention on SBP reduction.
Li, Min; Chen, Tao; Chen, Shu-da; Cai, Jing; Hu, Ying-Hong
2015-05-01
The purpose of this meta-analysis was to compare the effectiveness of mannitol and hypertonic saline for reducing intracranial pressure (ICP) after traumatic brain injury (TBI).PubMed, Cochrane, Embase, and ISI Web of Knowledge databases were searched until July 3, 2014 using the terms intracranial hypertension, mannitol, and hypertonic saline. Randomized controlled trials and 2-arm prospective studies in which elevated ICP was present after TBI treated with mannitol or hypertonic saline were included. The primary outcome was the change of ICP from baseline to termination of the infusion, while the secondary outcomes were change from baseline to 30, 60, and 120 minutes after terminating the infusion and change of osmolarity from baseline to termination.A total 7 studies with 169 patients were included. The mean age of patients receiving mannitol ranged from 30.8 to 47 years, and for patients receiving hypertonic saline ranged from 35 to 47 years. A pooled difference in means = -1.69 (95% confidence interval [CI]: -2.95 to -0.44, P = 0.008) indicated that hypertonic saline reduced ICP more effectively than mannitol when compared from the baseline value to the last measurement after treatment. At 30 minutes after intervention, there was no difference in the mean ICP change between the groups, whereas at 60 minutes after intervention (pooled difference in means = -2.58, 95% CI: -4.37 to -0.80, P = .005) and 120 min after intervention (pooled difference in means = -4.04, 95% CI: -6.75 to -1.32, P = .004) hypertonic saline resulted in a significantly greater decrease in ICP. The pooled difference in means = 1.84 (95% CI: -1.64 to 5.31, P = .301) indicated no difference in serum osmolarity between patients treated with hypertonic saline or mannitol.Hypertonic saline is more effective than mannitol for reducing ICP in cases of TBI.
Comparative study between two different active flutter suppression systems
NASA Technical Reports Server (NTRS)
Nissim, E.
1978-01-01
An activated leading-edge (LE)-tailing-edge (TE) control system is applied to a drone aircraft with the objective of enabling the drone to fly subsonically at dynamic pressures which are 44% above the open-loop flutter dynamic pressure. The control synthesis approach is based on the aerodynamic energy concept and it incorporates recent developments in this area. A comparison is made between the performance of the activated LE-TE control system and the performance of a TE control system, analyzed in a previous work. The results obtained indicate that although all the control systems achieve the flutter suppression objectives, the TE control system appears to be somewhat superior to the LE-TE control system, in this specific application. This superiority is manifested through reduced values of control surface activity over a wide range of flight conditions.
Real-Time Feedback Control of Flow-Induced Cavity Tones. Part 1; Fixed-Gain Control
NASA Technical Reports Server (NTRS)
Kegerise, M. A.; Cabell, R. H.; Cattafesta, L. N., III
2006-01-01
A generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The control algorithm demonstrated multiple Rossiter-mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. Controller performance was evaluated with a measure of output disturbance rejection and an input sensitivity transfer function. The results suggest that disturbances entering the cavity flow are collocated with the control input at the cavity leading edge. In that case, only tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary broadband pressure reduction is not possible with the present sensor/actuator arrangement. In the control-algorithm development, the cavity dynamics were treated as linear and time invariant (LTI) for a fixed Mach number. The experimental results lend support to that treatment.
NASA Technical Reports Server (NTRS)
Nissim, E.; Abel, I.
1978-01-01
An optimization procedure is developed based on the responses of a system to continuous gust inputs. The procedure uses control law transfer functions which have been partially determined by using the relaxed aerodynamic energy approach. The optimization procedure yields a flutter suppression system which minimizes control surface activity in a gust environment. The procedure is applied to wing flutter of a drone aircraft to demonstrate a 44 percent increase in the basic wing flutter dynamic pressure. It is shown that a trailing edge control system suppresses the flutter instability over a wide range of subsonic mach numbers and flight altitudes. Results of this study confirm the effectiveness of the relaxed energy approach.
Suppressed anger, evaluative threat, and cardiovascular reactivity: a tripartite profile approach.
Jorgensen, Randall S; Kolodziej, Monika E
2007-11-01
Despite decades of theory and research implicating suppressed anger in the development of cardiovascular disorders involving cardiovascular reactivity (CVR), to date the theoretical components of low anger expression, guilt feelings over agonistic reactions, and defensive strivings to avoid social disapproval have not been used conjointly to profile suppressed anger for the prediction of CVR. The purpose of this study, then, was to cluster analyze measures of anger expression, hostility guilt, and social defensiveness to create a suppressed anger profile (low anger expression, high hostility guilt, high social defensiveness) and a non-suppressed profile from a sample of college males. Social evaluative threat may be a potent stressor for people who defensively suppress anger expression. Thus, to examine the combined effects of suppressed anger and social evaluative threat, participants, prior to telling a story to a Thematic Apperception Card (TAT), were randomly assigned to either a high-threat (story will be compared to stories created by the mentally ill) or a low-threat condition (story used to study effects of talking on cardiovascular responses). Blood pressure (BP) and heart rate (HR) were monitored during a rest period and the subsequent TAT card period. As predicted, suppressed anger males in the high-threat condition showed the highest levels of diastolic BP and HR change from the rest period. The suppressed anger group's systolic BP reactivity was independent of threat manipulation. Research implications are discussed.
Detonation suppression in hydrogen-air mixtures using porous coatings on the walls
NASA Astrophysics Data System (ADS)
Bivol, G. Yu.; Golovastov, S. V.; Golub, V. V.
2018-05-01
We considered the problem of detonation suppression and weakening of blast wave effects occurring during the combustion of hydrogen-air mixtures in confined spaces. The gasdynamic processes during combustion of hydrogen, an alternative environmentally friendly fuel, were also considered. Detonation decay and flame propagation in hydrogen-air mixtures were experimentally investigated in rectangular cross-section channels with solid walls and two types of porous coatings: steel wool and polyurethane foam. Shock wave pressure dynamics inside the section with porous coating were studied using pressure sensors; flame front propagation was studied using photodiodes and high-speed camera visualization. For all mixtures, the detonation wave formed before entering the section with porous coating. For both porous materials, the steady detonation wave decoupled in the porous section of the channel into a shock wave and flame front propagating with a velocity around the Chapman-Jouguet acoustic velocity. By the end of the porous section, shock wave pressure reductions of 70 and 85% were achieved for the polyurethane foam and steel wool, respectively. The dependence of the flame velocity on the mixture composition (equivalence ratio) is presented.
Cryptic genetic variation, evolution's hidden substrate
Paaby, Annalise B.; Rockman, Matthew V.
2016-01-01
Cryptic genetic variation is invisible under normal conditions but fuel for evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles in need of constant suppression. CGV emerges from both neutral and selective processes and it may inform how human populations respond to change. In experimental settings, CGV facilitates adaptation, but does it play an important role in the real world? We review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution. PMID:24614309
Games of corruption in preventing the overuse of common-pool resources.
Lee, Joung-Hun; Jusup, Marko; Iwasa, Yoh
2017-09-07
Maintaining human cooperation in the context of common-pool resource management is extremely important because otherwise we risk overuse and corruption. To analyse the interplay between economic and ecological factors leading to corruption, we couple the resource dynamics and the evolutionary dynamics of strategic decision making into a powerful analytical framework. The traits of this framework are: (i) an arbitrary number of harvesters share the responsibility to sustainably exploit a specific part of an ecosystem, (ii) harvesters face three strategic choices for exploiting the resource, (iii) a delegated enforcement system is available if called upon, (iv) enforcers are either honest or corrupt, and (v) the resource abundance reflects the choice of harvesting strategies. The resulting dynamical system is bistable; depending on the initial conditions, it evolves either to cooperative (sustainable exploitation) or defecting (overexploitation) equilibria. Using the domain of attraction to cooperative equilibria as an indicator of successful management, we find that the more resilient the resource (as implied by a high growth rate), the more likely the dominance of corruption which, in turn, suppresses the cooperative outcome. A qualitatively similar result arises when slow resource dynamics relative to the dynamics of decision making mask the benefit of cooperation. We discuss the implications of these results in the context of managing common-pool resources. Copyright © 2017 Elsevier Ltd. All rights reserved.
Groer, Maureen W; El-Badri, Nagwa; Djeu, Julie; Williams, S Nicole; Kane, Bradley; Szekeres, Karoly
2014-07-01
Little is known about the recovery of the immune system from normal pregnancy and whether the postpartum period is a uniquely adapted immune state. This report extends previous observations from our group of decreased natural killer (NK) cell cytotoxicity in the postpartum period. NK cytotoxicity was measured from 1 week through 9 months postpartum. In addition, NK cytotoxicity was assayed in the presence or absence of pooled plasmas collected from either postpartum or nonpostpartum women. Samples of cells were stained for inhibitory receptors and analyzed by flow cytometry. NK cytotoxicity remained decreased in postpartum women compared to controls through the first 6 postpartum months, returned to normal levels by 9 months, and remained normal at 12 months. NK cytotoxicity during the first 6 months was further inhibited by the addition of pooled plasma to NK cultures from postpartum women, but the addition of pooled plasma from the control group did not affect that group's NK cultures. There were differences in inhibitory receptor staining between the two groups, with decreased CD158a and CD158b and increased NKG2A expression on postpartum NK cells during the first 3 postpartum months. These data suggest that NK cytotoxicity postpartum inhibition lasts 6 months and is influenced by unidentified postpartum plasma components. The effect may also involve receptors on NK cells. © The Author(s) 2013.
A neural basis for the spatial suppression of visual motion perception
Liu, Liu D; Haefner, Ralf M; Pack, Christopher C
2016-01-01
In theory, sensory perception should be more accurate when more neurons contribute to the representation of a stimulus. However, psychophysical experiments that use larger stimuli to activate larger pools of neurons sometimes report impoverished perceptual performance. To determine the neural mechanisms underlying these paradoxical findings, we trained monkeys to discriminate the direction of motion of visual stimuli that varied in size across trials, while simultaneously recording from populations of motion-sensitive neurons in cortical area MT. We used the resulting data to constrain a computational model that explained the behavioral data as an interaction of three main mechanisms: noise correlations, which prevented stimulus information from growing with stimulus size; neural surround suppression, which decreased sensitivity for large stimuli; and a read-out strategy that emphasized neurons with receptive fields near the stimulus center. These results suggest that paradoxical percepts reflect tradeoffs between sensitivity and noise in neuronal populations. DOI: http://dx.doi.org/10.7554/eLife.16167.001 PMID:27228283
Smigocki, Ann C; Wilson, Dennis
2004-12-01
The functional role of the Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2 was investigated in transgenic plants. N. tabacum plants transformed with a sense or antisense CYP72A2 construct exhibited diminished heights, branched stems, smaller leaves and deformed flowers. Western blot analysis revealed reduced levels of a 58 kDa protein corresponding to CYP72A2, suggesting that the CYP72A2 homolog was suppressed in the sense and antisense plants. Transgenic plants had increased resistance to Manduca sexta larvae that consumed about 35 to 90 less of transgenic versus control leaves. A virulent strain of Pseudomonas syringae pv. tabaci induced a disease-limiting response followed by a delayed and decreased development of disease symptoms in the transgenics. CYP72A2 gene mediated resistance suggests that the plant-pest or -pathogen interactions may have been modified by changes in bioactive metabolite pools.
Astronaut Stephen Oswald during emergency bailout training
NASA Technical Reports Server (NTRS)
1994-01-01
Suited in a training version of the Shuttle partial-pressure launch and entry garment, astronaut Stephen S. Oswald, STS-67 commander, gets help with a piece of gear from Boeing's David Brandt. The scene was photographed prior to a session of emergency bailout training in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF).
ERIC Educational Resources Information Center
Kamler, Estelle
2009-01-01
Background: Massive retirements, increased expectations, and mounting political pressures have resulted in a diminished talent pool for school superintendents. For school boards of the 124 school districts on Long Island, New York, the selection of a superintendent has been further complicated by sky-rocketing taxes and scandals leading to an…
Determinants and Options in the Development of Higher Education in Poland.
