Science.gov

Sample records for pressure vessel development

  1. Nickel hydrogen common pressure vessel battery development

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth R.; Zagrodnik, Jeffrey P.

    1992-01-01

    Our present design for a common pressure vessel (CPV) battery, a nickel hydrogen battery system to combine all of the cells into a common pressure vessel, uses an open disk which allows the cell to be set into a shallow cavity; subsequent cells are stacked on each other with the total number based on the battery voltage required. This approach not only eliminates the assembly error threat, but also more readily assures equal contact pressure to the heat fin between each cell, which further assures balanced heat transfer. These heat fin dishes with their appropriate cell stacks are held together with tie bars which in turn are connected to the pressure vessel weld rings at each end of the tube.

  2. Firefighter's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  3. Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database

    SciTech Connect

    Wang, Jy-An John

    2010-08-01

    Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

  4. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  5. Development and Demonstration of Insulated Pressure Vessels for Vehicular Hydrogen Storage

    SciTech Connect

    Berry, G D; Aceves, S M

    2004-02-26

    This paper describes the development of an alternative technology for vehicular storage of hydrogen. Insulated pressure vessels are cryogenic-capable pressure vessels that can accept cryogenic liquid fuel, cryogenic compressed gas or compressed gas at ambient temperature. Insulated pressure vessels offer advantages over alternative hydrogen storage technologies. Insulated pressure vessels are more compact and less expensive than compressed hydrogen vessels. They have lower evaporative losses and lower energy requirement for fuel liquefaction than liquid hydrogen tanks, and they are lighter than hydrides. The work described in this paper is directed at verifying that insulated pressure vessels can be used safely for vehicular hydrogen storage. The paper describes multiple tests and analyses that have been conducted to evaluate the safety of insulated pressure vessels. Insulated pressure vessels have been subjected to multiple DOT, ISO and SAE certification tests, and the vessels have always been successful in meeting the passing criteria for the different tests. A draft procedure for insulated pressure vessel certification has been generated to assist in a future commercialization of this technology. Ongoing work includes the demonstration of this technology in a vehicle.

  6. Graphite filament wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Damico, J. J.

    1972-01-01

    Filament wound NOL rings, 4-inch and 8-inch diameter closed-end vessels involving three epoxy resin systems and three graphite fibers were tested to develop property data and fabrication technology for filament wound graphite/epoxy pressure vessels. Vessels were subjected to single-cycle burst tests at room temperature. Manufacturing parameters were established for tooling, winding, and curing that resulted in the development of a pressure/vessel performance factor (pressure x volume/weight) or more than 900,000 in. for an oblate spheroid specimen.

  7. High Pressure Composite Overwrapped Pressure Vessel (COPV) Development Tests at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Ray, David M.; Greene, Nathanael J.; Revilock, Duane; Sneddon, Kirk; Anselmo, Estelle

    2008-01-01

    Development tests were conducted to evaluate the performance of 2 COPV designs at cryogenic temperatures. This allows for risk reductions for critical components for a Gaseous Helium (GHe) Pressurization Subsystem for an Advanced Propulsion System (APS) which is being proposed for NASA s Constellation project and future exploration missions. It is considered an advanced system since it uses Liquid Methane (LCH4) as the fuel and Liquid Oxygen (LO2) as the oxidizer for the propellant combination mixture. To avoid heating of the propellants to prevent boil-off, the GHe will be stored at subcooled temperatures equivalent to the LO2 temperature. Another advantage of storing GHe at cryogenic temperatures is that more mass of the pressurized GHe can be charged in to a vessel with a smaller volume, hence a smaller COPV, and this creates a significant weight savings versus gases at ambient temperatures. The major challenge of this test plan is to verify that a COPV can safely be used for spacecraft applications to store GHe at a Maximum Operating Pressure (MOP) of 4,500 psig at 140R to 160R (-320 F to -300 F). The COPVs for these tests were provided by ARDE , Inc. who developed a resin system to use at cryogenic conditions and has the capabilities to perform high pressure testing with LN2.

  8. Dual shell pressure balanced vessel

    DOEpatents

    Fassbender, Alexander G.

    1992-01-01

    A dual-wall pressure balanced vessel for processing high viscosity slurries at high temperatures and pressures having an outer pressure vessel and an inner vessel with an annular space between the vessels pressurized at a pressure slightly less than or equivalent to the pressure within the inner vessel.

  9. Pressure vessel flex joint

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor)

    1992-01-01

    An airtight, flexible joint is disclosed for the interfacing of two pressure vessels such as between the Space Station docking tunnel and the Space Shuttle Orbiter bulkhead adapter. The joint provides for flexibility while still retaining a structural link between the two vessels required due to the loading created by the internal/external pressure differential. The joint design provides for limiting the axial load carried across the joint to a specific value, a function returned in the Orbiter/Station tunnel interface. The flex joint comprises a floating structural segment which is permanently attached to one of the pressure vessels through the use of an inflatable seal. The geometric configuration of the joint causes the tension between the vessels created by the internal gas pressure to compress the inflatable seal. The inflation pressure of the seal is kept at a value above the internal/external pressure differential of the vessels in order to maintain a controlled distance between the floating segment and pressure vessel. The inflatable seal consists of either a hollow torus-shaped flexible bladder or two rolling convoluted diaphragm seals which may be reinforced by a system of straps or fabric anchored to the hard structures. The joint acts as a flexible link to allow both angular motion and lateral displacement while it still contains the internal pressure and holds the axial tension between the vessels.

  10. Hybrid Inflatable Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen; Valle, Gerard D.; Edeen, Gregg; DeLaFuente, Horacio M.; Schneider, William C.; Spexarth, Gary R.; Johnson, Christopher J.; Pandya, Shalini

    2004-01-01

    Figure 1 shows a prototype of a large pressure vessel under development for eventual use as a habitable module for long spaceflight (e.g., for transporting humans to Mars). The vessel is a hybrid that comprises an inflatable shell attached to a rigid central structural core. The inflatable shell is, itself, a hybrid that comprises (1) a pressure bladder restrained against expansion by (2) a web of straps made from high-strength polymeric fabrics. On Earth, pressure vessels like this could be used, for example, as portable habitats that could be set up quickly in remote locations, portable hyperbaric chambers for treatment of decompression sickness, or flotation devices for offshore platforms. In addition, some aspects of the design of the fabric straps could be adapted to such other items as lifting straps, parachute straps, and automotive safety belts. Figure 2 depicts selected aspects of the design of a vessel of this type with a toroidal configuration. The bladder serves as an impermeable layer to keep air within the pressure vessel and, for this purpose, is sealed to the central structural core. The web includes longitudinal and circumferential straps. To help maintain the proper shape upon inflation after storage, longitudinal and circumferential straps are indexed together at several of their intersections. Because the web is not required to provide a pressure seal and the bladder is not required to sustain structural loads, the bladder and the web can be optimized for their respective functions. Thus, the bladder can be sealed directly to the rigid core without having to include the web in the seal substructure, and the web can be designed for strength. The ends of the longitudinal straps are attached to the ends of the rigid structural core by means of clevises. Each clevis pin is surrounded by a roller, around which a longitudinal strap is wrapped to form a lap seam with itself. The roller is of a large diameter chosen to reduce bending of the fibers in

  11. DEVELOPMENT OF ASME SECTION X CODE RULES FOR HIGH PRESSURE COMPOSITE HYDROGEN PRESSURE VESSELS WITH NON-LOAD SHARING LINERS

    SciTech Connect

    Rawls, G.; Newhouse, N.; Rana, M.; Shelley, B.; Gorman, M.

    2010-04-13

    The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with non-load sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 20.7 MPa (3,000 ps)i to 103.4 MPa (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 inches). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, included Acoustic Emission testing at time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.

  12. Pressurized Vessel Slurry Pumping

    SciTech Connect

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  13. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  14. Attachment Fitting for Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III (Inventor); Carrigan, Robert W. (Inventor)

    2002-01-01

    This invention provides sealed access to the interior of a pressure vessel and consists of a tube. a collar, redundant seals, and a port. The port allows the seals to be pressurized and seated before the pressure vessel becomes pressurized.

  15. New Developments in Nickel-Hydrogen Dependent Pressure Vessel (DPV) Cell and Battery Design

    NASA Technical Reports Server (NTRS)

    Caldwell, Dwight B.; Fox, Chris L.; Miller, Lee E.

    1997-01-01

    THe Dependent Pressure Vessel (DPV) Nickel-Hydrogen (NiH2) design is being developed as an advanced battery for military and commercial, aerospace and terrestrial applications. The DPV cell design offers high specific energy and energy density as well as reduced cost, while retaining the established Individual Pressure Vessel (IPV) technology flight heritage and database. This advanced DPV design also offers a more efficient mechanical, electrical and thermal cell and battery configuration and a reduced part count. The DPV battery design promotes compact, minimum volume packaging and weight efficiency, and delivers cost and weight savings with minimal design risk.

  16. GOLD PRESSURE VESSEL SEAL

    DOEpatents

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  17. Develop Critical Profilometers to Meet Current and Future Composite Overwrapped Pressure Vessel (COPV) Interior Inspection Needs

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor L.

    2010-01-01

    The objective of this project is to develop laser profilometer technology that can efficiently inspect and map the inside of composite pressure vessels for flaws such as liner buckling, pitting, or other surface imperfections. The project will also provide profilometers that can directly support inspections of flight vessels during development and qualification programs and subsequently be implemented into manufacturing inspections to screen out vessels with "out of family" liner defects. An example interior scan of a carbon overwrapped bottle is shown in comparison to an external view of the same bottle (Fig. 1). The internal scan is primarily of the cylindrical portion, but extends about 0.15 in. into the end cap area.

  18. Reactor pressure vessel nozzle

    DOEpatents

    Challberg, Roy C.; Upton, Hubert A.

    1994-01-01

    A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough.

  19. Reactor pressure vessel nozzle

    DOEpatents

    Challberg, R.C.; Upton, H.A.

    1994-10-04

    A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough. 2 figs.

  20. High pressure storage vessel

    DOEpatents

    Liu, Qiang

    2013-08-27

    Disclosed herein is a composite pressure vessel with a liner having a polar boss and a blind boss a shell is formed around the liner via one or more filament wrappings continuously disposed around at least a substantial portion of the liner assembly combined the liner and filament wrapping have a support profile. To reduce susceptible to rupture a locally disposed filament fiber is added.

  1. Developments in pressure vessels and piping 1995. PVP-Volume 301

    SciTech Connect

    Petrinec, J.N. Jr.; Aggarwal, M.; Becht, C. IV; Bond, C.B.; Dermenjian, A.A.; Fisher, H.D.; Kobayashi, H.; Williams, D.K.

    1995-11-01

    A primary objective of the Design and Analysis Committee of the ASME Pressure Vessels and Piping Division is to disseminate information and advanced current theories and practices in design and analysis of pressure vessels and components. This volume is comprised of papers presented at the 1995 Joint ASME/JSME Pressure Vessels and Piping Conference, July 23--27 in Honolulu, Hawaii. The topics included are: power plant piping and supports; piping dynamics; expansion joints; dynamic response of structures; and stress intensification factors and stress classification. Papers have been processed separately for inclusion on the data base.

  2. Multilayer Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2005-01-01

    A method has been devised to enable the fabrication of lightweight pressure vessels from multilayer composite materials. This method is related to, but not the same as, the method described in gMaking a Metal- Lined Composite-Overwrapped Pressure Vessel h (MFS-31814), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 59. The method is flexible in that it poses no major impediment to changes in tank design and is applicable to a wide range of tank sizes. The figure depicts a finished tank fabricated by this method, showing layers added at various stages of the fabrication process. In the first step of the process, a mandrel that defines the size and shape of the interior of the tank is machined from a polyurethane foam or other suitable lightweight tooling material. The mandrel is outfitted with metallic end fittings on a shaft. Each end fitting includes an outer flange that has a small step to accommodate a thin layer of graphite/epoxy or other suitable composite material. The outer surface of the mandrel (but not the fittings) is covered with a suitable release material. The composite material is filament- wound so as to cover the entire surface of the mandrel from the step on one end fitting to the step on the other end fitting. The composite material is then cured in place. The entire workpiece is cut in half in a plane perpendicular to the axis of symmetry at its mid-length point, yielding two composite-material half shells, each containing half of the foam mandrel. The halves of the mandrel are removed from within the composite shells, then the shells are reassembled and bonded together with a belly band of cured composite material. The resulting composite shell becomes a mandrel for the subsequent steps of the fabrication process and remains inside the final tank. The outer surface of the composite shell is covered with a layer of material designed to be impermeable by the pressurized fluid to be contained in the tank. A second step on the outer flange of

  3. Composite Overwrapped Pressure Vessels (COPV): Developing Flight Rationale for the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Kezirian, Michael T.

    2010-01-01

    Introducing composite vessels into the Space Shuttle Program represented a significant technical achievement. Each Orbiter vehicle contains 24 (nominally) Kevlar tanks for storage of pressurized helium (for propulsion) and nitrogen (for life support). The use of composite cylinders saved 752 pounds per Orbiter vehicle compared with all-metal tanks. The weight savings is significant considering each Shuttle flight can deliver 54,000 pounds of payload to the International Space Station. In the wake of the Columbia accident and the ensuing Return to Flight activities, the Space Shuttle Program, in 2005, re-examined COPV hardware certification. Incorporating COPV data that had been generated over the last 30 years and recognizing differences between initial Shuttle Program requirements and current operation, a new failure mode was identified, as composite stress rupture was deemed credible. The Orbiter Project undertook a comprehensive investigation to quantify and mitigate this risk. First, the engineering team considered and later deemed as unfeasible the option to replace existing all flight tanks. Second, operational improvements to flight procedures were instituted to reduce the flight risk and the danger to personnel. Third, an Orbiter reliability model was developed to quantify flight risk. Laser profilometry inspection of several flight COPVs identified deep (up to 20 mil) depressions on the tank interior. A comprehensive analysis was performed and it confirmed that these observed depressions were far less than the criterion which was established as necessary to lead to liner buckling. Existing fleet vessels were exonerated from this failure mechanism. Because full validation of the Orbiter Reliability Model was not possible given limited hardware resources, an Accelerated Stress Rupture Test of a flown flight vessel was performed to provide increased confidence. A Bayesian statistical approach was developed to evaluate possible test results with respect to the

  4. Development of design criteria for a high pressure vessel construction code

    SciTech Connect

    Mraz, G.J.

    1987-05-01

    Out of concern for public safety, most legal jurisdictions now require unfired pressure vessel construction to comply with the ASME Boiler and Pressure Vessel Code. Because the present two divisions of Section VIII of that Code are not well suited for high pressure design, a new division is needed. The currently anticipated main design criteria of the proposed division are full plastic flow or full overstrain pressure, stress intensity in the bore, fatigue, and fracture mechanics. The rules are expected to allow better utilization of high strength steels already included in the present Section VIII. At the same time materials of even higher strength are introduced. The benefits of compressive prestress are recognized. Construction methods allowing it's achievement, such as autofrettage, shrink fitting and wire winding are included. Reasons for selection of the criteria are given.

  5. Carbon fiber internal pressure vessels

    NASA Technical Reports Server (NTRS)

    Simon, R. A.

    1973-01-01

    Internal pressure vessels were designed; the filament was wound of carbon fibers and epoxy resin and tested to burst. The fibers used were Thornel 400, Thornel 75, and Hercules HTS. Additional vessels with type A fiber were made. Polymeric linears were used, and all burst testing was done at room temperature. The objective was to produce vessels with the highest attainable PbV/W efficiencies. The type A vessels showed the highest average efficiency: 2.56 x 10 to the 6th power cm. Next highest efficiency was with Thornel 400 vessels: 2.21 x 10 to the 6th power cm. These values compare favorably with efficiency values from good quality S-glass vessels, but strains averaged 0.97% or less, which is less than 1/3 the strain of S-glass vessels.

  6. Level indicator for pressure vessels

    DOEpatents

    Not Available

    1982-04-28

    A liquid-level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic-field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal-processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  7. Cuff for Blood-Vessel Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Shimizu, M.

    1982-01-01

    Pressure within blood vessel is measured by new cufflike device without penetration of vessel. Device continuously monitors blood pressure for up to 6 months or longer without harming vessel. Is especially useful for vessels smaller than 4 or 5 millimeters in diameter. Invasive methods damage vessel wall, disturb blood flow, and cause clotting. They do not always give reliable pressure measurements over prolonged periods.

  8. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have

  9. 46 CFR 182.330 - Pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels. 182.330 Section 182.330 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.330 Pressure vessels. All unfired pressure vessels must be... unfired pressure vessels must meet the applicable requirements of subchapter F (Marine Engineering)...

  10. 46 CFR 182.330 - Pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pressure vessels. 182.330 Section 182.330 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.330 Pressure vessels. All unfired pressure vessels must be... unfired pressure vessels must meet the applicable requirements of subchapter F (Marine Engineering)...

  11. 46 CFR 169.249 - Pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels. 169.249 Section 169.249 Shipping COAST... and Certification Inspections § 169.249 Pressure vessels. Pressure vessels must meet the requirements of part 54 of this chapter. The inspection procedures for pressure vessels are contained in...

  12. 46 CFR 182.330 - Pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Pressure vessels. 182.330 Section 182.330 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.330 Pressure vessels. All unfired pressure vessels must be... unfired pressure vessels must meet the applicable requirements of subchapter F (Marine Engineering)...

  13. 46 CFR 182.330 - Pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Pressure vessels. 182.330 Section 182.330 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.330 Pressure vessels. All unfired pressure vessels must be... unfired pressure vessels must meet the applicable requirements of subchapter F (Marine Engineering)...

  14. 46 CFR 169.249 - Pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Pressure vessels. 169.249 Section 169.249 Shipping COAST... and Certification Inspections § 169.249 Pressure vessels. Pressure vessels must meet the requirements of part 54 of this chapter. The inspection procedures for pressure vessels are contained in...

  15. 46 CFR 169.249 - Pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Pressure vessels. 169.249 Section 169.249 Shipping COAST... and Certification Inspections § 169.249 Pressure vessels. Pressure vessels must meet the requirements of part 54 of this chapter. The inspection procedures for pressure vessels are contained in...

  16. 46 CFR 169.249 - Pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Pressure vessels. 169.249 Section 169.249 Shipping COAST... and Certification Inspections § 169.249 Pressure vessels. Pressure vessels must meet the requirements of part 54 of this chapter. The inspection procedures for pressure vessels are contained in...

  17. 46 CFR 182.330 - Pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Pressure vessels. 182.330 Section 182.330 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.330 Pressure vessels. All unfired pressure vessels must be... unfired pressure vessels must meet the applicable requirements of subchapter F (Marine Engineering)...

  18. 46 CFR 169.249 - Pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pressure vessels. 169.249 Section 169.249 Shipping COAST... and Certification Inspections § 169.249 Pressure vessels. Pressure vessels must meet the requirements of part 54 of this chapter. The inspection procedures for pressure vessels are contained in...

  19. Research and Development of Automated Eddy Current Testing for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Carver, Kyle L.; Saulsberry, Regor L.; Nichols, Charles T.; Spencer, Paul R.; Lucero, Ralph E.

    2012-01-01

    Eddy current testing (ET) was used to scan bare metallic liners used in the fabrication of composite overwrapped pressure vessels (COPVs) for flaws which could result in premature failure of the vessel. The main goal of the project was to make improvements in the areas of scan signal to noise ratio, sensitivity of flaw detection, and estimation of flaw dimensions. Scan settings were optimized resulting in an increased signal to noise ratio. Previously undiscovered flaw indications were observed and investigated. Threshold criteria were determined for the system software's flaw report and estimation of flaw dimensions were brought to an acceptable level of accuracy. Computer algorithms were written to import data for filtering and a numerical derivative filtering algorithm was evaluated.

  20. Feasibility for development of a nuclear reactor pressure vessel flaw distribution: Sensitivity analyses and NDE (nondestructive evaluation) capability

    SciTech Connect

    Rosinski, S.T. ); Kennedy, E.L.; Foulds, J.R. )

    1990-01-01

    Pressurized water reactor pressure vessels operate under US Nuclear Regulatory Commission (NRC) rules and regulatory guides that are intended to maintain a low probability of vessel failure. The NRC has also addressed neutron embrittlement of pressurized water reactor pressure vessels by imposing regulations on plant operation. Plants failing to meet the operating criteria specified by these rules and regulations are required, among other things, to analytically demonstrate fitness for service in order to continue safe operation. The initial flaw size or distribution of initial vessel flaws is a key input to the required vessel integrity analyses. A fracture mechanics sensitivity study was performed to quantify the effect of the assumed flaw distribution on the predicted vessel performance under a specified pressurized thermal shock transient and to determine the critical crack size. Results of the analysis indicate that vessel performance in terms of the estimated probability of failure is very sensitive to the assumed flaw distribution. 20 refs., 3 figs., 2 tabs.

  1. Pressure vessel having continuous sidewall

    NASA Technical Reports Server (NTRS)

    Simon, Xavier D. (Inventor); Barackman, Victor J. (Inventor)

    2011-01-01

    A spacecraft pressure vessel has a tub member. A sidewall member is coupled to the tub member so that a bottom section of the sidewall member extends from an attachment intersection with the tub member and away from the tub member. The bottom section of the sidewall member receives and transfers a load through the sidewall member.

  2. 46 CFR 119.330 - Pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Pressure vessels. 119.330 Section 119.330 Shipping COAST... Machinery § 119.330 Pressure vessels. All unfired pressure vessels must be installed to the satisfaction of the cognizant OCMI. The design, construction, and original testing of such unfired pressure...

  3. 46 CFR 119.330 - Pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels. 119.330 Section 119.330 Shipping COAST... Machinery § 119.330 Pressure vessels. All unfired pressure vessels must be installed to the satisfaction of the cognizant OCMI. The design, construction, and original testing of such unfired pressure...

  4. 46 CFR 119.330 - Pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Pressure vessels. 119.330 Section 119.330 Shipping COAST... Machinery § 119.330 Pressure vessels. All unfired pressure vessels must be installed to the satisfaction of the cognizant OCMI. The design, construction, and original testing of such unfired pressure...

  5. 46 CFR 119.330 - Pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Pressure vessels. 119.330 Section 119.330 Shipping COAST... Machinery § 119.330 Pressure vessels. All unfired pressure vessels must be installed to the satisfaction of the cognizant OCMI. The design, construction, and original testing of such unfired pressure...

  6. 46 CFR 119.330 - Pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Pressure vessels. 119.330 Section 119.330 Shipping COAST... Machinery § 119.330 Pressure vessels. All unfired pressure vessels must be installed to the satisfaction of the cognizant OCMI. The design, construction, and original testing of such unfired pressure...

  7. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  8. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  9. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  10. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  11. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  12. Reactor pressure vessel. Status report

    SciTech Connect

    Elliot, B.J.; Hackett, E.M.; Lee, A.D.

    1996-10-01

    This report describes the issues raised as a result of the staffs review of Generic Letter (GL) 92-01, Revision 1, responses and plant-specific reactor pressure vessel (RPV) assessments and the actions taken or work in progress to address these issues. In addition, the report describes actions taken by the staff and the nuclear industry to develop a thermal annealing process for use at U.S. commercial nuclear power plants. This process is intended to be used as a means of mitigating the effects of neutron radiation on the fracture toughness of RPV materials. The Nuclear Regulatory Commission (NRC) issued GL 92-01, Revision 1, Supplement 1, to obtain information needed to assess compliance with regulatory requirements and licensee commitments regarding RPV integrity. GL 92-01, Revision 1, Supplement 1, was issued as a result of generic issues that were raised in the NRC staff`s reviews of licensee responses to GL 92-01, Revision 1, and plant-specific RPV evaluations. In particular, an integrated review of all data submitted in response to GL 92-01, Revision 1, indicated that licensees may not have considered all relevant data in their RPV assessments. This report is representative of submittals to and evaluations by the staff as of September 30, 1996. An update of this report will be issued at a later date.

  13. Steel pressure vessels for hydrostatic pressures to 50 kilobars.

    PubMed

    Lavergne, A; Whalley, E

    1978-07-01

    Cylindrical steel pressure vessels are described that can be used for hydrostatic pressures up to 50 kilobars. Monoblock vessels of 350 maraging steel can be used to 40 kilobars and compound vessels with an inner vessel of 350 maraging steel and an outer vessel of 300 maraging steel to 50 kilobars. Neither requires the cylinder to be end loaded, and so they are much easier to use than the more usual compound vessels with a tungsten carbide inner and steel outer vessel.

  14. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  15. Reactor pressure vessel vented head

    DOEpatents

    Sawabe, James K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell.

  16. Reactor pressure vessel vented head

    DOEpatents

    Sawabe, J.K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell. 6 figures.

  17. Hydrogen storage in insulated pressure vessels

    SciTech Connect

    Aceves, S.M.; Garcia-Villazana, O.

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  18. LPT. EBOR reactor vessel in TAN 646. Pressure vessel head ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. EBOR reactor vessel in TAN 646. Pressure vessel head being installed in vault. Refueling port extension (right) and control rod nozzles (center). Camera facing northwest. Photographer: Comiskey. Date: January 20, 1965. INEEL negative no. 65-241 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  19. Guide for certifying pressure vessels and systems

    NASA Technical Reports Server (NTRS)

    Lundy, Floyd; Krusa, Paul W.

    1992-01-01

    This guide is intended to provide methodology and describe the intent of the Pressure Vessel and System (PV/S) Certification program. It is not meant to be a mandated document, but is intended to transmit a basic understanding of the PV/S program, and include examples. After the reader has familiarized himself with this publication, he should have a basic understanding of how to go about developing a PV/S certification program.

  20. Wrapped Wire Detects Rupture Of Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Hunt, James B.

    1990-01-01

    Simple, inexpensive technique helps protect against damage caused by continuing operation of equipment after rupture or burnout of pressure vessel. Wire wrapped over area on outside of vessel where breakthrough most likely. If wall breaks or burns, so does wire. Current passing through wire ceases, triggering cutoff mechanism stopping flow in vessel to prevent further damage. Applied in other situations in which pipes or vessels fail due to overpressure, overheating, or corrosion.

  1. Lightweight bladder lined pressure vessels

    DOEpatents

    Mitlitsky, Fred; Myers, Blake; Magnotta, Frank

    1998-01-01

    A lightweight, low permeability liner for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.

  2. Lightweight bladder lined pressure vessels

    DOEpatents

    Mitlitsky, F.; Myers, B.; Magnotta, F.

    1998-08-25

    A lightweight, low permeability liner is described for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using tori spherical or near tori spherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film sealed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life. 19 figs.

  3. Safety Evaluation Report: Development of Improved Composite Pressure Vessels for Hydrogen Storage, Lincoln Composites, Lincoln, NE, May 25, 2010

    SciTech Connect

    Fort, III, William C.; Kallman, Richard A.; Maes, Miguel; Skolnik, Edward G.; Weiner, Steven C.

    2010-12-22

    Lincoln Composites operates a facility for designing, testing, and manufacturing composite pressure vessels. Lincoln Composites also has a U.S. Department of Energy (DOE)-funded project to develop composite tanks for high-pressure hydrogen storage. The initial stage of this project involves testing the permeation of high-pressure hydrogen through polymer liners. The company recently moved and is constructing a dedicated research/testing laboratory at their new location. In the meantime, permeation tests are being performed in a corner of a large manufacturing facility. The safety review team visited the Lincoln Composites site on May 25, 2010. The project team presented an overview of the company and project and took the safety review team on a tour of the facility. The safety review team saw the entire process of winding a carbon fiber/resin tank on a liner, installing the boss and valves, and curing and painting the tank. The review team also saw the new laboratory that is being built for the DOE project and the temporary arrangement for the hydrogen permeation tests.

  4. Development of automated welding process for field fabrication of thick walled pressure vessels. Fourth quarter, FY 1980

    SciTech Connect

    Not Available

    1980-12-19

    Progress is reported in research on the automated welding of heavy steel plate for the fabrication of pressure vessels. Information is included on: torch and shield adaptation; mechanical control of the welding process; welding parameters; joint design; filler wire optimizaton; nondestructive testing of welds; and weld repair. (LCL)

  5. Development of an improved-contact liquid-level probe for pressurized reactor vessels

    SciTech Connect

    Kelsey, P.V. Jr.

    1982-09-01

    Electrical-conductivity-based probes for liquid level sensing show promise for pressurized water reactor environments, but have exhibited frequent bond failures at the ceramic/metal interfaces. A program to characterize and improve the interface behavior has been completed successfully, and has provided data for optimizing fabrication parameters, as well as general information on glass-to-metal bonding in a superalloy/silicate-glass system. The materials studied were Inconel X-750 and a barium silicate glass containing minor amounts of TiO/sub 2/, CeO/sub 2/, As/sub 2/O/sub 3/, Bi/sub 2/O/sub 3/, and Al/sub 2/O/sub 3/.

  6. Midland reactor pressure vessel flaw distribution

    SciTech Connect

    Foulds, J.R.; Kennedy, E.L.; Rosinski, S.T.

    1993-12-01

    The results of laboratory nondestructive examination (NDE), and destructive cross-sectioning of selected weldment sections of the Midland reactor pressure vessel were analyzed per a previously developed methodology in order to develop a flaw distribution. The flaw distributions developed from the NDE results obtained by two different ultrasonic test (UT) inspections (Electric Power Research Institute NDE Center and Pacific Northwest Laboratories) were not statistically significantly different. However, the distribution developed from the NDE Center`s (destructive) cross-sectioning-based data was found to be significantly different than those obtained through the UT inspections. A fracture mechanics-based comparison of the flaw distributions showed that the cross-sectioning-based data, conservatively interpreted (all defects considered as flaws), gave a significantly lower vessel failure probability when compared with the failure probability values obtained using the UT-based distributions. Given that the cross-sectioning data were reportedly biased toward larger, more significant-appearing (by UT) indications, it is concluded that the nondestructive examinations produced definitively conservative results. In addition to the Midland vessel inspection-related analyses, a set of twenty-seven numerical simulations, designed to provide a preliminary quantitative assessment of the accuracy of the flaw distribution method used here, were conducted. The calculations showed that, in more than half the cases, the analysis produced reasonably accurate predictions.

  7. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    SciTech Connect

    Smith, Cyrus M; Nanstad, Randy K; Clayton, Dwight A; Matlack, Katie; Ramuhalli, Pradeep; Light, Glenn

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  8. Pressure vessel calculations for VVER-440 reactors.

    PubMed

    Hordósy, G; Hegyi, Gy; Keresztúri, A; Maráczy, Cs; Temesvári, E; Vértes, P; Zsolnay, E

    2005-01-01

    For the determination of the fast neutron load of the reactor pressure vessel a mixed calculational procedure was developed. The procedure was applied to the Unit II of Paks NPP, Hungary. The neutron source on the outer surfaces of the reactor was determined by a core design code, and the neutron transport calculations outside the core were performed by the Monte Carlo code MCNP. The reaction rate in the activation detectors at surveillance positions and at the cavity were calculated and compared with measurements. In most cases, fairly good agreement was found.

  9. High-performance fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  10. Research and Development Roadmaps for Nondestructive Evaluation of Cables, Concrete, Reactor Pressure Vessels, and Piping Fatigue

    SciTech Connect

    Clayton, Dwight A.; Bakhtiari, Sasan; Smith, Cyrus M.; Simmons, Kevin L.; Ramuhalli, Pradeep; Coble, Jamie B.; Brenchley, David L.; Meyer, Ryan M.

    2013-04-16

    The purpose of the Materials Aging and Degradation Pathway is to develop the scientific basis for understanding and predicting long-term environmental degradation behavior of materials in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on systems, structures, and components is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e., service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enabled by improved methods and techniques for detection, monitoring, and prediction of systems, structures, and components degradation.

  11. Discontinuity stresses in metallic pressure vessels

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The state of the art, criteria, and recommended practices for the theoretical and experimental analyses of discontinuity stresses and their distribution in metallic pressure vessels for space vehicles are outlined. The applicable types of pressure vessels include propellant tanks ranging from main load-carrying integral tank structure to small auxiliary tanks, storage tanks, solid propellant motor cases, high pressure gas bottles, and pressurized cabins. The major sources of discontinuity stresses are discussed, including deviations in geometry, material properties, loads, and temperature. The advantages, limitations, and disadvantages of various theoretical and experimental discontinuity analysis methods are summarized. Guides are presented for evaluating discontinuity stresses so that pressure vessel performance will not fall below acceptable levels.

  12. Flexible Composite-Material Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  13. Reactor pressure vessel structural integrity research

    SciTech Connect

    Pennell, W.E.; Corwin, W.R.

    1995-04-01

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallows surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT{sub NDT}) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on a shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.

  14. Reactor pressure vessel structural integrity research

    SciTech Connect

    Pennell, W.E.; Corwin, W.R.

    1994-12-31

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT{sub NDT}) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.

  15. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-2. Pressure vessel components design and analysis

    SciTech Connect

    Gawaltney, R.C.

    1985-01-01

    There are seven sessions covered in this book on Pressure Vessel Components Design and Analysis. The papers are divided into the following six subject areas: composites, valves, tubesheets, pressure vessels and piping, bolted flanges, and nonlinear computational methods. The design procedures and analysis methods described in this book are not discussed previously. The engineers working in the field of pressure vessel design can only keep up with current developments in these areas by reviewing a substantial amount of technical literature. A goal of this book is to help in this endeavor by offering selected papers in the area by authors who are experienced and distinguished workers in their fields.

  16. Blood vessels, circulation and blood pressure.

    PubMed

    Hendry, Charles; Farley, Alistair; McLafferty, Ella

    This article, which forms part of the life sciences series, describes the vessels of the body's blood and lymphatic circulatory systems. Blood pressure and its regulatory systems are examined. The causes and management of hypertension are also explored. It is important that nurses and other healthcare professionals understand the various mechanisms involved in the regulation of blood pressure to prevent high blood pressure or ameliorate its damaging consequences.

  17. 46 CFR 50.30-20 - Class III pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Class III pressure vessels. 50.30-20 Section 50.30-20... Fabrication Inspection § 50.30-20 Class III pressure vessels. (a) Class III pressure vessels shall be subject... specifically exempted by other regulations in this subchapter. (b) For Class III welded pressure vessels,...

  18. 46 CFR 50.30-15 - Class II pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Class II pressure vessels. 50.30-15 Section 50.30-15... Fabrication Inspection § 50.30-15 Class II pressure vessels. (a) Class II pressure vessels shall be subject to... pressure vessels shall be performed during the welding of the longitudinal joint. At this time the...

  19. 46 CFR 50.30-20 - Class III pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Class III pressure vessels. 50.30-20 Section 50.30-20... Fabrication Inspection § 50.30-20 Class III pressure vessels. (a) Class III pressure vessels shall be subject... specifically exempted by other regulations in this subchapter. (b) For Class III welded pressure vessels,...

  20. 46 CFR 61.10-5 - Pressure vessels in service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Pressure vessels in service. 61.10-5 Section 61.10-5... INSPECTIONS Tests and Inspections of Pressure Vessels § 61.10-5 Pressure vessels in service. (a) Basic requirements. Each pressure vessel must be examined or tested every 5 years. The extent of the test...

  1. 46 CFR 50.30-15 - Class II pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Class II pressure vessels. 50.30-15 Section 50.30-15... Fabrication Inspection § 50.30-15 Class II pressure vessels. (a) Class II pressure vessels shall be subject to... pressure vessels shall be performed during the welding of the longitudinal joint. At this time the...

  2. 46 CFR 50.30-15 - Class II pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Class II pressure vessels. 50.30-15 Section 50.30-15... Fabrication Inspection § 50.30-15 Class II pressure vessels. (a) Class II pressure vessels shall be subject to... pressure vessels shall be performed during the welding of the longitudinal joint. At this time the...

  3. 46 CFR 61.10-5 - Pressure vessels in service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pressure vessels in service. 61.10-5 Section 61.10-5... INSPECTIONS Tests and Inspections of Pressure Vessels § 61.10-5 Pressure vessels in service. (a) Basic requirements. Each pressure vessel must be examined or tested every 5 years. The extent of the test...

