Sample records for pressure transfer function

  1. Arterial pressure transfer characteristics: effects of travel time.

    PubMed

    Westerhof, Berend E; Guelen, Ilja; Stok, Wim J; Wesseling, Karel H; Spaan, Jos A E; Westerhof, Nico; Bos, Willem Jan; Stergiopulos, Nikos

    2007-02-01

    We investigated the quantitative contribution of all local conduit arterial, blood, and distal load properties to the pressure transfer function from brachial artery to aorta. The model was based on anatomical data, Young's modulus, wall viscosity, blood viscosity, and blood density. A three-element windkessel represented the distal arterial tree. Sensitivity analysis was performed in terms of frequency and magnitude of the peak of the transfer function and in terms of systolic, diastolic, and pulse pressure in the aorta. The root mean square error (RMSE) described the accuracy in wave-shape prediction. The percent change of these variables for a 25% alteration of each of the model parameters was calculated. Vessel length and diameter are found to be the most important parameters determining pressure transfer. Systolic and diastolic pressure changed <3% and RMSE <1.8 mmHg for a 25% change in vessel length and diameter. To investigate how arterial tapering influences the pressure transfer, a single uniform lossless tube was modeled. This simplification introduced only small errors in systolic and diastolic pressures (1% and 0%, respectively), and wave shape was less well described (RMSE, approximately 2.1 mmHg). Local (arm) vasodilation affects the transfer function little, because it has limited effect on the reflection coefficient. Since vessel length and diameter translate into travel time, this parameter can describe the transfer accurately. We suggest that with a, preferably, noninvasively measured travel time, an accurate individualized description of pressure transfer can be obtained.

  2. Transfer function analysis of dynamic cerebral autoregulation in humans

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Zuckerman, J. H.; Giller, C. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    To test the hypothesis that spontaneous changes in cerebral blood flow are primarily induced by changes in arterial pressure and that cerebral autoregulation is a frequency-dependent phenomenon, we measured mean arterial pressure in the finger and mean blood flow velocity in the middle cerebral artery (VMCA) during supine rest and acute hypotension induced by thigh cuff deflation in 10 healthy subjects. Transfer function gain, phase, and coherence function between changes in arterial pressure and VMCA were estimated using the Welch method. The impulse response function, calculated as the inverse Fourier transform of this transfer function, enabled the calculation of transient changes in VMCA during acute hypotension, which was compared with the directly measured change in VMCA during thigh cuff deflation. Beat-to-beat changes in VMCA occurred simultaneously with changes in arterial pressure, and the autospectrum of VMCA showed characteristics similar to arterial pressure. Transfer gain increased substantially with increasing frequency from 0.07 to 0.20 Hz in association with a gradual decrease in phase. The coherence function was > 0.5 in the frequency range of 0.07-0.30 Hz and < 0.5 at < 0.07 Hz. Furthermore, the predicted change in VMCA was similar to the measured VMCA during thigh cuff deflation. These data suggest that spontaneous changes in VMCA that occur at the frequency range of 0.07-0.30 Hz are related strongly to changes in arterial pressure and, furthermore, that short-term regulation of cerebral blood flow in response to changes in arterial pressure can be modeled by a transfer function with the quality of a high-pass filter in the frequency range of 0.07-0.30 Hz.

  3. Comparison of Regression Analysis and Transfer Function in Estimating the Parameters of Central Pulse Waves from Brachial Pulse Wave.

    PubMed

    Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin

    2017-01-01

    This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  4. Axisymmetric Wave Transfer Functions of Flexible Tubes

    NASA Astrophysics Data System (ADS)

    Pinnington, R. J.

    1997-07-01

    The input and transfer impedances of fluid-filled pipes are calculated by using a wave approach. The pipe walls can have orthotropic elastic properties associated with braided rubber hose. The input and transfer impedances of a water-filled plain rubber hose are plotted for zero pressurization and positive and negative pressure. It is found that the pressure for this case does not greatly affect the stiffness. Input and transfer impedances are also plotted for a braided rubber hose which demonstrates the significant pressure stiffening effects found in practice.

  5. Application of 3-signal coherence to core noise transmission

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1983-01-01

    A method for determining transfer functions across turbofan engine components and from the engine to the far-field is developed. The method is based on the three-signal coherence technique used previously to obtain far-field core noise levels. This method eliminates the bias error in transfer function measurements due to contamination of measured pressures by nonpropagating pressure fluctuations. Measured transfer functions from the engine to the far-field, across the tailpipe, and across the turbine are presented for three turbofan engines.

  6. Closed-loop spontaneous baroreflex transfer function is inappropriate for system identification of neural arc but partly accurate for peripheral arc: predictability analysis

    PubMed Central

    Kamiya, Atsunori; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru

    2011-01-01

    Abstract Although the dynamic characteristics of the baroreflex system have been described by baroreflex transfer functions obtained from open-loop analysis, the predictability of time-series output dynamics from input signals, which should confirm the accuracy of system identification, remains to be elucidated. Moreover, despite theoretical concerns over closed-loop system identification, the accuracy and the predictability of the closed-loop spontaneous baroreflex transfer function have not been evaluated compared with the open-loop transfer function. Using urethane and α-chloralose anaesthetized, vagotomized and aortic-denervated rabbits (n = 10), we identified open-loop baroreflex transfer functions by recording renal sympathetic nerve activity (SNA) while varying the vascularly isolated intracarotid sinus pressure (CSP) according to a binary random (white-noise) sequence (operating pressure ± 20 mmHg), and using a simplified equation to calculate closed-loop-spontaneous baroreflex transfer function while matching CSP with systemic arterial pressure (AP). Our results showed that the open-loop baroreflex transfer functions for the neural and peripheral arcs predicted the time-series SNA and AP outputs from measured CSP and SNA inputs, with r2 of 0.8 ± 0.1 and 0.8 ± 0.1, respectively. In contrast, the closed-loop-spontaneous baroreflex transfer function for the neural arc was markedly different from the open-loop transfer function (enhanced gain increase and a phase lead), and did not predict the time-series SNA dynamics (r2; 0.1 ± 0.1). However, the closed-loop-spontaneous baroreflex transfer function of the peripheral arc partially matched the open-loop transfer function in gain and phase functions, and had limited but reasonable predictability of the time-series AP dynamics (r2, 0.7 ± 0.1). A numerical simulation suggested that a noise predominantly in the neural arc under resting conditions might be a possible mechanism responsible for our findings. Furthermore, the predictabilities of the neural arc transfer functions obtained in open-loop and closed-loop conditions were validated by closed-loop pharmacological (phenylephrine and nitroprusside infusions) pressure interventions. Time-series SNA responses to drug-induced AP changes predicted by the open-loop transfer function matched closely the measured responses (r2, 0.9 ± 0.1), whereas SNA responses predicted by closed-loop-spontaneous transfer function deviated greatly and were the inverse of measured responses (r, −0.8 ± 0.2). These results indicate that although the spontaneous baroreflex transfer function obtained by closed-loop analysis has been believed to represent the neural arc function, it is inappropriate for system identification of the neural arc but is essentially appropriate for the peripheral arc under resting conditions, when compared with open-loop analysis. PMID:21486839

  7. Thunder-induced ground motions: 1. Observations

    NASA Astrophysics Data System (ADS)

    Lin, Ting-L.; Langston, Charles A.

    2009-04-01

    Acoustic pressure from thunder and its induced ground motions were investigated using a small array consisting of five three-component short-period surface seismometers, a three-component borehole seismometer, and five infrasound microphones. We used the array to constrain wave parameters of the incident acoustic and seismic waves. The incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Using slowness inferred from ground motions is preferable to obtain the seismic source parameters. We propose a source equalization procedure for acoustic/seismic deconvolution to generate the time domain transfer function, a procedure similar to that of obtaining teleseismic earthquake receiver functions. The time domain transfer function removes the incident pressure time history from the seismogram. An additional vertical-to-radial ground motion transfer function was used to identify the Rayleigh wave propagation mode of induced seismic waves complementing that found using the particle motions and amplitude variations in the borehole. The initial motions obtained by the time domain transfer functions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series at frequencies near 5 Hz. This gives an empirical measure of site resonance that depends on the ratio of the layer velocity to layer thickness for earthquake P and S waves. The time domain transfer function approach by transferring a spectral division into the time domain provides an alternative method for studying acoustic-to-seismic coupling.

  8. Acoustic Wave Propagation in Pressure Sense Lines

    NASA Technical Reports Server (NTRS)

    Vitarius, Patrick; Gregory, Don A.; Wiley, John; Korman, Valentin

    2003-01-01

    Sense lines are used in pressure measurements to passively transmit information from hostile environments to areas where transducers can be used. The transfer function of a sense line can be used to obtain information about the measured environment from the protected sensor. Several properties of this transfer function are examined, including frequency dependence, Helmholtz resonance, and time of flight delay.

  9. Pressure-strain-rate events in homogeneous turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Brasseur, James G.; Lee, Moon J.

    1988-01-01

    A detailed study of the intercomponent energy transfer processes by the pressure-strain-rate in homogeneous turbulent shear flow is presented. Probability density functions (pdf's) and contour plots of the rapid and slow pressure-strain-rate show that the energy transfer processes are extremely peaky, with high-magnitude events dominating low-magnitude fluctuations, as reflected by very high flatness factors of the pressure-strain-rate. A concept of the energy transfer class was applied to investigate details of the direction as well as magnitude of the energy transfer processes. In incompressible flow, six disjoint energy transfer classes exist. Examination of contours in instantaneous fields, pdf's and weighted pdf's of the pressure-strain-rate indicates that in the low magnitude regions all six classes play an important role, but in the high magnitude regions four classes of transfer processes, dominate. The contribution to the average slow pressure-strain-rate from the high magnitude fluctuations is only 50 percent or less. The relative significance of high and low magnitude transfer events is discussed.

  10. Regression analysis and transfer function in estimating the parameters of central pulse waves from brachial pulse wave.

    PubMed

    Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling

    2017-07-01

    This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  11. Development of a Dynamic Visco-elastic Vehicle-Soil Interaction Model for Rut Depth, and Power Determinations

    DTIC Science & Technology

    2011-09-06

    Presentation Outline A) Review of Soil Model governing equations B) Development of pedo -transfer functions (terrain database to engineering properties) C...lateral earth pressure) UNCLASSIFIED B) Development of pedo -transfer functions Engineering parameters needed by soil model - compression index - rebound...inches, RCI for fine- grained soils, CI for coarse-grained soils. UNCLASSIFIED Pedo -transfer function • Need to transfer existing terrain database

  12. Transfer function-derived central pressure and cardiovascular disease events: the Framingham Heart Study.

    PubMed

    Mitchell, Gary F; Hwang, Shih-Jen; Larson, Martin G; Hamburg, Naomi M; Benjamin, Emelia J; Vasan, Ramachandran S; Levy, Daniel; Vita, Joseph A

    2016-08-01

    Relations between central pulse pressure (PP) or pressure amplification and major cardiovascular disease (CVD) events are controversial. Estimates of central aortic pressure derived using radial artery tonometry and a generalized transfer function may better predict CVD risk beyond the predictive value of brachial SBP. Augmentation index, central SBP, central PP, and central-to-peripheral PP amplification were evaluated using radial artery tonometry and a generalized transfer function as implemented in the SphygmoCor device (AtCor Medical, Itasca, Illinois, USA). We used proportional hazards models to examine relations between central hemodynamics and first-onset major CVD events in 2183 participants (mean age 62 years, 58% women) in the Framingham Heart Study. During median follow-up of 7.8 (limits 0.2-8.9) years, 149 participants (6.8%) had an incident event. Augmentation index (P = 0.6), central aortic systolic pressure (P = 0.20), central aortic PP (P = 0.24), and PP amplification (P = 0.15) were not related to CVD events in multivariable models that adjusted for age, sex, brachial cuff systolic pressure, use of antihypertensive therapy, total and high-density lipoprotein cholesterol concentrations, smoking, and presence of diabetes. In a model that included standard risk factors, model fit was improved (P = 0.03) when brachial systolic pressure was added after central, whereas model fit was not improved (P = 0.30) when central systolic pressure was added after brachial. After considering standard risk factors, including brachial cuff SBP, augmentation index, central PP and PP amplification derived using radial artery tonometry, and a generalized transfer function were not predictive of CVD risk.

  13. Comparison of high pressure transient PVT measurements and model predictions. Part I.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Evans, Gregory Herbert

    2010-07-01

    A series of experiments consisting of vessel-to-vessel transfers of pressurized gas using Transient PVT methodology have been conducted to provide a data set for optimizing heat transfer correlations in high pressure flow systems. In rapid expansions such as these, the heat transfer conditions are neither adiabatic nor isothermal. Compressible flow tools exist, such as NETFLOW that can accurately calculate the pressure and other dynamical mechanical properties of such a system as a function of time. However to properly evaluate the mass that has transferred as a function of time these computational tools rely on heat transfer correlations that must bemore » confirmed experimentally. In this work new data sets using helium gas are used to evaluate the accuracy of these correlations for receiver vessel sizes ranging from 0.090 L to 13 L and initial supply pressures ranging from 2 MPa to 40 MPa. The comparisons show that the correlations developed in the 1980s from sparse data sets perform well for the supply vessels but are not accurate for the receivers, particularly at early time during the transfers. This report focuses on the experiments used to obtain high quality data sets that can be used to validate computational models. Part II of this report discusses how these data were used to gain insight into the physics of gas transfer and to improve vessel heat transfer correlations. Network flow modeling and CFD modeling is also discussed.« less

  14. Transfer function for vital infrasound pressures between the carotid artery and the tympanic membrane.

    PubMed

    Furihata, Kenji; Yamashita, Masato

    2013-02-01

    While occupational injury is associated with numerous individual and work-related risk factors, including long working hours and short sleep duration, the complex mechanisms causing such injuries are not yet fully understood. The relationship between the infrasound pressures of the tympanic membrane [ear canal pressure (ECP)], detected using an earplug embedded with a low-frequency microphone, and the carotid artery [carotid artery pressure (CAP)], detected using a stethoscope fitted with the same microphone, can be quantitatively characterized using systems analysis. The transfer functions of 40 normal workers (19 to 57 years old) were characterized, involving the analysis of 446 data points. The ECP waveform exhibits a pulsatile character with a slow respiratory component, which is superimposed on a biphasic recording that is synchronous with the cardiac cycle. The respiratory ECP waveform correlates with the instantaneous heart rate. The results also revealed that various fatigue-related risk factors may affect the mean magnitudes of the measured pressures and the delay transfer functions between CAP and ECP in the study population; these factors include systolic blood pressure, salivary amylase activity, age, sleep duration, postural changes, chronic fatigue, and pulse rate.

  15. Experimental evaluation of a mathematical model for predicting transfer efficiency of a high volume-low pressure air spray gun.

    PubMed

    Tan, Y M; Flynn, M R

    2000-10-01

    The transfer efficiency of a spray-painting gun is defined as the amount of coating applied to the workpiece divided by the amount sprayed. Characterizing this transfer process allows for accurate estimation of the overspray generation rate, which is important for determining a spray painter's exposure to airborne contaminants. This study presents an experimental evaluation of a mathematical model for predicting the transfer efficiency of a high volume-low pressure spray gun. The effects of gun-to-surface distance and nozzle pressure on the agreement between the transfer efficiency measurement and prediction were examined. Wind tunnel studies and non-volatile vacuum pump oil in place of commercial paint were used to determine transfer efficiency at nine gun-to-surface distances and four nozzle pressure levels. The mathematical model successfully predicts transfer efficiency within the uncertainty limits. The least squares regression between measured and predicted transfer efficiency has a slope of 0.83 and an intercept of 0.12 (R2 = 0.98). Two correction factors were determined to improve the mathematical model. At higher nozzle pressure settings, 6.5 psig and 5.5 psig, the correction factor is a function of both gun-to-surface distance and nozzle pressure level. At lower nozzle pressures, 4 psig and 2.75 psig, gun-to-surface distance slightly influences the correction factor, while nozzle pressure has no discernible effect.

  16. Modeling conductive heat transfer during high-pressure thawing processes: determination of latent heat as a function of pressure.

    PubMed

    Denys, S; Van Loey, A M; Hendrickx, M E

    2000-01-01

    A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.

  17. Autonomic neural control of dynamic cerebral autoregulation in humans

    NASA Technical Reports Server (NTRS)

    Zhang, Rong; Zuckerman, Julie H.; Iwasaki, Kenichi; Wilson, Thad E.; Crandall, Craig G.; Levine, Benjamin D.

    2002-01-01

    BACKGROUND: The purpose of the present study was to determine the role of autonomic neural control of dynamic cerebral autoregulation in humans. METHODS AND RESULTS: We measured arterial pressure and cerebral blood flow (CBF) velocity in 12 healthy subjects (aged 29+/-6 years) before and after ganglion blockade with trimethaphan. CBF velocity was measured in the middle cerebral artery using transcranial Doppler. The magnitude of spontaneous changes in mean blood pressure and CBF velocity were quantified by spectral analysis. The transfer function gain, phase, and coherence between these variables were estimated to quantify dynamic cerebral autoregulation. After ganglion blockade, systolic and pulse pressure decreased significantly by 13% and 26%, respectively. CBF velocity decreased by 6% (P<0.05). In the very low frequency range (0.02 to 0.07 Hz), mean blood pressure variability decreased significantly (by 82%), while CBF velocity variability persisted. Thus, transfer function gain increased by 81%. In addition, the phase lead of CBF velocity to arterial pressure diminished. These changes in transfer function gain and phase persisted despite restoration of arterial pressure by infusion of phenylephrine and normalization of mean blood pressure variability by oscillatory lower body negative pressure. CONCLUSIONS: These data suggest that dynamic cerebral autoregulation is altered by ganglion blockade. We speculate that autonomic neural control of the cerebral circulation is tonically active and likely plays a significant role in the regulation of beat-to-beat CBF in humans.

  18. a Middle-Ear Reverse Transfer Function Computed from Vibration Measurements of Otoacoustic Emissions on the Ear Drum of the Guinea PIG

    NASA Astrophysics Data System (ADS)

    Dalhoff, Ernst; Turcanu, Diana; Gummer, Anthony W.

    2009-02-01

    Using distortion products measured as vibration of the umbo and as sound pressure in the ear canal of guinea pigs, we calculated the corresponding reverse transfer function. We compare the measurements with a middle-ear model taken from the literature and adapted to the guinea pig. A reasonable fit could be achieved. We conclude that the reverse transfer function will be useful to aid fitting a middle-ear model to measured transfer functions of human subjects.

  19. High-cut characteristics of the baroreflex neural arc preserve baroreflex gain against pulsatile pressure.

    PubMed

    Kawada, Toru; Zheng, Can; Yanagiya, Yusuke; Uemura, Kazunori; Miyamoto, Tadayoshi; Inagaki, Masashi; Shishido, Toshiaki; Sugimachi, Masaru; Sunagawa, Kenji

    2002-03-01

    A transfer function from baroreceptor pressure input to sympathetic nerve activity (SNA) shows derivative characteristics in the frequency range below 0.8 Hz in rabbits. These derivative characteristics contribute to a quick and stable arterial pressure (AP) regulation. However, if the derivative characteristics hold up to heart rate frequency, the pulsatile pressure input will yield a markedly augmented SNA signal. Such a signal would saturate the baroreflex signal transduction, thereby disabling the baroreflex regulation of AP. We hypothesized that the transfer gain at heart rate frequency would be much smaller than that predicted from extrapolating the derivative characteristics. In anesthetized rabbits (n = 6), we estimated the neural arc transfer function in the frequency range up to 10 Hz. The transfer gain was lost at a rate of -20 dB/decade when the input frequency exceeded 0.8 Hz. A numerical simulation indicated that the high-cut characteristics above 0.8 Hz were effective to attenuate the pulsatile signal and preserve the open-loop gain when the baroreflex dynamic range was finite.

  20. Acoustic radiation from weakly wrinkled premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieuwen, Tim; Mohan, Sripathi; Rajaram, Rajesh

    2006-01-01

    This paper describes a theoretical analysis of acoustic radiation from weakly wrinkled (i.e., u'/S{sub L}<1) premixed flames. Specifically, it determines the transfer function relating the spectrum of the acoustic pressure oscillations, P'({omega}), to that of the turbulent velocity fluctuations in the approach flow, U'({omega}). In the weakly wrinkled limit, this transfer function is local in frequency space; i.e., velocity fluctuations at a frequency {omega} distort the flame and generate sound at the same frequency. This transfer function primarily depends upon the flame Strouhal number St (based on mean flow velocity and flame length) and the correlation length, {lambda}, of themore » flow fluctuations. For cases where the ratio of the correlation length and duct radius {lambda}/a>>1, the acoustic pressure and turbulent velocity power spectra are related by P'({omega})-{omega}{sup 2}U'({omega}) and P'({omega})-U'({omega}) for St<<1 and St>>1, respectively. For cases where {lambda}/a<<1, the transfer functions take the form P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}U'({omega}) and P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}({psi}-{delta}ln({lambda}/a))U'({omega}) for St<<1 and St>>1, respectively, where (PS) and {delta} are constants. The latter result demonstrates that this transfer function does not exhibit a simple power law relationship in the high frequency region of the spectra. The simultaneous dependence of this pressure-velocity transfer function upon the Strouhal number and correlation length suggests a mechanism for the experimentally observed maximum in acoustic spectra and provides some insight into the controversy in the literature over how this peak should scale with the flame Strouhal number.« less

  1. Application of unsteady flow rate evaluations to identify the dynamic transfer function of a cavitatingVenturi

    NASA Astrophysics Data System (ADS)

    Marie-Magdeleine, A.; Fortes-Patella, R.; Lemoine, N.; Marchand, N.

    2012-11-01

    This study concerns the simulation of the implementation of the Kinetic Differential Pressure (KDP) method used for the unsteady mass flow rate evaluation in order to identify the dynamic transfer matrix of a cavitatingVenturi. Firstly, the equations of the IZ code used for this simulation are introduced. Next, the methodology for evaluating unsteady pressures and mass flow rates at the inlet and the outlet of the cavitatingVenturi and for identifying the dynamic transfer matrix is presented. Later, the robustness of the method towards measurement uncertainties implemented as a Gaussian white noise is studied. The results of the numerical simulations let us estimate the system linearity domain and to perform the Empirical Transfer Function Evaluation on the inlet frequency per frequency signal and on the chirp signal tests. Then the pressure data obtained with the KDP method is taken and the identification procedure by ETFE and by the user-made Auto-Recursive Moving-Average eXogenous algorithms is performed and the obtained transfer matrix coefficients are compared with those obtained from the simulated input and output data.

  2. Pressure transfer function of a JT15D nozzle due to acoustic and convected entropy fluctuations

    NASA Astrophysics Data System (ADS)

    Miles, J. H.

    An acoustic transmission matrix analysis of sound propagation in a variable area duct with and without flow is extended to include convected entropy fluctuations. The boundary conditions used in the analysis are a transfer function relating entropy and pressure at the nozzle inlet and the nozzle exit impedance. The nozzle pressure transfer function calculated is compared with JT15D turbofan engine nozzle data. The one dimensional theory for sound propagation in a variable area nozzle with flow but without convected entropy is good at the low engine speeds where the nozzle exit Mach number is low (M=0.2) and the duct exit impedance model is good. The effect of convected entropy appears to be so negligible that it is obscured by the inaccuracy of the nozzle exit impedance model, the lack of information on the magnitude of the convected entropy and its phase relationship with the pressure, and the scatter in the data. An improved duct exit impedance model is required at the higher engine speeds where the nozzle exit Mach number is high (M=0.56) and at low frequencies (below 120 Hz).

  3. How to precisely measure the volume velocity transfer function of physical vocal tract models by external excitation

    PubMed Central

    Mainka, Alexander; Kürbis, Steffen; Birkholz, Peter

    2018-01-01

    Recently, 3D printing has been increasingly used to create physical models of the vocal tract with geometries obtained from magnetic resonance imaging. These printed models allow measuring the vocal tract transfer function, which is not reliably possible in vivo for the vocal tract of living humans. The transfer functions enable the detailed examination of the acoustic effects of specific articulatory strategies in speaking and singing, and the validation of acoustic plane-wave models for realistic vocal tract geometries in articulatory speech synthesis. To measure the acoustic transfer function of 3D-printed models, two techniques have been described: (1) excitation of the models with a broadband sound source at the glottis and measurement of the sound pressure radiated from the lips, and (2) excitation of the models with an external source in front of the lips and measurement of the sound pressure inside the models at the glottal end. The former method is more frequently used and more intuitive due to its similarity to speech production. However, the latter method avoids the intricate problem of constructing a suitable broadband glottal source and is therefore more effective. It has been shown to yield a transfer function similar, but not exactly equal to the volume velocity transfer function between the glottis and the lips, which is usually used to characterize vocal tract acoustics. Here, we revisit this method and show both, theoretically and experimentally, how it can be extended to yield the precise volume velocity transfer function of the vocal tract. PMID:29543829

  4. Pulse wave velocity in patients with severe head injury a pilot study.

    PubMed

    Shahsavari, S; McKelvey, T; Rydenhag, B; Ritzén, C Eriksson

    2010-01-01

    The study aimed to determine the potential of pulse wave velocity measurements to reflect changes in compliant cerebral arteries/arterioles in head injured patients. The approach utilizes the electrocardiogram and intracranial pressure signals to measure the wave transit time between heart and cranial cavity. Thirty five clinical records of nineteen head injured patients, with different levels of cerebrovascular pressure-reactivity response, were investigated through the study. Results were compared with magnitude of normalized transfer function at the fundamental cardiac frequency. In patients with intact cerebrovascular pressure-reactivity, magnitude of normalized transfer function at the fundamental cardiac component was found to be highly correlated with pulse wave transit time.

  5. Analysis of the transfer function for layered piezoelectric ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Gutiérrrez-Reyes, E.; García-Segundo, C.; García-Valenzuela, A.; Reyes-Ramírez, B.; Gutiérrez-Juárez, G.; Guadarrama-Santana, A.

    2017-06-01

    We model theoretically the voltage response to an acoustic pulse of a multilayer system forming a low noise capacitive sensor including a Polyvinylidene Fluoride piezoelectric film. First we model a generic piezoelectric detector consisting of a piezoelectric film between two metallic electrodes that are the responsible to convert the acoustic signal into a voltage signal. Then we calculate the pressure-to-voltage transfer function for a N-layer piezo-electric capacitor detector, allowing to study the effects of the electrode and protective layers thickness in typical layered piezoelectric sensors. The derived transfer function, when multiplied by the Fourier transform of the incident acoustic pulse, gives the voltage electric response in the frequency domain. An important concern regarding the transfer function is that it may have zeros at specific frequencies, and thus inverting the voltage Fourier transform of the pulse to recover the pressure signal in the time domain is not always, in principle, possible. Our formulas can be used to predict the existence and locations of such zeroes. We illustrate the use of the transfer function by predicting the electric signal generated at a multilayer piezoelectric sensor to an ultrasonic pulse generated photoacoustically by a laser pulse at a three media system with impedance mismatch. This theoretical calculations are compared with our own experimental measurements.

  6. Correcting the vertical component of ocean bottom seismometers for the effects of tilt and compliance

    NASA Astrophysics Data System (ADS)

    Bell, S. W.; Forsyth, D. W.

    2013-12-01

    Typically there are very high noise levels at long periods on the horizontal components of ocean bottom seismographs due to the turbulent interaction of bottom currents with the seismometer package on the seafloor. When there is a slight tilt of the instrument, some of the horizontal displacement caused by bottom currents leaks onto the vertical component record, which can severely increase the apparent vertical noise. Another major type of noise, compliance noise, is created when pressure variations associated with water (gravity) waves deform the seabed. Compliance noise increases with decreasing water depth, and at water depths of less than a few hundred meters, compliance noise typically obscures most earthquake signals. Following Crawford and Webb (2000), we have developed a methodology for reducing these noise sources by 1-2 orders of magnitude, revealing many events that could not be distinguished before noise reduction. Our methodology relies on transfer functions between different channels. We calculate the compliance noise in the vertical displacement record by applying a transfer function to the differential pressure gauge record. Similarly, we calculate the tilt-induced bottom current noise in the vertical displacement record by applying a transfer function to the horizontal displacement records. Using data from the Cascadia experiment and other experiments, we calculate these transfer functions at a range of stations with varying tilts and water depths. The compliance noise transfer function depends strongly on water depth, and we provide a theoretical and empirical description of this dependence. Tilt noise appears to be very highly correlated with instrument design, with negligible tilt noise observed for the 'abalone' instruments from the Scripps Institute of Oceanography and significant tilt observed for the Woods Hole Oceanographic Institution instruments in the first year deployment of the Cascadia experiment. Tilt orientation appears relatively constant, but we observe significant day-to-day variation in tilt angle, requiring the calculation of a tilt transfer function for each individual day for optimum removal of bottom current noise. In removing the compliance noise, there is some distortion of the signal. We show how to correct for this distortion using theoretical and empirical transfer functions between pressure and displacement records for seismic signals.

  7. Numerical analysis of the accuracy of bivariate quantile distributions utilizing copulas compared to the GUM supplement 2 for oil pressure balance uncertainties

    NASA Astrophysics Data System (ADS)

    Ramnath, Vishal

    2017-11-01

    In the field of pressure metrology the effective area is Ae = A0 (1 + λP) where A0 is the zero-pressure area and λ is the distortion coefficient and the conventional practise is to construct univariate probability density functions (PDFs) for A0 and λ. As a result analytical generalized non-Gaussian bivariate joint PDFs has not featured prominently in pressure metrology. Recently extended lambda distribution based quantile functions have been successfully utilized for summarizing univariate arbitrary PDF distributions of gas pressure balances. Motivated by this development we investigate the feasibility and utility of extending and applying quantile functions to systems which naturally exhibit bivariate PDFs. Our approach is to utilize the GUM Supplement 1 methodology to solve and generate Monte Carlo based multivariate uncertainty data for an oil based pressure balance laboratory standard that is used to generate known high pressures, and which are in turn cross-floated against another pressure balance transfer standard in order to deduce the transfer standard's respective area. We then numerically analyse the uncertainty data by formulating and constructing an approximate bivariate quantile distribution that directly couples A0 and λ in order to compare and contrast its accuracy to an exact GUM Supplement 2 based uncertainty quantification analysis.

  8. Electron distribution function in a plasma generated by fission fragments

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.; Deese, J. E.

    1976-01-01

    A Boltzmann equation formulation is presented for the determination of the electron distribution function in a plasma generated by fission fragments. The formulation takes into consideration ambipolar diffusion, elastic and inelastic collisions, recombination and ionization, and allows for the fact that the primary electrons are not monoenergetic. Calculations for He in a tube coated with fissionable material shows that, over a wide pressure and neutron flux range, the distribution function is non-Maxwellian, but the electrons are essentially thermal. Moreover, about a third of the energy of the primary electrons is transferred into the inelastic levels of He. This fraction of energy transfer is almost independent of pressure and neutron flux.

  9. High Pressure Optical Studies of the Thallous Halides and of Charge-Transfer Complexes

    NASA Astrophysics Data System (ADS)

    Jurgensen, Charles Willard

    High pressure was used to study the insulator -to-metal transition in sulfur and the thallous halides and to study the intermolecular interactions in charge -transfer complexes. The approach to the band overlap insulator -to-metal transition was studied in three thallous halides and sulfur by optical absorption measurements of the band gap as a function of pressure. The band gap of sulfur continuously decreases with pressure up to the insulator -to-metal transition which occurs between 450 and 485 kbars. The results on the thallous halides indicate that the indirect gap decreases more rapidly than the direct gap; the closing of the indirect gap is responsible for the observed insulator -to-metal transitions. High pressure electronic and vibrational spectroscopic measurements on the solid-state complexes of HMB-TCNE were used to study the intermolecular interactions of charge -transfer complexes. The vibrational frequency shifts indicate that the degree of charge transfer increases with pressure which is independently confirmed by an increase in the molar absorptivity of the electronic charge-transfer peak. Induction and dispersion forces contribute towards a red shift of the charge-transfer peak; however, charge-transfer resonance contributes toward a blue shift and this effect is dominant for the HMB-TCNE complexes. High pressure electronic spectra were used to study the effect of intermolecular interactions on the electronic states of TCNQ and its complexes. The red shifts with pressure of the electronic spectra of TCNQ and (TCNQ)(' -) in polymer media and of crystalline TCNQ can be understood in terms of Van der Waals interactions. None of the calculations which considered intradimer distance obtained the proper behavior for either the charge-transfer of the locally excited states of the complexes. The qualitative behavior of both states can be interpreted as the effect of increased mixing of the locally excited and charge transfer states.

  10. Experimental and Theoretical Performance of a Particle Velocity Vector Sensor in a Hybrid Acoustic Beamformer

    DTIC Science & Technology

    2009-12-01

    characterized first by the amplitude and phase relationship of their transfer functions relative to their co-located pressure microphone. The transfer...The Microflown acoustic particle velocity channels were characterized first by the amplitude and phase relationship of their transfer functions...k H k H k and  34Ĥ k . 3) The angular relationships of the velocity sensors to their respective MRAs were recorded and stored as the values of

  11. Computer programs for pressurization (RAMP) and pressurized expulsion from a cryogenic liquid propellant tank

    NASA Technical Reports Server (NTRS)

    Masters, P. A.

    1974-01-01

    An analysis to predict the pressurant gas requirements for the discharge of cryogenic liquid propellants from storage tanks is presented, along with an algorithm and two computer programs. One program deals with the pressurization (ramp) phase of bringing the propellant tank up to its operating pressure. The method of analysis involves a numerical solution of the temperature and velocity functions for the tank ullage at a discrete set of points in time and space. The input requirements of the program are the initial ullage conditions, the initial temperature and pressure of the pressurant gas, and the time for the expulsion or the ramp. Computations are performed which determine the heat transfer between the ullage gas and the tank wall. Heat transfer to the liquid interface and to the hardware components may be included in the analysis. The program output includes predictions of mass of pressurant required, total energy transfer, and wall and ullage temperatures. The analysis, the algorithm, a complete description of input and output, and the FORTRAN 4 program listings are presented. Sample cases are included to illustrate use of the programs.

  12. The influence of compressibility on nonlinear spectral energy transfer - Part 1: Fundamental mechanisms

    NASA Astrophysics Data System (ADS)

    Praturi, Divya Sri; Girimaji, Sharath

    2017-11-01

    Nonlinear spectral energy transfer by triadic interactions is one of the foundational processes in fluid turbulence. Much of our current knowledge of this process is contingent upon pressure being a Lagrange multiplier with the only function of re-orienting the velocity wave vector. In this study, we examine how the nonlinear spectral transfer is affected in compressible turbulence when pressure is a true thermodynamic variable with a wave character. We perform direct numerical simulations of multi-mode evolution at different turbulent Mach numbers of Mt = 0.03 , 0.6 . Simulations are performed with initial modes that are fully solenoidal, fully dilatational and mixed solenoidal-dilatational. It is shown that solenoidal-solenoidal interactions behave in canonical manner at all Mach numbers. However, dilatational and mixed mode interactions are profoundly different. This is due to the fact that wave-pressure leads to kinetic-internal energy exchange via the pressure-dilatation mechanism. An important consequence of this exchange is that the triple correlation term, responsible for spectral transfer, experiences non-monotonic behavior resulting in inefficient energy transfer to other modes.

  13. Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids

    PubMed Central

    Agromayor, Roberto; Cabaleiro, David; Pardinas, Angel A.; Vallejo, Javier P.; Fernandez-Seara, Jose; Lugo, Luis

    2016-01-01

    The low thermal conductivity of fluids used in many industrial applications is one of the primary limitations in the development of more efficient heat transfer systems. A promising solution to this problem is the suspension of nanoparticles with high thermal conductivities in a base fluid. These suspensions, known as nanofluids, have great potential for enhancing heat transfer. The heat transfer enhancement of sulfonic acid-functionalized graphene nanoplatelet water-based nanofluids is addressed in this work. A new experimental setup was designed for this purpose. Convection coefficients, pressure drops, and thermophysical properties of various nanofluids at different concentrations were measured for several operational conditions and the results are compared with those of pure water. Enhancements in thermal conductivity and in convection heat transfer coefficient reach 12% (1 wt %) and 32% (0.5 wt %), respectively. New correlations capable of predicting the Nusselt number and the friction factor of this kind of nanofluid as a function of other dimensionless quantities are developed. In addition, thermal performance factors are obtained from the experimental convection coefficient and pressure drop data in order to assess the convenience of replacing the base fluid with designed nanofluids. PMID:28773578

  14. Sample Handling in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Avellar, Louisa; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2013-01-01

    Harsh environments, such as that on Venus, preclude the use of existing equipment for functions that involve interaction with the environment. The operating limitations of current high temperature electronics are well below the actual temperature and pressure found on Venus (460 deg C and 92 atm), so proposed lander configurations typically include a pressure vessel where the science instruments are kept at Earth-like temperature and pressure (25 deg C and 1 atm). The purpose of this project was to develop and demonstrate a method for sample transfer from an external drill to internal science instruments for a lander on Venus. The initial concepts were string and pneumatically driven systems; and the latter system was selected for its ability to deliver samples at very high speed. The pneumatic system was conceived to be driven by the pressure difference between the Venusian atmosphere and the inside of the lander. The pneumatic transfer of a small capsule was demonstrated, and velocity data was collected from the lab experiment. The sample transfer system was modeled using CAD software and prototyped using 3D printing. General structural and thermal analyses were performed to approximate the proposed system's mass and effects on the temperature and pressure inside of the lander. Additionally, a sampler breadboard for use on Titan was tested and functionality problems were resolved.

  15. Coarse-grained modeling of polyethylene melts: Effect on dynamics

    DOE PAGES

    Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya; ...

    2017-05-23

    The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less

  16. Coarse-grained modeling of polyethylene melts: Effect on dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya

    The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less

  17. Selective laser melting in heat exchanger development - experimental investigation of heat transfer and pressure drop characteristics of wavy fins

    NASA Astrophysics Data System (ADS)

    Kuehndel, J.; Kerler, B.; Karcher, C.

    2018-04-01

    To improve performance of heat exchangers for vehicle applications, it is necessary to increase the air side heat transfer. Selective laser melting gives rise to be applied for fin development due to: i) independency of conventional tooling ii) a fast way to conduct essential experimental studies iii) high dimensional accuracy iv) degrees of freedom in design. Therefore, heat exchanger elements with wavy fins were examined in an experimental study. Experiments were conducted for air side Reynolds number range of 1400-7400, varying wavy amplitude and wave length of the fins at a constant water flow rate of 9.0 m3/h. Heat transfer and pressure drop characteristics were evaluated with Nusselt Number Nu and Darcy friction factor ψ as functions of Reynolds number. Heat transfer and pressure drop correlations were derived from measurement data obtained by regression analysis.

  18. Renal blood flow dynamics in inbred rat strains provides insight into autoregulation.

    PubMed

    A Mitrou, Nicholas G; Cupples, William A

    2014-01-01

    Renal autoregulation maintains stable renal blood flow in the face of constantly fluctuating blood pressure. Autoregulation is also the only mechanism that protects the delicate glomerular capillaries when blood pressure increases. In order to understand autoregulation, the renal blood flow response to changing blood pressure is studied. The steadystate response of blood flow is informative, but limits investigation of the individual mechanisms of autoregulation. The dynamics of autoregulation can be probed with transfer function analysis. The frequency-domain analysis of autoregulation allows investigators to probe the relative activity of each mechanism of autoregulation. We discuss the methodology and interpretation of transfer function analysis. Autoregulation is routinely studied in the rat, of which there are many inbred strains. There are multiple strains of rat that are either selected or inbred as models of human pathology. We discuss relevant characteristics of Brown Norway, Spontaneously hypertensive, Dahl, and Fawn-Hooded hypertensive rats and explore differences among these strains in blood pressure, dynamic autoregulation, and susceptibility to hypertensive renal injury. Finally we show that the use of transfer function analysis in these rat strains has contributed to our understanding of the physiology and pathophysiology of autoregulation and hypertensive renal disease.Interestingly all these strains demonstrate effective tubuloglomerular feedback suggesting that this mechanism is not sufficient for effective autoregulation. In contrast, obligatory or conditional failure of the myogenic mechanism suggests that this component is both necessary and sufficient for autoregulation.

  19. Analysis and control of the METC fluid-bed gasifier. Quarterly report, October 1994--January 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farell, A.E.; Reddy, S.

    1995-03-01

    This document summarizes work performed for the period 10/1/94 to 2/1/95. The initial phase of the work focuses on developing a simple transfer function model of the Fluidized Bed Gasifier (FBG). This transfer function model will be developed based purely on the gasifier responses to step changes in gasifier inputs (including reactor air, convey air, cone nitrogen, FBG pressure, and coal feedrate). This transfer function model will represent a linear, dynamic model that is valid near the operating point at which the data was taken. In addition, a similar transfer function model will be developed using MGAS in order tomore » assess MGAS for use as a model of the FBG for control systems analysis.« less

  20. Energy transfer, pressure tensor, and heating of kinetic plasma

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Matthaeus, William H.; Parashar, Tulasi N.; Haggerty, Colby C.; Roytershteyn, Vadim; Daughton, William; Wan, Minping; Shi, Yipeng; Chen, Shiyi

    2017-07-01

    Kinetic plasma turbulence cascade spans multiple scales ranging from macroscopic fluid flow to sub-electron scales. Mechanisms that dissipate large scale energy, terminate the inertial range cascade, and convert kinetic energy into heat are hotly debated. Here, we revisit these puzzles using fully kinetic simulation. By performing scale-dependent spatial filtering on the Vlasov equation, we extract information at prescribed scales and introduce several energy transfer functions. This approach allows highly inhomogeneous energy cascade to be quantified as it proceeds down to kinetic scales. The pressure work, - ( P . ∇ ) . u , can trigger a channel of the energy conversion between fluid flow and random motions, which contains a collision-free generalization of the viscous dissipation in collisional fluid. Both the energy transfer and the pressure work are strongly correlated with velocity gradients.

  1. Regressed relations for forced convection heat transfer in a direct injection stratified charge rotary engine

    NASA Technical Reports Server (NTRS)

    Lee, Chi M.; Schock, Harold J.

    1988-01-01

    Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.

  2. An Assessment of Helium Evolution from Helium-Saturated Propellant Depressurization in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.; Best, Frederick; Wong, Tony; Kurwitz, Cable; McConnaughey, H. (Technical Monitor)

    2001-01-01

    Helium evolution from the transfer of helium-saturated propellant in space is quantified to assess its impacts from creating two-phase gas/liquid flow from the supply tank, gas injection into the receiving tank, and liquid discharge from the receiving tank. Propellant transfer takes place between two similar tanks whose maximum storage capacity is approximately 2.55 cubic meters each. The maximum on-orbit propellants transfer capability is 9000 lbm (fuel and oxidizer). The transfer line is approximately 1.27 cm in diameter and 6096 cm in length and comprised of the fluid interconnect system (FICS), the orbiter propellant transfer system (OPTS), and the International Space Station (ISS) propulsion module (ISSPM). The propellant transfer rate begins at approximately 11 liter per minute (lpm) and subsequently drops to approximately 0.5 lpm. The tank nominal operating pressure is approximately 1827 kPa (absolute). The line pressure drops for Monomethy1hydrazine (MMH) and Nitrogen tetroxide (NTO) at 11.3 lpm are approximately 202 kPa and 302 kPa, respectively. The pressure-drop results are based on a single-phase flow. The receiving tank is required to vent from approximately 1827 kPa to a lower pressure to affect propellant transfer. These pressure-drop scenarios cause the helium-saturated propellants to release excess helium. For tank ullage venting, the maximum volumes of helium evolved at tank pressure are approximately 0.5 ft3 for MMH and 2 ft3 for NTO. In microgravity environment, due to lack of body force, the helium evolution from a liquid body acts to propel it, which influences its fluid dynamics. For propellant transfer, the volume fractions of helium evolved at line pressure are 0.1% by volume for MMH and 0.6 % by volume for NTO at 11.3 lpm. The void fraction of helium evolved varies as an approximate second order power function of flow rate.

  3. Dynamic pressure sensitivity determination with Mach number method

    NASA Astrophysics Data System (ADS)

    Sarraf, Christophe; Damion, Jean-Pierre

    2018-05-01

    Measurements of pressure in fast transient conditions are often performed even if the dynamic characteristic of the transducer are not traceable to international standards. Moreover, the question of a primary standard in dynamic pressure is still open, especially for gaseous applications. The question is to improve dynamic standards in order to respond to expressed industrial needs. In this paper, the method proposed in the EMRP IND09 ‘Dynamic’ project, which can be called the ‘ideal shock tube method’, is compared with the ‘collective standard method’ currently used in the Laboratoire de Métrologie Dynamique (LNE/ENSAM). The input is a step of pressure generated by a shock tube. The transducer is a piezoelectric pressure sensor. With the ‘ideal shock tube method’ the sensitivity of a pressure sensor is first determined dynamically. This method requires a shock tube implemented with piezoelectric shock wave detectors. The measurement of the Mach number in the tube allows an evaluation of the incident pressure amplitude of a step using a theoretical 1D model of the shock tube. Heat transfer, other actual effects and effects of the shock tube imperfections are not taken into account. The amplitude of the pressure step is then used to determine the sensitivity in dynamic conditions. The second method uses a frequency bandwidth comparison to determine pressure at frequencies from quasi-static conditions, traceable to static pressure standards, to higher frequencies (up to 10 kHz). The measurand is also a step of pressure generated by a supposed ideal shock tube or a fast-opening device. The results are provided as a transfer function with an uncertainty budget assigned to a frequency range, also deliverable frequency by frequency. The largest uncertainty in the bandwidth of comparison is used to trace the final pressure step level measured in dynamic conditions, owing that this pressure is not measurable in a steady state on a shock tube. A reference sensor thereby calibrated can be used in a comparison measurement process. At high frequencies the most important component of the uncertainty in this method is due to actual shock tube complex effects not already functionalized nowadays or thought not to be functionalized in this kind of direct method. After a brief review of both methods and a brief review of the determination of the transfer function of pressure transducers, and the budget of associated uncertainty for the dynamic calibration of a pressure transducer in gas, this paper presents a comparison of the results obtained with the ‘ideal shock tube’ and the ‘collective standard’ methods.

  4. Research on pressure control of pressurizer in pressurized water reactor nuclear power plant

    NASA Astrophysics Data System (ADS)

    Dai, Ling; Yang, Xuhong; Liu, Gang; Ye, Jianhua; Qian, Hong; Xue, Yang

    2010-07-01

    Pressurizer is one of the most important components in the nuclear reactor system. Its function is to keep the pressure of the primary circuit. It can prevent shutdown of the system from the reactor accident under the normal transient state while keeping the setting value in the normal run-time. This paper is mainly research on the pressure system which is running in the Daya Bay Nuclear Power Plant. A conventional PID controller and a fuzzy controller are designed through analyzing the dynamic characteristics and calculating the transfer function. Then a fuzzy PID controller is designed by analyzing the results of two controllers. The fuzzy PID controller achieves the optimal control system finally.

  5. Evaluation of Contact Heat Transfer Coefficient and Phase Transformation during Hot Stamping of a Hat-Type Part

    PubMed Central

    Kim, Heung-Kyu; Lee, Seong Hyeon; Choi, Hyunjoo

    2015-01-01

    Using an inverse analysis technique, the heat transfer coefficient on the die-workpiece contact surface of a hot stamping process was evaluated as a power law function of contact pressure. This evaluation was to determine whether the heat transfer coefficient on the contact surface could be used for finite element analysis of the entire hot stamping process. By comparing results of the finite element analysis and experimental measurements of the phase transformation, an evaluation was performed to determine whether the obtained heat transfer coefficient function could provide reasonable finite element prediction for workpiece properties affected by the hot stamping process. PMID:28788046

  6. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    NASA Technical Reports Server (NTRS)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  7. On the need for widespread horizontal gene transfers under genome size constraint.

    PubMed

    Isambert, Hervé; Stein, Richard R

    2009-08-25

    While eukaryotes primarily evolve by duplication-divergence expansion (and reduction) of their own gene repertoire with only rare horizontal gene transfers, prokaryotes appear to evolve under both gene duplications and widespread horizontal gene transfers over long evolutionary time scales. But, the evolutionary origin of this striking difference in the importance of horizontal gene transfers remains by and large a mystery. We propose that the abundance of horizontal gene transfers in free-living prokaryotes is a simple but necessary consequence of two opposite effects: i) their apparent genome size constraint compared to typical eukaryote genomes and ii) their underlying genome expansion dynamics through gene duplication-divergence evolution, as demonstrated by the presence of many tandem and block repeated genes. In principle, this combination of genome size constraint and underlying duplication expansion should lead to a coalescent-like process with extensive turnover of functional genes. This would, however, imply the unlikely, systematic reinvention of functions from discarded genes within independent phylogenetic lineages. Instead, we propose that the long-term evolutionary adaptation of free-living prokaryotes must have resulted in the emergence of efficient non-phylogenetic pathways to circumvent gene loss. This need for widespread horizontal gene transfers due to genome size constraint implies, in particular, that prokaryotes must remain under strong selection pressure in order to maintain the long-term evolutionary adaptation of their "mutualized" gene pool, beyond the inevitable turnover of individual prokaryote species. By contrast, the absence of genome size constraint for typical eukaryotes has presumably relaxed their need for widespread horizontal gene transfers and strong selection pressure. Yet, the resulting loss of genetic functions, due to weak selection pressure and inefficient gene recovery mechanisms, must have ultimately favored the emergence of more complex life styles and ecological integration of many eukaryotes. This article was reviewed by Pierre Pontarotti, Eugene V Koonin and Sergei Maslov.

  8. Charge-transfer potentials for ionic crystals: Cauchy violation, LO-TO splitting, and the necessity of an ionic reference state.

    PubMed

    Sukhomlinov, Sergey V; Müser, Martin H

    2015-12-14

    In this work, we study how including charge transfer into force fields affects the predicted elastic and vibrational Γ-point properties of ionic crystals, in particular those of rock salt. In both analytical and numerical calculations, we find that charge transfer generally leads to a negative contribution to the Cauchy pressure, P(C) ≡ C12 - C66, where C12 and C66 are elements of the elastic tensor. This contribution increases in magnitude with pressure for different charge-transfer approaches in agreement with results obtained with density functional theory (DFT). However, details of the charge-transfer models determine the pressure dependence of the longitudinal optical-transverse optical splitting and that for partial charges. These last two quantities increase with density as long as the chemical hardness depends at most weakly on the environment while experiments and DFT find a decrease. In order to reflect the correct trends, the charge-transfer expansion has to be made around ions and the chemical (bond) hardness has to increase roughly exponentially with inverse density or bond lengths. Finally, the adjustable force-field parameters only turn out meaningful, when the expansion is made around ions.

  9. Charge-transfer potentials for ionic crystals: Cauchy violation, LO-TO splitting, and the necessity of an ionic reference state

    NASA Astrophysics Data System (ADS)

    Sukhomlinov, Sergey V.; Müser, Martin H.

    2015-12-01

    In this work, we study how including charge transfer into force fields affects the predicted elastic and vibrational Γ-point properties of ionic crystals, in particular those of rock salt. In both analytical and numerical calculations, we find that charge transfer generally leads to a negative contribution to the Cauchy pressure, PC ≡ C12 - C66, where C12 and C66 are elements of the elastic tensor. This contribution increases in magnitude with pressure for different charge-transfer approaches in agreement with results obtained with density functional theory (DFT). However, details of the charge-transfer models determine the pressure dependence of the longitudinal optical-transverse optical splitting and that for partial charges. These last two quantities increase with density as long as the chemical hardness depends at most weakly on the environment while experiments and DFT find a decrease. In order to reflect the correct trends, the charge-transfer expansion has to be made around ions and the chemical (bond) hardness has to increase roughly exponentially with inverse density or bond lengths. Finally, the adjustable force-field parameters only turn out meaningful, when the expansion is made around ions.

  10. Boundary layer development as a function of chamber pressure in the NASA Lewis 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Smith, Tamara A.

    1988-01-01

    Through the use of theoretical predictions of fluid properties and experimental heat transfer and thrust measurements, the zones of laminar, transitional, and turbulent boundary layer flow were defined for the NASA Lewis 1039:1 area ratio rocket nozzle. Tests were performed on the nozzle at chamber pressures from 350 to 100 psia. For these conditions, the throat diameter Reynolds numbers varied from 300,000 to 1 million. The propellants used were gaseous hydrogen and gaseous oxygen. Thrust measurements and nozzle outer wall temperature measurements were taken during the 3-sec test runs. Comparison of experimental heat transfer and thrust data with the corresponding predictions from the Two-Dimensional Kinetics (TDK) nozzle analysis program indicated laminar flow in the nozzle at a throat diameter Reynolds number of 320,000 or chamber pressure of 360 psia. Comparison of experimental and predicted heat transfer data indicated transitional flow up to and including a chamber pressure of 1000 psia. Predicted values of the axisymmetric acceleration parameter within the convergent and divergent nozzle were consistent with the above results. Based upon an extrapolation of the heat transfer data and predicted distributions of the axisymmetric acceleration parameter, transitional flow was predicted up to a throat diameter Reynolds number of 220,000 or 2600-psia chamber pressure. Above 2600-psia chamber pressure, fully developed turbulent flow was predicted.

  11. Boundary layer development as a function of chamber pressure in the NASA Lewis 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Smith, Tamara A.

    1988-01-01

    Through the use of theoretical predictions of fluid properties and experimental heat transfer and thrust measurements, the zones of laminar, transitional, and turbulent boundary layer flow were defined for the NASA Lewis 1030:1 area ratio rocket nozzle. Tests were performed on the nozzle at chamber pressures from 350 to 100 psia. For these conditions, the throat diameter Reynolds numbers varied from 300,000 to 1 million. The propellants used were gaseous hydrogen and gaseous oxygen. Thrust measurements and nozzle outer wall temperature measurements were taken during the 3-sec test runs. Comparison of experimental heat transfer and thrust data with the corresponding predictions from the Two-Dimensional Kinetics (TDK) nozzle analysis program indicated laminar flow in the nozzle at a throat diameter Reynolds number of 320,000 or chamber pressure of 360 psia. Comparison of experimental and predicted heat transfer data indicated transitional flow up to and including a chamber pressure of 1000 psia. Predicted values of the axisymmetric acceleration parameter within the convergent and divergent nozzle were consistent with the above results. Based upon an extrapolation of the heat transfer data and predicted distributions of the axisymmetric acceleration parameter, transitional flow was predicted up to a throat diameter Reynolds number of 220,000 or 2600-psia chamber pressure. Above 2600-psia chamber pressure, fully developed turbulent flow was predicted.

  12. The electron Boltzmann equation in a plasma generated by fission fragments

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.; Deese, J. E.

    1976-01-01

    A Boltzmann equation formulation is presented for the determination of the electron distribution function in a plasma generated by fission fragments. The formulation takes into consideration ambipolar diffusion, elastic and inelastic collisions, recombination and ionization, and allows for the fact that the primary electrons are not monoenergetic. Calculations for He in a tube coated with fissionable material show that, over a wide pressure and neutron flux range, the distribution function is non-Maxwellian, but the electrons are essentially thermal. Moreover, about a third of the energy of the primary electrons is transferred into the inelastic levels of He. This fraction of energy transfer is almost independent of pressure and neutron flux but increases sharply in the presence of a sustainer electric field.

  13. Theoretical analysis of the overtone-induced isomerization of methyl isocyanide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.A.; Chandler, D.W.

    1986-10-15

    A master-equation formalism is applied to the problem of overtone-induced isomerization of CH/sub 3/NC to CH/sub 3/CN. The results are compared to the experiments of Reddy and Berry, who measured the yield of isomerization as a function of pressure after excitation to the fourth and fifth overtones of the CH stretching mode. The master-equation model predicts the yield and the curvature in the yield/sup -1/ vs pressure plots observed in the experiments. For the lower overtone (50) the results are consistent with a simple strong-collider model. However, even under strong-collider conditions the yield is very sensitive to the parameters inmore » the master equation. For the upper overtone (60) the data do not fit a strong collider model and multistep deactivation dominates. We are able to determine from the data the average energy transferred in a collision by assuming a particular form for the energy-transfer function. In addition, the effect of changing the shape of the energy-transfer function is investigated.« less

  14. Cerebrovascular and cardiovascular variability interactions investigated through conditional joint transfer entropy in subjects prone to postural syncope.

    PubMed

    Bari, Vlasta; De Maria, Beatrice; Mazzucco, Claudio Enrico; Rossato, Gianluca; Tonon, Davide; Nollo, Giandomenico; Faes, Luca; Porta, Alberto

    2017-05-01

    A model-based conditional transfer entropy approach was exploited to quantify the information transfer in cerebrovascular (CBV) and cardiovascular (CV) systems in subjects prone to develop postural syncope. Spontaneous beat-to-beat variations of mean cerebral blood flow velocity (MCBFV) derived from a transcranial Doppler device, heart period (HP) derived from surface electrocardiogram, mean arterial pressure (MAP) and systolic arterial pressure (SAP) derived from finger plethysmographic arterial pressure device were monitored at rest in supine position (REST) and during 60° head-up tilt (TILT) in 13 individuals (age mean  ±  standard deviation: 28  ±  9 years, min-max range: 18-44 years, 5 males) with a history of recurrent episodes of syncope (SYNC) and in 13 age- and gender-matched controls (NonSYNC). Respiration (R) obtained from a thoracic belt was acquired as well and considered as a conditioning signal in transfer entropy assessment. Synchronous sequences of 250 consecutive MCBFV, HP, MAP, SAP and R values were utilized to estimate the information genuinely transferred from MAP to MCBFV (i.e. disambiguated from R influences) and vice versa. Analogous indexes were computed from SAP to HP and vice versa. Traditional time and frequency domain analyses were carried out as well. SYNC subjects showed an increased genuine information transfer from MAP to MCBFV during TILT, while they did not exhibit the expected rise of the genuine information transfer from SAP to HP. We conclude that SYNC individuals featured an impaired cerebral autoregulation visible during TILT and were unable to activate cardiac baroreflex to cope with the postural challenge. Traditional frequency domain markers based on transfer function modulus, phase and coherence functions were less powerful or less specific in typifying the CBV and CV controls of SYNC individuals. Conditional transfer entropy approach can identify the impairment of CBV and CV controls and provide specific clues to identify subjects prone to develop postural syncope.

  15. Thermal design, rating and second law analysis of shell and tube condensers based on Taguchi optimization for waste heat recovery based thermal desalination plants

    NASA Astrophysics Data System (ADS)

    Chandrakanth, Balaji; Venkatesan, G; Prakash Kumar, L. S. S; Jalihal, Purnima; Iniyan, S

    2018-03-01

    The present work discusses the design and selection of a shell and tube condenser used in Low Temperature Thermal Desalination (LTTD). To optimize the key geometrical and process parameters of the condenser with multiple parameters and levels, a design of an experiment approach using Taguchi method was chosen. An orthogonal array (OA) of 25 designs was selected for this study. The condenser was designed, analysed using HTRI software and the heat transfer area with respective tube side pressure drop were computed using the same, as these two objective functions determine the capital and running cost of the condenser. There was a complex trade off between the heat transfer area and pressure drop in the analysis, however second law analysis was worked out for determining the optimal heat transfer area vs pressure drop for condensing the required heat load.

  16. Investigations on the self-excited oscillations in a kerosene spray flame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de la Cruz Garcia, M.; Mastorakos, E.; Dowling, A.P.

    2009-02-15

    A laboratory scale gas turbine type burner at atmospheric pressure and with air preheat was operated with aviation kerosene Jet-A1 injected from a pressure atomiser. Self-excited oscillations were observed and analysed to understand better the relationship between the spray and thermo-acoustic oscillations. The fluctuations of CH{sup *} chemiluminescence measured simultaneously with the pressure were used to determine the flame transfer function. The Mie scattering technique was used to record spray fluctuations in reacting conditions with a high speed camera. Integrating the Mie intensity over the imaged region gave a temporal signal acquired simultaneously with pressure fluctuations and the transfer functionmore » between the light scattered from the spray and the velocity fluctuations in the plenum was evaluated. Phase Doppler anemometry was used for axial velocity and drop size measurements at different positions downstream the injection plane and for various operating conditions. Pressure spectra showed peaks at a frequency that changed with air mass flow rate. The peak for low air mass flow rate operation was at 220 Hz and was associated with a resonance of the supply plenum. At the same global equivalence ratio but at high air mass flow rates, the pressure spectrum peak was at 323 Hz, a combustion chamber resonant frequency. At low air flow rates, the spray fluctuation motion was pronounced and followed the frequency of the pressure oscillation. At high air flow rates, more effective evaporation resulted in a complete disappearance of droplets at an axial distance of about 1/3 burner diameters from the injection plane, leading to a different flame transfer function and frequency of the self-excited oscillation. The results highlight the sensitivity of the self-excited oscillation to the degree of mixing achieved before the main recirculation zone. (author)« less

  17. Circadian blood pressure variability in type 1 diabetes subjects and their nondiabetic siblings - influence of erythrocyte electron transfer.

    PubMed

    Matteucci, Elena; Consani, Cristina; Masoni, Maria Chiara; Giampietro, Ottavio

    2010-10-05

    Normotensive non-diabetic relatives of type 1 diabetes (T1D) patients have an abnormal blood pressure response to exercise testing that is associated with indices of metabolic syndrome and increased oxidative stress. The primary aim of this study was to investigate the circadian variability of blood pressure and the ambulatory arterial stiffness index (AASI) in healthy siblings of T1D patients vs healthy control subjects who had no first-degree relative with T1D. Secondary aims of the study were to explore the influence of both cardiovascular autonomic function and erythrocyte electron transfer activity as oxidative marker on the ambulatory blood pressure profile. Twenty-four hour ambulatory blood pressure monitoring (ABPM) was undertaken in 25 controls, 20 T1D patients and 20 siblings. In addition to laboratory examination (including homeostasis model assessment of insulin sensitivity) and clinical testing of autonomic function, we measured the rate of oxidant-induced erythrocyte electron transfer to extracellular ferricyanide (RBC vfcy). Systolic blood pressure (SBP) midline-estimating statistic of rhythm and pulse pressure were higher in T1D patients and correlated positively with diabetes duration and RBC vfcy; autonomic dysfunction was associated with diastolic BP ecphasia and increased AASI. Siblings had higher BMI, lower insulin sensitivity, larger SBP amplitude, and higher AASI than controls. Daytime SBP was positively, independently associated with BMI and RBC vfcy. Among non-diabetic people, there was a significant correlation between AASI and fasting plasma glucose. Siblings of T1D patients exhibited a cluster of sub-clinical metabolic abnormalities associated with consensual perturbations in BP variability. Moreover, our findings support, in a clinical setting, the proposed role of transplasma membrane electron transport systems in vascular pathobiology.