ERIC Educational Resources Information Center
Jozefowicz, Adam; Kluczynski, Jan
Trends affecting the future development of higher education in Poland are considered. It is projected that the demographic pool of higher education enrollment will in 1995-2000 return to a level roughly comparable with the peak pressures for college entry in the years 1971-75. It is suggested that demographic changes alone can explain but a…
NASA Technical Reports Server (NTRS)
Behar, Alberto; Matthews, Jaret; Venkateswaran, Kasthuri; Bruckner, James; Basic, Goran; So, Edmond; Rivadeneyra, Cesar
2005-01-01
This paper provides a physical description of the current system, as well as a summary of the preliminary tests conducted in 2005: a pressure chamber test, a dive test in a 30 foot dive pool, and a dive operation at a hydrothermal vent off the northern coast of Iceland.
Robust antiferromagnetism preventing superconductivity in pressurized (Ba 0.61K 0.39)Mn 2Bi 2
Gu, Dachun; Dai, Xia; Le, Congcong; ...
2014-12-05
BaMn 2Bi 2 possesses an iso-structure of iron pnictide superconductors and similar antiferromagnetic (AFM) ground state to that of cuprates, therefore, it receives much more attention on its properties and is expected to be the parent compound of a new family of superconductors. When doped with potassium (K), BaMn 2Bi 2 undergoes a transition from an AFM insulator to an AFM metal. Consequently, it is of great interest to suppress the AFM order in the K-doped BaMn 2Bi 2 with the aim of exploring the potential superconductivity. Here, we report that external pressure up to 35.6 GPa cannot suppress themore » AFM order in the K-doped BaMn 2Bi 2 to develop superconductivity in the temperature range of 300 K–1.5 K, but induces a tetragonal (T) to an orthorhombic (OR) phase transition at ~20 GPa. Theoretical calculations for the T and OR phases, on basis of our high-pressure XRD data, indicate that the AFM order is robust in the pressurized Ba 0.61K 0.39Mn 2Bi 2. Utlimately, both of our experimental and theoretical results suggest that the robust AFM order essentially prevents the emergence of superconductivity.« less
Hayward, David C.; Hetherington, Suzannah; Behm, Carolyn A.; Grasso, Lauretta C.; Forêt, Sylvain; Miller, David J.; Ball, Eldon E.
2011-01-01
Background A successful metamorphosis from a planktonic larva to a settled polyp, which under favorable conditions will establish a future colony, is critical for the survival of corals. However, in contrast to the situation in other animals, e.g., frogs and insects, little is known about the molecular basis of coral metamorphosis. We have begun to redress this situation with previous microarray studies, but there is still a great deal to learn. In the present paper we have utilized a different technology, subtractive hybridization, to characterize genes differentially expressed across this developmental transition and to compare the success of this method to microarray. Methodology/Principal Findings Suppressive subtractive hybridization (SSH) was used to identify two pools of transcripts from the coral, Acropora millepora. One is enriched for transcripts expressed at higher levels at the pre-settlement stage, and the other for transcripts expressed at higher levels at the post-settlement stage. Virtual northern blots were used to demonstrate the efficacy of the subtractive hybridization technique. Both pools contain transcripts coding for proteins in various functional classes but transcriptional regulatory proteins were represented more frequently in the post-settlement pool. Approximately 18% of the transcripts showed no significant similarity to any other sequence on the public databases. Transcripts of particular interest were further characterized by in situ hybridization, which showed that many are regulated spatially as well as temporally. Notably, many transcripts exhibit axially restricted expression patterns that correlate with the pool from which they were isolated. Several transcripts are expressed in patterns consistent with a role in calcification. Conclusions We have characterized over 200 transcripts that are differentially expressed between the planula larva and post-settlement polyp of the coral, Acropora millepora. Sequence, putative function, and in some cases temporal and spatial expression are reported. PMID:22065994
Coulter, Alison A; Brey, Marybeth; Lubejko, Matthew; Kallis, Jahn L; Glover, David C.; Whitledge, Gregory W; Garvey, James E.
2018-01-01
Knowledge of the spatial distributions and dispersal characteristics of invasive species is necessary for managing the spread of highly mobile species, such as invasive bigheaded carps (Bighead Carp [Hypophthalmichthys nobilis] and Silver Carp [H. molitrix]). Management of invasive bigheaded carps in the Illinois River has focused on using man-made barriers and harvest to limit dispersal towards the Laurentian Great Lakes. Acoustic telemetry data were used to parameterize multistate models to examine the spatial dynamics of bigheaded carps in the Illinois River to 1) evaluate the effects of current dams on movement, 2) identify how individuals distribute among pools, and 3) gauge the effects of reductions in movement towards the invasion front. Multistate models estimated that movement was generally less likely among upper river pools (Starved Rock, Marseilles, and Dresden Island) than the lower river (La Grange and Peoria) which matched the pattern of gated vs. wicket style dams. Simulations using estimated movement probabilities indicated that Bighead Carp accumulate in La Grange Pool while Silver Carp accumulate in Alton Pool. Fewer Bighead Carp reached the upper river compared to Silver Carp during simulations. Reducing upstream movement probabilities (e.g., reduced propagule pressure) by ≥ 75% into any of the upper river pools could reduce upper river abundance with similar results regardless of location. Given bigheaded carp reproduction in the upper Illinois River is limited, reduced movement towards the invasion front coupled with removal of individuals reaching these areas could limit potential future dispersal towards the Great Lakes.
Flame spread across liquid pools
NASA Technical Reports Server (NTRS)
Ross, Howard; Miller, Fletcher; Schiller, David; Sirignano, William A.
1993-01-01
For flame spread over liquid fuel pools, the existing literature suggests three gravitational influences: (1) liquid phase buoyant convection, delaying ignition and assisting flame spread; (2) hydrostatic pressure variation, due to variation in the liquid pool height caused by thermocapillary-induced convection; and (3) gas-phase buoyant convection in the opposite direction to the liquid phase motion. No current model accounts for all three influences. In fact, prior to this work, there was no ability to determine whether ignition delay times and flame spread rates would be greater or lesser in low gravity. Flame spread over liquid fuel pools is most commonly characterized by the relationship of the initial pool temperature to the fuel's idealized flash point temperature, with four or five separate characteristic regimes having been identified. In the uniform spread regime, control has been attributed to: (1) gas-phase conduction and radiation; (2) gas-phase conduction only; (3) gas-phase convection and liquid conduction, and most recently (4) liquid convection ahead of the flame. Suggestions were made that the liquid convection was owed to both vuoyancy and thermocapillarity. Of special interest to this work is the determination of whether, and under what conditions, pulsating spread can and will occur in microgravity in the absence of buoyant flows in both phases. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity experiments and advanced diagnostics; (2) microgravity experiments; and (3) numerical modelling at arbitrary gravitational level.
Tien, Joe; Truslow, James G; Nelson, Celeste M
2012-01-01
This paper reports the effect of elevated pressure on the invasive phenotype of patterned three-dimensional (3D) aggregates of MDA-MB-231 human breast cancer cells. We found that the directionality of the interstitial pressure profile altered the frequency of invasion by cells located at the surface of an aggregate. In particular, application of pressure at one end of an aggregate suppressed invasion at the opposite end. Experimental alteration of the configuration of cell aggregates and computational modeling of the resulting flow and solute concentration profiles revealed that elevated pressure inhibited invasion by altering the chemical composition of the interstitial fluid near the surface of the aggregate. Our data reveal a link between hydrostatic pressure, interstitial convection, and invasion.
Space shuttle pogo studies. [systems stability
NASA Technical Reports Server (NTRS)
Coppolino, R. N.; Lock, M. H.; Rubin, S.
1977-01-01
Topics covered include: (1) pogo suppression for main propulsion subsystem operation; (2) application of quarter-scale low pressure oxidizer turbopump transfer functions; (3) pogo stability during orbital maneuvering subsystem operation; and (4) errors in frequency response measurements.
He, Min; Zhong, Zhiqiang; Li, Xing; Gong, Xiaobo; Wang, Zhibiao; Li, Faqi
2017-05-01
It is well-known that acoustic cavitation associated with the high intensity focused ultrasound (HIFU) treatment often would change the morphology and size of lesions in its treatment. In most studies reported in literature, high ambient hydrostatic pressure was used to suppress the cavitation completely. Investigation of the effects by varying the ambient hydrostatic pressure (P stat ) is still lacking. In this paper, the effects of HIFU on lesions in ex vivo bovine liver specimens under various P stat are systematically investigated. A 1MHz HIFU transducer, with an aperture diameter of 70mm and a focal length of 55mm, was used to generate two groups US exposure of different acoustic intensities and exposure time (6095W/cm 2 ×8s and 9752W/cm 2 ×5s), while keeping the same acoustic energies per unit area (48760J/cm 2 ). The peak acoustic negative pressures (p - ) of the two groups were p 1 - =9.58MPa and p 2 - =10.82MPa, respectively, with the difference p d - =p 2 - -p 1 - =1.24MPa. A passive cavitation detection (PCD) was used to monitor the ultrasonic cavitation signal during exposure of the two groups. The US exposures were done under the following ambient hydrostatic pressures, P stat : atmospheric pressure, 0.5MPa, 1.0MPa, 1.5MPa, 2.0MPa, 2.5MPa and3.0MPa, respectively. The result of PCD showed that there was a statistically significant increase above background noise level in broadband emissions at dose of 9752W/cm 2 ×5s, but not at dose of 6095W/cm 2 ×8s under atmospheric pressure; i.e., the acoustic cavitation took place for p 2 - but not for p 1 - when under atmospheric pressure. The results also showed that there was no statistically difference of the morphology and size of lesions for 6095W/cm 2 ×8s exposure under the aforementioned different ambient hydrostatic pressures. But the lesions generated at 9752W/cm 2 ×5s exposure under P stat =atmospheric pressure, 0.5MPa, 1.0MPa (all of them are less than p d - ), were larger than those under 1.5MPa, 2.0MPa, 2.5MPa and 3.0MPa (all of them are over than p d - ) which were consistence with 6095W/cm 2 ×8s group. It was concluded that when P stat >p d - , the acoustic cavitation was suppressed and prompted that there was no need to elevate P stat higher than p - to suppress the acoustic cavitation in tissue, just need P stat higher than p d - . Copyright © 2016 Elsevier B.V. All rights reserved.
Physiological Notch Signaling Maintains Bone Homeostasis via RBPjk and Hey Upstream of NFATc1
Tu, Xiaolin; Chen, Jianquan; Lim, Joohyun; Karner, Courtney M.; Lee, Seung-Yon; Heisig, Julia; Wiese, Cornelia; Surendran, Kameswaran; Kopan, Raphael; Gessler, Manfred; Long, Fanxin
2012-01-01
Notch signaling between neighboring cells controls many cell fate decisions in metazoans both during embryogenesis and in postnatal life. Previously, we uncovered a critical role for physiological Notch signaling in suppressing osteoblast differentiation in vivo. However, the contribution of individual Notch receptors and the downstream signaling mechanism have not been elucidated. Here we report that removal of Notch2, but not Notch1, from the embryonic limb mesenchyme markedly increased trabecular bone mass in adolescent mice. Deletion of the transcription factor RBPjk, a mediator of all canonical Notch signaling, in the mesenchymal progenitors but not the more mature osteoblast-lineage cells, caused a dramatic high-bone-mass phenotype characterized by increased osteoblast numbers, diminished bone marrow mesenchymal progenitor pool, and rapid age-dependent bone loss. Moreover, mice deficient in Hey1 and HeyL, two target genes of Notch-RBPjk signaling, exhibited high bone mass. Interestingly, Hey1 bound to and suppressed the NFATc1 promoter, and RBPjk deletion increased NFATc1 expression in bone. Finally, pharmacological inhibition of NFAT alleviated the high-bone-mass phenotype caused by RBPjk deletion. Thus, Notch-RBPjk signaling functions in part through Hey1-mediated inhibition of NFATc1 to suppress osteoblastogenesis, contributing to bone homeostasis in vivo. PMID:22457635
Augustin, Hrvoje; Grosjean, Yael; Chen, Kaiyun; Sheng, Qi; Featherstone, David E.