  4. 46 CFR 50.30-15 - Class II pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Class II pressure vessels. 50.30-15 Section 50.30-15... Fabrication Inspection § 50.30-15 Class II pressure vessels. (a) Class II pressure vessels shall be subject to... pressure vessels shall be performed during the welding of the longitudinal joint. At this time the...

  5. 46 CFR 50.30-15 - Class II pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Class II pressure vessels. 50.30-15 Section 50.30-15... Fabrication Inspection § 50.30-15 Class II pressure vessels. (a) Class II pressure vessels shall be subject to... pressure vessels shall be performed during the welding of the longitudinal joint. At this time the...

  6. 46 CFR 61.10-5 - Pressure vessels in service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Pressure vessels in service. 61.10-5 Section 61.10-5... INSPECTIONS Tests and Inspections of Pressure Vessels § 61.10-5 Pressure vessels in service. (a) Basic requirements. Each pressure vessel must be examined or tested every 5 years. The extent of the test...

  7. 46 CFR 50.30-20 - Class III pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Class III pressure vessels. 50.30-20 Section 50.30-20... Fabrication Inspection § 50.30-20 Class III pressure vessels. (a) Class III pressure vessels shall be subject... specifically exempted by other regulations in this subchapter. (b) For Class III welded pressure vessels,...

  8. 46 CFR 61.10-5 - Pressure vessels in service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Pressure vessels in service. 61.10-5 Section 61.10-5... INSPECTIONS Tests and Inspections of Pressure Vessels § 61.10-5 Pressure vessels in service. (a) Basic requirements. Each pressure vessel must be examined or tested every 5 years. The extent of the test...

  9. 46 CFR 50.30-20 - Class III pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Class III pressure vessels. 50.30-20 Section 50.30-20... Fabrication Inspection § 50.30-20 Class III pressure vessels. (a) Class III pressure vessels shall be subject... specifically exempted by other regulations in this subchapter. (b) For Class III welded pressure vessels,...

  10. 46 CFR 50.30-20 - Class III pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Class III pressure vessels. 50.30-20 Section 50.30-20... Fabrication Inspection § 50.30-20 Class III pressure vessels. (a) Class III pressure vessels shall be subject... specifically exempted by other regulations in this subchapter. (b) For Class III welded pressure vessels,...

  11. 46 CFR 61.10-5 - Pressure vessels in service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Pressure vessels in service. 61.10-5 Section 61.10-5... INSPECTIONS Tests and Inspections of Pressure Vessels § 61.10-5 Pressure vessels in service. (a) Basic requirements. Each pressure vessel must be examined or tested every 5 years. The extent of the test...

  12. Advanced composite fiber/metal pressure vessels for aircraft applications

    NASA Astrophysics Data System (ADS)

    Papanicolopoulos, Aleck

    1993-06-01

    Structural Composites Industries has developed, qualified, and delivered a number of high performance carbon epoxy overwrapped/seamless aluminum liner pressure vessels for use in military aircraft where low weight, low cost, high operating pressure and short lead time are the primary considerations. This paper describes product design, development, and qualification for a typical program. The vessel requirements included a munitions insensitivity criterion as evidenced by no fragmentation following impact by a .50 cal tumbling bullet. This was met by the development of a carbon-Spectra hybrid composite overwrap on a thin-walled seamless aluminum liner. The same manufacturing, inspection, and test processes that are used to produce lightweight, thin walled seamless aluminum lined carbon/epoxy overwrapped pressure vessels for satellite and other space applications were used to fabricate this vessel. This report focuses on the results of performance in the qualification testing.

  13. Strain limit dependence on stress triaxiality for pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Deng, Y.-C.; Chen, G.; Yang, X.-F.; Xu, T.

    2009-08-01

    In this paper, the failure characteristics of pressure vessel materials were investigated, and measurement and analysis approaches for ductile fracture strains were studied. Based on uniaxial tensile tests of notched round bar specimens, combined with finite element analyses and microscopic observations of fracture surface, the relationships between the stress triaxiality factor and the ductile fracture strain are proposed for three typical Chinese pressure vessel steels, 16MnR, Q235 and 0Cr18Ni9. The comparison of experimental fracture strains with the multiaxial strain limit specified in ASME VIII-2 2007 shows that the strain limit criterion of ASME is suitable for carbon steels but not suitable for austenitic stainless steels for Chinese pressure vessel steels. To improve the calculation accuracy for fracture strain of materials and to develop the strain limit criterion for Chinese pressure vessel materials, more experimental studies and numerical analyses on fracture strain are necessary.

  14. Curved and conformal high-pressure vessel

    DOEpatents

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    2016-10-25

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The first inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.

  15. Proactive life extension of pressure vessels

    NASA Astrophysics Data System (ADS)

    Mager, Lloyd

    1998-03-01

    For a company to maintain its competitive edge in today's global market every opportunity to gain an advantage must be exploited. Many companies are strategically focusing on improved utilization of existing equipment as well as regulatory compliance. Abbott Laboratories is no exception. Pharmaceutical companies such as Abbott Laboratories realize that reliability and availability of their production equipment is critical to be successful and competitive. Abbott Laboratories, like many of our competitors, is working to improve safety, minimize downtime and maximize the productivity and efficiency of key production equipment such as the pressure vessels utilized in our processes. The correct strategy in obtaining these objectives is to perform meaningful inspection with prioritization based on hazard analysis and risk. The inspection data gathered in Abbott Laboratories pressure vessel program allows informed decisions leading to improved process control. The results of the program are reduced risks to the corporation and employees when operating pressure retaining equipment. Accurate and meaningful inspection methods become the cornerstone of a program allowing proper preventative maintenance actions to occur. Successful preventative/predictive maintenance programs must utilize meaningful nondestructive evaluation techniques and inspection methods. Nondestructive examination methods require accurate useful tools that allow rapid inspection for the entire pressure vessel. Results from the examination must allow the owner to prove compliance of all applicable regulatory laws and codes. At Abbott Laboratories the use of advanced NDE techniques, primarily B-scan ultrasonics, has provided us with the proper tools allowing us to obtain our objectives. Abbott Laboratories uses B-scan ultrasonics utilizing a pulse echo pitch catch technique to provide essential data on our pressure vessels. Equipment downtime is reduced because the nondestructive examination usually takes

  16. Cavity closure arrangement for high pressure vessels

    DOEpatents

    Amtmann, Hans H.

    1981-01-01

    A closure arrangement for a pressure vessel such as the pressure vessel of a high temperature gas-cooled reactor wherein a liner is disposed within a cavity penetration in the reactor vessel and defines an access opening therein. A closure is adapted for sealing relation with an annular mounting flange formed on the penetration liner and has a plurality of radially movable locking blocks thereon having outer serrations adapted for releasable interlocking engagement with serrations formed internally of the upper end of the penetration liner so as to effect high strength closure hold-down. In one embodiment, ramping surfaces are formed on the locking block serrations to bias the closure into sealed relation with the mounting flange when the locking blocks are actuated to locking positions.

  17. Reactor pressure vessel with forged nozzles

    DOEpatents

    Desai, Dilip R.

    1993-01-01

    Inlet nozzles for a gravity-driven cooling system (GDCS) are forged with a cylindrical reactor pressure vessel (RPV) section to which a support skirt for the RPV is attached. The forging provides enhanced RPV integrity around the nozzle and substantial reduction of in-service inspection costs by eliminating GDCS nozzle-to-RPV welds.

  18. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be...

  19. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be...

  20. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be...

  1. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be...

  2. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be...

  3. Radiation effects on reactor pressure vessel supports

    SciTech Connect

    Johnson, R.E.; Lipinski, R.E.

    1996-05-01

    The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue.

  4. Code System to Calculate Pressure Vessel Failure Probabilities.

    2001-03-27

    Version 00 OCTAVIA (Operationally Caused Transients And Vessel Integrity Analysis) calculates the probability of pressure vessel failure from operationally-caused pressure transients which can occur in a pressurized water reactor (PWR). For specified vessel and operating environment characteristics the program computes the failure pressure at which the vessel will fail for different-sized flaws existing in the beltline and the probability of vessel failure per reactor year due to the flaw. The probabilities are summed over themore » various flaw sizes to obtain the total vessel failure probability. Sensitivity studies can be performed to investigate different vessel or operating characteristics in the same computer run.« less

  5. Neural network/acoustic emission burst pressure prediction for impact damaged composite pressure vessels

    SciTech Connect

    Walker, J.L.; Workman, G.L.; Russell, S.S.; Hill, E.V.K.

    1997-08-01

    Acoustic emission signal analysis has been used to measure the effect impact damage has on the burst pressure of 146 mm (5.75 in.) diameter graphite/epoxy and the organic polymer, Kevlar/epoxy filament wound pressure vessels. Burst pressure prediction models were developed by correlating the differential acoustic emission amplitude distribution collected during low level hydroproof tests to known burst pressures using backpropagation artificial neural networks. Impact damage conditions ranging from barely visible to obvious fiber breakage, matrix cracking, and delamination were included in this work. A simulated (inert) propellant was also cast into a series of the vessels from each material class, before impact loading, to provide boundary conditions during impact that would simulate those found on solid rocket motors. The results of this research effort demonstrate that a quantitative assessment of the effects that impact damage has on burst pressure can be made for both organic polymer/epoxy and graphite/epoxy pressure vessels. Here, an artificial neural network analysis of the acoustic emission parametric data recorded during low pressure hydroproof testing is used to relate burst pressure to the vessel`s acoustic signature. Burst pressure predictions within 6.0% of the actual failure pressure are demonstrated for a series of vessels.

  6. Conformable pressure vessel for high pressure gas storage

    DOEpatents

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  7. Composite Overwrapped Pressure Vessel(COPV) Stress Rupture Testing

    NASA Astrophysics Data System (ADS)

    Greene, Nathanael J.; Saulsberry, Regor L.; Leifeste, Mark, R.; Yoder, Tommy B.; Keddy, Chris P.; Forth, Scott C.; Russell, Rick W.

    2010-09-01

    This paper reports stress rupture testing of Kevlar® composite overwrapped pressure vessels(COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm(40-in.) diameter Kevlar® COPV was tested to failure(burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance.

  8. Composite Overwrapped Pressure Vessel (COPV) Stress Rupture Testing

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael J.; Saulsberry, Regor L.; Leifeste, Mark R.; Yoder, Tommy B.; Keddy, Chris P.; Forth, Scott C.; Russell, Rick W.

    2010-01-01

    This paper reports stress rupture testing of Kevlar(TradeMark) composite overwrapped pressure vessels (COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm (40-in.) diameter Kevlar(TradeMark) COPV was tested to failure (burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance.

  9. Low Temperature and High Pressure Evaluation of Insulated Pressure Vessels for Cryogenic Hydrogen Storage

    SciTech Connect

    Aceves, S.; Martinez-Frias, J.; Garcia-Villazana, O.

    2000-06-25

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures.

  10. Composite Pressure Vessel Including Crack Arresting Barrier

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2013-01-01

    A pressure vessel includes a ported fitting having an annular flange formed on an end thereof and a tank that envelopes the annular flange. A crack arresting barrier is bonded to and forming a lining of the tank within the outer surface thereof. The crack arresting barrier includes a cured resin having a post-curing ductility rating of at least approximately 60% through the cured resin, and further includes randomly-oriented fibers positioned in and throughout the cured resin.

  11. Modeling Scala Media as a Pressure Vessel

    NASA Astrophysics Data System (ADS)

    Lepage, Eric; Olofsson, A.˚Ke

    2011-11-01

    The clinical condition known as endolymphatic hydrops is the swelling of scala media and may result in loss in hearing sensitivity consistent with other forms of low-frequency biasing. Because outer hair cells (OHCs) are displacement-sensitive and hearing levels tend to be preserved despite large changes in blood pressure and CSF pressure, it seems unlikely that the OHC respond passively to changes in static pressures in the chambers. This suggests the operation of a major feedback control loop which jointly regulates homeostasis and hearing sensitivity. Therefore the internal forces affecting the cochlear signal processing amplifier cannot be just motile responses. A complete account of the cochlear amplifier must include static pressures. To this end we have added a third, pressure vessel to our 1-D 140-segment, wave-digital filter active model of cochlear mechanics, incorporating the usual nonlinear forward transduction. In each segment the instantaneous pressure is the sum of acoustic pressure and global static pressure. The object of the model is to maintain stable OHC operating point despite any global rise in pressure in the third chamber. Such accumulated pressure is allowed to dissipate exponentially. In this first 3-chamber implementation we explore the possibility that acoustic pressures are rectified. The behavior of the model is critically dependent upon scaling factors and time-constants, yet by initial assumption, the pressure tends to accumulate in proportion to sound level. We further explore setting of the control parameters so that the accumulated pressure either stays within limits or may rise without bound.

  12. Providing Pressurized Gasses to the International Space Station (ISS): Developing a Composite Overwrapped Pressure Vessel (COPV) for the Safe Transport of Oxygen and Nitrogen

    NASA Technical Reports Server (NTRS)

    Kezirian, Michael; Cook, Anthony; Dick, Brandon; Phoenix, S. Leigh

    2012-01-01

    To supply oxygen and nitrogen to the International Space Station, a COPV tank is being developed to meet requirements beyond that which have been flown. In order to "Ship Full' and support compatibility with a range of launch site operations, the vessel was designed for certification to International Standards (ISO) that have a different approach than current NASA certification approaches. These requirements were in addition to existing NASA certification standards had to be met. Initial risk-reduction development tests have been successful. Qualification is in progress.

  13. 46 CFR 58.60-3 - Pressure vessel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Pressure vessel. 58.60-3 Section 58.60-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND... Pressure vessel. A pressure vessel that is a component in an industrial system under this subpart must...

  14. 46 CFR 58.60-3 - Pressure vessel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Pressure vessel. 58.60-3 Section 58.60-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND... Pressure vessel. A pressure vessel that is a component in an industrial system under this subpart must...

  15. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be tested and inspected in accordance with part 61, subpart 61.10, of this...

  16. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be tested and inspected in accordance with part 61, subpart 61.10, of this...

  17. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be tested and inspected in accordance with part 61, subpart 61.10, of this...

  18. 46 CFR 58.60-3 - Pressure vessel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pressure vessel. 58.60-3 Section 58.60-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND... Pressure vessel. A pressure vessel that is a component in an industrial system under this subpart must...

  19. 46 CFR 58.60-3 - Pressure vessel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Pressure vessel. 58.60-3 Section 58.60-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND... Pressure vessel. A pressure vessel that is a component in an industrial system under this subpart must...

  20. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be tested and inspected in accordance with part 61, subpart 61.10, of this...

  1. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be tested and inspected in accordance with part 61, subpart 61.10, of this...

  2. 46 CFR 58.60-3 - Pressure vessel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Pressure vessel. 58.60-3 Section 58.60-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND... Pressure vessel. A pressure vessel that is a component in an industrial system under this subpart must...

  3. Nuclear reactor pressure vessel support system

    DOEpatents

    Sepelak, George R.

    1978-01-01

    A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.

  4. Specifications for the development of BUGLE-93: An ENDF/B-VI multigroup cross section library for LWR shielding and pressure vessel dosimetry

    SciTech Connect

    White, J.E.; Wright, R.Q.; Roussin, R.W.; Ingersoll, D.T.

    1992-11-01

    This report discusses specifications which have been developed for a new multigroup cross section library based on ENDF/B-VI data for light water reactor shielding and reactor pressure vessel dosimetry applications. The resulting broad-group library and an intermediate fine-group library are defined by the specifications provided in this report. Processing ENDF/B-VI into multigroup format for use in radiation transport codes will provide radiation shielding analysts with the most currently available nuclear data. it is expected that the general nature of the specifications will be useful in other applications such as reactor physics.

  5. Report of the terawatt laser pressure vessel committee

    SciTech Connect

    Woodle, M.H.; Beauman, R.; Czajkowski, C.; Dickinson, T.; Lynch, D.; Pogorelsky, I.; Skjaritka, J.

    2000-09-25

    US and installed at the ATF. As part of the commissioning of the device the amplifier pressure vessel was disassembled several times at which time it became apparent that the vendor had not addressed 7 of the 12 issues previously identified. Closer examination of the vessel revealed some additional concerns including quality of workmanship. Although not required by the contract, the vendor furnished radiographs of a number of pressure vessel welds. A review of the Russian X-rays revealed radiographs of both poor and unreadable quality. However, a number of internal weld imperfections could be observed. All welds in question were excavated and then visually and dye penetrant inspected. These additional inspections confirmed that the weld techniques used to make some of these original welds were substandard. The applicable BNL standard, ESH 1.4.1, addresses the problem of pressure vessel non-compliance by having a committee appointed by the Department Chairman review the design and provide engineering solutions to assure equivalent safety. On January 24, 2000 Dr. M. Hart, the NSLS Chairman, appointed this committee with this charge. This report details the engineering investigations, deliberations, solutions and calculations which were developed by members of this committee to determine that with repairs, new components, appropriate NDE, and lowering the design pressure, the vessel can be considered safe to use.

  6. Structural integrity of nuclear reactor pressure vessels

    NASA Astrophysics Data System (ADS)

    Knott, John F.

    2013-09-01

    The paper starts from concerns expressed by Sir Alan Cottrell, in the early 1970s, related to the safety of the pressurized water reactor (PWR) proposed at that time for the next phase of electrical power generation. It proceeds to describe the design and operation of nuclear generation plant and gives details of the manufacture of PWR reactor pressure vessels (RPVs). Attention is paid to stress-relief cracking and under-clad cracking, experienced with early RPVs, explaining the mechanisms for these forms of cracking and the means taken to avoid them. Particular note is made of the contribution of non-destructive inspection to structural integrity. Factors affecting brittle fracture in RPV steels are described: in particular, effects of neutron irradiation. The use of fracture mechanics to assess defect tolerance is explained, together with the failure assessment diagram embodied in the R6 procedure. There is discussion of the Master Curve and how it incorporates effects of irradiation on fracture toughness. Dangers associated with extrapolation of data to low probabilities are illustrated. The treatment of fatigue-crack growth is described, in the context of transients that may be experienced in the operation of PWR plant. Detailed attention is paid to the thermal shock associated with a large loss-of-coolant accident. The final section reviews the arguments advanced to justify 'Incredibility of Failure' and how these are incorporated in assessments of the integrity of existing plant and proposed 'new build' PWR pressure vessels.

  7. Neural Network Burst Pressure Prediction in Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Dion, Seth-Andrew T.; Karl, Justin O.; Spivey, Nicholas S.; Walker, James L., II

    2007-01-01

    Acoustic emission data were collected during the hydroburst testing of eleven 15 inch diameter filament wound composite overwrapped pressure vessels. A neural network burst pressure prediction was generated from the resulting AE amplitude data. The bottles shared commonality of graphite fiber, epoxy resin, and cure time. Individual bottles varied by cure mode (rotisserie versus static oven curing), types of inflicted damage, temperature of the pressurant, and pressurization scheme. Three categorical variables were selected to represent undamaged bottles, impact damaged bottles, and bottles with lacerated hoop fibers. This categorization along with the removal of the AE data from the disbonding noise between the aluminum liner and the composite overwrap allowed the prediction of burst pressures in all three sets of bottles using a single backpropagation neural network. Here the worst case error was 3.38 percent.

  8. AE measurements for evaluation of defects in FRP pressure vessels

    SciTech Connect

    Kawahara, Masanori; Takatsu, Takashi

    1995-11-01

    AE (acoustic emission) measurement was conducted in a series of pressuring tests of FRP pressure vessels in order to examine its applicability to the safety evaluation of vessels. Tested vessels were commercial FRP pressure vessels fabricated by filament winding of high strength glass fibers, impregnated epoxy resin, on a Al alloy liner. At the final stage of fabrication, they were subjected to autofrettage, an overpressuring treatment to produce compressive residual stresses in metal liner. AE measurement results showed a strong Kaiser`s effect and high felicity ratios. In a virgin vessel, very few AE signals were detected below the autofrettage pressure. Vessels containing artificial defects showed distinct increase in AE signals at the level of test pressure. AE origin map were obtained by triangular-zone calculation. Discussions are directed, in particular, to the selection of threshold and to the applicability of AE measurement to the in-service inspection of FRP pressure vessel.

  9. Plating Repair Of Nickel-Alloy Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Ricklefs, Steve K.; Chagnon, Kevin M.

    1989-01-01

    Procedure for localized electrodeposition of nickel enables repair of small damaged nickel-based pressure vessels. Electrodeposition restores weakened areas of vessel wall to at least their former strength.

  10. Particle Imaging Velocimetry Technique Development for Laboratory Measurement of Fracture Flow Inside a Pressure Vessel Using Neutron Imaging

    SciTech Connect

    Polsky, Yarom; Bingham, Philip R; Bilheux, Hassina Z; Carmichael, Justin R

    2015-01-01

    This paper will describe recent progress made in developing neutron imaging based particle imaging velocimetry techniques for visualizing and quantifying flow structure through a high pressure flow cell with high temperature capability (up to 350 degrees C). This experimental capability has great potential for improving the understanding of flow through fractured systems in applications such as enhanced geothermal systems (EGS). For example, flow structure measurement can be used to develop and validate single phase flow models used for simulation, experimentally identify critical transition regions and their dependence on fracture features such as surface roughness, and study multiphase fluid behavior within fractured systems. The developed method involves the controlled injection of a high contrast fluid into a water flow stream to produce droplets that can be tracked using neutron radiography. A description of the experimental setup will be provided along with an overview of the algorithms used to automatically track droplets and relate them to the velocity gradient in the flow stream. Experimental results will be reported along with volume of fluids based simulation techniques used to model observed flow.

  11. Asymmetric Bulkheads for Cylindrical Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Ford, Donald B.

    2007-01-01

    Asymmetric bulkheads are proposed for the ends of vertically oriented cylindrical pressure vessels. These bulkheads, which would feature both convex and concave contours, would offer advantages over purely convex, purely concave, and flat bulkheads (see figure). Intended originally to be applied to large tanks that hold propellant liquids for launching spacecraft, the asymmetric-bulkhead concept may also be attractive for terrestrial pressure vessels for which there are requirements to maximize volumetric and mass efficiencies. A description of the relative advantages and disadvantages of prior symmetric bulkhead configurations is prerequisite to understanding the advantages of the proposed asymmetric configuration: In order to obtain adequate strength, flat bulkheads must be made thicker, relative to concave and convex bulkheads; the difference in thickness is such that, other things being equal, pressure vessels with flat bulkheads must be made heavier than ones with concave or convex bulkheads. Convex bulkhead designs increase overall tank lengths, thereby necessitating additional supporting structure for keeping tanks vertical. Concave bulkhead configurations increase tank lengths and detract from volumetric efficiency, even though they do not necessitate additional supporting structure. The shape of a bulkhead affects the proportion of residual fluid in a tank that is, the portion of fluid that unavoidably remains in the tank during outflow and hence cannot be used. In this regard, a flat bulkhead is disadvantageous in two respects: (1) It lacks a single low point for optimum placement of an outlet and (2) a vortex that forms at the outlet during outflow prevents a relatively large amount of fluid from leaving the tank. A concave bulkhead also lacks a single low point for optimum placement of an outlet. Like purely concave and purely convex bulkhead configurations, the proposed asymmetric bulkhead configurations would be more mass-efficient than is the flat

  12. Certification Testing and Demonstration of Insulated Pressure Vessels for Vehicular Hydrogen and Natural Gas Storage

    SciTech Connect

    Aceves, S M; Martinez-Frias, J; Espinosa-Loza, F; Schaffer, R; Clapper, W

    2002-05-22

    We are working on developing an alternative technology for storage of hydrogen or natural gas on light-duty vehicles. This technology has been titled insulated pressure vessels. Insulated pressure vessels are cryogenic-capable pressure vessels that can accept either liquid fuel or ambient-temperature compressed fuel. Insulated pressure vessels offer the advantages of cryogenic liquid fuel tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for fuel liquefaction and reduced evaporative losses). The work described in this paper is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen or LNG. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Future activities include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining insulated pressure vessel certification.

  13. Material Issues in Space Shuttle Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Jensen, Brian J.; Gates, Thomas S.; Morgan, Roger J.; Thesken, John C.; Phoenix, S. Leigh

    2006-01-01

    Composite Overwrapped Pressure Vessels (COPV) store gases used in four subsystems for NASA's Space Shuttle Fleet. While there are 24 COPV on each Orbiter ranging in size from 19-40", stress rupture failure of a pressurized Orbiter COPV on the ground or in flight is a catastrophic hazard and would likely lead to significant damage/loss of vehicle and/or life and is categorized as a Crit 1 failure. These vessels were manufactured during the late 1970's and into the early 1980's using Titanium liners, Kevlar 49 fiber, epoxy matrix resin, and polyurethane coating. The COPVs are pressurized periodically to 3-5ksi and therefore experience significant strain in the composite overwrap. Similar composite vessels were developed in a variety of DOE Programs (primarily at Lawrence Livermore National Laboratories or LLNL), as well as for NASA Space Shuttle Fleet Leader COPV program. The NASA Engineering Safety Center (NESC) formed an Independent Technical Assessment (ITA) team whose primary focus was to investigate whether or not enough composite life remained in the Shuttle COPV in order to provide a strategic rationale for continued COPV use aboard the Space Shuttle Fleet with the existing 25-year-old vessels. Several material science issues were examined and will be discussed in this presentation including morphological changes to Kevlar 49 fiber under stress, manufacturing changes in Kevlar 49 and their effect on morphology and tensile strength, epoxy resin strain, composite creep, degradation of polyurethane coatings, and Titanium yield characteristics.

  14. Structural considerations in design of lightweight glass-fiber composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1973-01-01

    The development of structurally efficient, metal-lined, glass-fiber composite pressure vessels. Both the current state-of-the-art and current problems are discussed along with fracture mechanics considerations for the metal liner. The design concepts used for metal-lined, glass-fiber, composite pressure vessels are described and the structural characteristics of the composite designs are compared with each other and with homogeneous metal pressure vessels. Specific design techniques and available design data are identified. Results of a current program to evaluate flaw growth and fracture characteristics of the metal liners are reviewed and the impact of these results on composite pressure vessel designs is discussed.

  15. Insulated Pressure Vessels for Vehicular Hydrogen Storage: Analysis and Performance Evaluation

    SciTech Connect

    Aceves, S M; Martinez-Frias, J; Garcia-Villazana, O; Espinosa-Loza, F

    2001-06-26

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures. Future activities also include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining certification for insulated pressure vessels.

  16. Performance and Certification Testing of Insulated Pressure Vessels for Vehicular Hydrogen Storage

    SciTech Connect

    Aceves, S M; Martinez-Frias, J; Garcia-Villazana, O; Espinosa-Loza, F

    2001-06-03

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH2) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures. Future activities also include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining certification for insulated pressure vessels.

  17. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs)

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.

  18. Composite Pressure Vessel Variability in Geometry and Filament Winding Model

    NASA Technical Reports Server (NTRS)

    Green, Steven J.; Greene, Nathanael J.

    2012-01-01

    Composite pressure vessels (CPVs) are used in a variety of applications ranging from carbon dioxide canisters for paintball guns to life support and pressurant storage on the International Space Station. With widespread use, it is important to be able to evaluate the effect of variability on structural performance. Data analysis was completed on CPVs to determine the amount of variation that occurs among the same type of CPV, and a filament winding routine was developed to facilitate study of the effect of manufacturing variation on structural response.

  19. Thermodynamics of insulated pressure vessels for vehicular hydrogen storage

    SciTech Connect

    Aceves, S.M.; Berry, G.D.

    1997-06-01

    This paper studies the application of insulated pressure vessels for hydrogen-fueled light-duty vehicles. Insulated pressure vessels can store liquid hydrogen (LH2); low-temperature (90 K) compressed hydrogen (CH2); or ambient temperature CH2. In this analysis, hydrogen temperatures, pressures and venting losses am calculated for insulated pressure vessels fueled with LH2 or with low-temperature CH2, and the results are compared to those obtained in low-pressure LH2 tanks. Hydrogen losses are calculated as a function of daily driving distance during normal operation; as a function of time during long periods of vehicle inactivity; and as a function of initial vessel temperature during fueling. The number of days before any venting losses occur is also calculated as a function of the daily driving distance. The results show that insulated pressure vessels have packaging characteristics comparable to those of conventional, low-pressure LH2 tanks (low weight and volume), with greatly improved dormancy and much lower boil-off. Insulated pressure vessels used in a 17 km/l (40 mpg) car do not lose any hydrogen when the car is driven at least 15 km/day in average. Since almost all cars are driven for longer distances, most cars would never lose any hydrogen. Losses during long periods of parking are also relatively small. Due to their high-pressure capacity, these vessels would retain about a third of their full charge even after a very long dormancy, so that the owner would not risk running out of fuel. If an insulated pressure vessel reaches ambient temperature, it can be cooled down very effectively by fueling it with LH2 with no losses during fueling. The vessel has good thermal performance even when thermally insulated with inexpensive microsphere insulation. In addition, the insulated pressure vessels greatly ease fuel availability and infrastructure requirements, since it would be compatible with both compressed and cryogenic hydrogen reveling.

  20. Dual shell pressure balanced reactor vessel. Final project report

    SciTech Connect

    Robertus, R.J.; Fassbender, A.G.

    1994-10-01

    The Department of Energy`s Office of Energy Research (OER) has previously provided support for the development of several chemical processes, including supercritical water oxidation, liquefaction, and aqueous hazardous waste destruction, where chemical and phase transformations are conducted at high pressure and temperature. These and many other commercial processes require a pressure vessel capable of operating in a corrosive environment where safety and economy are important requirements. Pacific Northwest Laboratory (PNL) engineers have recently developed and patented (U.S. patent 5,167,930 December 1, 1992) a concept for a novel Dual Shell Pressure Balanced Vessel (DSPBV) which could solve a number of these problems. The technology could be immediately useful in continuing commercialization of an R&D 100 award-winning technology, Sludge-to-oil Reactor System (STORS), originally developed through funding by OER. Innotek Corporation is a small business that would be one logical end-user of the DSPBV reactor technology. Innotek is working with several major U.S. engineering firms to evaluate the potential of this technology in the disposal of wastes from sewage treatment plants. PNL entered into a CRADA with Innotek to build a bench-scale demonstration reactor and test the system to advance the economic feasibility of a variety of high pressure chemical processes. Hydrothermal processing of corrosive substances on a large scale can now be made significantly safer and more economical through use of the DSPBV. Hydrothermal chemical reactions such as wet-air oxidation and supercritical water oxidation occur in a highly corrosive environment inside a pressure vessel. Average corrosion rates from 23 to 80 miles per year have been reported by Rice (1994) and Latanision (1993).

  1. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezian, Michael; Varanauski, Don; Yoder, Tommy; Woodworth, Warren

    2009-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPV has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. The more aggressive second phase, performed at 160 F was designed to determine if the test article will exceed the 95% confidence interval of the model. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  2. Evaluation of insulated pressure vessels for cryogenic hydrogen storage

    SciTech Connect

    Aceves, S M; Garcia-Villazana, O; Martinez-Frias, J

    1999-03-01

    This paper presents an analytical and experimental evaluation of the applicability of insulated pressure vessels for hydrogen-fueled light-duty vehicles. Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH?) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The purpose of this work is to verify that commercially available aluminum-lined, fiber- wrapped vessels can be used for cryogenic hydrogen storage. The paper reports on previous and ongoing tests and analyses that have the purpose of improving the system design and assure its safety.

  3. Liquid-Level Monitor for Pressurized Vessels

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Mall, G. H.

    1986-01-01

    Technique for monitoring water levels in pressurized stainless-steel cylinders, based on differences in gamma-ray attenuation coefficients in water and air, developed. Full-scale laboratory prototype system constructed to test technique. Technique usable with liquids other than water, since linear attenuation coefficients for intermediate-energy gamma rays in air considerably lower than in liquids. Also adaptable for continuous monitoring of liquid levels in resevoir systems and in underground storage tanks.

  4. Development of Critical Profilometers to Meet Current and Future NASA Composite Overwrapped Pressure Vessel (COPV) Inspection Needs

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Nichols, Charles

    2012-01-01

    This project is part of a multi-center effort to develop and validate critical NDE techniques which can be implemented into current and future NASA spacecraft COPV manufacturing processes. After decades of COPV development, manufacturing variance is still high and has necessitated higher safety factors and additional mass to be flown on spacecraft (reducing overall performance). Additionally, the NASA Engineering and Safety Center (NESC) indicated that nondestructive evaluation (NDE) was not adequately implemented during Shuttle and International Space Station (ISS) COPV manufacturing and provisions were not made for on-going structural integrity and health checks during the various spacecraft programs. This project helps to provide additional data needed to help address these issues. This project seeks to develop and install internal and external laser profilometers at COPV manufacturing facilities to provide data needed to improve COPV quality and consistency. This project also investigates other scanning techniques that will enhance the system to more completely meet manufacturing needs, thus transforming the profilometer into what has been termed the "Universal Manufacturing COPV Scanner".

  5. Neutron shielding panels for reactor pressure vessels

    DOEpatents

    Singleton, Norman R.

    2011-11-22

    In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

  6. Impact damage and burst of filament-wound CFRP composite pressure vessel

    SciTech Connect

    Matemilola, S.A.; Stronge, W.J.

    1996-12-31

    Quasi-static and impact tests were conducted on filament-wound carbon fiber composite pressure vessels to study factors that affect burst pressure. Observed damage include fiber microbuckling, matrix cracking, and delamination. For vessels that were not pressurized during test, both the matrix cracking and fiber breakage were restricted to the outer layer, whereas in the case of an internally pressurized vessel struck by a wedge nose shaped impactor these cracks extended into the second layer. Fiber microbuckling of the outer surface layer near the impact point was the main factor that degraded the burst pressure of the vessels. This type of damage was visually detectable on the surface. For an unpressurized vessel it appeared as a pair of cracks radiating from the periphery of contact region. On the other hand, for a pressurized vessel circumferential microbuckling developed within the contact region. The burst pressure for a damaged vessel decreased as the ratio of axial length of the buckled fibers l, to vessel thickness h, increased, up to a ratio {ell}/h {approx} 3, beyond which the burst pressure became constant. Strain measurements near the region of loading showed that fiber microbuckling occurred, the failure strain value at a strain rate of 104 s{sup {minus}1} was about six times the microbuckling strain for quasi-static loading.

  7. Common/Dependent-Pressure-Vessel Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul J.

    2003-01-01

    The term "common/dependent pressure vessel" (C/DPV) denotes a proposed alternative configuration for a nickelhydrogen battery. The C/DPV configuration is so named because it is a hybrid of two prior configurations called "common pressure vessel" (CPV) and "dependent pressure vessel" (DPV). The C/DPV configuration has been proposed as a basis for designing highly reliable, long-life Ni/H2-batteries and cells for anticipated special applications in which it is expected that small charge capacities will suffice and sizes and weights must be minimized.

  8. On the optimal pretensioning of cylindrical and spherical pressure vessels

    SciTech Connect

    Kalamkarov, A.L.; Drozdov, A.D.

    1995-11-01

    Filament winding of pressure vessels and pipes is always realized with some pretensioning, and some external loads may be applied. It is important to determine such an optimal preload regime that ensures the maximum load-carrying capacity of the vessel subject to internal pressure. In the present study, the optimal preload distribution is analyzed in the filament winding fabrication of the cylindrical or spherical pressure vessels that are treated as growing elastic solids subjected to aging. In the case of cylindrical vessels, the dependence of the optimal preload intensity versus the polar radius is obtained for both nonaging and aging material of the fibers. In the case of spherical pressure vessels, the optimal regime of internal pressure applied during the winding process is obtained. The optimal loading of a spherical vessel at both infinitesimal and finite strains is analyzed. The new solutions obtained and the recommendations formulated are of a special practical importance for the optimal design and fabrication of the composite pressure vessels and pipes.

  9. Quantification of Processing Effects on Filament Wound Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Aiello, Robert A.; Chamis, Christos C.