  18. Multicomponent Exercise Improves Hemodynamic Parameters and Mobility, but Not Maximal Walking Speed, Transfer Capacity, and Executive Function of Older Type II Diabetic Patients.

    PubMed

    Coelho Junior, Hélio José; Callado Sanches, Iris; Doro, Marcio; Asano, Ricardo Yukio; Feriani, Daniele Jardim; Brietzke, Cayque; Gonçalves, Ivan de Oliveira; Uchida, Marco Carlos; Capeturo, Erico Chagas; Rodrigues, Bruno

    2018-01-01

    The present study aimed to investigate the effects of a 6-month multicomponent exercise program (MCEP) on functional, cognitive, and hemodynamic parameters of older Type 2 diabetes mellitus (T2DM) patients. Moreover, additional analyses were performed to evaluate if T2DM patients present impaired adaptability in response to physical exercise when compared to nondiabetic volunteers. A total of 72 T2DM patients and 72 age-matched healthy volunteers (CG) were recruited and submitted to functional, cognitive, and hemodynamic evaluations before and after six months of a MCEP. The program of exercise was performed twice a week at moderate intensity. Results indicate T2DM and nondiabetic patients present an increase in mobility (i.e., usual walking speed) after the MCEP. However, improvements in maximal walking speed, transfer capacity, and executive function were only observed in the CG. On the other hand, only T2DM group reveals a marked decline in blood pressure. In conclusion, data of the current study indicate that a 6-month MCEP improves mobility and reduce blood pressure in T2DM patients. However, maximal walking speed, transfer capacity, and executive function were only improved in CG, indicating that T2DM may present impaired adaptability in response to physical stimulus.

  19. Pressure transfer function and absorption cross section from the diffuse field to the human infant ear canal.

    PubMed

    Keefe, D H; Bulen, J C; Campbell, S L; Burns, E M

    1994-01-01

    The diffuse-field pressure transfer function from a reverberant field to the ear canal of human infants, ages 1, 3, 6, 12, and 24 months, has been measured from 125-10700 Hz. The source was a loudspeaker using pink noise, and the diffuse-field pressure and the ear-canal pressure were simultaneously measured using a spatial averaging technique in a reverberant room. The results in most subjects show a two-peak structure in the 2-6-kHz range, corresponding to the ear-canal and concha resonances. The ear-canal resonance frequency decreases from 4.4 kHz at age 1 month to 2.9 kHz at age 24 months. The concha resonance frequency decreases from 5.5 kHz at age 1 month to 4.5 kHz at age 24 months. Below 2 kHz, the diffuse-field transfer function shows effects due to the torsos of the infant and parent, and varies with how the infant is held. Comparisons are reported of the diffuse-field absorption cross section for infants relative to adults. This quantity is a measure of power absorbed by the middle ear from a diffuse sound field, and large differences are observed in infants relative to adults. The radiation efficiencies of the infant and the adult ear are small at low frequencies, near unity at midfrequencies, and decrease at higher frequencies. The process of ear-canal development is not yet complete at age 24 months. The results have implications for experiments on hearing in infants.

  20. Comparison of noninvasive assessments of central blood pressure using general transfer function and late systolic shoulder of the radial pressure wave.

    PubMed

    Wohlfahrt, Peter; Krajcoviechová, Alena; Seidlerová, Jitka; Mayer, Otto; Filipovsky, Jan; Cífková, Renata

    2014-02-01

    Central systolic blood pressure (cSBP) can be derived by the general transfer function of the radial pressure wave, as used in the SphygmoCor device, or by regression equation from directly measured late systolic shoulder of the radial pressure wave (pSBP2), as used in the Omron HEM-9000AI device. The aim of this study was to compare the SphygmoCor estimates of cSBP with 2 estimates of cSBP provided by the Omron HEM-9000AI (cSBP, pSBP2) in a large cohort of the white population. In 391 patients aged 52.3±13.5 years (46% men) from the Czech post-MONICA Study, cSBP was measured using the SphygmoCor and Omron HEM-9000AI devices in random order. Omron cSBP and pSBP2 were perfectly correlated (r = 1.0; P < 0.0001). There was a strong correlation (r = 0.97; P < 0.0001) between Omron and SphygmoCor cSBP estimates, but Omron estimate was 13.1±4.7mm Hg higher than SphygmoCor cSBP. On the other hand, Omron pSBP2 strongly correlated with SphygmoCor cSBP (r = 0.97; P < 0.0001) and was 1.7±4.2mm Hg lower than SphygmoCor cSBP. In multivariable analysis, anthropometric and cardiovascular risk factors explained only 10% of the variance of the cSBP difference between devices while explaining 52% of the systolic blood pressure amplification variance. Estimation of cSBP based on the late systolic shoulder of the radial wave provides a comparable accuracy with the validated general transfer function. When comparing Omron HEM-9000AI and SphygmoCor estimates of cSBP, Omron pSBP2 should be used. The difference between both devices in cSBP may be explained by differences in calibration.

  1. Transient heat transfer to a forced flow of supercritical helium at 4.2 K

    NASA Astrophysics Data System (ADS)

    Bloem, W. B.

    The transient heat transfer coefficient of supercritical helium flowing through a rectangular copper tube with a hydraulic diameter of 5 mm has been measured. The conditions of the flow were: inlet bulk temperature of the fluid was 4.2 K pressures from 3 to 10 bar and Reynolds numbers between 1.5 × 10 4 and 2 × 10 5. The tube was heated on four sides with heat fluxes up to 9800 W m -2. From the experiments it followed that during the first tens of milliseconds the heat transfer is determined by the heat conduction in the boundary layer of the supercritical helium flow. The heat transfer coefficient can be described by h = 0.5(Π λ p C p/t) 1/2. Although the helium properties λ p and Cp are a strong function of pressure and temperature, it was remarkable that the temperature increase during a heat pulse was almost the same at different flow pressures. After analysing the data an empirical relation, h =b ṁ0.75 (t t/t) case1/n, was derived, which predicts the heat transfer coefficient at a given mass flow, ṁ, to within 10% during 0.1 s. The constants b, n and tt are related to the mass flow, ṁ, and the pressure of the fluid.

  2. Study of Variable Turbulent Prandtl Number Model for Heat Transfer to Supercritical Fluids in Vertical Tubes

    NASA Astrophysics Data System (ADS)

    Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin

    2018-06-01

    In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.

  3. Fiber optic photoelastic pressure sensor for high temperature gases

    NASA Technical Reports Server (NTRS)

    Wesson, Laurence N.; Redner, Alex S.; Baumbick, Robert J.

    1990-01-01

    A novel fiber optic pressure sensor based on the photoelastic effects has been developed for extremely high temperature gases. At temperatures varying from 25 to 650 C, the sensor experiences no change in the peak pressure of the transfer function and only a 10 percent drop in dynamic range. Refinement of the sensor has resulted in an optoelectronic interface and processor software which can calculate pressure values within 1 percent of full scale at any temperature within the full calibrated temperature range.

  4. Relationship between cerebral blood flow and blood pressure in long-term heart transplant recipients.

    PubMed

    Smirl, Jonathan D; Haykowsky, Mark J; Nelson, Michael D; Tzeng, Yu-Chieh; Marsden, Katelyn R; Jones, Helen; Ainslie, Philip N

    2014-12-01

    Heart transplant recipients are at an increased risk for cerebral hemorrhage and ischemic stroke; yet, the exact mechanism for this derangement remains unclear. We hypothesized that alterations in cerebrovascular regulation is principally involved. To test this hypothesis, we studied cerebral pressure-flow dynamics in 8 clinically stable male heart transplant recipients (62±8 years of age and 9±7 years post transplant, mean±SD), 9 male age-matched controls (63±8 years), and 10 male donor controls (27±5 years). To increase blood pressure variability and improve assessment of the pressure-flow dynamics, subjects performed squat-stand maneuvers at 0.05 and 0.10 Hz. Beat-to-beat blood pressure, middle cerebral artery velocity, and end-tidal carbon dioxide were continuously measured during 5 minutes of seated rest and throughout the squat-stand maneuvers. Cardiac baroreceptor sensitivity gain and cerebral pressure-flow responses were assessed with linear transfer function analysis. Heart transplant recipients had reductions in R-R interval power and baroreceptor sensitivity low frequency gain (P<0.01) compared with both control groups; however, these changes were unrelated to transfer function metrics. Thus, in contrast to our hypothesis, the increased risk of cerebrovascular complication after heart transplantation does not seem to be related to alterations in cerebral pressure-flow dynamics. Future research is, therefore, warranted. © 2014 American Heart Association, Inc.

  5. Causal transfer function analysis to describe closed loop interactions between cardiovascular and cardiorespiratory variability signals.

    PubMed

    Faes, L; Porta, A; Cucino, R; Cerutti, S; Antolini, R; Nollo, G

    2004-06-01

    Although the concept of transfer function is intrinsically related to an input-output relationship, the traditional and widely used estimation method merges both feedback and feedforward interactions between the two analyzed signals. This limitation may endanger the reliability of transfer function analysis in biological systems characterized by closed loop interactions. In this study, a method for estimating the transfer function between closed loop interacting signals was proposed and validated in the field of cardiovascular and cardiorespiratory variability. The two analyzed signals x and y were described by a bivariate autoregressive model, and the causal transfer function from x to y was estimated after imposing causality by setting to zero the model coefficients representative of the reverse effects from y to x. The method was tested in simulations reproducing linear open and closed loop interactions, showing a better adherence of the causal transfer function to the theoretical curves with respect to the traditional approach in presence of non-negligible reverse effects. It was then applied in ten healthy young subjects to characterize the transfer functions from respiration to heart period (RR interval) and to systolic arterial pressure (SAP), and from SAP to RR interval. In the first two cases, the causal and non-causal transfer function estimates were comparable, indicating that respiration, acting as exogenous signal, sets an open loop relationship upon SAP and RR interval. On the contrary, causal and traditional transfer functions from SAP to RR were significantly different, suggesting the presence of a considerable influence on the opposite causal direction. Thus, the proposed causal approach seems to be appropriate for the estimation of parameters, like the gain and the phase lag from SAP to RR interval, which have a large clinical and physiological relevance.

  6. Pressure drop reduction and heat transfer deterioration of slush nitrogen in triangular and circular pipe flows

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Kurose, Kizuku; Okuyama, Jun; Saito, Yutaro; Takahashi, Koichi

    2017-01-01

    Slush fluids such as slush hydrogen and slush nitrogen are characterized by superior properties as functional thermal fluids due to their density and heat of fusion. In addition to allowing efficient hydrogen transport and storage, slush hydrogen can serve as a refrigerant for high-temperature superconducting (HTS) equipment using MgB2, with the potential for synergistic effects. In this study, pressure drop reduction and heat transfer deterioration experiments were performed on slush nitrogen flowing in a horizontal triangular pipe with sides of 20 mm under the conditions of three different cross-sectional orientations. Experimental conditions consisted of flow velocity (0.3-4.2 m/s), solid fraction (0-25 wt.%), and heat flux (0, 10, and 20 kW/m2). Pressure drop reduction became apparent at flow velocities exceeding about 1.3-1.8 m/s, representing a maximum amount of reduction of 16-19% in comparison with liquid nitrogen, regardless of heating. Heat transfer deterioration was seen at flow velocities of over 1.2-1.8 m/s, for a maximum amount of deterioration of 13-16%. The authors of the current study compared the results for pressure drop reduction and heat transfer deterioration in triangular pipe with those obtained previously for circular and square pipes, clarifying differences in flow and heat transfer properties. Also, a correlation equation was obtained between the slush Reynolds number and the pipe friction factor, which is important in the estimation of pressure drop in unheated triangular pipe. Furthermore, a second correlation equation was derived between the modified slush Reynolds number and the pipe friction factor, enabling the integrated prediction of pressure drop in both unheated triangular and circular pipes.

  7. Intracochlear pressure measurements during acoustic shock wave exposure.

    PubMed

    Greene, Nathaniel T; Alhussaini, Mohamed A; Easter, James R; Argo, Theodore F; Walilko, Tim; Tollin, Daniel J

    2018-05-19

    Injuries to the peripheral auditory system are among the most common results of high intensity impulsive acoustic exposure. Prior studies of high intensity sound transmission by the ossicular chain have relied upon measurements in animal models, measurements at more moderate sound levels (i.e. < 130 dB SPL), and/or measured responses to steady-state noise. Here, we directly measure intracochlear pressure in human cadaveric temporal bones, with fiber optic pressure sensors placed in scala vestibuli (SV) and tympani (ST), during exposure to shock waves with peak positive pressures between ∼7 and 83 kPa. Eight full-cephalic human cadaver heads were exposed, face-on, to acoustic shock waves in a 45 cm diameter shock tube. Specimens were exposed to impulses with nominal peak overpressures of 7, 28, 55, & 83 kPa (171, 183, 189, & 192 dB pSPL), measured in the free field adjacent to the forehead. Specimens were prepared bilaterally by mastoidectomy and extended facial recess to expose the ossicular chain. Ear canal (EAC), middle ear, and intracochlear sound pressure levels were measured with fiber-optic pressure sensors. Surface-mounted sensors measured SPL and skull strain near the opening of each EAC and at the forehead. Measurements on the forehead showed incident peak pressures approximately twice that measured by adjacent free-field and EAC entrance sensors, as expected based on the sensor orientation (normal vs tangential to the shock wave propagation). At 7 kPa, EAC pressure showed gain, calculated from the frequency spectra, consistent with the ear canal resonance, and gain in the intracochlear pressures (normalized to the EAC pressure) were consistent with (though somewhat lower than) previously reported middle ear transfer functions. Responses to higher intensity impulses tended to show lower intracochlear gain relative to EAC, suggesting sound transmission efficiency along the ossicular chain is reduced at high intensities. Tympanic membrane (TM) rupture was observed following nearly every exposure 55 kPa or higher. Intracochlear pressures reveal lower middle-ear transfer function magnitudes (i.e. reduced gain relative to the ear canal) for high sound pressure levels, thus revealing lower than expected cochlear exposure based on extrapolation from cochlear pressures measured at more moderate sound levels. These results are consistent with lowered transmissivity of the ossicular chain at high intensities, and are consistent with our prior report measuring middle ear transfer functions in human cadaveric temporal bones with high intensity tone pips. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Dynamic Cerebral Autoregulation is Preserved During Acute Head-down Tilt

    DTIC Science & Technology

    2003-06-27

    relationship of mean arterial pressure to mean cerebral blood flow velocity transfer function gain at the high and low frequencies, respectively; TCD-PHASE...HF and TCD-PHASE-LF, phase angle between mean arterial pressure and mean cerebral blood flow veloc- ity at high and low frequencies, respectively...arterial pressure and mean ce- rebral blood flow oscillations decrease from low- to high -frequency ranges. Average phase angles were 68° at low frequencies

  9. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    NASA Astrophysics Data System (ADS)

    Moreau, P.; César de Sá, J.; Grégoire, S.; Lochegnies, D.

    2007-05-01

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication…). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.

  10. Calculation and validation of heat transfer coefficient for warm forming operations

    NASA Astrophysics Data System (ADS)

    Omer, Kaab; Butcher, Clifford; Worswick, Michael

    2017-10-01

    In an effort to reduce the weight of their products, the automotive industry is exploring various hot forming and warm forming technologies. One critical aspect in these technologies is understanding and quantifying the heat transfer between the blank and the tooling. The purpose of the current study is twofold. First, an experimental procedure to obtain the heat transfer coefficient (HTC) as a function of pressure for the purposes of a metal forming simulation is devised. The experimental approach was used in conjunction with finite element models to obtain HTC values as a function of die pressure. The materials that were characterized were AA5182-O and AA7075-T6. Both the heating operation and warm forming deep draw were modelled using the LS-DYNA commercial finite element code. Temperature-time measurements were obtained from both applications. The results of the finite element model showed that the experimentally derived HTC values were able to predict the temperature-time history to within a 2% of the measured response. It is intended that the HTC values presented herein can be used in warm forming models in order to accurately capture the heat transfer characteristics of the operation.

  11. HEAT TRANSFER FROM SURFACES OF NON-UNIFORM TEMPERATURE DISTRIBUTION. PART II. TURBULENT TRANSFER FROM ISOTHERMAL SPANWISE STRIPS ON A FLAT PLATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sogin, H.H.; Goldstein, R.J.

    1960-02-01

    Experiments were performed on mass transfer by forced convection from naphthalene strips on a flat plate to an air stream at ordinary temperature and pressure. Turbulence was induced in the boundary layer by means of a wire strip. In all cases there was a hydrodynamic starting length upstream of the strips. The ratio of this inert length to the total length was varied from about 0.80 to 0.96. The flow was practically incompressible with Reynolds number, based on the total length, varying from 175,000 to 486,000. The Schmidt number was 2.5. The experimental results fell in proximity to the Sebanmore » step function factor when they were reduced after the massmomentum analysis of Deissler and Loeffler for a surface of uniform vapor pressure. When Karman's formulation of the mass- momentum analogy was assumed, the data fell between the values predicted by the Seban and by the Rubesin expression for the step function factor. The results were well correlated by the Colburn analogy in conjunction with the Rubesin step function factor. (auth)« less

  12. Nano-inspired smart interfaces: fluidic interactivity and its impact on heat transfer

    NASA Astrophysics Data System (ADS)

    Kim, Beom Seok; Lee, Byoung In; Lee, Namkyu; Choi, Geehong; Gemming, Thomas; Cho, Hyung Hee

    2017-03-01

    Interface-inspired convection is a key heat transfer scheme for hot spot cooling and thermal energy transfer. An unavoidable trade-off of the convective heat transfer is pressure loss caused by fluidic resistance on an interface. To overcome this limitation, we uncover that nano-inspired interfaces can trigger a peculiar fluidic interactivity, which can pursue all the two sides of the coin: heat transfer and fluidic friction. We demonstrate the validity of a quasi-fin effect of Si-based nanostructures based on conductive capability of heat dissipation valid under the interactivity with fluidic viscous sublayer. The exclusive fluid-interface friction is achieved when the height of the nanostructures is much less than the thickness of the viscous sublayers in the turbulent regime. The strategic nanostructures show an enhancement of heat transfer coefficients in the wall jet region by more than 21% without any significant macroscale pressure loss under single-phase impinging jet. Nanostructures guaranteeing fluid access via an equivalent vacancy larger than the diffusive path length of viscid flow lead to local heat transfer enhancement of more than 13% at a stagnation point. Functional nanostructures will give shape to possible breakthroughs in heat transfer and its optimization can be pursued for engineered systems.

  13. Measurements of the effects of thermal contact resistance on steady state heat transfer in phosphoric-acid fuel cell stack

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Alkasab, Kalil A.

    1991-01-01

    The influence of the thermal contact resistance on the heat transfer between the electrode plates, and the cooling system plate in a phosphoric-acid fuel-cell stack was experimentally investigated. The investigation was conducted using a set-up that simulates the operating conditions prevailing in a phosphoric acid fuel-cell stack. The fuel-cell cooling system utilized three types of coolants, water, engine oil, and air, to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The thermal contact resistance was measured as a function of pressure at the interface between the electrode plate and the cooling system plate. The interface pressure range was from 0 kPa to 3448 kPa, while the Reynolds number for the cooling limits varied from 15 to 79 for oil, 1165 to 6165 for water, and 700 to 6864 for air. Results showed that increasing the interface pressure resulted in a higher heat transfer coefficient.

  14. Development of a hybrid wave based-transfer matrix model for sound transmission analysis.

    PubMed

    Dijckmans, A; Vermeir, G

    2013-04-01

    In this paper, a hybrid wave based-transfer matrix model is presented that allows for the investigation of the sound transmission through finite multilayered structures placed between two reverberant rooms. The multilayered structure may consist of an arbitrary configuration of fluid, elastic, or poro-elastic layers. The field variables (structural displacements and sound pressures) are expanded in terms of structural and acoustic wave functions. The boundary and continuity conditions in the rooms determine the participation factors in the pressure expansions. The displacement of the multilayered structure is determined by the mechanical impedance matrix, which gives a relation between the pressures and transverse displacements at both sides of the structure. The elements of this matrix are calculated with the transfer matrix method. First, the hybrid model is numerically validated. Next a comparison is made with sound transmission loss measurements of a hollow brick wall and a sandwich panel. Finally, numerical simulations show the influence of structural damping, room dimensions and plate dimensions on the sound transmission loss of multilayered structures.

  15. The turbulent boundary layer on a porous plate: An experimental study of the heat transfer behavior with adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Blackwell, B. F.; Kays, W. M.; Moffat, R. J.

    1972-01-01

    An experimental investigation of the heat transfer behavior of the near equilibrium transpired turbulent boundary layer with adverse pressure gradient has been carried out. Stanton numbers were measured by an energy balance on electrically heated plates that form the bottom wall of the wind tunnel. Two adverse pressure gradients were studied. Two types of transpiration boundary conditions were investigated. The concept of an equilibrium thermal boundary layer was introduced. It was found that Stanton number as a function of enthalpy thickness Reynolds number is essentially unaffected by adverse pressure gradient with no transpiration. Shear stress, heat flux, and turbulent Prandtl number profiles were computed from mean temperature and velocity profiles. It was concluded that the turbulent Prandtl number is greater than unity in near the wall and decreases continuously to approximately 0.5 at the free stream.

  16. Energy harvesting from arterial blood pressure for powering embedded brain sensors

    NASA Astrophysics Data System (ADS)

    Nanda, Aditya; Karami, M. Amin

    2016-04-01

    This paper investigates energy harvesting from arterial blood pressure via the piezoelectric effect by using a novel streaked cylinder geometry for the purpose of powering embedded micro-sensors in the brain. Initially, we look at the energy harvested by a piezoelectric cylinder placed inside an artery acted upon by blood pressure. Such an arrangement would be tantamount to constructing a stent out of piezoelectric materials. A stent is a cylinder placed in veins and arteries to prevent obstruction in blood flow. The governing equations of a conductor coated piezoelectric cylinder are obtained using Hamilton's principle. Pressure acting in arteries is radially directed and this is used to simplify the modal analysis and obtain the transfer function relating pressure to the induced voltage across the surface of the harvester. The power harvested by the cylindrical harvester is obtained for different shunt resistances. Radially directed pressure occurs elsewhere and we also look at harvesting energy from oil flow in pipelines. Although the energy harvested by the cylindrical energy harvester is significant at resonance, the natural frequency of the system is found to be very high. To decrease the natural frequency, we propose a novel streaked stent design by cutting it along the length, transforming it to a curved plate and decreasing the natural frequency. The governing equations corresponding to the new geometry are derived using Hamilton's principle and modal analysis is used to obtain the transfer function.

  17. Dynamic regulation of heart rate during acute hypotension: new insight into baroreflex function

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Behbehani, K.; Crandall, C. G.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    2001-01-01

    To examine the dynamic properties of baroreflex function, we measured beat-to-beat changes in arterial blood pressure (ABP) and heart rate (HR) during acute hypotension induced by thigh cuff deflation in 10 healthy subjects under supine resting conditions and during progressive lower body negative pressure (LBNP). The quantitative, temporal relationship between ABP and HR was fitted by a second-order autoregressive (AR) model. The frequency response was evaluated by transfer function analysis. Results: HR changes during acute hypotension appear to be controlled by an ABP error signal between baseline and induced hypotension. The quantitative relationship between changes in ABP and HR is characterized by a second-order AR model with a pure time delay of 0.75 s containing low-pass filter properties. During LBNP, the change in HR/change in ABP during induced hypotension significantly decreased, as did the numerator coefficients of the AR model and transfer function gain. Conclusions: 1) Beat-to-beat HR responses to dynamic changes in ABP may be controlled by an error signal rather than directional changes in pressure, suggesting a "set point" mechanism in short-term ABP control. 2) The quantitative relationship between dynamic changes in ABP and HR can be described by a second-order AR model with a pure time delay. 3) The ability of the baroreflex to evoke a HR response to transient changes in pressure was reduced during LBNP, which was due primarily to a reduction of the static gain of the baroreflex.

  18. Central blood pressure in children and adolescents: non-invasive development and testing of novel transfer functions.

    PubMed

    Cai, T Y; Qasem, A; Ayer, J G; Butlin, M; O'Meagher, S; Melki, C; Marks, G B; Avolio, A; Celermajer, D S; Skilton, M R

    2017-12-01

    Central blood pressure can be estimated from peripheral pulses in adults using generalised transfer functions (TF). We sought to create and test age-specific non-invasively developed TFs in children, with comparison to a pre-existing adult TF. We studied healthy children from two sites at two time points, 8 and 14 years of age, split by site into development and validation groups. Radial and carotid pressure waveforms were obtained by applanation tonometry. Central systolic pressure was derived from carotid waveforms calibrated to brachial mean and diastolic pressures. Age-specific TFs created in the development groups (n=50) were tested in the validation groups aged 8 (n=137) and 14 years (n=85). At 8 years of age, the age-specific TF estimated 82, 99 and 100% of central systolic pressure values within 5, 10 and 15 mm Hg of their measured values, respectively. This TF overestimated central systolic pressure by 2.2 (s.d. 3.7) mm Hg, compared to being underestimated by 5.6 (s.d. 3.9) mm Hg with the adult TF. At 14 years of age, the age-specific TF estimated 60, 87 and 95% of values within 5, 10 and 15 mm Hg of their measured values, respectively. This TF underestimated central systolic pressure by 0.5 (s.d. 6.7) mm Hg, while the adult TF underestimated it by 6.8 (s.d. 6.0) mm Hg. In conclusion, age-specific TFs more accurately predict central systolic pressure measured at the carotid artery in children than an existing adult TF.

  19. The physiological basis of Glottal electromagnetic micropower sensors (GEMS) and their use in defining an excitation function for the human vocal tract

    NASA Astrophysics Data System (ADS)

    Burnett, Gregory Clell

    1999-10-01

    The definition, use, and physiological basis of Glottal Electromagnetic Micropower Sensors (GEMS) is presented. These sensors are a new type of low power (<20 milliwatts radiated) microwave regime (900 MHz to 2.5 GHz) multi-purpose motion sensor developed at the Lawrence Livermore National Laboratory. The GEMS are sensitive to movement in an adjustable field of view (FOV) surrounding the antennae. In this thesis, the GEMS has been utilized for speech research, targeted to receive motion signals from the subglottal region of the trachea. The GEMS signal is analyzed to determine the physiological source of the signal, and this information is used to calculate the subglottal pressure, effectively an excitation function for the human vocal tract. For the first time, an excitation function may be calculated in near real time using a noninvasive procedure. Several experiments and models are presented to demonstrate that the GEMS signal is representative of the motion of the subglottal posterior wall of the trachea as it vibrates in response to the pressure changes caused by the folds as they modulate the airflow supplied by the lungs. The vibrational properties of the tracheal wall are modeled using a lumped-element circuit model. Taking the output of the vocal tract to be the audio pressure captured by a microphone and the input to be the subglottal pressure, the transfer function of the vocal tract (including the nasal cavities) can be approximated every 10-30 milliseconds using an autoregressive moving-average model. Unlike the currently utilized method of transfer function approximation, this new method only involves noninvasive GEMS measurements and digital signal processing and does not demand the difficult task of obtaining precise physical measurements of the tract and subsequent estimation of the transfer function using its cross-sectional area. The ability to measure the physical motion of the trachea enables a significant number of potential applications, ranging from very accurate pitch detection to speech synthesis, speaker verification, and speech recognition.

  20. Dynamic Modulation of Radiative Heat Transfer beyond the Blackbody Limit.

    PubMed

    Ito, Kota; Nishikawa, Kazutaka; Miura, Atsushi; Toshiyoshi, Hiroshi; Iizuka, Hideo

    2017-07-12

    Dynamic control of electromagnetic heat transfer without changing mechanical configuration opens possibilities in intelligent thermal management in nanoscale systems. We confirmed by experiment that the radiative heat transfer is dynamically modulated beyond the blackbody limit. The near-field electromagnetic heat exchange mediated by phonon-polariton is controlled by the metal-insulator transition of tungsten-doped vanadium dioxide. The functionalized heat flux is transferred over an area of 1.6 cm 2 across a 370 nm gap, which is maintained by the microfabricated spacers and applied pressure. The uniformity of the gap is validated by optical interferometry, and the measured heat transfer is well modeled as the sum of the radiative and the parasitic conductive components. The presented methodology to form a nanometric gap with functional heat flux paves the way to the smart thermal management in various scenes ranging from highly integrated systems to macroscopic apparatus.

  1. Impaired pulsation absorber mechanism in idiopathic normal pressure hydrocephalus: laboratory investigation.

    PubMed

    Park, Eun-Hyoung; Eide, Per Kristian; Zurakowski, David; Madsen, Joseph R

    2012-12-01

    The pathophysiology of normal pressure hydrocephalus (NPH), and the related problem of patient selection for treatment of this condition, have been of great interest since the description of this seemingly paradoxical condition nearly 50 years ago. Recently, Eide has reported that measurements of the amplitude of the intracranial pressure (ICP) can both positively and negatively predict response to CSF shunting. Specifically, the fraction of time spent in a "high amplitude" (> 4 mm Hg) state predicted response to shunting, which may represent a marker for hydrocephalic pathophysiology. Increased ICP amplitude might suggest decreased brain compliance, meaning a static measure of a pressure-volume ratio. Recent studies of canine data have shown that the brain compliance can be described as a frequency-dependent function. The normal canine brain seems to show enhanced ability to absorb the pulsations around the heart rate, quantified as a cardiac pulsation absorbance (CPA), with properties like a notch filter in engineering. This frequency dependence of the function is diminished with development of hydrocephalus in dogs. In this pilot study, the authors sought to determine whether frequency dependence could be observed in humans, and whether the frequency dependence would be any different in epochs with high ICP amplitude compared with epochs of low ICP amplitude. Systems analysis was applied to arterial blood pressure (ABP) and ICP waveforms recorded from 10 patients undergoing evaluations of idiopathic NPH to calculate a time-varying transfer function that reveals frequency dependence and CPA, the measure of frequency-dependent compliance previously used in animal experiments. The ICP amplitude was also calculated in the same samples, so that epochs with high (> 4 mm Hg) versus low (≤ 4 mm Hg) amplitude could be compared in CPA and transfer functions. Transfer function analysis for the more "normal" epochs with low amplitude exhibits a dip or notch in the physiological frequency range of the heart rate, confirming in humans the pulsation absorber phenomenon previously observed in canine studies. Under high amplitude, however, the dip in the transfer function is absent. An inverse relationship between CPA index and ICP amplitude is evident and statistically significant. Thus, elevated ICP amplitude indicates decreased performance of the human pulsation absorber. The results suggest that the human intracranial system shows frequency dependence as seen in animal experiments. There is an inverse relationship between CPA index and ICP amplitude, indicating that higher amplitudes may occur with a reduced performance of the pulsation absorber. Our findings show that frequency dependence can be observed in humans and imply that reduced frequency-dependent compliance may be responsible for elevated ICP amplitude observed in patients who respond to CSF shunting.

  2. Space shuttle pogo studies. [systems stability

    NASA Technical Reports Server (NTRS)

    Coppolino, R. N.; Lock, M. H.; Rubin, S.

    1977-01-01

    Topics covered include: (1) pogo suppression for main propulsion subsystem operation; (2) application of quarter-scale low pressure oxidizer turbopump transfer functions; (3) pogo stability during orbital maneuvering subsystem operation; and (4) errors in frequency response measurements.

  3. Effect of air confinement on thermal contact resistance in nanoscale heat transfer

    NASA Astrophysics Data System (ADS)

    Pratap, Dheeraj; Islam, Rakibul; Al-Alam, Patricia; Randrianalisoa, Jaona; Trannoy, Nathalie

    2018-03-01

    Here, we report a detailed analysis of thermal contact resistance (R c) of nano-size contact formed between a Wollaston wire thermal probe and the used samples (fused silica and titanium) as a function of air pressure (from 1 Pa to 105 Pa). Moreover, we suggest an analytical model using experimental data to extract R c. We found that for both samples, the thermal contact resistance decreases with increasing air pressure. We also showed that R c strongly depends on the thermal conductivity of materials keeping other parameters the same, such as roughness of the probe and samples, as well as the contact force. We provide a physical explanation of the R c trend with pressure and thermal conductivity of the materials: R c is ascribed to the heat transfer through solid-solid (probe-sample) contact and confined air at nanoscale cavities, due to the rough nature of the materials in contact. The contribution of confined air on heat transfer through the probe sample contact is significant at atmospheric pressure but decreases as the pressure decreases. In vacuum, only the solid-solid contact contributes to R c. In addition, theoretical calculations using the well-known acoustic and diffuse mismatch models showed a high thermal conductivity material that exhibits high heat transmission and consequently low R c, supporting our findings.

  4. Apparatus and method for transferring slurries

    DOEpatents

    Horton, J.R.

    1982-08-13

    Slurry is transferred to a high pressure region by pushing the slurry from the bottom of a transfer vessel with a pressurizing liquid admitted into the top of the vessel. While the pressurizing liquid is being introduced into the transfer vessel, pressurizing liquid which has mixed with slurry is drawn off from the transfer vessel at a point between its upper and lower ends.

  5. Apparatus and method for transferring slurries

    DOEpatents

    Horton, Joel R.

    1984-01-01

    Slurry is transferred to a high pressure region by pushing the slurry from the bottom of a transfer vessel with a pressurizing liquid admitted into the top of the vessel. While the pressurizing liquid is being introduced into the transfer vessel, pressurizing liquid which has mixed with slurry is drawn off from the transfer vessel at a point between its upper and lower ends.

  6. Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1992-01-01

    Heat transfer and pressure drop have been measured of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/sq cm. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.

  7. Regenerator filled with a matrix of polycrystalline iron whiskers

    NASA Astrophysics Data System (ADS)

    Eder, F. X.; Appel, H.

    1982-08-01

    In thermal regenerators, parameters were optimized: convection coefficient, surface of heat accumulating matrix, matrix density and heat capacity, and frequency of cycle inversions. The variation of heat capacity with working temperature was also computed. Polycrystalline iron whiskers prove a good compromise as matrix for heat regenerators at working temperatures ranging from 300 to 80 K. They were compared with wire mesh screens and microspheres of bronze and stainless steel. For theses structures and materials, thermal conductivity, pressure drop, heat transfer and yield were calculated and related to the experimental values. As transport heat gas, helium, argon, and dry nitrogen were applied at pressures up to 20 bar. Experimental and theoretical studies result in a set of formulas for calculating pressure drop, heat capacity, and heat transfer rate for a given thermal regenerator in function of mass flow. It is proved that a whisker matrix has an efficiency that depends strongly on gas pressure and composition. Iron whiskers make a good matrix with heat capacities of kW/cu cm per K, but their relative high pressure drop may, at low pressures, be a limitation. A regenerator expansion machine is described.

  8. Role of light and the circadian clock in the rhythmic oscillation of intraocular pressure: Studies in VPAC2 receptor and PACAP deficient mice.

    PubMed

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Jørgensen, Henrik Løvendahl

    2018-04-01

    The intraocular pressure of mice displays a daily rhythmicity being highest during the dark period. The present study was performed to elucidate the role of the circadian clock and light in the diurnal and the circadian variations in intraocular pressure in mice, by using animals with disrupted clock function (VPAC2 receptor knockout mice) or impaired light information to the clock (PACAP knockout mice). In wildtype mice, intraocular pressure measured under light/dark conditions showed a statistically significant 24 h sinusoidal rhythm with nadir during the light phase and peak during the dark phase. After transfer of the wildtype mice into constant darkness, the intraocular pressure increased, but the rhythmic changes in intraocular pressure continued with a pattern identical to that obtained during the light/dark cycle. The intraocular pressure in VPAC2 receptor deficient mice during light/dark conditions also showed a sinusoidal pattern with significant changes as a function of a 24 h cycle. However, transfer of the VPAC2 receptor knockout mice into constant darkness completely abolished the rhythmic changes in intraocular pressure. The intraocular pressure in PACAP deficient mice oscillated significantly during both 24 h light and darkness and during constant darkness. During LD conditions, the amplitude of PACAP deficient was significantly lower compared to wildtype mice, resulting in higher daytime and lower nighttime values. In conclusion, by studying the VPAC2 receptor knockout mouse which lacks circadian control and the PACAP knockout mouse which displays impaired light signaling, we provided evidence that the daily intraocular pressure rhythms are primarily generated by the circadian master clock and to a lesser extent by environmental light and darkness. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Tibiofemoral loss of contact area but no changes in peak pressures after meniscectomy in a Lapine in vivo quadriceps force transfer model.

    PubMed

    Leumann, Andre; Fortuna, Rafael; Leonard, Tim; Valderrabano, Victor; Herzog, Walter

    2015-01-01

    The menisci are thought to modulate load transfer and to absorb shocks in the knee joint. No study has experimentally measured the meniscal functions in the intact, in vivo joint loaded by physiologically relevant muscular contractions. Right knee joints of seven New Zealand white rabbits were loaded using isometric contractions of the quadriceps femoris muscles controlled by femoral nerve stimulation. Isometric knee extensor torques at the maximal and two submaximal force levels were performed at knee angles of 70°, 90°, 110°, and 130°. Patellofemoral and tibiofemoral contact areas and pressure distributions were measured using Fuji Presensor film inserted above and below the menisci and also with the menisci removed. Meniscectomy was associated with a decrease in tibiofemoral contact area ranging from 30 to 70% and a corresponding increase in average contact pressures. Contact areas measured below the menisci were consistently larger than those measured on top of the menisci. Contact areas in the patellofemoral joint (PFJ), and peak pressures in tibiofemoral and PFJs, were not affected by meniscectomy. Contact areas and peak pressures in all joints depended crucially on knee joint angle and quadriceps force: The more flexed the knee joint was, the larger were the contact areas and the higher were the peak pressures. In agreement with the literature, removal of the menisci was associated with significant decreases in tibiofemoral contact area and corresponding increases in average contact pressures, but surprisingly, peak pressures remained unaffected, indicating that the function of the menisci is to distribute loads across a greater contact area.

  10. Development of rotorcraft interior noise control concepts. Phase 2: Full scale testing, revision 1

    NASA Technical Reports Server (NTRS)

    Yoerkie, C. A.; Gintoli, P. J.; Moore, J. A.

    1986-01-01

    The phase 2 effort consisted of a series of ground and flight test measurements to obtain data for validation of the Statistical Energy Analysis (SEA) model. Included in the gound tests were various transfer function measurements between vibratory and acoustic subsystems, vibration and acoustic decay rate measurements, and coherent source measurements. The bulk of these, the vibration transfer functions, were used for SEA model validation, while the others provided information for characterization of damping and reverberation time of the subsystems. The flight test program included measurements of cabin and cockpit sound pressure level, frame and panel vibration level, and vibration levels at the main transmission attachment locations. Comparisons between measured and predicted subsystem excitation levels from both ground and flight testing were evaluated. The ground test data show good correlation with predictions of vibration levels throughout the cabin overhead for all excitations. The flight test results also indicate excellent correlation of inflight sound pressure measurements to sound pressure levels predicted by the SEA model, where the average aircraft speech interference level is predicted within 0.2 dB.

  11. Nano-inspired smart interfaces: fluidic interactivity and its impact on heat transfer

    PubMed Central

    Kim, Beom Seok; Lee, Byoung In; Lee, Namkyu; Choi, Geehong; Gemming, Thomas; Cho, Hyung Hee

    2017-01-01

    Interface-inspired convection is a key heat transfer scheme for hot spot cooling and thermal energy transfer. An unavoidable trade-off of the convective heat transfer is pressure loss caused by fluidic resistance on an interface. To overcome this limitation, we uncover that nano-inspired interfaces can trigger a peculiar fluidic interactivity, which can pursue all the two sides of the coin: heat transfer and fluidic friction. We demonstrate the validity of a quasi-fin effect of Si-based nanostructures based on conductive capability of heat dissipation valid under the interactivity with fluidic viscous sublayer. The exclusive fluid-interface friction is achieved when the height of the nanostructures is much less than the thickness of the viscous sublayers in the turbulent regime. The strategic nanostructures show an enhancement of heat transfer coefficients in the wall jet region by more than 21% without any significant macroscale pressure loss under single-phase impinging jet. Nanostructures guaranteeing fluid access via an equivalent vacancy larger than the diffusive path length of viscid flow lead to local heat transfer enhancement of more than 13% at a stagnation point. Functional nanostructures will give shape to possible breakthroughs in heat transfer and its optimization can be pursued for engineered systems. PMID:28345613

  12. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, P.; Gregoire, S.; Lochegnies, D.

    2007-05-17

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication...). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutivemore » contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.« less

  13. Loss or Inhibition of uPA or MMP-9 Attenuates LV Remodeling and Dysfunction after Acute Pressure Overload in Mice

    PubMed Central

    Heymans, Stephane; Lupu, Florea; Terclavers, Sven; Vanwetswinkel, Bjorn; Herbert, Jean-Marc; Baker, Andrew; Collen, Desire; Carmeliet, Peter; Moons, Lieve

    2005-01-01

    Left ventricular (LV) hypertrophy is a natural response of the heart to increased pressure loading, but accompanying fibrosis and dilatation may result in irreversible life-threatening heart failure. Matrix metalloproteinases (MMPs) have been invoked in various cardiac diseases, however, direct genetic evidence for a role of the plasminogen activator (PA) and MMP systems in pressure overload-induced LV hypertrophy and in heart failure is lacking. Therefore, the consequences of transverse aortic banding (TAB) were analyzed in mice lacking tissue-type PA (t-PA−/−), urokinase-type PA (u-PA−/−), or gelatinase-B (MMP-9−/−), and in wild-type (WT) mice after adenoviral gene transfer of the PA-inhibitor PAI-1 or the MMP-inhibitor TIMP-1. TAB elevated LV pressure comparably in all genotypes. In WT and t-PA−/− mice, cardiomyocyte hypertrophy was associated with myocardial fibrosis, LV dilatation and dysfunction, and pump failure after 7 weeks. In contrast, in u-PA−/− mice or in WT mice after PAI-1- and TIMP-1-gene transfer, cardiomyocyte hypertrophy was moderate and only minimally associated with cardiac fibrosis and LV dilatation, resulting in better preservation of pump function. Deficiency of MMP-9 had an intermediate effect. These findings suggest that the use of u-PA- or MMP-inhibitors might preserve cardiac pump function in LV pressure overloading. PMID:15631996

  14. Parallel pathways and free-energy landscapes for enzymatic hydride transfer probed by hydrostatic pressure.

    PubMed

    Pudney, Christopher R; McGrory, Tom; Lafite, Pierre; Pang, Jiayun; Hay, Sam; Leys, David; Sutcliffe, Michael J; Scrutton, Nigel S

    2009-05-25

    Mutation of an active-site residue in morphinone reductase leads to a conformationally rich landscape that enhances the rate of hydride transfer from NADH to FMN at standard pressure (1 bar). Increasing the pressure causes interconversion between different conformational substates in the mutant enzyme. While high pressure reduces the donor-acceptor distance in the wild-type enzyme, increased conformational freedom "dampens" its effect in the mutant.We show that hydride transfer from NADH to FMN catalysed by the N189A mutant of morphinone reductase occurs along parallel "chemical" pathways in a conformationally rich free-energy landscape. We have developed experimental kinetic and spectroscopic tools by using hydrostatic pressure to explore this free-energy landscape. The crystal structure of the N189A mutant enzyme in complex with the unreactive coenzyme analogue NADH(4) indicates that the nicotinamide moiety of the analogue is conformationally less restrained than the corresponding structure of the wild-type NADH(4) complex. This increased degree of conformational freedom in the N189A enzyme gives rise to the concept of multiple reactive configurations (MRCs), and we show that the relative population of these states across the free-energy landscape can be perturbed experimentally as a function of pressure. Specifically, the amplitudes of individual kinetic phases that were observed in stopped-flow studies of the hydride transfer reaction are sensitive to pressure; this indicates that pressure drives an altered distribution across the energy landscape. We show by absorbance spectroscopy that the loss of charge-transfer character of the enzyme-coenzyme complex is attributed to the altered population of MRCs on the landscape. The existence of a conformationally rich landscape in the N189A mutant is supported by molecular dynamics simulations at low and high pressure. The work provides firm experimental and computational support for the existence of parallel pathways arising from multiple conformational states of the enzyme-coenzyme complex. Hydrostatic pressure is a powerful and general probe of multidimensional energy landscapes that can be used to analyse experimentally parallel pathways for enzyme-catalysed reactions. We suggest that this is especially the case following directed mutation of a protein, which can lead to increased population of reactant states that are essentially inaccessible in the free-energy landscape of wild-type enzyme.

  15. Experimental determination of the particle motions associated with the low order acoustic modes in enclosures

    NASA Technical Reports Server (NTRS)

    Byrne, K. P.; Marshall, S. E.

    1983-01-01

    A procedure for experimentally determining, in terms of the particle motions, the shapes of the low order acoustic modes in enclosures is described. The procedure is based on finding differentiable functions which approximate the shape functions of the low order acoustic modes when these modes are defined in terms of the acoustic pressure. The differentiable approximating functions are formed from polynomials which are fitted by a least squares procedure to experimentally determined values which define the shapes of the low order acoustic modes in terms of the acoustic pressure. These experimentally determined values are found by a conventional technique in which the transfer functions, which relate the acoustic pressures at an array of points in the enclosure to the volume velocity of a fixed point source, are measured. The gradient of the function which approximates the shape of a particular mode in terms of the acoustic pressure is evaluated to give the mode shape in terms of the particle motion. The procedure was tested by using it to experimentally determine the shapes of the low order acoustic modes in a small rectangular enclosure.

  16. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wu, S. P.

    2017-04-01

    Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.

  17. Dynamics of cavitating cascades. [transfer functions

    NASA Technical Reports Server (NTRS)

    Brennen, C. E.; Acosta, A. J.

    1980-01-01

    The unsteady dynamics of cavitating cascades and inducer pumps were studied with a view to understanding (and possibly predicting) the dynamic characteristics of these devices. The chronology of the research is summarized as well as the final conculsions for each task. The construction of a dynamic pump test facility and its use in making experimental measurements of the transfer function is described as well as tests conducted using a scale model of the low pressure liquid oxygen turbopump inducer in the shuttle main engine. Auto-oscillation and unsteady inlet flow characteristics are discussed in addition to blade cavity influence and bubbly cavitation.

  18. Calibration of a universal indicated turbulence system

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1977-01-01

    Theoretical and experimental work on a Universal Indicated Turbulence Meter is described. A mathematical transfer function from turbulence input to output indication was developed. A random ergodic process and a Gaussian turbulence distribution were assumed. A calibration technique based on this transfer function was developed. The computer contains a variable gain amplifier to make the system output independent of average velocity. The range over which this independence holds was determined. An optimum dynamic response was obtained for the tubulation between the system pitot tube and pressure transducer by making dynamic response measurements for orifices of various lengths and diameters at the source end.

  19. Gene transfer of extracellular superoxide dismutase reduces arterial pressure in spontaneously hypertensive rats: role of heparin-binding domain.

    PubMed

    Chu, Yi; Iida, Shinichiro; Lund, Donald D; Weiss, Robert M; DiBona, Gerald F; Watanabe, Yoshimasa; Faraci, Frank M; Heistad, Donald D

    2003-03-07

    Oxidative stress may contribute to hypertension. The goals of this study were to determine whether extracellular superoxide dismutase (ECSOD) reduces arterial pressure in spontaneously hypertensive rats (SHR) and whether its heparin-binding domain (HBD), which is responsible for cellular binding, is necessary for the function of ECSOD. Three days after intravenous injection of an adenoviral vector expressing human ECSOD (AdECSOD), mean arterial pressure (MAP) decreased from 165+/-4 mm Hg (mean+/-SE, n=7) to 124+/-3 mm Hg (n=7) in adult anesthetized SHR (P<0.01) but was not altered in normotensive Wistar-Kyoto rats. Cardiac output was not changed in SHR 3 days after AdECSOD. Gene transfer of ECSOD with deletion of the HBD (AdECSODDeltaHBD) had no effect on SHR MAP, even though plasma SOD activity was greater after AdECSODDeltaHBD than after AdECSOD. Immunohistochemistry revealed intense staining for ECSOD in blood vessels and kidneys after AdECSOD but not after AdECSODDeltaHBD. Impaired relaxation of the carotid artery to acetylcholine in SHR was significantly improved after AdECSOD. Cumulative sodium balance in SHR was reduced by AdECSOD compared with AdECSODDeltaHBD. Gene transfer of ECSOD also reduced MAP in conscious SHR, although the effect was not as profound as in anesthetized SHR. In summary, gene transfer of ECSOD, with a strict requirement for its HBD, reduces systemic vascular resistance and arterial pressure in a genetic model of hypertension. This reduction in arterial pressure may be mediated by vasomotor and/or renal mechanisms.

  20. Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla.

    PubMed

    Ravicz, Michael E; Rosowski, John J

    2013-10-01

    The transfer function H(V) between stapes velocity V(S) and sound pressure near the tympanic membrane P(TM) is a descriptor of sound transmission through the middle ear (ME). The ME power transmission efficiency (MEE), the ratio of sound power entering the cochlea to power entering the middle ear, was computed from H(V) measured in seven chinchilla ears and previously reported measurements of ME input admittance Y(TM) and ME pressure gain G(MEP) [Ravicz and Rosowski, J. Acoust. Soc. Am. 132, 2437-2454 (2012); J. Acoust. Soc. Am. 133, 2208-2223 (2013)] in the same ears. The ME was open, and a pressure sensor was inserted into the cochlear vestibule for most measurements. The cochlear input admittance Y(C) computed from H(V) and G(MEP) is controlled by a combination of mass and resistance and is consistent with a minimum-phase system up to 27 kHz. The real part Re{Y(C)}, which relates cochlear sound power to inner-ear sound pressure, decreased gradually with frequency up to 25 kHz and more rapidly above that. MEE was about 0.5 between 0.1 and 8 kHz, higher than previous estimates in this species, and decreased sharply at higher frequencies.

  1. Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla

    PubMed Central

    Ravicz, Michael E.; Rosowski, John J.

    2013-01-01

    The transfer function HV between stapes velocity VS and sound pressure near the tympanic membrane PTM is a descriptor of sound transmission through the middle ear (ME). The ME power transmission efficiency (MEE), the ratio of sound power entering the cochlea to power entering the middle ear, was computed from HV measured in seven chinchilla ears and previously reported measurements of ME input admittance YTM and ME pressure gain GMEP [Ravicz and Rosowski, J. Acoust. Soc. Am. 132, 2437–2454 (2012); J. Acoust. Soc. Am. 133, 2208–2223 (2013)] in the same ears. The ME was open, and a pressure sensor was inserted into the cochlear vestibule for most measurements. The cochlear input admittance YC computed from HV and GMEP is controlled by a combination of mass and resistance and is consistent with a minimum-phase system up to 27 kHz. The real part Re{YC}, which relates cochlear sound power to inner-ear sound pressure, decreased gradually with frequency up to 25 kHz and more rapidly above that. MEE was about 0.5 between 0.1 and 8 kHz, higher than previous estimates in this species, and decreased sharply at higher frequencies. PMID:24116422

  2. An artificial arm/hand system with a haptic sensory function using electric stimulation of peripheral sensory nerve fibers.

    PubMed

    Mabuchi, Kunihiko

    2013-01-01

    We are currently developing an artificial arm/hand system which is capable of sensing stimuli and then transferring these stimuli to users as somatic sensations. Presently, we are evoking the virtual somatic sensations by electrically stimulating a sensory nerve fiber which innervates a single mechanoreceptor unit at the target area; this is done using a tungsten microelectrode that was percutaneously inserted into the use's peripheral nerve (a microstimulation method). The artificial arm/hand system is composed of a robot hand equipped with a pressure sensor system on its fingers. The sensor system detects mechanical stimuli, which are transferred to the user by means of the microstimulation method so that the user experiences the stimuli as the corresponding somatic sensations. In trials, the system worked satisfactorily and there was a good correlation between the pressure applied to the pressure sensors on the robot fingers and the subjective intensities of the evoked pressure sensations.

  3. Numerical investigation of saturated upward flow boiling of water in a vertical tube using VOF model: effect of different boundary conditions

    NASA Astrophysics Data System (ADS)

    Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.

    2018-01-01

    In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.

  4. Numerical investigation of saturated upward flow boiling of water in a vertical tube using VOF model: effect of different boundary conditions

    NASA Astrophysics Data System (ADS)

    Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.

    2018-07-01

    In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.

  5. Thin metal thermistors for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, N. E.; Williamson, D. M.; Picard, A.; Cunningham, L. K.; Jardine, A. P.

    2015-06-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in poly(methyl methacrylate) (PMMA). However, their results disagree strongly above 2 GPa shock pressure. The present authors previously presented an improved fabrication technique, to examine this outstanding issue. This technique made use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. By fabricating a thin metal thermistor gauge and measuring its change in resistance during a shock experiment of known pressure, its temperature can be recovered. Heat transfer into the gauge depends strongly on the gauge dimensions and the thermal conductivity of the shocked PMMA. Here we present several improvements to the technique. By varying the gauge thickness over the range 100 nm to 10 μ m we assess the heat transfer into the gauge.

  6. A simplified scheme for computing radiation transfer in the troposphere

    NASA Technical Reports Server (NTRS)

    Katayama, A.

    1973-01-01

    A scheme is presented, for the heating of clear and cloudy air by solar and infrared radiation transfer, designed for use in tropospheric general circulation models with coarse vertical resolution. A bulk transmission function is defined for the infrared transfer. The interpolation factors, required for computing the bulk transmission function, are parameterized as functions of such physical parameters as the thickness of the layer, the pressure, and the mixing ratio at a reference level. The computation procedure for solar radiation is significantly simplified by the introduction of two basic concepts. The first is that the solar radiation spectrum can be divided into a scattered part, for which Rayleigh scattering is significant but absorption by water vapor is negligible, and an absorbed part for which absorption by water vapor is significant but Rayleigh scattering is negligible. The second concept is that of an equivalent cloud water vapor amount which absorbs the same amount of radiation as the cloud.

  7. Analysis of Heat Transfer and Pressure Drop for a Gas Flowing Through a set of Multiple Parallel Flat Plates at High Temperatures

    NASA Technical Reports Server (NTRS)

    Einstein, Thomas H.

    1961-01-01

    Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.

  8. Heat transfer and flow friction correlations for perforated plate matrix heat exchangers

    NASA Astrophysics Data System (ADS)

    Ratna Raju, L.; Kumar, S. Sunil; Chowdhury, K.; Nandi, T. K.

    2017-02-01

    Perforated plate matrix heat exchangers (MHE) are constructed of high conductivity perforated plates stacked alternately with low conductivity spacers. They are being increasingly used in many cryogenic applications including Claude cycle or Reversed Brayton cycle cryo-refrigerators and liquefiers. Design of high NTU (number of (heat) transfer unit) cryogenic MHEs requires accurate heat transfer coefficient and flow friction factor. Thermo-hydraulic behaviour of perforated plates strongly depends on the geometrical parameters. Existing correlations, however, are mostly expressed as functions of Reynolds number only. This causes, for a given configuration, significant variations in coefficients from one correlation to the other. In this paper we present heat transfer and flow friction correlations as functions of all geometrical and other controlling variables. A FluentTM based numerical model has been developed for heat transfer and pressure drop studies over a stack of alternately arranged perforated plates and spacers. The model is validated with the data from literature. Generalized correlations are obtained through regression analysis over a large number of computed data.

  9. A novel APPI-MS setup for in situ degradation product studies of atmospherically relevant compounds: capillary atmospheric pressure photo ionization (cAPPI).

    PubMed

    Kersten, Hendrik; Derpmann, Valerie; Barnes, Ian; Brockmann, Klaus J; O'Brien, Rob; Benter, Thorsten

    2011-11-01

    We report on the development of a novel atmospheric pressure photoionization setup and its applicability for in situ degradation product studies of atmospherically relevant compounds. A custom miniature spark discharge lamp was embedded into an ion transfer capillary, which separates the atmospheric pressure from the low pressure region in the first differential pumping stage of a conventional atmospheric pressure ionization mass spectrometer. The lamp operates with a continuous argon flow and produces intense light emissions in the VUV. The custom lamp is operated windowless and efficiently illuminates the sample flow through the transfer capillary on an area smaller than 1 mm(2). Limits of detection in the lower ppbV range, a temporal resolution of milliseconds in the positive as well as the quasi simultaneously operating negative ion mode, and a significant reduction of ion transformation processes render this system applicable to real time studies of rapidly changing chemical systems. The method termed capillary atmospheric pressure photo ionization (cAPPI) is characterized with respect to the lamp emission properties as a function of the operating conditions, temporal response, and its applicability for in situ degradation product studies of atmospherically relevant compounds, respectively.

  10. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Chandan; Sircar, Arpan; Ferreyro-Fernandez, Sebastian

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for amore » full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.« less

  11. [Analysis of horizontal transfer gene of Bombyx mori NPV].

    PubMed

    Duan, Hai-Rong; Qiu, De-Bin; Gong, Cheng-Liang; Huang, Mo-Li

    2011-06-01

    For research on genetic characters and evolutionary origin of the genome of baculoviruses, a comprehensive homology search and phylogenetic analysis of the complete genomes of Bombyx mori NPV and Bombyx mori were used. Three horizontally transferred genes (inhibitor of apoptosis, chitinase, and UDP-glucosyltransferase) were identified, and there was evidence that all of these genes were derived from the insect host. The results of analysis showed lots of differences between the features of horizontal transferred genes and the ones of whole genomic genes, such as nucleotide composition, codon usagebias and selection pressure. These results reconfirmed that the horizontally transferred genes are exogenous. The analysis of gene function suggested that horizontally transferred genes acquired from an ancestral host insect can increase the efficiency of baculoviruses transmission.

  12. Bands dispersion and charge transfer in β-BeH2

    NASA Astrophysics Data System (ADS)

    Trivedi, D. K.; Galav, K. L.; Joshi, K. B.

    2018-04-01

    Predictive capabilities of ab-initio method are utilised to explore bands dispersion and charge transfer in β-BeH2. Investigations are carried out using the linear combination of atomic orbitals method at the level of density functional theory. The crystal structure and related parameters are settled by coupling total energy calculations with the Murnaghan equation of state. Electronic bands dispersion from PBE-GGA is reported. The PBE-GGA, and PBE0 hybrid functional, show that β-BeH2 is a direct gap semiconductor with 1.18 and 2.40 eV band gap. The band gap slowly decreases with pressure and beyond l00 GPa overlap of conduction and valence bands at the r point is observed. Charge transfer is studied by means of Mullikan population analysis.

  13. Simultaneous monitoring of static and dynamic intracranial pressure parameters from two separate sensors in patients with cerebral bleeds: comparison of findings.

    PubMed

    Eide, Per Kristian; Holm, Sverre; Sorteberg, Wilhelm

    2012-09-07

    We recently reported that in an experimental setting the zero pressure level of solid intracranial pressure (ICP) sensors can be altered by electrostatics discharges. Changes in the zero pressure level would alter the ICP level (mean ICP); whether spontaneous changes in mean ICP happen in clinical settings is not known. This can be addressed by comparing the ICP parameters level and waveform of simultaneous ICP signals. To this end, we retrieved our recordings in patients with cerebral bleeds wherein the ICP had been recorded simultaneously from two different sensors. During a time period of 10 years, 17 patients with cerebral bleeds were monitored with two ICP sensors simultaneously; sensor 1 was always a solid sensor while Sensor 2 was a solid -, a fluid - or an air-pouch sensor. The simultaneous signals were analyzed with automatic identification of the cardiac induced ICP waves. The output was determined in consecutive 6-s time windows, both with regard to the static parameter mean ICP and the dynamic parameters (mean wave amplitude, MWA, and mean wave rise time, MWRT). Differences in mean ICP, MWA and MWRT between the two sensors were determined. Transfer functions between the sensors were determined to evaluate how sensors reproduce the ICP waveform. Comparing findings in two solid sensors disclosed major differences in mean ICP in 2 of 5 patients (40%), despite marginal differences in MWA, MWRT, and linear phase magnitude and phase. Qualitative assessment of trend plots of mean ICP and MWA revealed shifts and drifts of mean ICP in the clinical setting. The transfer function analysis comparing the solid sensor with either the fluid or air-pouch sensors revealed more variable transfer function magnitude and greater differences in the ICP waveform derived indices. Simultaneous monitoring of ICP using two solid sensors may show marked differences in static ICP but close to identity in dynamic ICP waveforms. This indicates that shifts in ICP baseline pressure (sensor zero level) occur clinically; trend plots of the ICP parameters also confirm this. Solid sensors are superior to fluid - and air pouch sensors when evaluating the dynamic ICP parameters.

  14. Upward and downward heat and mass transfer with miniature periodically operating loop thermosyphons

    NASA Astrophysics Data System (ADS)

    Fantozzi, Fabio; Filippeschi, Sauro; Latrofa, Enrico Maria

    2004-03-01

    Upward and downward two-phase heat and mass transfer has been considered in the present paper. The heat and mass transfer with the condenser located below the evaporator has been obtained by inserting an accumulator tank in the liquid line of a loop thermosyphon and enforcing a pressure pulsation. In previous papers these heat transfer devices have been called pulsated two phase thermosyphons (PTPT). A mini PTPT has been experimentally investigated. It has shown a stable periodic heat transfer regime weakly influenced by the position of the condenser with respect to the evaporator. In contrast a classical loop mini thermosyphon (diameter of connecting pipes 4 mm) did not achieve a stable functioning for the investigated level differences between evaporator and condenser lower than 0.37 m. The present study shows that the functioning of a PTPT device does not directly depend on the level difference or the presence of noncondensable gas. In order to obtain a natural circulation in mini or micro loops, a periodically operating heat transfer regime should therefore be considered.