2008-01-01
We hypothesized that cystine/glutamate transporters (xCTs) might be critical regulators of ambient extracellular glutamate levels in the nervous system and that misregulation of this glutamate pool might have important neurophysiological and/or behavioral consequences. To test this idea, we identified and functionally characterized a novel Drosophila xCT gene, which we subsequently named “genderblind” (gb). Genderblind is expressed in a previously overlooked subset of peripheral and central glia. Genetic elimination of gb causes a 50% reduction in extracellular glutamate concentration, demonstrating that xCT transporters are important regulators of extracellular glutamate. Consistent with previous studies showing that extracellular glutamate regulates postsynaptic glutamate receptor clustering, gb mutants show a large (200–300%) increase in the number of postsynaptic glutamate receptors. This increase in postsynaptic receptor abundance is not accompanied by other obvious synaptic changes and is completely rescued when synapses are cultured in wild-type levels of glutamate. Additional in situ pharmacology suggests that glutamate-mediated suppression of glutamate receptor clustering depends on receptor desensitization. Together, our results suggest that (1) xCT transporters are critical for regulation of ambient extracellular glutamate in vivo; (2) ambient extracellular glutamate maintains some receptors constitutively desensitized in vivo; and (3) constitutive desensitization of ionotropic glutamate receptors suppresses their ability to cluster at synapses. PMID:17202478
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudawar, I.; Galloway, J.E.; Gersey, C.O.
Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling.more » Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.« less
Choi, Yun-Jung; Park, Hye-Jin; Kim, Hyeon-Ho; Lee, Yun-Jin; Jung, Kyeong-Cheon; Park, Seong-Hoe; Lee, Jae-Il
2016-03-01
The purpose of this study was to evaluate the effects of thiopental versus propofol on cardiopulmonary functions, when used as an induction agent prior to isoflurane anesthesia in rhesus monkeys. Eight healthy rhesus monkeys weighing 3.72 to 5.7 kg, 4-5 years old, were used in the study. Anesthesia was induced with thiopental or propofol intravenous injection, and then maintained with isoflurane in oxygen for 45 minutes. Cardiopulmonary measurements were obtained before and 5, 15, 30, 45, and 60 minutes after induction. The induction doses of thiopental and propofol were 19.41±0.54 and 9.33±1.02 mg/kg, respectively. In both groups, the values of heart rate, respiratory rate, temperature, systolic blood pressure, mean blood pressure, diastolic blood pressure, pH, and lactate were decreased, while the values of partial pressure of carbon dioxide, partial pressure of oxygen, total carbon dioxide, bicarbonate, oxygen saturation, and base excess in the extracellular fluid were increased, as compared with baseline. Systolic blood pressure was significantly lower in thiopental group compare to propofol group. Induction time was very short in both agents but not revealed a significant difference between both groups. However, recovery time was extremely faster in the propofol group. Our results demonstrated that propofol provides a minor suppression in systolic arterial blood pressure than thiopental sodium. In addition, propofol have a fast recovery effect from the anesthesia as well. Furthermore, it is suggested that thiopental sodium could also be used to induce anesthesia instead of propofol, despite slight more suppression of cardiopulmonary function compared to thiopental sodium.
Shabnum, Tabasum; Ali, Zulfiqar; Naqash, Imtiaz Ahmad; Mir, Aabid Hussain; Azhar, Khan; Zahoor, Syed Amer; Mir, Abdul Waheed
2017-01-01
Sympathoadrenergic responses during emergence and extubation can lead to an increase in heart rate (HR) and blood pressure whereas increased airway responses may lead to coughing and laryngospasm. The aim of our study was to compare the effects of lignocaine administered intravenously (IV) or intratracheally on airway and hemodynamic responses during emergence and extubation in patients undergoing elective craniotomies. Sixty patients with physical status American Society of Anaesthesiologists Classes I and II aged 18-70 years, scheduled to undergo elective craniotomies were included. The patients were randomly divided into three groups of twenty patients; Group 1 receiving IV lignocaine and intratracheal placebo (IV group), Group 2 receiving intratracheal lignocaine and IV placebo (I/T group), and Group 3 receiving IV and intratracheal placebo (placebo group). The tolerance to the endotracheal tube was monitored, and number of episodes of cough was recorded during emergence and at the time of extubation. Hemodynamic parameters such as HR and blood pressure (systolic, diastolic, mean arterial pressure) were also recorded. There was a decrease of HR in both IV and intratracheal groups in comparison with placebo group ( P < 0.005). Rise in blood pressure (systolic blood pressure, diastolic blood pressure and mean arterial pressure) was comparable in both Groups 1 and 2 but was lower in comparison with placebo group ( P < 0.005). Cough suppression was comparable in all the three groups. Grade III cough (15%) was documented only in placebo group. Both IV and intratracheal lignocaine are effective in attenuation of hemodynamic response if given within 20 min from skull pin removal to extubation. There was comparable cough suppression through intratracheal route and IV routes than the placebo group.
Inelastic Light Scattering Measurements of a Pressure-Induced Quantum Liquid in KCuF3
NASA Astrophysics Data System (ADS)
Yuan, S.; Kim, M.; Seeley, J. T.; Lee, J. C. T.; Lal, S.; Abbamonte, P.; Cooper, S. L.
2012-11-01
Pressure-dependent, low-temperature inelastic light (Raman) scattering measurements of KCuF3 show that applied pressure above P*˜7kbar suppresses a previously observed structural phase transition temperature to zero temperature in KCuF3, resulting in the development of a fluctuational (quasielastic) response near T˜0K. This pressure-induced fluctuational response—which we associate with slow fluctuations of the CuF6 octahedral orientation—is temperature independent and exhibits a characteristic fluctuation rate that is much larger than the temperature, consistent with quantum fluctuations of the CuF6 octahedra. A model of pseudospin-phonon coupling provides a qualitative description of both the temperature- and pressure-dependent evolution of the Raman spectra of KCuF3.
Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.
Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook
2016-03-01
Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.
Pressure and temperature induced elastic properties of rare earth chalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shriya, S.; Sapkale, R., E-mail: sapkale.raju@rediffmail.com; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com
2016-05-06
The pressure and temperature dependent mechanical properties as Young modulus, Thermal expansion coefficient of rare earth REX (RE = La, Pr, Eu; X = O, S, Se, and Te) chalcogenides are studied. The rare earth chalcogenides showed a structural phase transition (B1–B2). Pressure dependence of Young modulus discerns an increase in pressure inferring the hardening or stiffening of the lattice as a consequence of bond compression and bond strengthening. Suppressed Young modulus as functions of temperature infers the weakening of the lattice results in bond weakening in REX. Thermal expansion coefficient demonstrates that REX (RE = La, Pr, Eu; Xmore » = O, S, Se, and Te) chalcogenides is mechanically stiffened, and thermally softened on applied pressure and temperature.« less
NASA Technical Reports Server (NTRS)
Sullivan, T. J.; Silverman, I.; Little, D. R.
1977-01-01
Test results at design speed show fan total pressure ratio, weight flow, and adiabatic efficiency to be 2.2, 2.9, and 1.8% lower than design goal values. The hybrid acoustic inlet (which utilizes a high throat Mach number and acoustic wall treatment for noise suppression) demonstrated total pressure recoveries of 98.9% and 98.2% at takeoff and approach. Exhaust duct pressure losses differed between the hardwall duct and treated duct with splitter by about 0.6% to 2.0% in terms of fan exit average total pressure (depending on operating condition). When the measured results were used to estimate pressure losses, a cruise sfc penalty of 0.68%, due to the acoustically treated duct, was projected.
Walsh, Kathryn R; Kuwabara, Jill T; Shim, Joon W; Wainford, Richard D
2016-01-15
Recent studies have implicated a role of norepinephrine (NE) in the activation of the sodium chloride cotransporter (NCC) to drive the development of salt-sensitive hypertension. However, the interaction between NE and increased salt intake on blood pressure remains to be fully elucidated. This study examined the impact of a continuous NE infusion on sodium homeostasis and blood pressure in conscious Sprague-Dawley rats challenged with a normal (NS; 0.6% NaCl) or high-salt (HS; 8% NaCl) diet for 14 days. Naïve and saline-infused Sprague-Dawley rats remained normotensive when placed on HS and exhibited dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide. NE infusion resulted in the development of hypertension, which was exacerbated by HS, demonstrating the development of the salt sensitivity of blood pressure [MAP (mmHg) NE+NS: 151 ± 3 vs. NE+HS: 172 ± 4; P < 0.05]. In these salt-sensitive animals, increased NE prevented dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide, suggesting impaired NCC activity contributes to the development of salt sensitivity [peak natriuresis to hydrochlorothiazide (μeq/min) Naïve+NS: 9.4 ± 0.2 vs. Naïve+HS: 7 ± 0.1; P < 0.05; NE+NS: 11.1 ± 1.1; NE+HS: 10.8 ± 0.4). NE infusion did not alter NCC expression in animals maintained on NS; however, dietary sodium-evoked suppression of NCC expression was prevented in animals challenged with NE. Chronic NCC antagonism abolished the salt-sensitive component of NE-mediated hypertension, while chronic ANG II type 1 receptor antagonism significantly attenuated NE-evoked hypertension without restoring NCC function. These data demonstrate that increased levels of NE prevent dietary sodium-evoked suppression of the NCC, via an ANG II-independent mechanism, to stimulate the development of salt-sensitive hypertension. Copyright © 2016 the American Physiological Society.
Yang, Xiujiang; Sun, Bo; Zhu, Haihang; Jiang, Ziting
2015-01-01
The aim was to explore the effect of negative pressure on the proliferation and metastasis of human pancreatic cancer SW1990 cells. Three groups were conducted in the work: normal control group (NC group, 0 mm Hg), low negative pressure group (LN group, -300 mm Hg), and high negative pressure group (HN group, -600 mm Hg). Cell morphological assay was conducted using an inverted Nikon TE2000-S microscope. Cell viability was assayed using cell counting kit-8 solution. Cell apoptosis was evaluated with flow cytometry. Cell migration was investigated using transwell assay. Compared to LN and HN groups, SW1990 cells in NC group grew quite well, showing a higher density. The NC group represented the highest cell viability. The HN group represented the lowest cell viability, which was lower than that of the LN group (P < 0.01). The apoptosis rate in NC group, LN group and HN group was 1.91% ± 0.13%, 2.31% ± 0.06% and 15.22% ± 0.81%, respectively (P < 0.05). The average number of migration cells in NC group was 53.60 ± 4.14 (× 200), which was decreased to 18.93 ± 3.67 and 11.07 ± 3.01 in LN group and HN group, respectively (P < 0.01). The negative pressure shows suppression effects on the proliferation and metastasis of human pancreatic cancer SW1990 cells. It is indicated that negative pressure may be involved in the development of human pancreatic cancer by influencing cell biological characteristics.
Reding, Michael E; Oliver, Jason B; Schultz, Peter B; Ranger, Christopher M; Youssef, Nadeer N
2013-02-01
Exotic ambrosia beetles are damaging pests in ornamental tree nurseries in North America. The species Xylosandrus crassiusculus (Motshulsky) and Xylosandrus germanus (Blandford) are especially problematic. Management of these pests relies on preventive treatments of insecticides. However, field tests of recommended materials on nursery trees have been limited because of unreliable attacks by ambrosia beetles on experimental trees. Ethanol-injection of trees was used to induce colonization by ambrosia beetles to evaluate insecticides and botanical formulations for preventing attacks by ambrosia beetles. Experiments were conducted in Ohio, Tennessee, and Virginia. Experimental trees injected with ethanol had more attacks by ambrosia beetles than uninjected control trees in all but one experiment. Xylosandrus crassiusculus and X. germanus colonized trees injected with ethanol. In most experiments, attack rates declined 8 d after ethanol-injection. Ethanol-injection induced sufficient pressure from ambrosia beetles to evaluate the efficacy of insecticides for preventing attacks. Trunk sprays of permethrin suppressed cumulative total attacks by ambrosia beetles in most tests. Trunk sprays of the botanical formulations Armorex and Veggie Pharm suppressed cumulative total attacks in Ohio. Armorex, Armorex + Permethrin, and Veggie Pharm + Permethrin suppressed attacks in Tennessee. The bifenthrin product Onyx suppressed establishment of X. germanus in one Ohio experiment, and cumulative total ambrosia beetle attacks in Virginia. Substrate drenches and trunk sprays of neonicotinoids, or trunk sprays of anthranilic diamides or tolfenpyrad were not effective. Ethanol-injection is effective for inducing attacks and ensuring pressure by ambrosia beetles for testing insecticide efficacy on ornamental trees.