    1999-01-01

    A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the C C! end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be sued to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament would pressure vessels of all types of shells-of-revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.

  10. Quantification of Processing Effects on Filament Wound Pressure Vessels. Revision

    NASA Technical Reports Server (NTRS)

    Aiello, Robert A.; Chamis, Christos C.

    2002-01-01

    A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be used to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament wound pressure vessels of all types of shells-of -revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.

  11. Continued Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Wincheski, Russell; Jablonski, David; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are used in essentially all NASA spacecraft, launch. vehicles and payloads to contain high-pressure fluids for propulsion, life support systems and science experiments. Failure of any COPV either in flight or during ground processing would result in catastrophic damage to the spacecraft or payload, and could lead to loss of life. Therefore, NASA continues to investigate new methods to non-destructively inspect (NDE) COPVs for structural anomalies and to provide a means for in-situ structural health monitoring (SHM) during operational service. Partnering with JENTEK Sensors, engineers at NASA, Kennedy Space Center have successfully conducted a proof-of-concept study to develop Meandering Winding Magnetometer (MWM) eddy current sensors designed to make direct measurements of the stresses of the internal layers of a carbon fiber composite wrapped COPV. During this study three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed good correlation with actual surface strain gage measurements. MWM-Array technology for scanning COPVs can reliably be used to image and detect mechanical damage. To validate this conclusion, several COPVs were scanned to obtain a baseline, and then each COPV was impacted at varying energy levels and then rescanned. The baseline subtracted images were used to demonstrate damage detection. These scans were performed with two different MWM-Arrays. with different geometries for near-surface and deeper penetration imaging at multiple frequencies and in multiple orientations of the linear MWM drive. This presentation will include a review of micromechanical models that relate measured sensor responses to composite material constituent properties, validated by the proof of concept study, as the basis for SHM and NDE data analysis as well as potential improvements including

  12. Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage

    DOEpatents

    Aceves, Salvador; Berry, Gene; Weisberg, Andrew H.

    2004-03-23

    A lightweight, cryogenic-compatible pressure vessel for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The pressure vessel has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space.

  13. Fatigue performance of metal-lined graphite/epoxy pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.; Chiao, T. T.; Patterson, R. G.

    1975-01-01

    Using an ultrahigh-strength graphite fiber, a program was started to develop a thin metal-lined fiber/epoxy pressure vessel that would have a fatigue life of over 1000 cycles. First, the performance factor of the fiber/epoxy composite was found to be 351 kN m/kg from the average of 18 rubber-lined pressure vessels. Then, both aluminum- and titanium-lined vessels were filament wound with the graphite fiber in an epoxy matrix. Several of these metal-lined vessels were subjected to hydraulic fatigue testing to about 50% of their expected burst pressures. The average fatigue life of the aluminum-lined vessels was 462 cycles; the average for the titanium-lined vessels was 2190 cycles.

  14. Progressive Fracture and Damage Tolerance of Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Gotsis, Pascal K.; Minnetyan, Levon

    1997-01-01

    Structural performance (integrity, durability and damage tolerance) of fiber reinforced composite pressure vessels, designed for pressured shelters for planetary exploration, is investigated via computational simulation. An integrated computer code is utilized for the simulation of damage initiation, growth, and propagation under pressure. Aramid fibers are considered in a rubbery polymer matrix for the composite system. Effects of fiber orientation and fabrication defect/accidental damages are investigated with regard to the safety and durability of the shelter. Results show the viability of fiber reinforced pressure vessels as damage tolerant shelters for planetary colonization.

  15. Low-Cost, Lightweight Pressure Vessel Proof Test

    NASA Astrophysics Data System (ADS)

    Chanez, Eric

    This experiment seeks to determine the burst strength of the low-cost, lightweight pressure vessel fabricated by the Suborbital Center of Excellence (SCE). Moreover, the test explores the effects of relatively large gage pressures on material strain for ‘pumpkin-shaped' pressure vessels. The SCE team used pressure transducers and analog gauges to measure the gage pressure while a video camera assembly recorded several gores in the shell for strain analysis. The team loaded the vessel in small intervals of pressure until the structure failed. Upon test completion, the pressure readings and video recordings were analyzed to determine the burst strength and material strain in the shell. The analysis yielded a burst pressure of 13.5 psi while the strain analysis reported in the shell. While the results of this proof test are encouraging, the structure's factor of safety must be increased for actual balloon flights. Furthermore, the pressure vessel prototype must be subjected to reliability tests to show the design can sustain gage pressures for the length of a balloon flight.

  16. Pressurized thermal shock probabilistic fracture mechanics sensitivity analysis for Yankee Rowe reactor pressure vessel

    SciTech Connect

    Dickson, T.L.; Cheverton, R.D.; Bryson, J.W.; Bass, B.R.; Shum, D.K.M.; Keeney, J.A.

    1993-08-01

    The Nuclear Regulatory Commission (NRC) requested Oak Ridge National Laboratory (ORNL) to perform a pressurized-thermal-shock (PTS) probabilistic fracture mechanics (PFM) sensitivity analysis for the Yankee Rowe reactor pressure vessel, for the fluences corresponding to the end of operating cycle 22, using a specific small-break-loss- of-coolant transient as the loading condition. Regions of the vessel with distinguishing features were to be treated individually -- upper axial weld, lower axial weld, circumferential weld, upper plate spot welds, upper plate regions between the spot welds, lower plate spot welds, and the lower plate regions between the spot welds. The fracture analysis methods used in the analysis of through-clad surface flaws were those contained in the established OCA-P computer code, which was developed during the Integrated Pressurized Thermal Shock (IPTS) Program. The NRC request specified that the OCA-P code be enhanced for this study to also calculate the conditional probabilities of failure for subclad flaws and embedded flaws. The results of this sensitivity analysis provide the NRC with (1) data that could be used to assess the relative influence of a number of key input parameters in the Yankee Rowe PTS analysis and (2) data that can be used for readily determining the probability of vessel failure once a more accurate indication of vessel embrittlement becomes available. This report is designated as HSST report No. 117.

  17. Time-dependent response of filamentary composite spherical pressure vessels

    NASA Technical Reports Server (NTRS)

    Dozier, J. D.

    1983-01-01

    A filamentary composite spherical pressure vessel is modeled as a pseudoisotropic (or transversely isotropic) composite shell, with the effects of the liner and fill tubes omitted. Equations of elasticity, macromechanical and micromechanical formulations, and laminate properties are derived for the application of an internally pressured spherical composite vessel. Viscoelastic properties for the composite matrix are used to characterize time-dependent behavior. Using the maximum strain theory of failure, burst pressure and critical strain equations are formulated, solved in the Laplace domain with an associated elastic solution, and inverted back into the time domain using the method of collocation. Viscoelastic properties of HBFR-55 resin are experimentally determined and a Kevlar/HBFR-55 system is evaluated with a FORTRAN program. The computed reduction in burst pressure with respect to time indicates that the analysis employed may be used to predict the time-dependent response of a filamentary composite spherical pressure vessel.

  18. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    SciTech Connect

    Wang, Jy-An John

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  19. Evaluation of Progressive Failure Analysis and Modeling of Impact Damage in Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Sanchez, Christopher M.

    2011-01-01

    NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.

  20. Validation and Verification of Composite Pressure Vessel Design

    NASA Technical Reports Server (NTRS)

    Kreger, Stephen T.; Ortyl, Nicholas; Grant, Joseph; Taylor, F. Tad

    2006-01-01

    Ten composite pressure vessels were instrumented with fiber Bragg grating sensors and pressure tested Through burst. This paper and presentation will discuss the testing methodology, the test results, compare the testing results to the analytical model, and also compare the fiber Bragg grating sensor data with data obtained against that obtained from foil strain gages.

  1. Optimization of multilayered composite pressure vessels using exact elasticity solution

    SciTech Connect

    Adali, S.; Verijenko, V.E.; Tabakov, P.Y.; Walker, M.

    1995-11-01

    An approach for the optimal design of thick laminated cylindrical pressure vessels is given. The maximum burst pressure is computed using an exact elasticity solution and subject to the Tsai-Wu failure criterion. The design method is based on an accurate 3-D stress analysis. Exact elasticity solutions are obtained using the stress function approach where the radial, circumferential and shear stresses are determined taking the closed ends of the cylindrical shell into account. Design optimization of multilayered composite pressure vessels are based on the use of robust multidimensional methods which give fast convergence. Two methods are used to determine the optimum ply angles, namely, iterative and gradient methods. Numerical results are given for optimum fiber orientation of each layer for thick and thin-walled multilayered pressure vessels.

  2. `Sausage string' patterns in blood vessels at high blood pressures

    NASA Astrophysics Data System (ADS)

    Alstrøm, Preben; Eguíluz, Victor M.; Gustafsson, Finn; Holstein-Rathlou, Niels-Henrik

    A new Rayleigh-type instability is proposed to explain the `sausage-string' pattern of alternating constrictions and dialtations formed in blood vessels at high blood pressure conditions. Our theory involves the nonlinear stress-strain characteristics of the vessel wall, and provides predictions for the conditions under which the normal cylindrical geometry of a blood vessel becomes unstable. The theory explains key features observed experimentally, e.g. the limited occurrence of the sausage-string pattern to small arteries and large arterioles, and only in those with small wall-to-lumen ratios.

  3. Technical Appendix to Cryogenic Pressure Vessels

    SciTech Connect

    Mulholland, G.T.; Rucinski, R.A; /Fermilab

    1990-02-22

    The 20,000 gls. Liquid Argon dewar stores up to 15,000 gls. of high purity (<1.0 ppm O{sub 2}, 0.999995) LAr for use in the Liquid Argon calorimeters of E740, the D0 collider detector, at elevation 707-feet. The dewar provides for the total detector volume of 11,000 gls and a 4,000 gls. storage inventory. The large gas volume ({ge}5,000 gls.) serves operational needs and guards against overfill concerns. The LAr dewar functions in two modes: (1) low pressure (16 psi relief) storage, and liquid and gas transfer operations to and from the low pressure (13 psi relief) detector cryostats, and (2) high pressure (65 psi relief) liquid transfer operations to and from a delivery trailer at elevation 743-feet. The storage function is intended to be long term and nonventing. The dewar is equipped with a 40 kW LN{sub 2} condenser that operates to maintain the pressure constant in the storage mode. This service exactly parallels the NeH{sub 2} and D{sub 2} storage dewar services provided at the 15-feet bubble chamber for its operation.

  4. 46 CFR 54.01-17 - Pressure vessel for human occupancy (PVHO).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Pressure vessel for human occupancy (PVHO). 54.01-17... PRESSURE VESSELS General Requirements § 54.01-17 Pressure vessel for human occupancy (PVHO). Pressure vessels for human occupancy (PVHO's) must meet the requirements of subpart B (Commercial Diving...

  5. 46 CFR 54.01-17 - Pressure vessel for human occupancy (PVHO).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pressure vessel for human occupancy (PVHO). 54.01-17... PRESSURE VESSELS General Requirements § 54.01-17 Pressure vessel for human occupancy (PVHO). Pressure vessels for human occupancy (PVHO's) must meet the requirements of subpart B (Commercial Diving...

  6. 46 CFR 54.01-17 - Pressure vessel for human occupancy (PVHO).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Pressure vessel for human occupancy (PVHO). 54.01-17... PRESSURE VESSELS General Requirements § 54.01-17 Pressure vessel for human occupancy (PVHO). Pressure vessels for human occupancy (PVHO's) must meet the requirements of subpart B (Commercial Diving...

  7. 46 CFR 54.01-17 - Pressure vessel for human occupancy (PVHO).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Pressure vessel for human occupancy (PVHO). 54.01-17... PRESSURE VESSELS General Requirements § 54.01-17 Pressure vessel for human occupancy (PVHO). Pressure vessels for human occupancy (PVHO's) must meet the requirements of subpart B (Commercial Diving...

  8. 46 CFR 54.01-17 - Pressure vessel for human occupancy (PVHO).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Pressure vessel for human occupancy (PVHO). 54.01-17... PRESSURE VESSELS General Requirements § 54.01-17 Pressure vessel for human occupancy (PVHO). Pressure vessels for human occupancy (PVHO's) must meet the requirements of subpart B (Commercial Diving...

  9. Techniques for Embedding Instrumentation in Pressure Vessel Test Articles

    NASA Technical Reports Server (NTRS)

    Cornelius, Michael

    2006-01-01

    Many interesting structural and thermal events occur in materials that are housed within a surrounding pressure vessel. In order to measure the environment during these events and explore their causes instrumentation must be installed on or in the material. Transducers can be selected that are small enough to be embedded within the test material but these instruments must interface with an external system in order to apply excitation voltages and output the desired data. The methods for installing the instrumentation and creating an interface are complicated when the material is located in a case or housing containing high pressures and hot gases. Installation techniques for overcoming some of these difficulties were developed while testing a series of small-scale solid propellant and hybrid rocket motors at Marshall Space Flight Center. These techniques have potential applications in other test articles where data are acquired from materials that require containment due to the severe environment encountered during the test process. This severe environment could include high pressure, hot gases, or ionized atmospheres. The development of these techniques, problems encountered, and the lessons learned from the ongoing testing process are summarized.

  10. Beryllium pressure vessels for creep tests in magnetic fusion energy

    SciTech Connect

    Neef, W.S.

    1990-07-20

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

  11. Predicting Structural Behavior of Filament Wound Composite Pressure Vessel Using Three Dimensional Shell Analysis

    NASA Astrophysics Data System (ADS)

    Madhavi, M.; Venkat, R.

    2014-01-01

    Fiber reinforced polymer composite materials with their higher specific strength, moduli and tailorability characteristics will result in reduction of weight of the structure. The composite pressure vessels with integrated end domes develop hoop stresses that are twice longitudinal stresses and when isotropic materials like metals are used for development of the hardware and the material is not fully utilized in the longitudinal/meridional direction resulting in over weight components. The determination of a proper winding angles and thickness is very important to decrease manufacturing difficulties and to increase structural efficiency. In the present study a methodology is developed to understand structural characteristics of filament wound pressure vessels with integrated end domes. Progressive ply wise failure analysis of composite pressure vessel with geodesic end domes is carried out to determine matrix crack failure, burst pressure values at various positions of the shell. A three dimensional finite element analysis is computed to predict the deformations and stresses in the composite pressure vessel. The proposed method could save the time to design filament wound structures, to check whether the ply design is safe for the given input conditions and also can be adapted to non-geodesic structures. The results can be utilized to understand structural characteristics of filament wound pressure vessels with integrated end domes. This approach can be adopted for various applications like solid rocket motor casings, automobile fuel storage tanks and chemical storage tanks. Based on the predictions a composite pressure vessel is designed and developed. Hydraulic test is performed on the composite pressure vessel till the burst pressure.

  12. Structural Health Monitoring of Composite Wound Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Kaul, Raj; Taylor, Scott; Jackson, Kurt; Myers, George; Sharma, A.

    2002-01-01

    The increasing use of advanced composite materials in the wide range of applications including Space Structures is a great impetus to the development of smart materials. Incorporating these FBG sensors for monitoring the integrity of structures during their life cycle will provide valuable information about viability of the usage of such material. The use of these sensors by surface bonding or embedding in this composite will measure internal strain and temperature, and hence the integrity of the assembled engineering structures. This paper focuses on such a structure, called a composite wound pressure vessel. This vessel was fabricated from the composite material: TRH50 (a Mitsubishi carbon fiber with a 710-ksi tensile strength and a 37 Msi modulus) impregnated with an epoxy resin from NEWPORT composites (WDE-3D-1). This epoxy resin in water dispersed system without any solvents and it cures in the 240-310 degrees F range. This is a toughened resin system specifically designed for pressure applications. These materials are a natural fit for fiber sensors since the polyimide outer buffer coating of fiber can be integrated into the polymer matrix of the composite material with negligible residual stress. The tank was wound with two helical patterns and 4 hoop wraps. The order of winding is: two hoops, two helical and two hoops. The wall thickness of the composite should be about 80 mil or less. The tank should burst near 3,000 psi or less. We can measure the actual wall thickness by ultrasonic or we can burst the tank and measure the pieces. Figure 1 shows a cylinder fabricated out of carbon-epoxy composite material. The strain in different directions is measured with a surface bonded fiber Bragg gratings and with embedded fiber Bragg gratings as the cylinder is pressurized to burst pressures. Figure 2 shows the strain as a function of pressure of carbon-epoxy cylinder as it is pressurized with water. Strain is measured in different directions by multiple gratings

  13. Filament-reinforced metal composite pressure vessel evaluation and performance demonstration

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1976-01-01

    Two different Kevlar-49 filament-reinforced metal sphere designs were developed, and six vessels of each type were fabricated and subjected to fatigue cycling, sustained loading, and hydrostatic burst. The 61 cm (24 inch) diameter Kevlar-49/cryoformed 301 stainless steel pressure vessels demonstrated the required pressure cycle capability, burst factor of safety, and a maximum pressure times volume divided by weight (pV/W) performance of 210 J/g (834 000 in-lb/lbm) at burst; this represented a 25 to 30% weight saving over the lightest weight comparable, 6A1-4V Ti, homogeneous pressure vessel. Both the Kevlar/stainless steel design and the 97 cm (38 inch) diameter Kevlar-49/2219-T62 aluminum sphere design demonstrated nonfragmentation and controlled failure mode features when pressure cycled to failure at operating pressure. When failure occurred during pressure cycling, the mode was localized leakage and not catastrophic. Kevlar/stainless steel vessels utilized a unique conical boss design, and Kevlar/aluminum vessels incorporated a tie-rod to carry port loads; both styles of polar fittings performed as designed during operational testing of the vessels.

  14. Reversible high-pressure carbon nanotube vessel

    SciTech Connect

    Ma, Ming D.; Zheng Quanshui; Liu, Jefferson Z.; Wang Lifeng; Shen Luming; Xie Lin; Zhu Jing; Wei Fei; Gong Qianming; Liang Ji

    2010-06-15

    Applying a full pressure loop, i.e., loading and unloading, on a nanocrystal with in situ observation remains a challenge to experimentalists up until now. Using a multiwalled carbon nanotube, we realize the pressure loop acting on a Fe{sub 3}C nanocrystal (with peak value 20 GPa) by electron-beam irradiation with in situ observations inside transmission electron microscopy at 500 deg. C/ambient temperature. Using density-functional theory calculations, we attribute the unloading process to the formation of one dangling-bond single vacancies under the electron-beam irradiation at room temperature. A theoretical model is presented to understand the process and the results agree well with the experimental measurements.

  15. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    SciTech Connect

    Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng; Spencer, Benjamin Whiting

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  16. SMART composite high pressure vessels with integrated optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Blazejewski, Wojciech; Czulak, Andrzej; Gasior, Pawel; Kaleta, Jerzy; Mech, Rafal

    2010-04-01

    In this paper application of integrated Optical Fiber Sensors for strain state monitoring of composite high pressure vessels is presented. The composite tanks find broad application in areas such as: automotive industry, aeronautics, rescue services, etc. In automotive application they are mainly used for gaseous fuels storage (like CNG or compressed Hydrogen). In comparison with standard steel vessels, composite ones have many advantages (i.e. high mechanical strength, significant weight reduction, etc). In the present work a novel technique of vessel manufacturing, according to this construction, was applied. It is called braiding technique, and can be used as an alternative to the winding method. During braiding process, between GFRC layers, two types of optical fiber sensors were installed: point sensors in the form of FBGs as well as interferometric sensors with long measuring arms (SOFO®). Integrated optical fiber sensors create the nervous system of the pressure vessel and are used for its structural health monitoring. OFS register deformation areas and detect construction damages in their early stage (ensure a high safety level for users). Applied sensor system also ensured a possibility of strain state monitoring even during the vessel manufacturing process. However the main application of OFS based monitoring system is to detect defects in the composite structure. An idea of such a SMART vessel with integrated sensor system as well as an algorithm of defect detection was presented.

  17. Simulating the Mineral Scale by High Pressure Thermal Vessel

    NASA Astrophysics Data System (ADS)

    Huang, Y. H.; Liu, H. L.; Chen, H. F.; Song, S. R.

    2014-12-01

    The generating capacity of Chingshui geothermal power plant decreased rapidly after it had operated three years. Chinese Petroleum Corporation (CPC) attributed the main reason was the depletion of reservoir. One reason was that the reservoir did not be recharged. And the other was the mineral scale in reservoir and pipes which caused flow rate decreased. There are abundant geothermal energy in Taiwan. But in Chingshui, the spring has amount content of carbonate. Most scaling are calcium carbonate and silica. These two materials have different solubility in various pH and physical conditions. Because the pressure reduced in the process of upwelling, the hot spring from the reservoir deposited calcium carbonate immediately by large carbon dioxide escape. This result caused the diameter of pipeline reduced. Besides, as the temperature decreased, the silica would scaling in the part of heat exchanger. To avoid the failure experience in Chingshui , how to prevent the mineral scaling is the key point that we need to solve. Our study will use hydrothermal experiments by High Pressure Thermal Vessel to simulate the process of spring water upwelling from reservoir to surface, to understand whether calcium carbonate and silica scaling or not in different temperature and pressure. This study choose the Hongchailin well as objects to simulate, and the target layers of drilling well were set as Szeleng sandstone and Lushan slate. We used pure water and saturated water pressure in our experiments. There were four vessels in High thermal vessel. The first vessel was used to simulate the condition of reservoir. The second and third vessel were simulated the conditions in the well when spring water upwelling to the surface. And the last vessel was simulated the conditions on surface surroundings. We hope to get the temperature and pressure when the scaling occurred, and verified with the computing result, thus we can inhibit the scaling.

  18. Multipurpose Pressure Vessel Scanner and Photon Doppler Velocimetry

    NASA Technical Reports Server (NTRS)

    Ellis, Tayera

    2015-01-01

    Critical flight hardware typically undergoes a series of nondestructive evaluation methods to screen for defects before it is integrated into the flight system. Conventionally, pressure vessels have been inspected for flaws using a technique known as fluorescent dye penetrant, which is biased to inspector interpretation. An alternate method known as eddy current is automated and can detect small cracks better than dye penetrant. A new multipurpose pressure vessel scanner has been developed to perform internal and external eddy current scanning, laser profilometry, and thickness mapping on pressure vessels. Before this system can be implemented throughout industry, a probability of detection (POD) study needs to be performed to validate the system's eddy current crack/flaw capabilities. The POD sample set will consist of 6 flight-like metal pressure vessel liners with defects of known size. Preparation for the POD includes sample set fabrication, system operation, procedure development, and eddy current settings optimization. For this, collaborating with subject matter experts was required. This technical paper details the preparation activities leading up to the POD study currently scheduled for winter 2015/2016. Once validated, this system will be a proven innovation for increasing the safety and reliability of necessary flight hardware. Additionally, testing of frangible joint requires Photon Doppler Velocimetry (PDV) and Digital Image Correlation instrumentation. There is often noise associated with PDV data, which necessitates a frequency modulation (FM) signal-to-noise pre-test. Generally, FM radio works by varying the carrier frequency and mixing it with a fixed frequency source, creating a beat frequency which is represented by audio frequency that can be heard between about 20 to 20,000 Hz. Similarly, PDV reflects a shifted frequency (a phenomenon known as the Doppler Effect) from a moving source and mixes it with a fixed source frequency, which results in

  19. Multipurpose Pressure Vessel Scanner and Photon Doppler Velocimetry

    NASA Technical Reports Server (NTRS)

    Ellis, Tayera

    2015-01-01

    Critical flight hardware typically undergoes a series of nondestructive evaluation methods to screen for defects before it is integrated into the flight system. Conventionally, pressure vessels have been inspected for flaws using a technique known as fluorescent dye penetrant, which is biased to inspector interpretation. An alternate method known as eddy current is automated and can detect small cracks better than dye penetrant. A new multipurpose pressure vessel scanner has been developed to perform internal and external eddy current scanning, laser profilometry, and thickness mapping on pressure vessels. Before this system can be implemented throughout industry, a probability of detection (POD) study needs to be performed to validate the system’s eddy current crack/flaw capabilities. The POD sample set will consist of 6 flight-like metal pressure vessel liners with defects of known size. Preparation for the POD includes sample set fabrication, system operation, procedure development, and eddy current settings optimization. For this, collaborating with subject matter experts was required. This technical paper details the preparation activities leading up to the POD study currently scheduled for winter 2015/2016. Once validated, this system will be a proven innovation for increasing the safety and reliability of necessary flight hardware.Additionally, testing of frangible joint requires Photon Doppler Velocimetry (PDV) and Digital Image Correlation instrumentation. There is often noise associated with PDV data, which necessitates a frequency modulation (FM) signal-to-noise pre-test. Generally, FM radio works by varying the carrier frequency and mixing it with a fixed frequency source, creating a beat frequency which is represented by audio frequency that can be heard between about 20 to 20,000 Hz. Similarly, PDV reflects a shifted frequency (a phenomenon known as the Doppler Effect) from a moving source and mixes it with a fixed source frequency, which results in

  20. Compressibility measurements of gases using externally heated pressure vessels.

    NASA Technical Reports Server (NTRS)

    Presnall, D. C.

    1971-01-01

    Most of the data collected under conditions of high temperature and pressure have been determined using a thick-walled bomb of carefully measured and fixed volume which is externally heated by an electric furnace or a thermostatically controlled bath. There are numerous variations on the basic method depending on the pressure-temperature range of interest, and the particular gas or gas mixture being studied. The construction and calibration of the apparatus is discussed, giving attention to the pressure vessel, the volume of the bomb, the measurement of pressure, the control and measurement of temperature, and the measurement of the amount and composition of gas in the bomb.

  1. Threaded insert for compact cryogenic-capable pressure vessels

    DOEpatents

    Espinosa-Loza, Francisco; Ross, Timothy O.; Switzer, Vernon A.; Aceves, Salvador M.; Killingsworth, Nicholas J.; Ledesma-Orozco, Elias

    2015-06-16

    An insert for a cryogenic capable pressure vessel for storage of hydrogen or other cryogenic gases at high pressure. The insert provides the interface between a tank and internal and external components of the tank system. The insert can be used with tanks with any or all combinations of cryogenic, high pressure, and highly diffusive fluids. The insert can be threaded into the neck of a tank with an inner liner. The threads withstand the majority of the stress when the fluid inside the tank that is under pressure.

  2. Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Espinosa-Loza, Francisco Javier

    Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also

  3. Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) Nickel-Hydrogen Battery Performance Under LEO Cycling Conditions

    NASA Technical Reports Server (NTRS)

    Miller, Thomas B.; Lewis, Harlan L.

    2004-01-01

    LEO life cycle testing of Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) nickel-hydrogen cell packs have been sponsored by the NASA Aerospace Flight Battery Program. The cell packs have cycled under both 35% and 60% depth-of- discharge and temperature conditions of -5 C and +lO C. The packs have been on test since as early as 1992 and have generated a substantial database. This report will provide insight into performance trends as a function of the specific cell configuration and manufacturer for eight separate nickel-hydrogen battery cell packs.

  4. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    NASA Technical Reports Server (NTRS)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  5. ECN Pressure and Vacuum Vessel Engineering Notes

    SciTech Connect

    Wu, J.; Dixon, K.; /Fermilab

    1991-10-17

    The following calculations arranged in a spreadsheet format derive the flowrate from both ECN relieving devices. In this case it is assumed that the ECN is full of liquid argon and it is in its steady state cooling mode. One of the other cryostats is assumed to be cooling down while the other is being filled with LAr. Other assumptions in this analysis include: (1) Pressure in the cryostat is 19.75 psig (1.16X(MAWP+FV)). (2) Gaseous Nitrogen is concurrently flowing in the vent piping at a rate of 3477 lb/hr. This is derived from 0.3 gpm required for ECN steady state conditions, 4 gpm required for cooldown (max.), and 5 gpm required for filling with LAr (max.). (3) Mixture mass flows are at their maximum at the junction of the relief device outlets on the ECN (GN2 mass flow actually increases gradually at junctions toward the ECS and there is a short segment of piping between the GAr outlets and the condenser exhaust). (4) The temperature in the vent piping is negligible since a large majority of this piping is insulated. (5) All flows are treated as incompressible (max. Mach No. < 0.3). (6) The temperature of the GN2 prior to mixing in the vent manifold is 84 K, saturated property at 2 atm. (7) Flow equations apply to weight-averaged mixture densities and viscosities.

  6. Guide for inservice inspection of ground-based pressure vessels and systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This guide includes recommendations for inservice inspection and recertification of ground based, unfired pressure vessels and all pressurized systems including those served by fired pressure vessels hereinafter referred to as pressure vessels, systems and components of systems. It covers the vast array of pound based industrial and special purpose pressurized components and systems used at NASA field installations for research and development and those utility systems and components that require more than routine maintenance to insure continued structural integrity for their useful life. Through surveillance and correction of inservice deterioration, NASA will maintain a safe working environment for their own and contractor personnel, safety for the public sector and protection against loss of capital investment.

  7. Design Guide for glass fiber reinforced metal pressure vessel

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1973-01-01

    Design Guide has been prepared for pressure vessel engineers concerned with specific glass fiber reinforced metal tank design or general tank tradeoff study. Design philosophy, general equations, and curves are provided for safelife design of tanks operating under anticipated space shuttle service conditions.

  8. 46 CFR 196.30-1 - Repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 196.30-1... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the Chief...

  9. 46 CFR 97.30-1 - Repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 97.30-1 Section... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief...

  10. 46 CFR 196.30-1 - Repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Repairs to boilers and pressure vessels. 196.30-1... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the Chief...

  11. 46 CFR 97.30-1 - Repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Repairs to boilers and pressure vessels. 97.30-1 Section... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief...

  12. 46 CFR 97.30-1 - Repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Repairs to boilers and pressure vessels. 97.30-1 Section... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief...

  13. 46 CFR 196.30-1 - Repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Repairs to boilers and pressure vessels. 196.30-1... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the Chief...

  14. 46 CFR 97.30-1 - Repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Repairs to boilers and pressure vessels. 97.30-1 Section... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief...

  15. 46 CFR 196.30-1 - Repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Repairs to boilers and pressure vessels. 196.30-1... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the Chief...

  16. 46 CFR 196.30-1 - Repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Repairs to boilers and pressure vessels. 196.30-1... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the Chief...

  17. 46 CFR 97.30-1 - Repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Repairs to boilers and pressure vessels. 97.30-1 Section... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief...

  18. Reliability Considerations for Composite Overwrapped Pressure Vessels on Spacecraft

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Gyekenyesi, John P.; Grimes-Ledesma, Lorie; Phoenix, S. L.

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are used to store gases under high pressure onboard spacecraft. These are used for a variety of purposes such as propelling liquid fuel etc, Kevlar, glass, Carbon and other more recent fibers have all been in use to overwrap the vessels. COPVs usually have a thin metallic liner with the primary purpose of containing the gases and prevent any leakage. The liner is overwrapped with filament wound composite such as Kevlar, Carbon or Glass fiber. Although the liner is required to perform in the leak before break mode making the failure a relatively benign mode, the overwrap can fail catastrophically under sustained load due to stress rupture. It is this failure mode that is of major concern as the stored energy of such vessels is often great enough ta cause loss of crew and vehicle. The present paper addresses some of the reliability concerns associated specifically with Kevlar Composite Overwrapped Pressure Vessels. The primary focus of the paper is on how reliability of COPV's are established for the purpose of deciding in general their flight worthiness and continued use. Analytical models based on existing design data will be presented showing how to achieve the required reliability metric to the end of a specific period of performance. Uncertainties in the design parameters and how they affect reliability and confidence intervals will be addressed as well. Some trade studies showing how reliability changes with time during a program period will be presented.

  19. Lightweight pressure vessels and unitized regenerative fuel cells

    SciTech Connect

    Mitlitsky, F.; Myers, B.; Weisberg, A.H.

    1996-12-31

    High specific energy (>400 Wh/kg) energy storage systems have been designed using lightweight pressure vessels in conjunction with unitized regenerative fuel cells (URFCs). URFCs produce power and electrolytically regenerate their reactants using a single stack of reversible cells. Although a rechargeable energy storage system with such high specific energy has not yet been fabricated, we have made progress towards this goal. A primary fuel cell (FC) test rig with a single cell (0.05 ft{sup 2} active area) has been modified and operated reversibly as a URFC. This URFC uses bifunctional electrodes (oxidation and reduction electrodes reverse roles when switching from charge to discharge, as with a rechargeable battery) and cathode feed electrolysis (water is fed from the oxygen side of the cell). Lightweight pressure vessels with state-of-the-art performance factors (burst pressure * internal volume/tank weight = Pb V/W) have been designed and fabricated. These vessels provide a lightweight means of storing reactant gases required for fuel cells (FCs) or URFCs. The vessels use lightweight bladder liners that act as inflatable mandrels for composite overwrap and provide the permeation barrier for gas storage. The bladders are fabricated using materials that are compatible with humidified gases which may be created by the electrolysis of water and are compatible with elevated temperatures that occur during fast fills.

  20. Improved Attachment in a Hybrid Inflatable Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J.; Patterson, Ross; Spexarth, Gary R.

    2010-01-01

    The vessel is a hybrid that comprises an inflatable shell attached to a rigid structure. The inflatable shell is, itself, a hybrid that comprises (1) a pressure bladder restrained against expansion by (2) a restraint layer that comprises a web of straps made from high-strength polymeric fabrics. The present improvements are intended to overcome deficiencies in those aspects of the original design that pertain to attachment of the inflatable shell to the rigid structure. In a typical intended application, such attachment(s) would be made at one or more window or hatch frames to incorporate the windows or hatches as integral parts of the overall vessel.

  1. Fabrication of toroidal composite pressure vessels. Final report

    SciTech Connect

    Dodge, W.G.; Escalona, A.

    1996-11-24

    A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication.

  2. OVERVIEW OF PRESSURE VESSEL DESIGN CRITERIA FOR INTERNAL DETONATION (BLAST) LOADING

    SciTech Connect

    T. A. DUFFEY; E. A. RODRIGUEZ

    2001-05-01

    Spherical and cylindrical pressure vessels are often used to completely contain the effects of high explosions. These vessels generally fall into two categories. The first includes vessels designed for multiple use ([1]-[6]). Applications of such multiple-use vessels include testing of explosive components and bomb disposal. Because of the multiple-use requirement, response of the vessel is restricted to the elastic range. The second category consists of vessels designed for one-time use only ([7]-[9]). Vessels in this category are typically used to contain accidental explosions and are designed to efficiently utilize the significant plastic energy absorption capacity of ductile materials. Because these vessels may undergo large permanent plastic deformations, they may not be reusable. Ideally one would design a Containment Vessel according to some National or International Consensus Standard, such as the ASME Boiler and Pressure Vessel Code. Unfortunately, however, a number of issues preclude direct use of the ASME Code in its present form to the design of Containment Vessels. These issues are described in Section 2, along with a request for guidance from the PVRC as to a suitable path forward for developing appropriate ASME B&PV design guidance for Containment Vessels. Next, a discussion of the nature of impulsive loading as a result of an internal detonation of the high explosive within a Containment Vessel is described in Section 3. Ductile failure criteria utilized for LANL Containment Vessels are described in Section 4. Finally, brittle fracture criteria currently utilized by LANL are presented in Section 5. This memo is concluded with a brief summary of results and an appeal to PVRC to recommend and develop an appropriate path forward (Section 6). This path forward could be of a short-term specialized nature (e.g., Code Case) for specific guidance regarding design of the LANL Containment Vessels; a long-term development of a general design approach

  3. 46 CFR 109.421 - Report of repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Report of repairs to boilers and pressure vessels. 109... Report of repairs to boilers and pressure vessels. Before making repairs, except normal repairs and maintenance such as replacement of valves or pressure seals, to boilers or unfired pressure vessels...

  4. 46 CFR 109.421 - Report of repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Report of repairs to boilers and pressure vessels. 109... Report of repairs to boilers and pressure vessels. Before making repairs, except normal repairs and maintenance such as replacement of valves or pressure seals, to boilers or unfired pressure vessels...