  15. Effect of renal denervation on dynamic autoregulation of renal blood flow.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2004-06-01

    Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic nerve activity (congestive heart failure and spontaneously hypertensive rats). Steady-state values of arterial pressure and renal blood flow before and after acute renal denervation were subjected to transfer function analysis. Renal denervation increased basal renal blood flow in congestive heart failure (+35 +/- 3%) and spontaneously hypertensive rats (+21 +/- 3%) but not in Sprague-Dawley and Wistar-Kyoto rats. Renal denervation significantly decreased transfer function gain (i.e., improved autoregulation of renal blood flow) and increased coherence only in spontaneously hypertensive rats. Thus vasoconstrictor intensities of renal sympathetic nerve activity impaired the dynamic autoregulatory adjustments of the renal vasculature to oscillations in arterial pressure. Renal denervation increased renal blood flow variability in spontaneously hypertensive rats and congestive heart failure rats. The contribution of vasoconstrictor intensities of basal renal sympathetic nerve activity to limiting renal blood flow variability may be important in the stabilization of glomerular filtration rate.

  16. Initial condition effect on pressure waves in an axisymmetric jet

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H.; Raman, Ganesh

    1988-01-01

    A pair of microphones (separated axially by 5.08 cm and laterally by 1.3 cm) are placed on either side of the jet centerline to investigate coherent pressure fluctuations in an axisymmetric jet at Strouhal numbers less than unity. Auto-spectra, transfer-function, and coherence measurements are made for a tripped and untripped boundary layer initial condition. It was found that coherent acoustic pressure waves originating in the upstream plenum chamber propagate a greater distance downstream for the tripped initial condition than for the untripped initial condition. In addition, for the untripped initial condition the development of the coherent hydrodynamic pressure waves shifts downstream.

  17. Description of the docking module ECS for the Apollo-Soyuz Test Project.

    NASA Technical Reports Server (NTRS)

    Guy, W. W.; Jaax, J. R.

    1973-01-01

    The role of the Docking Module ECS (Environmental Control System) to be used on the Apollo-Soyuz Test mission is to provide a means for crewmen to transfer safely between the Apollo and Soyuz vehicles in a shirtsleeve environment. This paper describes the Docking Module ECS and includes the philosophy and rationale used in evaluating and selecting the capabilities that are required to satisfy the Docking Module's airlock function: (1) adjusting the pressure and composition of the atmosphere to effect crew transfer and (2) providing a shirtsleeve environment during transfer operations. An analytical evaluation is given of the environmental parameters (including CO2 level, humidity, and temperature) during a normal transfer timeline.

  18. Calculation of the rate constant for state-selected recombination of H+O2(v) as a function of temperature and pressure

    NASA Astrophysics Data System (ADS)

    Teitelbaum, Heshel; Caridade, Pedro J. S. B.; Varandas, António J. C.

    2004-06-01

    Classical trajectory calculations using the MERCURY/VENUS code have been carried out on the H+O2 reactive system using the DMBE-IV potential energy surface. The vibrational quantum number and the temperature were selected over the ranges v=0 to 15, and T=300 to 10 000 K, respectively. All other variables were averaged. Rate constants were determined for the energy transfer process, H+O2(v)-->H+O2(v''), for the bimolecular exchange process, H+O2(v)-->OH(v')+O, and for the dissociative process, H+O2(v)-->H+O+O. The dissociative process appears to be a mere extension of the process of transferring large amounts of energy. State-to-state rate constants are given for the exchange reaction, and they are in reasonable agreement with previous results, while the energy transfer and dissociative rate constants have never been reported previously. The lifetime distributions of the HO2 complex, calculated as a function of v and temperature, were used as a basis for determining the relative contributions of various vibrational states of O2 to the thermal rate coefficients for recombination at various pressures. This novel approach, based on the complex's ability to survive until it collides in a secondary process with an inert gas, is used here for the first time. Complete falloff curves for the recombination of H+O2 are also calculated over a wide range of temperatures and pressures. The combination of the two separate studies results in pressure- and temperature-dependent rate constants for H+O2(v)(+Ar)⇄HO2(+Ar). It is found that, unlike the exchange reaction, vibrational and rotational-translational energy are liabilities in promoting recombination.

  19. Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Hewitson, B. C.

    1991-01-01

    A new diagnostic tool is developed for examining relationships between the synoptic scale circulation and regional temperature distributions in GCMs. The 4 x 5 deg GISS GCM is shown to produce accurate simulations of the variance in the synoptic scale sea level pressure distribution over the U.S. An analysis of the observational data set from the National Meteorological Center (NMC) also shows a strong relationship between the synoptic circulation and grid point temperatures. This relationship is demonstrated by deriving transfer functions between a time-series of circulation parameters and temperatures at individual grid points. The circulation parameters are derived using rotated principal components analysis, and the temperature transfer functions are based on multivariate polynomial regression models. The application of these transfer functions to the GCM circulation indicates that there is considerable spatial bias present in the GCM temperature distributions. The transfer functions are also used to indicate the possible changes in U.S. regional temperatures that could result from differences in synoptic scale circulation between a 1XCO2 and a 2xCO2 climate, using a doubled CO2 version of the same GISS GCM.

  20. Effects of cooling system parameters on heat transfer in PAFC stack. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali A.

    1985-01-01

    Analytical and experimental study for the effects of cooling system parameters on the heat transfer and temperature distribution in the electrode plates of a phosphoric acid fuel-cell has been conducted. An experimental set-up that simulates the operating conditions prevailing in a phosphoric-acid fuel-cell stack was designed and constructed. The set-up was then used to measure the overall heat transfer coefficient, the thermal contact resistance, and the electrode temperature distribution for two different cooling plate configurations. Two types of cooling plate configurations, serpentine and straight, were tested. Air, water, and oil were used as coolants. Measurements for the heat transfer coefficient and the thermal contact resistance were made for various flow rates ranging from 16 to 88 Kg/hr, and stack clamping pressure ranging from O to 3448 Kpa. The experimental results for the overall heat transfer coefficient were utilized to derive mathematical relations for the overall heat transfer coefficient as a function of stack clamping pressure and Reynolds number for the three coolants. The empirically derived formulas were incorporated in a previously developed computer program to predict electrodes temperature distribution and the performance of the stack cooling system. The results obtained were then compared with those available in the literature. The comparison showed maximum deviation of +/- 11%.

  1. Periodic Heat Transfer at Small Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Pfriem, H.

    1943-01-01

    The effect of cyclic gas pressure variations on the periodic heat transfer at a flat wall is theoretically analyzed and the differential equation describing the process and its solution for relatively. Small pressure fluctuations developed, thus explaining the periodic heat cycle between gas and wall surface. The processes for pure harmonic pressure and temperature oscillations, respectively, in the gas space are described by means of a constant heat transfer coefficient and the equally constant phase angle between the appearance of the maximum values of the pressure and heat flow most conveniently expressed mathematically in the form of a complex heat transfer coefficient. Any cyclic pressure oscillations, can be reduced by Fourier analysis to harmonic oscillations, which result in specific, mutual relationships of heat-transfer coefficients and phase angles for the different harmonics.

  2. Transcranial Doppler monitoring in Parkinson's disease: cerebrovascular compensation of orthostatic hypotension.

    PubMed

    Haubrich, Christina; Pies, Katrin; Dafotakis, Manuel; Block, Frank; Kloetzsch, Christof; Diehl, Rolf R

    2010-10-01

    Despite of precipitous blood pressure falls in Parkinson's Disease (PD) patients, they may not experience syncope or postural complaints. Can cerebral blood flow regulation explain why orthostatic hypotension (OH) has often no accompanying symptoms? In patients with PD and OH (18 asymptomatic; 8 symptomatic), arterial blood pressure (ABP) as well as Doppler-detected cerebral blood flow velocity (CBFV) in middle and posterior cerebral arteries (MCA and PCA) were monitored during head-up tilt and compared with 25 controls and eight non-PD-OH patients. Analysis included the transfer function between slow spontaneous pressure and flow-oscillations. ABP and CBFV were maintained at significantly higher levels in asymptomatic than symptomatic PD-OH (ABP: 85.7 ± 10.5 vs. 66.9 ± 12.5%; MCA-FV: 83.3 ± 9.3 vs. 66.1 ± 6.8%; PCA-FV: 84.4 ± 12.2 vs. 65.9 ± 9.3% of supine). When orthostatic complaints occurred, CBFV depended directly on ABP changes (MCA r(2) = 0.64; PCA r(2) = 0.62; both p < 0.05). Despite of a tilt-induced blood pressure instability in PD-OH, the transfer function parameters did not differ from normal [phase: MCA: 46.6 ± 20.5°; PCA 39.2 ± 28.8°, gain: MCA 2.0 ± 0.7; PCA 2.9 ± 1.6)]. Results showed a normal autoregulatory response to downward blood pressure shifts in PD. Moreover, orthostatic blood pressure instability is compensated equally sufficient in anterior and posterior parts of cerebral circulation. Whether in PD patients, OH becomes symptomatic rather seems to depend on blood pressure falling below the autoregulated range. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Mechanistic information from the first volume profile analysis for a reversible intermolecular electron-transfer reaction involving pentaammine(isonicotinamide)ruthenium and cytochrome c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baensch, B.; Meier, M.; Martinez, P.

    1994-10-12

    The reversible intermolecular electron-transfer reaction between pentaammine(isonicotinamide)ruthenium(II/III) and horse-heart cytochrome c iron(III/II) was subjected to a detailed kinetic and thermodynamic study as a function of temperature and pressure. Theoretical calculations based on the Marcus-Hush theory were employed to predict all rate and equilibrium constants as well as activation parameters. There is an excellent agreement between the kinetically and thermodynamically determined equilibrium constants and associated pressure parameters. These data are used to construct a volume profile for the overall process, from which it follows that the transition state lies halfway between the reactant and product states on a volume basis. Themore » reorganization in the transition state has reached a similar degree in both directions of the electron-transfer process and corresponds to a {lambda}{sup {double_dagger}} value of 0.44 for this reversible reaction. This is the first complete volume profile analysis for a reversible intermolecular electron-transfer reaction.« less

  4. Exo-Transmit: Radiative transfer code for calculating exoplanet transmission spectra

    NASA Astrophysics Data System (ADS)

    Kempton, Eliza M.-R.; Lupu, Roxana E.; Owusu-Asare, Albert; Slough, Patrick; Cale, Bryson

    2016-11-01

    Exo-Transmit calculates the transmission spectrum of an exoplanet atmosphere given specified input information about the planetary and stellar radii, the planet's surface gravity, the atmospheric temperature-pressure (T-P) profile, the location (in terms of pressure) of any cloud layers, the composition of the atmosphere, and opacity data for the atoms and molecules that make up the atmosphere. The code solves the equation of radiative transfer for absorption of starlight passing through the planet's atmosphere as it transits, accounting for the oblique path of light through the planetary atmosphere along an Earth-bound observer's line of sight. The fraction of light absorbed (or blocked) by the planet plus its atmosphere is calculated as a function of wavelength to produce the wavelength-dependent transmission spectrum. Functionality is provided to simulate the presence of atmospheric aerosols in two ways: an optically thick (gray) cloud deck can be generated at a user-specified height in the atmosphere, and the nominal Rayleigh scattering can be increased by a specified factor.

  5. A kinetic theory treatment of heat transfer in plane Poiseuille flow with uniform pressure

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    1992-01-01

    Plane compressible Poiseuille flow with uniform pressure (Couette flow with stationary boundaries) is revisited where the Lees two-steam method with the Enskog equation of change is applied. Single particle velocity distribution functions are chosen, which preserve the essential physical features of this flow with arbitrary but uniform plate temperatures and gas pressure. Lower moments are shown to lead to expressions for the parameter functions, molecular number densities, and temperatures which are entirely in agreement with those obtained in the analysis of Lees for compressible plane Couette flow in the limit of low Mach number and vanishing mean gas velocity. Important simplifications result, which are helpful in gaining insight into the power of kinetic theory in fluid mechanics. The temperature distribution, heat flux, as well as density, are completely determined for the whole range of Knudson numbers from free molecular flow to the continuum regime, when the pressure level is specified.

  6. Heat transfer and pressure measurements for the SSME fuel turbine

    NASA Technical Reports Server (NTRS)

    Dunn, Michael G.; Kim, Jungho

    1991-01-01

    A measurement program is underway using the Rocketdyne two-stage Space Shuttle Main Engine (SSME) fuel turbine. The measurements use a very large shock tunnel to produce a short-duration source of heated and pressurized gas which is subsequently passed through the turbine. Within this environment, the turbine is operated at the design values of flow function, stage pressure ratio, stage temperature ratio, and corrected speed. The first stage vane row and the first stage blade row are instrumented in both the spanwise and chordwise directions with pressure transducers and heat flux gages. The specific measurements to be taken include time averaged surface pressure and heat flux distributions on the vane and blade, flow passage static pressure, flow passage total pressure and total temperature distributions, and phase resolved surface pressure and heat flux on the blade.

  7. Pressure gradient effects on heat transfer to reusable surface insulation tile-array gaps

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.

    1975-01-01

    An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer within space shuttle reusable surface insulation (RSI) tile-array gaps under thick, turbulent boundary-layer conditions. Heat-transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel-wall boundary layer at a nominal free-stream Mach number and free-stream Reynolds numbers. Transverse pressure gradients of varying degree were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel-wall boundary-layer flow was obtained by measurement of boundary-layer pitot pressure profiles, wall pressure, and heat transfer. Flat-plate heat-transfer data were correlated and a method was derived for prediction of heat transfer to a smooth curved surface in the highly three-dimensional tunnel-wall boundary-layer flow. Pressure on the floor of the RSI tile-array gap followed the trends of the external surface pressure. Heat transfer to the surface immediately downstream of a transverse gap is higher than that for a smooth surface at the same location. Heating to the wall of a transverse gap, and immediately downstream of it, at its intersection with a longitudinal gap is significantly greater than that for the simple transverse gap.

  8. Development of model for studies on momentum transfer in electrochemical cells with entry region coil as turbulence promoter

    NASA Astrophysics Data System (ADS)

    Penta Rao, Tamarba; Rajendra Prasad, P.

    2018-04-01

    Entry region swirl promoters gain importance in industry because of its effectiveness in augmentation of mass and heat transfer augmentation. Design of equipment needs momentum transfer data along with mass or heat transfer data. Hence an experimental investigation was carried out with coaxially placed entry region spiral coil as turbulence promoters on momentum transfer in forced convection flow of electrolyte in circular conduits. Aqueous solution of sodium hydroxide and 0.01 M equimolal Ferri-ferro cyanide system was chosen for the study. The study covered parameters like effect of pitch of the coil, effect of length of the coil, diameter of the coil, diameter of the coil wire, diameter of the annular rod. The promoter is measured by limiting current technique using diffusion controlled electrochemical reactions. The study comprises of evaluation of momentum transfer rates at the outer wall of the electrochemical cell. Pressure drop measurements were also made to obtain the energy consumption pattern. Within the range of variables covered. The results are correlated by the momentum transfer similarity function. Momentum transfer coefficients were evaluated from measured limiting currents. Effect of each parameter was studied in terms of friction factor. A model was developed for momentum transfer. The experimental data on momentum transfer was modeled in terms of momentum transfer function and Reynolds number, geometric parameters.

  9. Charge transfer in TATB and HMX under extreme conditions.

    PubMed

    Zhang, Chaoyang; Ma, Yu; Jiang, Daojian

    2012-11-01

    Charge transfer is usually accompanied by structural changes in materials under different conditions. However, the charge transfer in energetic materials that are subjected to extreme conditions has seldom been explored by researchers. In the work described here, the charge transfer in single molecules and unit cells of the explosives TATB and HMX under high temperatures and high pressures was investigated by performing static and dynamic calculations using three DFT methods, including the PWC functional of LDA, and the BLYP and PBE functionals of GGA. The results showed that negative charge is transferred from the nitro groups of molecular or crystalline TATB and HMX when they are heated. All DFT calculations for the compressed TATB unit cell indicate that, generally, negative charge transfer occurs to its nitro groups as the compression increases. PWC and PBE calculations for crystalline HMX show that negative charge is first transferred to the nitro groups but, as the compression increases, the negative charge is transferred from the nitro groups. However, the BLYP calculations indicated that there was gradual negative charge transfer to the nitro groups of HMX, similar to the case for TATB. The unrelaxed state of the uniformly compressed TATB causes negative charge to be transferred from its nitro groups, in contrast to what is seen in the relaxed state. Charge transfer in TATB is predicted to occur much more easily than in HMX.

  10. Membranes: A Variety of Energy Landscapes for Many Transfer Opportunities.

    PubMed

    Bacchin, Patrice

    2018-02-22

    A membrane can be represented by an energy landscape that solutes or colloids must cross. A model accounting for the momentum and the mass balances in the membrane energy landscape establishes a new way of writing for the Darcy law. The counter-pressure in the Darcy law is no longer written as the result of an osmotic pressure difference but rather as a function of colloid-membrane interactions. The ability of the model to describe the physics of the filtration is discussed in detail. This model is solved in a simplified energy landscape to derive analytical relationships that describe the selectivity and the counter-pressure from ab initio operating conditions. The model shows that the stiffness of the energy landscape has an impact on the process efficiency: a gradual increase in interactions (such as with hourglass pore shape) can reduce the separation energetic cost. It allows the introduction of a new paradigm to increase membrane efficiency: the accumulation that is inherent to the separation must be distributed across the membrane. Asymmetric interactions thus lead to direction-dependent transfer properties and the membrane exhibits diode behavior. These new transfer opportunities are discussed.

  11. Membranes: A Variety of Energy Landscapes for Many Transfer Opportunities

    PubMed Central

    2018-01-01

    A membrane can be represented by an energy landscape that solutes or colloids must cross. A model accounting for the momentum and the mass balances in the membrane energy landscape establishes a new way of writing for the Darcy law. The counter-pressure in the Darcy law is no longer written as the result of an osmotic pressure difference but rather as a function of colloid-membrane interactions. The ability of the model to describe the physics of the filtration is discussed in detail. This model is solved in a simplified energy landscape to derive analytical relationships that describe the selectivity and the counter-pressure from ab initio operating conditions. The model shows that the stiffness of the energy landscape has an impact on the process efficiency: a gradual increase in interactions (such as with hourglass pore shape) can reduce the separation energetic cost. It allows the introduction of a new paradigm to increase membrane efficiency: the accumulation that is inherent to the separation must be distributed across the membrane. Asymmetric interactions thus lead to direction-dependent transfer properties and the membrane exhibits diode behavior. These new transfer opportunities are discussed. PMID:29470440

  12. Transferable model of water with variable molecular size

    NASA Astrophysics Data System (ADS)

    Kiss, Péter T.; Baranyai, András

    2011-06-01

    By decreasing the steepness of the repulsive wing in the intermolecular potential, one can extend the applicability of a water model to the high pressure region. Exploiting this trivial possibility, we published a polarizable model of water which provided good estimations not only of gas clusters, ambient liquid, hexagonal ice, but ice VII at very high pressures as well [A. Baranyai and P. Kiss, J. Chem. Phys. 133, 144109 (2010), 10.1063/1.3490660]. This straightforward method works well provided the closest O-O distance is reasonably shorter in the high pressure phase than in hexagonal ice. If these O-O distances are close to each other and we fit the interactions to obtain an accurate picture of hexagonal ice, we underestimate the density of the high-pressure phases. This can be overcome if models use contracted molecules under high external pressure.In this paper we present a method, which is capable to describe the contraction of water molecules under high pressure by using two simple repulsion-attraction functions. These functions represent the dispersion interaction under low pressure and high pressure. The switch function varies between 0 and 1 and portions the two repulsions among the individual particles. The argument of the switch function is a virial-type expression, which can be interpreted as a net force compressing the molecule. We calculated the properties of gas clusters, densities, and internal energies of ambient water, hexagonal ice, ice III, ice VI, and ice VII phases and obtained excellent match of experimental data.

  13. Thermoplasticity of coupled bodies in the case of stress-dependent heat transfer

    NASA Technical Reports Server (NTRS)

    Kilikovskaya, O. A.

    1987-01-01

    The problem of the thermal stresses in coupled deformable bodies is formulated for the case where the heat-transfer coefficient at the common boundary depends on the stress-strain state of the bodies (e.g., is a function of the normal pressure at the common boundary). Several one-dimensional problems are solved in this formulation. Among these problems is the determination of the thermal stresses in an n-layer plate and in a two-layer cylinder.

  14. Free toe pulp transfer for digital reconstruction after high-pressure injection injury.

    PubMed

    Chan, B K; Tham, S K; Leung, M

    1999-10-01

    We report two cases of high-pressure injection injuries to the fingertip in which free toe pulp flaps were used to resurface the palmar surface of the finger following extensive wound debridement. There was good return of sensibility and, because of the high durability of the donor skin, both patients regained good functional use of the injured digits and returned to heavy manual work. There was minimal associated morbidity of the donor sites. The free toe pulp flap represents an excellent alternative for resurfacing the digit with a large residual skin defect after high-pressure injection injury.

  15. Response mechanisms of attached premixed flames subjected to harmonic forcing

    NASA Astrophysics Data System (ADS)

    Shreekrishna

    The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the vicinity of typical screech frequencies in gas turbine combustors. The nonlinear response problem is exclusively studied in the case of equivalence ratio coupling. Various nonlinearity mechanisms are identified, amongst which the crossover mechanisms, viz., stoichiometric and flammability crossovers, are seen to be responsible in causing saturation in the overall heat release magnitude of the flame. The response physics remain the same across various preheat temperatures and reactant pressures. Finally, comparisons between the chemiluminescence transfer function obtained experimentally and the heat release transfer functions obtained from the reduced order model (ROM) are performed for lean, CH4/Air swirl-stabilized, axisymmetric V-flames. While the comparison between the phases of the experimental and theoretical transfer functions are encouraging, their magnitudes show disagreement at lower Strouhal number gains show disagreement.

  16. An experimental investigation of heat transfer to reusable surface insulation tile array gaps in a turbulent boundary layer with pressure gradient. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.

    1975-01-01

    An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer to space shuttle reusable surface insulation (RSI) tile array gaps under thick, turbulent boundary layer conditions. Heat transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel wall boundary layer at a nominal freestream Mach number of 10.3 and freestream unit Reynolds numbers of 1.6, 3.3, and and 6.1 million per meter. Transverse pressure gradients were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel wall boundary layer flow was obtained by measurement of boundary layer pitot pressure profiles, and flat plate wall pressure and heat transfer. Flat plate wall heat transfer data were correlated and a method was derived for prediction of smooth, curved array heat transfer in the highly three-dimensional tunnel wall boundary layer flow and simulation of full-scale space shuttle vehicle pressure gradient levels was assessed.

  17. Application of functionalized nanofluid in thermosyphon

    PubMed Central

    2011-01-01

    A water-based functionalized nanofluid was made by surface functionalizing the ordinary silica nanoparticles. The functionalized nanofluid can keep long-term stability. and no sedimentation was observed. The functionalized nanofluid as the working fluid is applied in a thermosyphon to understand the effect of this special nanofluid on the thermal performance of the thermosyphon. The experiment was carried out under steady operating pressures. The same work was also explored for traditional nanofluid (consisting of water and the same silica nanoparticles without functionalization) for comparison. Results indicate that a porous deposition layer exists on the heated surface of the evaporator during the operating process using traditional nanofluid; however, no coating layer exists for functionalized nanofluid. Functionalized nanofluid can enhance the evaporating heat transfer coefficient, while it has generally no effect on the maximum heat flux. Traditional nanofluid deteriorates the evaporating heat transfer coefficient but enhances the maximum heat flux. The existence of the deposition layer affects mainly the thermal performance, and no meaningful nanofluid effect is found in the present study. PMID:21846362

  18. Performance and heat transfer characteristics of a carbon monoxide/oxygen rocket engine

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.

    1993-01-01

    The combustion and heat transfer characteristics of a carbon monoxide and oxygen rocket engine were evaluated. The test hardware consisted of a calorimeter combustion chamber with a heat sink nozzle and an eighteen element concentric tube injector. Experimental results are given at chamber pressures of 1070 and 3070 kPa, and over a mixture ratio range of 0.3 to 1.0. Experimental C efficiency was between 95 and 96.5 percent. Heat transfer results are discussed both as a function of mixture ratio and axial distance in the chamber. They are also compared to a Nusselt number correlation for fully developed turbulent flow.

  19. hSMR3A as a Marker for Patients With Erectile Dysfunction

    PubMed Central

    Tong, Yuehong; Tar, Moses; Monrose, Val; DiSanto, Michael; Melman, Arnold; Davies, Kelvin P.

    2007-01-01

    Purpose We recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in 3 distinct models of erectile dysfunction. Since gene transfer of plasmids expressing Vcsa1 or intracorporeal injection of its mature peptide product sialorphin into the corpora of aging rats was shown to restore erectile function, we proposed that the Vcsa1 gene has a direct role in erectile function. To determine if similar changes in gene expression occur in the corpora of human subjects with erectile dysfunction we identified a human homologue of Vcsa1 (hSMR3A) and determined the level of expression of hSMR3A in patients. Materials and Methods hSMR3A was identified as a homologue of Vcsa1 by searching protein databases for proteins with similarity. hSMR3A cDNA was generated and subcloned into the plasmid pVAX to generate pVAX-hSMR3A. pVAX-hSMR3A (25 or 100 μg) was intracorporeally injected into aging rats. The effect on erectile physiology was compared histologically and by measuring intracorporeal pressure/blood pressure with controls treated with the empty plasmid pVAX. Total RNA was extracted from human corporeal tissue obtained from patients undergoing previously scheduled penile surgery. Patients were grouped according to normal erectile function (3), erectile dysfunction and diabetes (5) and patients without diabetes but with erectile dysfunction (5). Quantitative reverse-transcriptase polymerase chain reaction was used to determine the hSMR3A expression level. Results Intracorporeal injection of 25 μg pVAX-hSMR3A was able to significantly increase the intracorporeal pressure-to-blood pressure ratio in aging rats compared to age matched controls. Higher amounts (100 μg) of gene transfer of the plasmid caused less of an improvement in the intracorporeal pressure-to-blood pressure ratio compared to controls, although there was histological and visual evidence that the animals were post-priapitic. These physiological effects were similar to previously reported effects of intracorporeal injection of pVAX-Vcsa1 into the corpora of aging rats, establishing hSMR3A as a functional homologue of Vcsa1. More than 10-fold down-regulation in hSMR3A transcript expression was observed in the corpora of patients with vs without erectile dysfunction. In patients with diabetes associated and nondiabetes associated erectile dysfunction hSMR3A expression was found to be down-regulated. Conclusions These results suggest that hSMR3A can act as a marker for erectile dysfunction associated with diabetic and nondiabetic etiologies. Given that our previous studies demonstrated that gene transfer of the Vcsa1 gene and intracorporeal injection of its protein product in rats can restore erectile function, these results suggest that therapies that increase the hSMR3A gene and product expression could potentially have a positive impact on erectile function. PMID:17512016

  20. hSMR3A as a marker for patients with erectile dysfunction.

    PubMed

    Tong, Yuehong; Tar, Moses; Monrose, Val; DiSanto, Michael; Melman, Arnold; Davies, Kelvin P

    2007-07-01

    We recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in 3 distinct models of erectile dysfunction. Since gene transfer of plasmids expressing Vcsa1 or intracorporeal injection of its mature peptide product sialorphin into the corpora of aging rats was shown to restore erectile function, we proposed that the Vcsa1 gene has a direct role in erectile function. To determine if similar changes in gene expression occur in the corpora of human subjects with erectile dysfunction we identified a human homologue of Vcsa1 (hSMR3A) and determined the level of expression of hSMR3A in patients. hSMR3A was identified as a homologue of Vcsa1 by searching protein databases for proteins with similarity. hSMR3A cDNA was generated and subcloned into the plasmid pVAX to generate pVAX-hSMR3A. pVAX-hSMR3A (25 or 100 microg) was intracorporeally injected into aging rats. The effect on erectile physiology was compared histologically and by measuring intracorporeal pressure/blood pressure with controls treated with the empty plasmid pVAX. Total RNA was extracted from human corporeal tissue obtained from patients undergoing previously scheduled penile surgery. Patients were grouped according to normal erectile function (3), erectile dysfunction and diabetes (5) and patients without diabetes but with erectile dysfunction (5). Quantitative reverse-transcriptase polymerase chain reaction was used to determine the hSMR3A expression level. Intracorporeal injection of 25 microg pVAX-hSMR3A was able to significantly increase the intracorporeal pressure-to-blood pressure ratio in aging rats compared to age matched controls. Higher amounts (100 microg) of gene transfer of the plasmid caused less of an improvement in the intracorporeal pressure-to-blood pressure ratio compared to controls, although there was histological and visual evidence that the animals were post-priapitic. These physiological effects were similar to previously reported effects of intracorporeal injection of pVAX-Vcsa1 into the corpora of aging rats, establishing hSMR3A as a functional homologue of Vcsa1. More than 10-fold down-regulation in hSMR3A transcript expression was observed in the corpora of patients with vs without erectile dysfunction. In patients with diabetes associated and nondiabetes associated erectile dysfunction hSMR3A expression was found to be down-regulated. These results suggest that hSMR3A can act as a marker for erectile dysfunction associated with diabetic and nondiabetic etiologies. Given that our previous studies demonstrated that gene transfer of the Vcsa1 gene and intracorporeal injection of its protein product in rats can restore erectile function, these results suggest that therapies that increase the hSMR3A gene and product expression could potentially have a positive impact on erectile function.

  1. Experimental Study of a Nitrogen Natural Circulation Loop at Low Heat Flux

    NASA Astrophysics Data System (ADS)

    Baudouy, B.

    2010-04-01

    A natural convection circulation loop in liquid nitrogen, i.e. an open thermosiphon flow configuration, has been investigated experimentally near atmospheric pressure. The experiments were conducted on a 2 m high loop with a copper tube of 10 mm inner diameter uniformly heated over a length of 0.95 m. Evolution of the total mass flow rate of the loop and the pressure difference along the tube are described. We also report the boiling curves where single phase and two-phase flows are identified with increasing heat flux. We focus our heat transfer analysis on the single phase regime where mixed convection is encountered. A heat transfer coefficient correlation is proposed. We also examine the boiling incipience as a function of the tube height.

  2. Real-Time Parameter Estimation Method Applied to a MIMO Process and its Comparison with an Offline Identification Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplanoglu, Erkan; Safak, Koray K.; Varol, H. Selcuk

    2009-01-12

    An experiment based method is proposed for parameter estimation of a class of linear multivariable systems. The method was applied to a pressure-level control process. Experimental time domain input/output data was utilized in a gray-box modeling approach. Prior knowledge of the form of the system transfer function matrix elements is assumed to be known. Continuous-time system transfer function matrix parameters were estimated in real-time by the least-squares method. Simulation results of experimentally determined system transfer function matrix compare very well with the experimental results. For comparison and as an alternative to the proposed real-time estimation method, we also implemented anmore » offline identification method using artificial neural networks and obtained fairly good results. The proposed methods can be implemented conveniently on a desktop PC equipped with a data acquisition board for parameter estimation of moderately complex linear multivariable systems.« less

  3. Evolution of ferroelectricity in tetrathiafulvalene-p-chloranil as a function of pressure and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dengl, Armin; Beyer, Rebecca; Peterseim, Tobias

    2014-06-28

    The neutral-to-ionic phase transition in the mixed-stack charge-transfer complex tetrathiafulvalene-p-chloranil (TTF-CA) has been studied by pressure-dependent infrared spectroscopy up to p = 11 kbar and down to low temperatures, T = 10 K. By tracking the C=O antisymmetric stretching mode of CA molecules, we accurately determine the ionicity of TTF-CA in the pressure-temperature phase diagram. At any point, the TTF-CA crystal bears only a single ionicity; there is no coexistence region or an exotic high-pressure phase. Our findings shed new light on the role of electron-phonon interaction in the neutral-ionic transition.

  4. Heat transfer measurements for Stirling machine cylinders

    NASA Technical Reports Server (NTRS)

    Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.

    1994-01-01

    The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially generated noise, but it failed with the actual experimental data. This is evidence that the models used in the parameter optimization procedure (and to generate the simulated data) were not correct. Data from the surface heat flux sensors indicated that the primary shortcoming of these models was that they assumed turbulence levels to be constant over the cycle. Sensor data in the varying volume space showed a large increase in heat flux, probably due to turbulence, during the expansion stroke.

  5. Characterisation and optimisation of flexible transfer lines for liquid helium. Part I: Experimental results

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.

    2016-04-01

    The transfer of liquid helium (LHe) into mobile dewars or transport vessels is a common and unavoidable process at LHe decant stations. During this transfer reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus generated helium gas needs to be collected and reliquefied which requires a huge amount of electrical energy. Therefore, the design of transfer lines used at LHe decant stations has been optimised to establish a LHe transfer with minor evaporation losses which increases the overall efficiency and capacity of LHe decant stations. This paper presents the experimental results achieved during the thermohydraulic optimisation of a flexible LHe transfer line. An extensive measurement campaign with a set of dedicated transfer lines equipped with pressure and temperature sensors led to unique experimental data of this specific transfer process. The experimental results cover the heat leak, the pressure drop, the transfer rate, the outlet quality, and the cool-down and warm-up behaviour of the examined transfer lines. Based on the obtained results the design of the considered flexible transfer line has been optimised, featuring reduced heat leak and pressure drop.

  6. Analysis of an electrohydraulic aircraft control surface servo and comparison with test results

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1972-01-01

    An analysis of an electrohydraulic aircraft control-surface system is made in which the system is modeled as a lumped, two-mass, spring-coupled system controlled by a servo valve. Both linear and nonlinear models are developed, and the effects of hinge-moment loading are included. Transfer functions of the system and approximate literal factors of the transfer functions for several cases are presented. The damping action of dynamic pressure feedback is analyzed. Comparisons of the model responses with results from tests made on a highly resonant rudder control-surface servo indicate the adequacy of the model. The effects of variations in hinge-moment loading are illustrated.

  7. A blackbody-pumped CO2-N2 transfer laser

    NASA Astrophysics Data System (ADS)

    Deyoung, R. J.; Higdon, N. S.

    1984-08-01

    A compact blackbody-pumped CO2-N2 transfer laser was constructed and the significant operating parameters were investigated. Lasing was achieved at 10.6 microns by passing preheated N2 through a 1.5-mm-diameter nozzle to a laser cavity where the N2 was mixed with CO2 and He. An intrinsic efficiency of 0.7 percent was achieved for an oven temperature of 1473 K and N2 oven pressure of 440 torr. The optimum laser cavity consisted of a back mirror with maximum reflectivity and an output mirror with 97.5-percent reflectivity. The optimum gas mixture was 1CO2/.5He/6N2. The variation of laser output was measured as a function of oven temperature, nozzle diameter, N2 oven pressure, He and CO2 partial pressures, nozzle-to-oven separation, laser cell temperature, and output laser mirror reflectivity. With these parameters optimized, outputs approaching 1.4 watts were achieved.

  8. A blackbody-pumped CO2-N2 transfer laser

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Higdon, N. S.

    1984-01-01

    A compact blackbody-pumped CO2-N2 transfer laser was constructed and the significant operating parameters were investigated. Lasing was achieved at 10.6 microns by passing preheated N2 through a 1.5-mm-diameter nozzle to a laser cavity where the N2 was mixed with CO2 and He. An intrinsic efficiency of 0.7 percent was achieved for an oven temperature of 1473 K and N2 oven pressure of 440 torr. The optimum laser cavity consisted of a back mirror with maximum reflectivity and an output mirror with 97.5-percent reflectivity. The optimum gas mixture was 1CO2/.5He/6N2. The variation of laser output was measured as a function of oven temperature, nozzle diameter, N2 oven pressure, He and CO2 partial pressures, nozzle-to-oven separation, laser cell temperature, and output laser mirror reflectivity. With these parameters optimized, outputs approaching 1.4 watts were achieved.

  9. Recovering Aerodynamic Side Loads on Rocket Nozzles using Quasi-Static Strain-Gage Measurements

    NASA Technical Reports Server (NTRS)

    Brown, Andrew; Ruf, Joseph H.; McDaniels, David M.

    2009-01-01

    During over-expanded operation of rocket nozzles, which is defined to be when the exit pressure is greater than internal pressure over some part of the nozzle, the nozzle will experience a transverse forcing function due to the pressure differential across the nozzle wall. Over-expansion occurs during the nozzle start-up and shutdown transient, even in high-altitude engines, because most test facilities cannot completely reproduce the near-vacuum pressures at those altitudes. During this transient, the pressure differential moves axially down the nozzle as it becomes pressurized, but this differential is never perfectly symmetric circumferentially. The character of the forcing function is highly complex and defined by a series of restricted and free shock separations. The subject of this paper is the determination of the magnitude of this loading during sub-scale testing via measurement of the structural dynamic response of the nozzle and its support structure. An initial attempt at back-calculating this load using the inverse of the transfer function was performed, but this attempt was shown to be highly susceptible to numerical error. The final method chosen was to use statically calibrated strain data and to filter out the system fundamental frequency such that the measured response yields close to the correct dynamic loading function. This method was shown to capture 93% of the pressure spectral energy using controlled load shaker testing. This method is one of the only practical ways for the inverse determination of the forcing function for non-stationary excitations, and, to the authors' knowledge, has not been described in the literature to date.

  10. A unified wall function for compressible turbulence modelling

    NASA Astrophysics Data System (ADS)

    Ong, K. C.; Chan, A.

    2018-05-01

    Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.

  11. K 3 Fe(CN) 6 under External Pressure: Dimerization of CN – Coupled with Electron Transfer to Fe(III)

    DOE PAGES

    Li, Kuo; Zheng, Haiyan; Wang, Lijuan; ...

    2015-09-14

    The addition polymerization of charged monomers like C≡C 2– and C≡N– is scarcely seen at ambient conditions but can progress under external pressure with their conductivity significantly enhanced, which expands the research field of polymer science to inorganic salts. Moreover, the reaction pressures of transition metal cyanides like Prussian blue and K 3Fe(CN) 6 are much lower than that of alkali cyanides. To figure out the effect of the transition metal on the reaction, the crystal structure and electronic structure of K 3Fe(CN) 6 under external pressure are investigated by in situ neutron diffraction, in situ X-ray absorption fine structuremore » (XAFS), and neutron pair distribution functions (PDF) up to ~15 GPa. The cyanide anions react following a sequence of approaching–bonding–stabilizing. The Fe(III) brings the cyanides closer which makes the bonding progress at a low pressure (2–4 GPa). At ~8 GPa, an electron transfers from the CN to Fe(III), reduces the charge density on cyanide ions, and stabilizes the reaction product of cyanide. Finally, from this study we can conclude that bringing the monomers closer and reducing their charge density are two effective routes to decrease the reaction pressure, which is important for designing novel pressure induced conductor and excellent electrode materials.« less

  12. Scaling of heat transfer augmentation due to mechanical distortions in hypervelocity boundary layers

    NASA Astrophysics Data System (ADS)

    Flaherty, W.; Austin, J. M.

    2013-10-01

    We examine the response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature. Surface heat transfer and visual boundary layer thickness data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. This scaling may be explained by the application of Lees similarity. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortices to an adverse pressure gradient is investigated. Surface streak evolution is visualized over the different surface geometries using fast response pressure sensitive paint. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures.

  13. Radial basis functions in mathematical modelling of flow boiling in minichannels

    NASA Astrophysics Data System (ADS)

    Hożejowska, Sylwia; Hożejowski, Leszek; Piasecka, Magdalena

    The paper addresses heat transfer processes in flow boiling in a vertical minichannel of 1.7 mm depth with a smooth heated surface contacting fluid. The heated element for FC-72 flowing in a minichannel was a 0.45 mm thick plate made of Haynes-230 alloy. An infrared camera positioned opposite the central, axially symmetric part of the channel measured the plate temperature. K-type thermocouples and pressure converters were installed at the inlet and outlet of the minichannel. In the study radial basis functions were used to solve a problem concerning heat transfer in a heated plate supplied with the controlled direct current. According to the model assumptions, the problem is treated as twodimensional and governed by the Poisson equation. The aim of the study lies in determining the temperature field and the heat transfer coefficient. The results were verified by comparing them with those obtained by the Trefftz method.

  14. Gas Requirements in Pressurized Transfer of Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Gluck, D. F.; Kline, J. F.

    1961-01-01

    Of late, liquid hydrogen has become a very popular fuel for space missions. It is being used in such programs as Centaur and Saturn. Furthermore, hydrogen is the ideal working fluid for nuclear powered space vehicles currently under development. In these applications, liquid hydrogen fuel is generally transferred to the combustion chamber by a combination of pumping and pressurization. The pump forces the liquid propellant from the fuel tank to the combustion chamber; gaseous pressurant holds tank pressure sufficiently high to prevent cavitation at the pump inlet and to maintain the structural rigidity of the tank. The pressurizing system, composed of pressurant, tankage, and associated hardware can be a large portion of the total vehicle weight. Pressurant weight can be reduced by introducing the pressurizing gas at temperatures substantially greater than those of liquid hydrogen. Heat and mass transfer processes thereby induced complicate gas requirements during discharge. These requirements must be known to insure proper design of the pressurizing system. The aim of this paper is to develop from basic mass and energy transfer processes a general method to predict helium and hydrogen gas usage for the pressurized transfer of liquid hydrogen. This required an analytical and experimental investigation, the results of which are described in this paper.

  15. Emergency department skull trephination for epidural hematoma in patients who are awake but deteriorate rapidly.

    PubMed

    Smith, Stephen W; Clark, Michael; Nelson, Jody; Heegaard, William; Lufkin, Kirk C; Ruiz, Ernest

    2010-09-01

    Blunt head trauma patients who have been alert but are deteriorating (talk and deteriorate [T&D]) due to a rapidly expanding epidural hematoma (EDH) usually have poor outcome if they must wait for hospital transfer for evacuation. We therefore have continued to teach skull trephination to emergency physicians (EPs). We are unaware of any literature on EP trephination for EDH in the age of computed tomography (CT) scanning. Patients with EDH from blunt trauma, either in our institution or known to our graduate network, who were T&D with anisocoria despite intubation plus medical therapy, and who had pre-transfer EP trephination, were compared to those who were transferred without trephination. There were 5 patients with blunt trauma and CT-proven EDH who were T&D with anisocoria who underwent Emergency Department (ED) trephination at outlying hospitals before transfer. All 5 had improvement in condition and good outcomes. Three had complete recovery without disability and 2 others had mild disability with good cognitive function. None had complications. Two patients with T&D and anisocoria were transferred without trephination. Both had good neurologic outcomes. The mean time to pressure relief in the trephination group vs. transfer group was 55 vs. 207 min, respectively. In T&D patients with CT-proven EDH and anisocoria, ED skull trephination before transfer resulted in uniformly good outcomes without complications. Time to relief of intracranial pressure was significantly shorter with trephination. Neurologic outcomes were not different. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Simultaneous monitoring of static and dynamic intracranial pressure parameters from two separate sensors in patients with cerebral bleeds: comparison of findings

    PubMed Central

    2012-01-01

    Background We recently reported that in an experimental setting the zero pressure level of solid intracranial pressure (ICP) sensors can be altered by electrostatics discharges. Changes in the zero pressure level would alter the ICP level (mean ICP); whether spontaneous changes in mean ICP happen in clinical settings is not known. This can be addressed by comparing the ICP parameters level and waveform of simultaneous ICP signals. To this end, we retrieved our recordings in patients with cerebral bleeds wherein the ICP had been recorded simultaneously from two different sensors. Materials and Methods: During a time period of 10 years, 17 patients with cerebral bleeds were monitored with two ICP sensors simultaneously; sensor 1 was always a solid sensor while Sensor 2 was a solid -, a fluid - or an air-pouch sensor. The simultaneous signals were analyzed with automatic identification of the cardiac induced ICP waves. The output was determined in consecutive 6-s time windows, both with regard to the static parameter mean ICP and the dynamic parameters (mean wave amplitude, MWA, and mean wave rise time, MWRT). Differences in mean ICP, MWA and MWRT between the two sensors were determined. Transfer functions between the sensors were determined to evaluate how sensors reproduce the ICP waveform. Results Comparing findings in two solid sensors disclosed major differences in mean ICP in 2 of 5 patients (40%), despite marginal differences in MWA, MWRT, and linear phase magnitude and phase. Qualitative assessment of trend plots of mean ICP and MWA revealed shifts and drifts of mean ICP in the clinical setting. The transfer function analysis comparing the solid sensor with either the fluid or air-pouch sensors revealed more variable transfer function magnitude and greater differences in the ICP waveform derived indices. Conclusions Simultaneous monitoring of ICP using two solid sensors may show marked differences in static ICP but close to identity in dynamic ICP waveforms. This indicates that shifts in ICP baseline pressure (sensor zero level) occur clinically; trend plots of the ICP parameters also confirm this. Solid sensors are superior to fluid – and air pouch sensors when evaluating the dynamic ICP parameters. PMID:22958653

  17. Repair of a vesicocutaneous fistula using negative-pressure wound therapy and urinary diversion via a nephrostomy tube.

    PubMed

    Freeman, Julie J; Storto, Dominic L P; Berry-Cabán, Cristóbal S

    2013-01-01

    This article describes an unusual case of a vesicocutaneous fistula in a patient with a history of radiation therapy and recent abdominal surgery. A 61-year-old woman was transferred to our acute care facility from a rehabilitation facility, with poor nutritional intake and a concern for urine draining from her wound. A nephrostomy tube was placed (she had only 1 functioning kidney) and negative-pressure wound therapy was used to close the fistula. Urinary diversion via a nephrostomy tube and negative-pressure wound therapy were used to successfully and safely close this vesicocutaneous fistula.

  18. Heat transfer and pressure drop for air flow through enhanced passages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less

  19. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less

  20. Influence of Wind Pressure on the Carbonation of Concrete

    PubMed Central

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-01-01

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth. PMID:28793462

  1. Influence of Wind Pressure on the Carbonation of Concrete.

    PubMed

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-07-24

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth.

  2. Correlation of HIFiRE-5 Flight Data with Computed Pressure and Heat Transfer (Postprint)

    DTIC Science & Technology

    2015-06-01

    AFRL-RQ-WP-TP-2015-0149 CORRELATION OF HIFiRE-5 FLIGHT DATA WITH COMPUTED PRESSURE AND HEAT TRANSFER (POSTPRINT) Joseph S. Jewell...results with St was compared to flight heat transfer measurements, and transition locations were inferred. Finally, a computational heat conduction...HIFiRE-5 Flight Data With Computed Pressure and Heat Transfer Joseph S. Jewell,1 James H. Miller,2 and Roger L. Kimmel3 U.S. Air Force Research

  3. Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.

  4. Advanced Liquid Feed Experiment

    NASA Astrophysics Data System (ADS)

    Distefano, E.; Noll, C.

    1993-06-01

    The Advanced Liquid Feed Experiment (ALFE) is a Hitchhiker experiment flown on board the Shuttle of STS-39 as part of the Space Test Payload-1 (STP-1). The purpose of ALFE is to evaluate new propellant management components and operations under the low gravity flight environment of the Space Shuttle for eventual use in an advanced spacecraft feed system. These components and operations include an electronic pressure regulator, an ultrasonic flowmeter, an ultrasonic point sensor gage, and on-orbit refill of an auxiliary propellant tank. The tests are performed with two transparent tanks with dyed Freon 113, observed by a camera and controlled by ground commands and an on-board computer. Results show that the electronic pressure regulator provides smooth pressure ramp-up, sustained pressure control, and the flexibility to change pressure settings in flight. The ultrasonic flowmeter accurately measures flow and detects gas ingestion. The ultrasonic point sensors function well in space, but not as a gage during sustained low-gravity conditions, as they, like other point gages, are subject to the uncertainties of propellant geometry in a given tank. Propellant transfer operations can be performed with liquid-free ullage equalization at a 20 percent fill level, gas-free liquid transfer from 20-65 percent fill level, minimal slosh, and can be automated.

  5. Identification and measurement of combustion noise from a turbofan engine using correlation and coherence techniques. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1977-01-01

    Fluctuating pressure measurements within the combustor and tailpipe of a turbofan engine are made simultaneously with far field acoustic measurements. The pressure measurements within the engine are accomplished with cooled semi-infinite waveguide probes utilizing conventional condenser microphones as the transducers. The measurements are taken over a broad range of engine operating conditions and for 16 far field microphone positions between 10 deg and 160 deg relative to the engine inlet axis. Correlation and coherence techniques are used to determine the relative phase and amplitude relationships between the internal pressures and far field acoustic pressures. The results indicate that the combustor is a low frequency source region for acoustic propagation through the tailpipe and out to the far field. Specifically, it is found that the relation between source pressure and the resulting sound pressure involves a 180 deg phase shift. The latter result is obtained by Fourier transforming the cross correlation function between the source pressure and acoustic pressure after removing the propagation delay time. Further, it is found that the transfer function between the source pressure and acoustic pressure has a magnitude approximately proportional to frequency squared. These results are shown to be consistent with a model using a modified source term in Lighthill's turbulence stress tensor, wherein the fluctuating Reynolds stresses are replaced with the pressure fluctuations due to fluctuating entropy.

  6. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships.

    PubMed

    Smirl, Jonathan D; Hoffman, Keegan; Tzeng, Yu-Chieh; Hansen, Alex; Ainslie, Philip N

    2015-09-01

    We examined the between-day reproducibility of active (squat-stand maneuvers)- and passive [oscillatory lower-body negative pressure (OLBNP) maneuvers]-driven oscillations in blood pressure. These relationships were examined in both younger (n = 10; 25 ± 3 yr) and older (n = 9; 66 ± 4 yr) adults. Each testing protocol incorporated rest (5 min), followed by driven maneuvers at 0.05 (5 min) and 0.10 (5 min) Hz to increase blood-pressure variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis. Beat-to-beat blood pressure, middle cerebral artery velocity, and end-tidal partial pressure of CO2 were monitored. The pressure-flow relationship was quantified in the very low (0.02-0.07 Hz) and low (0.07-0.20 Hz) frequencies (LF; spontaneous data) and at 0.05 and 0.10 Hz (driven maneuvers point estimates). Although there were no between-age differences, very few spontaneous and OLBNP transfer function metrics met the criteria for acceptable reproducibility, as reflected in a between-day, within-subject coefficient of variation (CoV) of <20%. Combined CoV data consist of LF coherence (15.1 ± 12.2%), LF gain (15.1 ± 12.2%), and LF normalized gain (18.5 ± 10.9%); OLBNP data consist of 0.05 (12.1 ± 15.%) and 0.10 (4.7 ± 7.8%) Hz coherence. In contrast, the squat-stand maneuvers revealed that all metrics (coherence: 0.6 ± 0.5 and 0.3 ± 0.5%; gain: 17.4 ± 12.3 and 12.7 ± 11.0%; normalized gain: 16.7 ± 10.9 and 15.7 ± 11.0%; and phase: 11.6 ± 10.2 and 17.3 ± 10.8%) at 0.05 and 0.10 Hz, respectively, were considered biologically acceptable for reproducibility. These findings have important implications for the reliable assessment and interpretation of cerebral pressure-flow dynamics in humans. Copyright © 2015 the American Physiological Society.

  7. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships

    PubMed Central

    Hoffman, Keegan; Tzeng, Yu-Chieh; Hansen, Alex; Ainslie, Philip N.

    2015-01-01

    We examined the between-day reproducibility of active (squat-stand maneuvers)- and passive [oscillatory lower-body negative pressure (OLBNP) maneuvers]-driven oscillations in blood pressure. These relationships were examined in both younger (n = 10; 25 ± 3 yr) and older (n = 9; 66 ± 4 yr) adults. Each testing protocol incorporated rest (5 min), followed by driven maneuvers at 0.05 (5 min) and 0.10 (5 min) Hz to increase blood-pressure variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis. Beat-to-beat blood pressure, middle cerebral artery velocity, and end-tidal partial pressure of CO2 were monitored. The pressure-flow relationship was quantified in the very low (0.02-0.07 Hz) and low (0.07–0.20 Hz) frequencies (LF; spontaneous data) and at 0.05 and 0.10 Hz (driven maneuvers point estimates). Although there were no between-age differences, very few spontaneous and OLBNP transfer function metrics met the criteria for acceptable reproducibility, as reflected in a between-day, within-subject coefficient of variation (CoV) of <20%. Combined CoV data consist of LF coherence (15.1 ± 12.2%), LF gain (15.1 ± 12.2%), and LF normalized gain (18.5 ± 10.9%); OLBNP data consist of 0.05 (12.1 ± 15.%) and 0.10 (4.7 ± 7.8%) Hz coherence. In contrast, the squat-stand maneuvers revealed that all metrics (coherence: 0.6 ± 0.5 and 0.3 ± 0.5%; gain: 17.4 ± 12.3 and 12.7 ± 11.0%; normalized gain: 16.7 ± 10.9 and 15.7 ± 11.0%; and phase: 11.6 ± 10.2 and 17.3 ± 10.8%) at 0.05 and 0.10 Hz, respectively, were considered biologically acceptable for reproducibility. These findings have important implications for the reliable assessment and interpretation of cerebral pressure-flow dynamics in humans. PMID:26183476

  8. Experimental and numerical investigations of high temperature gas heat transfer and flow in a VHTR reactor core

    NASA Astrophysics Data System (ADS)

    Valentin Rodriguez, Francisco Ivan

    High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat dissipating capabilities of helium flow, due to natural circulation in the system at both high and low pressure, were also examined. These experimental results are useful for the development and validation of VHTR design and safety analysis codes. Numerical simulations were performed using a Multiphysics computer code, COMSOL, displaying less than 5% error between the measured graphite temperatures in both the heated and cooled channels. Finally, new correlations have been proposed describing the thermal-hydraulic phenomena in buoyancy driven flows in both heated and cooled channels.

  9. Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step-changes in pressure set-point during freeze-drying.

    PubMed

    Kuu, Wei Y; Nail, Steven L; Sacha, Gregory

    2009-03-01

    The purpose of this study was to perform a rapid determination of vial heat transfer parameters, that is, the contact parameter K(cs) and the separation distance l(v), using the sublimation rate profiles measured by tunable diode laser absorption spectroscopy (TDLAS). In this study, each size of vial was filled with pure water followed by a freeze-drying cycle using a LyoStar II dryer (FTS Systems) with step-changes of the chamber pressure set-point at to 25, 50, 100, 200, 300, and 400 mTorr. K(cs) was independently determined by nonlinear parameter estimation using the sublimation rates measured at the pressure set-point of 25 mTorr. After obtaining K(cs), the l(v) value for each vial size was determined by nonlinear parameter estimation using the pooled sublimation rate profiles obtained at 25 to 400 mTorr. The vial heat transfer coefficient K(v), as a function of the chamber pressure, was readily calculated, using the obtained K(cs) and l(v) values. It is interesting to note the significant difference in K(v) of two similar types of 10 mL Schott tubing vials, primary due to the geometry of the vial-bottom, as demonstrated by the images of the contact areas of the vial-bottom. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  10. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  11. Experimental study of CO2 dissolution a convection phenomenon at high pressure

    NASA Astrophysics Data System (ADS)

    Ben Salem, Imen; Chevalier, Sylvie; Faisal, Titly Farhana; Abderrahmane, Hamid; Sassi, Mohamed

    2016-05-01

    The density driven convection phenomenon has a significant role in enhancing the CO2 geological storage capacity. Deep saline aquifers are targeted for large scale geological sequestration. Once the CO2 is injected in saline aquifer, the supercritical CO2 rises up, forms a thin layer of free phase CO2, and the dissolution and molecular diffusion of the dissolved CO2 in brine begins. The CO2 saturated brine is denser than the original brine leading to gravitational convection of CO2 saturated brine. Convection accelerates the dissolution process and thus improves the safety and the efficiency of the sequestration. Laboratory experiments have been previously performed with experimental set-ups allowing the visualization of the phenomenon (1) eventually combined to the measurements of the dissolved CO2 mass transfer (2) as a function of the permeability of the medium. The visualization of the process was possible as Hele-Shaw cells at atmospheric pressure were used. Pressurized cylindrical vessel containing porous media allows measuring mass transfer of CO2 using the pressure decay concept (3) but visualization of the convection/dissolution was not possible for these setups. In this work, we performed experiments in a pressurized transparent cell similar to a Hele-Shaw cell but with bigger aperture. Permeability was varied by changing the size of the glass beads filling the cell. Bromocrysol green was used as a dye to track the pH change due to the presence of dissolved CO2 (1). The phenomenon is captured by a high resolution camera. We studied the effect of the pressure and of the permeability on the fingering pattern, the onset and the timescale of the phenomenon and the quantitative mass transfer of dissolved CO2. Experiments were validated on numerical simulations performed using STOMP (Subsurface Transport Over Multiple Phases) developed by the PNNL (Pacific Northwest National Laboratory) Hydrology group of the Department of Energy, USA. (1) Kneafsey, T.J., Pruess, K., 2010. Laboratory flow experiments for visualizing carbon dioxide-induced density-driven brine convection, Transport in Porous Media 82, 123-139. (2) Faisal, T. F., Chevalier, S., Bernabé, Y., Juanes, R. and M. Sassi. 2015. Quantitative and qualitative study of density driven CO2 mass transfer in a vertical Hele-Shaw cell. International Journal of Heat and Mass Transfer. Vol. 81, 901-914. (3) Farajzadeh, R.; Barati, A.; Delil, H. A.; Bruining, J.; Zitha, P. L. J., Mass transfer of CO2 into water and surfactant solutions, Petroleum Science and Technology 25 (12) (2007) 1493-1511.

  12. Enhancements to the SSME transfer function modeling code

    NASA Technical Reports Server (NTRS)

    Irwin, R. Dennis; Mitchell, Jerrel R.; Bartholomew, David L.; Glenn, Russell D.

    1995-01-01

    This report details the results of a one year effort by Ohio University to apply the transfer function modeling and analysis tools developed under NASA Grant NAG8-167 (Irwin, 1992), (Bartholomew, 1992) to attempt the generation of Space Shuttle Main Engine High Pressure Turbopump transfer functions from time domain data. In addition, new enhancements to the transfer function modeling codes which enhance the code functionality are presented, along with some ideas for improved modeling methods and future work. Section 2 contains a review of the analytical background used to generate transfer functions with the SSME transfer function modeling software. Section 2.1 presents the 'ratio method' developed for obtaining models of systems that are subject to single unmeasured excitation sources and have two or more measured output signals. Since most of the models developed during the investigation use the Eigensystem Realization Algorithm (ERA) for model generation, Section 2.2 presents an introduction of ERA, and Section 2.3 describes how it can be used to model spectral quantities. Section 2.4 details the Residue Identification Algorithm (RID) including the use of Constrained Least Squares (CLS) and Total Least Squares (TLS). Most of this information can be found in the report (and is repeated for convenience). Section 3 chronicles the effort of applying the SSME transfer function modeling codes to the a51p394.dat and a51p1294.dat time data files to generate transfer functions from the unmeasured input to the 129.4 degree sensor output. Included are transfer function modeling attempts using five methods. The first method is a direct application of the SSME codes to the data files and the second method uses the underlying trends in the spectral density estimates to form transfer function models with less clustering of poles and zeros than the models obtained by the direct method. In the third approach, the time data is low pass filtered prior to the modeling process in an effort to filter out high frequency characteristics. The fourth method removes the presumed system excitation and its harmonics in order to investigate the effects of the excitation on the modeling process. The fifth method is an attempt to apply constrained RID to obtain better transfer functions through more accurate modeling over certain frequency ranges. Section 4 presents some new C main files which were created to round out the functionality of the existing SSME transfer function modeling code. It is now possible to go from time data to transfer function models using only the C codes; it is not necessary to rely on external software. The new C main files and instructions for their use are included. Section 5 presents current and future enhancements to the XPLOT graphics program which was delivered with the initial software. Several new features which have been added to the program are detailed in the first part of this section. The remainder of Section 5 then lists some possible features which may be added in the future. Section 6 contains the conclusion section of this report. Section 6.1 is an overview of the work including a summary and observations relating to finding transfer functions with the SSME code. Section 6.2 contains information relating to future work on the project.

  13. Sustained reduction in blood pressure from electrical activation of the baroreflex is mediated via the central pathway of unmyelinated baroreceptors.

    PubMed

    Turner, Michael J; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru

    2014-06-13

    This study aims to identify the contribution of myelinated (A-fiber) and unmyelinated (C-fiber) baroreceptor central pathways to the baroreflex control of sympathetic nerve activity and arterial pressure. Two binary white noise stimulation protocols were used to electrically stimulate the aortic depressor nerve and activate reflex responses from either A-fiber (3 V, 20-100 Hz) or C-fiber (20 V, 0-10 Hz) baroreceptor in anesthetized Sprague-Dawley rats (n=10). Transfer function analysis was performed between stimulation and sympathetic nerve activity (central arc), sympathetic nerve activity and arterial pressure (peripheral arc), and stimulation and arterial pressure (Stim-AP arc). The central arc transfer function from nerve stimulation to splanchnic sympathetic nerve activity displayed derivative characteristics for both stimulation protocols. However, the modeled steady-state gain (0.28 ± 0.04 vs. 4.01 ± 0.2%·Hz(-1), P<0.001) and coherence at 0.01 Hz (0.44 ± 0.05 vs. 0.81 ± 0.03, P<0.05) were significantly lower for A-fiber stimulation compared with C-fiber stimulation. The slope of the dynamic gain was higher for A-fiber stimulation (14.82 ± 1.02 vs. 7.21 ± 0.79 dB·decade(-1), P<0.001). The steady-state gain of the Stim-AP arc was also significantly lower for A-fiber stimulation compared with C-fiber stimulation (0.23 ± 0.05 vs. 3.05 ± 0.31 mmHg·Hz(-1), P<0.001). These data indicate that the A-fiber central pathway contributes to high frequency arterial pressure regulation and the C-fiber central pathway provides more sustained changes in sympathetic nerve activity and arterial pressure. A sustained reduction in arterial pressure from electrical stimulation of arterial baroreceptor afferents is likely mediated through the C-fiber central pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Determining the response of sea level to atmospheric pressure forcing using TOPEX/POSEIDON data

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Pihos, Greg

    1994-01-01

    The static response of sea level to the forcing of atmospheric pressure, the so-called inverted barometer (IB) effect, is investigated using TOPEX/POSEIDON data. This response, characterized by the rise and fall of sea level to compensate for the change of atmospheric pressure at a rate of -1 cm/mbar, is not associated with any ocean currents and hence is normally treated as an error to be removed from sea level observation. Linear regression and spectral transfer function analyses are applied to sea level and pressure to examine the validity of the IB effect. In regions outside the tropics, the regression coefficient is found to be consistently close to the theoretical value except for the regions of western boundary currents, where the mesoscale variability interferes with the IB effect. The spectral transfer function shows near IB response at periods of 30 degrees is -0.84 +/- 0.29 cm/mbar (1 standard deviation). The deviation from = 1 cm /mbar is shown to be caused primarily by the effect of wind forcing on sea level, based on multivariate linear regression model involving both pressure and wind forcing. The regression coefficient for pressure resulting from the multivariate analysis is -0.96 +/- 0.32 cm/mbar. In the tropics the multivariate analysis fails because sea level in the tropics is primarily responding to remote wind forcing. However, after removing from the data the wind-forced sea level estimated by a dynamic model of the tropical Pacific, the pressure regression coefficient improves from -1.22 +/- 0.69 cm/mbar to -0.99 +/- 0.46 cm/mbar, clearly revealing an IB response. The result of the study suggests that with a proper removal of the effect of wind forcing the IB effect is valid in most of the open ocean at periods longer than 20 days and spatial scales larger than 500 km.