An underwater blood pressure measuring device.
Sieber, Arne; Kuch, Benjamin; L'abbate, Antonio; Wagner, Matthias; Dario, Paolo; Bedini, Remo
2008-09-01
Measurement of arterial blood pressure is an important vital sign for monitoring the circulation. However, up to now no instrument has been available that enables the measurement of blood pressure underwater. The present paper details a novel, oscillometric, automatic digital blood pressure (BP) measurement device especially designed for this purpose. It consists mainly of analogue and digital electronics in a lexan housing that is rated to a depth of up to 200 metres' sea water, a cuff and a solenoid for inflation of the cuff with air supplied from a scuba tank. An integrated differential pressure sensor, exposed to the same ambient pressure as the cuff, allows accurate BP measurement. Calculation of systolic and diastolic pressures is based on the analysis of pressure oscillations recorded during the deflation. In hyperbaric chamber tests to pressures up to 405 kPa, BP measurements taken with the prototype were comparable to those obtained with established manual and automated methods. Swimming pool tests confirmed the correct functioning of the system underwater. The quality of the recorded pressure oscillations was very good even at 10 metres' fresh water, and allowed determination of diastolic and systolic pressure values. Based on these results we envisage that this device will lead to a better understanding of human cardiovascular physiology in underwater and hyperbaric environments.
NASA Astrophysics Data System (ADS)
Zhao, Pengcheng; Guo, Lixin; Shu, Panpan
2016-08-01
The gas breakdown induced by a square microwave pulse with a crossed dc magnetic field is investigated using the electron fluid model, in which the accurate electron energy distribution functions are adopted. Simulation results show that at low gas pressures the dc magnetic field of a few tenths of a tesla can prolong the breakdown formation time by reducing the mean electron energy. With the gas pressure increasing, the higher dc magnetic field is required to suppress the microwave breakdown. The electric field along the microwave propagation direction generated due to the motion of electrons obviously increases with the dc magnetic field, but it is much less than the incident electric field. The breakdown predictions of the electron fluid model agree very well with the particle-in-cell-Monte Carlo collision simulations as well as the scaling law for the microwave gas breakdown.
NASA Astrophysics Data System (ADS)
Hajicek, Joshua J.; Selesnick, Ivan W.; Henin, Simon; Talmadge, Carrick L.; Long, Glenis R.
2018-05-01
Stimulus frequency otoacoustic emissions (SFOAEs) were evoked and estimated using swept-frequency tones with and without the use of swept suppressor tones. SFOAEs were estimated using a least-squares fitting procedure. The estimated SFOAEs for the two paradigms (with- and without-suppression) were similar in amplitude and phase. The fitting procedure minimizes the square error between a parametric model of total ear-canal pressure (with unknown amplitudes and phases) and ear-canal pressure acquired during each paradigm. Modifying the parametric model to allow SFOAE amplitude and phase to vary over time revealed additional amplitude and phase fine structure in the without-suppressor, but not the with-suppressor paradigm. The use of a time-varying parametric model to estimate SFOAEs without-suppression may provide additional information about cochlear mechanics not available when using a with-suppressor paradigm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naritsuka, M.; Rosa, P. F. S.; Luo, Yongkang
Unconventional superconductivity and magnetism are intertwined on a microscopic level in a wide class of materials. A new approach to this most fundamental and hotly debated issue focuses on the role of interactions between superconducting electrons and bosonic fluctuations at the interface between adjacent layers in heterostructures. In this paper, we fabricate hybrid superlattices consisting of alternating atomic layers of the heavy-fermion superconductormore » $${\\mathrm{CeCoIn}}_{5}$$ and antiferromagnetic (AFM) metal $${\\mathrm{CeRhIn}}_{5}$$, in which the AFM order can be suppressed by applying pressure. We find that the superconducting and AFM states coexist in spatially separated layers, but their mutual coupling via the interface significantly modifies the superconducting properties. An analysis of upper critical fields reveals that, upon suppressing the AFM order by applied pressure, the force binding superconducting electron pairs acquires an extreme strong-coupling nature. Finally, this demonstrates that superconducting pairing can be tuned nontrivially by magnetic fluctuations (paramagnons) injected through the interface.« less
NASA Technical Reports Server (NTRS)
Stapfer, G.; Truscello, V. C.
1975-01-01
For the Multi-Hundred Watt (MHW) Radioisotope Thermoelectric Generator (RTG), the silicon germanium unicouples are coated with silicon nitride to minimize degradation mechanisms which are directly attributable to material sublimation effects. A program is under way to determine the effective vapor suppression of this coating as a function of temperature and gas environment. The results of weight loss experiments, using Si3N4 coated hot shoes (SiMo), operating over a temperature range from 900 C to 1200 C, are analyzed and discussed. These experiments were conducted both in high vacuum and at different pressures of carbon monoxide (CO) to determine its effect on the coating. Although the results show a favorable vapor suppression at all operating temperatures, the pressure of the CO and the thickness of the coating have a decided effect on the useful lifetime of the coating.
Adetokunboh, Olatunji; Uthman, Olalekan A.; Knowlton, Amy W.; Altice, Frederick L.; Schechter, Mauro; Galárraga, Omar; Geng, Elvin; Peltzer, Karl; Chang, Larry W.; Van Cutsem, Gilles; Jaffar, Shabbar S.; Ford, Nathan; Mellins, Claude A.; Remien, Robert H.; Mills, Edward J.
2017-01-01
Little is known about the effect of community versus health facility-based interventions to improve and sustain antiretroviral therapy (ART) adherence, virologic suppression, and retention in care among HIV-infected individuals in low-and middle-income countries (LMICs). We systematically searched four electronic databases for all available randomized controlled trials (RCTs) and comparative cohort studies in LMICs comparing community versus health facility-based interventions. Relative risks (RRs) for pre-defined adherence, treatment engagement (linkage and retention in care), and relevant clinical outcomes were pooled using random effect models. Eleven cohort studies and eleven RCTs (N = 97,657) were included. Meta-analysis of the included RCTs comparing community- versus health facility-based interventions found comparable outcomes in terms of ART adherence (RR = 1.02, 95 % CI 0.99 to 1.04), virologic suppression (RR = 1.00, 95 % CI 0.98 to 1.03), and all-cause mortality (RR = 0.93, 95 % CI 0.73 to 1.18). The result of pooled analysis from the RCTs (RR = 1.03, 95 % CI 1.01 to 1.06) and cohort studies (RR = 1.09, 95 % CI 1.03 to 1.15) found that participants assigned to community-based interventions had statistically significantly higher rates of treatment engagement. Two studies found community-based ART delivery model either cost-saving or cost-effective. Community- versus facility-based models of ART delivery resulted in at least comparable outcomes for clinically stable HIV-infected patients on treatment in LMICs and are likely to be cost-effective. PMID:27475643
Hashimotodani, Yuki; Ohno-Shosaku, Takako; Tanimura, Asami; Kita, Yoshihiro; Sano, Yoshikazu; Shimizu, Takao; Di Marzo, Vincenzo; Kano, Masanobu
2013-01-01
The endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) produced by diacylglycerol lipase α (DGLα) is one of the best-characterized retrograde messengers at central synapses. It has been thought that 2-AG is produced ‘on demand’ upon activation of postsynaptic neurons. However, recent studies propose that 2-AG is pre-synthesized by DGLα and stored in neurons, and that 2-AG is released from such ‘pre-formed pools’ without the participation of DGLα. To address whether the 2-AG source for retrograde signalling is the on-demand biosynthesis by DGLα or the mobilization from pre-formed pools, we examined the effects of acute pharmacological inhibition of DGL by a novel potent DGL inhibitor, OMDM-188, on retrograde eCB signalling triggered by Ca2+ elevation, Gq/11 protein-coupled receptor activation or synergy of these two stimuli in postsynaptic neurons. We found that pretreatment for 1 h with OMDM-188 effectively blocked depolarization-induced suppression of inhibition (DSI), a purely Ca2+-dependent form of eCB signalling, in slices from the hippocampus, striatum and cerebellum. We also found that at parallel fibre–Purkinje cell synapses in the cerebellum OMDM-188 abolished synaptically induced retrograde eCB signalling, which is known to be caused by the synergy of postsynaptic Ca2+ elevation and group I metabotropic glutamate receptor (I-mGluR) activation. Moreover, brief OMDM-188 treatments for several minutes were sufficient to suppress both DSI and the I-mGluR-induced retrograde eCB signalling in cultured hippocampal neurons. These results are consistent with the hypothesis that 2-AG for synaptic retrograde signalling is supplied as a result of on-demand biosynthesis by DGLα rather than mobilization from presumptive pre-formed pools. PMID:23858009
Use of acid-suppressive drugs and risk of fracture: a meta-analysis of observational studies.
Eom, Chun-Sick; Park, Sang Min; Myung, Seung-Kwon; Yun, Jae Moon; Ahn, Jeong-Soo
2011-01-01
Previous studies have reported inconsistent findings regarding the association between the use of acid-suppressive drugs such as proton pump inhibitors (PPIs) and histamine 2 receptor antagonists (H(2)RAs) and fracture risk. We investigated this association using meta-analysis. We searched MEDLINE (PubMed), EMBASE, and the Cochrane Library from inception through December 2010 using common key words. We included case-control, nested case-control, and cohort studies. Two evaluators independently reviewed and selected articles. We determined pooled effect estimates by using random-effects meta-analysis, because of heterogeneity. Of 1,809 articles meeting our initial inclusion criteria, 5 case-control studies, 3 nested case-control studies, and 3 cohort studies were included in the final analyses. The pooled odds ratio (OR) for fracture was 1.29 (95% confidence interval [CI], 1.18-1.41) with use of PPIs and 1.10 (95% CI, 0.99-1.23) with use of H(2)RAs when compared with nonuse of the respective medications. Long-term use of PPIs increased the risk of any fracture (adjusted OR = 1.30; 95% CI, 1.15-1.48) and hip fracture risk (adjusted OR = 1.34; 95% CI, 1.09-1.66), whereas long-term H(2)RA use was not significantly associated with fracture risk. We found possible evidence linking PPI use to an increased risk of fracture, but no association between H(2)RA use and fracture risk. Widespread use of PPIs with the potential risk of fracture is of great importance to public health. Clinicians should carefully consider their decision to prescribe PPIs for patients already having an elevated risk of fracture because of age or other factors.
Bodell, Lindsay P; Brown, Tiffany A; Keel, Pamela K
2017-01-01
Weight suppression predicts the onset and maintenance of bulimic syndromes. Despite this finding, no study has examined psychological mechanisms contributing to these associations using a longitudinal design. Given societal pressures to be thin and an actual history of higher weight, it is possible that greater weight suppression contributes to increased fear of gaining weight and preoccupation with being thin, which increase vulnerability to eating disorders. The present study investigated whether greater drive for thinness mediates associations between weight suppression and bulimic symptoms over long-term follow-up. Participants were women (n = 1,190) and men (n = 509) who completed self-report surveys in college and 10- and 20-years later. Higher weight suppression at baseline predicted higher bulimic symptoms at 20-year follow-up (p < .001), while accounting for demographic variables and baseline bulimic symptoms, body mass index, and drive for thinness. Increased drive for thinness at 10-year follow-up mediated this effect. Findings highlight the long-lasting effect of weight suppression on bulimic symptoms and suggest that preoccupation with thinness may help maintain this association. Future studies would benefit from incorporating other hypothesized consequences of weight suppression, including biological factors, into risk models. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Development of gait segmentation methods for wearable foot pressure sensors.
Crea, S; De Rossi, S M M; Donati, M; Reberšek, P; Novak, D; Vitiello, N; Lenzi, T; Podobnik, J; Munih, M; Carrozza, M C
2012-01-01
We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to detect gait phases with different levels of complexity in the processing of the wearable pressure sensors signals. Therefore three different datasets are developed: raw voltage values, calibrated sensor signals and a calibrated estimation of total ground reaction force and position of the plantar center of pressure. The method is tested on a pool of 5 healthy subjects, through a leave-one-out cross validation. The results show high classification performances achieved using estimated biomechanical variables, being on average the 96%. Calibrated signals and raw voltage values show higher delays and dispersions in phase transition detection, suggesting a lower reliability for online applications.
NASA Technical Reports Server (NTRS)
Kopasakis, George
2005-01-01
This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.