  5. 46 CFR 109.421 - Report of repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Report of repairs to boilers and pressure vessels. 109... Report of repairs to boilers and pressure vessels. Before making repairs, except normal repairs and maintenance such as replacement of valves or pressure seals, to boilers or unfired pressure vessels...

  6. 46 CFR 109.421 - Report of repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Report of repairs to boilers and pressure vessels. 109... Report of repairs to boilers and pressure vessels. Before making repairs, except normal repairs and maintenance such as replacement of valves or pressure seals, to boilers or unfired pressure vessels...

  7. 46 CFR 109.421 - Report of repairs to boilers and pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Report of repairs to boilers and pressure vessels. 109... Report of repairs to boilers and pressure vessels. Before making repairs, except normal repairs and maintenance such as replacement of valves or pressure seals, to boilers or unfired pressure vessels...

  8. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  9. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  10. Creep of A508/533 Pressure Vessel Steel

    SciTech Connect

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with the very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are

  11. Design Considerations For Blast Loads In Pressure Vessels.

    SciTech Connect

    Rodriguez, E. A.; Nickell, Robert E.; Pepin, J. E.

    2007-01-01

    Los Alamos National Laboratory (LANL), under the auspices of the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA), conducts confined detonation experiments utilizing large, spherical, steel pressure vessels to contain the reaction products and hazardous materials from high-explosive (HE) events. Structural design and analysis considerations include: (a) Blast loading phase (i.e., impulsive loading); (b) Dynamic structural response; (c) Fragment (i.e., shrapnel) generation and penetration; (d) Ductile and non-ductile fracture; and (e) Design Criteria to ASME Code Sec. VIII, Div. 3, Impulsively Loaded Vessels. These vessels are designed for one-time-use only, efficiently utilizing the significant plastic energy absorption capability of ductile vessel materials. Alternatively, vessels may be designed for multiple-detonation events, in which case the material response is restricted to elastic or near-elastic range. Code of Federal Regulations, Title 10 Part 50 provides requirements for commercial nuclear reactor licensing; specifically dealing with accidental combustible gases in containment structures that might cause extreme loadings. The design philosophy contained herein may be applied to extreme loading events postulated to occur in nuclear reactor and non-nuclear systems or containments.

  12. Residual Stress Measurements of Explosively Clad Cylindrical Pressure Vessels

    SciTech Connect

    Taylor, Douglas J; Watkins, Thomas R; Hubbard, Camden R; Hill, M. R.; Meith, W. A.

    2012-01-01

    Tantalum refractory liners were explosively clad into cylindrical pressure vessels, some of which had been previously autofrettaged. Using explosive cladding, the refractory liner formed a metallurgical bond with the steel of the pressure vessel at a cost of induced strain. Two techniques were employed to determine the residual stress state of the clad steel cylinders: neutron diffraction and mechanical slitting. Neutron diffraction is typically nondestructive; however, due to attenuation along the beam path, the cylinders had to be sectioned into rings that were nominally 25 mm thick. Slitting is a destructive method, requiring the sectioning of the cylindrical samples. Both techniques provided triaxial stress data and useful information on the effects of explosive cladding. The stress profiles in the hoop and radial directions were similar for an autofrettaged, nonclad vessel and a clad, nonautofrettaged vessel. The stress profiles in the axial direction appeared to be different. Further, the data suggested that residual stresses from the autofrettage and explosive cladding processes were not additive, in part due to evidence of reverse yielding. The residual stress data are presented, compared and discussed.

  13. Stress Rupture Life Reliability Measures for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Thesken, John C.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases onboard spacecraft. Kevlar (DuPont), glass, carbon and other more recent fibers have all been used as overwraps. Due to the fact that overwraps are subjected to sustained loads for an extended period during a mission, stress rupture failure is a major concern. It is therefore important to ascertain the reliability of these vessels by analysis, since the testing of each flight design cannot be completed on a practical time scale. The present paper examines specifically a Weibull statistics based stress rupture model and considers the various uncertainties associated with the model parameters. The paper also examines several reliability estimate measures that would be of use for the purpose of recertification and for qualifying flight worthiness of these vessels. Specifically, deterministic values for a point estimate, mean estimate and 90/95 percent confidence estimates of the reliability are all examined for a typical flight quality vessel under constant stress. The mean and the 90/95 percent confidence estimates are computed using Monte-Carlo simulation techniques by assuming distribution statistics of model parameters based also on simulation and on the available data, especially the sample sizes represented in the data. The data for the stress rupture model are obtained from the Lawrence Livermore National Laboratories (LLNL) stress rupture testing program, carried out for the past 35 years. Deterministic as well as probabilistic sensitivities are examined.

  14. Advances in crack-arrest technology for reactor pressure vessels

    SciTech Connect

    Bass, B.R.; Pugh, C.E.

    1988-01-01

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) under the sponsorship of the US Nuclear Regulatory Commission is continuing to improve the understanding of conditions that govern the initiation, rapid propagation, arrest, and ductile tearing of cracks in reactor pressure vessel (RPV) steels. This paper describes recent advances in a coordinated effort being conducted under the HSST Program by ORNL and several subcontracting groups to develop the crack-arrest data base and the analytical tools required to construct inelastic dynamic fracture models for RPV steels. Large-scale tests are being carried out to generate crack-arrest toughness data at temperatures approaching and above the onset of Charpy upper-shelf behavior. Small- and intermediate-size specimens subjected to static and dynamic loading are being developed and tested to provide additional fracture data for RPV steels. Viscoplastic effects are being included in dynamic fracture models and computer programs and their utility validated through analyses of data from carefully controlled experiments. Recent studies are described that examine convergence problems associated with energy-based fracture parameters in viscoplastic-dynamic fracture applications. Alternative techniques that have potential for achieving convergent solutions for fracture parameters in the context of viscoplastic-dynamic models are discussed. 46 refs., 15 figs., 3 tabs.

  15. Glass Fiber Reinforced Metal Pressure Vessel Design Guide

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1972-01-01

    The Engineering Guide presents curves and general equations for safelife design of lightweight glass fiber reinforced (GFR) metal pressure vessels operating under anticipated Space Shuttle service conditions. The high composite vessel weight efficiency is shown to be relatively insensitive to shape, providing increased flexibility to designers establishing spacecraft configurations. Spheres, oblate speroids, and cylinders constructed of GFR Inconel X-750, 2219-T62 aluminum, and cryoformed 301 stainless steel are covered; design parameters and performance efficiencies for each configuration are compared at ambient and cryogenic temperature for an operating pressure range of 690 to 2760 N/sq cm (1000 to 4000 psi). Design variables are presented as a function of metal shell operating to sizing (proof) stress ratios for use with fracture mechanics data generated under a separate task of this program.

  16. Lightweight pressure vessels and unitized regenerative fuel cells

    SciTech Connect

    Mitlitsky, F.; Myers, B.; Weisberg, A.H.

    1996-09-06

    Energy storage systems have been designed using lightweight pressure vessels with unitized regenerative fuel cells (URFCs). The vessels provide a means of storing reactant gases required for URFCs; they use lightweight bladder liners that act as inflatable mandrels for composite overwrap and provide a permeation barrier. URFC systems have been designed for zero emission vehicles (ZEVs); they are cost competitive with primary FC powered vehicles that operate on H/air with capacitors or batteries for power peaking and regenerative braking. URFCs are capable of regenerative braking via electrolysis and power peaking using low volume/low pressure accumulated oxygen for supercharging the power stack. URFC ZEVs can be safely and rapidly (<5 min.) refueled using home electrolysis units. Reversible operation of cell membrane catalyst is feasible without significant degradation. Such systems would have a rechargeable specific energy > 400 Wh/kg.

  17. The coolability limits of a reactor pressure vessel lower head

    SciTech Connect

    Theofanous, T.G.; Syri, S.

    1995-09-01

    Configuration II of the ULPU experimental facility is described, and from a comprehensive set of experiments are provided. The facility affords full-scale simulations of the boiling crisis phenomenon on the hemispherical lower head of a reactor pressure vessel submerged in water, and heated internally. Whereas Configuration I experiments (published previously) established the lower limits of coolability under low submergence, pool-boiling conditions, with Configuration II we investigate coolability under conditions more appropriate to practical interest in severe accident management; that is, heat flux shapes (as functions of angular position) representative of a core melt contained by the lower head, full submergence of the reactor pressure vessel, and natural circulation. Critical heat fluxes as a function of the angular position on the lower head are reported and related the observed two-phase flow regimes.

  18. Pressure distension in leg vessels as influenced by prolonged bed rest and a pressure habituation regimen.

    PubMed

    Eiken, Ola; Mekjavic, Igor B; Kounalakis, Stylianos N; Kölegård, Roger

    2016-06-15

    Bed rest increases pressure distension in arteries, arterioles, and veins of the leg. We hypothesized that bed-rest-induced deconditioning of leg vessels is governed by the removal of the local increments in transmural pressure induced by assuming erect posture and, therefore, can be counteracted by intermittently increasing local transmural pressure during the bed rest. Ten men underwent 5 wk of horizontal bed rest. A subatmospheric pressure (-90 mmHg) was intermittently applied to one lower leg [pressure habituation (PH) leg]. Vascular pressure distension was investigated before and after the bed rest, both in the PH and control (CN) leg by increasing local distending pressure, stepwise up to +200 mmHg. Vessel diameter and blood flow were measured in the posterior tibial artery and vessel diameter in the posterior tibial vein. In the CN leg, bed rest led to 5-fold and 2.7-fold increments (P < 0.01) in tibial artery pressure-distension and flow responses, respectively, and to a 2-fold increase in tibial vein pressure distension. In the PH leg, arterial pressure-distension and flow responses were unaffected by bed rest, whereas bed rest led to a 1.5-fold increase in venous pressure distension. It thus appears that bed-rest-induced deconditioning of leg arteries, arterioles, and veins is caused by removal of gravity-dependent local pressure loads and may be abolished or alleviated by a local pressure-habituation regimen. PMID:27079693

  19. Pressure distension in leg vessels as influenced by prolonged bed rest and a pressure habituation regimen.

    PubMed

    Eiken, Ola; Mekjavic, Igor B; Kounalakis, Stylianos N; Kölegård, Roger

    2016-06-15

    Bed rest increases pressure distension in arteries, arterioles, and veins of the leg. We hypothesized that bed-rest-induced deconditioning of leg vessels is governed by the removal of the local increments in transmural pressure induced by assuming erect posture and, therefore, can be counteracted by intermittently increasing local transmural pressure during the bed rest. Ten men underwent 5 wk of horizontal bed rest. A subatmospheric pressure (-90 mmHg) was intermittently applied to one lower leg [pressure habituation (PH) leg]. Vascular pressure distension was investigated before and after the bed rest, both in the PH and control (CN) leg by increasing local distending pressure, stepwise up to +200 mmHg. Vessel diameter and blood flow were measured in the posterior tibial artery and vessel diameter in the posterior tibial vein. In the CN leg, bed rest led to 5-fold and 2.7-fold increments (P < 0.01) in tibial artery pressure-distension and flow responses, respectively, and to a 2-fold increase in tibial vein pressure distension. In the PH leg, arterial pressure-distension and flow responses were unaffected by bed rest, whereas bed rest led to a 1.5-fold increase in venous pressure distension. It thus appears that bed-rest-induced deconditioning of leg arteries, arterioles, and veins is caused by removal of gravity-dependent local pressure loads and may be abolished or alleviated by a local pressure-habituation regimen.

  20. Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations.

    PubMed

    Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, Dumitru

    2010-02-15

    An experimental study on pressure evolution during closed vessel explosions of propane-air mixtures was performed, for systems with various initial concentrations and pressures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.2 bar). The explosion pressures and explosion times were measured in a spherical vessel (Phi=10 cm), at various initial temperatures (T(0)=298-423 K) and in a cylindrical vessel (Phi=10 cm; h=15 cm), at ambient initial temperature. The experimental values of explosion pressures are examined against literature values and compared to adiabatic explosion pressures, computed by assuming chemical equilibrium within the flame front. The influence of initial pressure, initial temperature and fuel concentration on explosion pressures and explosion times are discussed. At constant temperature and fuel/oxygen ratio, the explosion pressures are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, both the measured and calculated (adiabatic) explosion pressures are linear functions of reciprocal value of initial temperature. Such correlations are extremely useful for predicting the explosion pressures of flammable mixtures at elevated temperatures and/or pressures, when direct measurements are not available.

  1. 46 CFR 78.33-1 - Repairs of boiler and pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Repairs of boiler and pressure vessels. 78.33-1 Section 78.33-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS... vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer...

  2. H.B. Robinson-2 pressure vessel benchmark

    SciTech Connect

    Remec, I.; Kam, F.B.K.

    1998-02-01

    The H. B. Robinson Unit 2 Pressure Vessel Benchmark (HBR-2 benchmark) is described and analyzed in this report. Analysis of the HBR-2 benchmark can be used as partial fulfillment of the requirements for the qualification of the methodology for calculating neutron fluence in pressure vessels, as required by the U.S. Nuclear Regulatory Commission Regulatory Guide DG-1053, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence. Section 1 of this report describes the HBR-2 benchmark and provides all the dimensions, material compositions, and neutron source data necessary for the analysis. The measured quantities, to be compared with the calculated values, are the specific activities at the end of fuel cycle 9. The characteristic feature of the HBR-2 benchmark is that it provides measurements on both sides of the pressure vessel: in the surveillance capsule attached to the thermal shield and in the reactor cavity. In section 2, the analysis of the HBR-2 benchmark is described. Calculations with the computer code DORT, based on the discrete-ordinates method, were performed with three multigroup libraries based on ENDF/B-VI: BUGLE-93, SAILOR-95 and BUGLE-96. The average ratio of the calculated-to-measured specific activities (C/M) for the six dosimeters in the surveillance capsule was 0.90 {+-} 0.04 for all three libraries. The average C/Ms for the cavity dosimeters (without neptunium dosimeter) were 0.89 {+-} 0.10, 0.91 {+-} 0.10, and 0.90 {+-} 0.09 for the BUGLE-93, SAILOR-95 and BUGLE-96 libraries, respectively. It is expected that the agreement of the calculations with the measurements, similar to the agreement obtained in this research, should typically be observed when the discrete-ordinates method and ENDF/B-VI libraries are used for the HBR-2 benchmark analysis.

  3. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.

    PubMed

    Kornuta, Jeffrey A; Nepiyushchikh, Zhanna; Gasheva, Olga Y; Mukherjee, Anish; Zawieja, David C; Dixon, J Brandon

    2015-11-01

    Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm(2)) than at 3 cmH2O (0.64 dyne/cm(2)). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels.

  4. Terahertz NDE of Stressed Composite Overwrapped Pressure Vessels - Initial Testing

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Seebo, Jeffrey P.; Anatasi, Robert F.

    2009-01-01

    Terahertz radiation nondestructive evaluation was applied to a set of Kevlar composite overwrapped pressure vessel bottles that had undergone a series of thermal and pressure tests to simulate stress rupture effects. The bottles in these nondestructive evaluation tests were bottles that had not ruptured but had survived various times at the elevated load and temperature levels. Some of the bottles showed evidence of minor composite failures. The terahertz radiation did detect visible surface flaws, but did not detect any internal chemical or material degradation of the thin overwraps.

  5. Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly

    SciTech Connect

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam; Hoffman, William

    2015-03-01

    Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode I loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.

  6. Neutron flux reduction programs for reactor pressure vessel

    SciTech Connect

    Yoo, C.S.; Kim, B.C.

    2011-07-01

    The objective of this work is to implement various fast neutron flux reduction programs on the belt-line region of the reactor pressure vessel to reduce the increasing rate of reference temperature for pressurized thermal shock (RT PTS) for Korea Nuclear Unit 1. A pressurized thermal shock (PTS) event is an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. A PTS concern arises if one of these transients acts in the belt-line region of a reactor vessel where a reduced fracture resistance exists because of neutron irradiation. Generally, the RT PTS value is continuously increasing according to the fast neutron irradiation during the reactor operation, and it can reach the screening criterion prior to the expiration of the operating license. To reduce the increasing rate of RT PTS, various neutron flux reduction programs can be implemented, which are focused on license renewal. In this paper, neutron flux reduction programs, such as low leakage loading pattern strategy, loading of neutron absorber rods, and dummy fuel assembly loading are considered for Korea Nuclear Unit 1, of which the RT PTS value of the leading material (circumferential weld) is going to reach the screening criterion in the near future. To evaluate the effects of the neutron flux reduction programs, plant and cycle specific forward neutron transport calculations for the various neutron flux reduction programs were carried out. For the analysis, all transport calculations were carried out by using the DORT 3.1 discrete ordinate code and BUGLE-96 cross-section library. (authors)

  7. Considerations for acoustic emission monitoring of spherical Kevlar/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.; Patterson, R. G.

    1977-01-01

    We are continuing to research the applications of acoustic emission testing for predicting burst pressure of filament-wound Kevlar 49/epoxy pressure vessels. This study has focused on three specific areas. The first area involves development of an experimental technique and the proper instrumentation to measure the energy given off by the acoustic emission transducer per acoustic emission burst. The second area concerns the design of a test fixture in which to mount the composite vessel so that the acoustic emission transducers are held against the outer surface of the composite. Included in this study area is the calibration of the entire test setup including couplant, transducer, electronics, and the instrument measuring the energy per burst. In the third and final area of this study, we consider the number, location, and sensitivity of the acoustic emission transducers used for proof testing composite pressure vessels.

  8. Reactor pressure vessel structural integrity research in the US Nuclear Regulatory Commission HSST and HSSI Programs

    SciTech Connect

    Pennell, W.E.; Corwin, W.R.

    1994-02-01

    This report discusses development on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels containing flaws. Fracture mechanics tests on reactor pressure vessel steel have shown that local brittle zones do not significantly degrade the material fracture toughness, constraint relaxation at the crack tip of shallow surface flaws results in increased fracture toughness, and biaxial loading reduces but does not eliminate the shallow-flaw fracture toughness elevation. Experimental irradiation investigations have shown that the irradiation-induced shift in Charpy V-notch versus temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement and the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.

  9. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs) . Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This document contains the appendices to the main report.

  10. Ten year environmental test of glass fiber/epoxy pressure vessels

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1985-01-01

    By the beginning of the 1970's composite pressure vessels had received a significant amount of development effort, and applications were beginning to be investigated. One of the first applications grew out of NASA Johnson Space Center efforts to develop a superior emergency breathing system for firemen. While the new breathing system provided improved wearer comfort and an improved mask and regulator, the primary feature was low weight which was achieved by using a glass fiber reinforced aluminum pressure vessel. Part of the development effort was to evaluate the long term performance of the pressure vessel and as a consequence, some 30 bottles for a test program were procured. These bottles were then provided to NASA Lewis Research Center where they were maintained in an outdoor environment in a pressurized condition for a period of up to 10 yr. During this period, bottles were periodically subjected to cyclic and burst testing. There was no protective coating applied to the fiberglass/epoxy composite, and significant loss in strength did occur as a result of the environment. Similar bottles stored indoors showed little, if any, degradation. This report contains a description of the pressure vessels, a discussion of the test program, data for each bottle, and appropriate plots, comparisons, and conclusions.

  11. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the...

  12. 30 CFR 56.13001 - General requirements for boilers and pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINES Compressed Air and Boilers § 56.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with the standards and specifications of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code....

  13. 46 CFR 78.33-1 - Repairs of boiler and pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Repairs of boiler and pressure vessels. 78.33-1 Section... OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-1 Repairs of boiler and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer...

  14. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the...

  15. 46 CFR 78.33-1 - Repairs of boiler and pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Repairs of boiler and pressure vessels. 78.33-1 Section... OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-1 Repairs of boiler and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer...

  16. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the...

  17. 46 CFR 78.33-1 - Repairs of boiler and pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Repairs of boiler and pressure vessels. 78.33-1 Section... OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-1 Repairs of boiler and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer...

  18. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the...

  19. 46 CFR 167.25-1 - Boilers, pressure vessels, piping and appurtenances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Boilers, pressure vessels, piping and appurtenances. 167... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-1 Boilers, pressure vessels, piping and... the following standards for boilers, pressure vessels, piping and appurtenances: (1)...

  20. 46 CFR 167.25-5 - Inspection of boilers, pressure vessels, piping and appurtenances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Inspection of boilers, pressure vessels, piping and...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-5 Inspection of boilers, pressure vessels, piping and appurtenances. The inspection of boilers, pressure vessels, piping and...

  1. 46 CFR 167.25-1 - Boilers, pressure vessels, piping and appurtenances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Boilers, pressure vessels, piping and appurtenances. 167... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-1 Boilers, pressure vessels, piping and... the following standards for boilers, pressure vessels, piping and appurtenances: (1)...

  2. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the...

  3. 46 CFR 78.33-1 - Repairs of boiler and pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Repairs of boiler and pressure vessels. 78.33-1 Section... OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-1 Repairs of boiler and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer...

  4. 46 CFR 167.25-5 - Inspection of boilers, pressure vessels, piping and appurtenances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Inspection of boilers, pressure vessels, piping and...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-5 Inspection of boilers, pressure vessels, piping and appurtenances. The inspection of boilers, pressure vessels, piping and...

  5. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables...

  6. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables...

  7. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables...

  8. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables...

  9. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables...

  10. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  11. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired...

  12. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired...

  13. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired...

  14. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired...

  15. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired...

  16. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  17. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  18. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  19. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  20. VISA: a computer code for predicting the probability of reactor pressure-vessel failure. [PWR

    SciTech Connect

    Stevens, D.L.; Simonen, F.A.; Strosnider, J. Jr.; Klecker, R.W.; Engel, D.W.; Johnson, K.I.

    1983-09-01

    The VISA (Vessel Integrity Simulation Analysis) code was developed as part of the NRC staff evaluation of pressurized thermal shock. VISA uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics are used to model crack initiation and propagation. parameters for initial crack size, copper content, initial RT/sub NDT/, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents the version of VISA used in the NRC staff report (Policy Issue from J.W. Dircks to NRC Commissioners, Enclosure A: NRC Staff Evaluation of Pressurized Thermal Shock, November 1982, SECY-82-465) and includes a user's guide for the code.

  1. PRESSURIZATION OF CONTAINMENT VESSELS FROM PLUTONIUM OXIDE CONTENTS

    SciTech Connect

    Hensel, S.

    2012-03-27

    Transportation and storage of plutonium oxide is typically done using a convenience container to hold the oxide powder which is then placed inside a containment vessel. Intermediate containers which act as uncredited confinement barriers may also be used. The containment vessel is subject to an internal pressure due to several sources including; (1) plutonium oxide provides a heat source which raises the temperature of the gas space, (2) helium generation due to alpha decay of the plutonium, (3) hydrogen generation due to radiolysis of the water which has been adsorbed onto the plutonium oxide, and (4) degradation of plastic bags which may be used to bag out the convenience can from a glove box. The contributions of these sources are evaluated in a reasonably conservative manner.

  2. Jam proof closure assembly for lidded pressure vessels

    DOEpatents

    Cioletti, Olisse C.

    1992-01-01

    An expendable closure assembly is provided for use (in multiple units) with a lockable pressure vessel cover along its rim, such as of an autoclave. This assembly is suited to variable compressive contact and locking with the vessel lid sealing gasket. The closure assembly consists of a thick walled sleeve insert for retention in the under bores fabricated in the cover periphery and the sleeve is provided with internal threading only. A snap serves as a retainer on the underside of the sleeve, locking it into an under bore retention channel. Finally, a standard elongate externally threaded bolt is sized for mating cooperation with the so positioned sleeve, whereby the location of the bolt shaft in the cover bore hole determines its compressive contact on the underlying gasket.

  3. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    NASA Technical Reports Server (NTRS)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  4. Treating asphericity in fuel particle pressure vessel modeling

    NASA Astrophysics Data System (ADS)

    Miller, Gregory K.; Wadsworth, Derek C.

    1994-07-01

    The prototypical nuclear fuel of the New Production Modular High Temperature Gas-Cooled Reactor (NP-MHTGR) consists of spherical TRISO-coated particles suspended in graphite cylinders. The coating layers surrounding the fuel kernels in these particles consist of pyrolytic carbon layers and a silicon carbide layer. These coating layers act as a pressure vessel which retains fission product gases. In the operating conditions of the NP-MHTGR, a small percentage of these particles (pressure vessels) are expected to fail due to the pressure loading. The fuel particles of the NP-MHTGR deviate to some degree from a true spherical shape, which may have some effect on the failure percentages. A method is presented that treats the asphericity of the particles in predicting failure probabilities for particle samples. It utilizes a combination of finite element analysis and Monte Carlo sampling and is based on the Weibull statistical theory. The method is used here to assess the effects of asphericity in particles of two common geometric shapes, i.e. faceted particles and ellipsoidal particles. The method presented could be used to treat particle anomalies other than asphericity.

  5. An Acoustic Emission and Acousto-Ultrasonic Analysis of Impact Damaged Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.; Workman, Gary L.

    1996-01-01

    The research presented herein summarizes the development of acoustic emission (AE) and acousto-ultrasonic (AU) techniques for the nondestructive evaluation of filament wound composite pressure vessels. Vessels fabricated from both graphite and kevlar fibers with an epoxy matrix were examined prior to hydroburst using AU and during hydroburst using AE. A dead weight drop apparatus featuring both blunt and sharp impactor tips was utilized to produce a single known energy 'damage' level in each of the vessels so that the degree to which the effects of impact damage could be measured. The damage levels ranged from barely visible to obvious fiber breakage and delamination. Independent neural network burst pressure prediction models were developed from a sample of each fiber/resin material system. Here, the cumulative AE amplitude distribution data collected from low level proof test (25% of the expected burst for undamaged vessels) were used to measure the effects of the impact on the residual burst pressure of the vessels. The results of the AE/neural network model for the inert propellant filled graphite/epoxy vessels 'IM7/3501-6, IM7/977-2 and IM7/8553-45' demonstrated that burst pressures can be predicted from low level AE proof test data, yielding an average error of 5.0%. The trained network for the IM7/977-2 class vessels was also able to predict the expected burst pressure of taller vessels (three times longer hoop region length) constructed of the same material and using the same manufacturing technique, with an average error of 4.9%. To a lesser extent, the burst pressure prediction models could also measure the effects of impact damage to the kevlar/epoxy 'Kevlar 49/ DPL862' vessels. Here though, due to the higher attenuation of the material, an insufficient amount of AE amplitude information was collected to generate robust network models. Although, the worst case trial errors were less than 6%, when additional blind predictions were attempted, errors as

  6. Evaluation of Data-Logging Transducer to Passively Collect Pressure Vessel p/T History

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P.; Le, Son; Loew, Raymond A.

    2013-01-01

    Pressure vessels owned and operated by NASA are required to be regularly certified per agency policy. Certification requires an assessment of damage mechanisms and an estimation of vessel remaining life. Since detail service histories are not typically available for most pressure vessels, a conservative estimate of vessel pressure/temperature excursions is typically used in assessing fatigue life. This paper details trial use of a data-logging transducer to passively obtain actual pressure and temperature service histories of pressure vessels. The approach was found to have some potential for cost savings and other benefits in certain cases.

  7. Design of high pressure vessels with radial crossbores

    NASA Astrophysics Data System (ADS)

    Chaaban, A.; Burns, D. J.

    1986-05-01

    Three dimensional finite element methods have been used to investigate the stress fields around radial crossbores in cylindrical high pressure vessels. Elastic analyses have been used to show the effects of crossbore and main cylinder diameter ratios on stress concentration factors. Elastic-plastic analyses have been used to study residual stress fields in crossbores overstained during autofrettage, proof-testing or the first operational cycle. The very beneficial influence of these residual stresses on fatigue performance is discussed. Other factors influencing fatigue life are briefly reviewed.

  8. Composite Overwrapped Pressure Vessels (COPV) Materials Aging Issues

    NASA Technical Reports Server (NTRS)

    2010-01-01

    This slide presentation reviews some of the issues concerning the aging of the materials in a Composite Overwrapped Pressure Vessels (COPV). The basic composition of the COPV is a Boss, a composite overwrap, and a metallic liner. The lifetime of a COPV is affected by the age of the overwrap, the cyclic fatigue of the metallic liner, and stress rupture life, a sudden and catastrophic failure of the overwrap while holding at a stress level below the ultimate strength for an extended time. There is information about the coupon tests that were performed, and a test on a flight COPV.

  9. Embrittlement recovery due to annealing of reactor pressure vessel steels

    SciTech Connect

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1996-03-01

    Embrittlement of reactor pressure vessels (RPVs) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. Although such an annealing process has not been applied to any commercial plants in the United States, one US Army reactor, the BR3 plant in Belgium, and several plants in eastern Europe have been successfully annealed. All available Charpy annealing data were collected and analyzed in this project to develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy over a range of potential annealing conditions. Pattern recognition, transformation analysis, residual studies, and the current understanding of the mechanisms involved in the annealing process were used to guide the selection of the most sensitive variables and correlating parameters and to determine the optimal functional forms for fitting the data. The resulting models were fitted by nonlinear least squares. The use of advanced tools, the larger data base now available, and insight from surrogate hardness data produced improved models for quantitative evaluation of the effects of annealing. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and the surrogate hardness data base. The standard errors of the resulting recovery models relative to calibration data are comparable to the uncertainty in unirradiated Charpy data. This work also demonstrates that microhardness recovery is a good surrogate for transition temperature shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes.

  10. Strain measurements using FBG on composite over wrap pressure vessels (COPV) in stress rupture test

    NASA Astrophysics Data System (ADS)

    Grant, Joseph; Banks, Curtis

    2007-04-01

    Thirty six Fiber Optic Braggs Grating sensors were used during an ambient temperature hydrostatic pressurization testing of a Space Transportation System (STS) 40-inch Kevlar Composite Over-wrapped Pressure Vessel (COPV). The 40-inch vessel was of the same design and approximate age as the STS Main Propulsion System (MPS) and Orbiter Maneuvering System (OMS) vessels. The sensors were surfaces mounted to on the vessel to measure strain during a stress rupture event. The Bragg signals were linear with the applied pressure. The results indicated that the vessel was under an uneven force distribution at various locations on the vessel.

  11. Structural integrity assessment of carbon and low-alloy steel pressure vessels using a simplified fracture mechanics procedure

    SciTech Connect

    Rana, M.D. . Research and Development Dept.)

    1994-08-01

    This paper describes a simplified fracture analysis procedure which was developed by Pellini to quantify fracture critical-crack sizes and crack-arrest temperatures of carbon and low-alloy steel pressure vessels. Fracture analysis diagrams have been developed using the simplified analysis procedure for various grades of carbon and low-alloy steels used in the construction of ASME, Section VIII, Division 1 pressure vessels. Structural integrity assessments have been conducted from the analysis diagrams.

  12. Finite element analysis of filament-wound composite pressure vessel under internal pressure

    NASA Astrophysics Data System (ADS)

    Sulaiman, S.; Borazjani, S.; Tang, S. H.

    2013-12-01

    In this study, finite element analysis (FEA) of composite overwrapped pressure vessel (COPV), using commercial software ABAQUS 6.12 was performed. The study deals with the simulation of aluminum pressure vessel overwrapping by Carbon/Epoxy fiber reinforced polymer (CFRP). Finite element method (FEM) was utilized to investigate the effects of winding angle on filament-wound pressure vessel. Burst pressure, maximum shell displacement and the optimum winding angle of the composite vessel under pure internal pressure were determined. The Laminae were oriented asymmetrically for [00,00]s, [150,-150]s, [300,-300]s, [450,-450]s, [550,-550]s, [600,-600]s, [750,-750]s, [900,-900]s orientations. An exact elastic solution along with the Tsai-Wu, Tsai-Hill and maximum stress failure criteria were employed for analyzing data. Investigations exposed that the optimum winding angle happens at 550 winding angle. Results were compared with the experimental ones and there was a good agreement between them.

  13. Making a Metal-Lined Composite-Overwrapped Pressure Vessel

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2005-01-01

    process has been devised for the fabrication of a pressure vessel that comprises a composite-material (matrix/fiber) shell with a metal liner on its inner surface. The use of the composite material makes it possible for the tank to be strong enough to withstand the anticipated operating pressure and yet weigh less than does an equivalent all-metal tank. The metal liner is used as a barrier against permeation: In the absence of such a barrier, the pressurized gas in the tank could leak by diffusing through the composite-material shell. The figure depicts workpieces at four key stages in the process, which consists of the following steps: 1. A mandrel that defines the size and shape of the pressure vessel is made by either molding or machining a piece of tooling wax. 2. Silver paint is applied to the surface of the mandrel to make it electrically conductive. 3. The ends of the mandrel are fitted with metal bosses. 4. The mandrel is put into a plating bath, wherein the metal liner is electrodeposited. Depending on the applications, the liner metal could be copper, nickel, gold, or an alloy. Typical liner thicknesses range from 1 to 10 mils (0.025 to 0.25 mm). 5. The wax is melted from within, leaving the thin metal liner. 6. A hollow shaft that includes holes and fittings through which the liner can be pressurized is sealed to both ends of the liner. The liner is pressurized to stiffen (and hence stabilize) it for the next step. 7. The pressurized liner is placed in a filament-winding machine, which is then operated to cover the liner with multiple layers of an uncured graphite-fiber/epoxy-matrix or other suitable composite material. 8. The composite-overwrapped liner is cured in an oven. 9. The pressure is relieved and the shaft is removed. The tank is then ready for use. The process as described above accommodates variations: a) The mandrel could be made of a wax that melts at a higher temperature and not removed until the tank is cured in the oven. b) The tank need

  14. Stress distribution in continuously heterogeneous thick laminated pressure vessels

    SciTech Connect

    Verijenko, V.E.; Adali, S.; Tabakov, P.Y.

    1995-11-01

    Stress analysis of multilayered pressure vessels possessing cylindrical anisotropy and under internal, external and interlaminar pressure is given. The special case when the axis of anisotropy coincides with the axis of symmetry Oz and the stresses do not vary long the generator is investigated. In this case there exists a plane of elastic symmetry normal to this axis at every point of the cylinder so that each layer may be considered s orthotropic. However, elastic properties can vary through the thickness of a layer. Exact elasticity solutions are obtained for both open-ended and closed-ended cylinders using a stress function approach. The method of solution allows the forces on the layer interfaces to be taken into account with relative ease. Numerical results are presented for thick cylinders with isotropic and orthotropic layers, and stress distributions across the thickness are given.

  15. Fracture strength of flawed cylindrical pressure vessels under cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Christopher, T.; Sankarnarayanasamy, K.; Nageswara Rao, B.

    2002-11-01

    Damage tolerant and fail-safe approaches have been employed increasingly in the design of critical engineering components. In these approaches, one has to assess the residual strength of a component with an assumed pre-existing crack. In other cases, cracks may be detected during service. Then, there is a need to evaluate the residual strength of the cracked components in order to decide whether they can be continued safely or repair and replacement are imperative. A three-parameter fracture criterion is applied to correlate the fracture data on aluminium, titanium and steel materials from test results on cylindrical tanks/pressure vessels at cryogenic temperatures. Fracture parameters to generate the failure assessment diagram are determined for the materials considered in the present study. Failure pressure estimates were found to be in good agreement with test results.

  16. Theoretical analysis of pressure pulse propagation in arterial vessels.

    PubMed

    Belardinelli, E; Cavalcanti, S

    1992-11-01

    An original mathematical model of viscous fluid motion in a tapered and distensible tube is presented. The model equations are deduced by assuming a two-dimensional flow and taking into account the nonlinear terms in the fluid motion equations, as well as the nonlinear deformation of the tube wall. One distinctive feature of the model is the formal integration with respect to the radial coordinate of the Navier-Stokes equations by power series expansion. The consequent computational frame allows an easy, accurate evaluation of the effects produced by changing the values of all physical and geometrical tube parameters. The model is employed to study the propagation along an arterial vessel of a pressure pulse produced by a single flow pulse applied at the proximal vessel extremity. In particular, the effects of the natural taper angle of the arterial wall on pulse propagation are investigated. The simulation results show that tapering considerably influences wave attenuation but not wave velocity. The substantially different behavior of pulse propagation, depending upon whether it travels towards the distal extremity or in the opposite direction, is observed: natural tapering causes a continuous increase in the pulse amplitude as it moves towards the distal extremity; on the contrary, the reflected pulse, running in the opposite direction, is greatly damped. For a vessel with physical and geometrical properties similar to those of a canine femoral artery and 0.1 degree taper angle, the forward amplification is about 0.9 m-1 and the backward attenuation is 1.4 m-1, so that the overall tapering effect gives a remarkably damped pressure response. For a natural taper angle of 0.14 degrees the perturbation is almost extinct when the pulse wave returns to the proximal extremity. PMID:1400535

  17. Flux effect analysis in WWER-440 reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Kryukov, A.; Blagoeva, D.; Debarberis, L.