  15. Passive Nosetip Technology (PANT) Program. Volume 17. Computer User’s Manual: Erosion Shape (EROS) Computer Code

    DTIC Science & Technology

    1974-12-01

    as a series of sections, eacN represent- ing one pressure and each preceding the corresponding pressure group of the sur- face thermochemistry deck...groups together make up the surface thermochemistry deck. Within each pressure group the transfer coefficient values will be ordered. Within each transfer...values in each pressure group may not exceed 5 but may be only 1. If no kinetics effects are to be considered a transfer coefficient of zero is acceptable

  16. Testing a Method for Quantifying the Output of Implantable Middle Ear Hearing Devices

    PubMed Central

    Rosowski, J.J.; Chien, W.; Ravicz, M.E.; Merchant, S.N.

    2008-01-01

    This report describes tests of a standard practice for quantifying the performance of implantable middle ear hearing devices (also known as implantable hearing aids). The standard and these tests were initiated by the Food and Drug Administration of the United States Government. The tests involved measurements on two hearing devices, one commercially available and the other home built, that were implanted into ears removed from human cadavers. The tests were conducted to investigate the utility of the practice and its outcome measures: the equivalent ear canal sound pressure transfer function that relates electrically driven middle ear velocities to the equivalent sound pressure needed to produce those velocities, and the maximum effective ear canal sound pressure. The practice calls for measurements in cadaveric ears in order to account for the varied anatomy and function of different human middle ears. PMID:17406105

  17. The application of super wavelet finite element on temperature-pressure coupled field simulation of LPG tank under jet fire

    NASA Astrophysics Data System (ADS)

    Zhao, Bin

    2015-02-01

    Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.

  18. Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying.

    PubMed

    Ganguly, Arnab; Nail, Steven L; Alexeenko, Alina

    2013-05-01

    The study is aimed at quantifying the relative contribution of key heat transfer modes in lyophilization. Measurements of vial heat transfer rates in a laboratory-scale freeze-dryer were performed using pure water, which was partially sublimed under various conditions. The separation distance between the shelf and the vial was systematically varied, and sublimation rates were determined gravimetrically. The heat transfer rates were observed to be independent of separation distance between the vial and the shelf and linearly dependent on pressure in the free molecular flow limit, realized at low pressures (<50 mTorr). However, under higher pressures (>120 mTorr), heat transfer rates were independent of pressure and inversely proportional to separation distance. Previous heat transfer studies in conventional freeze-drying cycles have attributed a dominant portion of the total heat transfer to radiation, the rest to conduction, whereas convection has been found to be insignificant. Although the measurements reported here confirm the significance of the radiative and gas conduction components, the convective component has been found to be comparable to the gas conduction contribution at pressures greater than 100 mTorr. The current investigation supports the conclusion that the convective component of the heat transfer cannot be ignored in typical laboratory-scale freeze-drying conditions. Copyright © 2013 Wiley Periodicals, Inc.

  19. Customized acoustic transform functions and their accuracy at predicting real-ear hearing aid performance.

    PubMed

    Munro, K J; Hatton, N

    2000-02-01

    The purpose of the study was to evaluate the validity of predicting the real-ear aided response by adding customized acoustic transform functions to the performance of a hearing aid in a 2-cc coupler. The real-ear hearing aid response, the real-ear-to-coupler difference (RECD/HA2), and field to behind-the-ear microphone transfer functions were measured in both ears of 24 normally hearing subjects using probe-tube microphone equipment. The RECD/HA2 transform function was obtained using both insert earphones and with the hearing aid/ pressure comparison method. An RECD/HA2 transfer function was also obtained with a customized earmold, ER-3A foam tip, and an oto-admittance tip. Validity estimates were calculated as the difference between the derived and measured real-ear response. The derived response was generally within 5 dB of the measured real-ear response when it incorporated an RECD/HA2 transform function obtained with a customized earmold for the specific ear in question. Discrepancies increased when the RECD/HA2 transfer function was obtained from the same subject but the opposite ear. There were significant differences between the RECD/HA2 transform function obtained with customized and temporary earmolds. As a result, the derived response incorporating these transforms differed significantly from the measured real-ear response obtained with the customized earmold. The insert earphone and the hearing aid RECD/HA2 transfer function were equally valid. The derived response may be used as a substitute for in situ hearing aid response procedures when it incorporates acoustic transform functions obtained with a customized earmold from the specific ear in question.

  20. Liquid neon heat transfer as applied to a 30 tesla cryomagnet

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1975-01-01

    A 30-tesla magnet design is studied which calls for forced convection liquid neon heat transfer in small coolant channels. The design also requires suppressing boiling by subjecting the fluid to high pressures through use of magnet coils enclosed in a pressure vessel which is maintained at the critical pressure of liquid neon. This high pressure reduces the possibility of the system flow instabilities which may occur at low pressures. The forced convection heat transfer data presented were obtained by using a blowdown technique to force the fluid to flow vertically through a resistance heated, instrumented tube.

  1. Effects of local and global mechanical distortions to hypervelocity boundary layers

    NASA Astrophysics Data System (ADS)

    Flaherty, William P.

    The response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature is examined. Surface heat transfer, visual boundary layer thickness, and pressure sensitive paint (PSP) data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. It is demonstrated that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortical structures to an adverse pressure gradient is investigated. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values, though for higher turning angle cases, a relaxation to below undisturbed values is reported at turning angles between 10 and 15 degrees. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures. PSP measurements indicated that natural streaks form over concave models even when imposed vorticity is present. Correlations found between the heat transfer and natural streak formation are discussed and indicate possible vortex interactions.

  2. Assessment of central haemomodynamics from a brachial cuff in a community setting

    PubMed Central

    2012-01-01

    Background Large artery stiffening and wave reflections are independent predictors of adverse events. To date, their assessment has been limited to specialised techniques and settings. A new, more practical method allowing assessment of central blood pressure from waveforms recorded using a conventional automated oscillometric monitor has recently been validated in laboratory settings. However, the feasibility of this method in a community based setting has not been assessed. Methods One-off peripheral and central haemodynamic (systolic and diastolic blood pressure (BP) and pulse pressure) and wave reflection parameters (augmentation pressure (AP) and index, AIx) were obtained from 1,903 volunteers in an Austrian community setting using a transfer-function like method (ARCSolver algorithm) and from waveforms recorded with a regular oscillometric cuff. We assessed these parameters for known differences and associations according to gender and age deciles from <30 years to >80 years in the whole population and a subset with a systolic BP < 140 mmHg. Results We obtained 1,793 measures of peripheral and central BP, PP and augmentation parameters. Age and gender associations with central haemodynamic and augmentation parameters reflected those previously established from reference standard non-invasive techniques under specialised settings. Findings were the same for patients with a systolic BP below 140 mmHg (i.e. normotensive). Lower values for AIx in the current study are possibly due to differences in sampling rates, detection frequency and/or averaging procedures and to lower numbers of volunteers in younger age groups. Conclusion A novel transfer-function like algorithm, using brachial cuff-based waveform recordings, provides robust and feasible estimates of central systolic pressure and augmentation in community-based settings. PMID:22734820

  3. Attenuation of centre-of-pressure trajectory fluctuations under the prosthetic foot when using an articulating hydraulic ankle attachment compared to fixed attachment.

    PubMed

    De Asha, Alan R; Johnson, Louise; Munjal, Ramesh; Kulkarni, Jai; Buckley, John G

    2013-02-01

    Disruptions to the progress of the centre-of-pressure trajectory beneath prosthetic feet have been reported previously. These disruptions reflect how body weight is transferred over the prosthetic limb and are governed by the compliance of the prosthetic foot device and its ability to simulate ankle function. This study investigated whether using an articulating hydraulic ankle attachment attenuates centre-of-pressure trajectory fluctuations under the prosthetic foot compared to a fixed attachment. Twenty active unilateral trans-tibial amputees completed walking trials at their freely-selected, comfortable walking speed using both their habitual foot with either a rigid or elastic articulating attachment and a foot with a hydraulic ankle attachment. Centre-of-pressure displacement and velocity fluctuations beneath the prosthetic foot, prosthetic shank angular velocity during stance, and walking speed were compared between foot conditions. Use of the hydraulic device eliminated or reduced the magnitude of posteriorly directed centre-of-pressure displacements, reduced centre-of-pressure velocity variability across single-support, increased mean forward angular velocity of the shank during early stance, and increased freely chosen comfortable walking speed (P ≤ 0.002). The attenuation of centre-of-pressure trajectory fluctuations when using the hydraulic device indicated bodyweight was transferred onto the prosthetic limb in a smoother, less faltering manner which allowed the centre of mass to translate more quickly over the foot. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Actuator and aerodynamic modeling for high-angle-of-attack aeroservoelasticity

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1993-01-01

    Accurate prediction of airframe/actuation coupling is required by the imposing demands of modern flight control systems. In particular, for agility enhancement at high angle of attack and low dynamic pressure, structural integration characteristics such as hinge moments, effective actuator stiffness, and airframe/control surface damping can have a significant effect on stability predictions. Actuator responses are customarily represented with low-order transfer functions matched to actuator test data, and control surface stiffness is often modeled as a linear spring. The inclusion of the physical properties of actuation and its installation on the airframe is therefore addressed in this paper using detailed actuator models which consider the physical, electrical, and mechanical elements of actuation. The aeroservoelastic analysis procedure is described in which the actuators are modeled as detailed high-order transfer functions and as approximate low-order transfer functions. The impacts of unsteady aerodynamic modeling on aeroservoelastic stability are also investigated in this paper by varying the order of approximation, or number of aerodynamic lag states, in the analysis. Test data from a thrust-vectoring configuration of an F/A-18 aircraft are compared to predictions to determine the effects on accuracy as a function of modeling complexity.

  5. Actuator and aerodynamic modeling for high-angle-of-attack aeroservoelasticity

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1993-01-01

    Accurate prediction of airframe/actuation coupling is required by the imposing demands of modern flight control systems. In particular, for agility enhancement at high angle of attack and low dynamic pressure, structural integration characteristics such as hinge moments, effective actuator stiffness, and airframe/control surface damping can have a significant effect on stability predictions. Actuator responses are customarily represented with low-order transfer functions matched to actuator test data, and control surface stiffness is often modeled as a linear spring. The inclusion of the physical properties of actuation and its installation on the airframe is therefore addressed using detailed actuator models which consider the physical, electrical, and mechanical elements of actuation. The aeroservoelastic analysis procedure is described in which the actuators are modeled as detailed high-order transfer functions and as approximate low-order transfer functions. The impacts of unsteady aerodynamic modeling on aeroservoelastic stability are also investigated by varying the order of approximation, or number of aerodynamic lag states, in the analysis. Test data from a thrust-vectoring configuration of an F/A-l8 aircraft are compared to predictions to determine the effects on accuracy as a function of modeling complexity.

  6. Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1989-01-01

    The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.

  7. Effects of Consecutive Wideband Tympanometry Trials on Energy Absorbance Measures of the Middle Ear

    ERIC Educational Resources Information Center

    Burdiek, Laina M.; Sun, Xiao-Ming

    2014-01-01

    Purpose: Wideband acoustic immittance (WAI) is a new technique for assessing middle ear transfer function. It includes energy absorbance (EA) measures and can be acquired with the ear canal pressure varied, known as "wideband tympanometry" (WBTymp). The authors of this study aimed to investigate effects of consecutive WBTymp testing on…

  8. Pilot Emergency Tutoring System for F-4 Aircraft Fuel System Malfunction Using Means-Ends Analysis

    DTIC Science & Technology

    1990-06-01

    pulled , and wing transfer pressure is normal. What operator do you choose? For example: type look_at INDICATOR for looked_at(INDICATOR) type set...cb internal wing transfer is pulled , and wing transfer pressure is normal. What operator do you choose? For example: type look_at INDICATOR for...at, external transfer is off, internal wing transfer is stop trans, refuel probe is extended, cb internal wing transfer is pulled ,and wing

  9. Mechanical properties of water-assembled graphene oxide Langmuir monolayers: Guiding controlled transfer

    DOE PAGES

    Harrison, Katharine L.; Biedermann, Laura B.; Zavadil, Kevin R.

    2015-08-24

    Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir–Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10–25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of suchmore » behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. As a result, we hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.« less

  10. Study of low gravity propellant transfer

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented of a program to perform an analytical assessment of potential methods for replenishing the auxiliary propulsion, fuel cell and life support cryogens which may be aboard an orbiting space station. The fluids involved are cryogenic H2, O2, and N2. A complete transfer system was taken to consist of supply storage, transfer, and receiver tank fluid conditioning (pressure and temperature control). In terms of supply storage, the basic systems considered were high pressure (greater than critical), intermediate pressure (less than critical), and modular (transfer of the tanks). Significant findings are included.

  11. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  12. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  13. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  14. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  15. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    NASA Astrophysics Data System (ADS)

    Chen, Yanbin; Lei, Zhenglong; Li, Liqun; Wu, Lin

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and the droplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stable hybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  16. Electrical Resistivity of Wire Arc Sprayed Zn and Cu Coatings for In-Mold-Metal-Spraying

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch; Ochotta, P.

    2018-06-01

    Electrical functionalities can be integrated into plastic parts by integrating thermally sprayed metal coatings into the non-conductive base material. Thermally sprayed conducting tracks for power and signal transmission are one example. In this case, the electrical resistance or resistivity of the coatings should be investigated. Therefore, the electrical resistivity of wire arc sprayed Zn and Cu coatings has been investigated. In case of Zn coatings, spray distance, gas pressure and wire diameter could be identified as significant influencing parameters on the electrical resistivity. In contrast, process gas, gas pressure and voltage do have a significant influence on the electrical resistivity of Cu coatings. Through the use of the In-Mold-Metal-Spraying method (IMMS), thermal degradation can be avoided by transferring thermally sprayed coating from a mold insert onto the plastic part. Therefore, the influence of the transfer process on the electrical resistance of the coatings has also been investigated.

  17. High pressure electrical insulated feed thru connector

    DOEpatents

    Oeschger, Joseph E.; Berkeland, James E.

    1979-11-13

    A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.

  18. Heat transfer and pressure drop measurements in prototypic heat exchanges for the supercritical carbon dioxide Brayton power cycles

    NASA Astrophysics Data System (ADS)

    Kruizenga, Alan Michael

    An experimental facility was built to perform heat transfer and pressure drop measurements in supercritical carbon dioxide. Inlet temperatures ranged from 30--125 °C with mass velocities ranging from 118--1050 kg/m2s and system pressures of 7.5--10.2 MPa. Tests were performed in horizontal, upward, and downward flow conditions to test the influence of buoyancy forces on the heat transfer. Horizontal tests showed that for system pressures of 8.1 MPa and up standard Nusselt correlations predicted the heat transfer behavior with good agreement. Tests performed at 7.5 MPa were not well predicted by existing correlations, due to large property variations. The data collected in this work can be used to better understand heat transfer near the critical point. The CFD package FLUENT was found to yield adequate prediction for the heat transfer behavior for low pressure cases, where standard correlations were inaccurate, however it was necessary to have fine mesh spacing (y+˜1) in order to capture the observed behavior. Vertical tests found, under the test conditions considered, that flow orientation had little or no effect on the heat transfer behavior, even in flow regions where buoyancy forces should result in a difference between up and down flow heat transfer. CFD results found that for a given set of boundary conditions a large increase in the gravitational acceleration could cause noticeable heat transfer deterioration. Studies performed with CFD further led to the hypothesis that typical buoyancy induced heat transfer deterioration exhibited in supercritical flows were mitigated through a complex interaction with the inertial force, which is caused by bulk cooling of the flow. This hypothesis to explain the observed data requires further investigation. Prototypic heat exchangers channels (i.e. zig-zag) proved that the heat transfer coefficient was consistently three to four times higher as compared to straight channel geometry. However, the form pressure loss due to the presence of the corners within the channels caused an increase in pressure drop by four to five times the pressure drop measured in the straight channel. Based on the results, more innovative geometries were recommended for future testing to reduce form losses found in the typical prototypic geometries.

  19. Tethered orbital propellant depot

    NASA Technical Reports Server (NTRS)

    Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.

    1985-01-01

    A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a log tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity given transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.

  20. Estimation of instantaneous heat transfer coefficients for a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Addy, H. E.; Bond, T. H.; Chun, K. S.; Lu, C. Y.

    1987-01-01

    The main objective of this report was to derive equations to estimate heat transfer coefficients in both the combustion chamber and coolant pasage of a rotary engine. This was accomplished by making detailed temperature and pressure measurements in a direct-injection stratified-charge rotary engine under a range of conditions. For each sppecific measurement point, the local physical properties of the fluids were calculated. Then an empirical correlation of the coefficients was derived by using a multiple regression program. This correlation expresses the Nusselt number as a function of the Prandtl number and Reynolds number.

  1. Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback

    PubMed Central

    Just, Armin; Wittmann, Uwe; Ehmke, Heimo; Kirchheim, Hartmut R

    1998-01-01

    The aim of this study was to investigate the autoregulation of renal blood flow under physiological conditions, when challenged by the normal pressure fluctuations, and the contribution of the tubuloglomerular feedback (TGF). The transfer function between 0.0018 and 0.5 Hz was calculated from the spontaneous fluctuations in renal arterial blood pressure (RABP) and renal blood flow (RBF) in conscious resting dogs. The response of RBF to stepwise artificially induced reductions in RABP was also studied (stepwise autoregulation). Under control conditions (n = 12 dogs), the gain of the transfer function started to decrease, indicating improving autoregulation, below 0.06-0.15 Hz (t = 7-17 s). At 0.027 Hz a prominent peak of high gain was found. Below 0.01 Hz (t > 100 s), the gain reached a minimum (maximal autoregulation) of -6.3 ± 0.6 dB. The stepwise autoregulation (n = 4) was much stronger (-19.5 dB). The time delay of the transfer function was remarkably constant from 0.03 to 0.08 Hz (high frequency (HF) range) at 1.7 s and from 0.0034 to 0.01 Hz (low frequency (LF) range) at 14.3 s, respectively. Nifedipine, infused into the renal artery, abolished the stepwise autoregulation (-2.0 ± 1.1 dB, n = 3). The gain of the transfer function (n = 4) remained high down to 0.0034 Hz; in the LF range it was higher than in the control (0.3 ± 1.0 dB, P < 0.05). The time delay in the HF range was reduced to 0.5 s (P < 0.05). After ganglionic blockade (n = 7) no major changes in the transfer function were observed. Under furosemide (frusemide) (40 mg + 10 mg h−1 or 300 mg + 300 mg h−1 i.v.) the stepwise autoregulation was impaired to -7.8 ± 0.3 or -6.7 ± 1.9 dB, respectively (n = 4). In the transfer function (n = 7 or n = 4) the peak at 0.027 Hz was abolished. The delay in the LF range was reduced to -1.1 or -1.6 s, respectively. The transfer gain in the LF range (-5.5 ± 1.2 or -3.8 ± 0.8 dB, respectively) did not differ from the control but was smaller than that under nifedipine (P < 0.05). It is concluded that the ample capacity for regulation of RBF is only partially employed under physiological conditions. The abolition by nifedipine and the negligible effect of ganglionic blockade show that above 0.0034 Hz it is almost exclusively due to autoregulation by the kidney itself. TGF contributes to the maximum autoregulatory capacity, but it is not required for the level of autoregulation expended under physiological conditions. Around 0.027 Hz, TGF even reduces the degree of autoregulation. PMID:9481688

  2. Thermal performance of ethylene glycol based nanofluids in an electronic heat sink.

    PubMed

    Selvakumar, P; Suresh, S

    2014-03-01

    Heat transfer in electronic devices such as micro processors and power converters is much essential to keep these devices cool for the better functioning of the systems. Air cooled heat sinks are not able to remove the high heat flux produced by the today's electronic components. Liquids work better than air in removing heat. Thermal conductivity which is the most essential property of any heat transfer fluid can be enhanced by adding nano scale solid particles which possess higher thermal conductivity than the liquids. In this work the convective heat transfer and pressure drop characteristics of the water/ethylene glycol mixture based nanofluids consisting of Al2O3, CuO nanoparticles with a volume concentration of 0.1% are studied experimentally in a rectangular channel heat sink. The nano particles are characterized using Scanning Electron Microscope and the nannofluids are prepared by using an ultrasonic vibrator and Sodium Lauryl Salt surfactant. The experimental results showed that nanofluids of 0.1% volume concentration give higher convective heat transfer coefficient values than the plain water/ethylene glycol mixture which is prepared in the volume ratio of 70:30. There is no much penalty in the pressure drop values due to the inclusion of nano particles in the water/ethylene glycol mixture.

  3. Condensation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low mass fluxes

    NASA Astrophysics Data System (ADS)

    Kim, Nae-Hyun

    2016-12-01

    R-410A condensation heat transfer and pressure drop data are provided for a 7.0 mm O.D. microfin tube at low mass fluxes (50-250 kg/m2 s). The heat transfer coefficient of the microfin tube shows a minimum behavior with the mass flux. At a low mass flux, where flow pattern is stratified, condensation induced by surface tension by microfins overwhelms condensation induced by shear, and the heat transfer coefficient decreases as mass flux increases. At a high mass flux, where flow pattern is annular, condensation induced by shear governs the heat transfer, and the heat transfer coefficient increases as mass flux increases. The pressure drop of the microfin tube is larger than that of the smooth tube at the annular flow regime. On the contrary, the pressure drop of the smooth tube is larger than that of the microfin tube at the stratified flow regime.

  4. 33 CFR 154.814 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maximum transfer rate determined at the pre-transfer conference required by § 156.120(w) of this chapter... section or a lower pressure agreed upon at the pre-transfer conference required by § 156.120(w) of this... paragraph (b) of this section or a higher pressure agreed upon at the pre-transfer conference required by...

  5. 33 CFR 154.814 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maximum transfer rate determined at the pre-transfer conference required by § 156.120(w) of this chapter... section or a lower pressure agreed upon at the pre-transfer conference required by § 156.120(w) of this... paragraph (b) of this section or a higher pressure agreed upon at the pre-transfer conference required by...

  6. 33 CFR 154.814 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... maximum transfer rate determined at the pre-transfer conference required by § 156.120(w) of this chapter... section or a lower pressure agreed upon at the pre-transfer conference required by § 156.120(w) of this... paragraph (b) of this section or a higher pressure agreed upon at the pre-transfer conference required by...

  7. Mass transfer equation for proteins in very high-pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2009-04-01

    The mass transfer kinetics of human insulin was investigated on a 50 mm x 2.1 mm column packed with 1.7 microm BEH-C(18) particles, eluted with a water/acetonitrile/trifluoroacetic acid (TFA) (68/32/0.1, v/v/v) solution. The different contributions to the mass transfer kinetics, e.g., those of longitudinal diffusion, eddy dispersion, the film mass transfer resistance, cross-particle diffusivity, adsorption-desorption kinetics, and transcolumn differential sorption, were incorporated into a general mass transfer equation designed to account for the mass transfer kinetics of proteins under high pressure. More specifically, this equation includes the effects of pore size exclusion, pressure, and temperature on the band broadening of a protein. The flow rate was first increased from 0.001 to 0.250 mL/min, the pressure drop increasing from 2 to 298 bar, and the column being placed in stagnant air at 296.5 K, in order to determine the effective diffusivity of insulin through the porous particles, the mass transfer rate constants, and the adsorption equilibrium constant in the low-pressure range. Then, the column inlet pressure was increased by using capillary flow restrictors downstream the column, at the constant flow rate of 0.03 mL/min. The column temperature was kept uniform by immersing the column in a circulating water bath thermostatted at 298.7 and 323.15 K, successively. The results showed that the surface diffusion coefficient of insulin decreases faster than its bulk diffusion coefficient with increasing average column pressure. This is consistent with the adsorption energy of insulin onto the BEH-C(18) surface increasing strongly with increasing pressure. In contrast, given the precision of the height equivalent to a theoretical plate (HETP) measurement (+/-12%), the adsorption kinetics of insulin appears to be rather independent of the pressure. On average, the adsorption rate constant of insulin is doubled from about 40 to 80 s(-1) when the temperature increases from 298.7 to 323.15 K.

  8. Solitary traveling wave solutions of pressure equation of bubbly liquids with examination for viscosity and heat transfer

    NASA Astrophysics Data System (ADS)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-03-01

    In this research, we investigate one of the most popular model in nature and also industrial which is the pressure equation of bubbly liquids with examination for viscosity and heat transfer which has many application in nature and engineering. Understanding the physical meaning of exact and solitary traveling wave solutions for this equation gives the researchers in this field a great clear vision of the pressure waves in a mixture liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer and also dynamics of contrast agents in the blood flow at ultrasonic researches. To achieve our goal, we apply three different methods which are extended tanh-function method, extended simple equation method and a new auxiliary equation method on this equation. We obtained exact and solitary traveling wave solutions and we also discuss the similarity and difference between these three method and make a comparison between results that we obtained with another results that obtained with the different researchers using different methods. All of these results and discussion explained the fact that our new auxiliary equation method is considered to be the most general, powerful and the most result-oriented. These kinds of solutions and discussion allow for the understanding of the phenomenon and its intrinsic properties as well as the ease of way of application and its applicability to other phenomena.

  9. Heat transfer and pressure drop of condensation of hydrocarbons in tubes

    NASA Astrophysics Data System (ADS)

    Fries, Simon; Skusa, Severin; Luke, Andrea

    2018-03-01

    The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.

  10. Investigation on heat transfer characteristics and flow performance of Methane at supercritical pressures

    NASA Astrophysics Data System (ADS)

    Xian, Hong Wei; Oumer, A. N.; Basrawi, F.; Mamat, Rizalman; Abdullah, A. A.

    2018-04-01

    The aim of this study is to investigate the heat transfer and flow characteristic of cryogenic methane in regenerative cooling system at supercritical pressures. The thermo-physical properties of supercritical methane were obtained from the National institute of Standards and Technology (NIST) webbook. The numerical model was developed based on the assumptions of steady, turbulent and Newtonian flow. For mesh independence test and model validation, the simulation results were compared with published experimental results. The effect of four different performance parameter ranges namely inlet pressure (5 to 8 MPa), inlet temperature (120 to 150 K), heat flux (2 to 5 MW/m2) and mass flux (7000 to 15000 kg/m2s) on heat transfer and flow performances were investigated. It was found that the simulation results showed good agreement with experimental data with maximum deviation of 10 % which indicates the validity of the developed model. At low inlet temperature, the change of specific heat capacity at near-wall region along the tube length was not significant while the pressure drop registered was high. However, significant variation was observed for the case of higher inlet temperature. It was also observed that the heat transfer performance and pressure drop penalty increased when the mass flux was increased. Regarding the effect of inlet pressure, the heat transfer performance and pressure drop results decreased when the inlet pressure is increased.

  11. Influence of the wetting state of a heated surface on heat transfer and pressure loss in an evaporator tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehler, W; Hein, D

    1986-09-01

    The influence of the wetting state of a heated surface on heat transfer and pressure loss in an evaporator tube was investigated for a parameter range occurring in fossil-fired steam generators. Included in the analysis are quantities which determine the wetting state in steady and transient flow. The experimental work consists of the following: Occurrence of critical heat flux (CHF) and post-CHF heat transfer in a vertical upflow evaporator tube; influence of pressure and enthalpy transients on heat transfer in the unwetted region; influence of pipe orientation on heat transfer; and two phase flow pressure loss in wetted and unwettedmore » region. Based on these experiments a method of predicting CHF for a vertical upflow evaporator tube was developed. The heat transfer in the unwetted region was newly formulated taking into account thermal nonequilibrium between the water and steam phases. Wall temperature excursions during pressure and enthalpy transients are interpreted with the help of the boiling curve and the Leidenfrost phenomenon. A method is developed by means of which it is possible to determine the influence of the pipe orientation on the location of the boiling crisis as well as on the heat transfer in the unwetted region. The influence of the wetting state of the heated surface on the two phase flow pressure loss is interpreted as ''Wall effect'' and is calculated using a simplified computer model. 68 refs., 83 figs.« less

  12. Fluctuating pressures measured beneath a high-temperature, turbulent boundary layer on a flat plate at Mach number of 5

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Albertson, Cindy W.

    1989-01-01

    Fluctuating pressures were measured beneath a Mach 5, turbulent boundary layer on a flat plate with an array of piezoresistive sensors. The data were obtained with a digital signal acquisition system during a test run of 4 seconds. Data sampling rate was such that frequency analysis up to 62.5 kHz could be performed. To assess in situ frequency response of the sensors, a specially designed waveguide calibration system was employed to measure transfer functions of all sensors and related instrumentation. Pressure time histories were approximated well by a Gaussian prohibiting distribution. Pressure spectra were very repeatable over the array span of 76 mm. Total rms pressures ranged from 0.0017 to 0.0046 of the freestream dynamic pressure. Streamwise, space-time correlations exhibited expected decaying behavior of a turbulence generated pressure field. Average convection speed was 0.87 of freestream velocity. The trendless behavior with sensor separation indicated possible systematic errors.

  13. Investigations on cooling with forced flow of He II. Part 2

    NASA Astrophysics Data System (ADS)

    Srinivasan, R.; Hofmann, A.

    The measurements described in Part 1 of this Paper have been extended to a pressure of 7 bar . The value of the conductivity function, f( T), at a temperature greater than Tmax, at which it exhibits a maximum, drops rapidly with increasing pressure. Below Tmax the change in f( T) with pressure is less drastic. The Gorter-Mellink constant, AGM, increases linearly with pressure in the range 1.5-2 K and its pressure coefficient at 1 bar is 0.038 ± 0.01 per bar, independent of temperature. The superfilter is tested at 1.8 K. The flow through the superfilter is Gorter-Mellink flow. The maximum flow rate decreases as the pressure increases. The temperature distribution in the test section with and without flow is adequately described by the one-dimensional model discussed in Part 1. It is concluded that for heat transfer to He II in forced flow there is no advantage in working at pressures > 1 bar. 1 bar = 100 kPa

  14. The relationship between plantar pressure and footprint shape.

    PubMed

    Hatala, Kevin G; Dingwall, Heather L; Wunderlich, Roshna E; Richmond, Brian G

    2013-07-01

    Fossil footprints preserve the only direct evidence of the external foot morphologies and gaits of extinct hominin taxa. However, their interpretation requires an understanding of the complex interaction among foot anatomy, foot function, and soft sediment mechanics. We applied an experimental approach aimed at understanding how one measure of foot function, the distribution of plantar pressure, influences footprint topography. Thirty-eight habitually unshod and minimally shod Daasanach individuals (19 male, 19 female) walked across a pressure pad and produced footprints in sediment directly excavated from the geological layer that preserves 1.5 Ma fossil footprints at Ileret, Kenya. Calibrated pressure data were collected and three-dimensional models of all footprints were produced using photogrammetry. We found significant correlations (Spearman's rank, p < 0.0001) between measurements of plantar pressure distribution and relative footprint depths at ten anatomical regions across the foot. Furthermore, plantar pressure distributions followed a pattern similar to footprint topography, with areas of higher pressure tending to leave deeper impressions. This differs from the results of experimental studies performed in different types of sediment, supporting the hypothesis that sediment type influences the relationship between plantar pressure and footprint topography. Our results also lend support to previous interpretations that the shapes of the Ileret footprints preserve evidence of a medial transfer of plantar pressure during late stance phase, as seen in modern humans. However, the weakness of the correlations indicates that much of the variation in relative depths within footprints is not explained by pressure distributions under the foot when walking on firm ground, using the methods applied here. This warrants caution when interpreting the unique foot anatomies and foot functions of extinct hominins evidenced by their footprint structures. Further research is necessary to clarify how anatomical, functional, and sedimentary variables influence footprint formation and how each can be inferred from footprint morphology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The origin and dynamic evolution of chemical information transfer

    PubMed Central

    Steiger, Sandra; Schmitt, Thomas; Schaefer, H. Martin

    2011-01-01

    Although chemical communication is the most widespread form of communication, its evolution and diversity are not well understood. By integrating studies of a wide range of terrestrial plants and animals, we show that many chemicals are emitted, which can unintentionally provide information (cues) and, therefore, act as direct precursors for the evolution of intentional communication (signals). Depending on the content, design and the original function of the cue, there are predictable ways that selection can enhance the communicative function of chemicals. We review recent progress on how efficacy-based selection by receivers leads to distinct evolutionary trajectories of chemical communication. Because the original function of a cue may channel but also constrain the evolution of functional communication, we show that a broad perspective on multiple selective pressures acting upon chemicals provides important insights into the origin and dynamic evolution of chemical information transfer. Finally, we argue that integrating chemical ecology into communication theory may significantly enhance our understanding of the evolution, the design and the content of signals in general. PMID:21177681

  16. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.

  17. Flow structure, heat transfer and pressure drop in varying aspect ratio two-pass rectangular smooth channels

    NASA Astrophysics Data System (ADS)

    Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V.; Hushmandi, Narmin B.; Fransson, Torsten H.

    2012-05-01

    Two-pass channels are used for internal cooling in a number of engineering systems e.g., gas turbines. Fluid travelling through the curved path, experiences pressure and centrifugal forces, that result in pressure driven secondary motion. This motion helps in moving the cold high momentum fluid from the channel core to the side walls and plays a significant role in the heat transfer in the channel bend and outlet pass. The present study investigates using Computational Fluid Dynamics (CFD), the flow structure, heat transfer enhancement and pressure drop in a smooth channel with varying aspect ratio channel at different divider-to-tip wall distances. Numerical simulations are performed in two-pass smooth channel with aspect ratio Win/H = 1:3 at inlet pass and Wout/H = 1:1 at outlet pass for a variety of divider-to-tip wall distances. The results show that with a decrease in aspect ratio of inlet pass of the channel, pressure loss decreases. The divider-to-tip wall distance (Wel) not only influences the pressure drop, but also the heat transfer enhancement at the bend and outlet pass. With an increase in the divider-to-tip wall distance, the areas of enhanced heat transfer shifts from side walls of outlet pass towards the inlet pass. To compromise between heat transfer and pressure drop in the channel, Wel/H = 0.88 is found to be optimum for the channel under study.

  18. Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    M, Adimurthy; Katti, Vadiraj V.

    2017-02-01

    Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing ( Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio ( l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.

  19. Ionic conduction in sodium azide under high pressure: Experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Wang, Qinglin; Ma, Yanzhang; Sang, Dandan; Wang, Xiaoli; Liu, Cailong; Hu, Haiquan; Wang, Wenjun; Zhang, Bingyuan; Fan, Quli; Han, Yonghao; Gao, Chunxiao

    2018-04-01

    Alkali metal azides can be used as starting materials for the synthesis of polymeric nitrogen, a potential material of high energy density. In this letter, we report the ionic transport behavior in sodium azide under high pressure by in situ impedance spectroscopy and density functional theory calculations. The ionic transportation consists of ion transfer and Warburg diffusion processes. The ionic migration channels and barrier energy were given for the high-pressure phases. The enhanced ionic conductivity of the γ phase with pressure is because of the formation of space charge regions in the grain boundaries. This ionic conduction and grain boundary effect in NaN3 under pressures could shed light on the better understanding of the conduction mechanism of alkali azides and open up an area of research for polymeric nitrogen in these compounds and other high-energy-density polynitrides.

  20. Apparatus and process to eliminate diffusional limitations in a membrane biological reactor by pressure cycling

    DOEpatents

    Efthymiou, George S.; Shuler, Michael L.

    1989-08-29

    An improved multilayer continuous biological membrane reactor and a process to eliminate diffusional limitations in membrane reactors in achieved by causing a convective flux of nutrient to move into and out of an immobilized biocatalyst cell layer. In a pressure cycled mode, by increasing and decreasing the pressure in the respective layers, the differential pressure between the gaseous layer and the nutrient layer is alternately changed from positive to negative. The intermittent change in pressure differential accelerates the transfer of nutrient from the nutrient layers to the biocatalyst cell layer, the transfer of product from the cell layer to the nutrient layer and the transfer of byproduct gas from the cell layer to the gaseous layer. Such intermittent cycling substantially eliminates mass transfer gradients in diffusion inhibited systems and greatly increases product yield and throughput in both inhibited and noninhibited systems.

  1. Numerical investigation of heat transfer in parallel channels with water at supercritical pressure.

    PubMed

    Shitsi, Edward; Kofi Debrah, Seth; Yao Agbodemegbe, Vincent; Ampomah-Amoako, Emmanuel

    2017-11-01

    Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated. An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature) values in the NHT (normal heat transfer), EHT (enhanced heat transfer), DHT (deteriorated heat transfer) and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the same. The numerical study was not quantitatively compared with experimental data along the axial lengths of the parallel channels, but it was observed that the numerical tool STAR-CCM+ adopted was able to capture the trends for NHT, EHT, DHT and recovery from DHT regions. The heating powers used for the various simulations were below the experimentally observed threshold heating powers, but heat transfer deterioration HTD was observed, confirming the previous finding that HTD could occur before the occurrence of unstable behavior at supercritical pressures. For purposes of comparing the results of numerical simulations with experimental data, the heat transfer data on temperature oscillations obtained at the outlet of the heated channels and instability boundary results obtained at the inlet of the heated channels were compared. The numerical results obtained quite well agree with the experimental data. This work calls for provision of experimental data on heat transfer in parallel channels at supercritical pressures for validation of similar numerical studies.

  2. Effect of Reynolds number, turbulence level and periodic wake flow on heat transfer on low pressure turbine blades.

    PubMed

    Suslov, D; Schulz, A; Wittig, S

    2001-05-01

    The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.

  3. Effects of rotation on coolant passage heat transfer. Volume 1: Coolant passages with smooth walls

    NASA Technical Reports Server (NTRS)

    Hajek, T. J.; Wagner, J. H.; Johnson, B. V.; Higgins, A. W.; Steuber, G. D.

    1991-01-01

    An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modern turbine blades. The immediate objective was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. Experiments were conducted in a smooth wall large scale heat transfer model.

  4. Experimental and analytical investigation of direct and indirect noise generated from non-isentropic boundaries

    NASA Astrophysics Data System (ADS)

    de Domenico, Francesca; Rolland, Erwan; Hochgreb, Simone

    2017-11-01

    Pressure fluctuations in combustors arise either directly from the heat release rate perturbations of the flame (direct noise), or indirectly from the acceleration of entropy, vorticity or compositional perturbations through nozzles or turbine guide vanes (indirect noise). In this work, the second mechanism is experimentally investigated in a simplified rig. Synthetic entropy spots are generated via Joule effect or helium injection and then accelerated via orifice plates of different area contraction and thickness. The objective of the study is to parametrically analyse the entropy-to-sound conversion in non isentropic contractions (e.g. with pressure losses), represented by the orifice plates. Acoustic measurements are performed to reconstruct the acoustic and entropic transfer functions of the orifices and compare experimental data with analytical predictions, to investigate the effect of orifice thickness and area ratio on the transfer functions. PIV measurements are performed to study the stretching and dispersion of the entropy waves due to mean flow effects. Secondly, PIV images taken in the jet exiting downstream of the orifices are used to investigate the coupling of the acoustic and entropy fields with the hydrodynamic field. EPRSC, Qualcomm.

  5. Heat-transfer and pressure measurements on a simulated elevon deflected 30 deg near flight conditions at Mach 7

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Taylor, A. H.; Weinstein, I.

    1977-01-01

    Heat transfer rates and pressures were obtained on an elevon plate (deflected 30 deg) and a flat plate upstream of the elevon in an 8 foot high-temperature structures tunnel. The flight Reynolds number and flight total enthalpy for altitudes of 26.8 km and 28.7 km at Mach seven were duplicated. The heat transfer and pressure data were used to establish heating and pressure loads. The measured heating was compared with several theoretical predictions, and the closest agreement obtained with a Schultz-Grunow reference enthalpy method of calculation.

  6. Heat Transfer Enhancement Through Self-Sustained Oscillating Flow in Microchannels

    DTIC Science & Technology

    2006-05-01

    Qu and Mudawar [30]. The numerical results for Nusselt number and pressure drop are in good agreement with the experimental Contract Number: FA8650...500 1000 1500 0 0.2 0.4 0.6 0.8 1 Experiment, Qu and Mudawar (2002) Numerical study, present Figure 28. Comparison of pressure drop between numerical...Mass Transfer, 48, 1688-1704, 2005. [30]. Weilin Qu, Issam Mudawar , Experimental and numerical study of pressure drop and heat transfer in a single

  7. An improved water-filled impedance tube.

    PubMed

    Wilson, Preston S; Roy, Ronald A; Carey, William M

    2003-06-01

    A water-filled impedance tube capable of improved measurement accuracy and precision is reported. The measurement instrument employs a variation of the standardized two-sensor transfer function technique. Performance improvements were achieved through minimization of elastic waveguide effects and through the use of sound-hard wall-mounted acoustic pressure sensors. Acoustic propagation inside the water-filled impedance tube was found to be well described by a plane wave model, which is a necessary condition for the technique. Measurements of the impedance of a pressure-release terminated transmission line, and the reflection coefficient from a water/air interface, were used to verify the system.

  8. Water relations in silver birch during springtime: How is sap pressurised?

    PubMed

    Hölttä, T; Dominguez Carrasco, M D R; Salmon, Y; Aalto, J; Vanhatalo, A; Bäck, J; Lintunen, A

    2018-05-06

    Positive sap pressures are produced in the xylem of birch trees in boreal conditions during the time between the thawing of the soil and bud break. During this period, xylem embolisms accumulated during wintertime are refilled with water. The mechanism for xylem sap pressurization and its environmental drivers are not well known. We measured xylem sap flow, xylem sap pressure, xylem sap osmotic concentration, xylem and whole stem diameter changes, and stem and root non-structural carbohydrate concentrations, along with meteorological conditions at two sites in Finland during and after the sap pressurisation period. The diurnal dynamics of xylem sap pressure and sap flow during the sap pressurisation period varied, but were more often opposite to the diurnal pattern after bud burst, i.e. sap pressure increased and sap flow rate mostly decreased when temperature increased. Net conversion of soluble sugars to starch in the stem and roots occurred during the sap pressurisation period. Xylem sap osmotic pressure was small in comparison to total sap pressure, and it did not follow changes in environmental conditions or tree water relations. Based on these findings, we suggest that xylem sap pressurisation and embolism refilling occur gradually over a few weeks through water transfer from parenchyma cells to xylem vessels during daytime, and then the parenchyma are refilled mostly during nighttime by water uptake from soil. Possible drivers for water transfer from parenchyma cells to vessels are discussed. Also the functioning of thermal dissipation probes in conditions of changing stem water content is discussed. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  9. Heat Transfer Analysis of an Optimized, Flexible Holder System for Freeze-Drying in Dual Chamber Cartridges Using Different State-of-the-Art PAT Tools.

    PubMed

    Korpus, Christoph; Pikal, Michael; Friess, Wolfgang

    2016-11-01

    The aim of this study was to determine the heat transfer characteristics of an optimized flexible holder device, using Tunable Diode Laser Absorption Spectroscopy, the Pressure Rise Test, and the gravimetric procedure. Two different controlled nucleation methods were tested, and an improved sublimation process, "preheated plate," was developed. Tunable Diode Laser Absorption Spectroscopy identified an initial sublimation burst phase. Accordingly, steady-state equations were adapted for the gravimetric procedure, to account for this initial non-steady-state period. The heat transfer coefficient, K DCC , describing the transfer from the holder to the DCC, was the only heat transfer coefficient showing a clear pressure dependence with values ranging from 3.81E-04 cal/(g·cm 2 ·K) at 40 mTorr to 7.38E-04 cal/(g·cm 2 ·K) at 200 mTorr. The heat transfer coefficient, K tot , reflecting the overall energy transfer via the holder, increased by around 24% from 40 to 200 mTorr. This resulted in a pressure-independent sublimation rate of around 42 ± 1.06 mg/h over the whole pressure range. Hence, this pressure-dependent increase in energy transfer completely compensated the decrease in driving force of sublimation. The "flexible holder" shows a substantially reduced impact of atypical radiation, improved drying homogeneity, and ultimately a better transferability of the freeze-drying cycle for process optimization. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Smooth-muscle-specific gene transfer with the human maxi-k channel improves erectile function and enhances sexual behavior in atherosclerotic cynomolgus monkeys.

    PubMed

    Christ, George J; Andersson, Karl-Erik; Williams, Koudy; Zhao, Weixin; D'Agostino, Ralph; Kaplan, Jay; Aboushwareb, Tamer; Yoo, James; Calenda, Giulia; Davies, Kelvin P; Sellers, Rani S; Melman, Arnold

    2009-12-01

    Despite the advent of effective oral therapies for erectile dysfunction (ED), many patients are not successfully treated, and side effects have been documented. To further evaluate the potential utility of naked DNA-based gene transfer as an attractive treatment option for ED. The effects of gene transfer on erectile function and sexual behavior were evaluated in eight male cynomolgus monkeys with ED secondary to moderately severe, diet-induced atherosclerosis. Following establishment of baseline characteristics, animals were subjected to intracavernous injection of a smooth-muscle-specific gene transfer vector (pSMAA-hSlo) encoding the pore-forming subunit of the human large-conductance, calcium-sensitive potassium channel (Maxi-K). For the sexual behavior studies, 2 wk of baseline data were obtained, and then animals were placed in the presence of estrogen-implanted females (n=2) three times per week for 30 min, and sexual behavior was recorded. The intracavernous pressure response to papaverine injection was also monitored. Dramatic changes in erectile function and sexual behavior were observed after intracorporal gene transfer. The frequency of partial (6±2 to 10±2) and full (2±1.5 to 5±1.4) erections were significantly increased, with a parallel 2-3-fold increase in the duration of the observed erections. The frequency and latency of ejaculation were increased and decreased, respectively. Frequency and duration of grooming by the female were increased, and the latency decreased. Increased latency and decreased frequency of body contact was also observed, and this is characteristic of the typical drop in consort intimacy that occurs after mating in most macaque species. In addition, an increased responsiveness to intracavernous papaverine injection was observed. The data indicate that intracorporal Maxi-K-channel gene transfer enhances erectile capacity and sexual behavior; the data imply that increased erectile function per se may lead to increased sexual function.

  11. Estimation of pressure-particle velocity impedance measurement uncertainty using the Monte Carlo method.

    PubMed

    Brandão, Eric; Flesch, Rodolfo C C; Lenzi, Arcanjo; Flesch, Carlos A

    2011-07-01

    The pressure-particle velocity (PU) impedance measurement technique is an experimental method used to measure the surface impedance and the absorption coefficient of acoustic samples in situ or under free-field conditions. In this paper, the measurement uncertainty of the the absorption coefficient determined using the PU technique is explored applying the Monte Carlo method. It is shown that because of the uncertainty, it is particularly difficult to measure samples with low absorption and that difficulties associated with the localization of the acoustic centers of the sound source and the PU sensor affect the quality of the measurement roughly to the same extent as the errors in the transfer function between pressure and particle velocity do. © 2011 Acoustical Society of America

  12. Validation of the plain chest radiograph for epidemiologic studies of airflow obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musk, A.W.

    The chest radiographs of 125 industrial workers from rural New South Wales were examined for overinflated lungs, with and without attenuated midzonal vessels. Although the mean values of a comprehensive range of pulmonary function tests in the whole group were within normal limits, the nine subjects whose radiographs showed overinflated lungs and attenuated vessels had significantly impaired pulmonary function in comparison with 85 subjects with normal radiographs. The mean values for these nine subjects, expressed as a percentage of the mean value for subjects with normal radiographs, were: forced expiratory volume in 1 second, 75%; total lung capacity, 107%; residualmore » volume, 143%; transpulmonary pressure at maximum inspiration, 60%; static deflation compliance, 158%; lung volume at transpulmonary pressure 10 cm H/sub 2/O, 132%; transfer factor, 79%; and transfer factor/alveolar volume, 77%. Similar results were obtained by a second observer. Those subjects with overinflation but no vascular attenuation had significantly larger mean values for vital capacity and alveolar volume but no significant difference in total lung capacity or other tests of the mechanical properties of the lungs. Agreement on the presence of a positive sign between the two observers expressed as a percentage of those considered positive by either was 81% for overinflation and 62% for attenuated midzonal vessels. The results indicate that in groups of subjects with normal-average values of pulmonary function, the plain chest radiograph may provide information concerning pulmonary structure that is reflected in tests of function.« less

  13. Three-Dimensional Unsteady Simulation of Aerodynamics and Heat Transfer in a Modern High Pressure Turbine Stage

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali

    2009-01-01

    Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

  14. Characterisation and optimisation of flexible transfer lines for liquid helium. Part II: Thermohydraulic modelling

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.

    2016-10-01

    In part one of this publication experimental results for a single-channel transfer line used at liquid helium (LHe) decant stations are presented. The transfer of LHe into mobile dewars is an unavoidable process since the places of storage and usage are generally located apart from each other. The experimental results have shown that reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus, generated helium cold gas has to be collected and reliquefied, demanding a huge amount of electrical energy. Although this transfer process is common in cryogenic laboratories, no existing code could be found to model it. Therefore, a thermohydraulic model has been developed to model the LHe flow at operating conditions using published heat transfer and pressure drop correlations. This paper covers the basic equations used to calculate heat transfer and pressure drop, as well as the validation of the thermohydraulic code, and its application within the optimisation process. The final transfer line design features reduced heat leak and pressure drop values based on a combined measurement and modelling campaign in the range of 0.112 < pin < 0.148 MPa, 190 < G < 450 kg/(m2 s), and 0.04 < xout < 0.12.

  15. Pressure losses and heat transfer in non-circular channels with hydraulically smooth walls

    NASA Technical Reports Server (NTRS)

    Malak, J.

    1982-01-01

    The influence of channel geometry on pressure losses and heat transfer in noncircular channels with hydraulically smooth walls was studied. As a basic assumption for the description of this influence, integral geometrical criteria, selected according to experimental experience, were introduced. Using these geometrical criteria, a large set of experimental data for pressure losses and heat transfer in circular and annular channels with longitudinal fins was evaluated. In this way it as empirically proved that the criteria described channel geometry fairly well.

  16. Aerodynamic Heating Computations for Projectiles. Volume 1. In-Depth Heat Conduction Modifications to the ABRES Shape Change Code (BRLASCC)

    DTIC Science & Technology

    1984-06-01

    preceding the corresponding pressure group of the surface thermochemistry deck as described below. The temperature entries within each section must be... pressure group the transfer coefficient values will be ordered. Within each transfer coefficient section, ablation rate entries need not he ordered in any...may not exceed 5 (and may be only I); the number of transfer coefficient values in each pressure group may not exceed 5 but may be only 1. If no

  17. Forced-convection Heat Transfer to Water at High Pressures and Temperatures in the Nonboiling Region

    NASA Technical Reports Server (NTRS)

    Kaufman, S J; Henderson, R W

    1951-01-01

    Forced-convection heat-transfer data have been obtained for water flowing in an electrically heated tube of circular cross section at water pressures of 200 and 2000 pounds per square inch, and temperatures in the nonboiling region, for water velocities ranging between 5 and 25 feet per second. The results indicate that conventional correlations can be used to predict heat-transfer coefficients for water at pressures up to 2000 pounds per square inch and temperatures in the nonboiling region.

  18. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  19. Lunar ash flow with heat transfer.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.

  20. A Space Station tethered orbital refueling facility

    NASA Technical Reports Server (NTRS)

    Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.

    1985-01-01

    A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a long tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity driven transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.

  1. Modeling of Atmospheric Turbulence as Disturbances for Control Design and Evaluation of High Speed Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying integrated couplings between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms. Then a generalized formulation is developed in frequency domain for these scale models that approximates the fractional order with the products of first order transfer functions. Given the parameters describing the conditions of atmospheric disturbances and utilizing the derived formulations, the objective is to directly compute the transfer functions that describe these disturbances for acoustic velocity, temperature, pressure and density. Utilizing these computed transfer functions and choosing the disturbance frequencies of interest, time domain simulations of these representative atmospheric turbulences can be developed. These disturbance representations are then used to first develop considerations for disturbance rejection specifications for the design of the propulsion control system, and then to evaluate the closed-loop performance.

  2. Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2015-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  3. Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  4. Experimental Determination of the Dynamic Hydraulic Transfer Function for the J-2X Oxidizer Turbopump. Part One; Methodology

    NASA Technical Reports Server (NTRS)

    Zoladz, Tom; Patel, Sandeep; Lee, Erik; Karon, Dave

    2011-01-01

    An advanced methodology for extracting the hydraulic dynamic pump transfer matrix (Yp) for a cavitating liquid rocket engine turbopump inducer+impeller has been developed. The transfer function is required for integrated vehicle pogo stability analysis as well as optimization of local inducer pumping stability. Laboratory pulsed subscale waterflow test of the J-2X oxygen turbo pump is introduced and our new extraction method applied to the data collected. From accurate measures of pump inlet and discharge perturbational mass flows and pressures, and one-dimensional flow models that represents complete waterflow loop physics, we are able to derive Yp and hence extract the characteristic pump parameters: compliance, pump gain, impedance, mass flow gain. Detailed modeling is necessary to accurately translate instrument plane measurements to the pump inlet and discharge and extract Yp. We present the MSFC Dynamic Lump Parameter Fluid Model Framework and describe critical dynamic component details. We report on fit minimization techniques, cost (fitness) function derivation, and resulting model fits to our experimental data are presented. Comparisons are made to alternate techniques for spatially translating measurement stations to actual pump inlet and discharge.

  5. Preliminary Design of Critical Function Monitoring System of PGSFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-07-01

    A PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is under development at Korea Atomic Energy Research Institute. A critical function monitoring system of the PGSFR is preliminarily studied. The functions of CFMS are to display critical plant variables related to the safety of the plant during normal and accident conditions and guide the operators corrective actions to keep the plant in a safe condition and mitigate the consequences of accidents. The minimal critical functions of the PGSFR are composed of reactivity control, reactor core cooling, reactor coolant system integrity, primary heat transfer system(PHTS) heat removal, sodium water reaction mitigation, radiation controlmore » and containment conditions. The variables and alarm legs of each critical function of the PGSFR are as follows; - Reactivity control: The variables of reactivity control function are power range neutron flux instrumentation, intermediate range neutron flux instrumentation, source range neutron flux instrumentation, and control rod bottom contacts. The alarm leg to display the reactivity controls consists of status of control drop malfunction, high post trip power and thermal reactivity addition. - Reactor core cooling: The variables are PHTS sodium level, hot pool temperature of PHTS, subassembly exit temperature, cold pool temperature of the PHTS, PHTS pump current, and PHTS pump breaker status. The alarm leg consists of high core delta temperature, low sodium level of the PHTS, high subassembly exit temperature, and low PHTS pump load. - Reactor coolant system integrity: The variables are PHTS sodium level, cover gas pressure, and safeguard vessel sodium level. The alarm leg is composed of low sodium level of PHTS, high cover gas pressure and high sodium level of the safety guard vessel. - PHTS heat removal: The variables are PHTS sodium level, hot pool temperature of PHTS, core exit temperature, cold pool temperature of the PHTS, flow rate of passive residual heat removal system, flow rate of active residual heat removal system, and temperatures of air heat exchanger temperature of residual heat removal systems. The alarm legs are composed of two legs of a 'passive residual heat removal system not cooling' and 'active residual heat removal system not cooling'. - Sodium water reaction mitigation: The variables are intermediate heat transfer system(IHTS) pressure, pressure and temperature and level of sodium dump tank, the status of rupture disk, hydrogen concentration in IHTS and direct variable of sodium-water-reaction measure. The alarm leg consists of high IHTS pressure, the status of sodium water reaction mitigation system and the indication of direct measure. - Radiation control: The variables are radiation of PHTS, radiation of IHTS, and radiation of containment purge. The alarm leg is composed of high radiation of PHTS and IHTS, and containment purge system. - Containment condition: The variables are containment pressure, containment isolation status, and sodium fire. The alarm leg consists of high containment pressure, status of containment isolation and status of sodium fire. (authors)« less

  6. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for quick replacement of the diffuse acoustic field with other pressure field models; for example a turbulent boundary layer (TBL) model suitable for vehicle ascent. Wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this type of environment. Finally, component vibration environments for design were developed from the measured and predicted responses and compared with those derived from traditional techniques such as Barrett scaling methods for unloaded and component-loaded panels.

  7. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses using a TBL model were demonstrated, and wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this environment. Finally, design load factors were developed from the measured and predicted responses and compared with those derived from traditional techniques such as historical Mass Acceleration Curves and Barrett scaling methods for acreage and component-loaded panels.

  8. First-principles study of the structural, elastic, vibrational, thermodynamic and electronic properties of the Mo2B intermetallic under pressure

    NASA Astrophysics Data System (ADS)

    Escamilla, R.; Carvajal, E.; Cruz-Irisson, M.; Romero, M.; Gómez, R.; Marquina, V.; Galván, D. H.; Durán, A.

    2016-12-01

    The structural, elastic, vibrational, thermodynamic and electronic properties of the Mo2B intermetallic under pressure are assessed using first-principles calculations based on the generalized gradient approximation (GGA) proposed by Perdew-Wang (PW91). Our results show that the calculated structural parameters at a pressure of zero GPa are in good agreement with the available experimental data. The effect of high pressures on the lattice constants shows that the compression along the c-axis and along the a-axis are similar. The elastic constants were calculated using the static finite strain technique, and the bulk shear moduli are derived from the ideal polycrystalline aggregate. We find that the elastic constants, elastic modulus and hardness monotonically increase as a function of pressure; consequently, the structure is dynamically stable and tends from brittle to ductile behavior under pressure. The Debye temperature θD increases and the so-called Gru¨ neisen constant γ decreases due to stiffening of the crystal structure. The phonon dispersion curves were obtained using the direct method. Additionally, the internal energy (ΔE), the Helmholtz free energy (ΔF), the entropy (S) and the lattice contribution to the heat capacity Cv were calculated and analyzed with the help of the phonon dispersion curves. The N(EF) and the electron transfer between the B and Mo atoms increase as a function of pressure.

  9. Arterial pulse wave velocity but not augmentation index is associated with coronary artery disease extent and severity: implications for arterial transfer function applicability.

    PubMed

    Hope, Sarah A; Antonis, Paul; Adam, David; Cameron, James D; Meredith, Ian T

    2007-10-01

    The aim of this study was to test the hypothesis that coronary artery disease extent and severity are associated with central aortic pressure waveform characteristics. Although it is thought that central aortic pressure waveform characteristics, particularly augmentation index, may influence cardiovascular disease progression and predict cardiovascular risk, little is known of the relationship between central waveform characteristics and the severity and extent of coronary artery disease. Central aortic waveforms (2F Millar pressure transducer-tipped catheters) were acquired at the time of coronary angiography for suspected native coronary artery disease in 40 patients (24 male). The severity and extent of disease were assessed independently by two observers using two previously described scoring systems (modified Gensini's stenosis and Sullivan's extent scores). Relationships between disease scores, aortic waveform characteristics, aorto-radial pulse wave velocity and subject demographic features were assessed by regression techniques. Both extent and severity scores were associated with increasing age and male sex (P < 0.001), but no other risk factors. Both scores were independently associated with aorto-radial pulse wave velocity (P < 0.001), which entered a multiple regression model prior to age and sex. This association was not dependent upon blood pressure. Neither score was associated with central aortic augmentation index, by either simple or multiple linear regression techniques including heart rate, subject demographic features and cardiovascular risk factors. Aorto-radial pulse wave velocity, but not central aortic augmentation index, is associated with both the extent and severity of coronary artery disease. This has potentially important implications for applicability of a generalized arterial transfer function.

  10. Respiratory modulation of cardiovascular rhythms before and after short-duration human spaceflight.

    PubMed

    Verheyden, B; Beckers, F; Couckuyt, K; Liu, J; Aubert, A E

    2007-12-01

    Astronauts commonly return from space with altered short-term cardiovascular dynamics and blunted baroreflex sensitivity. Although many studies have addressed this issue, post-flight effects on the dynamic circulatory control remain incompletely understood. It is not clear how long the cardiovascular system needs to recover from spaceflight as most post-flight investigations only extended between a few days and 2 weeks. In this study, we examined the effect of short-duration spaceflight (1-2 weeks) on respiratory-mediated cardiovascular rhythms in five cosmonauts. Two paced-breathing protocols at 6 and 12 breaths min(-1) were performed in the standing and supine positions before spaceflight, and after 1 and 25 days upon return. Dynamic baroreflex function was evaluated by transfer function analysis between systolic pressure and the RR intervals. Post-flight orthostatic blood pressure control was preserved in all cosmonauts. In the standing position after spaceflight there was an increase in heart rate (HR) of approx. 20 beats min(-1) or more. Averaged for all five cosmonauts, respiratory sinus dysrhythmia and transfer gain reduced to 40% the day after landing, and had returned to pre-flight levels after 25 days. Low-frequency gain decreased from 6.6 (3.4) [mean (SD)] pre-flight to 3.9 (1.6) post-flight and returned to 5.7 (1.3) ms mmHg(-1) after 25 days upon return to Earth. Unlike alterations in the modulation of HR, blood pressure dynamics were not significantly different between pre- and post-flight sessions. Our results indicate that short-duration spaceflight reduces respiratory modulation of HR and decreases cardiac baroreflex gain without affecting post-flight arterial blood pressure dynamics. Altered respiratory modulation of human autonomic rhythms does not persist until 25 days upon return to Earth.