Application of Compton-suppressed self-induced XRF to spent nuclear fuel measurement
NASA Astrophysics Data System (ADS)
Park, Se-Hwan; Jo, Kwang Ho; Lee, Seung Kyu; Seo, Hee; Lee, Chaehun; Won, Byung-Hee; Ahn, Seong-Kyu; Ku, Jeong-Hoe
2017-11-01
Self-induced X-ray fluorescence (XRF) is a technique by which plutonium (Pu) content in spent nuclear fuel can be directly quantified. In the present work, this method successfully measured the plutonium/uranium (Pu/U) peak ratio of a pressurized water reactor (PWR)'s spent nuclear fuel at the Korea atomic energy research institute (KAERI)'s post irradiation examination facility (PIEF). In order to reduce the Compton background in the low-energy X-ray region, the Compton suppression system additionally was implemented. By use of this system, the spectrum's background level was reduced by a factor of approximately 2. This work shows that Compton-suppressed selfinduced XRF can be effectively applied to Pu accounting in spent nuclear fuel.
NASA Astrophysics Data System (ADS)
Zhou, W.; Ke, F.; Xu, Xiaofeng; Sankar, R.; Xing, X.; Xu, C. Q.; Jiang, X. F.; Qian, B.; Zhou, N.; Zhang, Y.; Xu, M.; Li, B.; Chen, B.; Shi, Z. X.
2017-11-01
Non-Fermi-liquid (NFL) phenomena associated with correlation effects have been widely observed in the phase diagrams of unconventional superconducting families. Exploration of the correlation between the normal state NFL, regardless of its microscopic origins, and the superconductivity has been argued as a key to unveiling the mystery of the high-Tc pairing mechanism. Here we systematically investigate the pressure-dependent in-plane resistivity (ρ ) and Hall coefficient (RH) of a high-quality 112-type Fe-based superconductor Ca1 -xLaxFe1 -yCoyAs2 (x =0.2 ,y =0.02 ). With increasing pressure, the normal-state resistivity of the studied sample exhibits a pronounced crossover from non-Fermi-liquid to Fermi-liquid behaviors. Accompanied with this crossover, Tc is gradually suppressed. In parallel, the extremum in the Hall coefficient RH(T ) curve, possibly due to anisotropic scattering induced by spin fluctuations, is also gradually suppressed. The symbiosis of NFL and superconductivity implies that these two phenomena are intimately related. Further study on the pressure-dependent upper critical field reveals that the two-band effects are also gradually weakened with increasing pressure and reduced to the one-band Werthamer-Helfand-Hohenberg limit in the low-Tc regime. Overall, our paper supports the picture that NFL, multigap, and extreme RH(T ) are all of the same magnetic origin, i.e., the spin fluctuations in the 112 iron arsenide superconductors.
Active Control of Surge in Compressors Which Exhibit Abrupt Stall
2001-06-01
sensor (of pressure, flow rate, etc.) is fed to a controller which applies a proper control law to drive the actuator (valve, The present paper reports...1993), who analyzed the influence of sensor and numerical simulation shows that: t) the predictions of control acutrsltin o th mxmm sabizd opesr...a sensor of compressor face total pressure), a The present paper considers the active suppression of surge in a butterfly throttle/actuation valve
Control of Acoustics and Store Separation in a Cavity in Supersonic Flow
2005-02-01
laser -based flow visualization experiments on the FSU cavity for different microjet pressures. The details of the experiments are given in Zhuang, et. al...developed that rigorously explains the role of leading edge microjets in cavity noise suppression and predicts the magnitude of noise reduction for a...given control input (that is the steady pressure at which the microjets are fired). The model is validated through comparison of its noise reduction
Transonic Flutter Suppression Control Law Design, Analysis and Wind-Tunnel Results
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1999-01-01
The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using classical, and minimax techniques are described. A unified general formulation and solution for the minimax approach, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.
Soifer, Harris S; Zaragoza, Adriana; Peyvan, Maany; Behlke, Mark A; Rossi, John J
2005-01-01
Long interspersed nuclear elements (LINE-1 or L1) comprise 17% of the human genome, although only 80-100 L1s are considered retrotransposition-competent (RC-L1). Despite their small number, RC-L1s are still potential hazards to genome integrity through insertional mutagenesis, unequal recombination and chromosome rearrangements. In this study, we provide several lines of evidence that the LINE-1 retrotransposon is susceptible to RNA interference (RNAi). First, double-stranded RNA (dsRNA) generated in vitro from an L1 template is converted into functional short interfering RNA (siRNA) by DICER, the RNase III enzyme that initiates RNAi in human cells. Second, pooled siRNA from in vitro cleavage of L1 dsRNA, as well as synthetic L1 siRNA, targeting the 5'-UTR leads to sequence-specific mRNA degradation of an L1 fusion transcript. Finally, both synthetic and pooled siRNA suppressed retrotransposition from a highly active RC-L1 clone in cell culture assay. Our report is the first to demonstrate that a human transposable element is subjected to RNAi.
Yasrebi, Ali; Hsieh, Anna; Mamounis, Kyle J.; Krumm, Elizabeth A.; Yang, Jennifer A.; Magby, Jason; Hu, Pu; Roepke, Troy A.
2015-01-01
Ghrelin’s receptor, growth hormone secretagogue receptor (GHSR), is highly expressed in the arcuate nucleus (ARC) and in neuropeptide Y (NPY) neurons. Fasting, diet-induced obesity (DIO), and 17β-estradiol (E2) influence ARC Ghsr expression. It is unknown if these effects occur in NPY neurons. Therefore, we examined the expression of Npy, Agrp, and GHSR signaling pathway genes after fasting, DIO, and E2 replacement in ARC and pools of NPY neurons. In males, fasting increased ARC Ghsr and NPY Foxo1 but decreased NPY Ucp2. In males, DIO decreased ARC and NPY Ghsr and Cpt1c. In fed females, E2 increased Agrp, Ghsr, Cpt1c, and Foxo1 in ARC. In NPY pools, E2 decreased Foxo1 in fed females but increased Foxo1 in fasted females. DIO in females suppressed Agrp and augmented Cpt1c in NPY neurons. In summary, genes involved in GHSR signaling are differentially regulated between the ARC and NPY neurons in a sex-dependent manner. PMID:26577678
Lee, Donna H; Riquier, Anne D M; Yang, Li E; Leong, Patrick K K; Maunsbach, Arvid B; McDonough, Alicia A
2009-04-01
When blood pressure (BP) is elevated above baseline, a pressure natriuresis-diuresis response ensues, critical to volume and BP homeostasis. Distal convoluted tubule Na(+)-Cl(-) cotransporter (NCC) is regulated by trafficking between the apical plasma membrane (APM) and subapical cytoplasmic vesicles (SCV). We aimed to determine whether NCC trafficking contributes to pressure diuresis by decreasing APM NCC or compensates for increased volume flow to the DCT by increasing APM NCC. BP was raised 50 mmHg (high BP) in rats by arterial constriction for 5 or 20-30 min, provoking a 10-fold diuresis at both times. Kidneys were excised, and NCC subcellular distribution was analyzed by 1) sorbitol density gradient fractionation and immunoblotting and 2) immunoelectron microscopy (immuno-EM). NCC distribution did not change after 5-min high BP. After 20-30 min of high BP, 20% of NCC redistributed from low-density, APM-enriched fractions to higher density, endosome-enriched fractions, and, by quantitative immuno-EM, pool size of APM NCC decreased 14% and SCV pool size increased. Because of the time lag of the response, we tested the hypothesis that internalization of NCC was secondary to the decrease in ANG II that accompanies high BP. Clamping ANG II at a nonpressor level by coinfusion of captopril (12 microg/min) and ANG II (20 ng.kg(-1).min(-1)) during 30-min high BP reduced diuresis to eightfold and prevented redistribution of NCC from APM- to SCV-enriched fractions. We conclude that DCT NCC may participate in pressure natriuresis-diuresis by retraction out of apical plasma membranes and that the retraction is, at least in part, driven by the fall in ANG II that accompanies acute hypertension.
NASA Astrophysics Data System (ADS)
Yan, S.; Bruckman, V. J.; Glatzel, G.; Hochbichler, E.
2012-04-01
As one of the renewable energy forms, bio-energy could help to relieve the pressure which is caused by growing global energy demand. In Austria, large area of forests, traditional utilization of biomass and people's desire to live in a sound environment have supported the positive development of bio-energy. Soil nutrient status is in principle linked with the productivity of the aboveground biomass. This study focuses on K, Ca and Mg pools in soils and aboveground biomass in order to learn more on the temporal dynamics of plant nutrients as indicators for biomass potentials in Quercus dominated forests in northeastern Austria. Three soil types (according to WRB: eutric cambisol, calcic chernozem and haplic luvisol) were considered representative for the area and sampled. We selected nine Quercus petraea dominated permanent plots for this study. Exchangeable cations K, Ca and Mg in the soils were quantified in our study plots. Macronutrients pools of K, Ca and Mg in aboveground biomass were calculated according to inventory data and literature review. The exchangeable cations pool in the top 50 cm of the soil were 882 - 1,652 kg ha-1 for K, 2,661 to 16,510 kg ha-1 for Ca and 320 - 1,850 kg ha-1 for Mg. The nutrient pool in aboveground biomass ranged from 29 to 181 kg ha-1 for K, from 56 to 426 kg ha-1 for Ca and from 4 to 26 kg ha-1 for Mg. The underground exchangeable pools of K, Ca and Mg are generally 10, 22 and 58 times higher than aboveground biomass nutrient pools. Our results showed that the nutrient pools in the mineral soil are sufficient to support the tree growth. The levels of soil nutrients in particular K, Ca and Mg in our study areas are reasonably high and do not indicate the necessity for additional fertilization under current silvicultural practices and biomass extraction rate. The forest in our study areas is in favorable condition to supply biomass as raw material for energy utilization.
ERIC Educational Resources Information Center
Kuwamura, Akira
2009-01-01
There has been fierce competition for a shrinking pool of high school graduates in the higher education market in Japan in recent years. Along came former Prime Minister Fukuda's plan for an intake of 300,000 international students by the year 2020. These have placed Japanese institutions of higher education under further pressure to sustain their…
Finneran, James J; Schlundt, Carolyn E
2007-07-01
Studies of underwater hearing are often hampered by the behavior of sound waves in small experimental tanks. At lower frequencies, tank dimensions are often not sufficient for free field conditions, resulting in large spatial variations of sound pressure. These effects may be mitigated somewhat by increasing the frequency bandwidth of the sound stimulus, so effects of multipath interference average out over many frequencies. In this study, acoustic fields and bottlenose dolphin (Tursiops truncatus) hearing thresholds were compared for pure tone and frequency modulated signals. Experiments were conducted in a vinyl-walled, seawater-filled pool approximately 3.7 x 6 x 1.5 m. Acoustic signals were pure tone and linear and sinusoidal frequency modulated tones with bandwidths/modulation depths of 1%, 2%, 5%, 10%, and 20%. Thirteen center frequencies were tested between 1 and 100 kHz. Acoustic fields were measured (without the dolphin present) at three water depths over a 60 x 65 cm grid with a 5-cm spacing. Hearing thresholds were measured using a behavioral response paradigm and up/down staircase technique. The use of FM signals significantly improved the sound field without substantially affecting the measured hearing thresholds.
Paradox of the drinking-straw model of the butterfly proboscis.
Tsai, Chen-Chih; Monaenkova, Daria; Beard, Charles E; Adler, Peter H; Kornev, Konstantin G
2014-06-15
Fluid-feeding Lepidoptera use an elongated proboscis, conventionally modeled as a drinking straw, to feed from pools and films of liquid. Using the monarch butterfly, Danaus plexippus (Linnaeus), we show that the inherent structural features of the lepidopteran proboscis contradict the basic assumptions of the drinking-straw model. By experimentally characterizing permeability and flow in the proboscis, we show that tapering of the food canal in the drinking region increases resistance, significantly hindering the flow of fluid. The calculated pressure differential required for a suction pump to support flow along the entire proboscis is greater than 1 atm (~101 kPa) when the butterfly feeds from a pool of liquid. We suggest that behavioral strategies employed by butterflies and moths can resolve this paradoxical pressure anomaly. Butterflies can alter the taper, the interlegular spacing and the terminal opening of the food canal, thereby controlling fluid entry and flow, by splaying the galeal tips apart, sliding the galeae along one another, pulsing hemolymph into each galeal lumen, and pressing the proboscis against a substrate. Thus, although physical construction of the proboscis limits its mechanical capabilities, its functionality can be modified and enhanced by behavioral strategies. © 2014. Published by The Company of Biologists Ltd.