    2013-11-01

    The results of long term research programme concerning the determination of irradiation embrittlement dependence on fast neutron flux for WWER-440 reactor pressure vessel steels before and after annealing are presented in this paper. The study of flux effect was carried out on commercial WWER-440 steels which differ significantly in phosphorous (0.013-0.036 wt%) and copper (0.08-0.20 wt%) contents. All specimens were irradiated in surveillance channel positions under similar conditions at high ˜4 × 1012 сm-2 s-1 and low ˜6 × 1011 сm-2 s-1 fluxes (E > 0.5 MeV) at a temperature of 270 °С. The radiation embrittlement was evaluated by transition temperature shift on the basis of Charpy specimens test results. In case of low flux, the measured Tk shifts could be 25-50 °C bigger than the Tk shifts obtained from high flux data. A significant flux effect is observed in WWER-440 reactor pressure vessel steels with higher copper content (>0.13 wt%).

  18. Stresses in reactor pressure vessel nozzles -- Calculations and experiments

    SciTech Connect

    Brumovsky, M.; Polachova, H.

    1995-11-01

    Reactor pressure vessel nozzles are characterized by a high stress concentration which is critical in their low-cycle fatigue assessment. Program of experimental verification of stress/strain field distribution during elastic-plastic loading of a reactor pressure vessel WWER-1000 primary nozzle model in scale 1:3 is presented. While primary nozzle has an ID equal to 850 mm, the model nozzle has ID equal to 280 mm, and was made from 15Kh2NMFA type of steel. Calculation using analytical methods was performed. Comparison of results using different analytical methods -- Neuber`s, Hardrath-Ohman`s as well as equivalent energy ones, used in different reactor Codes -- is shown. Experimental verification was carried out on model nozzles loaded statically as well as by repeated loading, both in elastic-plastic region. Strain fields were measured using high-strain gauges, which were located in different distances from center of nozzle radius, thus different stress concentration values were reached. Comparison of calculated and experimental data are shown and compared.

  19. A Survey of Pressure Vessel Code Compliance for Superconducting RF Cryomodules

    SciTech Connect

    Peterson, Thomas; Klebaner, Arkadiy; Nicol, Tom; Theilacker, Jay; Hayano, Hitoshi; Kako, Eiji; Nakai, Hirotaka; Yamamoto, Akira; Jensch, Kay; Matheisen, Axel; Mammosser, John; /Jefferson Lab

    2011-06-07

    Superconducting radio frequency (SRF) cavities made from niobium and cooled with liquid helium are becoming key components of many particle accelerators. The helium vessels surrounding the RF cavities, portions of the niobium cavities themselves, and also possibly the vacuum vessels containing these assemblies, generally fall under the scope of local and national pressure vessel codes. In the U.S., Department of Energy rules require national laboratories to follow national consensus pressure vessel standards or to show ''a level of safety greater than or equal to'' that of the applicable standard. Thus, while used for its superconducting properties, niobium ends up being treated as a low-temperature pressure vessel material. Niobium material is not a code listed material and therefore requires the designer to understand the mechanical properties for material used in each pressure vessel fabrication; compliance with pressure vessel codes therefore becomes a problem. This report summarizes the approaches that various institutions have taken in order to bring superconducting RF cryomodules into compliance with pressure vessel codes. In Japan, Germany, and the U.S., institutions building superconducting RF cavities integrated in helium vessels or procuring them from vendors have had to deal with pressure vessel requirements being applied to SRF vessels, including the niobium and niobium-titanium components of the vessels. While niobium is not an approved pressure vessel material, data from tests of material samples provide information to set allowable stresses. By means of procedures which include adherence to code welding procedures, maintaining material and fabrication records, and detailed analyses of peak stresses in the vessels, or treatment of the vacuum vessel as the pressure boundary, research laboratories around the world have found methods to demonstrate and document a level of safety equivalent to the applicable pressure vessel codes.

  20. Prediction of Composite Pressure Vessel Failure Location using Fiber Bragg Grating Sensors

    NASA Technical Reports Server (NTRS)

    Kreger, Steven T.; Taylor, F. Tad; Ortyl, Nicholas E.; Grant, Joseph

    2006-01-01

    Ten composite pressure vessels were instrumented with fiber Bragg grating sensors in order to assess the strain levels of the vessel under various loading conditions. This paper and presentation will discuss the testing methodology, the test results, compare the testing results to the analytical model, and present a possible methodology for predicting the failure location and strain level of composite pressure vessels.

  1. Plastic Limit Load Analysis of Cylindrical Pressure Vessels with Different Nozzle Inclination

    NASA Astrophysics Data System (ADS)

    Prakash, Anupam; Raval, Harit Kishorchandra; Gandhi, Anish; Pawar, Dipak Bapu

    2016-04-01

    Sudden change in geometry of pressure vessel due to nozzle cutout, leads to local stress concentration and deformation, decreasing its strength. Elastic plastic analysis of cylindrical pressure vessels with different inclination angles of nozzle is important to estimate plastic limit load. In the present study, cylindrical pressure vessels with combined inclination of nozzles (i.e. in longitudinal and radial plane) are considered for elastic plastic limit load analysis. Three dimensional static nonlinear finite element analyses of cylindrical pressure vessels with nozzle are performed for incremental pressure loading. The von Mises stress distribution on pressure vessel shows higher stress zones at shell-nozzle junction. Approximate plastic limit load is obtained by twice elastic slope method. Variation in limit pressure with different combined inclination angle of nozzle is analyzed and found to be distinct in nature. Reported results can be helpful in optimizing pressure vessel design.

  2. Thin-metal lined PRD 49-III composite vessels. [evaluation of pressure vessels for burst strength and fatigue performance

    NASA Technical Reports Server (NTRS)

    Hoggatt, J. T.

    1974-01-01

    Filament wound pressure vessels of various configurations were evaluated for burst strength and fatigue performance. The dimensions and characteristics of the vessels are described. The types of tests conducted are explained. It was determined that all vessels leaked in a relatively few cycles (20 to 60 cycles) with failure occurring in all cases in the metallic liner. The thin liner would de-bond from the composite and buckling took place during depressurization. No composite failures or indications of impeding composite failures were obtained in the metal-lined vessels.

  3. Simply actuated closure for a pressure vessel - Design for use to trap deep-sea animals

    NASA Technical Reports Server (NTRS)

    Yayanos, A. A.

    1977-01-01

    A pressure vessel is described that can be closed by a single translational motion within 1 sec. The vessel is a key component of a trap for small marine animals and operates automatically on the sea floor. As the vessel descends to the sea floor, it is subjected both internally and externally to the high pressures of the deep sea. The mechanism for closing the pressure vessel on the sea floor is activated by the timed release of the ballast which was used to sink the trap. As it rises to the sea surface, the internal pressure of the vessel remains near the value present on the sea floor. The pressure vessel has been used in simulated ocean deployments and in the deep ocean (9500 m) with a 75%-85% retention of the deep-sea pressure. Nearly 100% retention of pressure can be achieved by using an accumulator filled with a gas.

  4. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test: Part 2. Part 2

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezirian, Michael; Varanauski, Don; Leifeste, Mark; Yoder, Tommy; Woodworth, Warren

    2010-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPY has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. A more aggressive second phase, performed at 160 F, was designed to determine if the test article will exceed the 95% confidence interval ofthe model. In phase 3, the vessel pressure was increased to above maximum operating pressure while maintaining the phase 2 temperature. After reaching enough effectives hours to reach the 99.99% confidence level of the model phase 4 testing began when the temperature was increased to greater than 170 F. The vessel was maintained at phase 4 conditions until it failed after over 3 million effect hours. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  5. Optimization of Composite Material System and Lay-up to Achieve Minimum Weight Pressure Vessel

    NASA Astrophysics Data System (ADS)

    Mian, Haris Hameed; Wang, Gang; Dar, Uzair Ahmed; Zhang, Weihong

    2013-10-01

    The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [ 0 m /90 n ] s , angle-ply [ ±θ] ns , [ 90/±θ] ns and [ 0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai-Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [ ±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.

  6. Recent advances in lightweight, filament-wound composite pressure vessel technology

    NASA Technical Reports Server (NTRS)

    Lark, R. F.

    1977-01-01

    A review of recent advances is presented for lightweight, high performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single cycle burst and cyclic fatigue loading. Filament wound fiber/epoxy composite vessels were made from S glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessels structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all titanium pressure vessels. Significant findings in each area are summarized.

  7. A Multiscale Modeling Approach to Analyze Filament-Wound Composite Pressure Vessels

    SciTech Connect

    Nguyen, Ba Nghiep; Simmons, Kevin L.

    2013-07-22

    A multiscale modeling approach to analyze filament-wound composite pressure vessels is developed in this article. The approach, which extends the Nguyen et al. model [J. Comp. Mater. 43 (2009) 217] developed for discontinuous fiber composites to continuous fiber ones, spans three modeling scales. The microscale considers the unidirectional elastic fibers embedded in an elastic-plastic matrix obeying the Ramberg-Osgood relation and J2 deformation theory of plasticity. The mesoscale behavior representing the composite lamina is obtained through an incremental Mori-Tanaka type model and the Eshelby equivalent inclusion method [Proc. Roy. Soc. Lond. A241 (1957) 376]. The implementation of the micro-meso constitutive relations in the ABAQUS® finite element package (via user subroutines) allows the analysis of a filament-wound composite pressure vessel (macroscale) to be performed. Failure of the composite lamina is predicted by a criterion that accounts for the strengths of the fibers and of the matrix as well as of their interface. The developed approach is demonstrated in the analysis of a filament-wound pressure vessel to study the effect of the lamina thickness on the burst pressure. The predictions are favorably compared to the numerical and experimental results by Lifshitz and Dayan [Comp. Struct. 32 (1995) 313].

  8. Three-Dimensional Digital Image Correlation of a Composite Overwrapped Pressure Vessel During Hydrostatic Pressure Tests

    NASA Technical Reports Server (NTRS)

    Revilock, Duane M., Jr.; Thesken, John C.; Schmidt, Timothy E.

    2007-01-01

    Ambient temperature hydrostatic pressurization tests were conducted on a composite overwrapped pressure vessel (COPV) to understand the fiber stresses in COPV components. Two three-dimensional digital image correlation systems with high speed cameras were used in the evaluation to provide full field displacement and strain data for each pressurization test. A few of the key findings will be discussed including how the principal strains provided better insight into system behavior than traditional gauges, a high localized strain that was measured where gages were not present and the challenges of measuring curved surfaces with the use of a 1.25 in. thick layered polycarbonate panel that protected the cameras.

  9. Calcium channel blockade prevents pressure-dependent inward remodeling in isolated subendocardial resistance vessels.

    PubMed

    Sorop, Oana; Bakker, Erik N T P; Pistea, Adrian; Spaan, Jos A E; VanBavel, Ed

    2006-09-01

    The capacity for myocardial perfusion depends on the structure of the coronary microvascular bed. Coronary microvessels may adapt their structure to various stimuli. We tested whether the local pressure profile affects tone and remodeling of porcine coronary microvessels. Subendocardial vessels (approximately 160 microm, n=53) were cannulated and kept in organoid culture for 3 days under different transvascular pressure profiles: Osc 80: mean 80 mmHg, 60 mmHg peak-peak sine wave pulsation amplitude at 1.5 Hz; St 80: steady 80 mmHg; Osc 40: mean 40 mmHg, 30 mmHg amplitude; St 40: steady 40 mmHg. Under the Osc 80 profile, modest tone developed, reducing the diameter to 81+/-14% (mean+/-SE, n=6) of the maximal, passive diameter. No inward remodeling was found here, as determined from the passive pressure-diameter relation after 3 days of culture. Under all other profiles, much more tone developed (e.g., Osc 40: to 26+/-3%, n=7). In addition, these vessels showed eutrophic (i.e., without a change in wall cross-sectional area) inward remodeling (e.g., Osc 40: passive diameter reduction by 24+/-3%). The calcium blocker amlodipine induced maintained dilation in St 40 vessels and reversed the 22+/-3% (n=6) inward remodeling to 15+/-3% (n=8) outward remodeling toward day 3. Vessels required a functional endothelium to maintain structural integrity in culture. Our data indicate that reduction of either mean pressure or pulse pressure leads to microvascular constriction followed by inward remodeling. These effects could be reversed by amlodipine. Although microvascular pressure profiles distal to stenoses are poorly defined, these data suggest that vasodilator therapy could improve subendocardial microvascular function and structure in coronary artery disease.

  10. Continuous Cooling Transformations in Nuclear Pressure Vessel Steels

    NASA Astrophysics Data System (ADS)

    Pous-Romero, Hector; Bhadeshia, Harry K. D. H.

    2014-10-01

    A class of low-alloy steels often referred to as SA508 represent key materials for the manufacture of nuclear reactor pressure vessels. The alloys have good properties, but the scatter in properties is of prime interest in safe design. Such scatter can arise from microstructural variations but most studies conclude that large components made from such steels are, following heat treatment, fully bainitic. In the present work, we demonstrate with the help of a variety of experimental techniques that the microstructures of three SA508 Gr.3 alloys are far from homogeneous when considered in the context of the cooling rates encountered in practice. In particular, allotriomorphic ferrite that is expected to lead to a deterioration in toughness, is found in the microstructure for realistic combinations of austenite grain size and the cooling rate combination. Parameters are established to identify the domains in which SA508 Gr.3 steels transform only into the fine bainitic microstructures.

  11. The behavior of shallow flaws in reactor pressure vessels

    SciTech Connect

    Rolfe, S.T. )

    1991-11-01

    Both analytical and experimental studies have shown that the effect of crack length, a, on the elastic-plastic toughness of structural steels is significant. The objective of this report is to recommend those research investigations that are necessary to understand the phenomenon of shallow behavior as it affects fracture toughness so that the results can be used properly in the structural margin assessment of reactor pressure vessels (RPVs) with flaws. Preliminary test results of A 533 B steel show an elevated crack-tip-opening displacement (CTOD) toughness similar to that observed for structural steels tested at the University of Kansas. Thus, the inherent resistance to fracture initiation of A 533 B steel with shallow flaws appears to be higher than that used in the current American Society of Mechanical Engineers (ASME) design curves based on testing fracture mechanics specimens with deep flaws. If this higher toughness of laboratory specimens with shallow flaws can be transferred to a higher resistance to failure in RPV design or analysis, then the actual margin of safety in nuclear vessels with shallow flaws would be greater than is currently assumed on the basis of deep-flaw test results. This elevation in toughness and greater resistance to fracture would be a very desirable situation, particularly for the pressurized-thermal shock (PTS) analysis in which shallow flaws are assumed to exist. Before any advantage can be taken of this possible increase in initiation toughness, numerous factors must be analyzed to ensure the transferability of the data. This report reviews those factors and makes recommendations of studies that are needed to assess the transferability of shallow-flaw toughness test results to the structural margin assessment of RPV with shallow flaws. 14 refs., 8 figs.

  12. Performance Evaluation Tests of Insulated Pressure Vessels for Vehicular Hydrogen Storage

    SciTech Connect

    Aceves, S M; Martinez-Frias, J; Espinoza-Loza, F

    2002-03-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen or ambient-temperature compressed hydrogen. This flexibility results in multiple advantages with respect to compressed hydrogen tanks or low-pressure liquid hydrogen tanks. Our work is directed at verifying that commercially available aluminum-lined, fiber-wrapped pressure vessels can be safely used to store liquid hydrogen. A series of tests have been conducted, and the results indicate that no significant vessel damage has resulted from cryogenic operation. Future activities include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for certification of insulated pressure vessels.

  13. Certification Testing and Demonstration of Insulated Pressure Vessels for Vehicular Hydrogen Storage

    SciTech Connect

    Aceves, S M; Martinez-Frias, J; Espinosa-Loza, F

    2002-05-22

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen or ambient-temperature compressed hydrogen. This flexibility results in multiple advantages with respect to compressed hydrogen tanks or low-pressure liquid hydrogen tanks. Our work is directed at verifying that commercially available aluminum-lined, fiber-wrapped pressure vessels can be safely used to store liquid hydrogen. A series of tests have been conducted, and the results indicate that no significant vessel damage has resulted from cryogenic operation. Future activities include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for certification of insulated pressure vessels.

  14. Safety evaluation design of filament wound structures - Cases of pressure vessels and pipes

    NASA Astrophysics Data System (ADS)

    Kawahara, Masanori; Mori, Takao; Hirase, Yosihiro; Katoh, Akihiko; Ishihara, Toshio

    Procedures are presented for the safety-related evaluation of filament-wound composite products, such as pressure vessels and pipes. In order to increase the fatigue strength of pressure vessel metallic liners subject to cyclic internal pressures, by controlling residual stresses, the 'autofrettage' overpressuring treatment has been devised.

  15. 30 CFR 57.13001 - General requirements for boilers and pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false General requirements for boilers and pressure... NONMETAL MINES Compressed Air and Boilers § 57.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance...

  16. 30 CFR 56.13001 - General requirements for boilers and pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false General requirements for boilers and pressure... MINES Compressed Air and Boilers § 56.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  17. 30 CFR 57.13001 - General requirements for boilers and pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false General requirements for boilers and pressure... NONMETAL MINES Compressed Air and Boilers § 57.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance...

  18. 30 CFR 57.13001 - General requirements for boilers and pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false General requirements for boilers and pressure... NONMETAL MINES Compressed Air and Boilers § 57.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance...

  19. 30 CFR 56.13001 - General requirements for boilers and pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false General requirements for boilers and pressure... MINES Compressed Air and Boilers § 56.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  20. 30 CFR 56.13001 - General requirements for boilers and pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false General requirements for boilers and pressure... MINES Compressed Air and Boilers § 56.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  1. 30 CFR 56.13001 - General requirements for boilers and pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false General requirements for boilers and pressure... MINES Compressed Air and Boilers § 56.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  2. 30 CFR 57.13001 - General requirements for boilers and pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false General requirements for boilers and pressure... NONMETAL MINES Compressed Air and Boilers § 57.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance...

  3. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  4. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  5. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  6. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  7. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  8. D-Zero Central Calorimeter Pressure Vessel and Vacuum Vessel Safety Notes

    SciTech Connect

    Rucinski, R.; Luther, R.; /Fermilab

    1990-10-25

    The relief valve and relief piping capacity was calculated to be 908 sefm air. This exceeds all relieving conditions. The vessel also has a rupture disc with a 2640 scfm air stamped capacity. In order to significantly decrease the amount of time required to fill the cryostats, it is desired to raise the setpoint of the 'operating' relief valve on the argon storage dewar to 20 psig from its existing 16 psig setting. This additional pressure increases the flow to the cryostats and will overwhelm the relief capacity if the temperature of the modules within these vessels is warm enough. Using some conservative assumptions and simple calculations within this note, the maximum average temperature that the modules within each cryostat can be at prior to filling from the storage dewar with liquid argon is at least 290 K. The average temperature of the module mass for any of the three cryostats can be as high as 290 K prior to filling that particular cryostat. This should not be confused with the average temperature of a single type or location which is useful in protecting the modules-not necessarily the vessel itself. A few modules of each type and at different elevations should be used in an average which would account for the different weights of each module. Note that at 290 K, the actual flow of argon through the relief valve and the rupture disk was under the maximum theoretical flows for each relief device. This means that the bulk temperature could actually have been raised to flow argon through the reliefs at their maximum capacity. Therefore, the temperature of 290 K is a conservative value for the calculated flow rate of 12.3 gpm. Safeguards in addition to and used in conjunction with operating procedures shall be implemented in such a way so that the above temperature limitation is not exceeded and such that it is exclusive of the programmable logic controller (PLC). One suggestion is using a toggle switch for each cryostat mounted in the PLC I/O box which

  9. Predicting burst pressures in filament-wound composite pressure vessels by using acoustic emission data

    NASA Astrophysics Data System (ADS)

    Hill, Eric V. K.

    1992-12-01

    Multivariate statistical analysis was used to generate equations for predicting burst pressures in 14.6 cm dia. fiberglass-epoxy and 45.7 cm dia. graphite-epoxy pressure vessels from acoustic emission (AE) data taken during hydroproof. Using the AE energy and amplitude measurements as the primary independent variables, the less accurate of the two linear equations was able to predict burst pressures to within +/- 0.841 MPa of the value given by the 95 percent prediction interval. Moreover, this equation included the effects of two bottles that contained simulated manufacturing defects. Because the AE data used to generate the burst-pressure equations were both taken at or below 25 percent of the expected burst pressures, it is anticipated that by using this approach, it would be possible to lower proof pressures in larger filament-wound composite pressure vessels such as rocket motor cases. This would minimize hydroproof damage to the composite structure and the accompanying potential for premature failure in service.

  10. Hydrogen attack of pressure-vessel steel. Progress report, April 1, 1980-March 31, 1981

    SciTech Connect

    Shewmon, P.G.

    1980-12-01

    The nucleation and growth of methane bubbles in the hydrogen attack of pressure vessel steel has been shown to obey models developed to describe the growth of bubbles limiting the creep ductility of metals. This has been done through studies of the effect of prior deformation on bubble nucleation as well as the effect of methane pressure (stress) and temperature on growth kinetics. A comprehensive model of the factors limiting growth has been developed. Its application to the hydrogen attack of a 2 1/4 Cr-1 Mo steel leads to several interesting predictions.

  11. A Reactor Pressure Vessel Dosimetry Calculation Using ATTILA, An Unstructured Tetrahedral Mesh Discrete-Ordinates Code

    SciTech Connect

    Wareing, T.A.; Parsons, D.K.; Pautz, S.

    1997-12-31

    Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. In this paper we describe the application of ATTILA to a 3-D reactor pressure vessel dosimetry problem. We provide numerical results from ATTILA and the Monte Carlo code, MCNP. The results demonstrate the effectiveness and efficiency of ATTILA for such calculations.

  12. Ultrasonic NDE of Kevlar-epoxy filament wound spherical pressure vessels

    SciTech Connect

    Blake, R.A.; Steiner, K.V.

    1985-10-01

    The nondestructive evaluation of Kevlar-epoxy filament wound spherical composite pressure vessels is performed through the use of a six axis rotatorially articulated robotic manipulator. Ultrasonic pulse-echo techniques are employed to form C-scan images based upon amplitude and attenuation data gathered by a 68000 based microcomputer system. The data are imaged in planar and three dimensional forms and are further enhanced and analyzed through image processing techniques specifically developed for the analysis of complex composite structures. 25 figs.

  13. IAEA international studies on irradiation embrittlement of reactor pressure vessel steels

    SciTech Connect

    Brumovsky, M.; Steele, L.E.

    1997-02-01

    In last 25 years, three phases a Co-operative Research Programme on Irradiation Embrittlement of Reactor Pressure Vessel Steels has been organized by the International Atomic Energy Agency. This programme started with eight countries in 1971 and finally 16 countries took part in phase III of the Programme in 1983. Several main efforts were put into preparation of the programme, but the principal task was concentrated on an international comparison of radiation damage characterization by different laboratories for steels of {open_quotes}old{close_quotes} (with high impurity contents) and {open_quotes}advanced{close_quotes} (with low impurity contents) types as well as on development of small scale fracture mechanics procedures applicable to reactor pressure vessel surveillance programmes. This year, a new programme has been opened, concentrated mostly on small scale fracture mechanics testing.

  14. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs). Corrected Copy, Aug. 25, 2014

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.

  15. Composite aluminum-fiberglass epoxy pressure vessels for transportation of LNG at intermediate temperature

    SciTech Connect

    Ladkany, S.G.

    1982-01-01

    The design of large, 6-m diameter, composite aluminum-fiber-glass epoxy pressure vessels for the transportation of liquified natural gas at intermediate temperatures is presented. The pressure vessels are designed to have an operating pressure range of up to 6.21 MPa and pressure-to-burst ratio close to two. The cylindrical pressure vessels are circumferentially reinforced with layers of high-strength fiberglass epoxy or pultruded glass polyester overwrap. The vessels are prestressed at ambient temperature with the sizing technique of autofrettage. They are designed for temperature and pressure conditions between the critical conditions of 191 K and 4.69 MPa and atmospheric conditions of 106 K and 0.1 MPa. The ultimate failure modes are leak-before-burst and are designed in the circumferential direction to prevent the possibility of an axial separation of the vessel at failure.

  16. Elastic analysis of heterogeneous thick-walled spherical pressure vessels with parabolic varying properties

    NASA Astrophysics Data System (ADS)

    Karami, Keyhan; Abedi, Majid; Zamani Nejad, Mohammad; Lotfian, Mohammad Hassan

    2012-12-01

    On the basis of plane elasticity theory (PET), the displacement and stress components in a thick-walled spherical pressure vessels made of heterogeneous materials subjected to internal and external pressure is developed. The mechanical properties except the Poisson's ratio are assumed to obey the parabolic variations throughout the thickness. Effect of material inhomogeneity on the elastic deformations and stresses is investigated. The analytical solutions and the solutions carried out through the FEM have a good agreement. The values used in this study are arbitrary chosen to demonstrate the effect of inhomogeneity on displacements, and stresses distributions.

  17. Dual shell reactor vessel: A pressure-balanced system for high pressure and temperature reactions

    SciTech Connect

    Robertus, R.J.; Fassbender, A.G.; Deverman, G.S.

    1995-03-01

    The main purpose of this work was to demonstrate the Dual Shell Pressure Balanced Vessel (DSPBV) as a safe and economical reactor for the hydrothermal water oxidation of hazardous wastes. Experimental tests proved that the pressure balancing piston and the leak detection concept designed for this project will work. The DSPBV was sized to process 10 gal/hr of hazardous waste at up to 399{degree}C (750{degree}F) and 5000 psia (34.5 MPa) with a residence time of 10 min. The first prototype reactor is a certified ASME pressure vessel. It was purchased by Innotek Corporation (licensee) and shipped to Pacific Northwest Laboratory for testing. Supporting equipment and instrumentation were, to a large extent, transported here from Battelle Columbus Division. A special air feed system and liquid pump were purchased to complete the package. The entire integrated demonstration system was assembled at PNL. During the activities conducted for this report, the leak detector design was tested on bench top equipment. Response to low levels of water in oil was considered adequate to ensure safety of the pressure vessel. Shakedown tests with water only were completed to prove the system could operate at 350{degree}C at pressures up to 3300 psia. Two demonstration tests with industrial waste streams were conducted, which showed that the DSPBV could be used for hydrothermal oxidation. In the first test with a metal plating waste, chemical oxygen demand, total organic carbon, and cyanide concentrations were reduced over 90%. In the second test with a munitions waste, the organics were reduced over 90% using H{sub 2}O{sub 2} as the oxidant.

  18. 30 CFR 57.13001 - General requirements for boilers and pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NONMETAL MINES Compressed Air and Boilers § 57.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with... 30 Mineral Resources 1 2010-07-01 2010-07-01 false General requirements for boilers and...

  19. Experimental Investigation of Composite Pressure Vessel Performance and Joint Stiffness for Pyramid and Inverted Pyramid Joints

    NASA Technical Reports Server (NTRS)

    Verhage, Joseph M.; Bower, Mark V.; Gilbert, Paul A. (Technical Monitor)

    2001-01-01

    The focus of this study is on the suitability in the application of classical laminate theory analysis tools for filament wound pressure vessels with adhesive laminated joints in particular: pressure vessel wall performance, joint stiffness and failure prediction. Two 18-inch diameter 12-ply filament wound pressure vessels were fabricated. One vessel was fabricated with a 24-ply pyramid laminated adhesive double strap butt joint. The second vessel was fabricated with the same number of plies in an inverted pyramid joint. Results from hydrostatic tests are presented. Experimental results were used as input to the computer programs GENLAM and Laminate, and the output compared to test. By using the axial stress resultant, the classical laminate theory results show a correlation within 1% to the experimental results in predicting the pressure vessel wall pressure performance. The prediction of joint stiffness for the two adhesive joints in the axial direction is within 1% of the experimental results. The calculated hoop direction joint stress resultant is 25% less than the measured resultant for both joint configurations. A correction factor is derived and used in the joint analysis. The correction factor is derived from the hoop stress resultant from the tank wall performance investigation. The vessel with the pyramid joint is determined to have failed in the joint area at a hydrostatic pressure 33% value below predicted failure. The vessel with the inverted pyramid joint failed in the wall acreage at a hydrostatic pressure within 10% of the actual failure pressure.

  20. Coordinated sensing and autonomous repair of pressure vessels and structures

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Hurley, David A.; Gollins, Kenneth; Gervais, Anthony

    2010-04-01

    Self-repairing structural systems can potentially improve performance ranges and lifetimes compared to those of conventional systems without self-healing capability. Self-healing materials have been used in automotive and aeronautical applications for over a century. The bulk of these systems operate by using the damage to directly initiate the repair response without any supervisory coordination. Integrating sensing and supervisory control technologies with self-healing may improve the safety and reliability of critical components and structures. This project used laboratory scale test beds to illustrate the benefit of an integrated sensing, control and self-healing system. A thermal healing polymer embedded with resistive heating wires acted as the sensing-healing material. Sensing duties were performed using an impedance, capacitance, and resistance testing device and a PC acted as the controller. As damage occurs to the polymer it is detected, located, and characterized. Based on the sensor signal, a decision is made as to whether to execute a repair and then to subsequently monitor the repair process to ensure completeness. The second demonstration was a self-sealing pressure vessel with integrated sensing and healing capability. These proof-of-concept prototypes can likely be expanded and improved with alternative sensor options, sensing-healing materials, and system architecture.

  1. lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish.

    PubMed

    Okuda, Kazuhide S; Astin, Jonathan W; Misa, June P; Flores, Maria V; Crosier, Kathryn E; Crosier, Philip S

    2012-07-01

    We have generated novel transgenic lines that brightly mark the lymphatic system of zebrafish using the lyve1 promoter. Facilitated by these new transgenic lines, we generated a map of zebrafish lymphatic development up to 15 days post-fertilisation and discovered three previously uncharacterised lymphatic vessel networks: the facial lymphatics, the lateral lymphatics and the intestinal lymphatics. We show that a facial lymphatic vessel, termed the lateral facial lymphatic, develops through a novel developmental mechanism, which initially involves vessel growth through a single vascular sprout followed by the recruitment of lymphangioblasts to the vascular tip. Unlike the lymphangioblasts that form the thoracic duct, the lymphangioblasts that contribute to the lateral facial lymphatic vessel originate from a number of different blood vessels. Our work highlights the additional complexity of lymphatic vessel development in the zebrafish that may increase its versatility as a model of lymphangiogenesis.

  2. Managing Pressure Vessel Equipment as a Capital Asset.

    ERIC Educational Resources Information Center

    Robinson, Glenn; Trombley, Robert; Shultes, Kenneth

    1999-01-01

    Argues the importance of treating facility pressure equipment as capital assets and discusses three steps in their management process. The following steps are discussed: understanding the condition of all major equipment; altering maintenance practices and procedures; and developing a long-term equipment strategy such as increased monitoring,…

  3. Simple method for forming thin-wall pressure vessels

    NASA Technical Reports Server (NTRS)

    Erickson, A. L.; Guist, L. R.

    1972-01-01

    Application of internal hydrostatic pressure to seam-welded circular cylindrical tanks having corner-welded, flat, circular ends forms large thin-walled high quality tanks. Form limits expansion of cylindrical portion of final tank while hemispherical ends develop freely; no external form or restraint is required to fabricate spherical tanks.

  4. Determination of the critical buckling pressure of blood vessels using the energy approach.

    PubMed

    Han, Hai-Chao

    2011-03-01

    The stability of blood vessels under lumen blood pressure is essential to the maintenance of normal vascular function. Differential buckling equations have been established recently for linear and nonlinear elastic artery models. However, the strain energy in bent buckling and the corresponding energy method have not been investigated for blood vessels under lumen pressure. The purpose of this study was to establish the energy equation for blood vessel buckling under internal pressure. A buckling equation was established to determine the critical pressure based on the potential energy. The critical pressures of blood vessels with small tapering along their axis were estimated using the energy approach. It was demonstrated that the energy approach yields both the same differential equation and critical pressure for cylindrical blood vessel buckling as obtained previously using the adjacent equilibrium approach. Tapering reduced the critical pressure of blood vessels compared to the cylindrical ones. This energy approach provides a useful tool for studying blood vessel buckling and will be useful in dealing with various imperfections of the vessel wall.

  5. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-8. Fracture, fatigue and advanced mechanics

    SciTech Connect

    Short, W.E.; Zamrik, S.Y.

    1985-01-01

    State-of-the-art engineering practices in pressure vessel and piping technology are the result of continual efforts in the evaluation of problems which have been experienced and the development of appropriate design and analysis methods for those applications. The resulting advances in technology benefit industry with properly engineered, safe, cost-effective pressure vessels and piping systems. To this end, advanced study continues in specialized areas of mechanical engineering such as fracture mechanics, experimental stress analysis, high pressure applications and related material considerations, as well as advanced techniques for evaluation of commonly encountered design problems. This volume is comprised of current technical papers on various aspects of fracture, fatigue and advanced mechanics as related to the design and analysis of pressure vessels and piping.

  6. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    SciTech Connect

    Walter, Matthew; Yin, Shengjun; Stevens, Gary; Sommerville, Daniel; Palm, Nathan; Heinecke, Carol

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  7. Estimation of mechanical properties of irradiated nuclear pressure vessel steel by use of subsized CT specimen and small punch specimen

    SciTech Connect

    Mao, X. . Dept. of Mechanical Engineering); Takahashi, H. ); Kodaira, T. )

    1991-11-01

    This paper reports on the 2-1/4 Cr-1M{sub 0} steel that has been selected as the material for the reactor pressure vessel (RPV) of a multipurpose experimental high temperature gas cooled reactor designed by JAERI. The 2-1/4 Cr-1M{sub 0} steel has successful records for high temperature pressure vessels in the petrochemical industries and the ASME Code Case authorizes the use of the steel in these pressure vessels. However, the steel has not been used to nuclear reactor pressure vessels so far. Since the material in the so-called belt line region of the nuclear pressure vessels undergo changes in toughness and strength due to neutron irradiation, it is quite urgent to collect the fracture toughness and strength data of the irradiated steel for the evaluation of the structural intergravity of the reactor pressure vessel of high radiation resistance. In order to study irradiation damage of 2-1/4 Cr-1M{sub 0} steel, small specimens are required because of the severe limitations on specimen size in irradiated-material testing facilities (e.g. the limited space available for testing in nuclear reactors and the narrow damage zone produced by charged particle accelerators). In order to obtain more information about fracture properties of the 2-1/4 Cr- 1M{sub 0} steel from specimens, a subsized compact tensile (CT) specimen, a small punch (SP) specimen and tensile specimen of the irradiated 2-1/4 Cr-1M{sub 0} steel were used to provide radiation effects on fracture toughness, yield strength and ultimate strength. The small punch test, which has been developed recently provides information of the yield and ultimate strength as well as fracture toughness. This report describes the behavior of the neutron irradiation embrittlement of the nuclear reactor pressure vessel steel 2-1/4 Cr-1M{sub 0} by use of new testing approach - subsized specimen techniques.