  11. Prediction of Relaminarization Effects on Turbine Blade Heat Transfer

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Giel, P. W.

    2001-01-01

    An approach to predicting turbine blade heat transfer when turbulent flow relaminarizes due to strong favorable pressure gradients is described. Relaminarization is more likely to occur on the pressure side of a rotor blade. While stators also have strong favorable pressure gradients, the pressure surface is less likely to become turbulent at low to moderate Reynolds numbers. Accounting for the effects of relaminarization for blade heat transfer can substantially reduce the predicted rotor surface heat transfer. This in turn can lead to reduced rotor cooling requirements. Two-dimensional midspan Navier-Stokes analyses were done for each of eighteen test cases using eleven different turbulence models. Results showed that including relaminarization effects generally improved the agreement with experimental data. The results of this work indicate that relatively small changes in rotor shape can be utilized to extend the likelihood of relaminarization to high Reynolds numbers. Predictions showing how rotor blade heat transfer at a high Reynolds number can be reduced through relaminarization are given.

  12. KEY COMPARISON: Final report on Key Comparison APMP.SIM.M.P-K1c: Bilateral comparison between NIST (USA) and NPLI (India) in the pneumatic pressure region 0.4 MPa to 4.0 MPa

    NASA Astrophysics Data System (ADS)

    Driver, R. Gregory; Olson, Douglas A.; Dilawar, Nita; Bandyopadhyay, A. K.

    2007-01-01

    We report the results of a bilateral comparison of pressure measurement between NIST and NPLI using a piston gauge transfer standard (TS), designated as NPLI-4, over the range of nominal applied pressure 0.4 MPa to 4.0 MPa. This TS was cross-floated against the laboratory secondary standard designated as PG13 at NIST, USA and against NPLI-8 at NPLI, India. The nominal pressure points of the bilateral comparison were (0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6 and 4.0) MPa, respectively. The comparison was performed in both the institutes in identical pressure cycles in increasing pressures. The comparison data were analysed in terms of the effective area [Ap (mm2)] as a function pressure [p (MPa)] of the TS at the above-mentioned pressures. We have also estimated the zero-pressure effective area [A0 (mm2)] and the pressure distortion coefficient [λ (MPa-1)] of the transfer standard. The consistency of the results at every pressure in the range indicates that the laboratory standards used in this comparison are compatible, uniform and can be considered traceable to each other. Finally, the degree of equivalence between NPLI and NIST is 11.4 × 10-6 or better, which is always less than the relative standard uncertainty of the difference (33.6 × 10-6). Main text. To reach the main text of this Paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  13. Horizontally transferred genes in the genome of Pacific white shrimp, Litopenaeus vannamei

    PubMed Central

    2013-01-01

    Background In recent years, as the development of next-generation sequencing technology, a growing number of genes have been reported as being horizontally transferred from prokaryotes to eukaryotes, most of them involving arthropods. As a member of the phylum Arthropoda, the Pacific white shrimp Litopenaeus vannamei has to adapt to the complex water environments with various symbiotic or parasitic microorganisms, which provide a platform for horizontal gene transfer (HGT). Results In this study, we analyzed the genome-wide HGT events in L. vannamei. Through homology search and phylogenetic analysis, followed by experimental PCR confirmation, 14 genes with HGT event were identified: 12 of them were transferred from bacteria and two from fungi. Structure analysis of these genes showed that the introns of the two fungi-originated genes were substituted by shrimp DNA fragment, two genes transferred from bacteria had shrimp specific introns inserted in them. Furthermore, around other three bacteria-originated genes, there were three large DNA segments inserted into the shrimp genome. One segment was a transposon that fully transferred, and the other two segments contained only coding regions of bacteria. Functional prediction of these 14 genes showed that 6 of them might be related to energy metabolism, and 4 others related to defense of the organism. Conclusions HGT events from bacteria or fungi were happened in the genome of L. vannamei, and these horizontally transferred genes can be transcribed in shrimp. This is the first time to report the existence of horizontally transferred genes in shrimp. Importantly, most of these genes are exposed to a negative selection pressure and appeared to be functional. PMID:23914989

  14. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  15. Hyperion 5113/GP Infrasound Sensor Evaluation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.

    2015-08-01

    Sandia National Laboratories has tested and evaluated an infrasound sensor, the 5113/GP manufactured by Hyperion. These infrasound sensors measure pressure output by a methodology developed by the University of Mississippi. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, dynamic range, and seismic sensitivity. These sensors are being evaluated prior to deployment by the U.S. Air Force.

  16. [Correlation of molecular weight and nanofiltration mass transfer coefficient of phenolic acid composition from Salvia miltiorrhiza].

    PubMed

    Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping

    2018-04-01

    Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.

  17. The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel

    NASA Astrophysics Data System (ADS)

    Alrashed, Abdullah A. A. A.; Akbari, Omid Ali; Heydari, Ali; Toghraie, Davood; Zarringhalam, Majid; Shabani, Gholamreza Ahmadi Sheikh; Seifi, Ali Reza; Goodarzi, Marjan

    2018-05-01

    In recent years, the study of rheological behavior and heat transfer of nanofluids in the industrial equipment has become widespread among the researchers and their results have led to great advancements in this field. In present study, the laminar flow and heat transfer of water/functional multi-walled carbon nanotube nanofluid have been numerically investigated in weight percentages of 0.00, 0.12 and 0.25 and Reynolds numbers of 1-150 by using finite volume method (FVM). The analyzed geometry is a two-dimensional backward-facing contracting channel and the effects of various weight percentages and Reynolds numbers have been studied in the supposed geometry. The results have been interpreted as the figures of Nusselt number, friction coefficient, pressure drop, velocity contours and static temperature. The results of this research indicate that, the enhancement of Reynolds number or weight percentage of nanoparticles causes the reduction of surface temperature and the enhancement of heat transfer coefficient. By increasing Reynolds number, the axial velocity enhances, causing the enhancement of momentum. By increasing fluid momentum at the beginning of channel, especially in areas close to the upper wall, the axial velocity reduces and the possibility of vortex generation increases. The mentioned behavior causes a great enhancement in velocity gradients and pressure drop at the inlet of channel. Also, in these areas, Nusselt number and local friction coefficient figures have a relative decline, which is due to the sudden reduction of velocity. In general, by increasing the mass fraction of solid nanoparticles, the average Nusselt number increases and in Reynolds number of 150, the enhancement of pumping power and pressure drop does not cause any significant changes. This behavior is an important advantage of choosing nanofluid which causes the enhancement of thermal efficiency.

  18. Graphene-based inline pressure sensor integrated with microfluidic elastic tube

    NASA Astrophysics Data System (ADS)

    Inoue, Nagisa; Onoe, Hiroaki

    2018-01-01

    We propose an inline pressure sensor composed of a polydimethylsiloxane (PDMS) microfluidic tube integrated with graphene sheets. The PDMS tube was fabricated through molding, and a multilayered graphene sheet was transferred on the surface of the PDMS tube. The pressure inside the tube was monitored using the changes in the electrical resistance of the transferred graphene. The proposed pressure sensor could be suitable for precise pressure measurement for a small amount of fluid in microfluidic systems including organ-on-a-chip devices.

  19. Heat transfer deterioration in tubes caused by bulk flow acceleration due to thermal and frictional influences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J. D.

    2012-07-01

    Severe deterioration of forced convection heat transfer can be encountered with compressible fluids flowing through strongly heated tubes of relatively small bore as the flow accelerates and turbulence is reduced because of the fluid density falling (as the temperature rises and the pressure falls due to thermal and frictional influence). The model presented here throws new light on how the dependence of density on both temperature and pressure can affect turbulence and heat transfer and it explains why the empirical equations currently available for calculating effectiveness of forced convection heat transfer under conditions of strong non-uniformity of fluid properties sometimesmore » fail to reproduce observed behaviour. It provides a criterion for establishing the conditions under which such deterioration of heat transfer might be encountered and enables heat transfer coefficients to be determined when such deterioration occurs. The analysis presented here is for a gaseous fluid at normal pressure subjected strong non-uniformity of fluid properties by the application of large temperature differences. Thus the model leads to equations which describe deterioration of heat transfer in terms of familiar parameters such as Mach number, Reynolds number and Prandtl number. It is applicable to thermal power plant systems such as rocket engines, gas turbines and high temperature gas-cooled nuclear reactors. However, the ideas involved apply equally well to fluids at supercritical pressure. Impairment of heat transfer under such conditions has become a matter of growing interest with the active consideration now being given to advanced water-cooled nuclear reactors designed to operate at pressures above the critical value. (authors)« less

  20. The interaction between practice and performance pressure on the planning and control of fast target directed movement.

    PubMed

    Allsop, Jonathan E; Lawrence, Gavin P; Gray, Robert; Khan, Michael A

    2017-09-01

    Pressure to perform often results in decrements to both outcome accuracy and the kinematics of motor skills. Furthermore, this pressure-performance relationship is moderated by the amount of accumulated practice or the experience of the performer. However, the interactive effects of performance pressure and practice on the underlying processes of motor skills are far from clear. Movement execution involves both an offline pre-planning process and an online control process. The present experiment aimed to investigate the interaction between pressure and practice on these two motor control processes. Two groups of participants (control and pressure; N = 12 and 12, respectively) practiced a video aiming amplitude task and were transferred to either a non-pressure (control group) or a pressure condition (pressure group) both early and late in practice. Results revealed similar accuracy and movement kinematics between the control and pressure groups at early transfer. However, at late transfer, the introduction of pressure was associated with increased performance compared to control conditions. Analysis of kinematic variability throughout the movement suggested that the performance increase was due to participants adopting strategies to improve movement planning in response to pressure reducing the effectiveness of the online control system.

  1. Afferent renal denervation impairs baroreflex control of efferent renal sympathetic nerve activity.

    PubMed

    Kopp, Ulla C; Jones, Susan Y; DiBona, Gerald F

    2008-12-01

    Increasing efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which decreases ERSNA to prevent sodium retention. High-sodium diet enhances ARNA, suggesting an important role for ARNA in suppressing ERSNA during excess sodium intake. Mean arterial pressure (MAP) is elevated in afferent renal denervated by dorsal rhizotomy (DRX) rats fed high-sodium diet. We examined whether the increased MAP in DRX is due to impaired arterial baroreflex function. In DRX and sham DRX rats fed high-sodium diet, arterial baroreflex function was determined in conscious rats by intravenous nitroprusside and phenylephrine or calculation of transfer function gain from arterial pressure to ERSNA (spontaneous baroreflex sensitivity). Increasing MAP did not suppress ERSNA to the same extent in DRX as in sham DRX, -60 +/- 4 vs. -77 +/- 6%. Maximum gain, -4.22 +/- 0.45 vs. -6.04 +/- 0.90% DeltaERSNA/mmHg, and the maximum value of instantaneous gain, -4.19 +/- 0.45 vs. -6.04 +/- 0.81% DeltaERSNA/mmHg, were less in DRX than in sham DRX. Likewise, transfer function gain was lower in DRX than in sham DRX, 3.9 +/- 0.2 vs. 6.1 +/- 0.5 NU/mmHg. Air jet stress produced greater increases in ERSNA in DRX than in sham DRX, 35,000 +/- 4,900 vs. 20,900 +/- 3,410%.s (area under the curve). Likewise, the ERSNA responses to thermal cutaneous stimulation were greater in DRX than in sham DRX. These studies suggest impaired arterial baroreflex suppression of ERSNA in DRX fed high-sodium diet. There were no differences in arterial baroreflex function in DRX and sham DRX fed normal-sodium diet. Impaired arterial baroreflex function contributes to increased ERSNA, which would eventually lead to sodium retention and increased MAP in DRX rats fed high-sodium diet.

  2. Momentum and energy dependent resolution function of the ARCS neutron chopper spectrometer at high momentum transfer: Comparing simulation and experiment

    NASA Astrophysics Data System (ADS)

    Diallo, S. O.; Lin, J. Y. Y.; Abernathy, D. L.; Azuah, R. T.

    2016-11-01

    Inelastic neutron scattering at high momentum transfers (i.e. Q ≥ 20 A ˚), commonly known as deep inelastic neutron scattering (DINS), provides direct observation of the momentum distribution of light atoms, making it a powerful probe for studying single-particle motions in liquids and solids. The quantitative analysis of DINS data requires an accurate knowledge of the instrument resolution function Ri(Q , E) at each momentum Q and energy transfer E, where the label i indicates whether the resolution was experimentally observed i = obs or simulated i=sim. Here, we describe two independent methods for determining the total resolution function Ri(Q , E) of the ARCS neutron instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. The first method uses experimental data from an archetypical system (liquid 4He) studied with DINS, which are then numerically deconvoluted using its previously determined intrinsic scattering function to yield Robs(Q , E). The second approach uses accurate Monte Carlo simulations of the ARCS spectrometer, which account for all instrument contributions, coupled to a representative scattering kernel to reproduce the experimentally observed response S(Q , E). Using a delta function as scattering kernel, the simulation yields a resolution function Rsim(Q , E) with comparable lineshape and features as Robs(Q , E), but somewhat narrower due to the ideal nature of the model. Using each of these two Ri(Q , E) separately, we extract characteristic parameters of liquid 4He such as the intrinsic linewidth α2 (which sets the atomic kinetic energy 〈 K 〉 ∼α2) in the normal liquid and the Bose-Einstein condensate parameter n0 in the superfluid phase. The extracted α2 values agree well with previous measurements at saturated vapor pressure (SVP) as well as at elevated pressure (24 bars) within experimental precision, independent of which Ri(Q , y) is used to analyze the data. The actual observed n0 values at each Q vary little with the model Ri(Q , E), and the effective Q-averaged n0 values are consistent with each other, and with previously reported values.

  3. Rational functional representation of flap noise spectra including correction for reflection effects

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1974-01-01

    A rational function is presented for the acoustic spectra generated by deflection of engine exhaust jets for under-the-wing and over-the-wing versions of externally blown flaps. The functional representation is intended to provide a means for compact storage of data and for data analysis. The expressions are based on Fourier transform functions for the Strouhal normalized pressure spectral density, and on a correction for reflection effects based on Thomas' (1969) N-independent-source model extended by use of a reflected ray transfer function. Curve fit comparisons are presented for blown-flap data taken from turbofan engine tests and from large-scale cold-flow model tests. Application of the rational function to scrubbing noise theory is also indicated.

  4. Fundamental study of transpiration cooling. [pressure drop and heat transfer data from porous metals

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Dutton, J. L.; Benson, B. A.

    1973-01-01

    Isothermal and non-isothermal pressure drop data and heat transfer data generated on porous 304L stainless steel wire forms, sintered spherical stainless steel powder, and sintered spherical OFHC copper powder are reported and correlated. Pressure drop data was collected over a temperature range from 500 R to 2000 R and heat transfer data collected over a heat flux range from 5 to 15 BTU/in2/sec. It was found that flow data could be correlated independently of transpirant temperature and type (i.e., H2, N2). It was also found that no simple relation between heat transfer coefficient and specimen porosity was obtainable.

  5. Hot granules medium pressure forming process of AA7075 conical parts

    NASA Astrophysics Data System (ADS)

    Dong, Guojiang; Zhao, Changcai; Peng, Yaxin; Li, Ying

    2015-05-01

    High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing flexible mould forming process, the heat resistance of the medium and pressurizing device makes the application of aluminum alloy plate thermoforming restricted. To solve this problem, the existing medium is replaced by the heat-resisting solid granules and the general pressure equipments are applied. Based on the pressure-transfer performance test of the solid granules medium, the feasibility that the assumption of the extended Drucker-Prager linear model can be used in the finite element analysis is proved. The constitutive equation, the yield function and the theoretical forming limit diagram(FLD) of AA7075 sheet are established. Through the finite element numerical simulation of hot granules medium pressure forming(HGMF) process, not only the influence laws of the process parameters, such as forming temperature, the blank-holder gap and the diameter of the slab, on sheet metal forming performance are discussed, but also the broken area of the forming process is analyzed and predicted, which are coincided with the technological test. The conical part whose half cone angle is 15° and relative height H/d 0 is 0.57, is formed in one process at 250°C. The HGMF process solves the problems of loading and seal in the existing flexible mould forming process and provides a novel technology for thermoforming of light alloy plate, such as magnesium alloy, aluminium alloy and titanium alloy.

  6. Transport Mechanisms and Quality Changes During Frying of Chicken Nuggets--Hybrid Mixture Theory Based Modeling and Experimental Verification.

    PubMed

    Bansal, Harkirat S; Takhar, Pawan S; Alvarado, Christine Z; Thompson, Leslie D

    2015-12-01

    Hybrid mixture theory (HMT) based 2-scale fluid transport relations of Takhar coupled with a multiphase heat transfer equation were solved to model water, oil and gas movement during frying of chicken nuggets. A chicken nugget was treated as a heterogeneous material consisting of meat core with wheat-based coating. The coupled heat and fluid transfer equations were solved using the finite element method. Numerical simulations resulted in data on spatial and temporal profiles for moisture, rate of evaporation, temperature, oil, pore pressure, pressure in various phases, and coefficient of elasticity. Results showed that most of the oil stayed in the outer 1.5 mm of the coating region. Temperature values greater than 100 °C were observed in the coating after 30 s of frying. Negative gage-pore pressure (p(w) < p(g)) magnitudes were observed in simulations, which is in agreement with experimental observations of Sandhu and others. It is hypothesized that high water-phase capillary pressure (p(c) > p(g)) in the hydrophilic matrix causes p(w) < p(g), which further results in negative pore pressure. The coefficient of elasticity was the highest at the surface (2.5 × 10(5) Pa) for coating and the interface of coating and core (6 × 10(5) Pa). Kinetics equation for color change obtained from experiments was coupled with the HMT based model to predict the color (L, a, and b) as a function of frying time. © 2015 Institute of Food Technologists®

  7. Thermal separation of soil particles from thermal conductivity measurement under various air pressures.

    PubMed

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-05

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  8. Three-Dimensional Unsteady Simulation of a Modern High Pressure Turbine Stage Using Phase Lag Periodicity: Analysis of Flow and Heat Transfer

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Luk, Daniel F.; Chen, Jen-Ping

    2010-01-01

    Unsteady three-dimensional RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as experiment. A low Reynolds number k- turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the periodic direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this paper is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

  9. Competitive photocyclization/rearrangement of 4-aryl-1,1-dicyanobutenes controlled by intramolecular charge-transfer interaction. Effect of medium polarity, temperature, pressure, excitation wavelength, and confinement.

    PubMed

    Ito, Tadashi; Nishiuchi, Emi; Fukuhara, Gaku; Inoue, Yoshihisa; Mori, Tadashi

    2011-09-01

    A series of 4-aryl-1,1-dicyanobutenes (1a-1f) with different substituents were synthesized to control the intramolecular donor-acceptor or charge-transfer (C-T) interactions in the ground state. Photoexcitation of these C-T substrates led to competitive cyclization and rearrangement, the ratio being critically controlled by various environmental factors, such as solvent polarity, temperature and static pressure, and also by excitation wavelength and supramolecular confinement (polyethylene voids). In non-polar solvents, the rearrangement was dominant (>10 : 1) for all examined substrates, while the cyclization was favoured in polar solvents, in particular at low temperatures. Selective excitation at the C-T band further enhanced the cyclization up to >50 : 1 ratios. More importantly, the cyclization/rearrangement ratio was revealed to be a linear function of the C-T transition energy. However, the substrates with a sterically demanding or highly electron-donating substituent failed to give the cyclization product.

  10. Some people move it, move it… for pressure injury prevention.

    PubMed

    Sonenblum, Sharon E; Sprigle, Stephen H

    2018-01-01

    To describe differences in in-seat behavior observed between individuals with a spinal cord injury (SCI) with and without a history of recurrent pressure injuries. Cross-sectional cohort study. General community. Twenty-nine adults more than 2 years post SCI, who used a wheelchair as their primary mobility device and had the ability to independently perform weight shift maneuvers. Participants were grouped according to whether or not they had a history of recurrent pressure injuries (PrIs), with 12 subjects having had two or more pressure injuries in the pelvic area (PrI Group). Not applicable. Daily time in wheelchair, number of transfers, and frequency of pressure reliefs (full unloading), weight shifts (30% load reduction), and in-seat movements (transient center of pressure movements or unloading). The median participant spent 10.3 hours in his wheelchair and performed 16 transfers to or from the wheelchair daily. Pressure reliefs were performed less than once every 3 hours in both groups. Weight shifts were performed significantly more often by the No PrI Group (median (interquartile range) 2.5 (1.0-3.6) per hour) than the PrI Group (1.0 (0.4-1.9), with P = 0.037 and effect size r = 0.39). In-seat movements were performed 46.5 (28.7-76.7) times per hour by the No PrI group and 39.6 (24.3-49.7) times per hour for the PrI group (P = 0.352, effect size r = 0.17). Weight shifts that can be produced by functional activities and that partially unload the buttocks should be considered as an important addition to individuals' PrI prevention regimen.

  11. Experimental and Theoretical Investigations on d and f Electron Systems under High Pressure

    NASA Astrophysics Data System (ADS)

    Gupta, Satish C.; Joshi, K. D.; Banerjee, S.

    2008-07-01

    The pressure-induced electron transfer from sp to d band in transition elements, and spd to f band in the light actinides significantly influences the stability of crystal structures in these metals. Although α → ω → β phase transition with increasing pressure in group IV transition elements is well documented, the β → ω transition under pressure has not been reported until recently. Our experimental study on the β-stabilized Zr-20Nb alloy reveals that it transforms to ω phase on shock compression, whereas this transition is not seen in a hydrostatic pressure condition. The platelike morphology of ω formed under shock compression is in contrast to the fine particle morphology seen in this system under thermal treatment, which clearly indicates that the mechanism of the β → ω transformation under shock treatment involves a large shear component. In this article, we have analyzed why the ω → β transition pressures in Ti, Zr, and Hf do not follow the trend implied by the principle of corresponding states. Our analysis shows that the ω → β transition depends on how the increased d population caused by the sp → d transfer of electron is distributed among various d substates. In Th, we have analyzed the role of 5f electrons in determining the mechanical stability of fcc and bct structures under hydrostatic compressions. Our analysis shows that the fcc to bct transition in this metal, which has been reported by high-pressure experiments, occurs because of softening of the tetragonal shear modulus C' = ( C 11 - C 12)/2 under compression. From the total energy calculated as a function of specific volume, we have determined the 0 K isotherm, which is then used to deduce the shock Hugoniot. The theoretical Hugoniot compares well with the experimental data.

  12. Dynamic tire pressure sensor for measuring ground vibration.

    PubMed

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  13. Adaptive Working Memory Training Reduces the Negative Impact of Anxiety on Competitive Motor Performance.

    PubMed

    Ducrocq, Emmanuel; Wilson, Mark; Smith, Tim J; Derakshan, Nazanin

    2017-12-01

    Optimum levels of attentional control are essential to prevent athletes from experiencing performance breakdowns under pressure. The current study explored whether training attentional control using the adaptive dual n-back paradigm, designed to directly target processing efficiency of the main executive functions of working memory (WM), would result in transferrable effects on sports performance outcomes. A total of 30 tennis players were allocated to an adaptive WM training or active control group and underwent 10 days of training. Measures of WM capacity as well as performance and objective gaze indices of attentional control in a tennis volley task were assessed in low- and high-pressure posttraining conditions. Results revealed significant benefits of training on WM capacity, quiet eye offset, and tennis performance in the high-pressure condition. Our results confirm and extend previous findings supporting the transfer of cognitive training benefits to objective measures of sports performance under pressure.

  14. Dynamic Tire Pressure Sensor for Measuring Ground Vibration

    PubMed Central

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L.

    2012-01-01

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application. PMID:23202206

  15. NASA Glenn Icing Research Tunnel: 2014 Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith F.; Ide, Robert F.; Steen, Laura E.; Acosta, Waldo J.

    2014-01-01

    The results of the December 2013 to February 2014 Icing Research Tunnel full icing cloud calibration are presented. The calibration steps included establishing a uniform cloud and conducting drop size and liquid water content calibrations. The goal of the calibration was to develop a uniform cloud, and to generate a transfer function from the inputs of air speed, spray bar atomizing air pressure and water pressure to the outputs of median volumetric drop diameter and liquid water content. This was done for both 14 CFR Parts 25 and 29, Appendix C ('typical' icing) and soon-to-be released Appendix O (supercooled large drop) conditions.

  16. Hydro-isomerization of n-hexane on bi-functional catalyst: Effect of total and hydrogen partial pressures

    NASA Astrophysics Data System (ADS)

    Thoa, Dao Thi Kim; Loc, Luu Cam

    2017-09-01

    The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.

  17. Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

    2002-08-01

    A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numericalmore » modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.« less

  18. Exergoeconomic analysis and optimization of an evaporator for a binary mixture of fluids in an organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Li, You-Rong; Du, Mei-Tang; Wang, Jian-Ning

    2012-12-01

    This paper focuses on the research of an evaporator with a binary mixture of organic working fluids in the organic Rankine cycle. Exergoeconomic analysis and performance optimization were performed based on the first and second laws of thermodynamics, and the exergoeconomic theory. The annual total cost per unit heat transfer rate was introduced as the objective function. In this model, the exergy loss cost caused by the heat transfer irreversibility and the capital cost were taken into account; however, the exergy loss due to the frictional pressure drops, heat dissipation to surroundings, and the flow imbalance were neglected. The variation laws of the annual total cost with respect to the number of transfer units and the temperature ratios were presented. Optimal design parameters that minimize the objective function had been obtained, and the effects of some important dimensionless parameters on the optimal performances had also been discussed for three types of evaporator flow arrangements. In addition, optimal design parameters of evaporators were compared with those of condensers.

  19. Radiative Heat Transfer and Turbulence-Radiation Interactions in a Heavy-Duty Diesel Engine

    NASA Astrophysics Data System (ADS)

    Paul, C.; Sircar, A.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.

    2016-11-01

    Radiation in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method. DOE, NSF.

  20. Radiative Heat Transfer modelling in a Heavy-Duty Diesel Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Chandan; Sircar, Arpan; Ferreyro-Fernandez, Sebastian

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for amore » heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.« less

  1. Prevention of Over-Pressurization During Combustion in a Sealed Chamber

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Niehaus, Justin E.; Olson, Sandra L.; Dietrich, Daniel L.; Ruff, Gary A.; Johnston, Michael C.

    2012-01-01

    The combustion of flammable material in a sealed chamber invariably leads to an initial pressure rise in the volume. The pressure rise is due to the increase in the total number of gaseous moles (condensed fuel plus chamber oxygen combining to form gaseous carbon dioxide and water vapor) and, most importantly, the temperature rise of the gas in the chamber. Though the rise in temperature and pressure would reduce with time after flame extinguishment due to the absorption of heat by the walls and contents of the sealed spacecraft, the initial pressure rise from a fire, if large enough, could lead to a vehicle over-pressure and the release of gas through the pressure relief valve. This paper presents a simple lumped-parameter model of the pressure rise in a sealed chamber resulting from the heat release during combustion. The transient model considers the increase in gaseous moles due to combustion, and heat transfer to the chamber walls by convection and radiation and to the fuel-sample holder by conduction, as a function of the burning rate of the material. The results of the model are compared to the pressure rise in an experimental chamber during flame spread tests as well as to the pressure falloff after flame extinguishment. The experiments involve flame spread over thin solid fuel samples. Estimates of the heat release rate profiles for input to the model come from the assumed stoichiometric burning of the fuel along with the observed flame spread behavior. The sensitivity of the model to predict maximum chamber pressure is determined with respect to the uncertainties in input parameters. Model predictions are also presented for the pressure profile anticipated in the Fire Safety-1 experiment, a material flammability and fire safety experiment proposed for the European Space Agency (ESA) Automated Transfer Vehicle (ATV). Computations are done for a range of scenarios including various initial pressures and sample sizes. Based on these results, various mitigation approaches are suggested to prevent vehicle over-pressurization and help guide the definition of the space experiment.

  2. On the correlation of buoyancy-influenced turbulent convective heat transfer to fluids at supercritical pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J. D.; Jiang, P. X.; Liu, B.

    2012-07-01

    This paper is concerned with buoyancy-influenced turbulent convective heat transfer in vertical tubes for conditions where the physical properties vary strongly with temperature as in fluids at supercritical pressure in the pseudocritical temperature region. An extended physically-based, semi-empirical model is described which has been developed to account for the extreme non-uniformity of properties which can be present in such fluids and lead to strong influences of buoyancy which cause the mean flow and turbulence fields to be modified in such a manner that has a very profound effect on heat transfer. Data for both upward and downward flow from experimentsmore » using carbon dioxide at supercritical pressure (8.80, MPa, p/pc=1.19) in a uniformly heated tube of internal diameter 2 mm and length 290 mm, obtained under conditions of strong non-uniformity of fluid properties, are being correlated and fitted using an approach based on the model. It provides a framework for describing the complex heat transfer behaviour which can be encountered in such experiments by means of an equation of simple form. Buoyancy-induced impairment and enhancement of heat transfer is successfully reproduced by the model. Similar studies are in progress using experimental data for both carbon dioxide and water from other sources. The aim is to obtain an in-depth understanding of the mechanisms by which deterioration of heat transfer might arise in sensitive applications involving supercritical pressure fluids, such as high pressure, water-cooled reactors operating above the critical pressure. (authors)« less

  3. Polysulfone coating for hollow fiber artificial lungs operated at hypobaric and hyperbaric pressures.

    PubMed

    High, K M; Snider, M T; Panol, G R; Richard, R B; Gray, D N

    1996-01-01

    Carbon dioxide transfer is increased when the gas phase of a hollow fiber membrane lung is operated at hypobaric pressures. Oxygen transfer is augmented by hyperbaric pressures. However, uncoated hollow fibers transmit gas bubbles into the blood when operated at a pressure greater than 800 mmHg and may have increased plasma leakage when operated at hypobaric pressures. Ultrathin polymer coatings may avoid this problem while reducing thrombogenicity. The authors coated microporous polypropylene hollow fibers with 380 microns outer diameter and 50 microns walls using 1, 2, 3, and 4% solutions of polysulfone in tetrahydrofuran by dipping or continuous pull through. These fibers were mounted in small membrane lung prototypes having surface areas of 70 and 187 cm2. In gas-to-gas testing, the longer the exposure time to the solution and the greater the polymer concentration, the less the permeation rate. The 3% solutions blocked bulk gas flow. The coating was 1 micron thick by mass balance calculations. During water-to-gas tests, hypobaric gas pressures of 40 mmHg absolute were tolerated, but CO2 transfer was reduced to 40% of the bare fibers. Hyperbaric gas pressures of 2,100 mmHg absolute tripled O2 transfer without bubble formation.

  4. Condensation heat transfer correlation for water-ethanol vapor mixture flowing through a plate heat exchanger

    NASA Astrophysics Data System (ADS)

    Zhou, Weiqing; Hu, Shenhua; Ma, Xiangrong; Zhou, Feng

    2018-04-01

    Condensation heat transfer coefficient (HTC) as a function of outlet vapor quality was investigated using water-ethanol vapor mixture of different ethanol vapor concentrations (0%, 1%, 2%, 5%, 10%, 20%) under three different system pressures (31 kPa, 47 kPa, 83 kPa). A heat transfer coefficient was developed by applying multiple linear regression method to experimental data, taking into account the dimensionless numbers which represents the Marangoni condensation effects, such as Re, Pr, Ja, Ma and Sh. The developed correlation can predict the condensation performance within a deviation range from -22% to 32%. Taking PHE's characteristic into consideration and bringing in Ma number and Sh number, a new correlation was developed, which showed a much more accurate prediction, within a deviation from -3.2% to 7.9%.

  5. Transferable Calibration Standard Developed for Quantitative Raman Scattering Diagnostics in High-Pressure Flames

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2005-01-01

    Researchers from NASA Glenn Research Center s Combustion Branch and the Ohio Aerospace Institute (OAI) have developed a transferable calibration standard for an optical technique called spontaneous Raman scattering (SRS) in high-pressure flames. SRS is perhaps the only technique that provides spatially and temporally resolved, simultaneous multiscalar measurements in turbulent flames. Such measurements are critical for the validation of numerical models of combustion. This study has been a combined experimental and theoretical effort to develop a spectral calibration database for multiscalar diagnostics using SRS in high-pressure flames. However, in the past such measurements have used a one-of-a-kind experimental setup and a setup-dependent calibration procedure to empirically account for spectral interferences, or crosstalk, among the major species of interest. Such calibration procedures, being non-transferable, are prohibitively expensive to duplicate. A goal of this effort is to provide an SRS calibration database using transferable standards that can be implemented widely by other researchers for both atmospheric-pressure and high-pressure (less than 30 atm) SRS studies. A secondary goal of this effort is to provide quantitative multiscalar diagnostics in high pressure environments to validate computational combustion codes.

  6. Preliminary feasibility analysis of a pressure modulator radiometer for remote sensing of tropospheric constituents

    NASA Technical Reports Server (NTRS)

    Orr, H. D., III; Rarig, P. L.

    1981-01-01

    A pressure modulator radiometer operated in a nadir viewing mode from the top of a midlatitude summer model of the atmosphere was theoretically studied for monitoring the mean volumetric mixing ratio of carbon monoxide in the troposphere. The mechanical characteristics of the instrument on the Nimbus 7 stratospheric and mesospheric sounder experiment are assumed and CO is assumed to be the only infrared active constituent. A line by line radiative transfer computer program is used to simulate the upwelling radiation reaching the top of the atmosphere. The performance of the instrument is examined as a function of the mean pressure in and the length of the instrument gas correlation cell. Instrument sensitivity is described in terms of signal to noise ratio for a 10 percent change in CO mixing ratio. Sensitivity to mixing ratio changes is also studied. It is concluded that tropospheric monitoring requires a pressure modulator drive having a larger swept volume and producing higher compression ratios at higher mean cell pressures than the Nimbus 7 design.

  7. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  8. Heat transfer rate and film cooling effectiveness measurements in a transient cascade

    NASA Astrophysics Data System (ADS)

    Schultz, D. L.; Oldfield, M. L. G.; Jones, T. V.

    1980-09-01

    A transient cascade useful for heat transfer rate measurements is briefly described. The facility employs a free piston which compresses the test gas to temperatures around 450 K and pressures of about 3.5 to 7.5 Atm. The model is initially at room temperature and it is necessary to attain the correct gas to wall temperature ratio. The exit Mach number is set by the inlet total pressure and the pressure in the exit dump tank. Thin film heat transfer gauges are used for the measurement of heat transfer rate, deposited on machineable glass ceramic blades. The inherently fast response of these transducers makes them useful for the investigation of boundary layer transition on blade surfaces and some typical results are included.

  9. Convective heat transfer from a pulsating radial jet reattachment (PRJR) nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, J.Y.; James, D.L.; Parameswaran, S.

    1999-07-01

    Impinging jets of fluid have been used to cool, heat or dry surfaces in many industries including high temperature gas turbines, paper and glass manufacturing, textile drying, and electronic components. Jets may be broadly classified as either inline or radial. Inline jets typically have some type of circular or planer opening through which the fluid exits. The circular opening may be converging, well rounded, or of the same diameter as the nozzle or tube through which the fluid is delivered. Here, a numerical investigation for air exiting a Pulsating Radial Jet Reattachment (PRJR) nozzle was performed with various flow andmore » geometric conditions. The transient ensemble averaged Navier-Stokes equation with the standard {kappa}-{epsilon} turbulence model and the standard transient turbulent energy equation were solved to predict the velocity, pressure, and temperature distributions as a function of the pulsation rate, nondimensionalized nozzle-to-plate spacing, amplitude ratio, exit angle and gap Reynolds number. Sinusoidal profile, square and triangular pulsation profiles were simulated to determine the effect on the convective heat transfer during pulsation of nozzle. Grid movement is coupled to the flow field in a manner by a grid convection. Calculated reattachment radii for various conditions correlated well with previously obtained experimental results. Calculated convective heat transfer coefficients and surface pressure profiles for various geometric and flow conditions were compared with experimental results. Convective heat transfer coefficient calculations matched the experimental values very well outside the reattachment regions and underpredicted the convective heat transfer data underneath the nozzle in the dead water region and on the reattachment radius.« less

  10. Heat transfer within a flat micro heat pipe with extra liquid

    NASA Astrophysics Data System (ADS)

    Sprinceana, Silviu; Mihai, Ioan

    2016-12-01

    In the real functioning of flat micro heat pipe (FMHP), there can appear cases when the temperature from the vaporization zone can exceed a critical value caused by a sudden increase of the thermal flow. The heat transfer which is completed conductively through the copper wall of a FMHP vaporizer causes the vaporization of the work fluid. On the condenser, the condensation of the fluid vapors and the transfer of the condenser to the vaporizer can no longer be achieved. The solution proposed for enhancing heat transfer in the event of blockage phenomenon FMHP, it is the injection of a certain amount of working fluid in the vaporization zone. By this process the working fluid injected into the evaporator passes suddenly in the vapor, producing a cooling zone. The new product additional mass of vapor will leave the vaporization zone and will condense in condensation zone, thereby supplementing the amount of condensation. Thus resumes normal operating cycle of FMHP. For the experimental measurements made for the transfer of heat through the FMHP working fluid demineralized water, they were made two micro-capillary tubes of sintered copper layer. The first was filled with 1ml of demineralized water was dropped under vacuum until the internal pressure has reached a level of 1•104Pa. The second FMHP was filled with the same amount of working fluid was used and the same capillary inner layer over which was laid a polysynthetic material that will accrue an additional amount of fluid. In this case, the internal pressure was reduced to 1•104Pa.

  11. Heat transfer and pressure drop characteristics of a plate heat exchanger using water based Al2O3 nanofluid for 30° and 60° chevron angles

    NASA Astrophysics Data System (ADS)

    Elias, M. M.; Saidur, R.; Ben-Mansour, R.; Hepbasli, A.; Rahim, N. A.; Jesbains, K.

    2018-04-01

    Nanofluid is a new class of engineering fluid that has good heat transfer characteristics which is essential to increase the heat transfer performance in various engineering applications such as heat exchangers and cooling of electronics. In this study, experiments were conducted to compare the heat transfer performance and pressure drop characteristics in a plate heat exchanger (PHE) for 30° and 60° chevron angles using water based Al2O3 nanofluid at the concentrations from 0 to 0.5 vol.% for different Reynolds numbers. The thermo-physical properties has been determined and presented in this paper. At 0.5 vol% concentration, the maximum heat transfer coefficient, the overall heat transfer coefficient and the heat transfer rate for 60° chevron angle have attained a higher percentage of 15.14%, 7.8% and 15.4%, respectively in comparison with the base fluid. Consequently, when the volume concentration or Reynolds number increases, the heat transfer coefficient and the overall heat transfer coefficient as well as the heat transfer rate of the PHE (Plate Heat Exchangers) increases respectively. Similarly, the pressure drop increases with the volume concentration. 60° chevron angle showed better performance in comparison with 30° chevron angle.

  12. Mass transfer parameters of celeriac during vacuum drying

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2017-04-01

    An accurate prediction of moisture transfer parameters is very important for efficient mass transfer analysis, accurate modelling of drying process, and better designing of new dryers and optimization of existing drying process. The present study aimed to investigate the influence of temperature (e.g., 55, 65 and 75 °C) and chamber pressure (e.g., 0.1, 3, 7, 10, 13 and 17 kPa) on effective diffusivity and convective mass transfer coefficient of celeriac slices during vacuum drying. The obtained Biot number indicated that the moisture transfer in the celeriac slices was controlled by both internal and external resistance. The effective diffusivity obtained to be in the ranges of 7.5231 × 10-10-3.8015 × 10-9 m2 s-1. The results showed that the diffusivity increased with increasing temperature and decreasing pressure. The mass transfer coefficient values varied from 4.6789 × 10-7 to 1.0059 × 10-6 m s-1, and any increment in drying temperature and pressure caused an increment in the coefficient.

  13. Dynamic characteristics of the thorax connected with the heart action.

    PubMed

    Juznic, G; Emri, I; Peterec, D; Prepadnik, M

    1979-01-01

    We determined the indices of local vibrations (resonance frequency, damping coefficient, stiffness constant, extinction time) and transfer function H(s) . 10(-6) for three somatotypes and three respiratory positions on 88 points of the thorax. The examinees were males (age 21 years). We found the resonance frequencies of 36.86--54.75 cps, damping coefficient (delta) 0.121--0.217. This means the damping is less than critical (delta = 1). We applied shocks (a force of 2 N) with a reflex hammer on 88 points of the thorax. The force diminished from the exciting place (say ictus) to the recording place (accelerometer on the sternum) from 2 to 0.2 N. The athletic type has the highest resonance frequency and stiffness constant; the leptosomic type has the highest damping; the longest extinction time belongs to the pyknic type. The pyknic type has also the highest value of the transfer function. The respiratory position (quiet respiration, Valsalva and Müller experiment) influences the values of the indices of local vibrations and of the transfer function. The influence is evident especially on the intercostal points: the transfer of the oscillations is alleviated at a higher stiffness of the thorax (Valsalva; the value of H(S) . 10(-6) rises from 7.00 to 9.39 sec2), it deteriorates at a small stiffness of the thorax (in Müller's experiment falls to 2.78 sec2). With the fall in the intrathoracic pressure the damping in the intercostal points decreases. On the basis of experiments the conclusion was made that a short testing of the thorax of an examinee will give the dynamic characteristics of the thorax (indices of local vibrations and transfer functions) of the individual. This procedure will alleviate the quantitative use of noninvasive mechanical methods in the assessment of the cardiovascular function.

  14. Anomalously large effects of pressure on electron transfer kinetics in solution: The aqueous manganate(VI)-permanganate(VII) system

    NASA Astrophysics Data System (ADS)

    Swaddle, T. W.; Spiccia, L.

    1986-05-01

    The classical Stranks-Hush-Marcus theory of pressure effects on the rates of outer-sphere electron transfer reaction rates in solution underestimates |ΔV ∗| specifically, for the MnO 4/MnO 42- (aq) exchange, ΔV ∗=-21.2 (observed) vs. -6.6 cm3mol-1 (calculated). This discrepancy can best be resolved by conceding that the Mn-Mn separation σ in the transition state is variable and pressure-sensitive in the context of non-adiabatic electron transfer within an ellipsoidal cavity with σ ∼ 550 pm.

  15. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.

    PubMed

    Hottot, A; Vessot, S; Andrieu, J

    2005-01-01

    The principal aim of this study was to evaluate the water vapour mass transfer resistance of the dried layer and the vial heat transfer coefficient values of a pharmaceutical product during the primary drying period. First, overall vial heat transfer coefficient values, Kv, were determined by a gravimetric method based on pure ice sublimation experiments. Thus, it was possible to set up a map of the total heat flux received by each vial throughout the plate surface of our pilot scale freeze-dryer. Important heterogeneities were observed for the vials placed at the plate edges and for the vials placed at the center of the plate. As well, the same gravimetric method was also used to precisely determine the influence of main lyophilization operating parameters (shelf temperature and gas total pressure) or the vial types and sizes on these overall heat transfer coefficient values. A semi-empirical relationship as a function of total gas pressure was proposed. The transient method by pressure rise analysis (PRA method) after interrupting the water vapour flow between the sublimation chamber and the condenser, previously set up and validated in our laboratory, was then extensively used with an amorphous BSA-based formulation to identify the dried layer mass transfer resistance values, Rp, the ice front temperature, and the total heat transfer coefficient values, Kv, with or without annealing treatment. It was proved that this method gave accurate and coherent data only during the first half of the sublimation period when the totality of the vials of the set was still sublimating. Thus, this rapid method allowed estimation of, on line and in situ, the sublimation front temperature and the characterization of the morphology and structure of the freeze-dried layer, all along the first part of the sublimation period. The estimated sublimation temperatures shown by the PRA model were about 2 degrees C lower than the experimental values obtained using thermocouples inserted inside the vial, in accordance with previous data given by this method for similar freeze-drying conditions. As well, by using this method we could confirm the homogenization of the dried layer porous structure by annealing treatment after the freezing step. Furthermore, frozen matrix structure analysis (mean pore diameter) using optical microscopy and mass transfer modelling of water vapour by molecular diffusion (Knudsen regime) allowed, in some cases, to predict the experimental values of this overall mass transfer resistance directly related to the freeze-dried cake permeability.

  16. Weak incident shock interactions with Mach 8 laminar boundary layers. [of flat plate

    NASA Technical Reports Server (NTRS)

    Kaufman, L. G., II; Johnson, C. B.

    1974-01-01

    Weak shock-wave interactions with boundary layers on a flat plate were investigated experimentally in Mach 8 variable-density tunnel for plate-length Reynolds numbers. The undisturbed boundary layers were laminar over the entire plate length. Pressure and heat-transfer distributions were obtained for wedge-generated incident shock waves that resulted in pressure rises ranging from 1.36 to 4.46 (both nonseparated and separated boundary-layer flows). The resulting heat-transfer amplifications ranged from 1.45 to 14. The distributions followed established trends for nonseparated flows, for incipient separation, and for laminar free-interaction pressure rises. The experimental results corroborated established trends for the extent of the pressure rise and for certain peak heat-transfer correlations.

  17. Optical Emission Spectroscopy of a 150kW DC Arc Torch: A Comparison of Transferred vs. Non-Transferred Modes

    NASA Astrophysics Data System (ADS)

    Counts, D. A.; Giuliani, J. L.; Peterson, S. H.; Han, Q. Y.; Sartwell, B. D.

    1997-04-01

    DC arc torches are proposed or in use for solid waste remediation at several sites. However, there is no consensus on the optimal mode of operation: transferred or non-transferred arc. As part of a project to investigate plasma treatment of shipboard waste, we have been investigating both modes at atmospheric pressure. This paper reports on the use of visible optical emission spectroscopy to determine the electron temperature, T_e, in the arc discharge for both the transferred and non transferred mode. In each case three industrial gases are compared, nitrogen, air and oxygen, at different flow rates and currents. Te is determined from the Balmer line ratio, wherein 5% hydrogen gas is added to the working gas in the torch flow. Variation of the emission with torch height and across the arc radius will be discussed. Recently, free arcs have shown evidence of non-LTE behavior in the arc mantle. Comparison of arc emission spectra as a function of radius for the transferred vs. non-transferred modes will be reported. Calorimetry results for the chamber walls, exhaust, and waste crucible will be correlated with the spectral results. This work was supported by the Office of Naval Research.

  18. Transcallosal transfer of information and functional asymmetry of the human brain.

    PubMed

    Nowicka, Anna; Tacikowski, Pawel

    2011-01-01

    The corpus callosum is the largest commissure in the brain and acts as a "bridge" of nerve fibres connecting the two cerebral hemispheres. It plays a crucial role in interhemispheric integration and is responsible for normal communication and cooperation between the two hemispheres. Evolutionary pressures guiding brain size are accompanied by reduced interhemispheric and enhanced intrahemispheric connectivity. Some lines of evidence suggest that the speed of transcallosal conduction is limited in large brains (e.g., in humans), thus favouring intrahemispheric processing and brain lateralisation. Patterns of directional symmetry/asymmetry of transcallosal transfer time may be related to the degree of brain lateralisation. Neural network modelling and electrophysiological studies on interhemispheric transmission provide data supporting this supposition.

  19. Effectiveness of Wii-based rehabilitation in stroke: A randomized controlled study.

    PubMed

    Karasu, Ayça Utkan; Batur, Elif Balevi; Karataş, Gülçin Kaymak

    2018-05-08

    To investigate the efficacy of Nintendo Wii Fit®-based balance rehabilitation as an adjunc-tive therapy to conventional rehabilitation in stroke patients. During the study period, 70 stroke patients were evaluated. Of these, 23 who met the study criteria were randomly assigned to either the experimental group (n = 12) or the control group (n = 11) by block randomization. Primary outcome measures were Berg Balance Scale, Functional Reach Test, Postural Assessment Scale for Stroke Patients, Timed Up and Go Test and Static Balance Index. Secondary outcome measures were postural sway, as assessed with Emed-X, Functional Independence Measure Transfer and Ambulation Scores. An evaluator who was blinded to the groups made assessments immediately before (baseline), immediately after (post-treatment), and 4 weeks after completion of the study (follow-up). Group-time interaction was significant in the Berg Balance Scale, Functional Reach Test, anteroposterior and mediolateral centre of pressure displacement with eyes open, anteroposterior centre of pressure displacement with eyes closed, centre of pressure displacement during weight shifting to affected side, to unaffected side and total centre of pressure displacement during weight shifting. Demonstrating significant group-time interaction in those parameters suggests that, while both groups exhibited significant improvement, the experimental group showed greater improvement than the control group. Virtual reality exercises with the Nintendo Wii system could represent a useful adjunctive therapy to traditional treatment to improve static and dynamic balance in stroke patients.

  20. Uncertainty Analysis on Heat Transfer Correlations for RP-1 Fuel in Copper Tubing

    NASA Technical Reports Server (NTRS)

    Driscoll, E. A.; Landrum, D. B.

    2004-01-01

    NASA is studying kerosene (RP-1) for application in Next Generation Launch Technology (NGLT). Accurate heat transfer correlations in narrow passages at high temperatures and pressures are needed. Hydrocarbon fuels, such as RP-1, produce carbon deposition (coke) along the inside of tube walls when heated to high temperatures. A series of tests to measure the heat transfer using RP-1 fuel and examine the coking were performed in NASA Glenn Research Center's Heated Tube Facility. The facility models regenerative cooling by flowing room temperature RP-1 through resistively heated copper tubing. A Regression analysis is performed on the data to determine the heat transfer correlation for Nusselt number as a function of Reynolds and Prandtl numbers. Each measurement and calculation is analyzed to identify sources of uncertainty, including RP-1 property variations. Monte Carlo simulation is used to determine how each uncertainty source propagates through the regression and an overall uncertainty in predicted heat transfer coefficient. The implications of these uncertainties on engine design and ways to minimize existing uncertainties are discussed.

  1. A general stagnation-point convective heating equation for arbitrary gas mixtures

    NASA Technical Reports Server (NTRS)

    Sutton, K.; Graves, R. A., Jr.

    1971-01-01

    The stagnation-point convective heat transfer to an axisymmetric blunt body for arbitrary gases in chemical equilibrium was investigated. The gases considered were base gases of nitrogen, oxygen, hydrogen, helium, neon, argon, carbon dioxide, ammonia, and methane and 22 gas mixtures composed of the base gases. Enthalpies ranged from 2.3 to 116.2 MJ/kg, pressures ranged from 0.001 to 100 atmospheres, and the wall temperatures were 300 and 1111 K. A general equation for the stagnation-point convective heat transfer in base gases and gas mixtures was derived and is a function of the mass fraction, the molecular weight, and a transport parameter of the base gases. The relation compares well with present boundary-layer computer results and with other analytical and experimental results. In addition, the analysis verified that the convective heat transfer in gas mixtures can be determined from a summation relation involving the heat transfer coefficients of the base gases. The basic technique developed for the prediction of stagnation-point convective heating to an axisymmetric blunt body could be applied to other heat transfer problems.

  2. Experimental Study of Vane Heat Transfer and Aerodynamics at Elevated Levels of Turbulence

    NASA Technical Reports Server (NTRS)

    Ames, Forrest E.

    1994-01-01

    A four vane subsonic cascade was used to investigate how free stream turbulence influences pressure surface heat transfer. A simulated combustor turbulence generator was built to generate high level (13 percent) large scale (Lu approximately 44 percent inlet span) turbulence. The mock combustor was also moved upstream to generate a moderate level (8.3 percent) of turbulence for comparison to smaller scale grid generated turbulence (7.8 percent). The high level combustor turbulence caused an average pressure surface heat transfer augmentation of 56 percent above the low turbulence baseline. The smaller scale grid turbulence produced the next greatest effect on heat transfer and demonstrated the importance of scale on heat transfer augmentation. In general, the heat transfer scaling parameter U(sub infinity) TU(sub infinity) LU(sub infinity)(exp -1/3) was found to hold for the turbulence. Heat transfer augmentation was also found to scale approximately on Re(sub ex)(exp 1/3) at constant turbulence conditions. Some evidence of turbulence intensification in terms of elevated dissipation rates was found along the pressure surface outside the boundary layer. However, based on the level of dissipation and the resulting heat transfer augmentation, the amplification of turbulence has only a moderate effect on pressure surface heat transfer. The flow field turbulence does drive turbulent production within the boundary layer which in turn causes the high levels of heat transfer augmentation. Unlike heat transfer, the flow field straining was found to have a significant effect on turbulence isotropy. On examination of the one dimensional spectra for u' and v', the effect to isotropy was largely limited to lower wavenumber spectra. The higher wavenumber spectra showed little or no change. The high level large scale turbulence was found to have a strong influence on wake development. The free stream turbulence significantly enhanced mixing resulting in broader and shallower wakes than the baseline case. High levels of flow field turbulence were found to correlate with a significant increase in total pressure loss in the core of the flow. Documenting the wake growth and characteristics provides boundary conditions for the downstream rotor.

  3. Ares I Reaction Control System Propellant Feedline Decontamination Modeling

    NASA Technical Reports Server (NTRS)

    Pasch, James J.

    2010-01-01

    The objective of the work presented here is to quantify the effects of purge gas temperature, pressure, and mass flow rate on Hydrazine (Hz) decontamination rates of the Ares I Roll Control System and Reaction Control System. A survey of experts in this field revealed the absence of any decontamination rate prediction models. Three basic decontamination methods were identified for analysis and modeling. These include low pressure eduction, high flow rate purge, and pulse purge. For each method, an approach to predict the Hz mass transfer rate, as a function of system pressure, temperature, and purge gas mass flow rate, is developed based on the applicable physics. The models show that low pressure eduction is two orders of magnitude more effective than the high velocity purge, which in turn is two orders of magnitude more effective than the pure diffusion component of pulse purging of deadheads. Eduction subjects the system to low pressure conditions that promote the extraction of Hz vapors. At 120 F, Hz is saturated at approximately 1 psia. At lower pressures and 120 F, Hz will boil, which is an extremely efficient means to remove liquid Hz. The Hz boiling rate is predicted by equating the rate at which energy is added to the saturated liquid Hz through heaters at the tube outer wall with the energy removed from the liquid through evaporation. Boil-off fluxes were predicted by iterating through the range of local pressures with limits set by the minimum allowed pressure of 0.2 psia and maximum allowed wall temperature of 120 F established by the heaters, which gives a saturation pressure of approximately 1.0 psia. Figure 1 shows the resulting boil-off fluxes as a function of local eduction pressure. As depicted in figure 1, the flux is a strong inverse function of eduction pressure, and that minimizing the eduction pressure maximizes the boil-off flux. Also, higher outer wall temperatures lead to higher boil-off fluxes and allow for boil-off over a greater range of eduction pressures.

  4. 70. DETAIL OF OXYGEN TRANSFER PRESSURE GAUGE IN UPPER LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. DETAIL OF OXYGEN TRANSFER PRESSURE GAUGE IN UPPER LEFT CORNER OF SKID ON RIGHT IN CA-133-1-C-69 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. New structural phase obtained by exerting high pressure on (Br2)n@AFI composite material

    NASA Astrophysics Data System (ADS)

    Yao, Zhen; Lv, Jia-Yin; Liu, Bo; Liu, Bing-Bing; Yang, Bai

    2018-06-01

    In this paper, we present a theoretical study on the high-pressure behaviors of a (Br2)n@AlPO4-5 (AFI) peapod structure. The influence of the encapsulated Br2 molecule on the structural deformation of AFI crystal is analyzed using the volume-pressure function. The bonding process of the linearly arrayed Br2 molecule transferring to the bromine atomic chain is analyzed by the electron density distribution. A new high-pressure phase with P2 point group symmetry is obtained as the pressure increases to 34 GPa. In addition, electron density difference calculations are used to study the systematic charge transformation. Further analysis indicates that the encapsulated Br2 molecules can significantly modify the electronic structure of the AFI crystal. The band gap of the (Br2)n@AFI decreases with pressure and closes at 9 GPa. Moreover, the calculated bulk modulus and electronic properties indicate that the new structural phase is metallic with a high hardness, providing a new strategy for exploring novel nanomaterials.

  6. Transferred interbacterial antagonism genes augment eukaryotic innate immune function.

    PubMed

    Chou, Seemay; Daugherty, Matthew D; Peterson, S Brook; Biboy, Jacob; Yang, Youyun; Jutras, Brandon L; Fritz-Laylin, Lillian K; Ferrin, Michael A; Harding, Brittany N; Jacobs-Wagner, Christine; Yang, X Frank; Vollmer, Waldemar; Malik, Harmit S; Mougous, Joseph D

    2015-02-05

    Horizontal gene transfer allows organisms to rapidly acquire adaptive traits. Although documented instances of horizontal gene transfer from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce antibacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years through purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the aetiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for co-option by eukaryotic innate immune systems.

  7. Atmospheric pressure plasma jet for biomedical applications characterised by passive thermal probe

    NASA Astrophysics Data System (ADS)

    Mance, Diana; Wiese, Ruben; Kewitz, Thorben; Kersten, Holger

    2018-05-01

    Atmospheric pressure plasma jets (APPJs) are a promising tool in medicine with extensive possibilities of utilization. For a safe and therapeutically effective application of APPJs, it is necessary to know in detail the physical processes in plasma as well as possible hazards. In this paper, we focus on plasma thermal energy transferred to the substrate, i.e. to a passive thermal probe acting as substrate dummy. Specifically, we examined the dependence of transferred energy on the distance from the plasma source outlet, on the gas flow rate, and on the length of the visible plasma plume. The plasma plume is the plasma carried by the gas flow from the outlet of the source into the ambient air. The results show the distance between the plasma-generating device and the substrate to be the most important determinant of the transferred thermal energy, among the three examined variables. Most importantly for the end-user, the results also show this relation to be non-linear. To describe this relation, we chose a model based on a Boltzmann type of sigmoid function. Based on the results of our modelling and visual inspection of the plasma, we provide sort of a user guide for the adjustment of a suitable energy flux on the (bio) substrate.

  8. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  9. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  10. Gender-specific association of the plasminogen activator inhibitor-1 4G/5G polymorphism with central arterial blood pressure.

    PubMed

    Björck, Hanna M; Eriksson, Per; Alehagen, Urban; De Basso, Rachel; Ljungberg, Liza U; Persson, Karin; Dahlström, Ulf; Länne, Toste

    2011-07-01

    The functional plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism has previously been associated with hypertension. In recent years, central blood pressure, rather than brachial has been argued a better measure of cardiovascular damage and clinical outcome. The aim of this study was to investigate the possible influence of the 4G/5G polymorphism on central arterial blood pressure in a cohort of elderly individuals. We studied 410 individuals, 216 men and 194 women, aged 70-88. Central pressures and pulse waveforms were calculated from the radial artery pressure waveform by the use of the SphygmoCor system and a generalized transfer function. Brachial pressure was recorded using oscillometric technique (Dinamap, Critikon, Tampa, FL). PAI-1 antigen was determined in plasma. The results showed that central pressures were higher in women carrying the PAI-1 4G/4G genotype compared to female carriers of the 5G/5G genotype, (P = 0.025, P = 0.002, and P = 0.002 for central systolic-, diastolic-, and mean arterial pressure, respectively). The association remained after adjustment for potentially confounding factors related to hypertension. No association of the PAI-1 genotype with blood pressure was found in men. Multiple regression analysis revealed an association between PAI-1 genotype and plasma PAI-1 levels (P = 0.048). Our findings show a gender-specific association of the PAI-1 4G/5G polymorphism with central arterial blood pressure. The genotype effect was independent of other risk factors related to hypertension, suggesting that impaired fibrinolytic potential may play an important role in the development of central hypertension in women.

  11. Study by molecular dynamics of the influence of temperature and pressure on the optical properties of undoped 3C-SiC structures

    NASA Astrophysics Data System (ADS)

    Domingues, Gilberto; Monthe, Aubin Mekeze; Guévelou, Simon; Rousseau, Benoit

    2018-01-01

    Silicon carbide (SiC)-based open-cell foams appear to be promising porous materials for designing high-temperature energy conversion systems such as volumetric solar receivers. In these media, heat transfers and fluid flows occur simultaneously. The numerical models developed for computing the thermal efficiencies of SiC foams must take into account the energy contribution of thermal radiation. In particular, the thermal radiative properties of these foams must be accurately known. This explains why knowledge of the pressure and temperature dependences of the optical properties of the crystalline parts, which compose the foams, is of primary concern for computing the latter properties correctly. However, the data available in the literature provide the evolution laws of the dielectric functions, needed to calculate the optical properties, as dependent on one thermodynamic parameter at a time. To deal with this issue, a study of the temperature/pressure influence on the dielectric functions of a silicon carbide structure by simulation with molecular dynamics (MD) is presented in this paper. The Vashishta interaction potential, based on the sum of two- and three-body terms, is used in this study. The simulations are carried out on undoped 3C-SiC at pressures ranging from 0.2 to 20 GPa and temperatures ranging from 300 K to 1500 K. The dielectric functions are obtained by applying the linear response theory and comparing them with values provided in the literature, using a Lorentz model. The simulated results, in good agreement with the experimental ones, make it possible to establish the evolution laws of the dielectric functions with both parameters, temperature and pressure, applicable to any field requiring the use of undoped silicon carbide.

  12. Robust Electrical Transfer System (RETS) for Solar Array Drive Mechanism SlipRing Assembly

    NASA Astrophysics Data System (ADS)

    Bommottet, Daniel; Bossoney, Luc; Schnyder, Ralph; Howling, Alan; Hollenstein, Christoph

    2013-09-01

    Demands for robust and reliable power transmission systems for sliprings for SADM (Solar Array Drive Mechanism) are increasing steadily. As a consequence, it is required to know their performances regarding the voltage breakdown limit.An understanding of the overall shape of the breakdown voltage versus pressure curve is established, based on experimental measurements of DC (Direct Current) gas breakdown in complex geometries compared with a numerical simulation model.In addition a detailed study was made of the functional behaviour of an entire wing of satellite in a like- operational mode, comprising the solar cells, the power transmission lines, the SRA (SlipRing Assembly), the power S3R (Sequential Serial/shunt Switching Regulators) and the satellite load to simulate the electrical power consumption.A test bench able to measure automatically the: a)breakdown voltage versus pressure curve and b)the functional switching performances, was developed and validated.