Lim, J.; Fabbris, G.; Haskel, D.; ...
2015-05-26
In previous studies the pressure dependence of the magnetic ordering temperature T o of Dy was found to exhibit a sharp increase above its volume collapse pressure of 73 GPa, appearing to reach temperatures well above ambient at 157 GPa. In a search for a second such lanthanide, electrical resistivity measurements were carried out on neighboring Tb to 141 GPa over the temperature range 3.8 - 295 K. Below Tb’s volume collapse pressure of 53 GPa, the pressure dependence T o(P) mirrors that of both Dy and Gd. However, at higher pressures T o(P) for Tb becomes highly anomalous. Thismore » result, together with the very strong suppression of superconductivity by dilute Tb ions in Y, suggests that extreme pressure transports Tb into an unconventional magnetic state with an anomalously high magnetic ordering temperature.« less
Single Molecule Raman Spectroscopy Under High Pressure
NASA Astrophysics Data System (ADS)
Fu, Yuanxi; Dlott, Dana
2014-06-01
Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.
NASA Astrophysics Data System (ADS)
Takahashi, H.; Akiba, T.; Imura, K.; Shiino, T.; Deguchi, K.; Sato, N. K.; Sakai, H.; Bahramy, M. S.; Ishiwata, S.
2017-03-01
The relation between the polar structural instability and superconductivity in a Weyl semimetal candidate MoTe2 has been clarified by finely controlled physical and chemical pressure. The physical pressure as well as the chemical pressure, i.e., the Se substitution for Te, enhances the superconducting transition temperature Tc at around the critical pressure where the polar structure transition disappears. From the heat capacity and thermopower measurements, we ascribe the significant enhancement of Tc at the critical pressure to a subtle modification of the phonon dispersion or the semimetallic band structure upon the polar-to-nonpolar transition. On the other hand, the physical pressure, which strongly reduces the interlayer distance, is more effective on the suppression of the polar structural transition and the enhancement of Tc as compared with the chemical pressure, which emphasizes the importance of the interlayer coupling on the structural and superconducting instability in MoTe2.
Pressure-induced itinerant electron metamagnetism in UCo0.995Os0.005Al ferromagnet
NASA Astrophysics Data System (ADS)
Mushnikov, N. V.; Andreev, A. V.; Arnold, Z.
2018-05-01
The effect of external hydrostatic pressure on magnetic properties is studied for the UCo0.995Os0.005Al single crystal. At ambient pressure, the ground state is ferromagnetic. Even lowest applied pressure 0.11 GPa is sufficient to suppress ferromagnetism. A sharp metamagnetic transition is observed only in magnetic fields along the c axis of the crystal, similar to previously studied itinerant electron metamagnet UCoAl. Temperature dependence of the susceptibility for various pressures shows a broad maximum at Tmax 20 K. The experimental data are analyzed with the theory of itinerant electron metamagnetism, which considers anisotropic thermal fluctuations of the uranium magnetic moment. The observed pressure dependence of the susceptibility at Tmax and the temperature for the disappearance of the first-order metamagnetic transition are explained with the theory.
Outwardly Propagating Flames at Elevated Pressures
NASA Technical Reports Server (NTRS)
Law, C. K.; Rozenchan, G.; Tse, S. D.; Zhu, D. L.
2001-01-01
Spherical, outwardly-propagating flames of CH4-O2-inert and H2-O2-inert mixtures were experimentally studied in a high pressure apparatus. Stretch-free flame speeds and Markstein lengths were extracted for a wide range of pressures and equivalence ratios for spherically-symmetric, smooth flamefronts and compared to numerical computations with detailed chemistry and transport, as well as existing data in the literature. Wrinkle development was examined for propagating flames that were unstable under our experimental conditions. Hydrodynamic cells developed for most H2-air and CH4-air flames at elevated pressures, while thermal-diffusive instabilities were also observed for lean and near-stoichiometric hydrogen flames at pressures above atmospheric. Strategies in suppressing or delaying the onset of cell formation have been assessed. Buoyancy effects affected sufficiently off-stoichiometric CH4 mixtures at high pressures.
Pressure-enabled phonon engineering in metals
Lanzillo, Nicholas A.; Thomas, Jay B.; Watson, Bruce; Washington, Morris; Nayak, Saroj K.
2014-01-01
We present a combined first-principles and experimental study of the electrical resistivity in aluminum and copper samples under pressures up to 2 GPa. The calculations are based on first-principles density functional perturbation theory, whereas the experimental setup uses a solid media piston–cylinder apparatus at room temperature. We find that upon pressurizing each metal, the phonon spectra are blue-shifted and the net electron–phonon interaction is suppressed relative to the unstrained crystal. This reduction in electron–phonon scattering results in a decrease in the electrical resistivity under pressure, which is more pronounced for aluminum than for copper. We show that density functional perturbation theory can be used to accurately predict the pressure response of the electrical resistivity in these metals. This work demonstrates how the phonon spectra in metals can be engineered through pressure to achieve more attractive electrical properties. PMID:24889627
Radhakrishnan, Kirthi; Haworth, Kevin J.; Huang, Shao-Ling; Klegerman, Melvin E.; McPherson, David D.; Holland, Christy K.
2016-01-01
Echogenic liposomes (ELIP) are multifunctional ultrasound contrast agents (UCAs) with a lipid shell encapsulating both air and an aqueous core. ELIP are being developed for molecular imaging and image-guided therapeutic delivery. Stability of the echogenicity of ELIP in physiologic conditions is crucial to their successful translation to clinical use. In this study we determined the effects of the surrounding media’s dissolved air concentration, temperature transition and hydrodynamic pressure on the echogenicity of a chemically modified formulation of ELIP to promote stability and echogenicity. ELIP samples were diluted in porcine plasma or whole blood and pumped through a pulsatile flow system with adjustable hydrodynamic pressures and temperature. B-mode images were acquired using a clinical diagnostic scanner every 5 s for a total duration of 75 s. Echogenicity in porcine plasma was assessed as a function of total dissolved gas saturation. ELIP were added to plasma at room temperature (22 °C) or body temperature (37 °C) and pumped through a system maintained at 22 °C or 37 °C to study the effect of temperature transitions on ELIP echogenicity. Echogenicity at normotensive (120/80 mmHg) and hypertensive pressures (145/90 mmHg) was measured. ELIP were echogenic in plasma and whole blood at body temperature under normotensive to hypertensive pressures. Warming of samples from room temperature to body temperature did not alter echogenicity. However, in plasma cooled rapidly from body temperature to room temperature or in degassed plasma, ELIP lost echogenicity within 20 s at 120/80 mmHg. The stability of echogenicity of a modified ELIP formulation was determined in vitro at body temperature, physiologic gas concentration and throughout the physiologic pressure range. However, proper care should be taken to ensure that ELIP are not cooled rapidly from body temperature to room temperature as they will lose their acoustic properties. Further in vivo investigations will be needed to evaluate the optimal usage of ELIP as blood pool contrast agents. PMID:22929652
Tuhtan, Jeffrey A; Fuentes-Perez, Juan Francisco; Toming, Gert; Schneider, Matthias; Schwarzenberger, Richard; Schletterer, Martin; Kruusmaa, Maarja
2018-05-25
The lateral line system provides fish with advanced mechanoreception over a wide range of flow conditions. Inspired by the abilities of their biological counterparts, artificial lateral lines have been developed and tested exclusively under laboratory settings. Motivated by the lack of flow measurements taken in the field which consider fluid-body interactions, we built a fish-shaped lateral line probe. The device is outfitted with 11 high-speed (2.5 kHz) time-synchronized pressure transducers, and designed to capture and classify flows in fish passage structures. A total of 252 field measurements, each with a sample size of 132 000 discrete sensor readings were recorded in the slots and across the pools of vertical slot fishways. These data were used to estimate the time-averaged flow velocity (R 2 = 0.952), which represents the most common metric to assess fishway flows. The significant contribution of this work is the creation and application of hydrodynamic signatures generated by the spatial distribution of pressure fluctuations on the fish-shaped body. The signatures are based on the collection of the pressure fluctuations' probability distributions, and it is shown that they can be used to automatically classify distinct flow regions within the pools of three different vertical slot fishways. For the first time, field data from operational fishway measurements are sampled and classified using an artificial lateral line, providing a completely new source of bioinspired flow information.
Influence of Pressure on Physical Property of Ammonia Borane and its Re-hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiuhua
The project systematically studied the high pressure behavior of ammonia borane and its derivative lithium amidoborane. Phase transitions in these materials are investigated in the pressure range up to 20 GPa and temperature range from 80 K to 400K. A number of new phase transitions are discovered in this pressure and temperature range including a second order transformation at 5 GPa and a first order transformation at 12 GPa at room temperature, and four new transitions at high pressure and low temperatures. The Clapeyron slopes for both pressure-induce tetragonal (I4mm) phase to orthorhombic (Cmc21) phase and temperature-induce tetragonal (I4mm) phasemore » to orthorhombic (Pmn21) phase are determined to be positive, indicating these phase transitions are exothermic. This result demonstrates that the high pressure orthorhombic phase of ammonia borane has lower enthalpy than that of tetragonal phase at ambient conditions. If we assume decomposition from the orthorhombic phase yields the same products as that from the tetragonal phase, the decomposition of the orthorhombic phase will be less exothermic. Therefore rehydrogenation from the decomposed product into the orthorhombic phase at high pressure may become easier. The project also studied the influences of nanoconfinement on the phase transitions. Comparative study using Raman spectroscopy indicates that the temperature induced I4mm to Pmn21 transition is suppressed from 217 K to 195 K when the sample is confined in SBA15 (7-9 nm pore size). When the pore size is reduced from 7-9 nm to 3-4 nm, this transition is totally suppressed in the temperature down to 80 K. A similar influence of the nanoconfiement on pressure induced phase transitions is also observed using Raman spectroscopy. The phase boundary between the I4mm phase and high pressure Cmc21 phase at ambient temperature shifts from 0.9 GPa to 0.5 GPa; and that between the Cmc21 phase and higher pressure P21 phase shifts from 10.2 GPa to 9.7 GPa.« less
Suppressing Two-Plasmon Decay with Laser Frequency Detuning
Follett, R. K.; Shaw, J. G.; Myatt, J. F.; ...
2018-03-30
Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ~0.7% laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. In conclusion, this allows for higher ablation pressures in future implosion designs by using higher laser intensities.
2014-08-02
Image taken on card 8 during BASS-II flame test session with reduced O2 partial pressure. Session conducted on GMT 213. The Burning and Suppression of Solids - II (BASS-II) investigation examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The BASS-II experiment will guide strategies for materials flammability screening for use in spacecraft as well as provide valuable data on solid fuel burning behavior in microgravity. BASS-II results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
Suppressing Two-Plasmon Decay with Laser Frequency Detuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follett, R. K.; Shaw, J. G.; Myatt, J. F.
Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ~0.7% laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. In conclusion, this allows for higher ablation pressures in future implosion designs by using higher laser intensities.
Suppressing Two-Plasmon Decay with Laser Frequency Detuning
NASA Astrophysics Data System (ADS)
Follett, R. K.; Shaw, J. G.; Myatt, J. F.; Palastro, J. P.; Short, R. W.; Froula, D. H.
2018-03-01
Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ˜0.7 % laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. This allows for higher ablation pressures in future implosion designs by using higher laser intensities.
Rosa, Inês C; Rocha, Rui J M; Cruz, Igor; Lopes, Ana; Menezes, Natália; Bandarra, Narcisa; Kikuchi, Ruy; Serôdio, João; Soares, Amadeu M V M; Rosa, Rui
2018-04-01
Fluctuations of environmental factors in intertidal habitats can disrupt the trophic balance of mixotrophic cnidarians. We investigated the effect of tidal environments (subtidal, tidal pools and emerged areas) on fatty acid (FA) content of Zoanthus sociatus and Siderastrea stellata. Effect on photophysiology was also accessed as an autotrophy proxy. There was a general tendency of a lower percentage of zooplankton-associated FAs in colonies from emerged areas or tidal pools when compared with colonies from the subtidal environment. Moreover, tidal environment significantly affected the photophysiology of both species. Colonies from the subtidal generally showed lower values of α, ETR max and E k when compared with their conspecifics from tidal pools or emerged areas. However, the absence of consistent patterns in F v /F m and in dinoflagellate-associated FAs, suggest that these corals are well adapted to intertidal conditions. This suggests that intertidal pressures may disturb the trophic balance, mainly by affecting heterotrophy of these species. Copyright © 2018 Elsevier Ltd. All rights reserved.