  8. Fabrication Flaw Density and Distribution In Repairs to Reactor Pressure Vessel and Piping Welds

    SciTech Connect

    GJ Schuster, FA Simonen, SR Doctor

    2008-04-01

    The Pacific Northwest National Laboratory is developing a generalized fabrication flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in U.S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This report describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs. These results show that repair flaws are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. The relevance of construction records is established for describing fabrication processes and product forms. An analysis of these records shows there was a significant change in repair frequency over the years when these components were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance. Fabrication flaws in repairs are characterized using optimized-access, high-sensitivity nondestructive ultrasonic testing. Flaw characterizations are then validated by other nondestructive evaluation techniques and complemented by destructive testing.

  9. Manufacturing Cost Analysis of Novel Steel/Concrete Composite Vessel for Stationary Storage of High-Pressure Hydrogen

    SciTech Connect

    Feng, Zhili; Zhang, Wei; Wang, Jy-An John; Ren, Fei

    2012-09-01

    A novel, low-cost, high-pressure, steel/concrete composite vessel (SCCV) technology for stationary storage of compressed gaseous hydrogen (CGH2) is currently under development at Oak Ridge National Laboratory (ORNL) sponsored by DOE s Fuel Cell Technologies (FCT) Program. The SCCV technology uses commodity materials including structural steels and concretes for achieving cost, durability and safety requirements. In particular, the hydrogen embrittlement of high-strength low-alloy steels, a major safety and durability issue for current industry-standard pressure vessel technology, is mitigated through the use of a unique layered steel shell structure. This report presents the cost analysis results of the novel SCCV technology. A high-fidelity cost analysis tool is developed, based on a detailed, bottom-up approach which takes into account the material and labor costs involved in each of the vessel manufacturing steps. A thorough cost study is performed to understand the SCCV cost as a function of the key vessel design parameters, including hydrogen pressure, vessel dimensions, and load-carrying ratio. The major conclusions include: The SCCV technology can meet the technical/cost targets set forth by DOE s FCT Program for FY2015 and FY2020 for all three pressure levels (i.e., 160, 430 and 860 bar) relevant to the hydrogen production and delivery infrastructure. Further vessel cost reduction can benefit from the development of advanced vessel fabrication technologies such as the highly automated friction stir welding (FSW). The ORNL-patented multi-layer, multi-pass FSW can not only reduce the amount of labor needed for assembling and welding the layered steel vessel, but also make it possible to use even higher strength steels for further cost reductions and improvement of vessel structural integrity. It is noted the cost analysis results demonstrate the significant cost advantage attainable by the SCCV technology for different pressure levels when compared to the

  10. Pressure vessels and piping codes and standards: Volume 2. PVP-Volume 339

    SciTech Connect

    Esselman, T.C.; Balkey, K.; Chao, K.K.N.; Gosselin, S.; Hollinger, G.; Lubin, B.T.; Mohktarain, K.; O`Donnell, W.; Rao, K.R.

    1996-12-01

    The role of Codes and Standards for pressure vessels and piping has increased significantly over the past decade. More and more, developments in Codes and Standards are accommodating the increasing sophistication of analysis methods, the need to address post-construction and operating plant issues, and the efficiencies that may be gained by focusing codes and standards on the areas that present the greatest risk. Codes and Standards for new construction also have had to accommodate greater challenges and more extreme environments imposed by more escalating requirements on piping and pressure vessel design and fabrication. This volume has focused on these challenges faced by Codes and Standards development. The topics in this volume include: (1) International Code Developments; (2) Seismic Developments in Codes and Standards; (3) Fabrication, Repairs, and Installation Issues Relating to Codes and Standards; (4) Application of Risk Based Criteria to In-Service Inspections; (5) Risk Based Codes and Standards; (6) The Code--Then and Now; (7) Reactor Water Fatigue: Fitness for Service; and (8) Two ASME Pressure Technology Code Issues: Post-Construction Codes and Metrication. Separate abstracts were prepared for most of the papers in this volume.

  11. Pressure vessel fracture, fatigue, and life management: PVP-Volume 233

    SciTech Connect

    Bhandari, S.; Milella, P.P.; Pennell, W.E.

    1992-01-01

    This volume contains papers relating to the structural integrity assessment of pressure vessels and piping, with special emphasis on the effects of aging. The papers are organized in the following five areas: (1) pressure vessel life management; (2) fracture characterization using local and dual-parameter approaches; (3) stratification and thermal fatigue; (4) creep, fatigue, and fracture; and (5) integrated approach to integrity assessment of pressure components. Separate abstracts were prepared for 39 papers in this conference.

  12. The Safety Course Design and Operations of Composite Overwrapped Pressure Vessels (COPV)

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Prosser, William

    2015-01-01

    Following a Commercial Launch Vehicle On-Pad COPV (Composite Overwrapped Pressure Vessels) failure, a request was received by the NESC (NASA Engineering and Safety Center) June 14, 2014. An assessment was approved July 10, 2014, to develop and assess the capability of scanning eddy current (EC) nondestructive evaluation (NDE) methods for mapping thickness and inspection for flaws. Current methods could not identify thickness reduction from necking and critical flaw detection was not possible with conventional dye penetrant (PT) methods, so sensitive EC scanning techniques were needed. Developmental methods existed, but had not been fully developed, nor had the requisite capability assessment (i.e., a POD (Probability of Detection) study) been performed.

  13. Evaluation of embedded FBGs in composite overwrapped pressure vessels for strain based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Pena, Francisco; Strutner, Scott M.; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.

    2014-03-01

    The increased use of composite overwrapped pressure vessels (COPVs) in space and commercial applications, and the explosive nature of pressure vessel ruptures, make it crucial to develop techniques for early condition based damage detection. The need for a robust health monitoring system for COPVs is a high priority since the mechanisms of stress rupture are not fully understood. Embedded Fiber Bragg Grating (FBG) sensors have been proposed as a potential solution that may be utilized to anticipate and potentially avoid catastrophic failures. The small size and light weight of optical fibers enable manufactures to integrate FBGs directly into composite structures for the purpose of structural health monitoring. A challenging aspect of embedding FBGs within composite structures is the risk of potentially impinging the optical fiber while the structure is under load, thus distorting the optical information to be transferred. As the COPV is pressurized, an embedded optical sensor is compressed between the expansion of the inner bottle, and the outer overwrap layer of composite. In this study, FBGs are installed on the outer surface of a COPV bottle as well as embedded underneath a composite overwrap layer for comparison of strain measurements. Experimental data is collected from optical fibers containing multiple FBGs during incremental pressurization cycles, ranging from 0 to 10,000 psi. The graphical representations of high density strain maps provide a more efficient process of monitoring structural integrity. Preliminary results capture the complex distribution of strain, while furthering the understanding of the failure mechanisms of COPVs.

  14. Photoacoustic sample vessel and method of elevated pressure operation

    DOEpatents

    Autrey, Tom; Yonker, Clement R.

    2004-05-04

    An improved photoacoustic vessel and method of photoacoustic analysis. The photoacoustic sample vessel comprises an acoustic detector, an acoustic couplant, and an acoustic coupler having a chamber for holding the acoustic couplant and a sample. The acoustic couplant is selected from the group consisting of liquid, solid, and combinations thereof. Passing electromagnetic energy through the sample generates an acoustic signal within the sample, whereby the acoustic signal propagates through the sample to and through the acoustic couplant to the acoustic detector.

  15. Weld Repair of a Stamped Pressure Vessel in a Radiologically Controlled Zone

    SciTech Connect

    Cannell, Gary L.; Huth, Ralph J.; Hallum, Randall T.

    2013-08-26

    In September 2012 an ASME B&PVC Section VIII stamped pressure vessel located at the DOE Hanford Site Effluent Treatment Facility (ETF) developed a through-wall leak. The vessel, a steam/brine heat exchanger, operated in a radiologically controlled zone (by the CH2MHill PRC or CHPRC), had been in service for approximately 17 years. The heat exchanger is part of a single train evaporator process and its failure caused the entire system to be shut down, significantly impacting facility operations. This paper describes the activities associated with failure characterization, technical decision making/planning for repair by welding, logistical challenges associated with performing work in a radiologically controlled zone, performing the repair, and administrative considerations related to ASME code requirements.

  16. Non-invasive method and apparatus for measuring pressure within a pliable vessel

    NASA Technical Reports Server (NTRS)

    Shimizu, M. (Inventor)

    1983-01-01

    A non-invasive method and apparatus is disclosed for measuring pressure within a pliable vessel such as a blood vessel. The blood vessel is clamped by means of a clamping structure having a first portion housing a pressure sensor and a second portion extending over the remote side of the blood vessel for pressing the blood vessel into engagement with the pressure sensing device. The pressure sensing device includes a flat deflectable diaphragm portion arranged to engage a portion of the blood vessel flattened against the diaphragm by means of the clamp structure. In one embodiment, the clamp structure includes first and second semicylindrical members held together by retaining rings. In a second embodiment the clamp structure is of one piece construction having a solid semicylindrical portion and a hollow semicylindrical portion with a longitudinal slot in the follow semicylindrical portion through which a slip the blood vessel. In a third embodiment, an elastic strap is employed for clamping the blood vessel against the pressure sensing device.

  17. HFIR Pressure Vessel and Structural Components Materials Surveillance Program

    SciTech Connect

    Blakeman, E.D.; Cheverton, R.D.; Nanstad, R.K.

    1999-08-01

    A proposal has been made to increase the size of the HFIR HB-2 and HB-4 beam tubes and to extend the life of the vessel to 50 EFPY(100 MW). Studies indicate that the increase in radiation-induced embrittlement of the vessel can be tolerated, and an appropriate expanded vessel-materials surveillance program has been devised. This program, which is the subject of this report, includes additional beam-tube nozzle-material surveillance specimens, relocation of existing specimens of all materials, and additional dosimetry. As an aid in the placement of specimens and dosimeters, extensive two- and three-dimensional neutron and gamma flux/dpa transport calculations were made. Surveillance data will be added to the HFIR vessel (delta)NDTT vs dpa data base, and dosimetry will be used to normalize the calculated fluxes. The updated (delta)NDTT vs dpa correlation and the normalized dpa values will be used in the calculation of the probability of vessel failure. This procedure, in conjunction with periodic hydrostatic proof testing, is used to determine the useful life of the vessel.

  18. Pressure vessel components design and analysis; Proceedings of the Pressure Vessels and Piping Conference, New Orleans, LA, June 23-26, 1985

    SciTech Connect

    Gwaltney, R.C.

    1985-01-01

    The present conference on pressure vessels and piping encompasses topics in the design and analysis of tubesheet, bolted flange design advancements, computational methods for nonlinear problems, the design and analysis of valve applications, and computation methods for composite pipes and pressure vessels. Specific attention is given to the design of fixed tubesheet heat exchangers, the elastoplastic analysis of U-tube heat exchanger tubesheet, a novel approach to radial nozzle design in pressure vessel heads, a new procedure for gasket factors, nuclear bolting, the behavior of bolted flanges, pipeline stress analysis for lowering operations, and dynamic analysis of crack run-arrest nonisothermal plate experiments. Also noted are issues in water-steam flows through safety relief valves, seismic design criteria for nuclear power plant control valves, and finite element analysis methods for filament-wound composites.

  19. Strain analysis of pressure vessels contained pits based on digital image correlation method

    NASA Astrophysics Data System (ADS)

    Xu, Wan; Feng, Xiu; Li, Junrui; Shi, Xinfeng; Bai, Tian

    2016-01-01

    This investigation applied the digital image correlation technique (DIC) on a pressure vessel that contained several surface pit defects under high pressure. Data on the deformation of the defects and peripheral area is obtained by this method. The results show that the stress and strain increase with the depth among different pits and are the largest at the bottom of any given pit. This method has proven to be a good choice for this type of experiment, where elastic and plastic surface strains need to be measured. The DIC can satisfy the requirements of being in situ, in real time, full-field and make non-contact measurements with more accurate and obvious experimental results compared with traditional measurement methods and pressure vessel test regulations. Also, it is a new, effective way for monitoring defects in online pressure vessels as well as a reliable basis for pressure vessels' safety evaluation.

  20. Strength-toughness requirements for thick-walled high pressure vessels

    NASA Astrophysics Data System (ADS)

    Kapp, Joseph A.

    1992-05-01

    The strength and toughness requirements of materials used in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group - High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. The analysis is based on the validity requirement for plane-strain fracture of fracture toughness test specimens. This means that at fracture, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone since for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, since it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis, several parameters must be known, including vessel dimensions, material strength, degree of autofrettage, and design pressure. Remarkably, the results of the analysis show that the effects of radius ratio, pressure, and degree of autofrettage can be ignored when establishing strength and toughness requirements for design code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted.

  1. Recent advances in lightweight, filament-wound composite pressure vessel technology

    NASA Technical Reports Server (NTRS)

    Lark, R. F.

    1977-01-01

    A review of recent advances is presented for lightweight, high-performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single-cycle burst and cyclic fatigue loading. Filament-wound fiber/epoxy composite vessels were made from S-glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessel structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all-titanium pressure vessels. Significant findings in each area are summarized including data from current NASA-Lewis Research Center contractual and in-house programs.

  2. Designing of a Fleet-Leader Program for Carbon Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L.N.; Phoenix, S. Leigh

    2009-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases on board spacecraft when mass saving is a prime requirement. Substantial weight savings can be achieved compared to all metallic pressure vessels. For example, on the space shuttle, replacement of all metallic pressure vessels with Kevlar COPVs resulted in a weight savings of about 30 percent. Mass critical space applications such as the Ares and Orion vehicles are currently being planned to use as many COPVs as possible in place of all-metallic pressure vessels to minimize the overall mass of the vehicle. Due to the fact that overwraps are subjected to sustained loads during long periods of a mission, stress rupture failure is a major concern. It is, therefore, important to ascertain the reliability of these vessels by analysis, since it is practically impossible to show by experimental testing the reliability of flight quality vessels. Also, it is a common practice to set aside flight quality vessels as "fleet leaders" in a test program where these vessels are subjected to slightly accelerated operating conditions so that they lead the actual flight vessels both in time and load. The intention of fleet leaders is to provide advanced warning if there is a serious design flaw in the vessels so that a major disaster in the flight vessels can be averted with advance warning. On the other hand, the accelerating conditions must be not so severe as to be prone to false alarms. The primary focus of the present paper is to provide an analytical basis for designing a viable fleet leader program for carbon COPVs. The analysis is based on a stress rupture behavior model incorporating Weibull statistics and power-law sensitivity of life to fiber stress level.

  3. Pressure vessels and piping codes and standards: Volume 1. PVP-Volume 338

    SciTech Connect

    Esselman, T.C.; Adams, T.M.; Bhavnani, D.; Cofie, N.G.; Jones, D.P.; Olson, D.E.; Thailer, H.J.

    1996-12-01

    The role of Codes and Standards for pressure vessels and piping has increased significantly over the past decade. More and more, developments in Codes and Standards are accommodating the increasing sophistication of analysis methods, the need to address post-construction and operating plant issues, and the efficiencies that may be gained by focusing codes and standards on the areas that present the greatest risk. Codes and Standards for new construction also have had to accommodate greater challenges and more extreme environments imposed by more escalating requirements on piping and pressure vessel design and fabrication. This volume on Codes and Standards has focused on these challenges faced by Codes and Standards development. The topics in this volume include: (1) Socket Welds and Stress Intensification Factors; (2) Developments in Piping Code and Standards; (3) Root Cause Analysis; (4) B31.1 Code Developments and Applications; (5) Flow-Accelerated Corrosion Developments and Applications; (6) Advanced Analysis Methods and the ASME Code; and (7) Application of Advanced Analysis Methods for ASME Code Evaluation. Separate abstracts were prepared for most of the papers in this volume.

  4. 46 CFR 52.01-2 - Adoption of section I of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Pressure Vessel Code. (a) Main power boilers and auxiliary boilers shall be designed, constructed, inspected, tested, and stamped in accordance with section I of the ASME Boiler and Pressure Vessel Code... this part. The provisions in the appendix to section I of the ASME Boiler and Pressure Vessel Code...

  5. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-6. Structural dynamics

    SciTech Connect

    Chen, S.S.

    1985-01-01

    Structural dynamics is important in the design and assessment of pressure vessels and piping components. Extensive studies on the subject are being continued to enhance understanding of response characteristics, develop new/improved analytical, numerical and experimental techniques, and provide more reliable design guidelines. This volume contains thirty-seven papers covering a wide variety of topics. The structural components considered vary from fueling machines to snubbers; the excitation studied include seismic, acoustic, jet impact, etc.; and the advanced methods presented cover system identification, probabilistic techniques, nonlinear analysis, and novel experimental techniques.

  6. Review of current practices and requirements for the inspection of prestressed concrete pressure vessels

    SciTech Connect

    Reimann, K.J.

    1980-12-01

    Code requirements for pre- and in-service inspection of prestressed concrete pressure vessels as utilized in gas-cooled reactors are reviewed and compared with practices and experiences during construction, commissioning, and operation of such reactors. The pre-service inspection relies heavily on embedded instrumentation for measurements of stresses, temperatures, and displacements. The same instrumentation is later used for in-service surveillance, which additionally includes visual examination of exposed surfaces, monitoring of tendon conditions, and measurement of tendon loads. Improvement of present monitoring instrumentation and/or techniques, rather than development of new in-service inspection methods, is recommended.

  7. Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels Updated January 2014

    NASA Technical Reports Server (NTRS)

    Skow, Miles G.

    2014-01-01

    This three year project (FY12-14) will design and demonstrate the ability of new Magnetic Stress Gages for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap.

  8. Workbook for predicting pressure wave and fragment effects of exploding propellant tanks and gas storage vessels

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Kulesz, J. J.; Ricker, R. E.; Bessey, R. L.; Westine, P. S.; Parr, V. B.; Oldham, G. A.

    1975-01-01

    Technology needed to predict damage and hazards from explosions of propellant tanks and bursts of pressure vessels, both near and far from these explosions is introduced. Data are summarized in graphs, tables, and nomographs.

  9. Pressure Vessel and Internals of the International Reactor Innovative and Secure

    SciTech Connect

    Lombardi, C.V.; Padovani, E.; Cammi, A.; Collado, J.M.; Santoro, R.T.; Barnes, J.M.

    2002-07-01

    IRIS (International Reactor Innovative and Secure) is a modular, integral light water cooled, low-to-medium power reactor, which addresses the requirements defined by the US DOE for Generation IV reactors. Its integrated layout features a pressure vessel containing all the main primary circuit components: the internals and the biological shield, here described together with the pressure vessel, plus the steam generators, the pressurizer, and the main coolant pumps described in companion papers. For this reason the pressure vessel is a crucial component of the plant, which deserves the most demanding design effort. The wide inner annulus around the core is exploited to insert steel plates, in order to improve the inner shielding capability up to the elimination of the external biological shielding and to simplify decommissioning activities by having all the irradiated components inside the vessel. (authors)

  10. 46 CFR 167.25-5 - Inspection of boilers, pressure vessels, piping and appurtenances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-5 Inspection of boilers, pressure... (Marine Engineering) of this chapter, insofar as they relate to tests and inspection of cargo vessels....

  11. 46 CFR 167.25-5 - Inspection of boilers, pressure vessels, piping and appurtenances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-5 Inspection of boilers, pressure... (Marine Engineering) of this chapter, insofar as they relate to tests and inspection of cargo vessels....

  12. 46 CFR 167.25-5 - Inspection of boilers, pressure vessels, piping and appurtenances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-5 Inspection of boilers, pressure... (Marine Engineering) of this chapter, insofar as they relate to tests and inspection of cargo vessels....

  13. J-integral elastic plastic fracture mechanics evaluation of the stability of cracks in nuclear reactor pressure vessels

    SciTech Connect

    Gomez, M. P.; McMeeking, R. M.; Parks, D. M.

    1980-06-01

    Contributions were made toward developing a new methodology to assess the stability of cracks in pressure vessels made from materials that exhibit a significant increase in toughness during the early increments of crack growth. It has a wide range of validity from linear elastic to fully plastic behavior.

  14. Stress and Fracture Mechanics Analyses of Boiling Water Reactor and Pressurized Water Reactor Pressure Vessel Nozzles

    SciTech Connect

    Yin, Shengjun; Bass, Bennett Richard; Stevens, Gary; Kirk, Mark

    2011-01-01

    This paper describes stress analysis and fracture mechanics work performed to assess boiling water reactor (BWR) and pressurized water reactor (PWR) nozzles located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Various RPV nozzle geometries were investigated: 1. BWR recirculation outlet nozzle; 2. BWR core spray nozzle3 3. PWR inlet nozzle; ; 4. PWR outlet nozzle; and 5. BWR partial penetration instrument nozzle. The above nozzle designs were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-license (EOL) to require evaluation as part of establishing the allowed limits on heatup, cooldown, and hydrotest (leak test) conditions. These nozzles analyzed represent one each of the nozzle types potentially requiring evaluation. The purpose of the analyses performed on these nozzle designs was as follows: To model and understand differences in pressure and thermal stress results using a two-dimensional (2-D) axi-symmetric finite element model (FEM) versus a three-dimensional (3-D) FEM for all nozzle types. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated; To verify the accuracy of a selected linear elastic fracture mechanics (LEFM) hand solution for stress intensity factor for a postulated nozzle corner crack for both thermal and pressure loading for all nozzle types; To assess the significance of attached piping loads on the stresses in the nozzle corner region; and To assess the significance of applying pressure on the crack face with respect to the stress intensity factor for a postulated nozzle corner crack.

  15. Fundamental study of failure mechanisms of pressure vessels under thermo-mechanical cycling in multiphase environments

    NASA Astrophysics Data System (ADS)

    Penso Mula, Jorge Antonio

    Cracking and bulging in welded and internally lined pressure vessels that work in thermal-mechanical cycling services have been well known problems in the petrochemical, power and nuclear industries. Published literature and industry surveys show that similar problems have been occurring during the last 50 years. Understanding the causes of cracking and bulging would lead to improvements in the reliability of these pressure vessels. This study attempts to add information required for improving the knowledge and fundamental understanding of these problems. Cracking and bulging, most often in the weld areas, commonly experienced in delayed coking units (e.g. coke drums) in oil refineries are typical examples. The coke drum was selected for this study because of the existing field experience and past industrial investigation results that were available to serve as the baseline references for the analytical studies performed for this dissertation. Another reason for selecting the delayed coking units for this study was due to their high economical yields. Shutting down these units would cause a high negative economic impact on the refinery operations. Several failure mechanisms were hypothesized. The finite element method was used to analyze these significant variables and to verify the hypotheses. In conclusion, a fundamental explanation of the occurrence of bulging and cracking in pressure vessels in multiphase environments has been developed. Several important factors have been identified, including the high convection coefficient of the boiling layer during filling and quenching, the mismatch in physical, thermal and mechanical properties in the dissimilar weld of the clad plates and process conditions such as heating and quenching rate and warming time. Material selection for coke drums should consider not only fatigue strength but also corrosion resistance at high temperatures and low temperatures. Cracking occurs due to low cycle fatigue and corrosion. The FEA

  16. Pressure Vessel with Impact and Fire Resistant Coating and Method of Making Same

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2005-01-01

    An impact and fire resistant coating laminate is provided which serves as an outer protective coating for a pressure vessel such as a composite overwrapped vessel with a metal lining. The laminate comprises a plurality of fibers (e.g., jute twine or other, stronger fibers) which are wound around the pressure vessel and an epoxy matrix resin for the fibers. The epoxy matrix resin including a plurality of microspheres containing a temperature responsive phase change material which changes phase in response to exposure thereof to a predetermined temperature increase so as to afford increased insulation and hear absorption.

  17. Pressure vessel with impact and fire resistant coating and method of making same

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2005-01-01

    An impact and fire resistant coating laminate is provided which serves as an outer protective coating for a pressure vessel such as a composite overwrapped vessel with a metal lining. The laminate comprises a plurality of fibers (e.g., jute twine or other, stronger fibers) which are wound around the pressure vessel and an epoxy matrix resin for the fibers. The epoxy matrix resin including a plurality of microspheres containing a temperature responsive phase change material which changes phase in response to exposure thereof to a predetermined temperature increase so as to afford increased insulation and heat absorption.

  18. A Review of Large-Scale Fracture Experiments Relevant to Pressure Vessel Integrity Under Pressurized Thermal Shock Conditions

    SciTech Connect

    Pugh, C.E.

    2001-01-29

    Numerous large-scale fracture experiments have been performed over the past thirty years to advance fracture mechanics methodologies applicable to thick-wall pressure vessels. This report first identifies major factors important to nuclear reactor pressure vessel (RPV) integrity under pressurized thermal shock (PTS) conditions. It then covers 20 key experiments that have contributed to identifying fracture behavior of RPVs and to validating applicable assessment methodologies. The experiments are categorized according to four types of specimens: (1) cylindrical specimens, (2) pressurized vessels, (3) large plate specimens, and (4) thick beam specimens. These experiments were performed in laboratories in six different countries. This report serves as a summary of those experiments, and provides a guide to references for detailed information.

  19. Predictive Reactor Pressure Vessel Steel Irradiation Embrittlement Models: Issues and Opportunities

    SciTech Connect

    Odette, George Robert; Nanstad, Randy K

    2009-01-01

    Nuclear plant life extension to 80 years will require accurate predictions of neutron irradiation-induced increases in the ductile-brittle transition temperature ( T) of reactor pressure vessel (RPV) steels at high fluence conditions that are far outside the existing database. Remarkable progress in mechanistic understanding of irradiation embrittlement has led to physically motivated T correlation models that provide excellent statistical fi ts to the existing surveillance database. However, an important challenge is developing advanced embrittlement models for low fl ux-high fl uence conditions pertinent to extended life. These new models must also provide better treatment of key variables and variable combinations and account for possible delayed formation of late blooming phases in low copper steels. Other issues include uncertainties in the compositions of actual vessel steels, methods to predict T attenuation away from the reactor core, verifi cation of the master curve method to directly measure the fracture toughness with small specimens and predicting T for vessel annealing remediation and re-irradiation cycles.

  20. Detection of small-sized near-surface under-clad cracks for reactor pressure vessels

    SciTech Connect

    Taylor, T.T.; Crawford, S.L.; Doctor, S.R.; Posakony, G.J.

    1983-02-01

    The analysis of pressurized thermal shock (PTS) shows it is necessary for nondestructive evaluation to demonstrate high probability of detecting evaluation to demonstrate high probability of detecting cracks 0.250 inches deep and deeper at the clad/base metal interface. Ultrasonic techniques developed and used in Europe are evaluated in this paper for their applicability to US reactor pressure vessels for detecting cracks of interest for PTS. Flaw detectability experiments were carried out by testing the inspection technique's ability to detect artificial flaws under several types of clad, including some Manual Metal Arc (MMA) clad. Both ground and unground clad surfaces were evaluated. Crack sizing tests of the inspection technique were made using a crack tip diffraction technique.

  1. Composite Overwrapped Pressure Vessels (COPV): Flight Rationale for the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Kezirian, Michael T.; Johnson, Kevin L.; Phoenix, Stuart L.

    2011-01-01

    Each Orbiter Vehicle (Space Shuttle Program) contains up to 24 Kevlar49/Epoxy Composite Overwrapped Pressure Vessels (COPV) for storage of pressurized gases. In the wake of the Columbia accident and the ensuing Return To Flight (RTF) activities, Orbiter engineers reexamined COPV flight certification. The original COPV design calculations were updated to include recently declassified Kevlar COPV test data from Lawrence Livermore National Laboratory (LLNL) and to incorporate changes in how the Space Shuttle was operated as opposed to orinigially envisioned. 2005 estimates for the probability of a catastrophic failure over the life of the program (from STS-1 through STS-107) were one-in-five. To address this unacceptable risk, the Orbiter Project Office (OPO) initiated a comprehensive investigation to understand and mitigate this risk. First, the team considered and eventually deemed unfeasible procuring and replacing all existing flight COPVs. OPO replaced the two vessels with the highest risk with existing flight spare units. Second, OPO instituted operational improvements in ground procedures to signficiantly reduce risk, without adversely affecting Shuttle capability. Third, OPO developed a comprehensive model to quantify the likelihood of occurrance. A fully-instrumented burst test (recording a lower burst pressure than expected) on a flight-certified vessel provided critical understanding of the behavior of Orbiter COPVs. A more accurate model was based on a newly-compiled comprehensive database of Kevlar data from LLNL and elsewhere. Considering hardware changes, operational improvements and reliability model refinements, the mean reliability was determined to be 0.998 for the remainder of the Shuttle Program (from 2007, for STS- 118 thru STS-135). Since limited hardware resources precluded full model validation through multiple tests, additional model confidence was sought through the first-ever Accelerated Stress Rupture Test (ASRT) of a flown flight article

  2. Hydrogen Cracking and Stress Corrosion of Pressure Vessel Steel ASTM A543

    NASA Astrophysics Data System (ADS)

    AlShawaf, Ali Hamad

    The purpose of conducting this research is to develop fundamental understanding of the weldability of the modern Quenched and Tempered High Strength Low Alloy (Q&T HSLA) steel, regarding the cracking behavior and susceptibility to environmental cracking in the base metal and in the heat affected zone (HAZ) when welded. A number of leaking cracks developed in the girth welds of the pressure vessel after a short time of upgrading the material from plain carbon steel to Q&T HSLA steel. The new vessels were constructed to increase the production of the plant and also to save weight for the larger pressure vessel. The results of this research study will be used to identify safe welding procedure and design more weldable material. A standardized weldability test known as implant test was constructed and used to study the susceptibility of the Q&T HSLA steel to hydrogen cracking. The charged hydrogen content for each weld was recorded against the applied load during weldability testing. The lack of understanding in detail of the interaction between hydrogen and each HAZ subzone in implant testing led to the need of developing the test to obtain more data about the weldability. The HAZ subzones were produced using two techniques: standard furnace and GleebleRTM machine. These produced subzones were pre-charged with hydrogen to different levels of concentration. The hydrogen charging on the samples simulates prior exposure of the material to high humidity environment during welding process. Fractographical and microstructural characterization of the HAZ subzones were conducted using techniques such as SEM (Scanning Electron Microscopy). A modified implant test using the mechanical tensile machine was also used to observe the effects of the hydrogen on the cracking behavior of each HAZ subzone. All the experimental weldability works were simulated and validated using a commercial computational software, SYSWELD. The computational simulation of implant testing of Q&T HSLA

  3. Stress Rupture Testing and Analysis of the NASA WSTF-JPL Carbon Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Yoder, Tommy; Saulsberry, Regor; Grimes, Lorie; Thesken, John; Phoenix, Leigh

    2007-01-01

    Carbon composite overwrapped pressure vessels (COPVs) are widely used in applications from spacecraft to life support. COPV technology provides a pressurized media storage advantage over amorphous technology with weight savings on the order of 30 percent. The National Aeronautics and Space Administration (NASA) has been supporting the development of this technology since the early 1970's with an interest in safe application of these components to reduce mass to orbit. NASA White Sands Test Facility (WSTF) has been testing components in support of this objective since the 1980s and has been involved in test development and analysis to address affects of impact, propellant and cryogenic fluids exposure on Kevlar and carbon epoxy. The focus of this paper is to present results of a recent joint WSTF-Jet Propulsion Laboratories (JPL) effort to assess safe life of these components. The WSTF-JPL test articles consisted of an aluminum liner and a carbon fiber overwrap in an industry standard epoxy resin system. The vessels were specifically designed with one plus-minus helical wrap and one hoop wrap over the helical and they measured 4.23 x 11.4 in. long. 120 test articles were manufactured in August of 1998 of one lot fiber and resin and the 110 test articles were delivered to WSTF for test. Ten of the 120 test articles were burst tested at the manufacturer to establish the delivered fiber stress. Figure 1 shows a test article in a pre burst condition and with a hoop fiber failure (no leak of pressurized media) and post burst (failure of liner and loss of pressurized media).

  4. Reliability of Space-Shuttle Pressure Vessels with Random Batch Effects

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Kulkarni, Pandurang M.

    2000-01-01

    In this article we revisit the problem of estimating the joint reliability against failure by stress rupture of a group of fiber-wrapped pressure vessels used on Space-Shuttle missions. The available test data were obtained from an experiment conducted at the U.S. Department of Energy Lawrence Livermore Laboratory (LLL) in which scaled-down vessels were subjected to life testing at four accelerated levels of pressure. We estimate the reliability assuming that both the Shuttle and LLL vessels were chosen at random in a two-stage process from an infinite population with spools of fiber as the primary sampling unit. Two main objectives of this work are: (1) to obtain practical estimates of reliability taking into account random spool effects and (2) to obtain a realistic assessment of estimation accuracy under the random model. Here, reliability is calculated in terms of a 'system' of 22 fiber-wrapped pressure vessels, taking into account typical pressures and exposure times experienced by Shuttle vessels. Comparisons are made with previous studies. The main conclusion of this study is that, although point estimates of reliability are still in the 'comfort zone,' it is advisable to plan for replacement of the pressure vessels well before the expected Lifetime of 100 missions per Shuttle Orbiter. Under a random-spool model, there is simply not enough information in the LLL data to provide reasonable assurance that such replacement would not be necessary.

  5. Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven

    SciTech Connect

    Spencer, Benjamin; Hoffman, William; Sen, Sonat; Rabiti, Cristian; Dickson, Terry; Bass, Richard

    2015-10-01

    The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtain stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically

  6. Brief account of the effect of overcooling accidents on the integrity of PWR pressure vessels

    SciTech Connect

    Cheverton, R.D.

    1982-01-01

    The occurrence in recent years of several (PWR) accident initiating events that could lead to severe thermal shock to the reactor pressure vessel, and the growing awareness that copper and nickel in the vessel material significantly enhance radiation damage in the vessel, have resulted in a reevaluation of pressure-vessel integrity during postulated overcooling accidents. Analyses indicate that the accidents of concern are those involving both thermal shock and pressure loadings, and that an accident similar to that at Rancho Seco in 1978 could, under some circumstances and at a time late in the normal life of the vessel, result in propagation of preexistent flaws in the vessel wall to the extent that they might completely penetrate the wall. More severe accidents have been postulated that would result in even shorter permissible lifetimes. However, the state-of-the-art fracture-mechanics analysis may contain excessive conservatism, and this possibility is being investigated. Furthermore, there are several remedial measures, such as fuel shuffling, to reduce the damage rate, and vessel annealing, to restore favorable material properties, that may be practical and used if necessary. 5 figures.

  7. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    NASA Astrophysics Data System (ADS)

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-02-01

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented.

  8. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    SciTech Connect

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-02-18

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented.

  9. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  10. Advanced Dependent Pressure Vessel (DPV) Nickel-Hydrogen Spacecraft Cell and Battery Design

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine K.; Wright, R. Doug; Repplinger, Ron S.

    1996-01-01

    The dependent pressure vessel (DPV) nickel-hydrogen (Ni-H2) battery is being developed as a potential spacecraft battery design for both military and commercial satellites. Individual pressure vessel (IPV) Ni-H2 batteries are currently flying on more than 70 Earth-orbiting satellites and have accumulated more that 140,000,000 cell-hours in actual spacecraft operation. The limitations of standard Ni-H2 IPV flight battery technology are primarily related to the internal cell design and the battery packaging issues associated with grouping multiple cylindrical cells. The DPV cell design offers higher specific energy and reduced cost, while retaining the established IPV Ni-H2 technology flight heritage and database. A design performance analysis is presented at both the cell and battery level. The DPV is capable of delivering up to 76 Watthours per kilogram (Wh/kg) at the cell level and 70 Wh/kg at the full battery level. This represents a 40 percent increase in specific energy at the cell level and a 60 percent increase in specific energy at the battery level compared to current IPV Ni-H2 technology.

  11. Detecting leaks in gas-filled pressure vessels using acoustic resonances.

    PubMed

    Gillis, K A; Moldover, M R; Mehl, J B

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f(2) than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f(2), we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10(-5) h(-1) = - 0.11 yr(-1) from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10(-2) h(-1) using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.).

  12. Detecting leaks in gas-filled pressure vessels using acoustic resonances

    NASA Astrophysics Data System (ADS)

    Gillis, K. A.; Moldover, M. R.; Mehl, J. B.