  13. Electronic structure and electron-phonon interaction in hexagonal yttrium by density functional calculations

    NASA Astrophysics Data System (ADS)

    Singh, Prabhakar P.

    2007-03-01

    To understand the pressure-induced changes in the electronic structure and the electron-phonon interaction in yttrium, we have studied hexagonal-close-packed (hcp) yttrium, stable at ambient pressure, and double hexagonal-close-packed (dhcp) yttrium, stable up to around 44GPa , using density-functional-based methods. Our results show that as one goes from hcp yttrium to dhcp yttrium, there are (i) a substantial charge transfer from s→d with extensive modifications of the d band and a sizable reduction in the density of states at the Fermi energy, (ii) a substantial stiffening of phonon modes with the electron-phonon coupling covering the entire frequency range, and (iii) an increase in the electron-phonon coupling constant λ from 0.55 to 1.24, leading to a change in the superconducting transition temperature Tc from 0.3to15.3K for μ*=0.2 .

  14. High pressure-assisted transfer of ultraclean chemical vapor deposited graphene

    NASA Astrophysics Data System (ADS)

    Chen, Zhiying; Ge, Xiaoming; Zhang, Haoran; Zhang, Yanhui; Sui, Yanping; Yu, Guanghui; Jin, Zhi; Liu, Xinyu

    2016-03-01

    We develop a high pressure-assisted (approximately 1000 kPa) transfer method to remove polymer residues and effectively reduce damages on the surface of graphene. By introducing an ethanol pre-dehydration technique and optimizing temperature, the graphene surface becomes nearly free of residues, and the quality of graphene is improved obviously when temperature reaches 140 °C. The graphene obtained using the high pressure-assisted transfer method also exhibits excellent electrical properties with an average sheet resistance of approximately 290 Ω/sq and a mobility of 1210 cm2/V.s at room temperature. Sheet resistance and mobility are considerably improved compared with those of the graphene obtained using the normal wet transfer method (average sheet resistance of approximately 510 ohm/sq and mobility of 750 cm2/V.s).

  15. Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage

    NASA Technical Reports Server (NTRS)

    Russell, Louis M.; Thurman, Douglas R.; Poinsatte, Philip E.; Hippensteele, Steven A.

    1998-01-01

    An experimental study was made to obtain quantitative information on heat transfer, flow, and pressure distribution in a branched duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used for validation of computer codes that would be used to model internal cooling. Surface heat transfer coefficients and entrance flow conditions were measured at nominal entrance Reynolds numbers of 45,000, 335,000, and 726,000. Heat transfer data were obtained by using a steady-state technique in which an Inconel heater sheet is attached to the surface and coated with liquid crystals. Visual and quantitative flow-field data from particle image velocimetry measurements for a plane at midchannel height for a Reynolds number of 45,000 were also obtained. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Pressure distribution measurements were made both on the surface with discrete holes and in the flow field with a total pressure probe. The flow-field measurements yielded flow-field velocities at selected locations. A relatively new method, pressure sensitive paint, was also used to measure surface pressure distribution. The pressure paint data obtained at Reynolds numbers of 335,000 and 726,000 compared well with the more standard method of measuring pressures by using discrete holes.

  16. Kinetic model of turbulence in an incompressible fluid

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1978-01-01

    A statistical description of turbulence in an incompressible fluid obeying the Navier-Stokes equations is proposed, where pressure is regarded as a potential for the interaction between fluid elements. A scaling procedure divides a fluctuation into three ranks representing the three transport processes of macroscopic evolution, transport property, and relaxation. Closure is obtained by relaxation, and a kinetic equation is obtained for the fluctuation of the macroscopic rank of the distribution function. The solution gives the transfer function and eddy viscosity. When applied to the inertia subrange of the energy spectrum the analysis recovers the Kolmogorov law and its numerical coefficient.

  17. Scaling of plane-wave functions in statistically optimized near-field acoustic holography.

    PubMed

    Hald, Jørgen

    2014-11-01

    Statistically Optimized Near-field Acoustic Holography (SONAH) is a Patch Holography method, meaning that it can be applied in cases where the measurement area covers only part of the source surface. The method performs projections directly in the spatial domain, avoiding the use of spatial discrete Fourier transforms and the associated errors. First, an inverse problem is solved using regularization. For each calculation point a multiplication must then be performed with two transfer vectors--one to get the sound pressure and the other to get the particle velocity. Considering SONAH based on sound pressure measurements, existing derivations consider only pressure reconstruction when setting up the inverse problem, so the evanescent wave amplification associated with the calculation of particle velocity is not taken into account in the regularized solution of the inverse problem. The present paper introduces a scaling of the applied plane wave functions that takes the amplification into account, and it is shown that the previously published virtual source-plane retraction has almost the same effect. The effectiveness of the different solutions is verified through a set of simulated measurements.

  18. Harwell high pressure heat transfer loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, A.W.; Keeys, R.K.F.

    1967-12-15

    A detailed description is presented of the Harwell (Chemical Engineering and Process Technology Division) high pressure, steam-water heat transfer loop; this description is aimed at supplementing the information given in reports on individual experiments. The operating instructions for the loop are given in an appendix. (auth)

  19. Effects of helium and nitrogen as pressurants in nitrogen tetroxide transfer

    NASA Technical Reports Server (NTRS)

    Bizjak, F.; Simkin, D. J.

    1967-01-01

    Study investigates effects of helium and nitrogen as pressurants in nitrogen tetroxide transfer from one vessel to another at a higher elevation. Results may contribute to creation of new environmental systems and improved oxygen solubility in water to promote fish life.

  20. Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection

    NASA Astrophysics Data System (ADS)

    Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.

  1. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Bohn, Mark S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610 mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440 C and air inlet temperatures of approximately 230 C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/sq m/s air flow and 6 to 18 kg/sq m/s salt flow, the data agree with the model within 22 percent standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18 percent standard deviation over the range of column pressure drop from 40 to 1250 Pa/m.

  2. Numerical investigation of transient behaviour of the recuperative heat exchanger in a MR J-T cryocooler using different heat transfer correlations

    NASA Astrophysics Data System (ADS)

    Damle, R. M.; Ardhapurkar, P. M.; Atrey, M. D.

    2016-12-01

    In J-T cryocoolers operating with mixed refrigerants (nitrogen-hydrocarbons), the recuperative heat exchange takes place under two-phase conditions. Simultaneous boiling of the low pressure stream and condensation of the high pressure stream results in higher heat transfer coefficients. The mixture composition, operating conditions and the heat exchanger design are crucial for obtaining the required cryogenic temperature. In this work, a one-dimensional transient algorithm is developed for the simulation of the two-phase heat transfer in the recuperative heat exchanger of a mixed refrigerant J-T cryocooler. Modified correlation is used for flow boiling of the high pressure fluid while different condensation correlations are employed with and without the correction for the low pressure fluid. Simulations are carried out for different mixture compositions and numerical predictions are compared with the experimental data. The overall heat transfer is predicted reasonably well and the qualitative trends of the temperature profiles are also captured by the developed numerical model.

  3. Comparison of effects of copropagated and precomputed atmosphere profiles on Monte Carlo trajectory simulation

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.; Omara, Thomas M.

    1990-01-01

    A realization of a stochastic atmosphere model for use in simulations is presented. The model provides pressure, density, temperature, and wind velocity as a function of latitude, longitude, and altitude, and is implemented in a three degree of freedom simulation package. This implementation is used in the Monte Carlo simulation of an aeroassisted orbital transfer maneuver and results are compared to those of a more traditional approach.

  4. Internal thermotopography and shifts in general thermal balance in man under special heat transfer conditions

    NASA Technical Reports Server (NTRS)

    Gorodinskiy, S. M.; Gramenitskiy, P. M.; Kuznets, Y. I.; Ozerov, O. Y.; Yakovleva, E. V.; Groza, P.; Kozlovskiy, S.; Naremski, Y.

    1974-01-01

    Thermal regulation for astronauts working in pressure suits in open space provides for protection by a system of artificial heat removal and compensation to counteract possible changes in the heat regulating function of the human body that occur under the complex effects of space flight conditions. Most important of these factors are prolonged weightlessness, prolonged limitation of motor activity, and possible deviations of microclimatic environmental parameters.

  5. Review of the potential of a wireless MEMS and TFT microsystems for the measurement of pressure in the GI tract.

    PubMed

    Arshak, A; Arshak, K; Waldron, D; Morris, D; Korostynska, O; Jafer, E; Lyons, G

    2005-06-01

    Telemetry capsules have existed since the 1950s and were used to measure temperature, pH or pressure inside the gastrointestinal (GI) tract. It was hoped that these capsules would replace invasive techniques in the diagnosis of function disorders in the GI tract. However, problems such as signal loss and uncertainty of the pills position limited their use in a clinical setting. In this paper, a review of the capabilities of MicroElectroMechanical Systems (MEMS) and thick film technology (TFT) for the fabrication of a wireless pressure sensing microsystem is presented. The circuit requirements and methods of data transfer are examined. The available fabrication methods for MEMS sensors are also discussed and examples of wireless sensors are given. Finally the limitations of each technology are examined.

  6. Optimization of the freeze-drying cycle: adaptation of the pressure rise analysis model to non-instantaneous isolation valves.

    PubMed

    Chouvenc, P; Vessot, S; Andrieu, J; Vacus, P

    2005-01-01

    The principal aim of this study is to extend to a pilot freeze-dryer equipped with a non-instantaneous isolation valve the previously presented pressure rise analysis (PRA) model for monitoring the product temperature and the resistance to mass transfer of the dried layer during primary drying. This method, derived from the original MTM method previously published, consists of interrupting rapidly (a few seconds) the water vapour flow from the sublimation chamber to the condenser and analysing the resulting dynamics of the total chamber pressure increase. The valve effect on the pressure rise profile observed during the isolation valve closing period was corrected by introducing in the initial PRA model a valve characteristic function factor which turned out to be independent of the operating conditions. This new extended PRA model was validated by implementing successively the two types of valves and by analysing the pressure rise kinetics data with the corresponding PRA models in the same operating conditions. The coherence and consistency shown on the identified parameter values (sublimation front temperature, dried layer mass transfer resistance) allowed validation of this extended PRA model with a non-instantaneous isolation valve. These results confirm that the PRA method, with or without an instantaneous isolation valve, is appropriate for on-line monitoring of product characteristics during freeze-drying. The advantages of PRA are that the method is rapid, non-invasive, and global. Consequently, PRA might become a powerful and promising tool not only for the control of pilot freeze-dryers but also for industrial freeze-dryers equipped with external condensers.

  7. Heat convection in a micro impinging jet system

    NASA Astrophysics Data System (ADS)

    Mai, John Dzung Hoang

    2000-10-01

    This thesis covers the development of an efficient micro impinging jet heat exchanger, using MEMS technology, to provide localized cooling for present and next generation microelectronic computer chips. Before designing an efficient localized heat exchanger, it is necessary to investigate fluid dynamics and heat transfer in the micro scale. MEMS technology has been used in this project because it is the only tool currently available that can provide a large array of batch-fabricated, micro-scale nozzles for localized cooling. Our investigation of potential MEMS heat exchanger designs begins with experiments that measure the pressure drops and temperature changes in a micro scale tubing system that will be necessary to carry fluid to the impingement point. Our basic MEMS model is a freestanding micro channel with integrated temperature microsensors. The temperature distribution along the channel in a vacuum is measured. The measured flow rates are compared with an analytical model developed for capillary flow that accounts for 2-D, slip and compressibility effects. The work is focused on obtaining correlations in the form of the Nussult number, the Reynolds number and a H/d geometric factor. A set of single MEMS nozzles have been designed to test heat transfer effectiveness as a function of nozzle diameter, ranging from 1.0 mm to 250 um. In addition, nozzle and slot array MEMS devices have been fabricated. In order to obtain quantitative measurements from these micron scale devices, a series of target temperature sensor chips were custom made and characterized for these experiments. The heat transfer characteristics of various MEMS nozzle configurations operating at various steady inlet pressures, at different heights above the heated substrate, have been characterized. These steady results showed that the average heat transfer coefficient, averaged over a 1 cm2 test area, was usually less than 0.035 W/cm 2K for any situation. However, the local heat transfer coefficient, as measured by a single 4mum x 4mum temperature sensor, was as high as 0.5 W/cm2K. Using a mechanical valve and piezo actuator to perturb the flow at frequencies from 10 Hz to 1 kHz, we identify that enhanced heat transfer can occur in an unsteady forced jet. The functional dependence of the enhanced heat transfer on the mean jet speed, perturbation level and perturbing frequency has been established. The expected trend that increased heat transfer at higher values of St number was noticed. In addition the effect of a confined and free jet geometry on an unsteady flow was observed.

  8. Development of a test facility and preliminary testing of flow boiling heat transfer of R410A refrigerant with Al2O3 nanolubricants

    NASA Astrophysics Data System (ADS)

    Wong, Thiam

    In vapor compression cycles, a small portion of the oil circulates with the refrigerant throughout the system components, while most of the oil stays in the compressors. In heat exchangers, the lubricant in excess penalizes the heat transfer and increases the pressure losses: both effects are highly undesired but yet unavoidable. Nanoparticles dispersed in the excess lubricant are expected to provide enhancements in heat transfer. While solubility and miscibility of refrigerants in polyolesters (POE) lubricant are well established knowledge, there is a lack of information regarding if and how nanoparticles dispersed in the lubricant affect these properties. This thesis presents experimental data of solubility of two types of Al2O3 nanolubricants with refrigerant R-410A. The nanoparticles were dispersed in POE lubricant by using different surfactants and dispersion methods. The nanolubricants appeared to have slightly lower solubility than that of R-410A but actually the solid nanoparticles did not really interfere with the POE oil solubility characteristics. A test facility and experimental methodology was developed for the investigation of heat transfer coefficient and pressure drop. The pressure drop of the refrigerant lubricant mixtures during flow boiling depended on the mass flux of the refrigerant. Greater augmentation was seen in the pressure drop results with decreasing mass flow rate. Pure refrigerant R410A showed the lowest pressure drop, addition of nanolubricants to the refrigerant showed a slightly higher pressure drop and POE-refrigerant mixture showed the highest pressure drop in the tests conducted. Enhancement or degradation in heat transfer coefficient during flow boiling depended on the nanoparticle concentration in the lubricant as well as the lubricant concentration in refrigerant. R410A showed the highest heat transfer coefficient for all conditions tested. For a concentration of 1% nanolubricant in refrigerant, the heat transfer coefficient showed more enhancement with increase in nanoparticle concentration compared to POE refrigerant mixtures. For a concentration of 3% nanolubricant in refrigerant mixtures there was little to no enhancement for tests conducted.

  9. Direct Observation of Pressure-Driven Valence Electron Transfer in Ba 3 BiRu 2 O 9 , Ba 3 BiIr 2 O 9 , and Ba 4 BiIr 3 O 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, Peter E. R.; Chapman, Karena W.; Heald, Steve M.

    The hexagonal perovskites Ba3BiIr2O9, Ba3BiRu2O9 and Ba4BiIr3O12 all undergo pressure-induced 1% volume collapses above 5 GPa. These first-order transitions have been ascribed to internal transfer of valence electrons between bismuth and iridium/ruthenium, which is driven by external applied pressure because the reduction in volume achieved by emptying the 6s shell of bismuth upon oxidation to Bi5+ is greater in magnitude than the increase in volume by reducing iridium or ruthenium. Here, we report direct observation of these valence transfers for the first time, using high-pressure X-ray absorption near-edge spectroscopy (XANES) measurements. Our data also support the highly unusual “4+” nominalmore » oxidation state of bismuth in these compounds, although the possibility of local disproportionation into Bi3+/Bi5+ cannot be definitively ruled out. Ab initio calculations reproduce the transition, support its interpretation as a valence electron transfer from Bi to Ir/Ru, and suggest that the high-pressure phase may show metallic behavior (in contrast to the insulating ambient-pressure phase).« less

  10. Training Attentional Control Improves Cognitive and Motor Task Performance.

    PubMed

    Ducrocq, Emmanuel; Wilson, Mark; Vine, Sam; Derakshan, Nazanin

    2016-10-01

    Attentional control is a necessary function for the regulation of goal-directed behavior. In three experiments we investigated whether training inhibitory control using a visual search task could improve task-specific measures of attentional control and performance. In Experiment 1 results revealed that training elicited a near-transfer effect, improving performance on a cognitive (antisaccade) task assessing inhibitory control. In Experiment 2 an initial far-transfer effect of training was observed on an index of attentional control validated for tennis. The principal aim of Experiment 3 was to expand on these findings by assessing objective gaze measures of inhibitory control during the performance of a tennis task. Training improved inhibitory control and performance when pressure was elevated, confirming the mechanisms by which cognitive anxiety impacts performance. These results suggest that attentional control training can improve inhibition and reduce taskspecific distractibility with promise of transfer to more efficient sporting performance in competitive contexts.

  11. Analysis of the dynamic response of a supersonic inlet to flow-field perturbations upstream of the normal shock

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Willoh, R. G.

    1975-01-01

    A linearized mathematical analysis is presented for determining the response of normal shock position and subsonic duct pressures to flow-field perturbations upstream of the normal shock in mixed-compression supersonic inlets. The inlet duct cross-sectional area variation is approximated by constant-area sections; this approximation results in one-dimensional wave equations. A movable normal shock separates the supersonic and subsonic flow regions, and a choked exit is assumed for the inlet exit condition. The analysis leads to a closed-form matrix solution for the shock position and pressure transfer functions. Analytical frequency response results are compared with experimental data and a method of characteristics solution.

  12. Role of angiotensin II in dynamic renal blood flow autoregulation of the conscious dog

    PubMed Central

    Just, Armin; Ehmke, Heimo; Wittmann, Uwe; Kirchheim, Hartmut R

    2002-01-01

    The influence of angiotensin II (ANGII) on the dynamic characteristics of renal blood flow (RBF) was studied in conscious dogs by testing the response to a step increase in renal artery pressure (RAP) after a 60 s period of pressure reduction (to 50 mmHg) and by calculating the transfer function between physiological fluctuations in RAP and RBF. During the RAP reduction, renal vascular resistance (RVR) decreased and upon rapid restoration of RAP, RVR returned to baseline with a characteristic time course: within the first 10 s, RVR rose rapidly by 40 % of the initial change (first response, myogenic response). A second rise began after 20–30 s and reached baseline after an overshoot at 40 s (second response, tubuloglomerular feedback (TGF)). Between both responses, RVR rose very slowly (plateau). The transfer function had a low gain below 0.01 Hz (high autoregulatory efficiency) and two corner frequencies at 0.026 Hz (TGF) and at 0.12 Hz (myogenic response). Inhibition of angiotensin converting enzyme (ACE) lowered baseline RVR, but not the minimum RVR at the end of the RAP reduction (autoregulation-independent RVR). Both the first and second response were reduced, but the normalised level of the plateau (balance between myogenic response, TGF and possible slower mechanisms) and the transfer gain below 0.01 Hz were not affected. Infusion of ANGII after ramipril raised baseline RVR above the control condition. The first and second response and the transfer gain at both corner frequencies were slightly augmented, but the normalised level of the plateau was not affected. It is concluded that alterations of plasma ANGII within a physiological range do not modulate the relative contribution of the myogenic response to the overall short-term autoregulation of RBF. Consequently, it appears that ANGII augments not only TGF, but also the myogenic response. PMID:11773325

  13. Effect of head-down-tilt bed rest and hypovolemia on dynamic regulation of heart rate and blood pressure

    NASA Technical Reports Server (NTRS)

    Iwasaki, K. I.; Zhang, R.; Zuckerman, J. H.; Pawelczyk, J. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    2000-01-01

    Adaptation to head-down-tilt bed rest leads to an apparent abnormality of baroreflex regulation of cardiac period. We hypothesized that this "deconditioning response" could primarily be a result of hypovolemia, rather than a unique adaptation of the autonomic nervous system to bed rest. To test this hypothesis, nine healthy subjects underwent 2 wk of -6 degrees head-down bed rest. One year later, five of these same subjects underwent acute hypovolemia with furosemide to produce the same reductions in plasma volume observed after bed rest. We took advantage of power spectral and transfer function analysis to examine the dynamic relationship between blood pressure (BP) and R-R interval. We found that 1) there were no significant differences between these two interventions with respect to changes in numerous cardiovascular indices, including cardiac filling pressures, arterial pressure, cardiac output, or stroke volume; 2) normalized high-frequency (0.15-0.25 Hz) power of R-R interval variability decreased significantly after both conditions, consistent with similar degrees of vagal withdrawal; 3) transfer function gain (BP to R-R interval), used as an index of arterial-cardiac baroreflex sensitivity, decreased significantly to a similar extent after both conditions in the high-frequency range; the gain also decreased similarly when expressed as BP to heart rate x stroke volume, which provides an index of the ability of the baroreflex to alter BP by modifying systemic flow; and 4) however, the low-frequency (0.05-0.15 Hz) power of systolic BP variability decreased after bed rest (-22%) compared with an increase (+155%) after acute hypovolemia, suggesting a differential response for the regulation of vascular resistance (interaction, P < 0.05). The similarity of changes in the reflex control of the circulation under both conditions is consistent with the hypothesis that reductions in plasma volume may be largely responsible for the observed changes in cardiac baroreflex control after bed rest. However, changes in vasomotor function associated with these two conditions may be different and may suggest a cardiovascular remodeling after bed rest.

  14. Experimental Study of Vane Heat Transfer and Film Cooling at Elevated Levels of Turbulence

    NASA Technical Reports Server (NTRS)

    Ames, Forrest E.

    1996-01-01

    This report documents the results of an experimental study on the influence of high level turbulence on vane film cooling and the influence of film cooling on vane heat transfer. Three different cooling configurations were investigated which included one row of film cooling on both pressure and suction surfaces, two staggered rows of film cooling on both suction and pressure surfaces, and a shower-head cooling array. The turbulence had a strong influence on film cooling effectiveness, particularly on the pressure surface where local turbulence levels were the highest. For the single row of holes, the spanwise mixing quickly reduced centerline effectiveness levels while mixing in the normal direction was more gradual. The film cooling had a strong influence on the heat transfer in the laminar regions of the vane. The effect of film cooling on heat transfer was noticeable in the turbulent regions but augmentation ratios were significantly lower. In addition to heat transfer and film cooling, velocity profiles were taken downstream of the film cooling rows at three spanwise locations. These profile comparisons documented the strong spanwise mixing due to the high turbulence. Total pressure exit measurements were also documented for the three configurations.

  15. Evaluation of cooling performance of impinging jet array over various dimpled surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Min; Kim, Kwang-Yong

    2016-04-01

    Various configurations of an impinging jet-dimple array cooling system were evaluated in terms of their heat transfer and pressure drop performances. The steady incompressible laminar flow and heat transfer in the cooling system were analyzed using three-dimensional Navier-Stokes equations. The obtained numerical results were validated by a comparison with experimental data for the local Nusselt number distribution. The area-averaged Nusselt number on the projected area and the pressure drop through the system were selected as the performance parameters. Among the four tested configurations—inline concave, staggered concave, inline convex, and staggered convex—the staggered convex impinging jet-dimple array showed the best heat transfer performance whereas the staggered-concave configuration showed the lowest pressure drop. A parametric study with two geometric variables, i.e., the height of dimple and the diameter of dimple, was also conducted for the staggered-convex impinging jet-dimple array. As a result, the best heat transfer and pressure drop performances were achieved when the ratio of the height of dimple to the diameter of jet was 0.8. And, the increase in the ratio of the diameter of dimple to the diameter of jet yielded monotonous increase in the heat transfer performance.

  16. Integral Reactor Containment Condensation Model and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiao; Corradini, Michael

    This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flowmore » into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure ranging from 4 to 21 bar with three different static inventories of non-condensable gas. Condensation and heat transfer rates were evaluated employing several methods, notably from measured temperature gradients in the HTP as well as measured condensate formation rates. A detailed mass and energy accounting was used to assess the various measurement methods and to support simplifying assumptions required for the analysis. Condensation heat fluxes and heat transfer coefficients are calculated and presented as a function of pressure to satisfy the objectives of this investigation. The major conclusions for those tests are summarized below: (1) In the steam blow-down tests, the initial condensation heat transfer process involves the heating-up of the containment heat transfer plate. An inverse heat conduction model was developed to capture the rapid transient transfer characteristics, and the analysis method is applicable to SMR safety analysis. (2) The average condensation heat transfer coefficients for different pressure conditions and non-condensable gas mass fractions were obtained from the integral test facility, through the measurements of the heat conduction rate across the containment heat transfer plate, and from the water condensation rates measurement based on the total energy balance equation. 15 (3) The test results using the measured HTP wall temperatures are considerably lower than popular condensation models would predict mainly due to the side wall conduction effects in the existing MASLWR integral test facility. The data revealed the detailed heat transfer characteristics of the model containment, important to the SMR safety analysis and the validation of associated evaluation model. However this approach, unlike separate effect tests, cannot isolate the condensation heat transfer coefficient over the containment wall, and therefore is not suitable for the assessment of the condensation heat transfer coefficient against system pressure and noncondensable gas mass fraction. (4) The average condensation heat transfer coefficients measured from the water condensation rates through energy balance analysis are appropriate, however, with considerable uncertainties due to the heat loss and temperature distribution on the containment wall. With the consideration of the side wall conduction effects, the results indicate that the measured heat transfer coefficients in the tests is about 20% lower than the prediction of Dehbi’s correlation, mainly due to the side wall conduction effects. The investigation also indicates an increase in the condensation heat transfer coefficient at high containment pressure conditions, but the uncertainties invoked with this method appear to be substantial. (5) Non-condensable gas in the tests has little effects on the condensation heat transfer at high elevation measurement ports. It does affect the bottom measurements near the water level position. The results suggest that the heavier non-condensable gas is accumulated in the lower portion of the containment due to stratification in the narrow containment space. The overall effects of the non-condensable gas on the heat transfer process should thus be negligible for tall containments of narrow condensation spaces in most SMR designs. Therefore, the previous correlations with noncondensable gas effects are not appropriate to those small SMR containments due to the very poor mixing of steam and non-condensable gas. The MELCOR simulation results agree with the experimental data reasonably well. However, it is observed that the MELCOR overpredicts the heat flux for all analyzed tests. The MELCOR predicts that the heat fluxes for CCT’s approximately range from 30 to 45 kW/m2 whereas the experimental data (averaged) ranges from about 25 to 40 kW/m2. This may be due to the limited availability of liquid film models included in MELCOR. Also, it is believed that due to complex test geometry, measured temperature gradients across the heat transfer plate may have been underestimated and thus the heat flux had been underestimated. The MELCOR model predicts a film thickness on the order of 100 microns, which agrees very well with film flow model developed in this study for scaling analysis. However, the expected differences in film thicknesses for near vacuum and near atmospheric test conditions are not significant. Further study on the behavior of condensate film is expected to refine the simulation results. Possible refinements include but are not limited to, the followings: CFD simulation focusing on the liquid film behavior and benchmarking with experimental analyses for simpler geometries. 16 1 INTRODUCTION This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). The experimental results are employed to validate the containment condensation model in reactor containment system safety analysis code for integral SMRs. Such a containment condensation model is important to demonstrate the adequate cooling. In the three years of investigation, following the original proposal, the following planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). The results are applicable to integral Small Modular Reactor (SMR) designs, including NuScale, mPower, Westinghouse SMR, Holtec-160 and other integral reactors with small containments of relatively high pressures under accidental conditions. Testing has been conducted at the OrSU laboratory in the existing MASLWR (Multi-Application Small Light Water Reactor) integral test facility sponsored by the US Department of Energy. Its highpressure stainless steel containment model (~2 MPa) is scaled to the NuScale SMR currently under development at NuScale Power, Inc.. Minor modifications to the model containment have been made to control the non-condensable gas fraction and to utilize the secondary loop stable steam flow for condensation testing. UW-Madison has developed a containment condensation model, which leveraged previous validated containment heat transfer work carried out at UW-Madison, and extended the range of applicability of the model to integral SMR designs that utilize containment vessels of high heat transfer efficiencies. In this final report, the research background and literature survey are presented in Chapter 2 and 3, respectively. The test facility description and modifications are summarized in Chapter 4, and the scaling analysis is introduced in Chapter 5. The tests description, procedures, and data analysis are presented in Chapter 6, while the numerical modeling is presented in Chapter 7, followed by a conclusion section in Chapter 8.« less

  17. A critical review of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO nanofluids

    NASA Astrophysics Data System (ADS)

    Khurana, Deepak; Choudhary, Rajesh; Subudhi, Sudhakar

    2017-01-01

    Nanofluid is the colloidal suspension of nanosized solid particles like metals or metal oxides in some conventional fluids like water and ethylene glycol. Due to its unique characteristics of enhanced heat transfer compared to conventional fluid, it has attracted the attention of research community. The forced convection heat transfer of nanofluid is investigated by numerous researchers. This paper critically reviews the papers published on experimental studies of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO based nanofluids dispersed in water, ethylene glycol and water-ethylene glycol mixture. Most of the researchers have shown a little rise in pressure drop with the use of nanofluids in plain tube. Literature has reported that the pumping power is appreciably high, only at very high particle concentration i.e. more than 5 %. As nanofluids are able to enhance the heat transfer at low particle concentrations so most of the researchers have used less than 3 % volume concentration in their studies. Almost no disagreement is observed on pressure drop results of different researchers. But there is not a common agreement in magnitude and mechanism of heat transfer enhancement. Few studies have shown an anomalous enhancement in heat transfer even at low particle concentration. On the contrary, some researchers have shown little heat transfer enhancement at the same particle concentration. A large variation (2-3 times) in Nusselt number was observed for few studies under similar conditions.

  18. Uncertainty of Monetary Valued Ecosystem Services – Value Transfer Functions for Global Mapping

    PubMed Central

    Schmidt, Stefan; Manceur, Ameur M.; Seppelt, Ralf

    2016-01-01

    Growing demand of resources increases pressure on ecosystem services (ES) and biodiversity. Monetary valuation of ES is frequently seen as a decision-support tool by providing explicit values for unconsidered, non-market goods and services. Here we present global value transfer functions by using a meta-analytic framework for the synthesis of 194 case studies capturing 839 monetary values of ES. For 12 ES the variance of monetary values could be explained with a subset of 93 study- and site-specific variables by utilizing boosted regression trees. This provides the first global quantification of uncertainties and transferability of monetary valuations. Models explain from 18% (water provision) to 44% (food provision) of variance and provide statistically reliable extrapolations for 70% (water provision) to 91% (food provision) of the terrestrial earth surface. Although the application of different valuation methods is a source of uncertainty, we found evidence that assuming homogeneity of ecosystems is a major error in value transfer function models. Food provision is positively correlated with better life domains and variables indicating positive conditions for human well-being. Water provision and recreation service show that weak ownerships affect valuation of other common goods negatively (e.g. non-privately owned forests). Furthermore, we found support for the shifting baseline hypothesis in valuing climate regulation. Ecological conditions and societal vulnerability determine valuation of extreme event prevention. Valuation of habitat services is negatively correlated with indicators characterizing less favorable areas. Our analysis represents a stepping stone to establish a standardized integration of and reporting on uncertainties for reliable and valid benefit transfer as an important component for decision support. PMID:26938447

  19. Experimental study on a prototype of heat pipe solar water heater using refrigerant R134a as a transfer fluid

    NASA Astrophysics Data System (ADS)

    Sitepu, T.; Sembiring, J.; Ambarita, H.

    2018-02-01

    A prototype of a solar water heater by using refrigerant as a heat transfer fluid is investigated experimentally. The objective is to explore the characteristics and the performance of the prototype. To make heat transfer from the collector to the heated fluid effectively, refrigerant R134a is used as a transfer. In the experiments, the initial pressure inside the heat pipe is varied. The prototype is exposed to solar irradiation in a location in Medan city for three days of the experiment. Solar collector temperatures, solar radiation, water temperature, and ambient temperature are measured. The efficiency of the system is analyzed. The results show that temperature of the hot water increases as the initial pressure of the working fluid increase. However, the increasing is not linear, and there must exist an optimum initial pressure. For the case with the refrigerant pressure of 110 psi, the maximum hot water temperature and maximum thermal efficiency are 45.36oC and 53.23%, respectively. The main conclusion can be drawn here is that solar water heater by using refrigerant R134a should be operated at initial pressure 110 psi.

  20. Local Mass and Heat Transfer on a Turbine Blade Tip

    DOE PAGES

    Jin, P.; Goldstein, R. J.

    2003-01-01

    Locmore » al mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at various exit Reynolds numbers (4–7 × 10 5 ) and turbulence intensities (0.2 and 12.0%). The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the whole width of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.« less

  1. Interhospital transfer of children in respiratory failure: a clinician interview qualitative study.

    PubMed

    Odetola, Folafoluwa O; Anspach, Renee R; Han, Yong Y; Clark, Sarah J

    2017-02-01

    To investigate the decision making underlying transfer of children with respiratory failure from level II to level I pediatric intensive care unit care. Interviews with 19 eligible level II pediatric intensive care unit physicians about a hypothetical scenario of a 2-year-old girl in respiratory failure: RESULTS: At baseline, indices critical to management were as follows: OI (53%), partial pressure of oxygen in arterial blood (Pao 2 )/Fio 2 (32%), and inflation pressure (16%). Poor clinical response was signified by high OI, inflation pressure, and Fio 2 , and low Pao 2 /Fio 2 . At EP 1, 18 of 19 respondents would initiate high-frequency oscillatory ventilation, and 1 would transfer. At EP 2, 15 of 18 respondents would maintain high-frequency oscillatory ventilation, 9 of them calling to discuss transfer. All respondents would transfer if escalated therapies failed to reverse the patient's clinical deterioration. Interhospital transfer of children in respiratory failure is triggered by poor response to escalation of locally available care modalities. This finding provides new insight into decision making underlying interhospital transfer of children with respiratory failure. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Bacteriophage T5 DNA ejection under pressure.

    PubMed

    Leforestier, A; Brasilès, S; de Frutos, M; Raspaud, E; Letellier, L; Tavares, P; Livolant, F

    2008-12-19

    The transfer of the bacteriophage genome from the capsid into the host cell is a key step of the infectious process. In bacteriophage T5, DNA ejection can be triggered in vitro by simple binding of the phage to its purified Escherichia coli receptor FhuA. Using electrophoresis and cryo-electron microscopy, we measure the extent of DNA ejection as a function of the external osmotic pressure. In the high pressure range (7-16 atm), the amount of DNA ejected decreases with increasing pressure, as theoretically predicted and observed for lambda and SPP1 bacteriophages. In the low and moderate pressure range (2-7 atm), T5 exhibits an unexpected behavior. Instead of a unique ejected length, multiple populations coexist. Some phages eject their complete genome, whereas others stop at some nonrandom states that do not depend on the applied pressure. We show that contrarily to what is observed for the phages SPP1 and lambda, T5 ejection cannot be explained as resulting from a simple pressure equilibrium between the inside and outside of the capsid. Kinetics parameters and/or structural characteristics of the ejection machinery could play a determinant role in T5 DNA ejection.

  3. Principles of cerebral hemodynamics when intracranial pressure is raised: lessons from the peripheral circulation

    PubMed Central

    Kim, Mi Ok; Adji, Audrey; O’Rourke, Michael F.; Avolio, Alberto P.; Smielewski, Peter; Pickard, John D.; Czosnyka, Marek

    2015-01-01

    Background: The brain is highly vascular and richly perfused, and dependent on continuous flow for normal function. Although confined within the skull, pressure within the brain is usually less than 15 mmHg, and shows small pulsations related to arterial pulse under normal circumstances. Pulsatile arterial hemodynamics in the brain have been studied before, but are still inadequately understood, especially during changes of intracranial pressure (ICP) after head injury. Method: In seeking cohesive explanations, we measured ICP and radial artery pressure (RAP) invasively with high-fidelity manometer systems, together with middle cerebral artery flow velocity (MCAFV) (transcranial Doppler) and central aortic pressure (CAP) generated from RAP, using a generalized transfer function technique, in eight young unconscious, ventilated adults following closed head trauma. We focused on vascular effects of spontaneous rises of ICP (‘plateau waves’). Results: A rise in mean ICP from 29 to 53 mmHg caused no consistent change in pressure outside the cranium, or in heart rate, but ICP pulsations increased in amplitude from 8 to 20 mmHg, and ICP waveform came to resemble that in the aorta. Cerebral perfusion pressure (=central aortic pressure – ICP), which equates with transmural pressure, fell from 61 to 36 mmHg. Mean MCAFV fell from 53 to 40 cm/s, whereas pulsatile MCAFV increased from 77 to 98 cm/s. These significant changes (all P < 0.01) may be explained using the Monro–Kellie doctrine, because of compression of the brain, as occurs in a limb when external pressure is applied. Conclusion: The findings emphasize importance of reducing ICP, when raised, and on the additional benefits of reducing wave reflection from the lower body. PMID:25764046

  4. Circulating plasma cholesteryl ester transfer protein activity and blood pressure tracking in the community

    USDA-ARS?s Scientific Manuscript database

    Clinical trials using cholesteryl ester transfer protein (CETP) inhibitors to raise high-density lipoprotein cholesterol (HDL-C) concentrations reported an 'off-target' blood pressure (BP) raising effect. We evaluated the relations of baseline plasma CETP activity and longitudinal BP change. One tho...

  5. Ultrapressure liquid chromatography-tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for quantification of 4-methoxydiphenylmethane in pharmacokinetic evaluation.

    PubMed

    Farhan, Nashid; Fitzpatrick, Sean; Shim, Yun M; Paige, Mikell; Chow, Diana Shu-Lian

    2016-09-05

    4-Methoxydiphenylmethane (4-MDM), a selective augmenter of Leukotriene A4 Hydrolase (LTA4H), is a new anti-inflammatory compound for potential treatment of chronic obstructive pulmonary disease (COPD). Currently, there is no liquid chromatography tandem mass spectrometric (LC-MS/MS) method for the quantification of 4-MDM. A major barrier for developing the LC-MS/MS method is the inability of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) to ionize 4-MDM due to its hydrophobicity and lack of any functional group for ionization. With the advent of atmospheric pressure photoionization (APPI) technique, many hydrophobic compounds have been demonstrated to ionize by charge transfer reactions. In this study, a highly sensitive ultrapressure liquid chromatography tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for the quantifications of 4-MDM in rat plasma has been developed and validated. 4-MDM was extracted from the plasma by solid phase extraction (SPE) and separated chromatographically using a reverse phase C8 column. The photoionization (PI) was achieved by introducing anisole as a dopant to promote the reaction of charge transfer. The assay with a linear range of 5 (LLOQ)-400ngmL(-1) met the regulatory requirements for accuracy, precision and stability. The validated assay was employed to quantify the plasma concentrations of 4-MDM after an oral dosing in Sprague Dawley (SD) rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A Balanced-pressure Sliding Seal for Transfer of Pressurized Air Between Stationary and Rotating Parts

    NASA Technical Reports Server (NTRS)

    Curren, Arthur N; Cochran, Reeves P

    1957-01-01

    A combination sliding-ring and pressure-balancing seal capable of transferring pressurize air from stationary to rotating parts was developed and experimentally investigated at sliding velocities and cooling-air pressures up to 10,000 feet per minute and 38.3 pounds per square inch absolute, respectively. Leakage of cooling air was completely eliminated with an expenditure of balance air less than one-fourth the leakage loss of air from labyrinth seals under the same conditions. Additional cooling of the carbon-base seal rings was required, and the maximum wear rate on the rings was about 0.0005 inch per hour.

  7. Instantaneous Transfer Entropy for the Study of Cardiovascular and Cardiorespiratory Nonstationary Dynamics.

    PubMed

    Valenza, Gaetano; Faes, Luca; Citi, Luca; Orini, Michele; Barbieri, Riccardo

    2018-05-01

    Measures of transfer entropy (TE) quantify the direction and strength of coupling between two complex systems. Standard approaches assume stationarity of the observations, and therefore are unable to track time-varying changes in nonlinear information transfer with high temporal resolution. In this study, we aim to define and validate novel instantaneous measures of TE to provide an improved assessment of complex nonstationary cardiorespiratory interactions. We here propose a novel instantaneous point-process TE (ipTE) and validate its assessment as applied to cardiovascular and cardiorespiratory dynamics. In particular, heartbeat and respiratory dynamics are characterized through discrete time series, and modeled with probability density functions predicting the time of the next physiological event as a function of the past history. Likewise, nonstationary interactions between heartbeat and blood pressure dynamics are characterized as well. Furthermore, we propose a new measure of information transfer, the instantaneous point-process information transfer (ipInfTr), which is directly derived from point-process-based definitions of the Kolmogorov-Smirnov distance. Analysis on synthetic data, as well as on experimental data gathered from healthy subjects undergoing postural changes confirms that ipTE, as well as ipInfTr measures are able to dynamically track changes in physiological systems coupling. This novel approach opens new avenues in the study of hidden, transient, nonstationary physiological states involving multivariate autonomic dynamics in cardiovascular health and disease. The proposed method can also be tailored for the study of complex multisystem physiology (e.g., brain-heart or, more in general, brain-body interactions).

  8. Mechanisms for renal blood flow control early in diabetes as revealed by chronic flow measurement and transfer function analysis.

    PubMed

    Bell, Tracy D; DiBona, Gerald F; Wang, Ying; Brands, Michael W

    2006-08-01

    The purpose of this study was to establish the roles of the myogenic response and the TGF mechanism in renal blood flow (RBF) control at the very earliest stages of diabetes. Mean arterial pressure (MAP) and RBF were measured continuously, 18 h/d, in uninephrectomized control and diabetic rats, and transfer function analysis was used to determine the dynamic autoregulatory efficiency of the renal vasculature. During the control period, MAP averaged 91 +/- 0.5 and 89 +/- 0.4 mmHg, and RBF averaged 8.0 +/- 0.1 and 7.8 +/- 0.1 ml/min in the control and diabetic groups, respectively. Induction of diabetes with streptozotocin caused a marked and progressive increase in RBF in the diabetic rats, averaging 10 +/- 6% above control on day 1 of diabetes and 22 +/- 3 and 34 +/- 1% above control by the end of diabetes weeks 1 and 2. MAP increased approximately 9 mmHg during the 2 wk in the diabetic rats, and renal vascular resistance decreased. Transfer function analysis revealed significant increases in gain to positive values over the frequency ranges of both the TGF and myogenic mechanisms, beginning on day 1 of diabetes and continuing through day 14. These very rapid increases in RBF and transfer function gain suggest that autoregulation is impaired at the very onset of hyperglycemia in streptozotocin-induced type 1 diabetes and may play an important role in the increase in RBF and GFR in diabetes. Together with previous reports of decreases in chronically measured cardiac output and hindquarter blood flow, this suggests that there may be differential effects of diabetes on RBF versus nonrenal BF control.

  9. Turbine Vane External Heat Transfer. Volume 2. Numerical Solutions of the Navier-stokes Equations for Two- and Three-dimensional Turbine Cascades with Heat Transfer

    NASA Technical Reports Server (NTRS)

    Yang, R. J.; Weinberg, B. C.; Shamroth, S. J.; Mcdonald, H.

    1985-01-01

    The application of the time-dependent ensemble-averaged Navier-Stokes equations to transonic turbine cascade flow fields was examined. In particular, efforts focused on an assessment of the procedure in conjunction with a suitable turbulence model to calculate steady turbine flow fields using an O-type coordinate system. Three cascade configurations were considered. Comparisons were made between the predicted and measured surface pressures and heat transfer distributions wherever available. In general, the pressure predictions were in good agreement with the data. Heat transfer calculations also showed good agreement when an empirical transition model was used. However, further work in the development of laminar-turbulent transitional models is indicated. The calculations showed most of the known features associated with turbine cascade flow fields. These results indicate the ability of the Navier-Stokes analysis to predict, in reasonable amounts of computation time, the surface pressure distribution, heat transfer rates, and viscous flow development for turbine cascades operating at realistic conditions.

  10. Wavelet assessment of cerebrospinal compensatory reserve and cerebrovascular reactivity.

    PubMed

    Latka, M; Kolodziej, W; Turalska, M; Latka, D; Zub, W; West, B J

    2007-05-01

    We introduce a wavelet transfer model to relate spontaneous arterial blood pressure (ABP) fluctuations to intracranial pressure (ICP) fluctuations. We employ a complex continuous wavelet transform to develop a consistent mathematical framework capable of parametrizing both cerebral compensatory reserve and cerebrovascular reactivity. The frequency-dependent gain and phase of the wavelet transfer function are introduced because of the non-stationary character of the ICP and ABP time series. The gain characterizes the dampening of spontaneous ABP fluctuations and is interpreted as a novel measure of cerebrospinal compensatory reserve. For a group of 12 patients who died as a result of cerebral lesions (Glasgow Outcome Scale (GOS) = 1) the average gain in the low-frequency (0.02- 0.07 Hz) range was 0.51 +/- 0.13 and significantly exceeded that of 17 patients with GOS = 2 having an average gain of 0.26 +/- 0.11 with p = 1x10(-4) (Kruskal-Wallis test). A time-averaged synchronization index (which may vary from 0 to 1) defined in terms of the wavelet transfer function phase yields information about the stability of the phase difference of the ABP and ICP signals and is used as a cerebrovascular reactivity index. A low value of synchronization index reflects a normally reactive vascular bed, while a high value indicates pathological entrainment of ABP and ICP fluctuations. Such entrainment is strongly pronounced in patients with fatal outcome (for this group the low-frequency synchronization index was 0.69 +/- 0.17). The gain and synchronization parameters define a cerebral hemodynamic state space (CHS) in which the patients with GOS = 1 are to large extent partitioned away from those with GOS = 2. The concept of CHS elucidates the interplay of vascular and compensatory mechanisms.

  11. Emergency heat removal system for a nuclear reactor

    DOEpatents

    Dunckel, Thomas L.

    1976-01-01

    A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.

  12. Nonlinear resistivity for magnetohydrodynamical models

    DOE PAGES

    Lingam, M.; Hirvijoki, E.; Pfefferlé, D.; ...

    2017-04-20

    A new formulation of the plasma resistivity that stems from the collisional momentum-transfer rate between electrons and ions is presented. The resistivity computed herein is shown to depend not only on the temperature and density but also on all other polynomial velocity-space moments of the distribution function, such as the pressure tensor and heat flux vector. The full expression for the collisional momentum-transfer rate is determined and is used to formulate the nonlinear anisotropic resistivity. The new formalism recovers the Spitzer resistivity, as well as the concept of thermal force if the heat flux is assumed to be proportional tomore » a temperature gradient. Furthermore, if the pressure tensor is related to viscous stress, the latter enters the expression for the resistivity. The relative importance of the nonlinear term(s) with respect to the well-established electron inertia and Hall terms is also examined. Lastly, the subtle implications of the nonlinear resistivity, and its dependence on the fluid variables, are discussed in the context of magnetized plasma environments and phenomena such as magnetic reconnection.« less

  13. Rational function representation of flap noise spectra including correction for reflection effects. [acoustic properties of engine exhaust jets deflected for externally blown flaps

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1974-01-01

    A rational function is presented for the acoustic spectra generated by deflection of engine exhaust jets for under-the-wing and over-the-wing versions of externally blown flaps. The functional representation is intended to provide a means for compact storage of data and for data analysis. The expressions are based on Fourier transform functions for the Strouhal normalized pressure spectral density, and on a correction for reflection effects based on the N-independent-source model of P. Thomas extended by use of a reflected ray transfer function. Curve fit comparisons are presented for blown flap data taken from turbofan engine tests and from large scale cold-flow model tests. Application of the rational function to scrubbing noise theory is also indicated.

  14. Heat transfer and pressure drop performance of a finned-tube heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1985-01-01

    A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the final design of the AWT is complete. The heat exchanger segment is tested in the NASA Lewis Icing Research Tunnel (IRT) in order to provide an icing cloud environment similar to what will be encountered in the AWT. Dry heat transfer and pressure drop data are obtained and compared to correlations available in the literature. The effects of icing sprays on heat transfer and pressure drop are also investigated.

  15. Investigation of the effects of pressure gradient, temperature and wall temperature ratio on the stagnation point heat transfer for circular cylinders and gas turbine vanes

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Duffy, R. E.

    1984-01-01

    Low and high pressure shock tubes were designed and constructed for the purpose of obtaining heat transfer data over a temperature range of 390 to 2500 K, pressures of 0.3 to 42 atm, and Mach numbers of 0.15 to 1.5 with and without pressure gradient. A square test section with adjustable top and bottom walls was constructed to produce the favorable and adverse pressure gradient over the flat plate with heat gages. A water cooled gas turbine nozzle cascade which is attached to the high pressure shock tube was obtained to measuse the heat flux over pressure and suction surfaces. Thin-film platinum heat gages with a response time of a few microseconds were developed and used to measure the heat flux for laminar, transition, and turbulent boundary layers. The laminar boundary heat flux on the shock tube wall agreed with Mirel's flat plate theory. Stagnation point heat transfer for circular cylinders at low temperature compared with the theoretical prediction, but for a gas temperature of 922 K the heat fluxes were higher than the predicted values. Preliminary flat plate heat transfer data were measured for laminar, transition, and turbulent boundary layers with and without pressure gradients for free-stream temperatures of 350 to 2575 K and flow Mach numbers of 0.11 to 1.9. The experimental heat flux data were correlated with the laminar and turbulent theories and the agreement was good at low temperatures which was not the case for higher temperatures.

  16. Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: Impact of interfacial rigidity

    NASA Astrophysics Data System (ADS)

    Le Merrer, Marie; Cohen-Addad, Sylvie; Höhler, Reinhard

    2013-08-01

    In aqueous foams, the diffusive gas transfer among neighboring bubbles drives a coarsening process which is accompanied by intermittent rearrangements of the structure. Using time-resolved diffusing-wave spectroscopy, we probe the dynamics of these events as a function of the rigidity of the gas-liquid interfaces, liquid viscosity, bubble size, and confinement pressure. We present in detail two independent techniques for analyzing the light scattering data, from which we extract the rearrangement duration. Our results show that interfacial rheology has a major impact on this duration. In the case of low interfacial rigidity, the rearrangements strongly slow down as the pressure is decreased close to the value zero where the bubble packing unjams. In contrast, if the interfaces are rigid, rearrangement durations are independent of the confinement pressure in the same investigated range. Using scaling arguments, we discuss dissipation mechanisms that may explain the observed dependency of the rearrangement dynamics on foam structure, pressure, and physicochemical solution properties.

  17. Curvature controlled wetting in two dimensions

    NASA Astrophysics Data System (ADS)

    Gil, Tamir; Mikheev, Lev V.

    1995-07-01

    A complete wetting transition at vanishing curvature of the substrate in two-dimensional circular geometry is studied by the transfer matrix method. We find an exact formal mapping of the partition function of the problem onto that of a (1+1)-dimensional wetting problem in planar geometry. As the radius of the substrate r0-->∞, the leading effect of the curvature is adding the Laplace pressure ΠL~r-10 to the pressure balance in the film. At temperatures and pressures under which the wetting is complete in planar geometry, Laplace pressure suppresses divergence of the mean thickness of the wetting layer lW, leading to a power law lW~r1/30. At a critical wetting transition of a planar substrate, curvature adds a relevant field; the corresponding multiscaling forms are readily available. The method allows for the systematic evaluation of corrections to the leading behavior; the next to the leading term reduces the thickness by the amount proportional to r-1/30

  18. Thulium-170 heat source

    DOEpatents

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  19. Pressurization and expulsion of a flightweight liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Vandresar, N. T.; Stochl, R. J.

    1993-01-01

    Experimental results are presented for pressurization and expulsion of a flight-weight 4.89 cu m liquid hydrogen storage tank under normal gravity conditions. Pressurization and expulsion times are parametrically varied to study the effects of longer transfer times expected in future space flight applications. It is found that the increase in pressurant consumption with increased operational time is significant at shorter pressurization or expulsion durations and diminishes as the duration lengthens. Gas-to-wall heat transfer in the ullage is the dominant mode of energy exchange, with more than 50 percent of the pressurant energy being lost to tank wall heating in expulsions and the long duration pressurizations. Advanced data analysis will require a multidimensional approach combined with improved measurement capabilities of liquid-vapor interfacial transport phenomena.

  20. Pressure balance cross-calibration method using a pressure transducer as transfer standard

    PubMed Central

    Olson, D; Driver, R. G.; Yang, Y

    2016-01-01

    Piston gauges or pressure balances are widely used to realize the SI unit of pressure, the pascal, and to calibrate pressure sensing devices. However, their calibration is time consuming and requires a lot of technical expertise. In this paper, we propose an alternate method of performing a piston gauge cross calibration that incorporates a pressure transducer as an immediate in-situ transfer standard. For a sufficiently linear transducer, the requirement to exactly balance the weights on the two pressure gauges under consideration is greatly relaxed. Our results indicate that this method can be employed without a significant increase in measurement uncertainty. Indeed, in the test case explored here, our results agreed with the traditional method within standard uncertainty, which was less than 6 parts per million. PMID:28303167

  1. Retrieval of ammonia abundances and cloud opacities on Jupiter from Voyager IRIS spectra

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.; Gierasch, P. J.

    1986-01-01

    Gaseous ammonia abundances and cloud opacities are retrieved from Voyager IRIS 5- and 45-micron data on the basis of a simplified atmospheric model and a two-stream radiative transfer approximation, assuming a single cloud layer with 680-mbar base pressure and 0.14 gas scale height. Brightness temperature measurements obtained as a function of emission angle from selected planetary locations are used to verify the model and constrain a number of its parameters.

  2. Laboratory investigations of steam flow in a porous medium

    USGS Publications Warehouse

    Herkelrath, W.N.; Moench, A.F.; O'Neal, II

    1983-01-01

    Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used in modeling pressure transient behavior in vapor dominated geothermal systems. Transient, superheated steam flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure and then making a step increase in pressure at one end of the sample while monitoring the pressure transient breakthrough at the other end. It was found in experiments run at 100°, 125°, and 146°C that the time required for steam pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10–25 times longer than predicted by conventional superheated steam flow theory. It is hypothesized that the delay in the steam pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10°C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. This function was assumed to be an equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved.

  3. Modeling and experiments on the drive characteristics of high-strength water hydraulic artificial muscles

    NASA Astrophysics Data System (ADS)

    Zhang, Zengmeng; Hou, Jiaoyi; Ning, Dayong; Gong, Xiaofeng; Gong, Yongjun

    2017-05-01

    Fluidic artificial muscles are popular in robotics and function as biomimetic actuators. Their pneumatic version has been widely investigated. A novel water hydraulic artificial muscle (WHAM) with high strength is developed in this study. WHAMs can be applied to underwater manipulators widely used in ocean development because of their environment-friendly characteristics, high force-to-weight ratio, and good bio-imitability. Therefore, the strength of WHAMs has been improved to fit the requirements of underwater environments and the work pressure of water hydraulic components. However, understanding the mechanical behaviors of WHAMs is necessary because WHAMs use work media and pressure control that are different from those used by pneumatic artificial muscles. This paper presents the static and dynamic characteristics of the WHAM system, including the water hydraulic pressure control circuit. A test system is designed and built to analyze the drive characteristics of the developed WHAM. The theoretical relationships among the amount of contraction, pressure, and output drawing force of the WHAM are tested and verified. A linearized transfer function is proposed, and the dynamic characteristics of the WHAM are investigated through simulation and inertia load experiments. Simulation results agree with the experimental results and show that the proposed model can be applied to the control of WHAM actuators.

  4. Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Zhang, R.; Levine, B. D.

    2000-01-01

    The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.

  5. Combining liquid inertia with pressure recovery from bubble expansion for enhanced flow boiling

    NASA Astrophysics Data System (ADS)

    Kalani, A.; Kandlikar, S. G.

    2015-11-01

    In this paper, we demonstrate using liquid inertia force in a taper gap microchannel geometry to provide a high level of heat dissipation capacity accompanied by a high heat transfer coefficient and low pressure drop during flow boiling. The high mass flux increases liquid inertia force and promotes vapor removal from the manifold, thereby increasing critical heat flux (CHF) and heat transfer coefficient. The tapered gap above the microchannels provides an increasing cross-sectional area in the flow direction. This gap allows bubbles to emerge from microchannels and expand within the gap along the flow direction. The bubble evaporation and expansion in tapered gap causes pressure recovery and reduces the total pressure drop. The pressure recovery increases with the increased evaporation rate at higher heat fluxes. Using a 6% taper and a moderately high inlet liquid flow Reynolds number of 1095, we have reached a CHF of 1.07 kW/cm2 with a heat transfer coefficient of 295 kW/m2 °C and a pressure drop of 30 kPa.

  6. Calculation of turbulent boundary layers with heat transfer and pressure gradient utilizing a compressibility transformation. Part 3: Computer program manual

    NASA Technical Reports Server (NTRS)

    Schneider, J.; Boccio, J.

    1972-01-01

    A computer program is described capable of determining the properties of a compressible turbulent boundary layer with pressure gradient and heat transfer. The program treats the two-dimensional problem assuming perfect gas and Crocco integral energy solution. A compressibility transformation is applied to the equation for the conservation of mass and momentum, which relates this flow to a low speed constant property flow with simultaneous mass transfer and pressure gradient. The resulting system of describing equations consists of eight ordinary differential equations which are solved numerically. For Part 1, see N72-12226; for Part 2, see N72-15264.

  7. Acceleration of incremental-pressure-correction incompressible flow computations using a coarse-grid projection method

    NASA Astrophysics Data System (ADS)

    Kashefi, Ali; Staples, Anne

    2016-11-01

    Coarse grid projection (CGP) methodology is a novel multigrid method for systems involving decoupled nonlinear evolution equations and linear elliptic equations. The nonlinear equations are solved on a fine grid and the linear equations are solved on a corresponding coarsened grid. Mapping functions transfer data between the two grids. Here we propose a version of CGP for incompressible flow computations using incremental pressure correction methods, called IFEi-CGP (implicit-time-integration, finite-element, incremental coarse grid projection). Incremental pressure correction schemes solve Poisson's equation for an intermediate variable and not the pressure itself. This fact contributes to IFEi-CGP's efficiency in two ways. First, IFEi-CGP preserves the velocity field accuracy even for a high level of pressure field grid coarsening and thus significant speedup is achieved. Second, because incremental schemes reduce the errors that arise from boundaries with artificial homogenous Neumann conditions, CGP generates undamped flows for simulations with velocity Dirichlet boundary conditions. Comparisons of the data accuracy and CPU times for the incremental-CGP versus non-incremental-CGP computations are presented.

  8. Afferent renal denervation impairs baroreflex control of efferent renal sympathetic nerve activity

    PubMed Central

    Kopp, Ulla C.; Jones, Susan Y.; DiBona, Gerald F.

    2008-01-01

    Increasing efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which decreases ERSNA to prevent sodium retention. High-sodium diet enhances ARNA, suggesting an important role for ARNA in suppressing ERSNA during excess sodium intake. Mean arterial pressure (MAP) is elevated in afferent renal denervated by dorsal rhizotomy (DRX) rats fed high-sodium diet. We examined whether the increased MAP in DRX is due to impaired arterial baroreflex function. In DRX and sham DRX rats fed high-sodium diet, arterial baroreflex function was determined in conscious rats by intravenous nitroprusside and phenylephrine or calculation of transfer function gain from arterial pressure to ERSNA (spontaneous baroreflex sensitivity). Increasing MAP did not suppress ERSNA to the same extent in DRX as in sham DRX, −60 ± 4 vs. −77 ± 6%. Maximum gain, −4.22 ± 0.45 vs. −6.04 ± 0.90% ΔERSNA/mmHg, and the maximum value of instantaneous gain, −4.19 ± 0.45 vs. −6.04 ± 0.81% ΔERSNA/mmHg, were less in DRX than in sham DRX. Likewise, transfer function gain was lower in DRX than in sham DRX, 3.9 ± 0.2 vs. 6.1 ± 0.5 NU/mmHg. Air jet stress produced greater increases in ERSNA in DRX than in sham DRX, 35,000 ± 4,900 vs. 20,900 ± 3,410%·s (area under the curve). Likewise, the ERSNA responses to thermal cutaneous stimulation were greater in DRX than in sham DRX. These studies suggest impaired arterial baroreflex suppression of ERSNA in DRX fed high-sodium diet. There were no differences in arterial baroreflex function in DRX and sham DRX fed normal-sodium diet. Impaired arterial baroreflex function contributes to increased ERSNA, which would eventually lead to sodium retention and increased MAP in DRX rats fed high-sodium diet. PMID:18945951

  9. Extraction of anthocyanins from red cabbage using high pressure CO2.

    PubMed

    Xu, Zhenzhen; Wu, Jihong; Zhang, Yan; Hu, Xiaosong; Liao, Xiaojun; Wang, Zhengfu

    2010-09-01

    The extraction kinetics of anthocyanins from red cabbage using high pressure CO(2) (HPCD) against conventional acidified water (CAW) was investigated. The HPCD time, temperature, pressure and volume ratio of solid-liquid mixture vs. pressurized CO(2) (R((S+L)/G)) exhibited important roles on the extraction kinetics of anthocyanins. The extraction kinetics showed two phases, the yield increased with increasing the time in the first phase, the yield defined as steady-state yield (y(*)) was constant in the second phase. The y(*) of anthocyanins using HPCD increased with higher temperature, higher pressure and lower R((S+L)/G). The general mass transfer model with higher regression coefficients (R(2)>0.97) fitted the kinetic data better than the Fick's second law diffusion model. As compared with CAW, the time (t(*)) to reach the y(*) of anthocyanins using HPCD was reduced by half while its corresponding overall volumetric mass transfer coefficients k(L)xa from the general mass transfer model increased by two folds. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade

    NASA Technical Reports Server (NTRS)

    Azad, Gm S.; Han, Je-Chin; Boyle, Robert J.