West, Phillip B.; Haefner, Daryl
2004-08-17
Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.
West, Phillip B.; Haefner, Daryl
2005-12-13
Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.
Low internal pressure in femtoliter water capillary bridges reduces evaporation rates
Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook
2016-01-01
Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges. PMID:26928329
Active Focal Zone Sharpening for High-Precision Treatment Using Histotripsy
Wang, Tzu-Yin; Xu, Zhen; Hall, Timothy L.; Fowlkes, J. Brian; Roberts, William W.; Cain, Charles A.
2011-01-01
The goal of this study is to develop a focal zone sharpening strategy that produces more precise lesions for pulsed cavitational ultrasound therapy, or histotripsy. Precise and well-confined lesions were produced by locally suppressing cavitation in the periphery of the treatment focus without affecting cavitation in the center. The local suppression of cavitation was achieved using cavitation nuclei preconditioning pulses to actively control cavitation in the periphery of the focus. A 1-MHz 513-element therapeutic array was used to generate both the therapy and the nuclei preconditioning pulses. For therapy, 10-cycle bursts at 100-Hz pulse repetition frequency with P−/P+ pressure of 21/76 MPa were delivered to the geometric focus of the therapeutic array. For nuclei preconditioning, a different pulse was delivered to an annular region immediately surrounding the focus before each therapy pulse. A parametric study on the effective pressure, pulse duration, and delivery time of the preconditioning pulse was conducted in red blood cell-gel phantoms, where cavitational damage was indicated by the color change resulting from local cell lysis. Results showed that a short-duration (20 µs) preconditioning pulse at a medium pressure (P−/P+ pressure of 7.2/13.6 MPa) delivered shortly before (30 µs) the therapy pulse substantially suppressed the peripheral damage by 77 ± 13% while complete fractionation in the focal center was maintained. High-speed imaging of the bubble cloud showed a substantial decrease in the maximum width of the bubble cloud by 48 ± 24% using focal zone sharpening. Experiments in ex vivo livers confirmed that highly confined lesions were produced in real tissues as well as in the phantoms. This study demonstrated the feasibility of active focal zone sharpening using cavitation nuclei preconditioning, allowing for increased treatment precision compared with the natural focal width of the therapy transducer. PMID:21342816
Active focal zone sharpening for high-precision treatment using histotripsy.
Wang, Tzu-Yin; Xu, Zhen; Hall, Timothy; Fowlkes, J; Roberts, William; Cain, Charles
2011-02-01
The goal of this study is to develop a focal zone sharpening strategy that produces more precise lesions for pulsed cavitational ultrasound therapy, or histotripsy. Precise and well-confined lesions were produced by locally suppressing cavitation in the periphery of the treatment focus without affecting cavitation in the center. The local suppression of cavitation was achieved using cavitation nuclei preconditioning pulses to actively control cavitation in the periphery of the focus. A 1-MHz 513-element therapeutic array was used to generate both the therapy and the nuclei preconditioning pulses. For therapy, 10-cycle bursts at 100-Hz pulse repetition frequency with P-/P+ pressure of 21/76 MPa were delivered to the geometric focus of the therapeutic array. For nuclei preconditioning, a different pulse was delivered to an annular region immediately surrounding the focus before each therapy pulse. A parametric study on the effective pressure, pulse duration, and delivery time of the preconditioning pulse was conducted in red blood cell-gel phantoms, where cavitational damage was indicated by the color change resulting from local cell lysis. Results showed that a short-duration (20 μs) preconditioning pulse at a medium pressure (P-/P+ pressure of 7.2/13.6 MPa) delivered shortly before (30 μs) the therapy pulse substantially suppressed the peripheral damage by 77 ± 13% while complete fractionation in the focal center was maintained. High-speed imaging of the bubble cloud showed a substantial decrease in the maximum width of the bubble cloud by 48 ± 24% using focal zone sharpening. Experiments in ex vivo livers confirmed that highly confined lesions were produced in real tissues as well as in the phantoms. This study demonstrated the feasibility of active focal zone sharpening using cavitation nuclei preconditioning, allowing for increased treatment precision compared with the natural focal width of the therapy transducer.
β-cell-specific IL-2 therapy increases islet Foxp3+Treg and suppresses type 1 diabetes in NOD mice.
Johnson, Mark C; Garland, Alaina L; Nicolson, Sarah C; Li, Chengwen; Samulski, R Jude; Wang, Bo; Tisch, Roland
2013-11-01
Interleukin-2 (IL-2) is a critical cytokine for the homeostasis and function of forkhead box p3-expressing regulatory T cells (Foxp3(+)Tregs). Dysregulation of the IL-2-IL-2 receptor axis is associated with aberrant Foxp3(+)Tregs and T cell-mediated autoimmune diseases such as type 1 diabetes. Treatment with recombinant IL-2 has been reported to enhance Foxp3(+)Tregs and suppress different models of autoimmunity. However, efficacy of IL-2 therapy is dependent on achieving sufficient levels of IL-2 to boost tissue-resident Foxp3(+)Tregs while avoiding the potential toxic effects of systemic IL-2. With this in mind, adeno-associated virus (AAV) vector gene delivery was used to localize IL-2 expression to the islets of NOD mice. Injection of a double-stranded AAV vector encoding IL-2 driven by a mouse insulin promoter (dsAAVmIP-IL2) increased Foxp3(+)Tregs in the islets but not the draining pancreatic lymph nodes. Islet Foxp3(+)Tregs in dsAAVmIP-IL2-treated NOD mice exhibited enhanced fitness marked by increased expression of Bcl-2, proliferation, and suppressor function. In contrast, ectopic IL-2 had no significant effect on conventional islet-infiltrating effector T cells. Notably, β-cell-specific IL-2 expression suppressed late preclinical type 1 diabetes in NOD mice. Collectively, these findings demonstrate that β-cell-specific IL-2 expands an islet-resident Foxp3(+)Tregs pool that effectively suppresses ongoing type 1 diabetes long term.
Titov, V N
2013-05-01
The increase of blood tension is a diagnostic test of disorders of homeostasis, trophology, endoecology and adaptation in paracrine regulated coenosis of cells. This conditions results in disorder of microcirculation in the distal section of arterial race and in compensatory increase of blood tension in its proximal section. The increase of blood tension disturbs the function of paracrine coenosis of cells which have one's own system of hemo- and hydrodynamics such as brain with system of spinal liquor and kidneys with local pool of primary urine. They counteract the rise of blood tension and activate local, humoral system of renin-angiotensin-II increasing peripheral resistance to blood flow. At that, the compensatory blood tension becomes even higher. The aldosterone and natriuretic peptides are functional synergists. So, they preserve and excrete ions of Na+ and support the stability of unified pool of intercellular medium ("Inner Ocean" of organism) where all cells live. The parameters of this pool are limited most strictly in vivo. If at the level of nephron the conditions are formed that can alter the parameters of unified pool of intercellular medium the vasomotor center rises blood tension from the level of organism "forcing" nephrons to re-establish the parameters of this pool and normalize the biological functions and biological reactions. The blood pressure increase under pathology of kidneys is caused because of pathological compensation at the level of organism mediated by vegetal nervous system and dictated by necessity to preserve the parameters of inner medium of organism.
Coulter, Alison A.; Brey, Marybeth; Lubejko, Matthew; Kallis, Jahn L.; Coulter, David P.; Glover, David C.; Whitledge, Gregory W.; Garvey, James E.
2018-01-01
Knowledge of the spatial distributions and dispersal characteristics of invasive species is necessary for managing the spread of highly mobile species, such as invasive bigheaded carps (Bighead Carp [Hypophthalmichthys nobilis] and Silver Carp [H. molitrix]). Management of invasive bigheaded carps in the Illinois River has focused on using human-made barriers and harvest to limit dispersal towards the Laurentian Great Lakes. Acoustic telemetry data were used to parameterize multistate models to examine the spatial dynamics of bigheaded carps in the Illinois River to (1) evaluate the effects of existing dams on movement, (2) identify how individuals distribute among pools, and (3) gauge the effects of reductions in movement towards the invasion front. Multistate models estimated that movement was generally less likely among upper river pools (Starved Rock, Marseilles, and Dresden Island) than the lower river (La Grange and Peoria) which matched the pattern of gated versus wicket style dams. Simulations using estimated movement probabilities indicated that Bighead Carp accumulate in La Grange Pool while Silver Carp accumulate in Alton Pool. Fewer Bighead Carp reached the upper river compared to Silver Carp during simulations. Reducing upstream movement probabilities (e.g., reduced propagule pressure) by ≥ 75% into any of the upper river pools could reduce upper river abundance with similar results regardless of location. Given bigheaded carp reproduction in the upper Illinois River is presently limited, reduced movement towards the invasion front coupled with removal of individuals reaching these areas could limit potential future dispersal towards the Great Lakes.
Cardiovascular reflexes in conscious toads.
Hoffmann, A; de Souza, M B
1982-05-01
Methods used for implanting sensors and catheters in temporarily ether-anesthetized toads (Bufo paracnemis) are described. Following recovery it was found that distension of the pulmocutaneous arterial trunk and high frequency electrical stimulation of the laryngeal nerve of conscious toads induce an abrupt fall in arterial pressure accompanied or not by bradycardia or cardiac arrest. A brief suppression of throat movements may occur but this is not a constant finding. The response is blocked by atropine or methyl-homatropine and persists in animals with high spinal sectioning, thus indicating its cholinergic parasympathetic nature. However a certain amount of sympathetic inhibition is not ruled out. Perfusion of the artery with lobeline and electrical stimulation of the laryngeal nerve at low frequency (1/s) induces a rise in arterial pressure which is blocked by phentolamine. The hypertension is followed by enhancing of both throat oscillations and electromyographic discharges. The occurrence of chemoreceptors in the pulmocutaneous arterial wall in these animals is discussed. Blockage of the laryngeal nerve with lidocaine or perfusion of the pulmocutaneous arterial trunk with the same solution elicited a blood pressure rise, tachycardia and enhanced ventilatory movements. This was attributed to suppression of the baroreceptor tonus.
Asymmetric bubble collapse and jetting in generalized Newtonian fluids
NASA Astrophysics Data System (ADS)
Shukla, Ratnesh K.; Freund, Jonathan B.
2017-11-01
The jetting dynamics of a gas bubble near a rigid wall in a non-Newtonian fluid are investigated using an axisymmetric simulation model. The bubble gas is assumed to be homogeneous, with density and pressure related through a polytropic equation of state. An Eulerian numerical description, based on a sharp interface capturing method for the shear-free bubble-liquid interface and an incompressible Navier-Stokes flow solver for generalized fluids, is developed specifically for this problem. Detailed simulations for a range of rheological parameters in the Carreau model show both the stabilizing and destabilizing non-Newtonian effects on the jet formation and impact. In general, for fixed driving pressure ratio, stand-off distance and reference zero-shear-rate viscosity, shear-thinning and shear-thickening promote and suppress jet formation and impact, respectively. For a sufficiently large high-shear-rate limit viscosity, the jet impact is completely suppressed. Thresholds are also determined for the Carreau power-index and material time constant. The dependence of these threshold rheological parameters on the non-dimensional driving pressure ratio and wall stand-off distance is similarly established. Implications for tissue injury in therapeutic ultrasound will be discussed.