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f2 than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f2, we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10-5 h-1 = - 0.11 yr-1 from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10-2 h-1 using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.)

  13. Low-speed impact damage in filament-wound CFRP composite pressure vessels

    SciTech Connect

    Matemilola, S.A.; Stronge, W.J.

    1997-11-01

    Quasi-static and impact tests were conducted on filament-wound carbon fiber composite pressure vessels to study factors that affect burst pressure. Observed damage included fiber microbuckling, matrix cracking, and delamination. Fiber microbuckling of the outer surface layer near the impact point was the main factor that reduced the burst pressure of the vessels. This type of damage was visually detectable on the surface. For similar levels of missile kinetic energy, the impact damage to filament-wound composite pressure vessels depends on size and shape of the colliding body in the contact area. Burst pressure for a damaged vessel decreases with the ratio of axial length of damaged fibers 1, to vessel wall thickness h, up to a ratio l/h = 3; beyond this length of damaged section the burst pressure was independent of length of damage. Strain measurements near the region of loading showed that damage related to fiber microbuckling is sensitive to strain rate. At locations where impact damage was predominantly due to fiber microbuckling, the failure strain was about six times the strain for microbuckling during quasi-static loading.

  14. Detecting leaks in gas-filled pressure vessels using acoustic resonances.

    PubMed

    Gillis, K A; Moldover, M R; Mehl, J B

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f(2) than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f(2), we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10(-5) h(-1) = - 0.11 yr(-1) from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10(-2) h(-1) using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.). PMID:27250456

  15. 77 FR 59408 - Finding of Equivalence; Alternate Pressure Relief Valve Settings on Certain Vessels Carrying...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... SECURITY Coast Guard Finding of Equivalence; Alternate Pressure Relief Valve Settings on Certain Vessels... Coast Guard announces the availability of CG-ENG Policy Letter 04-12, ``Alternative Pressure Relief... adopted the stricter standards of the American Society of Mechanical Engineers (ASME) Boiler and...

  16. Structural integrity of pressure vessels, piping, and components -- 1995. PVP-Volume 318

    SciTech Connect

    Chung, H.H.; Ezekoye, L.I.; Fujita, K.; Garic, G.; Goodling, E.C.

    1995-11-01

    The following subjects are covered in this book: pressure vessels and storage tanks; pipes and piping systems; structural design, analysis, and integrity assessment; pipe supports and restraints; pumps and valves; and aerospace pressure systems. Separate abstracts were prepared for most of the individual papers.

  17. Distributed sensing of Composite Over-wrapped Pressure Vessels using Fiber-Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, Joseph

    2005-01-01

    The increasing use of advanced composite materials in the wide range of applications including Space Structures is a great impetus to the development of smart materials. These materials offer a wide range of possibilities within the space program. But before they can be reliably incorporated into space flight applications, additional understanding is required in the area of damage tolerance of these materials. Efforts to enhance our understanding of failure modes, mechanical properties, long and short term environmental effects, cyclic damage accumulation and residual strength are needed. Thus we have employed the use of fiber optical sensors which offers an excellent opportunity exploit these materials through monitoring and characterizing their mechanical properties and thus the integrity of structures made from such materials during their life cycle. Use of these optical innovations provides an insight into structures that have not been available in the past, as well as the technology available to provide real time health monitoring throughout its life cycle. The embedded fiber optical sensor shows a clearly detectable sensitivity to changes in the near strain and stress fields of the host structure promoted by mechanical or thermal loading or, in certain conditions, structural damage. The last ten years have seen a large increase in the use of FBG based monitoring systems in a broad range of applications. Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in composite structures. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around

  18. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    SciTech Connect

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  19. Evaluation of hydrogen pressure vessels using slow strain rate testing and fracture mechanics analysis

    SciTech Connect

    Murray, S.H.; Desai, V.H.

    1998-12-31

    A total of 108 seamless, forged pressure vessels, fabricated from ASTM A372 type IV (UNS K14508) and type V low alloy steel, are currently in 4,200 psi (29 MPa) gaseous hydrogen (GH{sub 2}) service at the Kennedy Space Center`s (KSC) Space Shuttle Launch Complex 39 (LC-39). The vessels were originally used in 6,000 psi (41 MPa) GH{sub 2} service during the Apollo program. NASA recently received a letter of warning from the manufacturer of the vessels stating that the subject vessels should be now be removed from GH{sub 2} service due to the fact that the ultimate tensile strength (UTS) of many of the vessels exceeds the maximum limit of 126 ksi (869 MPa) now imposed on A372 steel intended for GH{sub 2} service, and therefore are susceptible to hydrogen environment embrittlement. Due to the expense associated with vessel replacement, it was decided to determine by testing and analysis whether or not the vessels needed to be removed from GH{sub 2} service. Slow strain rate testing was performed under hydrogen charging conditions to determine the value of the threshold fracture toughness for sustained loading crack growth in GH{sub 2}, (K{sub H}) for the vessel material, this value was then used in a fracture mechanics safe-life analysis (a 20-year service life was modeled) that indicated the vessels are safe for continued use.

  20. Could Nano-Structured Materials Enable the Improved Pressure Vessels for Deep Atmospheric Probes?

    NASA Technical Reports Server (NTRS)

    Srivastava, D.; Fuentes, A.; Bienstock, B.; Arnold, J. O.

    2005-01-01

    A viewgraph presentation on the use of Nano-Structured Materials to enable pressure vessel structures for deep atmospheric probes is shown. The topics include: 1) High Temperature/Pressure in Key X-Environments; 2) The Case for Use of Nano-Structured Materials Pressure Vessel Design; 3) Carbon based Nanomaterials; 4) Nanotube production & purification; 5) Nanomechanics of Carbon Nanotubes; 6) CNT-composites: Example (Polymer); 7) Effect of Loading sequence on Composite with 8% by volume; 8) Models for Particulate Reinforced Composites; 9) Fullerene/Ti Composite for High Strength-Insulating Layer; 10) Fullerene/Epoxy Composite for High Strength-Insulating Layer; 11) Models for Continuous Fiber Reinforced Composites; 12) Tensile Strength for Discontinuous Fiber Composite; 13) Ti + SWNT Composites: Thermal/Mechanical; 14) Ti + SWNT Composites: Tensile Strength; and 15) Nano-structured Shell for Pressure Vessels.

  1. Does Physical Fitness Buffer the Relationship between Psychosocial Stress, Retinal Vessel Diameters, and Blood Pressure among Primary Schoolchildren?

    PubMed Central

    Endes, Katharina; Herrmann, Christian; Colledge, Flora; Brand, Serge; Donath, Lars; Faude, Oliver; Pühse, Uwe; Hanssen, Henner; Zahner, Lukas

    2016-01-01

    Background. Strong evidence exists showing that psychosocial stress plays an important part in the development of cardiovascular diseases. Because physical inactivity is associated with less favourable retinal vessel diameter and blood pressure profiles, this study explores whether physical fitness is able to buffer the negative effects of psychosocial stress on retinal vessel diameters and blood pressure in young children. Methods. 325 primary schoolchildren (51% girls, Mage = 7.28 years) took part in this cross-sectional research project. Retinal arteriolar diameters, retinal venular diameters, arteriolar to venular ratio, and systolic and diastolic blood pressure were assessed in all children. Interactions terms between physical fitness (performance in the 20 m shuttle run test) and four indicators of psychosocial stress (parental reports of critical life events, family, peer and school stress) were tested in a series of hierarchical regression analyses. Results. Critical life events and family, peer, and school-related stress were only weakly associated with retinal vessel diameters and blood pressure. No support was found for a stress-buffering effect of physical fitness. Conclusion. More research is needed with different age groups to find out if and from what age physical fitness can protect against arteriolar vessel narrowing and the occurrence of other cardiovascular disease risk factors. PMID:27795958

  2. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    SciTech Connect

    Leavitt, Mark; Lam, Patrick

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  3. A novel high pressure, high temperature vessel used to conduct long-term stability measurements of silicon MEMS pressure transducers

    NASA Astrophysics Data System (ADS)

    Wisniewiski, David

    2014-03-01

    The need to quantify and to improve long-term stability of pressure transducers is a persistent requirement from the aerospace sector. Specifically, the incorporation of real-time pressure monitoring in aircraft landing gear, as exemplified in Tire Pressure Monitoring Systems (TPMS), has placed greater demand on the pressure transducer for improved performance and increased reliability which is manifested in low lifecycle cost and minimal maintenance downtime through fuel savings and increased life of the tire. Piezoresistive (PR) silicon MEMS pressure transducers are the primary choice as a transduction method for this measurement owing to their ability to be designed for the harsh environment seen in aircraft landing gear. However, these pressure transducers are only as valuable as the long-term stability they possess to ensure reliable, real-time monitoring over tens of years. The "heart" of the pressure transducer is the silicon MEMS element, and it is at this basic level where the long-term stability is established and needs to be quantified. A novel High Pressure, High Temperature (HPHT) vessel has been designed and constructed to facilitate this critical measurement of the silicon MEMS element directly through a process of mechanically "floating" the silicon MEMS element while being subjected to the extreme environments of pressure and temperature, simultaneously. Furthermore, the HPHT vessel is scalable to permit up to fifty specimens to be tested at one time to provide a statistically significant data population on which to draw reasonable conclusions on long-term stability. With the knowledge gained on the silicon MEMS element, higher level assembly to the pressure transducer envelope package can also be quantified as to the build-effects contribution to long-term stability in the same HPHT vessel due to its accommodating size. Accordingly, a HPHT vessel offering multiple levels of configurability and robustness in data measurement is presented, along

  4. Flaw density examinations of a clad boiling water reactor pressure vessel segment

    SciTech Connect

    Cook, K.V.; McClung, R.W.

    1986-01-01

    Flaw density is the greatest uncertainty involved in probabilistic analyses of reactor pressure vessel failure. As part of the Heavy-Section Steel Technology (HSST) Program, studies have been conducted to determine flaw density in a section of reactor pressure vessel cut from the Hope Creek Unit 2 vessel (nominally 0.7 by 3 m (2 by 10 ft)). This section (removed from the scrapped vessel that was never in service) was evaluated nondestructively to determine the as-fabricated status. We had four primary objectives: (1) evaluate longitudinal and girth welds for flaws with manual ultrasonics, (2) evaluate the zone under the nominal 6.3-mm (0.25-in.) clad for cracking (again with manual ultrasonics), (3) evaluate the cladding for cracks with a high-sensitivity fluorescent penetrant method, and (4) determine the source of indications detected.

  5. Using the adaptive SMA composite cylinder concept to reduce radial dilation in composite pressure vessels

    NASA Astrophysics Data System (ADS)

    Paine, Jeffrey S.; Rogers, Craig A.

    1995-05-01

    Composite materials are widely used in the design of pressurized gas and fluid vessels for applications ranging from underground gasoline storage tanks to rocket motors for the space shuttle. In the design of a high pressure composite vessel (Pi > 12 Ksi), thick-wall (R/h < 15) vessels are required. For efficient material use in composite material vessels, the radial dilation (expansion or swelling) of the composite vessel can often approach values nearing 2 percent of the diameter. Over long periods of internal pressure loading over elevated temperatures, composite material cylinders may also experience substantial creep. The short term dilation and long term creep are not problematic for applications requiring only the containment of the pressurized fluid. In applications where metallic liners are required, however, substantial dilation and creep causes plastic yielding which leads to reduced fatigue life. To applications such as a hydraulic accumulator, where a piston is employed to fit and seal the fluid in the composite cylinder, the dilation and creep may allow leakage and pressure loss around the piston. A concept called the adaptive composite cylinder is experimentally presented. Shape memory alloy wire in epoxy resin is wrapped around or within polymer matrix composite cylinders to reduce radial dilation of the cylinder. Experimental results are presented that demonstrate the ability of the SMA wire layers to reduce radial dilation. Results from experimental testing of the recovery stress fatigue response of nitinol shape memory alloy wires is also presented.

  6. A dual output pressure, high reliability, long storage life gas delivery vessel assembly

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Mckee, Joe; Rajpurkar, Rajiv

    1993-01-01

    A Gas Vessel Assembly has been developed that delivers purified, very low moisture content gas at two different output pressures. High pressure gas is delivered at up to 6,700 psi, and low pressure gas regulated to 130 psi is also delivered via a second outlet over a wide range of flow rates. The device is extremely lightweight (less than 1 lb) and compact, affords maximum mechanical integrity, high reliability (0.9999 at 95 percent confidence level), and offers extremely long storage life. Specialized design and fabrication techniques are employed that guarantee gas purity and negligible leakage for more than 20 years, in widely varying conditions of storage temperature, humidity, altitude, and vibration environments. The technology offers unique advantages in fast, high pressure discharge applications. For example, when combined with a cryostat, cryogenic temperatures can be achieved such as those used in missile seeker technology. The technology has many additional applications such as: emergency power sources for safety devices such as those needed in nuclear power plants, refineries, collision cushioning devices, superconductor cooling devices, emergency egress systems, miniature mechanical devices that employ gas bearings, and other areas where long storage, extremely high reliability and/or high energy density sources are required.

  7. Numerical Simulation of Impact Damage Induced by Orbital Debris on Shielded Wall of Composite Overwrapped Pressure Vessel

    NASA Astrophysics Data System (ADS)

    Cherniaev, Aleksandr; Telichev, Igor

    2014-12-01

    This paper presents a methodology for numerical simulation of the formation of the front wall damage in composite overwrapped pressure vessels under hypervelocity impact. Both SPH particles and Lagrangian finite elements were employed in combination for numerical simulations. Detailed numerical models implementing two filament winding patterns with different degree of interweaving were developed and used to simulate 2.5 km/s and 5.0 km/s impacts of 5 mm-diameter spherical aluminum-alloy projectile. Obtained results indicate that winding pattern may have a pronounced effect on vessel damage in case of orbital debris impact, influencing propagation of the stress waves in composite material.

  8. A Computational Model Predicting Disruption of Blood Vessel Development

    EPA Science Inventory

    Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a varie...

  9. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS General Requirements § 54.01-2 Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall...

  10. Evaluation of Carbon Composite Overwrap Pressure Vessels Fabricated Using Ionic Liquid Epoxies Project

    NASA Technical Reports Server (NTRS)

    Grugel, Richard

    2015-01-01

    The intent of the work proposed here is to ascertain the viability of ionic liquid (IL) epoxy based carbon fiber composites for use as storage tanks at cryogenic temperatures. This IL epoxy has been specifically developed to address composite cryogenic tank challenges associated with achieving NASA's in-space propulsion and exploration goals. Our initial work showed that an unadulterated ionic liquid (IL) carbon-fiber composite exhibited improved properties over an optimized commercial product at cryogenic temperatures. Subsequent investigative work has significantly improved the IL epoxy and our first carbon-fiber Composite Overwrap Pressure Vessel (COPV) was successfully fabricated. Here additional COPVs, using a further improved IL epoxy, will be fabricated and pressure tested at cryogenic temperatures with the results rigorously analyzed. Investigation of the IL composite for lower pressure liner-less cryogenic tank applications will also be initiated. It is expected that the current Technology Readiness Level (TRL) will be raised from about TRL 3 to TRL 5 where unambiguous predictions for subsequent development/testing can be made.

  11. Pressure vessel with improved impact resistance and method of making the same

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor); Patterson, James E. (Inventor); Olson, Michael A. (Inventor)

    2010-01-01

    A composite overwrapped pressure vessel is provided which includes a composite overwrapping material including fibers disposed in a resin matrix. At least first and second kinds of fibers are used. These fibers typically have characteristics of high strength and high toughness to provide impact resistance with increased pressure handling capability and low weight. The fibers are applied to form a pressure vessel using wrapping or winding techniques with winding angles varied for specific performance characteristics. The fibers of different kinds are dispersed in a single layer of winding or wound in distinct separate layers. Layers of fabric comprised of such fibers are interspersed between windings for added strength or impact resistance. The weight percentages of the high toughness and high strength materials are varied to provide specified impact resistance characteristics. The resin matrix is formed with prepregnated fibers or through wet winding. The vessels are formed with or without liners.

  12. Reactor pressure vessel head vents and methods of using the same

    DOEpatents

    Gels, John L; Keck, David J; Deaver, Gerald A

    2014-10-28

    Internal head vents are usable in nuclear reactors and include piping inside of the reactor pressure vessel with a vent in the reactor upper head. Piping extends downward from the upper head and passes outside of the reactor to permit the gas to escape or be forcibly vented outside of the reactor without external piping on the upper head. The piping may include upper and lowers section that removably mate where the upper head joins to the reactor pressure vessel. The removable mating may include a compressible bellows and corresponding funnel. The piping is fabricated of nuclear-reactor-safe materials, including carbon steel, stainless steel, and/or a Ni--Cr--Fe alloy. Methods install an internal head vent in a nuclear reactor by securing piping to an internal surface of an upper head of the nuclear reactor and/or securing piping to an internal surface of a reactor pressure vessel.

  13. Aging results for PRD 49 III/epoxy and Kevlar 49/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.

    1983-01-01

    Kevlar 49/epoxy composite is growing in use as a structural material because of its high strength-to-weight ratio. Currently, it is used for the Trident rocket motor case and for various pressure vessels on the Space Shuttle. In 1979, the initial results for aging of filament-wound cylindrical pressure vessels which were manufactured with preproduction Kevlar 49 (Hamstad, 1979) were published. This preproduction fiber was called PRD 49 III. This report updates the continuing study to 10-year data and also presents 7.5-year data for spherical pressure vessels wound with production Kevlar 49. For completeness, this report will again describe the specimens of the original study with PRD 49 as well as specimens for the new study with Kevlar 49.

  14. Service experience and design in pressure vessels and piping (including high pressure technology). PVP-Volume 335

    SciTech Connect

    Bamford, W.H.; Cohn, M.J.; Cipolla, R.C.; Swindeman, R.W.; Nickel, H.; Burns, D.J.

    1996-12-01

    This volume is divided into the following four sessions: (1) Service Experience in Nuclear Plants; (2) Service Experience in Fossil Plants; (3) High Temperature Structural Materials; and (4) Design and Analysis of High Pressure Vessels. Separate abstracts were prepared for most of the papers in this volume.

  15. Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, Rick; Skow, Miles

    2013-01-01

    This three-year project (FY12-14) will design and demonstrate the ability of new Magnetic Stress Gages for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap. The sensors are being tested at White Sands Testing Facility (WSTF) where the results will be correlated with a known nondestructive technique acoustic emission. The gages will be produced utilizing Meandering Winding Magnetometer (MWM) and/or MWM array eddy current technology. The ultimate goal is to utilize this technology for the health monitoring of Composite Overwrapped Pressure Vessels for all future flight programs. The first full-scale pressurization test was performed at WSTF in June 2012. The goals of this test were to determine adaptations of the magnetic stress gauge instrumentation that would be necessary to allow multiple sensors to monitor the vessel's condition simultaneously and to determine how the sensor response changes with sensor selection and orientation. The second full scale pressurization test was performed at WSTF in August 2012. The goals of this test were to monitor the vessel's condition with multiple sensors simultaneously, to determine the viability of the multiplexing units (MUX) for the application, and to determine if the sensor responses in different orientations are repeatable. For both sets of tests the vessel was pressured up to 6,000 psi to simulate maximum operating pressure. Acoustic events were observed during the first pressurization cycle. This suggested that the extended storage period prior to use of this bottle led to a relaxation of the residual stresses imparted during auto-frettage. The pressurization tests successfully demonstrated the use of multiplexers with multiple MWM arrays to monitor a vessel. It was discovered that depending upon the sensor orientation, the frequencies, and the sense element, the MWM arrays can provide a variety of complementary information about the composite overwrapped pressure

  16. Collaborative investigations of in-service irradiated material from the Japan Power Demonstration Reactor pressure vessel

    SciTech Connect

    Corwin, W.R.; Broadhead, B.L.; Suzuki, M.; Kohsaka, A.

    1997-02-01

    There is a need to validate the results of irradiation effects research by the examination of material taken directly from the wall of a pressure vessel that has been irradiated during normal service. Just such an evaluation is currently being conducted on material from the wall of the pressure vessel from the Japan Power Demonstration Reactor (JPDR). The research is being jointly performed at the Tokai Research Establishment of the Japan Atomic Energy Research Institute (JAERI) and by the Nuclear Regulatory Commission (NRC)-funded Heavy-Section Steel Irradiation Program at the Oak Ridge National Laboratory (ORNL).

  17. Pressure vessels and piping design, analysis, and severe accidents. PVP-Volume 331

    SciTech Connect

    Dermenjian, A.A.

    1996-12-31

    The primary objective of the Design and Analysis Committee of the ASME Pressure Vessels and Piping Division is to provide a forum for the dissemination of information and the advancement of current theories and practices in the design and analysis of pressure vessels, piping systems, and components. This volume is divided into the following six sections: power plant piping and supports 1--3; applied dynamic response analysis; severe accident analysis; and student papers. Separate abstracts were prepared for 22 papers in this volume.

  18. 46 CFR 50.30-10 - Class I, I-L and II-L pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Class I, I-L and II-L pressure vessels. 50.30-10 Section... PROVISIONS Fabrication Inspection § 50.30-10 Class I, I-L and II-L pressure vessels. (a) Classes I, I-L and II-L pressure vessels shall be subject to shop inspection at the plant where they are...

  19. 46 CFR 50.30-10 - Class I, I-L and II-L pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Class I, I-L and II-L pressure vessels. 50.30-10 Section... PROVISIONS Fabrication Inspection § 50.30-10 Class I, I-L and II-L pressure vessels. (a) Classes I, I-L and II-L pressure vessels shall be subject to shop inspection at the plant where they are...

  20. 46 CFR 50.30-10 - Class I, I-L and II-L pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Class I, I-L and II-L pressure vessels. 50.30-10 Section... PROVISIONS Fabrication Inspection § 50.30-10 Class I, I-L and II-L pressure vessels. (a) Classes I, I-L and II-L pressure vessels shall be subject to shop inspection at the plant where they are...

  1. 46 CFR 50.30-10 - Class I, I-L and II-L pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Class I, I-L and II-L pressure vessels. 50.30-10 Section... PROVISIONS Fabrication Inspection § 50.30-10 Class I, I-L and II-L pressure vessels. (a) Classes I, I-L and II-L pressure vessels shall be subject to shop inspection at the plant where they are...

  2. 46 CFR 50.30-10 - Class I, I-L and II-L pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Class I, I-L and II-L pressure vessels. 50.30-10 Section... PROVISIONS Fabrication Inspection § 50.30-10 Class I, I-L and II-L pressure vessels. (a) Classes I, I-L and II-L pressure vessels shall be subject to shop inspection at the plant where they are...

  3. TECHNICAL BASIS AND APPLICATION OF NEW RULES ON FRACTURE CONTROL OF HIGH PRESSURE HYDROGEN VESSEL IN ASME SECTION VIII, DIVISION 3 CODE

    SciTech Connect

    Rawls, G

    2007-04-30

    As a part of an ongoing activity to develop ASME Code rules for the hydrogen infrastructure, the ASME Boiler and Pressure Vessel Code Committee approved new fracture control rules for Section VIII, Division 3 vessels in 2006. These rules have been incorporated into new Article KD-10 in Division 3. The new rules require determining fatigue crack growth rate and fracture resistance properties of materials in high pressure hydrogen gas. Test methods have been specified to measure these fracture properties, which are required to be used in establishing the vessel fatigue life. An example has been given to demonstrate the application of these new rules.

  4. Lymphatic vessel development: fluid flow and valve-forming cells.

    PubMed

    Kume, Tsutomu

    2015-08-01

    Hemodynamic forces regulate many aspects of blood vessel disease and development, including susceptibility to atherosclerosis and remodeling of primary blood vessels into a mature vascular network. Vessels of the lymphatic circulatory system are also subjected to fluid flow-associated forces, but the molecular and cellular mechanisms by which these forces regulate the formation and maintenance of lymphatic vessels remain largely uncharacterized. This issue of the JCI includes two articles that begin to address how fluid flow influences lymphatic vessel development and function. Sweet et al. demonstrate that lymph flow is essential for the remodeling of primary lymphatic vessels, for ensuring the proper distribution of smooth muscle cells (SMCs), and for the development and maturation of lymphatic valves. Kazenwadel et al. show that flow-induced lymphatic valve development is initiated by the upregulation of GATA2, which has been linked to lymphedema in patients with Emberger syndrome. Together, these observations and future studies inspired by these results have potential to lead to the development of strategies for the treatment of lymphatic disorders.

  5. Spin Forming Aluminum Crew Module (CM) Metallic Aft Pressure Vessel Bulkhead (APVBH) - Phase II

    NASA Technical Reports Server (NTRS)

    Hoffman, Eric K.; Domack, Marcia S.; Torres, Pablo D.; McGill, Preston B.; Tayon, Wesley A.; Bennett, Jay E.; Murphy, Joseph T.

    2015-01-01

    The principal focus of this project was to assist the Multi-Purpose Crew Vehicle (MPCV) program in developing a spin forming fabrication process for manufacture of the Orion crew module (CM) aft pressure vessel bulkhead. The spin forming process will enable a single piece aluminum (Al) alloy 2219 aft bulkhead resulting in the elimination of the current multiple piece welded construction, simplify CM fabrication, and lead to an enhanced design. Phase I (NASA TM-2014-218163, (1)) of this assessment explored spin forming the single-piece CM forward pressure vessel bulkhead. The MPCV Program and Lockheed Martin (LM) recently made two critical decisions relative to the NESC Phase I work scope: (1) LM selected the spin forming process to manufacture a singlepiece aft bulkhead for the Orion CM, and (2) the aft bulkhead will be manufactured from Al 2219. Based on the Program's new emphasis related to the spin forming process, the NESC was asked to conduct a Phase II assessment to assist in the LM manufacture of the aft bulkhead and to conduct a feasibility study into spin forming the Orion CM cone. This activity was approved on June 19, 2013. Dr. Robert Piascik, NASA Technical Fellow for Materials at the Langley Research Center (LaRC), was selected to lead this assessment. The project plan was approved by the NASA Engineering and Safety Center (NESC) Review Board (NRB) on July 18, 2013. The primary stakeholders for this assessment are the NASA and LM MPCV Program offices. Additional benefactors are commercial launch providers developing CM concepts.

  6. Spin Forming Aluminum Crew Module (CM) Metallic Aft Pressure Vessel Bulkhead (APVBH) - Phase II

    NASA Technical Reports Server (NTRS)

    Hoffman, Eric K.; Domack, Marcia S.; Torres, Pablo D.; McGill, Preston B.; Tayon, Wesley A.; Bennett, Jay E.; Murphy, Joseph T.

    2015-01-01

    The principal focus of this project was to assist the Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the Orion crew module (CM) aft pressure vessel bulkhead. The spin forming process will enable a single piece aluminum (Al) alloy 2219 aft bulkhead resulting in the elimination of the current multiple piece welded construction, simplify CM fabrication, and lead to an enhanced design. Phase I (NASA TM-2014-218163 (1)) of this assessment explored spin forming the single-piece CM forward pressure vessel bulkhead. The Orion MPCV Program and Lockheed Martin (LM) recently made two critical decisions relative to the NESC Phase I work scope: (1) LM selected the spin forming process to manufacture a single-piece aft bulkhead for the Orion CM, and (2) the aft bulkhead will be manufactured from Al 2219. Based on the Program's new emphasis related to the spin forming process, the NESC was asked to conduct a Phase II assessment to assist in the LM manufacture of the aft bulkhead and to conduct a feasibility study into spin forming the Orion CM cone. This activity was approved on June 19, 2013. Dr. Robert Piascik, NASA Technical Fellow for Materials at the Langley Research Center (LaRC), was selected to lead this assessment. The project plan was approved by the NASA Engineering and Safety Center (NESC) Review Board (NRB) on July 18, 2013. The primary stakeholders for this assessment were the NASA and LM MPCV Program offices. Additional benefactors are commercial launch providers developing CM concepts.

  7. Development of JSNS target vessel diagnosis system using laser Doppler method

    NASA Astrophysics Data System (ADS)

    Teshigawara, M.; Wakui, T.; Naoe, T.; Kogawa, H.; Maekawa, F.; Futakawa, M.; Kikuchi, K.

    2010-03-01

    When an intense pulsed proton beam with a power of 1 MW is irradiated to a mercury target, a pressure wave caused by the proton beam gives a vibration on the target vessel. Pitting damage also occurs on the target vessel, especially incident beam area, resulting in shortening of a life-time. It is very important to monitor the vibration of the target vessel from the view point of the life-time estimation. We developed the target vessel diagnosis system using laser Doppler method and successfully installed it in an actual pulsed spallation source. The diagnosis system consists of retro-reflecting corner-cube mirror (reflective mirror) on the target, mirror assembly in a reflector plug and laser source-detector. The newly developed reflective mirror, made by nickel, was installed by vacuum silver brazing on the target vessel to detect the target vibration. In order to pass the laser beam to the target vessel, a mirror assembly was installed inside the reflector plug. It is replaceable using a remote handling machine during a maintenance period. Nd-YAG laser beam (wave length: 533 nm) with the power of 50 mW was adopted to detect the target vibration. The first proton beam to the target in the spallation neutron source (JSNS) was provided on 30 May 2008. The first signal related to the target vibration was also detected by using this target vessel diagnosis system.

  8. Structural characterization of nanoscale intermetallic precipitates in highly neutron irradiated reactor pressure vessel steels

    DOE PAGESBeta

    Sprouster, D. J.; Sinsheimer, J.; Dooryhee, E.; Ghose, S.; Wells, P.; Stan, T.; Almirall, N.; Odette, G. R.; Ecker, L. E.

    2015-10-21

    Here, massive, thick-walled pressure vessels are permanent nuclear reactor structures that are exposed to a damaging flux of neutrons from the adjacent core. The neutrons cause embrittlement of the vessel steel that increases with dose (fluence or service time), as manifested by an increasing temperature transition from ductile-to-brittle fracture. Moreover, extending reactor life requires demonstrating that large safety margins against brittle fracture are maintained at the higher neutron fluence associated with 60 to 80 years of service. Here synchrotron-based x-ray diffraction and small angle x-ray scattering measurements are used to characterize a new class of highly embrittling nm-scale Mn-Ni-Si precipitatesmore » that develop in the irradiated steels at high fluence. Furthermore, these precipitates can lead to severe embrittlement that is not accounted for in current regulatory models. Application of the complementarity techniques has, for the very first time, successfully characterized the crystal structures of the nanoprecipitates, while also yielding self-consistent compositions, volume fractions and size distributions.« less

  9. Structural characterization of nanoscale intermetallic precipitates in highly neutron irradiated reactor pressure vessel steels

    SciTech Connect

    Sprouster, D. J.; Sinsheimer, J.; Dooryhee, E.; Ghose, S.; Wells, P.; Stan, T.; Almirall, N.; Odette, G. R.; Ecker, L. E.

    2015-10-21

    Here, massive, thick-walled pressure vessels are permanent nuclear reactor structures that are exposed to a damaging flux of neutrons from the adjacent core. The neutrons cause embrittlement of the vessel steel that increases with dose (fluence or service time), as manifested by an increasing temperature transition from ductile-to-brittle fracture. Moreover, extending reactor life requires demonstrating that large safety margins against brittle fracture are maintained at the higher neutron fluence associated with 60 to 80 years of service. Here synchrotron-based x-ray diffraction and small angle x-ray scattering measurements are used to characterize a new class of highly embrittling nm-scale Mn-Ni-Si precipitates that develop in the irradiated steels at high fluence. Furthermore, these precipitates can lead to severe embrittlement that is not accounted for in current regulatory models. Application of the complementarity techniques has, for the very first time, successfully characterized the crystal structures of the nanoprecipitates, while also yielding self-consistent compositions, volume fractions and size distributions.

  10. Advanced Dependent Pressure Vessel (DPV) nickel-hydrogen spacecraft cell and battery design

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Wright, Doug; Repplinger, Ron

    1995-01-01

    The dependent pressure vessel (DPV) nickel-hydrogen (NiH2) battery is being developed as a potential spacecraft battery design for both military and commercial satellites. Individual pressure vessel (IPV) NiH2 batteries are currently flying on more than 70 Earth orbital satellites and have accumulated more than 140,000,000 cell-hours in actual spacecraft operation. The limitations of standard NiH2 IPV flight battery technology are primarily related to the internal cell design and the battery packaging issues associated with grouping multiple cylindrical cells. The DPV cell design offers higher specific energy and reduced cost, while retaining the established IPV NiH2 technology flight heritage and database. The advanced cell design offers a more efficient mechanical, electrical and thermal cell configuration and a reduced parts count. The internal electrode stack is a prismatic flat-plate arrangement. The flat individual cell pressure vessel provides a maximum direct thermal path for removing heat from the electrode stack. The cell geometry also minimizes multiple-cell battery packaging constraints by using an established end-plateltie-rod battery design. A major design advantage is that the battery support structure is efficiently required to restrain only the force applied to a portion of the end cell. As the cells are stacked in series to achieve the desired system voltage, this increment of the total battery weight becomes small. The geometry of the DPV cell promotes compact, minimum volume packaging and places all cell terminals along the length of the battery. The resulting ability to minimize intercell wiring offers additional design simplicity and significant weight savings. The DPV battery design offers significant cost and weight savings advantages while providing minimal design risks. Cell and battery level design issues will be addressed including mechanical, electrical and thermal design aspects. A design performance analysis will be presented at both

  11. The sensitivity of the burst performance of impact damaged pressure vessels to material strength properties

    NASA Astrophysics Data System (ADS)

    Lasn, K.; Vedvik, N. P.; Echtermeyer, A. T.

    2016-07-01

    This numerical study is carried out to improve the understanding of short-term residual strength of impacted composite pressure vessels. The relationship between the impact, created damage and residual strength is predicted by finite element (FE) analysis. The burst predictions depend largely on the strength properties used in the material models. However, it is typically not possible to measure all laminate properties on filament wound structures. Reasonable testing efforts are concentrated on critical properties, while obtaining other less sensitive parameters from e.g. literature. A parametric FE model is hereby employed to identify the critical strength properties, focusing on the cylindrical section of the pressure vessel. The model simulates an impactor strike on an empty vessel, which is subsequently pressurized until burst. Monte Carlo Simulations (MCS) are employed to investigate the correlations between strength related material parameters and the burst pressure. The simulations indicate the fracture toughness of the composite, hoop layer tensile strength and the yield stress of the PE liner as the most influential parameters for current vessel and impact configurations. In addition, the conservative variation in strength parameters is shown to have a rather moderate effect (COV ca. 7%) on residual burst pressures.

  12. Fatigue life improvement of an autofrettage thick-walled pressure vessel with an external groove

    NASA Astrophysics Data System (ADS)

    Koh, Seung K.; Stephens, Ralph I.

    1992-01-01

    This report presents an investigation into a fatigue life improvement of an autofrettaged thick-walled pressure vessel with an external groove subjected to pulsating internal pressure, along with mean strain and mean stress effects on strain-controlled low cycle fatigue behavior. Linear elastic stress analysis of an autofrettaged thick-walled pressure vessel with an external groove is done using a finite element method. Autofrettage loading is performed using a thermal loading analogy. Change of external groove geometry is made using a quasi-optimization technique and finite element method to achieve longer fatigue life by relieving the stress concentration at the groove root. Surface treatment using shot peening is employed to produce compressive residual stresses at the vulnerable surface of the groove root to counteract the high tensile stresses. An evaluation of the fatigue life of an autofrettaged thick-walled pressure vessel with an external groove is done through a series of simulation fatigue tests using C-shaped specimens taken from the thick-walled pressure vessel.