    2000-01-01

    Experimental investigations are performed to measure the detailed heat transfer coefficient and static pressure distributions on the squealer tip of a gas turbine blade in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a modem first stage gas turbine rotor blade with a blade tip profile of a GE-E(sup 3) aircraft gas turbine engine rotor blade. A squealer (recessed) tip with a 3.77% recess is considered here. The data on the squealer tip are also compared with a flat tip case. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Two different turbulence intensities of 6.1% and 9.7% at the cascade inlet are also considered for heat transfer measurements. Static pressure measurements are made in the mid-span and near-tip regions, as well as on the shroud surface opposite to the blade tip surface. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and an exit Reynolds number based on the axial chord of 1.1 x 10(exp 6). A transient liquid crystal technique is used to measure the heat transfer coefficients. Results show that the heat transfer coefficient on the cavity surface and rim increases with an increase in tip clearance. 'Me heat transfer coefficient on the rim is higher than the cavity surface. The cavity surface has a higher heat transfer coefficient near the leading edge region than the trailing edge region. The heat transfer coefficient on the pressure side rim and trailing edge region is higher at a higher turbulence intensity level of 9.7% over 6.1 % case. However, no significant difference in local heat transfer coefficient is observed inside the cavity and the suction side rim for the two turbulence intensities. The squealer tip blade provides a lower overall heat transfer coefficient when compared to the flat tip blade.

  11. Wavelet-based system identification of short-term dynamic characteristics of arterial baroreflex.

    PubMed

    Kashihara, Koji; Kawada, Toru; Sugimachi, Masaru; Sunagawa, Kenji

    2009-01-01

    The assessment of arterial baroreflex function in cardiovascular diseases requires quantitative evaluation of dynamic and static baroreflex properties because of the frequent modulation of baroreflex properties with unstable hemodynamics. The purpose of this study was to identify the dynamic baroreflex properties from transient changes of step pressure inputs with background noise during a short-duration baroreflex test in anesthetized rabbits with isolated carotid sinuses, using a modified wavelet-based time-frequency analysis. The proposed analysis was able to identify the transfer function of baroreflex as well as static properties from the transient input-output responses under normal [gain at 0.04 Hz from carotid sinus pressure (CSP) to arterial pressure (n = 8); 0.29 +/- 0.05 at low (40-60 mmHg), 1.28 +/- 0.12 at middle (80-100 mmHg), and 0.38 +/- 0.07 at high (120-140 mmHg) CSP changes] and pathophysiological [gain in control vs. phenylbiguanide (n = 8); 0.32 +/- 0.07 vs. 0.39 +/- 0.09 at low, 1.39 +/- 0.15 vs. 0.59 +/- 0.09 (p < 0.01) at middle, and 0.35 +/- 0.04 vs. 0.15 +/- 0.02 (p < 0.01) at high CSP changes] conditions. Subsequently, we tested the proposed wavelet-based method under closed-loop baroreflex responses; the simulation study indicates that it may be applicable to clinical situations for accurate assessment of dynamic baroreflex function. In conclusion, the dynamic baroreflex property to various pressure inputs could be simultaneously extracted from the step responses with background noise.

  12. Estimating Dermal Transfer of Copper Particles from the Surfaces of Pressure-Treated Lumber and Implications for Exposure

    EPA Science Inventory

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper ba...

  13. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    NASA Astrophysics Data System (ADS)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  14. Validation of Vehicle Panel/Equipment Response from Diffuse Acoustic Field Excitation Using Spatially Correlated Transfer Function Approach

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Fulcher, Clay; Hunt, Ron

    2012-01-01

    An approach for predicting the vibration, strain, and force responses of a flight-like vehicle panel assembly to acoustic pressures is presented. Important validation for the approach is provided by comparison to ground test measurements in a reverberant chamber. The test article and the corresponding analytical model were assembled in several configurations to demonstrate the suitability of the approach for response predictions when the vehicle panel is integrated with equipment. Critical choices in the analysis necessary for convergence of the predicted and measured responses are illustrated through sensitivity studies. The methodology includes representation of spatial correlation of the pressure field over the panel surface. Therefore, it is possible to demonstrate the effects of hydrodynamic coincidence in the response. The sensitivity to pressure patch density clearly illustrates the onset of coincidence effects on the panel response predictions.

  15. Properties of thick GEM in low-pressure deuterium

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Ota, S.; Tokieda, H.; Kojima, R.; Watanabe, Y. N.; Uesaka, T.

    2014-05-01

    Deuteron inelastic scattering (d, d') provides a promising spectroscopic tool to study nuclear incompressibility. In studies of deuteron inelastic scattering of unstable nuclei, measurements of low-energy recoiled particles is very important. In order to perform these measurements, we are developing a GEM-TPC based gaseous active target, called CAT (Center for nuclear study Active Target), operated with pure deuterium gas. The CAT has been tested with deuterium gas at 1 atm and 100-μm-thick GEMs. The low-pressure operation of CAT is planned in order to improve the detection capability for lower-energy recoil particles. A 400 μm-thick gas electron multiplier (THGEM) was chosen for the low-pressure operation of CAT. However, the properties of THGEM in low-pressure deuterium are currently undocumented. In this work, the performance of THGEM with low-pressure pure deuterium gas has been investigated. The effective gas gain of THGEM has been measured in various conditions using a 5.5-MeV 241Am alpha source. The effective gas gain was measured for 0.2-, 0.3- and 0.4-atm deuterium gas and a gas gain of about 103 was achieved by a double THGEM structure at 0.2 atm. The maximum achieved gain decreased with increasing gas pressure. The dependences of the effective gas gain on the electric field strengths of the drift, transfer and induction regions were investigated. The gain stability as a function of time in hydrogen gas was also tested and a relaxation time of THGEM of about 60 hours was observed with a continuous irradiation of alpha particles, which is significantly longer than previous studies have reported. We have tried to evaluate the gas gain of THGEM in deuterium gas by considering only the Townsend ionization process; however, it turned out that more phenomenological aspects, such as transfer efficiency, should be included in the evaluation. The basic properties of THGEM in low-pressure deuterium have been investigated for the first time.

  16. High pressure reaction cell and transfer mechanism for ultrahigh vacuum spectroscopic chambers

    NASA Astrophysics Data System (ADS)

    Nelson, A. E.; Schulz, K. H.

    2000-06-01

    A novel high pressure reaction cell and sample transfer mechanism for ultrahigh vacuum (UHV) spectroscopic chambers is described. The design employs a unique modification of a commercial load-lock transfer system to emulate a tractable microreactor. The reaction cell has an operating pressure range of <1×10-4 to 1000 Torr and can be evacuated to UHV conditions to enable sample transfer into the spectroscopic chamber. Additionally, a newly designed sample holder equipped with electrical and thermocouple contacts is described. The sample holder is capable of resistive specimen heating to 400 and 800 °C with current requirements of 14 A (2 V) and 25 A (3.5 V), respectively. The design enables thorough material science characterization of catalytic reactions and the surface chemistry of catalytic materials without exposing the specimen to atmospheric contaminants. The system is constructed primarily from readily available commercial equipment allowing its rapid implementation into existing laboratories.

  17. Magnetization transfer from laser-polarized xenon to protons located in the hydrophobic cavity of the wheat nonspecific lipid transfer protein

    PubMed Central

    Landon, Céline; Berthault, Patrick; Vovelle, Françoise; Desvaux, Hervé

    2001-01-01

    Nonspecific lipid transfer protein from wheat is studied by liquid-state NMR in the presence of xenon. The gas–protein interaction is indicated by the dependence of the protein proton chemical shifts on the xenon pressure and formally confirmed by the first observation of magnetization transfer from laser-polarized xenon to the protein protons. Twenty-six heteronuclear nOes have allowed the characterization of four interaction sites inside the wheat ns-LTP cavity. Their locations are in agreement with the variations of the chemical shifts under xenon pressure and with solvation simulations. The richness of the information obtained by the noble gas with a nuclear polarization multiplied by ∼12,000 makes this approach based on dipolar cross-relaxation with laser-polarized xenon promising for probing protein hydrophobic pockets at ambient pressure. PMID:11274467

  18. Measurement and modelling of forced convective heat transfer coefficient and pressure drop of Al2O3- and SiO2-water nanofluids

    NASA Astrophysics Data System (ADS)

    Julia, J. E.; Hernández, L.; Martínez-Cuenca, R.; Hibiki, T.; Mondragón, R.; Segarra, C.; Jarque, J. C.

    2012-11-01

    Forced convective heat transfer coefficient and pressure drop of SiO2- and Al2O3-water nanofluids were characterized. The experimental facility was composed of thermal-hydraulic loop with a tank with an immersed heater, a centrifugal pump, a bypass with a globe valve, an electromagnetic flow-meter, a 18 kW in-line pre-heater, a test section with band heaters, a differential pressure transducer and a heat exchanger. The test section consists of a 1000 mm long aluminium pipe with an inner diameter of 31.2 mm. Eighteen band heaters were placed all along the test section in order to provide a uniform heat flux. Heat transfer coefficient was calculated measuring fluid temperature using immersed thermocouples (Pt100) placed at both ends of the test section and surface thermocouples in 10 axial locations along the test section (Pt1000). The measurements have been performed for different nanoparticles (Al2O3 and SiO2 with primary size of 11 nm and 12 nm, respectively), volume concentrations (1% v., 5% v.), and flow rates (3 103Re<105). Maximum heat transfer coefficient enhancement (300%) and pressure drop penalty (1000%) is obtained with 5% v. SiO2 nanofluid. Existing correlations can predict, at least in a first approximation, the heat transfer coefficient and pressure drop of nanofluids if thermal conductivity, viscosity and specific heat were properly modelled.

  19. Laboratory investigations of the physics of steam flow in a porous medium

    USGS Publications Warehouse

    Herkelrath, W.N.; Moench, A.F.

    1982-01-01

    Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used extensively in modeling pressure-transient behavior in vapor-dominated geothermal systems. Transient, superheated steam-flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure, and then making a step increase in pressure at one end of the sample, while monitoring the pressure-transient breakthrough at the other end. It was found in experiments run at 100?, 125?, and 146?C that the time required for steam-pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10 to 25 times longer than predicted by theory. It is hypothesized that the delay in the steam-pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10?C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. For simplicity, this function was assumed to be in equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved. The experiments support the hypothesis that adsorption of steam can strongly influence steam pressure-transient behavior in porous media; the results suggest that the modified steam-flow theory, which includes steam adsorption terms, should be used in modeling steam flow in vapor-dominated geothermal systems.

  20. Heat-transfer analysis of double-pipe heat exchangers for indirect-cycle SCW NPP

    NASA Astrophysics Data System (ADS)

    Thind, Harwinder

    SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. SuperCritical Water (SCW) Nuclear Power Plants (NPPs) are expected to have much higher operating parameters compared to current NPPs, i.e., pressure of about 25 MPa and outlet temperature up to 625 °C. This study presents the heat transfer analysis of an intermediate Heat exchanger (HX) design for indirect-cycle concepts of Pressure-Tube (PT) and Pressure-Vessel (PV) SCWRs. Thermodynamic configurations with an intermediate HX gives a possibility to have a single-reheat option for PT and PV SCWRs without introducing steam-reheat channels into a reactor. Similar to the current CANDU and Pressurized Water Reactor (PWR) NPPs, steam generators separate the primary loop from the secondary loop. In this way, the primary loop can be completely enclosed in a reactor containment building. This study analyzes the heat transfer from a SCW primary (reactor) loop to a SCW and Super-Heated Steam (SHS) secondary (turbine) loop using a double-pipe intermediate HX. The numerical model is developed with MATLAB and NIST REFPROP software. Water from the primary loop flows through the inner pipe, and water from the secondary loop flows through the annulus in the counter direction of the double-pipe HX. The analysis on the double-pipe HX shows temperature and profiles of thermophysical properties along the heated length of the HX. It was found that the pseudocritical region has a significant effect on the temperature profiles and heat-transfer area of the HX. An analysis shows the effect of variation in pressure, temperature, mass flow rate, and pipe size on the pseudocritical region and the heat-transfer area of the HX. The results from the numerical model can be used to optimize the heat-transfer area of the HX. The higher pressure difference on the hot side and higher temperature difference between the hot and cold sides reduces the pseudocritical-region length, thus decreases the heat-transfer surface area of the HX.

  1. Power flow in normal human voice production

    NASA Astrophysics Data System (ADS)

    Krane, Michael

    2016-11-01

    The principal mechanisms of energy utilization in voicing are quantified using a simplified model, in order to better define voice efficiency. A control volume analysis of energy utilization in phonation is presented to identify the energy transfer mechanisms in terms of their function. Conversion of subglottal airstream potential energy into useful work done (vocal fold vibration, flow work, sound radiation), and into heat (sound radiation absorbed by the lungs, glottal jet dissipation) are described. An approximate numerical model is used to compute the contributions of each of these mechanisms, as a function of subglottal pressure, for normal phonation. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  2. Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Micro-Flows

    NASA Astrophysics Data System (ADS)

    Horiuchi, Keisuke; Dutta, Prashanta

    We analyze heat transfer characteristics of steady electroosmotic flows with an arbitrary pressure gradient in two-dimensional straight microchannels considering the effects of Joule heating in electroosmotic pumping. Both the temperature distribution and local Nusselt number are mathematically derived in this study. The thermal analysis takes into consideration of the interaction among advective, diffusive, and Joule heating terms to obtain the thermally developing behavior. Unlike macro-scale pipes, axial conduction in micro-scale cannot be negligible, and the governing energy equation is not separable. Thus, a method that considers an extended Graetz problem is introduced. Analytical results show that the Nusselt number of pure electrooosmotic flow is higher than that of plane Poiseulle flow. Moreover, when the electroosmotic flow and pressure driven flow coexist, it is found that adverse pressure gradient to the electroosmotic flow makes the thermal entrance length smaller and the heat transfer ability stronger than pure electroosmotic flow case.

  3. Cooling of High Pressure Rocket Thrust Chambers with Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Price, H. G.

    1980-01-01

    An experimental program using hydrogen and oxygen as the propellants and supercritical liquid oxygen (LOX) as the coolant was conducted at 4.14 and 8.274 MN/square meters (600 and 1200 psia) chamber pressure. Data on the following are presented: the effect of LOX leaking into the combustion region through small cracks in the chamber wall; and verification of the supercritical oxygen heat transfer correlation developed from heated tube experiments; A total of four thrust chambers with throat diameters of 0.066 m were tested. Of these, three were cyclically tested to 4.14 MN/square meters (600 psia) chamber pressure until a crack developed. One had 23 additional hot cycles accumulated with no apparent metal burning or distress. The fourth chamber was operated at 8.274 MN/square meters (1200 psia) pressure to obtain steady state heat transfer data. Wall temperature measurements confirmed the heat transfer correlation.

  4. Bottom-up coarse-grained models with predictive accuracy and transferability for both structural and thermodynamic properties of heptane-toluene mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Nicholas J. H.; Noid, W. G., E-mail: wnoid@chem.psu.edu

    This work investigates the promise of a “bottom-up” extended ensemble framework for developing coarse-grained (CG) models that provide predictive accuracy and transferability for describing both structural and thermodynamic properties. We employ a force-matching variational principle to determine system-independent, i.e., transferable, interaction potentials that optimally model the interactions in five distinct heptane-toluene mixtures. Similarly, we employ a self-consistent pressure-matching approach to determine a system-specific pressure correction for each mixture. The resulting CG potentials accurately reproduce the site-site rdfs, the volume fluctuations, and the pressure equations of state that are determined by all-atom (AA) models for the five mixtures. Furthermore, we demonstratemore » that these CG potentials provide similar accuracy for additional heptane-toluene mixtures that were not included their parameterization. Surprisingly, the extended ensemble approach improves not only the transferability but also the accuracy of the calculated potentials. Additionally, we observe that the required pressure corrections strongly correlate with the intermolecular cohesion of the system-specific CG potentials. Moreover, this cohesion correlates with the relative “structure” within the corresponding mapped AA ensemble. Finally, the appendix demonstrates that the self-consistent pressure-matching approach corresponds to minimizing an appropriate relative entropy.« less

  5. The Bidirectional Transfer and Fetal Vascular Pressure Changes Due to the Presence of 125 I-Labeled Inhibin A in the ex-vivo Human Placental Model

    PubMed Central

    Ghetie, Victor

    2003-01-01

    Objective: The purpose of this study was to investigate the transport of inhibin A and to determine its effects on fetal vascular pressure at elevated levels in the human placenta using 125I -labeled synthetic glycoprotein. Methods: Synthetic inhibinAwas prepared and was shown to be consistent with the natural form by high-pressure liquid chromatography (HPLC) and molecular weight determination by gas-chromatography mass spectrometry. The standardized Na125I process yielded 125I -labeled inhibin A with a radioactivity of 106 cpm/μg. This compound was placed in the human placenta in maternal–fetal and fetal–maternal studies using antipyrine and 14C -labeled inulin as controls to determine the bidirectional transfer of the compound. Results: Maternal–fetal and fetal–maternal clearance indices were 0.045± 0.003 and 0, respectively. In eight placentas there was no evidence of vascular pressure changes due to the presence of up to 5000 pg of inhibin A. Conclusions: There is minimal maternal–fetal transfer and no detectable fetal–maternal transfer in normotensive and pregnancy-induced hypertensive placentas. In addition, there are no pressure changes in the fetal vascular system due to the clinically significant levels of inhibin A. PMID:14627215

  6. Bottom-up coarse-grained models with predictive accuracy and transferability for both structural and thermodynamic properties of heptane-toluene mixtures.

    PubMed

    Dunn, Nicholas J H; Noid, W G

    2016-05-28

    This work investigates the promise of a "bottom-up" extended ensemble framework for developing coarse-grained (CG) models that provide predictive accuracy and transferability for describing both structural and thermodynamic properties. We employ a force-matching variational principle to determine system-independent, i.e., transferable, interaction potentials that optimally model the interactions in five distinct heptane-toluene mixtures. Similarly, we employ a self-consistent pressure-matching approach to determine a system-specific pressure correction for each mixture. The resulting CG potentials accurately reproduce the site-site rdfs, the volume fluctuations, and the pressure equations of state that are determined by all-atom (AA) models for the five mixtures. Furthermore, we demonstrate that these CG potentials provide similar accuracy for additional heptane-toluene mixtures that were not included their parameterization. Surprisingly, the extended ensemble approach improves not only the transferability but also the accuracy of the calculated potentials. Additionally, we observe that the required pressure corrections strongly correlate with the intermolecular cohesion of the system-specific CG potentials. Moreover, this cohesion correlates with the relative "structure" within the corresponding mapped AA ensemble. Finally, the appendix demonstrates that the self-consistent pressure-matching approach corresponds to minimizing an appropriate relative entropy.

  7. A generalized one-dimensional computer code for turbomachinery cooling passage flow calculations

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.

    1989-01-01

    A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.

  8. A brief clinical case of monitoring of oxygenator performance and patient-machine interdependency during prolonged veno-venous extracorporeal membrane oxygenation.

    PubMed

    Belliato, Mirko; Degani, Antonella; Buffa, Antonino; Sciutti, Fabio; Pagani, Michele; Pellegrini, Carlo; Iotti, Giorgio Antonio

    2017-10-01

    Monitoring veno-venous extracorporeal membrane oxygenation (vvECMO) during 76 days of continuous support in a 42-years old patient with end-stage pulmonary disease, listed for double-lung transplantation. Applying a new monitor (Landing ® , Eurosets, Medolla, Italy) and describing how measured and calculated parameters can be used to understand the variable interdependency between artificial membrane lung (ML) and patient native lung (NL). During vvECMO, in order to understand how the respiratory function is shared between ML and NL, ideally we should obtain data about oxygen transfer and CO 2 removal, both by ML and NL. Measurements for NL can be made on the mechanical ventilator. Measurements for ML are typically made from gas analysis on blood samples drawn from the ECMO system before and after the oxygenator, and therefore are non-continuous. Differently, the Landing monitor provides a continuous measurement of the oxygen transfer from the ML, combined with hemoglobin level, saturation of drained blood and saturation of reinfused blood. Moreover, the Landing monitor provides hemodynamics data about circulation through the ECMO system, with blood flow, pre-oxygenator pressure and post-oxygenator pressure. Of note, measurements include the drain negative pressure, whose monitoring may be particularly useful to prevent hemolysis. Real-time monitoring of vvECMO provides data helpful to understand the complex picture of a patient with severely damaged lungs on one side and an artificial lung on the other side. Data from vvECMO monitoring may help to adapt the settings of both mechanical ventilator and vvECMO. Data about oxygen transfer by the oxygenator are important to evaluate the performance of the device and may help to avoid unnecessary replacements, thus reducing risks and costs.

  9. System for pressure letdown of abrasive slurries

    DOEpatents

    Kasper, Stanley

    1991-01-01

    A system and method for releasing erosive slurries from containment at high pressure without subjecting valves to highly erosive slurry flow. The system includes a pressure letdown tank disposed below the high-pressure tank, the two tanks being connected by a valved line communicating the gas phases and a line having a valve and choke for a transfer of liquid into the letdown tank. The letdown tank has a valved gas vent and a valved outlet line for release of liquid. In operation, the gas transfer line is opened to equalize pressure between tanks so that a low level of liquid flow occurs. The letdown tank is then vented, creating a high-pressure differential between the tanks. At this point, flow between tanks is controlled by the choke. High-velocity, erosive flow through a high-pressure outlet valve is prevented by equalizing the start up pressure and thereafter limiting flow with the choke.

  10. Thermo-compressive transfer printing for facile alignment and robust device integration of nanowires.

    PubMed

    Lee, Won Seok; Won, Sejeong; Park, Jeunghee; Lee, Jihye; Park, Inkyu

    2012-06-07

    Controlled alignment and mechanically robust bonding between nanowires (NWs) and electrodes are essential requirements for reliable operation of functional NW-based electronic devices. In this work, we developed a novel process for the alignment and bonding between NWs and metal electrodes by using thermo-compressive transfer printing. In this process, bottom-up synthesized NWs were aligned in parallel by shear loading onto the intermediate substrate and then finally transferred onto the target substrate with low melting temperature metal electrodes. In particular, multi-layer (e.g. Cr/Au/In/Au and Cr/Cu/In/Au) metal electrodes are softened at low temperatures (below 100 °C) and facilitate submergence of aligned NWs into the surface of electrodes at a moderate pressure (∼5 bar). By using this thermo-compressive transfer printing process, robust electrical and mechanical contact between NWs and metal electrodes can be realized. This method is believed to be very useful for the large-area fabrication of NW-based electrical devices with improved mechanical robustness, electrical contact resistance, and reliability.

  11. First FAMU observation of muon transfer from μp atoms to higher-Z elements

    NASA Astrophysics Data System (ADS)

    Mocchiutti, E.; Bonvicini, V.; Carbone, R.; Danailov, M.; Furlanetto, E.; Gadedjisso-Tossou, K. S.; Guffanti, D.; Pizzolotto, C.; Rachevski, A.; Stoychev, L.; Vallazza, E.; Zampa, G.; Niemela, J.; Ishida, K.; Adamczak, A.; Baccolo, G.; Benocci, R.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Clemenza, M.; Curioni, A.; Maggi, V.; Mazza, R.; Moretti, M.; Nastasi, M.; Previtali, E.; Bakalov, D.; Danev, P.; Stoilov, M.; Baldazzi, G.; Campana, G.; D'Antone, I.; Furini, M.; Fuschino, F.; Labanti, C.; Margotti, A.; Meneghini, S.; Morgante, G.; Rignanese, L. P.; Rossi, P. L.; Zuffa, M.; Cervi, T.; De Bari, A.; Menegolli, A.; De Vecchi, C.; Nardò, R.; Rossella, M.; Tomaselli, A.; Colace, L.; De Vincenzi, M.; Iaciofano, A.; Somma, F.; Tortora, L.; Ramponi, R.; Vacchi, A.

    2018-02-01

    The FAMU experiment aims to accurately measure the hyperfine splitting of the ground state of the muonic hydrogen atom. A measurement of the transfer rate of muons from hydrogen to heavier gases is necessary for this purpose. In June 2014, within a preliminary experiment, a pressurized gas-target was exposed to the pulsed low-energy muon beam at the RIKEN RAL muon facility (Rutherford Appleton Laboratory, U.K.). The main goal of the test was the characterization of both the noise induced by the pulsed beam and the X-ray detectors. The apparatus, to some extent rudimental, has served admirably to this task. Technical results have been published that prove the validity of the choices made and pave the way for the next steps. This paper presents the results of physical relevance of measurements of the muon transfer rate to carbon dioxide, oxygen, and argon from non-thermalized excited μp atoms. The analysis methodology and the approach to the systematics errors are useful for the subsequent study of the transfer rate as function of the kinetic energy of the μp currently under way.

  12. Female transference and mate choice among Tana River red colobus.

    PubMed

    Marsh, C W

    1979-10-18

    Red colobus are one of a small number of primate species in which females have been reported to transfer between breeding groups more commonly than males. Several authors have hypothesised that in such species transference may serve to reduce the risk to females of producing offspring of lower fitness through inbreeding. The hypothesis offers no explanation of why females rather than males are responsible for outbreeding in these species, but remains plausible so long as male membership of breeding groups is relatively stable; for once members of one sex have evolved dispersal mechanisms reducing the risk of inbreeding, pressures on the other sex to do likewise will be lowered. Hence, if both sexes commonly migrate, the hypothesis is weakened. I describe here the membership dynamics of a group of Tana River red colobus, Colobus badius rufomitratus, which provide the first evidence of high rates of membership turnover by both sexes in primates, and speculate that the function of female transference in this case may be related to mate choice and the avoidance of infanticide.

  13. Effect of Favorable Pressure Gradients on Turbine Blade Pressure Surface Heat Transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Giel, P. W.

    2002-01-01

    Recent measurements on a turbine rotor showed significant relaminarization effects. These effects were evident on the pressure surface heat transfer measurements. The character of the heat transfer varied with Reynolds number. Data were obtained for exit Reynolds numbers between 500,000 and 880,000. Tests were done with a high level of inlet turbulence, 7.5%. At lower Reynolds numbers the heat transfer was similar to that for laminar flow, but at a level higher than for laminar flow. At higher Reynolds numbers the heat transfer was similar to turbulent flow, when the acceleration parameter, K, was sufficiently small. The proposed paper discusses the experimental results, and also discusses approaches to calculating the surface heat transfer for the blade surface. Calculations were done using a three-dimensional Navier-Stokes CFD analysis. The results of these tests, when compared with previous blade tests in the same facility, illustrate modeling difficulties that were encountered in CFD predictions. The two blades were in many ways similar. However, the degree of agreement between the same analysis and the experimental data was significantly different. These differences are highlighted to illustrate where improvements in modeling approaches are needed for transitional flows.

  14. Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Akyürek, Eda Feyza; Geliş, Kadir; Şahin, Bayram; Manay, Eyüphan

    2018-06-01

    Nanofluids are a novel class of heat transfer suspensions of metallic or nonmetallic nanopowders with a size of less than 100 nm in base fluids and they can increase heat transfer potential of the base fluids in various applications. In the last decade, nanofluids have become an intensive research topic because of their improved thermal properties and possible heat transfer applications. For comparison, an experiment using water as the working fluid in the heat exchanger without wire coils was also performed. Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3-water nanofluids in a concentric tube heat exchanger with and without wire coil turbulators were experimentally investigated in this research. Experiments effected particle volume concentrations of 0.4-0.8 to 1.2-1.6 vol% in the Reynolds number range from 4000 to 20,000. Two turbulators with the pitches of 25 mm and 39 mm were used. The average Nusselt number increased with increasing the Reynolds number and particle concentrations. Moreover, the pressure drop of the Al2O3-water nanofluid showed nearly equal to that of pure water at the same Reynolds number range. As a result, nanofluids with lower particle concentrations did not show an important influence on pressure drop change. Nonetheless, when the wire coils used in the heat exchanger, it increased pressure drop as well as the heat transfer coefficient.

  15. Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Sun, Baokun; Lin, Wei; He, Fan; You, Yingqiang; Yu, Jiuyang

    2018-02-01

    The heat transfer of methane at supercritical pressure in a helically coiled tube was numerically investigated using the Reynolds Stress Model under constant wall temperature. The effects of mass flux ( G), inlet pressure ( P in) and buoyancy force on the heat transfer behaviors were discussed in detail. Results show that the light fluid with higher temperature appears near the inner wall of the helically coiled tube. When the bulk temperature is less than or approach to the pseudocritical temperature ( T pc ), the combined effects of buoyancy force and centrifugal force make heavy fluid with lower temperature appear near the outer-right of the helically coiled tube. Beyond the T pc , the heavy fluid with lower temperature moves from the outer-right region to the outer region owing to the centrifugal force. The buoyancy force caused by density variation, which can be characterized by Gr/ Re 2 and Gr/ Re 2.7, enhances the heat transfer coefficient ( h) when the bulk temperature is less than or near the T pc , and the h experiences oscillation due to the buoyancy force. The oscillation is reduced progressively with the increase of G. Moreover, h reaches its peak value near the T pc . Higher G could improve the heat transfer performance in the whole temperature range. The peak value of h depends on P in. A new correlation was proposed for methane at supercritical pressure convective heat transfer in the helical tube, which shows a good agreement with the present simulated results.

  16. Survey and evaluation of multilayer insulation heat transfer measurements

    NASA Astrophysics Data System (ADS)

    Doenecke, Jochen

    About 40 papers treating multilayer insulations were studied and compared. Most of these papers present heat transfer measurements in addition to thermal analysis. Here the equations are given which are required for an evaluation of the measurements and in particular for comparisons. Equations are presented which are required to predict the influences of the packing density, temperatures, fraction of perforation area and interstitial pressure. The equation giving gas conductivity versus pressure is modified according to measurements. In space the interstitial pressure is usually below 0.01 Pa and the heat transfer can be expressed as the sum of a conductive and radiative term. The equation finally proposed for spacecraft permits to consider the influence of temperature, number of layers, blanket size and perforation area.

  17. S-wave velocity structure in the Nankai accretionary prism derived from Rayleigh admittance

    NASA Astrophysics Data System (ADS)

    Tonegawa, Takashi; Araki, Eiichiro; Kimura, Toshinori; Nakamura, Takeshi; Nakano, Masaru; Suzuki, Kensuke

    2017-04-01

    Two cabled seafloor networks with 22 and 29 stations (DONET 1 and 2: Dense Oceanfloor Network System for Earthquake and Tsunamis) have been constructed on the accretionary prism at the Nankai subduction zone of Japan since March 2010. The observation periods of DONET 1 and 2 exceed more than 5 years and 10 months, respectively. Each station contains broadband seismometers and absolute and differential pressure gauges. In this study, using Rayleigh waves of microseisms and earthquakes, we calculate the Rayleigh admittance (Ruan et al., 2014, JGR) at the seafloor for each station, i.e., an amplitude transfer function from pressure to displacement, particularly for the frequencies of 0.1-0.2 Hz (ambient noise) and 0.04-0.1 Hz (earthquake signal), and estimate S-wave velocity (Vs) structure beneath stations in DONET 1 and 2. We calculated the displacement seismogram by removing the instrument response from the velocity seismogram for each station. The pressure record observed at the differential pressure gauge was used in this study because of a high resolution of the pressure observation. In addition to Rayleigh waves of microseisms, we collected waveforms of Rayleigh waves for earthquakes with an epicentral distance of 15-90°, M>5.0, and focal depth shallower than 50 km. In the frequency domain, we smoothed the transfer function of displacement/pressure with the Parzen window of ±0.01 Hz. In order to determine one-dimensional Vs profiles, we performed a nonlinear inversion technique, i.e., simulated annealing. As a result, Vs profiles obtained at stations near the land show simple Vs structure, i.e., Vs increases with depth. However, some profiles located at the toe of the acceretionary prism have a low-velocity zone (LVZ) at a depth of 5-7 km within the accretinary sediment. The velocity reduction is approximately 5-20 %. Park et al. (2010) reported such a large reduction in P-wave velocity in the region of DONET 1 (eastern network and southeast of the Kii Peninsula), but our result shows the LVZ in the regions of both DONET 1 and 2 (2: western network and southwest of the Kii Peninsula). Similar features could also be obtained by using Rayleigh waves of earthquake-signals only. This indicates lateral variation of Vs structure at the toe of the Nankai accretionary prism.

  18. Revisiting borehole strain, typhoons, and slow earthquakes using quantitative estimates of precipitation-induced strain changes

    NASA Astrophysics Data System (ADS)

    Hsu, Ya-Ju; Chang, Yuan-Shu; Liu, Chi-Ching; Lee, Hsin-Ming; Linde, Alan T.; Sacks, Selwyn I.; Kitagawa, Genshio; Chen, Yue-Gau

    2015-06-01

    Taiwan experiences high deformation rates, particularly along its eastern margin where a shortening rate of about 30 mm/yr is experienced in the Longitudinal Valley and the Coastal Range. Four Sacks-Evertson borehole strainmeters have been installed in this area since 2003. Liu et al. (2009) proposed that a number of strain transient events, primarily coincident with low-barometric pressure during passages of typhoons, were due to deep-triggered slow slip. Here we extend that investigation with a quantitative analysis of the strain responses to precipitation as well as barometric pressure and the Earth tides in order to isolate tectonic source effects. Estimates of the strain responses to barometric pressure and groundwater level changes for the different stations vary over the ranges -1 to -3 nanostrain/millibar(hPa) and -0.3 to -1.0 nanostrain/hPa, respectively, consistent with theoretical values derived using Hooke's law. Liu et al. (2009) noted that during some typhoons, including at least one with very heavy rainfall, the observed strain changes were consistent with only barometric forcing. By considering a more extensive data set, we now find that the strain response to rainfall is about -5.1 nanostrain/hPa. A larger strain response to rainfall compared to that to air pressure and water level may be associated with an additional strain from fluid pressure changes that take place due to infiltration of precipitation. Using a state-space model, we remove the strain response to rainfall, in addition to those due to air pressure changes and the Earth tides, and investigate whether corrected strain changes are related to environmental disturbances or tectonic-original motions. The majority of strain changes attributed to slow earthquakes seem rather to be associated with environmental factors. However, some events show remaining strain changes after all corrections. These events include strain polarity changes during passages of typhoons (a characteristic that is not anticipated from our estimates of the precipitation transfer function) that are more readily explained in terms of tectonic-origin motions, but clearly the triggering argument is now weaker than that presented in Liu et al. (2009). Additional on-site water level sensors and rain gauges will provide data critical for a more complete understanding, including the currently unresolved issue of why, for some typhoons, there appears to be a much smaller transfer function for precipitation-induced strain changes.

  19. A method for computing ion energy distributions for multifrequency capacitive discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Alan C. F.; Lieberman, M. A.; Verboncoeur, J. P.

    2007-03-01

    The ion energy distribution (IED) at a surface is an important parameter for processing in multiple radio frequency driven capacitive discharges. An analytical model is developed for the IED in a low pressure discharge based on a linear transfer function that relates the time-varying sheath voltage to the time-varying ion energy response at the surface. This model is in good agreement with particle-in-cell simulations over a wide range of single, dual, and triple frequency driven capacitive discharge excitations.

  20. MRM-1

    NASA Image and Video Library

    2010-05-18

    S132-E-008114 (18 May 2010) --- In the grasp of the Canadarm2, the Russian-built Mini-Research Module 1 (MRM-1) is transferred from space shuttle Atlantis’ payload bay to be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB) of the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia. Rassvet will be used for cargo storage and will provide an additional docking port to the station.

  1. Experimental Analysis of Heat Transfer Characteristics and Pressure Drop through Screen Regenerative Heat Exchangers

    DTIC Science & Technology

    1993-12-01

    of fluid T1 initial temperature of matrix and fluid Tf1 average inlet temperature after the step change Tii average inlet temperature before the step...respectively, of the regenerator. The horizontal distances shown with Tf1 , Tj, and T,2 illustrate the time interval for which the average values were...temperature was not a true step function, the investigator made an approximation. The approximation was based on an average temperature. Tf1 was the

  2. Experimental dynamic response of a two-dimensional, Mach 2.7, mixed compression inlet

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.; Neiner, G. H.; Cole, G. L.

    1972-01-01

    A test program was conducted on a two-dimensional supersonic inlet. Internal disturbances in diffuser exit mass flow were produced by oscillating overboard bypass doors. Open-loop dynamic responses of shock position, throat exit and diffuser exit static pressures are presented. The steady-state and dynamic coupling between ducts were also obtained. The experimental results from the two-dimensional inlet are compared to results from a similar size axisymmetric inlet and also to a transfer function synthesis program.

  3. Determination of thermal contact conductance in vacuum-bagged thermoplastic prepreg stacks using infrared thermography

    NASA Astrophysics Data System (ADS)

    Baumard, Théo; De Almeida, Olivier; Menary, Gary; Le Maoult, Yannick; Schmidt, Fabrice; Bikard, Jérôme

    2016-10-01

    The infrared heating of a vacuum-bagged, thermoplastic prepreg stack of glass/PA66 was studied to investigate the influence of vacuum level on thermal contact resistance between plies. A higher vacuum level was shown experimentally to decrease the transverse heat transfer efficiency, indicating that considering only the effect of heat conduction at the plies interfaces is not sufficient to predict the temperature distribution. An inverse analysis was used to retrieve the contact resistance coefficients as a function of vacuum pressure.

  4. Hyperion 5113/A Infrasound Sensor Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion John

    2015-09-01

    Sandia National Laboratories has tested and evaluated an infrasound sensor, the 5113/A manufactured by Hyperion. These infrasound sensors measure pressure output by a methodology developed by the University of Mississippi. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, and dynamic range. The 5113/A infrasound sensor is a new revision of the 5000 series intended to meet the infrasound application requirements for use in the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).

  5. Modeling collision energy transfer in APCI/CID mass spectra of PAHs using thermal-like post-collision internal energy distributions

    NASA Astrophysics Data System (ADS)

    Solano, Eduardo A.; Mohamed, Sabria; Mayer, Paul M.

    2016-10-01

    The internal energy transferred when projectile molecular ions of naphthalene collide with argon gas atoms was extracted from the APCI-CID (atmospheric-pressure chemical ionization collision-induced dissociation) mass spectra acquired as a function of collision energy. Ion abundances were calculated by microcanonical integration of the differential rate equations using the Rice-Ramsperger-Kassel-Marcus rate constants derived from a UB3LYP/6-311G+(3df,2p)//UB3LYP/6-31G(d) fragmentation mechanism and thermal-like vibrational energy distributions p M (" separators=" E , T char ) . The mean vibrational energy excess of the ions was characterized by the parameter Tchar ("characteristic temperature"), determined by fitting the theoretical ion abundances to the experimental breakdown graph (a plot of relative abundances of the ions as a function of kinetic energy) of activated naphthalene ions. According to these results, the APCI ion source produces species below Tchar = 1457 K, corresponding to 3.26 eV above the vibrational ground state. Subsequent collisions heat the ions up further, giving rise to a sigmoid curve of Tchar as a function of Ecom (center-of-mass-frame kinetic energy). The differential internal energy absorption per kinetic energy unit (dEvib/dEcom) changes with Ecom according to a symmetric bell-shaped function with a maximum at 6.38 ± 0.32 eV (corresponding to 6.51 ± 0.27 eV of vibrational energy excess), and a half-height full width of 6.30 ± 1.15 eV. This function imposes restrictions on the amount of energy that can be transferred by collisions, such that a maximum is reached as kinetic energy is increased. This behavior suggests that the collisional energy transfer exhibits a pronounced increase around some specific value of energy. Finally, the model is tested against the CID mass spectra of anthracene and pyrene ions and the corresponding results are discussed.

  6. Modeling collision energy transfer in APCI/CID mass spectra of PAHs using thermal-like post-collision internal energy distributions.

    PubMed

    Solano, Eduardo A; Mohamed, Sabria; Mayer, Paul M

    2016-10-28

    The internal energy transferred when projectile molecular ions of naphthalene collide with argon gas atoms was extracted from the APCI-CID (atmospheric-pressure chemical ionization collision-induced dissociation) mass spectra acquired as a function of collision energy. Ion abundances were calculated by microcanonical integration of the differential rate equations using the Rice-Ramsperger-Kassel-Marcus rate constants derived from a UB3LYP/6-311G+(3df,2p)//UB3LYP/6-31G(d) fragmentation mechanism and thermal-like vibrational energy distributions p M E,T char . The mean vibrational energy excess of the ions was characterized by the parameter T char ("characteristic temperature"), determined by fitting the theoretical ion abundances to the experimental breakdown graph (a plot of relative abundances of the ions as a function of kinetic energy) of activated naphthalene ions. According to these results, the APCI ion source produces species below T char = 1457 K, corresponding to 3.26 eV above the vibrational ground state. Subsequent collisions heat the ions up further, giving rise to a sigmoid curve of T char as a function of E com (center-of-mass-frame kinetic energy). The differential internal energy absorption per kinetic energy unit (dE vib /dE com ) changes with E com according to a symmetric bell-shaped function with a maximum at 6.38 ± 0.32 eV (corresponding to 6.51 ± 0.27 eV of vibrational energy excess), and a half-height full width of 6.30 ± 1.15 eV. This function imposes restrictions on the amount of energy that can be transferred by collisions, such that a maximum is reached as kinetic energy is increased. This behavior suggests that the collisional energy transfer exhibits a pronounced increase around some specific value of energy. Finally, the model is tested against the CID mass spectra of anthracene and pyrene ions and the corresponding results are discussed.

  7. Heat-Transfer and Pressure Measurements on a Flat-Face Cylinder at a Mach Number Range of 2.49 to 4.44

    NASA Technical Reports Server (NTRS)

    Burbank, Paige B.; Stallings, Robert L., Jr.

    1959-01-01

    Heat-transfer coefficients and pressure distributions were obtained on a 4-inch-diameter flat-face cylinder in the Langley Unitary Plan wind tunnel. The measured stagnation heat-transfer coefficient agrees well with 55 percent of the theoretical value predicted by the modified Sibulkin method for a hemisphere. Pressure measurements indicated the dimensionless velocity gradient parameter r du\\ a(sub t) dx, where x=0 at the stagnation point was approximately 0.3 and invariant throughout the Mach number range from 2.49 to 4.44 and the Reynolds number range from 0.77 x 10(exp 6) to 1.46 x 10(exp 6). The heat-transfer coefficients on the cylindrical afterbody could be predicted with reasonable accuracy by flat-plate theory at an angle of attack of 0 deg. At angles of attack the cylindrical afterbody stagnation-line heat transfer could be computed from swept-cylinder theory for large distances back of the nose when the Reynolds number is based on the distance from the flow reattachment points.

  8. Heat transfer in freeboard region of fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biyikli, S.; Tuzla, K.; Chen, J.C.

    1983-10-01

    This research involved the study of heat transfer and fluid mechanic characteristics around a horizontal tube in the freeboard region of fluidized beds. Heat transfer coefficients were experimetnally measured for different bed temperatures, particle sizes, gas flow rates, and tube elevations in the freeboard region of air fluidized beds at atmospheric pressure. Local heat transfer coefficients were found to vary significantly with angular position around the tube. Average heat transfer coefficients were found to decrease with increasing freeboard tube elevation and approach the values for gas convection plus radiation for any given gas velocity. For a fixed tube elevation, heatmore » transfer coefficients generally increased with increasing gas velocity and with high particle entrainment they can approach the magnitudes found for immersed tubes. Heat transfer coefficients were also found to increase with increasing bed temperature. It was concluded that this increase is partly due to increase of radiative heat transfer and partly due to change of thermal properties of the fluidizing gas and particles. To investigate the fluid mechanic behavior of gas and particles around a freeboard tube, transient particle tube contacts were measured with a special capacitance probe in room temperature experiments. The results indicated that the tube surface experiences alternating dense and lean phase contacts. Quantitative information for local characteristics was obtained from the capacitance signals and used to develop a phenomenological model for prediction of the heat transfer coefficients around freeboard tubes. The packet renewal theory was modified to account for the dense phase heat transfer and a new model was suggested for the lean phase heat transfer. Finally, an empirical freeboard heat transfer correlation was developed from functional analysis of the freeboard heat transfer data using nondimensional groups representing gas velocity and tube elevation.« less

  9. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    NASA Astrophysics Data System (ADS)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-08-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.

  10. An infiltration/cure model for manufacture of fabric composites by the resin infusion process

    NASA Technical Reports Server (NTRS)

    Weideman, Mark H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.

    1992-01-01

    A 1-D infiltration/cure model was developed to simulate fabrication of advanced textile composites by the resin film infusion process. The simulation model relates the applied temperature and pressure processing cycles, along with the experimentally measured compaction and permeability characteristics of the fabric preforms, to the temperature distribution, the resin degree of cure and viscosity, and the infiltration flow front position as a function of time. The model also predicts the final panel thickness, fiber volume fraction, and resin mass for full saturation as a function of compaction pressure. Composite panels were fabricated using the RTM (Resin Transfer Molding) film infusion technique from knitted, knitted/stitched, and 2-D woven carbon preforms and Hercules 3501-6 resin. Fabric composites were fabricated at different compaction pressures and temperature cycles to determine the effects of the processing on the properties. The composites were C-scanned and micrographed to determine the quality of each panel. Advanced cure cycles, developed from the RTM simulation model, were used to reduce the total cure cycle times by a factor of 3 and the total infiltration times by a factor of 2.

  11. Middle ear function and cochlear input impedance in chinchilla

    PubMed Central

    Slama, Michaël C. C.; Ravicz, Michael E.; Rosowski, John J.

    2010-01-01

    Simultaneous measurements of middle ear-conducted sound pressure in the cochlear vestibule PV and stapes velocity VS have been performed in only a few individuals from a few mammalian species. In this paper, simultaneous measurements of PV and VS in six chinchillas are reported, enabling computation of the middle ear pressure gain GME (ratio of PV to the sound pressure in the ear canal PTM), the stapes velocity transfer function SVTF (ratio of the product of VS and area of the stapes footplate AFP to PTM), and, for the first time, the cochlear input impedance ZC (ratio of PV to the product of VS and AFP) in individuals. |GME| ranged from 25 to 35 dB over 125 Hz–8 kHz; the average group delay between 200 Hz and 10 kHz was about 52 μs. SVTF was comparable to that of previous studies. ZC was resistive from the lowest frequencies up to at least 10 kHz, with a magnitude on the order of 1011 acoustic ohms. PV, VS, and the acoustic power entering the cochlea were good predictors of the shape of the audiogram at frequencies between 125 Hz and 2 kHz. PMID:20329840

  12. Self-Pressurization and Spray Cooling Simulations of the Multipurpose Hydrogen Test Bed (MHTB) Ground-Based Experiment

    NASA Technical Reports Server (NTRS)

    Kartuzova, O.; Kassemi, M.; Agui, J.; Moder, J.

    2014-01-01

    This paper presents a CFD (computational fluid dynamics) model for simulating the self-pressurization of a large scale liquid hydrogen storage tank. In this model, the kinetics-based Schrage equation is used to account for the evaporative and condensing interfacial mass flows. Laminar and turbulent approaches to modeling natural convection in the tank and heat and mass transfer at the interface are compared. The flow, temperature, and interfacial mass fluxes predicted by these two approaches during tank self-pressurization are compared against each other. The ullage pressure and vapor temperature evolutions are also compared against experimental data obtained from the MHTB (Multipuprpose Hydrogen Test Bed) self-pressurization experiment. A CFD model for cooling cryogenic storage tanks by spraying cold liquid in the ullage is also presented. The Euler- Lagrange approach is utilized for tracking the spray droplets and for modeling interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF (volume of fluid) model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux predicted by the model are presented. The ullage pressure is compared with experimental data obtained from the MHTB spray bar mixing experiment. The results of the models with only droplet/ullage heat transfer and with heat and mass transfer between the droplets and ullage are compared.

  13. Simulation analysis and experimental verification of spiral-tube-type valveless piezoelectric pump with gyroscopic effect

    NASA Astrophysics Data System (ADS)

    Leng, Xuefei; Zhang, Jianhui; Jiang, Yan; Wang, Shouyin; Zhao, Chunsheng

    2014-07-01

    The current research of the valveless piezoelectric pump focuses on increasing the flow rate and pressure differential. Compared with the valve piezoelectric pump, the valveless one has excellent performances in simple structure, low cost, and easy miniaturization. So, their important development trend is the mitigation of their weakness, and the multi-function integration. The flow in a spiral tube element is sensitive to the element attitude caused by the Coriolis force, and that a valveless piezoelectric pump is designed by applying this phenomenon. The pump has gyroscopic effect, and has both the actuator function of fluid transfer and the sensor function, which can obtain the angular velocity when its attitude changes. First, the present paper analyzes the flow characteristics in the tube, obtains the calculation formula for the pump flow, and identifies the relationship between pump attitude and flow, which clarifies the impact of flow and driving voltage, frequency, spiral line type and element attitude, and verifies the gyroscopic effect of the pump. Then, the finite element simulation is used to verify the theory. Finally, a pump is fabricated for experimental testing of the relationship between pump attitude and pressure differential. Experimental results show that when Archimedes spiral θ=4π is selected for the tube design, and the rotation speed of the plate is 70 r/min, the pressure differential is 88.2 Pa, which is 1.5 times that of 0 r/min rotation speed. The spiral-tube-type valveless piezoelectric pump proposed can turn the element attitude into a form of pressure output, which is important for the multi-function integration of the valveless piezoelectric pump and for the development of civil gyroscope in the future.

  14. Study on Transfer Rules of Coal Reservoir Pressure Drop Based on Coalbed Methane Well Drainage Experiments

    NASA Astrophysics Data System (ADS)

    Yuhang, X.

    2017-12-01

    A pumping test was carried out to explore the transfer rules of pressure drop in coal reservoir during the drainage. The experiment was divided into three stages. In the first stage, the pump displacement of 3m3/h was used to reduce the bottom hole flowing pressure and stopped until the continuous gas phase was produced; Undertaking the first stage, in the second stage, when the gas phase was continuously produced, the pump was stopped immediately. As the bottom hole flowing pressure going up without gas phase, pumping started again for a week. In the third stage ,the well pumping was carried out at the bottom hole pressure drop rate of 30Kpa/d after two months' recovery. Combined with the data of regional geology and fractured well, taking the characteristics of macroscopic coal rocks, development of pore and fracture in coal and isothermal adsorption test as the background, the features of reservoir output in each stage of the experiment were analyzed and compared, and then the transfer rules of pressure drop contained in the differences of the output was studied further. In the first and third stage of the experiment, the output of liquid phase was much larger than the space volume of coal reservoir pore and fracture in the range of 100m2. In the second stage, the output of the continuous gas phase appeared around 0.7Mpa when the continuous gas phase appears below the critical desorption pressure of 0.25Mpa during the whole experiment. The results indicate that, the transfer of pressure drop in the coal reservoir of this well is mainly horizontal, and the liquid phase produced in the reservoir mainly comes from the recharge of the reservoir at the far end of the relative high pressure area; the adsorption space of coalbed methane in the coal matrix as well as the main migration channel of fluid in the reservoir doesn't belong to the same pressure system and there exists the communication barrier between them. In addition, the increasing of the effective stress has little influence on the communication between these two systems. The definition of transfer rules in coal reservoir pressure drop, also the understanding of the correlation between the rules and characteristics of the reservoir output has great guiding significance to the establishment of pressure drop system in coalbed methane well as well as the analysis of production problems.

  15. Fractional watt Vuillemier cryogenic refrigerator program engineering notebook. Volume 1: Thermal analysis

    NASA Technical Reports Server (NTRS)

    Miller, W. S.

    1974-01-01

    The cryogenic refrigerator thermal design calculations establish design approach and basic sizing of the machine's elements. After the basic design is defined, effort concentrates on matching the thermodynamic design with that of the heat transfer devices (heat exchangers and regenerators). Typically, the heat transfer device configurations and volumes are adjusted to improve their heat transfer and pressure drop characteristics. These adjustments imply that changes be made to the active displaced volumes, compensating for the influence of the heat transfer devices on the thermodynamic processes of the working fluid. Then, once the active volumes are changed, the heat transfer devices require adjustment to account for the variations in flows, pressure levels, and heat loads. This iterative process is continued until the thermodynamic cycle parameters match the design of the heat transfer devices. By examing several matched designs, a near-optimum refrigerator is selected.

  16. Relationships between the decoupled and coupled transfer functions: Theoretical studies and experimental validation

    NASA Astrophysics Data System (ADS)

    Wang, Zengwei; Zhu, Ping; Liu, Zhao

    2018-01-01

    A generalized method for predicting the decoupled transfer functions based on in-situ transfer functions is proposed. The method allows predicting the decoupled transfer functions using coupled transfer functions, without disassembling the system. Two ways to derive relationships between the decoupled and coupled transfer functions are presented. Issues related to immeasurability of coupled transfer functions are also discussed. The proposed method is validated by numerical and experimental case studies.

  17. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    PubMed

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  18. Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission

    PubMed Central

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  19. Collision efficiency of water in the unimolecular reaction CH4 (+H2O) ⇆ CH3 + H (+H2O): one-dimensional and two-dimensional solutions of the low-pressure-limit master equation.

    PubMed

    Jasper, Ahren W; Miller, James A; Klippenstein, Stephen J

    2013-11-27

    The low-pressure-limit unimolecular decomposition of methane, CH4 (+M) ⇆ CH3 + H (+M), is characterized via low-order moments of the total energy, E, and angular momentum, J, transferred due to collisions. The low-order moments are calculated using ensembles of classical trajectories, with new direct dynamics results for M = H2O and new results for M = O2 compared with previous results for several typical atomic (M = He, Ne, Ar, Kr) and diatomic (M = H2 and N2) bath gases and one polyatomic bath gas, M = CH4. The calculated moments are used to parametrize three different models of the energy transfer function, from which low-pressure-limit rate coefficients for dissociation, k0, are calculated. Both one-dimensional and two-dimensional collisional energy transfer models are considered. The collision efficiency for M = H2O relative to the other bath gases (defined as the ratio of low-pressure limit rate coefficients) is found to depend on temperature, with, e.g., k0(H2O)/k0(Ar) = 7 at 2000 K but only 3 at 300 K. We also consider the rotational collision efficiency of the various baths. Water is the only bath gas found to fully equilibrate rotations, and only at temperatures below 1000 K. At elevated temperatures, the kinetic effect of "weak-collider-in-J" collisions is found to be small. At room temperature, however, the use of an explicitly two-dimensional master equation model that includes weak-collider-in-J effects predicts smaller rate coefficients by 50% relative to the use of a statistical model for rotations. The accuracies of several methods for predicting relative collision efficiencies that do not require solving the master equation and that are based on the calculated low-order moments are tested. Troe's weak collider efficiency, βc, includes the effect of saturation of collision outcomes above threshold and accurately predicts the relative collision efficiencies of the nine baths. Finally, a brief discussion is presented of mechanistic details of the energy transfer process, as inferred from the trajectories.

  20. Correlation of laboratory and production freeze drying cycles.

    PubMed

    Kuu, Wei Y; Hardwick, Lisa M; Akers, Michael J

    2005-09-30

    The purpose of this study was to develop the correlation of cycle parameters between a laboratory and a production freeze-dryer. With the established correlation, key cycle parameters obtained using a laboratory dryer may be converted to those for a production dryer with minimal experimental efforts. In order to develop the correlation, it was important to consider the contributions from the following freeze-drying components: (1) the dryer, (2) the vial, and (3) the formulation. The critical parameters for the dryer are the shelf heat transfer coefficient and shelf surface radiation emissivity. The critical parameters for the vial are the vial bottom heat transfer coefficients (the contact parameter Kcs and separation distance lv), and vial top heat transfer coefficient. The critical parameter of the formulation is the dry layer mass transfer coefficient. The above heat and mass transfer coefficients were determined by freeze-drying experiments in conjunction with mathematical modeling. With the obtained heat and mass transfer coefficients, the maximum product temperature, Tbmax, during primary drying was simulated using a primary drying subroutine as a function of the shelf temperature and chamber pressure. The required shelf temperature and chamber pressure, in order to perform a successful cycle run without product collapse, were then simulated based on the resulting values of Tbmax. The established correlation approach was demonstrated by the primary drying of the model formulation 5% mannitol solution. The cycle runs were performed using a LyoStar dryer as the laboratory dryer and a BOC Edwards dryer as the production dryer. The determined normalized dried layer mass transfer resistance for 5% mannitol is expressed as RpN=0.7313+17.19l, where l is the receding dry layer thickness. After demonstrating the correlation approach using the model formulation 5% mannitol, a practical comparison study was performed for the actual product, the lactate dehydrogenase (LDH) formulation. The determined normalized dried layer mass transfer resistance for the LDH formulation is expressed as RpN=4.344+10.85l. The operational templates Tbmax and primary drying time were also generated by simulation. The cycle run for the LDH formulation using the Edwards production dryer verified that the cycle developed in a laboratory freeze-dryer was transferable at the production scale.

  1. Image-Based Modeling of Blood Flow and Oxygen Transfer in Feto-Placental Capillaries

    PubMed Central

    Brownbill, Paul; Janáček, Jiří; Jirkovská, Marie; Kubínová, Lucie; Chernyavsky, Igor L.; Jensen, Oliver E.

    2016-01-01

    During pregnancy, oxygen diffuses from maternal to fetal blood through villous trees in the placenta. In this paper, we simulate blood flow and oxygen transfer in feto-placental capillaries by converting three-dimensional representations of villous and capillary surfaces, reconstructed from confocal laser scanning microscopy, to finite-element meshes, and calculating values of vascular flow resistance and total oxygen transfer. The relationship between the total oxygen transfer rate and the pressure drop through the capillary is shown to be captured across a wide range of pressure drops by physical scaling laws and an upper bound on the oxygen transfer rate. A regression equation is introduced that can be used to estimate the oxygen transfer in a capillary using the vascular resistance. Two techniques for quantifying the effects of statistical variability, experimental uncertainty and pathological placental structure on the calculated properties are then introduced. First, scaling arguments are used to quantify the sensitivity of the model to uncertainties in the geometry and the parameters. Second, the effects of localized dilations in fetal capillaries are investigated using an idealized axisymmetric model, to quantify the possible effect of pathological placental structure on oxygen transfer. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximized by an optimal width of the dilation. The results could explain the prevalence of fetal hypoxia in cases of delayed villous maturation, a pathology characterized by a lack of the vasculo-syncytial membranes often seen in conjunction with localized capillary dilations. PMID:27788214

  2. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults

    PubMed Central

    Keefe, Douglas H.; Hunter, Lisa L.; Feeney, M. Patrick; Fitzpatrick, Denis F.

    2015-01-01

    Procedures are described to measure acoustic reflectance and admittance in human adult and infant ears at frequencies from 0.2 to 8 kHz. Transfer functions were measured at ambient pressure in the ear canal, and as down- or up-swept tympanograms. Acoustically estimated ear-canal area was used to calculate ear reflectance, which was parameterized by absorbance and group delay over all frequencies (and pressures), with substantial data reduction for tympanograms. Admittance measured at the probe tip in adults was transformed into an equivalent admittance at the eardrum using a transmission-line model for an ear canal with specified area and ear-canal length. Ear-canal length was estimated from group delay around the frequency above 2 kHz of minimum absorbance. Illustrative measurements in ears with normal function are described for an adult, and two infants at 1 month of age with normal hearing and a conductive hearing loss. The sensitivity of this equivalent eardrum admittance was calculated for varying estimates of area and length. Infant-ear patterns of absorbance peaks aligned in frequency with dips in group delay were explained by a model of resonant canal-wall mobility. Procedures will be applied in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function. PMID:26723319

  3. Design of Novel FBG-Based Sensor of Differential Pressure with Magnetic Transfer.

    PubMed

    Lyu, Guohui; Che, Guohang; Li, Junqing; Jiang, Xu; Wang, Keda; Han, Yueqiang; Gao, Laixu

    2017-02-15

    In this paper, a differential pressure sensor with magnetic transfer is proposed, in which the non-electric measurement based on the fiber Bragg grating (FBG) with the position limiting mechanism is implemented without the direct contact of the sensing unit with the measuring fluid. The test shows that the designed sensor is effective for measuring differential pressure in the range of 0~10 kPa with a sensitivity of 0.0112 nm/kPa, which can be used in environments with high temperature, strong corrosion and high overload measurements.

  4. Orbit Transfer Vehicle (OTV) engine phase A study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1978-01-01

    Requirements for the orbit transfer vehicle engine were examined. Engine performance/weight sensitivities, the effect of a service life of 300 start/shutdown cycles between overalls on the maximum engine operating pressure, and the sensitivity of the engine design point (i.e., thrust chamber pressure and nozzle area ratio) to the performance requirements specified are among the factors studied. Preliminary engine systems analyses were conducted on the stage combustion, expander, and gas generator engine cycles. Hydrogen and oxygen pump discharge pressure requirements are shown for various engine cycles. Performance of the engine cycles is compared.

  5. Laminar Heat-Transfer and Pressure-Distribution Studies on a Series of Reentry Nose Shapes at a Mach Number of 19.4 in Helium

    NASA Technical Reports Server (NTRS)

    Wagner, Richard D., Jr.; Pine, W. Clint; Henderson, Arthur, Jr.

    1961-01-01

    An experimental investigation has been conducted in the 2-inch helium tunnel at the Langley Research Center at a Mach number of 19.4 to determine the pressure distributions and heat-transfer characteristics of a family of reentry nose shapes. The pressure and heat-transfer-rate distributions on the nose shapes are compared with theoretical predictions to ascertain the limitations and validity of the theories at hypersonic speeds. The experimental results were found to be adequately predicted by existing theories. Two of the nose shapes were tested with variable-length flow-separation spikes. The results obtained by previous investigators of spike-nose bodies were found to prevail at the higher Mach number of the present investigation.

  6. Condensation heat transfer and pressure drop of R-410A in flat aluminum multi-port tubes

    NASA Astrophysics Data System (ADS)

    Kim, Nae-Hyun

    2018-02-01

    Brazed heat exchangers with aluminum flat multi-port tubes are being used as condensers of residential air-conditioners. In this study, R-410A condensation tests were conducted in four multi-port tubes having a range of hydraulic diameter (0.78 ≤ Dh ≤ 0.95 mm). The test range covered the mass flux from 100 to 400 kg/m2 s and the heat flux at 3 kW/m2, which are typical operating conditions of residential air conditioners. Results showed that both the heat transfer coefficient and the pressure drop increased as the hydraulic diameter decreased. The effect of hydraulic diameter on condensation heat transfer was much larger than the predictions of existing correlations for the range of investigation. Comparison of the data with the correlations showed that some macro-channel tube correlations and mini-channel tube correlations reasonably predicted the heat transfer coefficient. However, macro-channel correlations highly overpredicted the pressure drop data.