Takino, Masahiko; Daishima, Shigeki; Nakahara, Taketoshi
2003-01-01
This paper describes a comparison between atmospheric pressure chemical ionization (APCI) and the recently introduced atmospheric pressure photoionization (APPI) technique for the liquid chromatography/mass spectrometric (LC/MS) determination of patulin in clear apple juice. A column switching technique for on-line extraction of clear apple juice was developed. The parameters investigated for the optimization of APPI were the ion source parameters fragmentor voltage, capillary voltage, and vaporizer temperature, and also mobile phase composition and flow rate. Furthermore, chemical noise and signal suppression of analyte signals due to sample matrix interference were investigated for both APCI and APPI. The results indicated that APPI provides lower chemical noise and signal suppression in comparison with APCI. The linear range for patulin in apple juice (correlation coefficient >0.999) was 0.2-100 ng mL(-1). Mean recoveries of patulin in three apple juices ranged from 94.5 to 103.2%, and the limit of detection (S/N = 3), repeatability and reproducibility were 1.03-1.50 ng mL(-1), 3.9-5.1% and 7.3-8.2%, respectively. The total analysis time was 10.0 min. Copyright 2003 John Wiley & Sons, Ltd.
Cryptic genetic variation: evolution's hidden substrate.
Paaby, Annalise B; Rockman, Matthew V
2014-04-01
Cryptic genetic variation (CGV) is invisible under normal conditions, but it can fuel evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles that are in need of constant suppression. CGV emerges from both neutral and selective processes, and it may inform about how human populations respond to change. CGV facilitates adaptation in experimental settings, but does it have an important role in the real world? Here, we review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution.
Kobara, Miyuki; Furumori-Yukiya, Akiko; Kitamura, Miho; Matsumura, Mihoko; Ohigashi, Makoto; Toba, Hiroe; Nakata, Tetsuo
2015-08-01
Caloric restriction (CR) prevents senescent changes, in which reactive oxygen species (ROS) have a critical role. Left ventricular (LV) hypertrophy is a risk factor for cardiovascular diseases. We examined whether CR alters cardiac redox state and hypertrophy from chronic pressure overload. Male c57BL6 mice were subjected to ascending aortic constriction (AAC) with ad libitum caloric intake (AL + AAC group) or 40% restricted caloric intake (CR + AAC group). CR was initiated 2 weeks before AAC and was continued for 4 weeks. Two weeks after constriction, AAC increased LV wall thickness, impaired transmitral flow velocity, and augmented myocyte hypertrophy and fibrosis, in association with enhancement of BNP and collagen III expressions in the AL + AAC group. In the AL + AAC group, oxidative stress in cardiac tissue and mitochondria were enhanced, and NADPH oxidase activity and mitochondrial ROS production were elevated. These changes were significantly attenuated in the CR + AAC group. Additionally, in antioxidant systems, myocardial glutathione peroxidase and superoxide dismutase activities were enhanced in the CR + AAC group. Chronic pressure overload increased cardiac oxidative damage, in association with cardiac hypertrophy and fibrosis. Short-term CR suppressed oxidative stress and improved cardiac function, suggesting that short-term CR could be a useful strategy to prevent pressure overload-induced cardiac injury. Copyright © 2015 Elsevier Inc. All rights reserved.
Suppression of LRRC19 promotes cutaneous wound healing in pressure ulcers in mice.
Sun, Jie; Wang, Zhijing; Wang, Xirui
2018-02-20
The ischemia-reperfusion (I/R) induced skin lesion has been identified as primary cause of pressure ulcer. Better understanding of the mechanism is required for new therapy development. Leucine rich repeat containing protein 19 (LRRC19) is a recently discovered transmembrane protein containing leucine-rich repeats and plays a role in immune response. To investigate the role of LRRC19 in pressure ulcers, mouse ulcer model was established with two cycles of I/R. The expression of LRRC19 was assessed during injury. siRNA mediated LRRC19 downregulation was applied to investigate the disease severity, immune cell infiltration and pro-inflammatory cytokines production. The primary skin fibroblasts were stimulated with IL-1β to dissect the molecular mechanism. LRRC19 was readily induced in I/R induced lesion site in a pattern mimicking the disease progress as measured by wound area. Knockdown of LRRC19 by siRNA significantly alleviated the disease severity and attenuated immune cell infiltration and pro-inflammatory cytokines production. In primary skin fibroblast model, siRNA knockdown of LRRC19 suppressed IL-1β mediated NFκB activation and its downstream cytokines production. LRRC19 was a novel factor for I/R-induced tissue damage by promoting NFκB dependent pro-inflammatory response. Our results supported that LRRC19 could be a potential therapeutic target for pressure ulcers.
Lopez-Bertoni, Hernando; Luo, Xu; Pavlov, Youri I.
2012-01-01
Pure nucleotide precursor pools are a prerequisite for high-fidelity DNA replication and the suppression of mutagenesis and carcinogenesis. ITPases are nucleoside triphosphate pyrophosphatases that clean the precursor pools of the non-canonical triphosphates of inosine and xanthine. The precise role of the human ITPase, encoded by the ITPA gene, is not clearly defined. ITPA is clinically important because a widespread polymorphism, 94C>A, leads to null ITPase activity in erythrocytes and is associated with an adverse reaction to thiopurine drugs. We studied the cellular function of ITPA in HeLa cells using the purine analog 6-N hydroxylaminopurine (HAP), whose triphosphate is also a substrate for ITPA. In this study, we demonstrate that ITPA knockdown sensitizes HeLa cells to HAP-induced DNA breaks and apoptosis. The HAP-induced DNA damage and cytotoxicity observed in ITPA knockdown cells are rescued by an overexpression of the yeast ITPase encoded by the HAM1 gene. We further show that ITPA knockdown results in elevated mutagenesis in response to HAP treatment. Our studies reveal the significance of ITPA in preventing base analog-induced apoptosis, DNA damage and mutagenesis in human cells. This implies that individuals with defective ITPase are predisposed to genome damage by impurities in nucleotide pools, which is drastically augmented by therapy with purine analogs. They are also at an elevated risk for degenerative diseases and cancer. PMID:22384212
Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function
Cheng, Yan; Wang, Miao; Yu, Ying; Lawson, John; Funk, Colin D.; FitzGerald, Garret A.
2006-01-01
We investigated the mechanisms by which inhibitors of prostaglandin G/H synthase-2 (PGHS-2; known colloquially as COX-2) increase the incidence of myocardial infarction and stroke. These inhibitors are believed to exert both their beneficial and their adverse effects by suppression of PGHS-2–derived prostacyclin (PGI2) and PGE2. Therefore, the challenge remains to identify a mechanism whereby PGI2 and PGE2 expression can be suppressed while avoiding adverse cardiovascular events. Here, selective inhibition, knockout, or mutation of PGHS-2, or deletion of the receptor for PGHS-2–derived PGI2, was shown to accelerate thrombogenesis and elevate blood pressure in mice. These responses were attenuated by COX-1 knock down, which mimics the beneficial effects of low-dose aspirin. PGE2 biosynthesis is catalyzed by the coordinate actions of COX enzymes and microsomal PGE synthase-1 (mPGES-1). We show that deletion of mPGES-1 depressed PGE2 expression, augmented PGI2 expression, and had no effect on thromboxane biosynthesis in vivo. Most importantly, mPGES-1 deletion affected neither thrombogenesis nor blood pressure. These results suggest that inhibitors of mPGES-1 may retain their antiinflammatory efficacy by depressing PGE2, while avoiding the adverse cardiovascular consequences associated with PGHS-2–mediated PGI2 suppression. PMID:16614756
NASA Astrophysics Data System (ADS)
Wang, Zhen; Zheng, Yi; Mao, Yu-feng; Wang, Ya-zhou; Yu, Yan-ting; Liu, Hong-ning
2018-03-01
In the disturbance of unsteady flow field under the sea, the monitoring accuracy and precision of the bottom-mounted acoustic monitoring platform will decrease. In order to reduce the hydrodynamic interference, the platform wrapped with fairing structure and separated from the retrieval unit is described. The suppression effect evaluation based on the correlation theory of sound pressure and particle velocity for spherical wave in infinite homogeneous medium is proposed and the difference value between them is used to evaluate the hydrodynamic restraining performance of the bottom-mounted platform under far field condition. Through the sea test, it is indicated that the platform with sparse layers fairing structure (there are two layers for the fairing, in which the inside layer is 6-layers sparse metal net, and the outside layer is 1-layer polyester cloth, and then it takes sparse layers for short) has no attenuation in the sound pressure response to the sound source signal, but obvious suppression in the velocity response to the hydrodynamic noise. The effective frequency of the fairing structure is decreased below 10 Hz, and the noise magnitude is reduced by 10 dB. With the comparison of different fairing structures, it is concluded that the tighter fairing structure can enhance the performance of sound transmission and flow restraining.
Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy.
Kong, Yongli; Tannous, Paul; Lu, Guangrong; Berenji, Kambeez; Rothermel, Beverly A; Olson, Eric N; Hill, Joseph A
2006-06-06
Recent work has demonstrated the importance of chromatin remodeling, especially histone acetylation, in the control of gene expression in the heart. In cell culture models of cardiac hypertrophy, pharmacological suppression of histone deacetylases (HDACs) can either blunt or amplify cell growth. Thus, HDAC inhibitors hold promise as potential therapeutic agents in hypertrophic heart disease. In the present investigation, we studied 2 broad-spectrum HDAC inhibitors in a physiologically relevant banding model of hypertrophy, observing dose-responsive suppression of ventricular growth that was well tolerated in terms of both clinical outcome and cardiac performance measures. In both short-term (3-week) and long-term (9-week) trials, cardiomyocyte growth was blocked by HDAC inhibition, with no evidence of cell death or apoptosis. Fibrotic change was diminished in hearts treated with HDAC inhibitors, and collagen synthesis in isolated cardiac fibroblasts was blocked. Preservation of systolic function in the setting of blunted hypertrophic growth was documented by echocardiography and by invasive pressure measurements. The hypertrophy-associated switch of adult and fetal isoforms of myosin heavy chain expression was attenuated, which likely contributed to the observed preservation of systolic function in HDAC inhibitor-treated hearts. Together, these data suggest that HDAC inhibition is a viable therapeutic strategy that holds promise in the treatment of load-induced heart disease.
Flow Field Measurements of Methane-Oxygen Turbulent Nonpremixed Flames at High Pressure
NASA Astrophysics Data System (ADS)
Iino, Kimio; Kikkawa, Hoshitaka; Akamatsu, Fumiteru; Katsuki, Masashi
We carried out the flow field measurement of methane-oxygen turbulent nonpremixed flame in non-combusting and combusting situations at high pressures using LDV. The main objectives are to study the influences of combustion on the turbulence structure at high pressures and to provide detailed data on which numerical predictions on such flows can rely. Direct observation and CH* chemiluminescence detection are conducted at high pressures up to 1.0MPa. It was found that the flame length at elevated pressures became constant. From flow field measurements, the following features of flames at elevated pressure were found: (1) the existence of flame suppressed turbulence in the upstream region of the jet and enhanced it in the downstream region with increasing pressure; (2) Turbulence in the flame was more anisotropic than in the corresponding cold jet in all regions of the flow with increasing pressure; (3) Reynolds shear stresses did not change at elevated pressure; (4) Combustion processes had a marked influence on the turbulence macroscale under high pressures, however, the turbulence macroscale was not changed even with the increase in pressure.
An Annular Mechanical Temperature Compensation Structure for Gas-Sealed Capacitive Pressure Sensor
Hao, Xiuchun; Jiang, Yonggang; Takao, Hidekuni; Maenaka, Kazusuke; Higuchi, Kohei
2012-01-01
A novel gas-sealed capacitive pressure sensor with a temperature compensation structure is reported. The pressure sensor is sealed by Au-Au diffusion bonding under a nitrogen ambient with a pressure of 100 kPa and integrated with a platinum resistor-based temperature sensor for human activity monitoring applications. The capacitance-pressure and capacitance-temperature characteristics of the gas-sealed capacitive pressure sensor without temperature compensation structure are calculated. It is found by simulation that a ring-shaped structure on the diaphragm of the pressure sensor can mechanically suppress the thermal expansion effect of the sealed gas in the cavity. Pressure sensors without/with temperature compensation structures are fabricated and measured. Through measured results, it is verified that the calculation model is accurate. Using the compensation structures with a 900 μm inner radius, the measured temperature coefficient is much reduced as compared to that of the pressure sensor without compensation. The sensitivities of the pressure sensor before and after compensation are almost the same in the pressure range from 80 kPa to 100 kPa. PMID:22969385
Infrared Imagery of Solid Rocket Exhaust Plumes
NASA Technical Reports Server (NTRS)
Moran, Robert P.; Houston, Janice D.
2011-01-01
The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.