  7. Development of a thermal-hydraulics experimental system for high Tc superconductors cooled by liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Hata, K.; Kobayashi, H.; Naruo, Y.; Inatani, Y.; Kato, T.; Futakawa, M.; Kinoshita, K.

    2010-06-01

    A thermal-hydraulics experimental system of liquid hydrogen was developed in order to investigate the forced flow heat transfer characteristics in the various cooling channels for wide ranges of subcoolings, flow velocities, and pressures up to supercritical. A main tank is connected to a sub tank through a hydrogen transfer line with a control valve. A channel heater is located at one end of the transfer line in the main tank. Forced flow through the channel is produced by adjusting the pressure difference between the tanks and the valve opening. The mass flow rate is measured from the weight change of the main tank. For the explosion protection, electrical equipments are covered with a nitrogen gas blanket layer and a remote control system was established. The first cryogenic performance tests confirmed that the experimental system had satisfied with the required performances. The forced convection heat transfer characteristics was successfully measured at the pressure of 0.7 MPa for various flow velocities.

  8. Study of the effect of distance and misalignment between magnetically coupled coils for wireless power transfer in intraocular pressure measurement.

    PubMed

    Rendon-Nava, Adrian E; Díaz-Méndez, J Alejandro; Nino-de-Rivera, Luis; Calleja-Arriaga, Wilfrido; Gil-Carrasco, Felix; Díaz-Alonso, Daniela

    2014-01-01

    An analysis of the effect of distance and alignment between two magnetically coupled coils for wireless power transfer in intraocular pressure measurement is presented. For measurement purposes, a system was fabricated consisting of an external device, which is a Maxwell-Wien bridge circuit variation, in charge of transferring energy to a biomedical implant and reading data from it. The biomedical implant is an RLC tank circuit, encapsulated by a polyimide coating. Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity. The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal. The analysis presented in this paper proves that wireless transmission of power for intraocular pressure measurement is feasible with the measurement system proposed. In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.

  9. Ultrasound in gas-liquid systems: effects on solubility and mass transfer.

    PubMed

    Laugier, F; Andriantsiferana, C; Wilhelm, A M; Delmas, H

    2008-09-01

    The effect of ultrasound on the pseudo-solubility of nitrogen in water and on gas-liquid mass transfer kinetics has been investigated in an autoclave reactor equipped with a gas induced impeller. In order to use organic liquids and to investigate the effect of pressure, gas-liquid mass transfer coefficient was calculated from the evolution of autoclave pressure during gas absorption to avoid any side-effects of ultrasound on the concentrations measurements. Ultrasound effect on the apparent solubility is very low (below 12%). Conversely ultrasound greatly improves gas-liquid mass transfer, especially below gas induction speed, this improvement being boosted by pressure. In typical conditions of organic synthesis: 323 K, 1100 rpm, 10 bar, k(L).a is multiplied by 11 with ultrasound (20 kHz/62.6 W). The impact of sonication is much higher on gassing out than on gassing in. In the same conditions, this enhancement is at least five times higher for degassing.

  10. Azimuthal sound localization in the European starling (Sturnus vulgaris): I. Physical binaural cues.

    PubMed

    Klump, G M; Larsen, O N

    1992-02-01

    The physical measurements reported here test whether the European starling (Sturnus vulgaris) evaluates the azimuth direction of a sound source with a peripheral auditory system composed of two acoustically coupled pressure-difference receivers (1) or of two decoupled pressure receivers (2). A directional pattern of sound intensity in the free-field was measured at the entrance of the auditory meatus using a probe microphone, and at the tympanum using laser vibrometry. The maximum differences in the sound-pressure level measured with the microphone between various speaker positions and the frontal speaker position were 2.4 dB at 1 and 2 kHz, 7.3 dB at 4 kHz, 9.2 dB at 6 kHz, and 10.9 dB at 8 kHz. The directional amplitude pattern measured by laser vibrometry did not differ from that measured with the microphone. Neither did the directional pattern of travel times to the ear. Measurements of the amplitude and phase transfer function of the starling's interaural pathway using a closed sound system were in accord with the results of the free-field measurements. In conclusion, although some sound transmission via the interaural canal occurred, the present experiments support the hypothesis 2 above that the starling's peripheral auditory system is best described as consisting of two functionally decoupled pressure receivers.

  11. Numerical studies on heat transfer and pressure drop characteristics of flat finned tube bundles with various fin materials

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Zhang, S. J.; Shen, F.; Wang, X. B.; Yang, X. R.; Yang, L. J.

    2017-11-01

    The air-cooled heat exchanger plays an important role in the field of industry like for example in thermal power plants. On the other hand, it can be used to remove core decay heat out of containment passively in case of a severe accident circumstance. Thus, research on the performance of fins in air-cooled heat exchangers can benefit the optimal design and operation of cooling systems in nuclear power plants. In this study, a CFD (Computational Fluid Dynamic) method is implemented to investigate the effects of inlet velocity, fin spacing and tube pitch on the flow and the heat transfer characteristics of flat fins constructed of various materials (316L stainless steel, copper-nickel alloy and aluminium). A three dimensional geometric model of flat finned tube bundles with fixed longitudinal tube pitch and transverse tube pitch is established. Results for the variation of the average convective heat transfer coefficient with respect to cooling air inlet velocity, fin spacing, tube pitch and fin material are obtained, as well as for the pressure drop of the cooling air passing through finned tube. It is shown that the increase of cooling air inlet velocity results in enhanced average convective heat transfer coefficient and decreasing pressure drop. Both fin spacing and tube pitch engender positive effects on pressure drop and have negative effects on heat transfer characteristics. Concerning the fin material, the heat transfer performance of copper-nickel alloy is superior to 316L stainless steel and inferior to aluminium.

  12. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dong; Pan, Jie; Zhu, Xiaojing

    2011-02-15

    Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure dropmore » in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)« less

  13. 49 CFR 193.2513 - Transfer procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... transfer position; and (7) Verify that transfers into a pipeline system will not exceed the pressure or...

  14. Optimization of actuator arrays for aircraft interior noise control

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Lester, H. C.; Mathur, G. P.; Tran, B. N.

    1993-01-01

    A numerical procedure for grouping actuators in order to reduce the number of degrees of freedom in an active noise control system is evaluated using experimental data. Piezoceramic actuators for reducing aircraft interior noise are arranged into groups using a nonlinear optimization routine and clustering algorithm. An actuator group is created when two or more actuators are driven with the same control input. This procedure is suitable for active control applications where actuators are already mounted on a structure. The feasibility of this technique is demonstrated using measured data from the aft cabin of a Douglas DC-9 fuselage. The measured data include transfer functions between 34 piezoceramic actuators and 29 interior microphones and microphone responses due to the primary noise produced by external speakers. Control inputs for the grouped actuators were calculated so that a cost function, defined as a quadratic pressure term and a penalty term, was a minimum. The measured transfer functions and microphone responses are checked by comparing calculated noise reductions with measured noise reductions for four frequencies. The grouping procedure is then used to determine actuator groups that improve overall interior noise reductions by 5.3 to 15 dB, compared to the baseline experimental configuration.

  15. Recent progress in high pressure metrology in Europe

    NASA Astrophysics Data System (ADS)

    Sabuga, Wladimir; Pražák, Dominik; Rabault, Thierry

    2014-08-01

    Five European national metrology institutes in collaboration with a university, a research institute and five industrial companies are working on a joint research project within a framework of the European Metrology Research Programme aimed at development of 1.6 GPa primary and 1.5 GPa transfer pressure standards. Two primary pressure standards were realised as pressure-measuring multipliers, each consisting of a low pressure and a high pressure (HP) piston-cylinder assembly (PCA). A special design of the HP PCAs was developed in which a tungsten carbide cylinder is supported by two thermally shrunk steel sleeves and, additionally, by jacket pressure applied to the outside of the outer sleeve. Stress-strain finite element analysis (FEA) was performed to predict behaviour of the multipliers and a pressure generation system. With FEA, the pressure distortion coefficient was determined, taking into account irregularities of the piston-cylinder gap. Transfer pressure standards up to 1.5 GPa are developed on the basis of modern 1.5 GPa pressure transducers. This project shall solve a discrepancy between the growing needs of the industry demanding precise traceable calibrations of the high pressure transducers and the absence of adequate primary standards for pressures higher than 1 GPa in the European Union today.

  16. Nonlinear aspects of infrasonic pressure transfer into the perilymph.

    PubMed

    Krukowski, B; Carlborg, B; Densert, O

    1980-06-01

    The perilymphatic pressure was studied in response to various low frequency pressure changes in the ear canal. The pressure transfer was analysed and found to be nonlinear in many aspects. The pressure response was found to contain two time constants representing the inner ear pressure regulating mechanisms. The time constants showed an asymmetry in response to positive and negative going inputs--the effects to some extent proportional to input levels. Further nonlinearities were found when infrasonic sine waves were applied to the ear. Harmonic distortion and modulation appeared. When short bursts of infrasound were introduced a clear d.c. shift was observed as a consequence of an asymmetry in the response to positive and negative going pressure inputs. A temporary change in mean perilymphatic pressure was thus achieved and continued throughout the duration of the signal. At very low frequencies a distinct phase shift was detected in the sine waves. This appeared as a phase lead, breaking the continuity of the output sine wave.

  17. Specification of absorbed-sound power in the ear canal: Application to suppression of stimulus frequency otoacoustic emissions

    PubMed Central

    Keefe, Douglas H.; Schairer, Kim S.

    2011-01-01

    An insert ear-canal probe including sound source and microphone can deliver a calibrated sound power level to the ear. The aural power absorbed is proportional to the product of mean-squared forward pressure, ear-canal area, and absorbance, in which the sound field is represented using forward (reverse) waves traveling toward (away from) the eardrum. Forward pressure is composed of incident pressure and its multiple internal reflections between eardrum and probe. Based on a database of measurements in normal-hearing adults from 0.22 to 8 kHz, the transfer-function level of forward relative to incident pressure is boosted below 0.7 kHz and within 4 dB above. The level of forward relative to total pressure is maximal close to 4 kHz with wide variability across ears. A spectrally flat incident-pressure level across frequency produces a nearly flat absorbed power level, in contrast to 19 dB changes in pressure level. Calibrating an ear-canal sound source based on absorbed power may be useful in audiological and research applications. Specifying the tip-to-tail level difference of the suppression tuning curve of stimulus frequency otoacoustic emissions in terms of absorbed power reveals increased cochlear gain at 8 kHz relative to the level difference measured using total pressure. PMID:21361437

  18. Influence of cavitation bubble growth by rectified diffusion on cavitation-enhanced HIFU

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Sugiyama, Kazuyasu; Takagi, Shu; Matsumoto, Yoichiro

    2017-11-01

    Cavitation is becoming increasingly important in therapeutic ultrasound applications such as diagnostic, tumor ablation and lithotripsy. Mass transfer through gas-liquid interface due to rectified diffusion is important role in an initial stage of cavitation bubble growth. In the present study, influences of the rectified diffusion on cavitation-enhanced high-intensity focused ultrasound (HIFU) was investigated numerically. Firstly, the mass transfer rate of gas from the surrounding medium to the bubble was examined as function of the initial bubble radius and the driving pressure amplitude. As the result, the pressure required to bubble growth was decreases with increasing the initial bubble radius. Next, the cavitation-enhanced HIFU, which generates cavitation bubbles by high-intensity burst and induces the localized heating owing to cavitation bubble oscillation by low-intensity continuous waves, was reproduced by the present simulation. The heating region obtained by the simulation is agree to the treatment region of an in vitro experiment. Additionally, the simulation result shows that the localized heating is enhanced by the increase of the equilibrium bubble size due to the rectified diffusion. This work was supported by JSPS KAKENHI Grant Numbers JP26420125,JP17K06170.

  19. Vacancy-induced initial decomposition of condensed phase NTO via bimolecular hydrogen transfer mechanisms at high pressure: a DFT-D study.

    PubMed

    Liu, Zhichao; Wu, Qiong; Zhu, Weihua; Xiao, Heming

    2015-04-28

    Density functional theory with dispersion-correction (DFT-D) was employed to study the effects of vacancy and pressure on the structure and initial decomposition of crystalline 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (β-NTO), a high-energy insensitive explosive. A comparative analysis of the chemical behaviors of NTO in the ideal bulk crystal and vacancy-containing crystals under applied hydrostatic compression was considered. Our calculated formation energy, vacancy interaction energy, electron density difference, and frontier orbitals reveal that the stability of NTO can be effectively manipulated by changing the molecular environment. Bimolecular hydrogen transfer is suggested to be a potential initial chemical reaction in the vacancy-containing NTO solid at 50 GPa, which is prior to the C-NO2 bond dissociation as its initiation decomposition in the gas phase. The vacancy defects introduced into the ideal bulk NTO crystal can produce a localized site, where the initiation decomposition is preferentially accelerated and then promotes further decompositions. Our results may shed some light on the influence of the molecular environments on the initial pathways in molecular explosives.

  20. Personal Computer Transport Analysis Program

    NASA Technical Reports Server (NTRS)

    DiStefano, Frank, III; Wobick, Craig; Chapman, Kirt; McCloud, Peter

    2012-01-01

    The Personal Computer Transport Analysis Program (PCTAP) is C++ software used for analysis of thermal fluid systems. The program predicts thermal fluid system and component transients. The output consists of temperatures, flow rates, pressures, delta pressures, tank quantities, and gas quantities in the air, along with air scrubbing component performance. PCTAP s solution process assumes that the tubes in the system are well insulated so that only the heat transfer between fluid and tube wall and between adjacent tubes is modeled. The system described in the model file is broken down into its individual components; i.e., tubes, cold plates, heat exchangers, etc. A solution vector is built from the components and a flow is then simulated with fluid being transferred from one component to the next. The solution vector of components in the model file is built at the initiation of the run. This solution vector is simply a list of components in the order of their inlet dependency on other components. The component parameters are updated in the order in which they appear in the list at every time step. Once the solution vectors have been determined, PCTAP cycles through the components in the solution vector, executing their outlet function for each time-step increment.

  1. Flow and Thermal Performance of a Water-Cooled Periodic Transversal Elliptical Microchannel Heat Sink for Chip Cooling.

    PubMed

    Wei, Bo; Yang, Mo; Wang, Zhiyun; Xu, Hongtao; Zhang, Yuwen

    2015-04-01

    Flow and thermal performance of transversal elliptical microchannels were investigated as a passive scheme to enhance the heat transfer performance of laminar fluid flow. The periodic transversal elliptical micro-channel is designed and its pressure drop and heat transfer characteristics in laminar flow are numerically investigated. Based on the comparison with a conventional straight micro- channel having rectangular cross section, it is found that periodic transversal elliptical microchannel not only has great potential to reduce pressure drop but also dramatically enhances heat transfer performance. In addition, when the Reynolds number equals to 192, the pressure drop of the transversal elliptical channel is 36.5% lower than that of the straight channel, while the average Nusselt number is 72.8% higher; this indicates that the overall thermal performance of the periodic transversal elliptical microchannel is superior to the conventional straight microchannel. It is suggested that such transversal elliptical microchannel are attractive candidates for cooling future electronic chips effectively with much lower pressure drop.

  2. Characterization and Analyses of Valves, Feed Lines and Tanks used in Propellant Delivery Systems at NASA SSC

    NASA Technical Reports Server (NTRS)

    Ryan, Harry M.; Coote, David J.; Ahuja, Vineet; Hosangadi, Ashvin

    2006-01-01

    Accurate modeling of liquid rocket engine test processes involves assessing critical fluid mechanic and heat and mass transfer mechanisms within a cryogenic environment, and accurately modeling fluid properties such as vapor pressure and liquid and gas densities as a function of pressure and temperature. The Engineering and Science Directorate at the NASA John C. Stennis Space Center has developed and implemented such analytic models and analysis processes that have been used over a broad range of thermodynamic systems and resulted in substantial improvements in rocket propulsion testing services. In this paper, we offer an overview of the analyses techniques used to simulate pressurization and propellant fluid systems associated with the test stands at the NASA John C. Stennis Space Center. More specifically, examples of the global performance (one-dimensional) of a propellant system are provided as predicted using the Rocket Propulsion Test Analysis (RPTA) model. Computational fluid dynamic (CFD) analyses utilizing multi-element, unstructured, moving grid capability of complex cryogenic feed ducts, transient valve operation, and pressurization and mixing in propellant tanks are provided as well.

  3. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    NASA Astrophysics Data System (ADS)

    Gomez-Heredia, C. L.; Macias, J.; Ordonez-Miranda, J.; Ares, O.; Alvarado-Gil, J. J.

    2017-01-01

    Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen's number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorr

  4. Experimental vibration damping characteristics of the third-stage rotor of a three-stage transonic axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Newman, Frederick A.

    1988-01-01

    Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynanmic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall performance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.

  5. Experimental Determination of Aerodynamic Damping in a Three-Stage Transonic Axial-Flow Compressor. Degree awarded by Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Newman, Frederick A.

    1988-01-01

    Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gauge output power spectra. The combined damping consists of aerodynamic and structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given equivalent speed, equivalent mass flow, and pressure ratio while structural and mechanical damping are assumed to be constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third stage rotor blade aerodynamic damping is presented and discussed for 70, 80, 90, and 100 percent design equivalent speed. The compressor overall performance and experimental Campbell diagrams for the third stage rotor blade row are also presented.

  6. Experimental Vibration Damping Characteristics of the Third-stage Rotor of a Three-stage Transonic Axial-flow Compressor

    NASA Technical Reports Server (NTRS)

    Newman, Frederick A.

    1988-01-01

    Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynamic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall preformance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.

  7. Numerical Simulation of Thawing Process of Biological Tissue

    NASA Astrophysics Data System (ADS)

    Momose, Noboru; Tada, Yukio; Hayashi, Yujiro

    Heat transfer and simplified physicochemical model for thawing of the frozen biological cell element consisting of cell and extracellular region was proposed. The melting of intra-and extra-cellular ice, the water transport through cell membrane and other microscale behavior during thawing process were discussed as a function of temperature. Recovery of the cell volume and change of osmotic pressure difference during thawing were clarified theortically in connection with heating velocity, initial cell volume and membrane permeability. Extending this model, the thawing of cellular tissue consisted of numerous cell elements was also simulated. There was a position where osmotic pressure difference became maximum during thawing. Summarizing these results, the thawing damage due to osmotic stress was discussed in relation with the heating operation and the size effect of tissue.

  8. Observed acoustic and aeroelastic spectral responses of a MOD-2 turbine blade to turbulence excitation

    NASA Technical Reports Server (NTRS)

    Kelley, N. D.; Mckenna, H. E.; Jacobs, E. W.

    1995-01-01

    Early results from a recent experiment designed to directly evaluate the aeroacoustic/elastic spectral responses of a MOD-2 turbine blade to turbulence-induced unsteady blade loads are discussed. The experimental procedure consisted of flying a hot-film anemometer from a tethered balloon in the turbine inflow and simultaneously measuring the fluctuating airload and aeroelastic response at two blade span stations (65% and 87% spans) using surface-mounted, subminiature pressure transducers and standard strain gage instrumentation. The radiated acoustic pressure field was measured with a triad of very-low-frequency microphones placed at ground level, 1.5 rotor diameters upwind of the disk. Initial transfer function estimates for acoustic radiation, blade normal forces, flapwise acceleration/displacement, and chord/flapwise moments are presented.

  9. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid and liquid-solid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients kLa and kGa (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.

  10. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients k(L)a and k(G)a (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.

  11. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model, volume 1

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Blair, M. F.; Joslyn, H. D.; Power, G. D.; Verdon, J. M.

    1987-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. Heat transfer measurements were obtained using low conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient (incidence), first-stator/rotor axial spacing, Reynolds number, and relative circumferential position of the first and second stators. Aerodynamic measurements include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions and a examination of solutions of the unstead boundary layer equipment.

  12. 46 CFR 154.476 - Cargo transfer devices and means.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of cargo transfer, such as another pump or gas pressurization. (b) If cargo is transferred by gas... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Support System § 154.476 Cargo transfer devices and means. (a) If a cargo pump in a cargo tank is...

  13. A small-scale, rolled-membrane microfluidic artificial lung designed towards future large area manufacturing.

    PubMed

    Thompson, A J; Marks, L H; Goudie, M J; Rojas-Pena, A; Handa, H; Potkay, J A

    2017-03-01

    Artificial lungs have been used in the clinic for multiple decades to supplement patient pulmonary function. Recently, small-scale microfluidic artificial lungs (μAL) have been demonstrated with large surface area to blood volume ratios, biomimetic blood flow paths, and pressure drops compatible with pumpless operation. Initial small-scale microfluidic devices with blood flow rates in the μ l/min to ml/min range have exhibited excellent gas transfer efficiencies; however, current manufacturing techniques may not be suitable for scaling up to human applications. Here, we present a new manufacturing technology for a microfluidic artificial lung in which the structure is assembled via a continuous "rolling" and bonding procedure from a single, patterned layer of polydimethyl siloxane (PDMS). This method is demonstrated in a small-scale four-layer device, but is expected to easily scale to larger area devices. The presented devices have a biomimetic branching blood flow network, 10  μ m tall artificial capillaries, and a 66  μ m thick gas transfer membrane. Gas transfer efficiency in blood was evaluated over a range of blood flow rates (0.1-1.25 ml/min) for two different sweep gases (pure O 2 , atmospheric air). The achieved gas transfer data closely follow predicted theoretical values for oxygenation and CO 2 removal, while pressure drop is marginally higher than predicted. This work is the first step in developing a scalable method for creating large area microfluidic artificial lungs. Although designed for microfluidic artificial lungs, the presented technique is expected to result in the first manufacturing method capable of simply and easily creating large area microfluidic devices from PDMS.

  14. MULTI-SCALE MODELING AND APPROXIMATION ASSISTED OPTIMIZATION OF BARE TUBE HEAT EXCHANGERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacellar, Daniel; Ling, Jiazhen; Aute, Vikrant

    2014-01-01

    Air-to-refrigerant heat exchangers are very common in air-conditioning, heat pump and refrigeration applications. In these heat exchangers, there is a great benefit in terms of size, weight, refrigerant charge and heat transfer coefficient, by moving from conventional channel sizes (~ 9mm) to smaller channel sizes (< 5mm). This work investigates new designs for air-to-refrigerant heat exchangers with tube outer diameter ranging from 0.5 to 2.0mm. The goal of this research is to develop and optimize the design of these heat exchangers and compare their performance with existing state of the art designs. The air-side performance of various tube bundle configurationsmore » are analyzed using a Parallel Parameterized CFD (PPCFD) technique. PPCFD allows for fast-parametric CFD analyses of various geometries with topology change. Approximation techniques drastically reduce the number of CFD evaluations required during optimization. Maximum Entropy Design method is used for sampling and Kriging method is used for metamodeling. Metamodels are developed for the air-side heat transfer coefficients and pressure drop as a function of tube-bundle dimensions and air velocity. The metamodels are then integrated with an air-to-refrigerant heat exchanger design code. This integration allows a multi-scale analysis of air-side performance heat exchangers including air-to-refrigerant heat transfer and phase change. Overall optimization is carried out using a multi-objective genetic algorithm. The optimal designs found can exhibit 50 percent size reduction, 75 percent decrease in air side pressure drop and doubled air heat transfer coefficients compared to a high performance compact micro channel heat exchanger with same capacity and flow rates.« less

  15. Heat transfer mechanisms in pulsating heat-pipes with nanofluid

    NASA Astrophysics Data System (ADS)

    Gonzalez, Miguel; Kelly, Brian; Hayashi, Yoshikazu; Kim, Yoon Jo

    2015-01-01

    In this study, the effect of silver nanofluid on a pulsating heat-pipe (PHP) thermal performance was experimentally investigated to figure out how nanofluid works with PHP. A closed loop PHP was built with 3 mm diameter tubes. Thermocouples and pressure transducers were installed for fluid and surface temperature and pressure measurements. The operating temperature of the PHP varied from 30-100 °C, with power rates of 61 W and 119 W. The fill ratio of 30%, 50%, and 70% were tested. The results showed that the evaporator heat transfer performance was degraded by the addition of nanoparticles due to increased viscosity at high power rate, while the positive effects of high thermal conductivity and enhanced nucleate boiling worked better at low power rate. In the condenser section, owing to the relatively high liquid content, nanofluid more effectively improved the heat transfer performance. However, since the PHP performance was dominantly affected by evaporator heat transfer performance, the overall benefit of enhanced condenser section performance was greatly limited. It was also observed that the poor heat transfer performance with nanofluid at the evaporator section led to lower operating pressure of PHP.

  16. Experimental Investigation of two-phase nitrogen Cryo transfer line

    NASA Astrophysics Data System (ADS)

    Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.

  17. Mass transfer apparatus and method for separation of gases

    DOEpatents

    Blount, Gerald C.

    2015-10-13

    A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.

  18. Mass transfer apparatus and method for separation of gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blount, Gerald C.; Gorensek, Maximilian Boris; Hamm, Luther L.

    A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.

  19. The pumping oxygenator: design criteria and first in vitro results.

    PubMed

    Fiore, G B; Costantino, M L; Fumero, R; Montevecchi, F M

    2000-10-01

    A new project is presented, the pumping oxygenator, functionally integrating pulsatile pumping and blood oxygenation in a single device. Solid, semipermeable silicone membranes allow gas exchange and simultaneously transfer energy from pressurized gas to blood thanks to their distensibility and to inlet and outlet 1-way valves. Two small-sized (1 m2 exchange surface area) prototypes were designed, constructed, hydraulically characterized, and subjected to gas transfer evaluation tests. Blood flow rates (Q(b)) up to 1,250 ml/min were obtained with 30 mm Hg static preload and 130 mm Hg afterload with 0.7 m upstream and 2.1 m downstream 3/8 inch pipes. Physiological oxygen transfer (VO2 = 5 ml/dl, ml of transferred O2/dl of treated blood) was delivered at Q(b) < 900 ml/min, about 4 ml/dl at Q(b) = 1,250 ml/min. VO2 also was significantly increased by increasing percent systolic time. CO2 transfer decreased regularly with increasing Q(b) from VCO2 = 4.8 ml/dl at Q(b) = 400 ml/min to VCO 2 = 2.1 ml/dl at Q(b) = 1,250 ml/min. The results confirm the possibility of integrating oxygenation and pulsatile pumping. The pumping oxygenator represents a promising project deserving further improvements.

  20. Central and peripheral blood pressures in relation to plasma advanced glycation end products in a Chinese population.

    PubMed

    Huang, Q-F; Sheng, C-S; Kang, Y-Y; Zhang, L; Wang, S; Li, F-K; Cheng, Y-B; Guo, Q-H; Li, Y; Wang, J-G

    2016-07-01

    We investigated the association of plasma AGE (advanced glycation end product) concentration with central and peripheral blood pressures and central-to-brachial blood pressure amplification in a Chinese population. The study subjects were from a newly established residential area in the suburb of Shanghai. Using the SphygmoCor system, we recorded radial arterial waveforms and derived aortic waveforms by a generalized transfer function and central systolic and pulse pressure by calibration for brachial blood pressure measured with an oscillometric device. The central-to-brachial pressure amplification was expressed as the central-to-brachial systolic blood pressure difference and pulse pressure difference and ratio. Plasma AGE concentration was measured by the enzyme-linked immunosorbent assay method and logarithmically transformed for statistical analysis. The 1051 participants (age, 55.1±13.1 years) included 663 women. After adjustment for sex, age and other confounding factors, plasma AGE concentration was associated with central but not peripheral blood pressures and with some of the pressure amplification indexes. Indeed, each 10-fold increase in plasma AGE concentration was associated with 2.94 mm Hg (P=0.04) higher central systolic blood pressure and 2.39% lower central-to-brachial pulse pressure ratio (P=0.03). In further subgroup analyses, the association was more prominent in the presence of hypercholesterolemia (+8.11 mm Hg, P=0.008) for central systolic blood pressure and in the presence of overweight and obesity (-4.89%, P=0.009), diabetes and prediabetes (-6.26%, P=0.10) or current smoking (-6.68%, P=0.045) for central-to-brachial pulse pressure ratio. In conclusion, plasma AGE concentration is independently associated with central systolic blood pressure and pulse pressure amplification, especially in the presence of several modifiable cardiovascular risk factors.

  1. 33 CFR 156.170 - Equipment tests and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... required to be water. (2) Each transfer system relief valve must open at or below the pressure at which it... vapor hose, vapor collection arm, pressure or vacuum relief valve, and pressure sensor is tested and...

  2. Extreme pressure fluid sample transfer pump

    DOEpatents

    Halverson, Justin E.; Bowman, Wilfred W.

    1990-01-01

    A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.

  3. Toward equality of biodiversity knowledge through technology transfer.

    PubMed

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a pragmatic approach, followed by rigorous testing of specific technology transfer metrics submitted by CBD signatories in a standardized manner may in turn improve the focus of future targets on technology transfer for biodiversity conservation. © 2015 Society for Conservation Biology.

  4. Liquid oxygen liquid acquisition device bubble point tests with high pressure lox at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Jurns, J. M.; Hartwig, J. W.

    2012-04-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth's gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA's continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  5. Liquid Oxygen Liquid Acquisition Device Bubble Point Tests with High Pressure LOX at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Hartwig, Jason W.

    2011-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122K) as part of NASA s continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  6. A comparison between high hydrostatic pressure extraction and heat extraction of ginsenosides from ginseng (Panax ginseng CA Meyer).

    PubMed

    Lee, Hyun-Sun; Lee, Hyun Jung; Yu, Hyung Jo; Ju, Do Weon; Kim, Yoonsook; Kim, Chong-Tai; Kim, Chul-Jin; Cho, Yong-Jin; Kim, Namsoo; Choi, Sin-Yang; Suh, Hyung Joo

    2011-06-01

    To determine biomaterial components, the components must first be transferred into solution; thus extraction is the first step in biomaterial analysis. High hydrostatic pressure technology was used for ginsenoside extraction from ginseng roots. In the extraction of fresh and red ginseng, high hydrostatic pressure extraction (HHPE) was found to be more effective than heat extraction (HE). In fresh ginseng extraction under HHPE, total ginsenosides (1602.2 µg mL⁻¹) and ginsenoside metabolite (132.6 µg mL⁻¹) levels were slightly higher than those under HE (1259.0 and 78.7 µg mL⁻¹), respectively. In red ginseng, similar results indicated total ginsenoside and ginsenoside metabolite amounts according to the extraction methods. Most volatile compounds by HHPE were higher than by HE treatment. HHPE of red ginseng was conducted under four pressures: 0.1 MPa (1 atm), 30, 50, and 80 MPa. Total sugar, uronic acid, and polyphenol amounts increased until 30 MPa of pressure and then showed decreasing tendencies. Total ginsenoside and ginsenoside metabolite contents linearly increased with increasing pressure, and a maximum was reached at 80 MPa for the metabolites. HHPE used for red ginseng processing contributes to enhanced extraction efficiencies of functional materials such as ginsenosides through cell structure modification. Copyright © 2011 Society of Chemical Industry.

  7. An experimental/computational study of sharp fin induced shock wave/turbulent boundary layer interactions at Mach 5 - Experimental results

    NASA Technical Reports Server (NTRS)

    Rodi, Patrick E.; Dolling, David S.

    1992-01-01

    A combined experimental/computational study has been performed of sharp fin induced shock wave/turbulent boundary layer interactions at Mach 5. The current paper focuses on the experiments and analysis of the results. The experimental data include mean surface heat transfer, mean surface pressure distributions and surface flow visualization for fin angles of attack of 6, 8, 10, 12, 14 and 16-degrees at Mach 5 under a moderately cooled wall condition. Comparisons between the results and correlations developed earlier show that Scuderi's correlation for the upstream influence angle (recast in a conical form) is superior to other such correlations in predicting the current results, that normal Mach number based correlations for peak pressure heat transfer are adequate and that the initial heat transfer peak can be predicted using pressure-interaction theory.

  8. An Analysis of Virginia Transfer Policy and Articulation Agreements: A Comparative Study of Community College Transfer and Native Students--Enrollments and Outcomes in a Teacher Preparation Program

    ERIC Educational Resources Information Center

    Huffman, Michael Conway

    2012-01-01

    Transfer articulation is an important policy issue in Virginia. With increasing economic strains on federal and state budgets, pressure on key actors in higher education, and critical teacher shortages, an opportunity presented itself to investigate state transfer policy and articulation agreements designed to facilitate student transfer.…

  9. 33 CFR 127.315 - Preliminary transfer inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.315 Preliminary transfer... parts; (b) For each of the vessel's cargo tanks from which cargo will be transferred, note the pressure...

  10. Charge efficiency of Ni/H2 cells during transfer orbit of Telstar 4 satellites

    NASA Technical Reports Server (NTRS)

    Fang, W. C.; Maurer, Dean W.; Vyas, B.; Thomas, M. N.

    1994-01-01

    The TELSTAR 4 communication satellites being manufactured by Martin Marietta Astro Space (Astro Space) for AT&T are three axis stabilized spacecraft scheduled to be launched on expendable vehicles such as the Atlas or Ariane rockets. Typically, these spacecraft consist of a box that holds the electronics and supports the antenna reflectors and the solar array wings. The wings and reflectors are folded against the sides of the box during launch and the spacecraft is spun for attitude control in that phase; they are then deployed after achieving the final orbit. The launch phase and transfer orbits required to achieve the final geosynchronous orbit typically take 4 to 5 days during which time the power required for command, telemetry, attitude control, heaters, etc., is provided by two 50 AH nickel hydrogen batteries augmented by the exposed outboard solar panels. In the past, this situation has presented no problem since there was a considerable excess of power available from the array. In the case of large high powered spacecraft such as TELSTAR 4, however, the design power levels in transfer orbit approach the time-averaged power available from the exposed surface area of the solar arrays, resulting in a very tight power margin. To compound the difficulty, the array output of the spinning spacecraft in transfer orbit is shaped like a full wave rectified sine function and provides very low charging rates to the batteries during portions of the rotation. In view of the typically low charging efficiency of alkaline nickel batteries at low rates, it was decided to measure the efficiency during a simulation of the TELSTAR 4 conditions at the expected power levels and temperatures on three nickel hydrogen cells of similar design. The unique feature of nickel hydrogen cells that makes the continuous measurement of efficiency possible is that hydrogen is one of the active materials and thus, cell pressure is a direct measure of the state of charge or available capacity. The pressure is measured with a calibrated strain gage mounted on the outside of the pressurized cell.

  11. Relationship Between 24-Hour Ambulatory Central Systolic Blood Pressure and Left Ventricular Mass: A Prospective Multicenter Study.

    PubMed

    Weber, Thomas; Wassertheurer, Siegfried; Schmidt-Trucksäss, Arno; Rodilla, Enrique; Ablasser, Cornelia; Jankowski, Piotr; Lorenza Muiesan, Maria; Giannattasio, Cristina; Mang, Claudia; Wilkinson, Ian; Kellermair, Jörg; Hametner, Bernhard; Pascual, Jose Maria; Zweiker, Robert; Czarnecka, Danuta; Paini, Anna; Salvetti, Massimo; Maloberti, Alessandro; McEniery, Carmel

    2017-12-01

    We investigated the relationship between left ventricular mass and brachial office as well as brachial and central ambulatory systolic blood pressure in 7 European centers. Central systolic pressure was measured with a validated oscillometric device, using a transfer function, and mean/diastolic pressure calibration. M-mode images were obtained by echocardiography, and left ventricular mass was determined by one single reader blinded to blood pressure. We studied 289 participants (137 women) free from antihypertensive drugs (mean age: 50.8 years). Mean office blood pressure was 145/88 mm Hg and mean brachial and central ambulatory systolic pressures were 127 and 128 mm Hg, respectively. Mean left ventricular mass was 93.3 kg/m 2 , and 25.6% had left ventricular hypertrophy. The correlation coefficient between left ventricular mass and brachial office, brachial ambulatory, and central ambulatory systolic pressure was 0.29, 0.41, and 0.47, respectively ( P =0.003 for comparison between brachial office and central ambulatory systolic pressure and 0.32 for comparison between brachial and central ambulatory systolic pressure). The results were consistent for men and women, and young and old participants. The areas under the curve for prediction of left ventricular hypertrophy were 0.618, 0.635, and 0.666 for brachial office, brachial, and central ambulatory systolic pressure, respectively ( P =0.03 for comparison between brachial and central ambulatory systolic pressure). In younger participants, central ambulatory systolic pressure was superior to both other measurements. Central ambulatory systolic pressure, measured with an oscillometric cuff, shows a strong trend toward a closer association with left ventricular mass and hypertrophy than brachial office/ambulatory systolic pressure. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01278732. © 2017 American Heart Association, Inc.

  12. Numerical study of metal foam heat sinks under uniform impinging flow

    NASA Astrophysics Data System (ADS)

    Andreozzi, A.; Bianco, N.; Iasiello, M.; Naso, V.

    2017-01-01

    The ever-increasing demand for performance improvement and miniaturization of electronics has led to a significant generation of waste heat that must be dissipated to ensure a reliable device operation. The miniaturization of the components complicates this task. In fact, reducing the heat transfer area, at the same required heat rate, it is necessary to increase the heat flux, so that the materials operate in a temperature range suitable to its proper functioning. Traditional heat sinks are no longer capable of dissipating the generated heat and innovative approaches are needed to address the emerging thermal management challenges. Recently, heat transfer in open-cell metal foams under an impinging jet has received attention due to the considerable heat transfer potential of combining two cooling technologies: impinging jet and porous medium. This paper presents a numerical study on Finned Metal Foam (FMF) and Metal Foam (MF) heat sinks under impinging air jet cooling. The analysis is carried out by means of the commercial software COMSOL Multiphysics®. The purpose is to analyze the thermal performance of the metal foam heat sink, finned or not, varying its geometric parameters. Results are presented in terms of predicted dissipated heat rate, convective heat transfer coefficient and pressure losses.

  13. Transepithelial ultrafiltration and fractal power diffusion of D-glucose in the perfused rat intestine.

    PubMed

    Kochak, Gregory M; Mangat, Surinder

    2002-12-23

    Despite an enormous body of research investigating the mass transfer of D-glucose through biological membranes, carrier-mediated and first-order models have remained the prevalent models describing glucose's quantitative behavior even though they have proven to be inadequate over extended concentration ranges. Recent evidence from GLUT2 knockout studies further questions our understanding of molecular models, especially those employing Michaelis-Menten (MM)-type kinetic models. In this report, evidence is provided that D-glucose is absorbed by rat intestinal epithelium by a combination of convective ultrafiltration and nonlinear diffusion. The diffusive component of mass transfer is described by a concentration-dependent permeability coefficient, modeled as a fractal power function. Glucose and sodium chloride-dependent-induced aqueous convection currents are the result of prevailing oncotic and osmotic pressure effects, and a direct effect of glucose and sodium chloride on intestinal epithelium resulting in enhanced glucose, sodium ion, and water mobility. The fractal power model of glucose diffusion was superior to the conventional MM description. A convection-diffusion model of mass transfer adequately characterized glucose mass transfer over a 105-fold glucose concentration range in the presence and absence of sodium ion.

  14. Detectability matters: conspicuous nestling mouth colours make prey transfer easier for parents in a cavity nesting bird.

    PubMed

    Dugas, Matthew B

    2015-11-01

    An often underappreciated function of signals is to notify receivers of the presence and position of senders. The colours that ornament the mouthparts of nestling birds, for example, have been hypothesized to evolve via selective pressure generated by parents' inability to efficiently detect and feed nestlings without such visually conspicuous targets. This proposed mechanism has primarily been evaluated with comparative studies and experimental tests for parental allocation bias, leaving untested the central assumption of this detectability hypothesis, that provisioning offspring is a visually challenging task for avian parents and conspicuous mouths help. To test this assumption, I manipulated the mouths of nestling house sparrows to appear minimally and maximally conspicuous, and quantified prey transfer difficulty as the total duration of a feeding event and the number of transfer attempts required. Prey transfer to inconspicuous nestlings was, as predicted, more difficult. While this suggests that detectability constraints could shape nestling mouth colour evolution, even minimally conspicuous nestlings were not prohibitively difficult for parents to feed, indicating that a more nuanced explanation for interspecific diversity in this trait is needed. © 2015 The Author(s).

  15. Heat Transfer Experiments on a Pulse Detonation Driven Combustor

    DTIC Science & Technology

    2011-03-01

    steps that need to take place before such a hybrid is successfully developed. PDEs obtain their increased efficiency by means of detonation , a pressure...combustion in the Brayton cycle. A PDE utilizes detonations , which offer much higher pressures at the site of fuel ignition, generating less...HEAT TRANSFER EXPERIMENTS ON A PULSE DETONATION DRIVEN COMBUSTOR THESIS Nicholas C. Longo, Captain, USAF AFIT/GAE/ENY/11-M18

  16. Nanoengineered Surfaces for High Flux Thin Film Evaporation

    DTIC Science & Technology

    2013-07-15

    for a variety of heat transfer and resource conserving applications. References 1. Mudawar , I., Assessment of high-heat-flux thermal...M.B. and I. Mudawar , High-flux boiling in low-flow rate, low-pressure drop mini- channel and microchannel heat sinks. International Journal of Heat...pressure drop elements and fabricated nucleation sites. Journal of Heat Transfer, 2006. 128(4): p. 389-396. 7. Qu, W. and I. Mudawar , Measurement and

  17. Numerical simulation of tubes-in-tube heat exchanger in a mixed refrigerant Joule-Thomson cryocooler

    NASA Astrophysics Data System (ADS)

    Damle, R. M.; Ardhapurkar, P. M.; Atrey, M. D.

    2017-02-01

    Mixed refrigerant Joule-Thomson (MRJT) cryocoolers can produce cryogenic temperatures with high efficiency and low operating pressures. As compared to the high system pressures of around 150-200 bar with nitrogen, the operational pressures with non-azeotropic mixtures (e.g., nitrogen-hydrocarbons) come down to 10-25 bar. With mixtures, the heat transfer in the recuperative heat exchanger takes place in the two-phase region. The simultaneous boiling and condensation of the cold and hot gas streams lead to higher heat transfer coefficients as compared to single phase heat exchange. The two-phase heat transfer in the recuperative heat exchanger drastically affects the performance of a MRJT cryocooler. In this work, a previously reported numerical model for a simple tube-in-tube heat exchanger is extended to a multi tubes-in-tube heat exchanger with a transient formulation. Additionally, the J-T expansion process is also considered to simulate the cooling process of the heat exchanger from ambient temperature conditions. A tubes-in-tube heat exchanger offers more heat transfer area per unit volume resulting in a compact design. Also, the division of flow in multiple tubes reduces the pressure drop in the heat exchanger. Simulations with different mixtures of nitrogen-hydrocarbons are carried out and the numerical results are compared with the experimental data.

  18. A Combined Experimental/Computational Study of Flow in Turbine Blade Cooling Passage

    NASA Technical Reports Server (NTRS)

    Tse, D. G. N.; Kreskovsky, J. P.; Shamroth, S. J.; Mcgrath, D. B.

    1994-01-01

    Laser velocimetry was utilized to map the velocity field in a serpentine turbine blade cooling passage at Reynolds and Rotation numbers of up to 25.000 and 0.48. These results were used to assess the combined influence of passage curvature and Coriolis force on the secondary velocity field generated. A Navier-Stokes code (NASTAR) was validated against incompressible test data and then used to simulate the effect of buoyancy. The measurements show a net convection from the low pressure surface to high pressure surface. The interaction of the secondary flows induced by the turns and rotation produces swirl at the turns, which persisted beyond 2 hydraulic diameters downstream of the turns. The incompressible flow field predictions agree well with the measured velocities. With radially outward flow, the buoyancy force causes a further increase in velocity on the high pressure surface and a reduction on the low pressure surface. The results were analyzed in relation to the heat transfer measurements of Wagner et al. (1991). Predicted heat transfer is enhanced on the high pressure surfaces and in turns. The incompressible flow simulation underpredicts heat transfer in these locations. Improvements observed in compressible flow simulation indicate that the buoyancy force may be important.

  19. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  20. Monitoring environmental and related performance parameters for a Rankine-cycle turbine electric generator utilizing geothermal energy at the Gila Hot Springs, New Mexico

    NASA Astrophysics Data System (ADS)

    Starkey, A. H.; Icerman, L.

    1984-08-01

    The environmental effects associated with the operation of a privately owned Rankine-cycle turbogenerator unit using low temperature geothermal resources in the form of free-flowing hot springs to produce electricity in a remote, rural area were studied. The following conclusions pertain to the operation of the turbogenerator system: (1) the heat exchanger could not provide sufficient freon vapor at the required pressures to provide adequate thermal input to the turbine; (2) conversion or redesign of the condenser and return pump to function adequately represents a problem of unknown difficulty; (3) all pressure and heat transfer tests indicated that a custom designed heat exchanger built on-site would provide adequate vapor at pressures high enough to power a 10-kW (sub e) or perhaps larger generator; and (4) automated control systems are needed for the hot and cold water supplies and the freon return pump.

  1. Chinchilla middle ear transmission matrix model and middle-ear flexibilitya)

    PubMed Central

    Ravicz, Michael E.; Rosowski, John J.

    2017-01-01

    The function of the middle ear (ME) in transforming ME acoustic inputs and outputs (sound pressures and volume velocities) can be described with an acoustic two-port transmission matrix. This description is independent of the load on the ME (cochlea or ear canal) and holds in either direction: forward (from ear canal to cochlea) or reverse (from cochlea to ear canal). A transmission matrix describing ME function in chinchilla, an animal commonly used in auditory research, is presented, computed from measurements of forward ME function: input admittance YTM, ME pressure gain GMEP, ME velocity transfer function HV, and cochlear input admittance YC, in the same set of ears [Ravicz and Rosowski (2012b). J. Acoust. Soc. Am. 132, 2437–2454; (2013a). J. Acoust. Soc. Am. 133, 2208–2223; (2013b). J. Acoust. Soc. Am. 134, 2852–2865]. Unlike previous estimates, these computations require no assumptions about the state of the inner ear, effectiveness of ME manipulations, or measurements of sound transmission in the reverse direction. These element values are generally consistent with physical constraints and the anatomical ME “transformer ratio.” Differences from a previous estimate in chinchilla [Songer and Rosowski (2007). J. Acoust. Soc. Am. 122, 932–942] may be due to a difference in ME flexibility between the two subject groups. PMID:28599566

  2. Chinchilla middle ear transmission matrix model and middle-ear flexibility.

    PubMed

    Ravicz, Michael E; Rosowski, John J

    2017-05-01

    The function of the middle ear (ME) in transforming ME acoustic inputs and outputs (sound pressures and volume velocities) can be described with an acoustic two-port transmission matrix. This description is independent of the load on the ME (cochlea or ear canal) and holds in either direction: forward (from ear canal to cochlea) or reverse (from cochlea to ear canal). A transmission matrix describing ME function in chinchilla, an animal commonly used in auditory research, is presented, computed from measurements of forward ME function: input admittance Y TM , ME pressure gain G MEP , ME velocity transfer function H V , and cochlear input admittance Y C , in the same set of ears [Ravicz and Rosowski (2012b). J. Acoust. Soc. Am. 132, 2437-2454; (2013a). J. Acoust. Soc. Am. 133, 2208-2223; (2013b). J. Acoust. Soc. Am. 134, 2852-2865]. Unlike previous estimates, these computations require no assumptions about the state of the inner ear, effectiveness of ME manipulations, or measurements of sound transmission in the reverse direction. These element values are generally consistent with physical constraints and the anatomical ME "transformer ratio." Differences from a previous estimate in chinchilla [Songer and Rosowski (2007). J. Acoust. Soc. Am. 122, 932-942] may be due to a difference in ME flexibility between the two subject groups.

  3. Methods to increase the rate of mass transfer during osmotic dehydration of foods.

    PubMed

    Chwastek, Anna

    2014-01-01

    Traditional methods of food preservation such as freezing, freeze drying (lyophilization), vacuum drying, convection drying are often supplemented by new technologies that enable obtaining of high quality products. Osmotic dehydration is more and more often used during processing of fruits and vegetables. This method allows maintaining good organoleptic and functional properties in the finished product. Obtaining the desired degree of dehydration or saturation of the material with an osmoactive substance often requires  elongation of time or use of high temperatures. In recent years much attention was devoted to techniques aimed at increasing the mass transfer between the dehydrated material and the hypertonic solution. The work reviews the literature focused on methods of streamlining the process of osmotic dehydration which include the use of: ultrasound, high hydrostatic pressure, vacuum osmotic dehydration and pulsed electric field.

  4. Re-criticizing RNA-mediated cell evolution: a radical perspective

    NASA Astrophysics Data System (ADS)

    Kotakis, Christos

    2016-01-01

    Genetic inter-communication of the nucleic-organellar dual in eukaryotes is dominated by DNA-directed phenomena. RNA regulatory circuits have also been observed in artificial laboratory prototypes where gene transfer events are reconstructed, but they are excluded from the primary norm due to their rarity. Recent technical advances in organellar biotechnology, genome engineering and single-molecule tracking give novel experimental insights on RNA metabolism not only at cellular level, but also on organismal survival. Here, I put forward a hypothesis for RNA's involvement in gene piece transfer, taken together the current knowledge on the primitive RNA character as a biochemical modulator with model organisms from peculiar natural habitats. It is proposed that RNA molecules of special structural signature and functional identity can drive evolution, integrating the ecological pressure of environmental oscillations into genome imprinting by buffering-out epigenetic aberrancies.

  5. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  6. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  7. Magnetic Ordering under Strain and Spin-Peierls Dimerization in GeCuO3

    NASA Astrophysics Data System (ADS)

    Filippetti, Alessio; Fiorentini, Vincenzo

    2007-05-01

    Studying from first principles the competition between ferromagnetic (FM) and antiferromagnetic (AF) interactions in the charge-transfer-insulator GeCuO3, we predict that a small external pressure should switch the uniform AF ground state to FM, and estimate (using exchange parameters computed as a function of strain) the competing AF couplings and the transition temperature to the dimerized spin-Peierls state. Although idealized as a one-dimensional Heisenberg antiferromagnet, GeCuO3 is found to be influenced by nonideal geometry and side groups.

  8. Functional and biocompatibility performances of an integrated Maglev pump-oxygenator.

    PubMed

    Zhang, Tao; Cheng, Guangming; Koert, Andrew; Zhang, Juntao; Gellman, Barry; Yankey, G Kwame; Satpute, Aditee; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2009-01-01

    To provide respiratory support for patients with lung failure, a novel compact integrated pump-oxygenator is being developed. The functional and biocompatibility performances of this device are presented. The pump-oxygenator is designed by combining a magnetically levitated pump/rotor with a uniquely configured hollow fiber membrane bundle to create an assembly free, ultracompact, all-in-one system. The hemodynamics, gas transfer and biocompatibility performances of this novel device were investigated both in vitro in a circulatory flow loop and in vivo in an ovine animal model. The in vitro results showed that the device was able to pump blood flow from 2 to 8 L/min against a wide range of pressures and to deliver an oxygen transfer rate more than 300 mL/min at a blood flow of 6 L/min. Blood damage tests demonstrated low hemolysis (normalized index of hemolysis [NIH] approximately 0.04) at a flow rate of 5 L/min against a 100-mm Hg afterload. The data from five animal experiments (4 h to 7 days) demonstrated that the device could bring the venous blood to near fully oxygen-saturated condition (98.6% +/- 1.3%). The highest oxygen transfer rate reached 386 mL/min. The gas transfer performance was stable over the study duration for three 7-day animals. There was no indication of blood damage. The plasma free hemoglobin and platelet count were within the normal ranges. No gross thrombus is found on the explanted pump components and fiber surfaces. Both in vitro and in vivo results demonstrated that the newly developed pump-oxygenator can achieve sufficient blood flow and oxygen transfer with excellent biocompatibility.

  9. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    NASA Astrophysics Data System (ADS)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-03-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  10. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-01-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  11. Effect of deformation on the thermal conductivity of granular porous media with rough grain surface

    NASA Astrophysics Data System (ADS)

    Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad

    2017-08-01

    Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.

  12. Experimental study on heat transfer to supercritical water flowing through tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, M.; Gu, H.; Cheng, X.

    2012-07-01

    A test facility named SWAMUP (Supercritical Water Multi-Purpose Loop) has been constructed in Shanghai Jiao Tong Univ. to investigate heat transfer and pressure drop through tubes and rod bundles. SWAMUP is a closed loop with operating pressure up to 30 MPa, outlet-water temperature up to 550 deg. C, and mass flow rate up to 5 t/h. In this paper, experimental study has been carried out on heat transfer of supercritical water flowing vertically through tubes (ID=7.6 and 10 mm). A large number of test points in tubes has been obtained with a wide range of heat flux (200-1500 kw/m{sup 2})more » and mass flux (450-2000 kg/m{sup 2}s). Test results showed that heat transfer deterioration (HTD) caused by buoyancy effect only appears in upward flow and HTD caused by acceleration effect appears both in upward flow and downward flow. The heat transfer coefficients (HTC) produced in tube tests were compared with existing heat transfer correlations. (authors)« less

  13. Prediction of Unshsrouded Rotor Blade Tip Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ameri, A. A.; Steinthorsson, E.

    1994-01-01

    The rate of heat transfer on the tip of a turbine rotor blade and on the blade surface in the vicinity of the tip, was successfully predicted. The computations were performed with a multiblock computer code which solves the Reynolds Averaged Navier-Stokes equations using an efficient multigrid method. The case considered for the present calculations was the Space Shuttle Main Engine (SSME) high pressure fuel side turbine. The predictions of the blade tip heat transfer agreed reasonably well with the experimental measurements using the present level of grid refinement. On the tip surface, regions with high rate of heat transfer was found to exist close to the pressure side and suction side edges. Enhancement of the heat transfer was also observed on the blade surface near the tip. Further comparison of the predictions was performed with results obtained from correlations based on fully developed channel flow.

  14. The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Cohen, Clarence B; Reshotko, Eli

    1956-01-01

    An approximate method for the calculation of the compressible laminar boundary layer with heat transfer and arbitrary pressure gradient, based on Thwaites' correlation concept, is presented. With the definition of dimensionless shear and heat-transfer parameters and an assumed correlation of these parameters in terms of a momentum parameter, a complete system of relations for calculating skin friction and heat transfer results. Knowledge of velocity or temperature profiles is not necessary in using this calculation method. When the method is applied to a convergent-divergent, axially symmetric rocket nozzle, it shows that high rates of heat transfer are obtained at the initial stagnation point and at the throat of the nozzle. Also indicated are negative displacement thicknesses in the convergent portion of the nozzle; these occur because of the high density within the lower portions of the cooled boundary layer. (author)

  15. Pool Boiling Heat Transfer on structured Surfaces

    NASA Astrophysics Data System (ADS)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

    2016-09-01

    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  16. Phase behavior of block copolymers in compressed carbon dioxide and as single domain-layer, nanolithographic etch resists for sub-10 nm pattern transfer

    NASA Astrophysics Data System (ADS)

    Chandler, Curran Matthew

    Diblock copolymers have many interesting properties, which first and foremost include their ability to self-assemble into various ordered, regularly spaced domains with nanometer-scale feature sizes. The work in this dissertation can be logically divided into two parts -- the first and the majority of this work describes the phase behavior of certain block copolymer systems, and the second discusses real applications possible with block copolymer templates. Many compressible fluids have solvent-like properties dependent on fluid pressure and can be used as processing aids similar to liquid solvents. Here, compressed CO2 was shown to swell several thin homopolymer films, including polystyrene and polyisoprene, as measured by high pressure ellipsometry at elevated temperatures and pressures. The ellipsometric technique was modified to produce accurate data at these conditions through a custom pressure vessel design. The order-disorder transition (ODT) temperatures of several poly(styrene-bisoprene) diblock copolymers were also investigated by static birefringence when dilated with compressed CO2. Sorption of CO2 in each copolymer resulted in significant depressions of the ODT temperature as a function of fluid pressure, and the data above was used to estimate the quantitative amount of solvent in each of the diblock copolymers. These depressions were not shown to follow dilution approximation, and showed interesting, exaggerated scaling of the ODT at near-bulk polymer concentrations. The phase behavior of block copolymer surfactants was studied when blended with polymer or small molecule additives capable of selective hydrogen bonds. This work used small angle X-ray scattering (SAXS) to identify several low molecular weight systems with strong phase separation and ordered domains as small as 2--3 nanometers upon blending. One blend of a commercially-available surfactant with a small molecule additive was further developed and showed promise as a thin-film pattern transfer template. In this scenario, block copolymer thin films on domain thick with self-assembled feature sizes of only 6--7 nm were used as plasma etch resists. Here the block copolymer's pattern was successfully transferred into the underlying SiO2 substrate using CF4--based reactive ion etching. The result was a parallel, cylindrical nanostructure etched into SiO2.

  17. TARGET/CRYOCHIL - THERMODYNAMIC ANALYSIS AND SUBSCALE MODELING OF SPACE-BASED ORBIT TRANSFER VEHICLE CRYOGENIC PROPELLANT RESUPPLY

    NASA Technical Reports Server (NTRS)

    Defelice, D. M.

    1994-01-01

    The resupply of the cryogenic propellants is an enabling technology for space-based transfer vehicles. As part of NASA Lewis's ongoing efforts in micro-gravity fluid management, thermodynamic analysis and subscale modeling techniques have been developed to support an on-orbit test bed for cryogenic fluid management technologies. These efforts have been incorporated into two FORTRAN programs, TARGET and CRYOCHIL. The TARGET code is used to determine the maximum temperature at which the filling of a given tank can be initiated and subsequently filled to a specified pressure and fill level without venting. The main process is the transfer of the energy stored in the thermal mass of the tank walls into the inflowing liquid. This process is modeled by examining the end state of the no-vent fill process. This state is assumed to be at thermal equilibrium between the tank and the fluid which is well mixed and saturated at the tank pressure. No specific assumptions are made as to the processes or the intermediate thermodynamic states during the filling. It is only assumed that the maximum tank pressure occurs at the final state. This assumption implies that, during the initial phases of the filling, the injected liquid must pass through the bulk vapor in such a way that it absorbs a sufficient amount of its superheat so that moderate tank pressures can be maintained. It is believed that this is an achievable design goal for liquid injection systems. TARGET can be run with any fluid for which the user has a properties data base. Currently it will only run for hydrogen, oxygen, and nitrogen since pressure-enthalpy data sets have been included for these fluids only. CRYOCHIL's primary function is to predict the optimum liquid charge to be injected for each of a series of charge-hold-vent chilldown cycles. This information can then be used with specified mass flow rates and valve response times to control a liquid injection system for tank chilldown operations. This will insure that the operations proceed quickly and efficiently. These programs are written in FORTRAN for batch execution on IBM 370 class mainframe computers. It requires 360K of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in EBCDIC format. TARGET/CRYOCHIL was developed in 1988.

  18. The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.

    2013-01-01

    Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.

  19. Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System

    NASA Technical Reports Server (NTRS)

    Ahmad, Rashid A.; Cash, Stephen F. (Technical Monitor)

    2002-01-01

    This simulation involved a two-dimensional axisymmetric model of a full motor initial grain of the Reusable Solid Rocket Motor (RSRM) of the Space Transportation System (STS). It was conducted with CFD (computational fluid dynamics) commercial code FLUENT. This analysis was performed to: a) maintain continuity with most related previous analyses, b) serve as a non-vectored baseline for any three-dimensional vectored nozzles, c) provide a relatively simple application and checkout for various CFD solution schemes, grid sensitivity studies, turbulence modeling and heat transfer, and d) calculate nozzle convective heat transfer coefficients. The accuracy of the present results and the selection of the numerical schemes and turbulence models were based on matching the rocket ballistic predictions of mass flow rate, head end pressure, vacuum thrust and specific impulse, and measured chamber pressure drop. Matching these ballistic predictions was found to be good. This study was limited to convective heat transfer and the results compared favorably with existing theory. On the other hand, qualitative comparison with backed-out data of the ratio of the convective heat transfer coefficient to the specific heat at constant pressure was made in a relative manner. This backed-out data was devised to match nozzle erosion that was a result of heat transfer (convective, radiative and conductive), chemical (transpirating), and mechanical (shear and particle impingement forces) effects combined.

  20. Does increasing pressure always accelerate the condensed material decay initiated through bimolecular reactions? A case of the thermal decomposition of TKX-50 at high pressures.

    PubMed

    Lu, Zhipeng; Zeng, Qun; Xue, Xianggui; Zhang, Zengming; Nie, Fude; Zhang, Chaoyang

    2017-08-30

    Performances and behaviors under high temperature-high pressure conditions are fundamentals for many materials. We study in the present work the pressure effect on the thermal decomposition of a new energetic ionic salt (EIS), TKX-50, by confining samples in a diamond anvil cell, using Raman spectroscopy measurements and ab initio simulations. As a result, we find a quadratic increase in decomposition temperature (T d ) of TKX-50 with increasing pressure (P) (T d = 6.28P 2 + 12.94P + 493.33, T d and P in K and GPa, respectively, and R 2 = 0.995) and the decomposition under various pressures initiated by an intermolecular H-transfer reaction (a bimolecular reaction). Surprisingly, this finding is contrary to a general observation about the pressure effect on the decomposition of common energetic materials (EMs) composed of neutral molecules: increasing pressure will impede the decomposition if it starts from a bimolecular reaction. Our results also demonstrate that increasing pressure impedes the H-transfer via the enhanced long-range electrostatic repulsion of H +δ H +δ of neighboring NH 3 OH + , with blue shifts of the intermolecular H-bonds. And the subsequent decomposition of the H-transferred intermediates is also suppressed, because the decomposition proceeds from a bimolecular reaction to a unimolecular one, which is generally prevented by compression. These two factors are the basic root for which the decomposition retarded with increasing pressure of TKX-50. Therefore, our finding breaks through the previously proposed concept that, for the condensed materials, increasing pressure will accelerate the thermal decomposition initiated by bimolecular reactions, and reveals a distinct mechanism of the pressure effect on thermal decomposition. That is to say, increasing pressure does not always promote the condensed material decay initiated through bimolecular reactions. Moreover, such a mechanism may be feasible to other EISs due to the similar intermolecular interactions.

Top