  13. Aqueous Solution Vessel Thermal Model Development II

    SciTech Connect

    Buechler, Cynthia Eileen

    2015-10-28

    The work presented in this report is a continuation of the work described in the May 2015 report, “Aqueous Solution Vessel Thermal Model Development”. This computational fluid dynamics (CFD) model aims to predict the temperature and bubble volume fraction in an aqueous solution of uranium. These values affect the reactivity of the fissile solution, so it is important to be able to calculate them and determine their effects on the reaction. Part A of this report describes some of the parameter comparisons performed on the CFD model using Fluent. Part B describes the coupling of the Fluent model with a Monte-Carlo N-Particle (MCNP) neutron transport model. The fuel tank geometry is the same as it was in the May 2015 report, annular with a thickness-to-height ratio of 0.16. An accelerator-driven neutron source provides the excitation for the reaction, and internal and external water cooling channels remove the heat. The model used in this work incorporates the Eulerian multiphase model with lift, wall lubrication, turbulent dispersion and turbulence interaction. The buoyancy-driven flow is modeled using the Boussinesq approximation, and the flow turbulence is determined using the k-ω Shear-Stress-Transport (SST) model. The dispersed turbulence multiphase model is employed to capture the multiphase turbulence effects.

  14. Fast neutron fluence of yonggwang nuclear unit 1 reactor pressure vessel

    SciTech Connect

    Yoo, C.; Km, B.; Chang, K.; Leeand, S.; Park, J.

    2006-07-01

    The Code of Federal Regulations, Title 10, Part 50, Appendix H, requires that the neutron dosimetry be present to monitor the reactor vessel throughout plant life. The Ex-Vessel Neutron Dosimetry System has been installed for Yonggwang Nuclear Unit 1 after complete withdrawal of all six in-vessel surveillance capsules. This system has been installed in the reactor cavity annulus in order to measure the fast neutron spectrum coming out through the reactor pressure vessel. Cycle specific neutron transport calculations were performed to obtain the energy dependent neutron flux throughout the reactor geometry including dosimetry positions. Comparisons between calculations and measurements were performed for the reaction rates of each dosimetry sensors and results show good agreements. (authors)

  15. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    NASA Technical Reports Server (NTRS)

    Greene, N.; Thesken, J. C.; Murthy, P. L. N.; Phoenix, S. L.; Palko, J.; Eldridge, J.; Sutter, J.; Saulsberry, R.; Beeson, H.

    2006-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Agency's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar(TradeMark) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar(TradeMark) filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However, due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to the experimental investigation reported in [1] and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel's residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV

  16. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.; Greene, N.; Palko, Joseph L.; Eldridge, Jeffrey; Sutter, James; Saulsberry, R.; Beeson, H.

    2009-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Administration's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to a previously reported experimental investigation and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel s residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV

  17. Reactor Pressure Vessel Temperature Analysis for Prismatic and Pebble-Bed VHTR Designs

    SciTech Connect

    H. D. Gougar; C. B. Davis

    2006-04-01

    Analyses were performed to determine maximum temperatures in the reactor pressure vessel for two potential Very-High Temperature Reactor (VHTR) designs during normal operation and during a depressurized conduction cooldown accident. The purpose of the analyses was to aid in the determination of appropriate reactor vessel materials for the VHTR. The designs evaluated utilized both prismatic and pebble-bed cores that generated 600 MW of thermal power. Calculations were performed for fluid outlet temperatures of 900 and 950 °C, corresponding to the expected range for the VHTR. The analyses were performed using the RELAP5-3D and PEBBED-THERMIX computer codes. Results of the calculations were compared with preliminary temperature limits derived from the ASME pressure vessel code.

  18. Fatigue and fracture mechanics in pressure vessels and piping. PVP-Volume 304

    SciTech Connect

    Mehta, H.S.; Wilkowski, G.; Takezono, S.; Bloom, J.; Yoon, K.; Aoki, S.; Rahman, S.; Nakamura, T.; Brust, F.; Yoshimura, S.

    1995-11-01

    Fracture mechanics and fatigue evaluations are an important part of the structural integrity analyses to assure safe operation of pressure vessels and piping components during their service life. The paper presented in this volume illustrate the application of fatigue and fracture mechanics techniques to assess the structural integrity of a wide variety of Pressure Vessels and Piping components. The papers are organized in six sections: (1) fatigue and fracture--vessels; (2) fatigue and fracture--piping; (3) fatigue and fracture--material property evaluations; (4) constraint effects in fracture mechanics; (5) probabilistic fracture mechanics analyses; and (6) user`s experience with failure assessment diagrams. Separate abstracts were prepared for most of the papers in this book.

  19. An automated program for reinforcement requirements for openings in cylindrical pressure vessels

    NASA Technical Reports Server (NTRS)

    Wilson, J. F.; Taylor, J. T.

    1975-01-01

    An automated interactive program for calculating the reinforcement requirements for openings in cylindrical pressure vessels subjected to internal pressure is described. The program is written for an electronic desk top calculator. The program calculates the required area of reinforcement for a given opening and compares this value with the area of reinforcement provided by a proposed design. All program steps, operating instructions, and example problems with input and sample output are documented.

  20. Joining dissimilar stainless steels for pressure vessel components

    NASA Astrophysics Data System (ADS)

    Sun, Zheng; Han, Huai-Yue

    1994-03-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCr13Ni4Mo) and AISI 347, respectively. Such joints are important parts in, e.g. the primary circuit of a pressurized water reactor (PWR). This kind of joint requires both good mechanical properties, corrosion resistance and a stable magnetic permeability besides good weldability. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. The results of various tests indicated that the quality of the tube/tube joints is satisfactory for meeting all the design requirements.

  1. Experimental Investigation of the Shuttle Transportation System Composite Overwrapped Pressure Vessels for Stress Rupture Life

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Carillo, Marlene; Thesken, John

    2006-01-01

    A viewgraph presentation describing stress rupture testing on Composite Overwrapped Pressure Vessels (COPV) is shown. The topics include: 1) Purpose for Testing; 2) NASA WSTF COPV Test Program; 3) NASA WSTF Test Facilities; 4) COPV Impact Study; 5) Fluids Compatibility Testing; 6) Stress Rupture Testing; and 7) COPV Lifting.

  2. Issues of intergranular embrittlement of VVER-type nuclear reactors pressure vessel materials

    NASA Astrophysics Data System (ADS)

    Zabusov, O.

    2016-04-01

    In light of worldwide tendency to extension of service life of operating nuclear power plants - VVER-type in the first place - recently a special attention is concentrated on phenomena taking place in reactor pressure vessel materials that are able to lead to increased level of mechanical characteristics degradation (resistibility to brittle fracture) during long term of operation. Formerly the hardening mechanism of degradation (increase in the yield strength under influence of irradiation) mainly had been taken into consideration to assess pressure vessel service life limitations, but when extending the service life up to 60 years and more the non-hardening mechanism (intergranular embrittlement of the steels) must be taken into account as well. In this connection NRC “Kurchatov Institute” has initiated a number of works on investigations of this mechanism contribution to the total embrittlement of reactor pressure vessel steels. The main results of these investigations are described in this article. Results of grain boundary phosphorus concentration measurements in specimens made of first generation of VVER-type pressure vessels materials as well as VVER-1000 surveillance specimens are presented. An assessment of non-hardening mechanism contribution to the total ductile-to- brittle transition temperature shift is given.

  3. 10 CFR 50.66 - Requirements for thermal annealing of the reactor pressure vessel.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Requirements for thermal annealing of the reactor pressure vessel. (a) For those light water nuclear power... thermal annealing or to operate the nuclear power reactor following the annealing must be identified. The... licensee shall so confirm in writing to the Director, Office of Nuclear Reactor Regulation. The...

  4. 10 CFR 50.66 - Requirements for thermal annealing of the reactor pressure vessel.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Requirements for thermal annealing of the reactor pressure vessel. (a) For those light water nuclear power... thermal annealing or to operate the nuclear power reactor following the annealing must be identified. The... licensee shall so confirm in writing to the Director, Office of Nuclear Reactor Regulation. The...

  5. 10 CFR 50.66 - Requirements for thermal annealing of the reactor pressure vessel.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Requirements for thermal annealing of the reactor pressure vessel. (a) For those light water nuclear power... thermal annealing or to operate the nuclear power reactor following the annealing must be identified. The... licensee shall so confirm in writing to the Director, Office of Nuclear Reactor Regulation. The...

  6. 10 CFR 50.66 - Requirements for thermal annealing of the reactor pressure vessel.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Requirements for thermal annealing of the reactor pressure vessel. (a) For those light water nuclear power... thermal annealing or to operate the nuclear power reactor following the annealing must be identified. The... licensee shall so confirm in writing to the Director, Office of Nuclear Reactor Regulation. The...

  7. 77 FR 16270 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... components exposed to treated borated water. DATES: Submit comments by May 21, 2012. Comments received after... COMMISSION Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water... availability was published in the Federal Register on June 22, 2010 (75 FR 35510). The NRC staff has...

  8. 46 CFR 167.25-1 - Boilers, pressure vessels, piping and appurtenances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-1 Boilers, pressure vessels, piping and... engineering regulations in parts 50 to 63, inclusive, of Subchapter F (Marine Engineering) of this chapter. (2... part 52 of Subchapter F (Marine Engineering) of this chapter. All alterations, replacements or...

  9. Nuclear Technology. Course 30: Mechanical Inspection. Module 30-7, Pressure Vessel Inspection.

    ERIC Educational Resources Information Center

    Kupiec, Chet; Espy, John

    This seventh in a series of eight modules for a course titled Mechanical Inspection is devoted to the design and fabrication of the reactor pressure vessel. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject matter, (6)…

  10. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as required otherwise by paragraph (b) of this section. Unfired steam boilers must be fitted with an efficient... § 54.15-15. Unfired steam boilers must be constructed in accordance with this part other than when...

  11. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as required otherwise by paragraph (b) of this section. Unfired steam boilers must be fitted with an efficient... § 54.15-15. Unfired steam boilers must be constructed in accordance with this part other than when...

  12. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as required otherwise by paragraph (b) of this section. Unfired steam boilers must be fitted with an efficient... § 54.15-15. Unfired steam boilers must be constructed in accordance with this part other than when...

  13. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as required otherwise by paragraph (b) of this section. Unfired steam boilers must be fitted with an efficient... § 54.15-15. Unfired steam boilers must be constructed in accordance with this part other than when...

  14. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as required otherwise by paragraph (b) of this section. Unfired steam boilers must be fitted with an efficient... § 54.15-15. Unfired steam boilers must be constructed in accordance with this part other than when...

  15. Test Results Using a Bell Jar to Measure Containment Vessel Pressurization

    SciTech Connect

    Hensel, S.J.

    2002-05-10

    A bell jar is used to determine containment vessel pressurization due to outgassing of plutonium materials. Fifteen food cans containing plutonium bearing materials, including plutonium packaged in direct contact with plastic and plutonium contaminated enriched oxide have been tested to date.

  16. 46 CFR 167.25-1 - Boilers, pressure vessels, piping and appurtenances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-1 Boilers, pressure vessels, piping and... engineering regulations in parts 50 to 63, inclusive, of Subchapter F (Marine Engineering) of this chapter. (2... part 52 of Subchapter F (Marine Engineering) of this chapter. All alterations, replacements or...

  17. 46 CFR 167.25-1 - Boilers, pressure vessels, piping and appurtenances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-1 Boilers, pressure vessels, piping and... engineering regulations in parts 50 to 63, inclusive, of Subchapter F (Marine Engineering) of this chapter. (2... part 52 of Subchapter F (Marine Engineering) of this chapter. All alterations, replacements or...

  18. An improved correlation of the pressure drop in stenotic vessels using Lorentz's reciprocal theorem

    NASA Astrophysics Data System (ADS)

    Ji, Chang-Jin; Sugiyama, Kazuyasu; Noda, Shigeho; He, Ying; Himeno, Ryutaro

    2015-02-01

    A mathematical model of the human cardiovascular system in conjunction with an accurate lumped model for a stenosis can provide better insights into the pressure wave propagation at pathological conditions. In this study, a theoretical relation between pressure drop and flow rate based on Lorentz's reciprocal theorem is derived, which offers an identity to describe the relevance of the geometry and the convective momentum transport to the drag force. A voxel-based simulator V-FLOW VOF3D, where the vessel geometry is expressed by using volume of fluid (VOF) functions, is employed to find the flow distribution in an idealized stenosis vessel and the identity was validated numerically. It is revealed from the correlation that the pressure drop of NS flow in a stenosis vessel can be decomposed into a linear term caused by Stokes flow with the same boundary conditions, and two nonlinear terms. Furthermore, the linear term for the pressure drop of Stokes flow can be summarized as a correlation by using a modified equation of lubrication theory, which gives favorable results compared to the numerical ones. The contribution of the nonlinear terms to the pressure drop was analyzed numerically, and it is found that geometric shape and momentum transport are the primary factors for the enhancement of drag force. This work paves a way to simulate the blood flow and pressure propagation under different stenosis conditions by using 1D mathematical model.

  19. Low background stainless steel for the pressure vessel in the PandaX-II dark matter experiment

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Fu, C.; Ji, X.; Liu, J.; Liu, X.; Wang, X.; Yao, C.; Yuan, Xunhua

    2016-09-01

    We report on the custom produced low radiation background stainless steel and the welding rod for the PandaX experiment, one of the deep underground experiments to search for dark matter and neutrinoless double beta decay using xenon. The anthropogenic 60Co concentration in these samples is at the range of 1 mBq/kg or lower. We also discuss the radioactivity of nuclear-grade stainless steel from TISCO which has a similar background rate. The PandaX-II pressure vessel was thus fabricated using the stainless steel from CISRI and TISCO. Based on the analysis of the radioactivity data, we also made discussions on potential candidate for low background metal materials for future pressure vessel development.

  20. Testing of Full Scale Flight Qualified Kevlar Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Thesken, John; Phoenix, Leigh

    2007-01-01

    Many decades ago NASA identified a need for low-mass pressure vessels for carrying various fluids aboard rockets, spacecraft, and satellites. A pressure vessel design known as the composite overwrapped pressure vessel (COPV) was identified to provide a weight savings over traditional single-material pressure vessels typically made of metal and this technology has been in use for space flight applications since the 1970's. A typical vessel design consisted of a thin liner material, typically a metal, overwrapped with a continuous fiber yarn impregnated with epoxy. Most designs were such that the overwrapped fiber would carry a majority of load at normal operating pressures. The weight advantage for a COPV versus a traditional singlematerial pressure vessel contributed to widespread use of COPVs by NASA, the military, and industry. This technology is currently used for personal breathing supply storage, fuel storage for auto and mass transport vehicles and for various space flight and aircraft applications. The NASA Engineering and Safety Center (NESC) was recently asked to review the operation of Kevlar 2 and carbon COPVs to ensure they are safely operated on NASA space flight vehicles. A request was made to evaluate the life remaining on the Kevlar COPVs used on the Space Shuttle for helium and nitrogen storage. This paper provides a review of Kevlar COPV testing relevant to the NESC assessment. Also discussed are some key findings, observations, and recommendations that may be applicable to the COPV user community. Questions raised during the investigations have revealed the need for testing to better understand the stress rupture life and age life of COPVs. The focus of this paper is to describe burst testing of Kevlar COPVs that has been completed as a part of an the effort to evaluate the effects of ageing and shelf life on full scale COPVs. The test articles evaluated in this discussion had a diameter of 22 inches for S/N 014 and 40 inches for S/N 011. The

  1. Pressure vessel and piping codes. Technical basis for revised reference crack growth rate curves for pressure boundary steels in LWR environment

    SciTech Connect

    Bamford, W.H.

    1980-11-01

    Since the inception of the pressure vessel and piping codes the reference fatigue crack growth rate curves have been contained in Appendix A of Sect. XI. The curves have been designed to be applicable to carbon and low alloy pressure vessel steels exposed to either air or light water reactor coolant environments. Data obtained over the past several years have shown a different behavior of these steels in the light water reactor environment than that predicted by the present reference curve. A revised set of reference curves has been formulated, incorporating a new curve shape as well as a dependency of growth rate on R ratio (minimum load/maximum load). This work provides the background and justification for such a revision, details the methodology used to develop the revised curves, and includes an evalution of the adequacy and impact of the revised curves as compared with the single curve which they replace. 24 references.

  2. Advanced Models of LWR Pressure Vessel Embrittlement for Low Flux-HighFluence Conditions

    SciTech Connect

    Odette, G. Robert; Yamamoto, Takuya

    2013-06-17

    Neutron embrittlement of reactor pressure vessels (RPVs) is an unresolved issue for light water reactor life extension, especially since transition temperature shifts (TTS) must be predicted for high 80-year fluence levels up to approximately 1,020 n/cm{sup 2}, far beyond the current surveillance database. Unfortunately, TTS may accelerate at high fluence, and may be further amplified by the formation of late blooming phases that result in severe embrittlement even in low-copper (Cu) steels. Embrittlement by this mechanism is a potentially significant degradation phenomenon that is not predicted by current regulatory models. This project will focus on accurately predicting transition temperature shifts at high fluence using advanced physically based, empirically validated and calibrated models. A major challenge is to develop models that can adjust test reactor data to account for flux effects. Since transition temperature shifts depend on synergistic combinations of many variables, flux-effects cannot be treated in isolation. The best current models systematically and significantly under-predict transition temperature at high fluence, although predominantly for irradiations at much higher flux than actual RPV service. This project will integrate surveillance, test reactor and mechanism data with advanced models to address a number of outstanding RPV embrittlement issues. The effort will include developing new databases and preliminary models of flux effects for irradiation conditions ranging from very low (e.g., boiling water reactor) to high (e.g., accelerated test reactor). The team will also develop a database and physical models to help predict the conditions for the formation of Mn-Ni-Si late blooming phases and to guide future efforts to fully resolve this issue. Researchers will carry out other tasks on a best-effort basis, including prediction of transition temperature shift attenuation through the vessel wall, remediation of embrittlement by annealing

  3. Visualization of lymphatic vessel development, growth, and function.

    PubMed

    Pollmann, Cathrin; Hägerling, René; Kiefer, Friedemann

    2014-01-01

    Despite their important physiological and pathophysiological functions, lymphatic endothelial cells and lymphatic vessels remain less well studied compared to the blood vascular system. Lymphatic endothelium differentiates from venous blood vascular endothelium after initial arteriovenous differentiation. Only recently by the use of light sheet microscopy, the precise mechanism of separation of the first lymphatic endothelial progenitors from the cardinal vein has been described as delamination followed by mesenchymal cell migration of lymphatic endothelial cells. Dorsolaterally of the embryonic cardinal vein, lymphatic endothelial cells reaggregate to form the first lumenized lymphatic vessels, the dorsal peripheral longitudinal vessel and the more ventrally positioned primordial thoracic duct. Despite this progress in our understanding of the first lymph vessel formation, intravital observation of lymphatic vessel behavior in the intact organism, during development and in the adult, is prerequisite to a precise understanding of this tissue. Transgenic models and two-photon microscopy, in combination with optical windows, have made live intravital imaging possible: however, new imaging modalities and novel approaches promise gentler, more physiological, and longer intravital imaging of lymphatic vessels.

  4. NEURONAL ACTION ON THE DEVELOPING BLOOD VESSEL PATTERN

    PubMed Central

    James, Jennifer M.; Mukouyama, Yoh-suke

    2011-01-01

    The nervous system relies on a highly specialized network of blood vessels for development and neuronal survival. Recent evidence suggests that both the central and peripheral nervous systems (CNS and PNS) employ multiple mechanisms to shape the vascular tree to meet its specific metabolic demands, such as promoting nerve-artery alignment in the PNS or the development the blood brain barrier in the CNS. In this article we discuss how the nervous system directly influences blood vessel patterning resulting in neuro-vascular congruence that is maintained throughout development and in the adult. PMID:21978864

  5. Energy efficient high speed vessels: Design developments, 1991--1997

    SciTech Connect

    Copestake, H.

    1997-12-31

    Reviews research work to develop a generic vessel design that could be readily adapted to specific Arctic applications, specifically to produce design concepts that contribute to energy efficiency in a fisheries application. Project activities included consultations with Arctic fishermen, development and testing of a prototype 28-foot aluminium boat used to deliver fish in Hudson Bay, development of the concept of modular high-speed hulls that can be adapted for varying conditions or engine configurations, and building new vessels according to this concept for commercial service.

  6. Structural integrity assessment of type 201LN stainless steel cryogenic pressure vessels

    SciTech Connect

    Rana, M.D.; Zawierucha, R.

    1995-12-01

    The ASME Boiler and Pressure Vessel Code Committee approved the Code Case 2123 in 1992 which allows the use of Type 201LN stainless steel in the construction of ASME Section VIII, Division 1 and Division 2 pressure vessels for -320{degrees}F applications. Type 201LN stainless steel is a nitrogen strengthened modified version of ASTM A240, Type 201 stainless steel with a restricted chemistry. The Code allowable design stresses for Type 201LN for Division 1 vessels are approximately 27% higher than Type 304 stainless steel and equal to that of the 5 Ni and 9 Ni steels. This paper discusses the important features of the Code Case 2123 and the structural integrity assessment of Type 201LN stainless steel cryogenic vessels. Tensile, Charpy-V-notch and fracture properties have been obtained on several heats of this steel including weldments. A linear-elastic fracture mechanics analysis has been conducted to assess the expected fracture mode and the fracture-critical crack sizes. The results have been compared with Type 304 stainless steel, 5 Ni and 9 Ni steel vessels.

  7. Evaluation of HFIR (High Flux Isotope Reactor) pressure-vessel integrity considering radiation embrittlement

    SciTech Connect

    Cheverton, R.D.; Merkle, J.G.; Nanstad, R.K.

    1988-04-01

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of approx.10/sup 4/ less), that is, a rate effect.

  8. A perspective on thermal annealing of reactor pressure vessel materials from the viewpoint of experimental results

    SciTech Connect

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1996-04-01

    It is believed that in the next decade or so, several nuclear reactor pressure vessels (RPVs) may exceed the reference temperature limits set by the pressurized thermal shock screening criteria. One of the options to mitigate the effects of irradiation on RPVs is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory to study the annealing response, or ``recovery`` of several irradiated RPV steels. The fracture toughness is one of the important properties used in the evaluation of the integrity of RPVs. Optimally, the fracture toughness is measured directly by fracture toughness specimens, such as compact tension or precracked Charpy specimens, but is often inferred from the results of Charpy V-notch impact specimens. The experimental results are compared to the predictions of models for embrittlement recovery which have been developed by Eason et al. Some of the issues in annealing that still need to be resolved are discussed.

  9. Blood pressure and sodium: Association with MRI markers in cerebral small vessel disease.

    PubMed

    Heye, Anna K; Thrippleton, Michael J; Chappell, Francesca M; Hernández, Maria del C Valdés; Armitage, Paul A; Makin, Stephen D; Maniega, Susana Muñoz; Sakka, Eleni; Flatman, Peter W; Dennis, Martin S; Wardlaw, Joanna M

    2016-01-01

    Dietary salt intake and hypertension are associated with increased risk of cardiovascular disease including stroke. We aimed to explore the influence of these factors, together with plasma sodium concentration, in cerebral small vessel disease (SVD). In all, 264 patients with nondisabling cortical or lacunar stroke were recruited. Patients were questioned about their salt intake and plasma sodium concentration was measured; brain tissue volume and white-matter hyperintensity (WMH) load were measured using structural magnetic resonance imaging (MRI) while diffusion tensor MRI and dynamic contrast-enhanced MRI were acquired to assess underlying tissue integrity. An index of added salt intake (P = 0.021), pulse pressure (P = 0.036), and diagnosis of hypertension (P = 0.0093) were positively associated with increased WMH, while plasma sodium concentration was associated with brain volume (P = 0.019) but not with WMH volume. These results are consistent with previous findings that raised blood pressure is associated with WMH burden and raise the possibility of an independent role for dietary salt in the development of cerebral SVD.

  10. 46 CFR 38.05-3 - Design and construction of pressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Design and construction of pressure vessel type cargo... LIQUEFIED FLAMMABLE GASES Design and Installation § 38.05-3 Design and construction of pressure vessel type... lower and fabricated of ferritic materials shall be stress relieved. (e) Unlagged cargo tanks, where...

  11. Thermal ageing mechanisms of VVER-1000 reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Shtrombakh, Yaroslav I.; Gurovich, Boris A.; Kuleshova, Evgenia A.; Maltsev, Dmitry A.; Fedotova, Svetlana V.; Chernobaeva, Anna A.

    2014-09-01

    In this paper a complex of microstructural studies (TEM and SEM) and a comparative analysis of the results of these studies with the data of mechanical tests of temperature sets of VVER-1000 RPV surveillance specimens with exposure times up to ∼200,000 h were conducted. Special annealing of control and temperature sets of SS which provides the dissolution of grain boundary segregation was performed to clarify the mechanisms of thermal ageing. It was demonstrated that during long-term exposures up to 200,000 h at the operating temperature of about 310-320 °C thermal ageing effects reveal themselves only for the weld metal (Ni content ⩾ 1.35%) and are the result of grain boundary segregation accumulation (development of reversible temper brittleness). The obtained results improve the accuracy of prediction of the thermal ageing rate of VVER-1000 materials in case of RPV service life extension up to 60 years.

  12. An evaluation of life extension of the HFIR pressure vessel. Supplement 1

    SciTech Connect

    Cheverton, R.D.

    1996-08-01

    Preliminary analyses were performed in 1994 to determine the remaining useful life of the HFIR pressure vessel. The estimated total permissible life was {approximately} 50 EFPY (100 MW). More recently, the analyses have been updated, including a more precise treatment of uncertainties in the calculation of the hydrostatic-proof-test conditions and also including the contribution of gammas to the radiation-induced reduction in fracture toughness. These and other refinements had essentially no effect on the predicted useful life of the vessel or on the specified hydrostatic proof-test conditions.

  13. A non-destructive experimental investigation of elastic plastic interfaces of autofrettaged thick-walled cylindrical aluminium high pressure vessels

    NASA Astrophysics Data System (ADS)

    Ma, Yanling; Zhang, Shu Yan; Goodway, Chris; Done, Robert; Evans, Beth; Kirichek, Oleg; Bowden, Zoë

    2012-09-01

    Positions of elastic plastic interfaces play a vital role in safe design and safe use of high pressure vessels. The ENGIN-X neutron diffractometer at the ISIS facility was used to measure the residual strain profiles in a series of aluminium vessels which had been subjected to different pressure levels. The positions of elastic plastic interfaces of the autofrettaged pressure vessels were identified. The results revealed that the residual strain magnitude and the depth of the plastic region will increase with increasing autofrettage pressure level. When autofrettage pressure produces an elastic-plastic boundary at a greater depth than the geometric mean position of the vessel wall, reverse yielding will occur, hence the loss of the vessels' elastic ability to its subsequent loading. The neutron experimental results agreed well with both the suggestions from existing literatures and the results from FE simulations.

  14. NASA Lewis advanced individual pressure vessel (IPV) nickel/hydrogen technology

    NASA Astrophysics Data System (ADS)

    Smithrick, John J.; Britton, Doris L.

    Individual pressure vessel (IPV) nickel/hydrogen technology was advanced at NASA Lewis and under Lewis contracts. Some of the advancements are as follows: (1) to use 26% KOH electrolyte to improve cycle life and performance; (ii) to modify the state-of-the-art cell design to eliminate identified failure modes and further improve cycle life, and (iii) to develop a lightweight nickel electrode to reduce battery mass, hence reduce launch and/ or increase satellite payload. A breakthrough in the Low-Earth-Orbit (LEO) cycle life of individual pressure vessel nickel/hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26% KOH electrolyte was about 40 000 accelerated LEO cycles at 80% depth-of-discharge (DOD) compared with 3500 cycles for cells containing 31% KOH. Results of the boiler plate cells tests have been validated at Naval Weapons Support Center, Crane, IN. Forty-eight Ah flight cells containing 26 and 31% KOH have undergone real time LEO cycle life testing at an 80% DOD, in 10 °C. The three cells containing 26% KOH failed on the average at cycle 19 500. The three cells containing 31% KOH failed on the average at cycle 6400. Validation testing of NASA Lewis 125 Ah advanced design IPV nickel/hydrogen flight cells is also being conducted at Naval Weapons Support Center, Crane, IN under a NASA Lewis contract. This consists of characterization, storage, and cycle-life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, on open circuit, 0 °C, and a hydrogen pressure of 14.5 psia (1 atm). The catalyzed wall wick cells have been cycled for over 22 694 cycles with no cell failures in the continuing test. All three of the noncatalyzed wall wick cells failed (cycles 9588, 13 900 and 20 575). Cycle-life test results of the Fibrex nickel electrode has demonstrated the feasibility of an improved nickel electrode giving a higher specific energy nickel/hydrogen cell. A nickel

  15. Development of a blood vessel searching device for HMS

    NASA Astrophysics Data System (ADS)

    Kuroda, Tatsuro; Uenoya, Toshiyuki; Tsuchiya, Kazuyoshi; Uetsuji, Yasutomo; Nakamachi, Eiji

    2007-12-01

    In this study, an automatic blood vessel searching system (BVSS) is newly developed, which is built in the health monitoring system (HMS) and the drug delivery system (DDS) to extract the blood, evaluates the blood sugar level and injects the insulin for the diabetic patients. Main subjects of our BVSS development are 1) a transmittance photo imaging of the finger by using the LED light as a near-infrared light source with peak wave length of 870 nm, and 2) an image processing to detect the location of the center of the blood vessel cross section. The sharp edge focus method was applied in our BVSS to detect the depth of blood vessel. We carried out experiments by using blood vessel phantoms, which consist of an artificial cylindrical blood vessel and skin tissue, which are made of the teflon tube and the silicone rubber. The teflon tube has the size of 0.6 mm in diameter and is filled with the human blood. The experimental results demonstrated that the estimated depth, which is obtained by image analysis corresponding to given depths, shows a good agreement with the real values, and consequently the availability of our BVSS is confirmed.

  16. Bobbin-Tool Friction-Stir Welding of Thick-Walled Aluminum Alloy Pressure Vessels

    SciTech Connect

    Dalder, E C; Pastrnak, J W; Engel, J; Forrest, R S; Kokko, E; Ternan, K M; Waldron, D

    2007-06-06

    It was desired to assemble thick-walled Al alloy 2219 pressure vessels by bobbin-tool friction-stir welding. To develop the welding-process, mechanical-property, and fitness-for-service information to support this effort, extensive friction-stir welding-parameter studies were conducted on 2.5 cm. and 3.8 cm. thick 2219 Al alloy plate. Starting conditions of the plate were the fully-heat-treated (-T62) and in the annealed (-O) conditions. The former condition was chosen with the intent of using the welds in either the 'as welded' condition or after a simple low-temperature aging treatment. Since preliminary stress-analyses showed that stresses in and near the welds would probably exceed the yield-strength of both 'as welded' and welded and aged weld-joints, a post-weld solution-treatment, quenching, and aging treatment was also examined. Once a suitable set of welding and post-weld heat-treatment parameters was established, the project divided into two parts. The first part concentrated on developing the necessary process information to be able to make defect-free friction-stir welds in 3.8 cm. thick Al alloy 2219 in the form of circumferential welds that would join two hemispherical forgings with a 102 cm. inside diameter. This necessitated going to a bobbin-tool welding-technique to simplify the tooling needed to react the large forces generated in friction-stir welding. The bobbin-tool technique was demonstrated on both flat-plates and plates that were bent to the curvature of the actual vessel. An additional issue was termination of the weld, i.e. closing out the hole left at the end of the weld by withdrawal of the friction-stir welding tool. This was accomplished by friction-plug welding a slightly-oversized Al alloy 2219 plug into the termination-hole, followed by machining the plug flush with both the inside and outside surfaces of the vessel. The second part of the project involved demonstrating that the welds were fit for the intended service. This

  17. Development of blood vessel searching system for HMS

    NASA Astrophysics Data System (ADS)

    Kandani, Hirofumi; Uenoya, Toshiyuki; Uetsuji, Yasutomo; Nakamachi, Eiji

    2008-08-01

    In this study, we develop a new 3D miniature blood vessel searching system by using near-infrared LED light, a CMOS camera module with an image processing unit for a health monitoring system (HMS), a drug delivery system (DDS) which requires very high performance for automatic micro blood volume extraction and automatic blood examination. Our objective is to fabricate a highly reliable micro detection system by utilizing image capturing, image processing, and micro blood extraction devices. For the searching system to determine 3D blood vessel location, we employ the stereo method. The stereo method is a common photogrammetric method. It employs the optical path principle to detect 3D location of the disparity between two cameras. The principle for blood vessel visualization is derived from the ratio of hemoglobin's absorption of the near-infrared LED light. To get a high quality blood vessel image, we adopted an LED, with peak a wavelength of 940nm. The LED is set on the dorsal side of the finger and it irradiates the human finger. A blood vessel image is captured by a CMOS camera module, which is set below the palmer side of the finger. 2D blood vessel location can be detected by the luminance distribution of a one pixel line. To examine the accuracy of our detecting system, we carried out experiments using finger phantoms with blood vessel diameters of 0.5, 0.75, 1.0mm, at the depths of 0.5 ~ 2.0 mm from the phantom's surface. The experimental results of the estimated depth obtained by our detecting system shows good agreements with the given depths, and the viability of this system is confirmed.

  18. Blood pressure regulation V: in vivo mechanical properties of precapillary vessels as affected by long-term pressure loading and unloading.

    PubMed

    Eiken, Ola; Mekjavic, Igor B; Kölegård, Roger

    2014-03-01

    Recent studies are reviewed, concerning the in vivo wall stiffness of arteries and arterioles in healthy humans, and how these properties adapt to iterative increments or sustained reductions in local intravascular pressure. A novel technique was used, by which arterial and arteriolar stiffness was determined as changes in arterial diameter and flow, respectively, during graded increments in distending pressure in the blood vessels of an arm or a leg. Pressure-induced increases in diameter and flow were smaller in the lower leg than in the arm, indicating greater stiffness in the arteries/arterioles of the leg. A 5-week period of intermittent intravascular pressure elevations in one arm reduced pressure distension and pressure-induced flow in the brachial artery by about 50%. Conversely, prolonged reduction of arterial/arteriolar pressure in the lower body by 5 weeks of sustained horizontal bedrest, induced threefold increases of the pressure-distension and pressure-flow responses in a tibial artery. Thus, the wall stiffness of arteries and arterioles are plastic properties that readily adapt to changes in the prevailing local intravascular pressure. The discussion concerns mechanisms underlying changes in local arterial/arteriolar stiffness as well as whether stiffness is altered by changes in myogenic tone and/or wall structure. As regards implications, regulation of local arterial/arteriolar stiffness may facilitate control of arterial pressure in erect posture and conditions of exaggerated intravascular pressure gradients. That increased intravascular pressure leads to increased arteriolar wall stiffness also supports the notion that local pressure loading may constitute a prime mover in the development of vascular changes in hypertension.

  19. Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, Rick

    2012-01-01

    This new start project (FY12-14) will design and demonstrate the ability of nondestructive evaluation sensors for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap. Results will be correlated with other nondestructive evaluation technologies such as Acoustic Emission. The project will build upon a proof of concept study performed at KSC which demonstrated the ability of Magnetic Stress Gages to measure stresses at internal overwraps and upon current acoustic emission research being performed at WSTF; The gages will be produced utilizing Maundering Winding Magnetometer and/or Maundering Winding Magnetometer-array eddy current technology. The proof-of-concept study demonstrated a correlation between the sensor response and pressure or strain. The study also demonstrated the ability of Maundering Winding Magnetometer technology to monitor the stresses in a Composite Overwrapped Pressure Vessel at different orientations and depths. The ultimate goal is to utilize this technology for the health monitoring of Composite Overwrapped Pressure Vessels for all future flight programs.

  20. Condition health monitoring of composite wound pressure vessels using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojing; Zhang, Boming; Wu, Zhanjun

    2007-07-01

    Structure health monitoring refers to a real time and in situ monitoring system. It can diagnose the condition status of composite structure in time and effectively estimate the safety, increasing the reliability, extending the service life, at the same time, reducing the maintenance cost. In this paper, the sensing technology based on FBG sensors is employed to monitor the health of composite wound pressure vessel in service. Strain monitoring of the vessel in fatigue tests is carried out with the surface mounted FBG sensors. The experiment result shows that FBG sensors have several excellent performances: it has anti-fatigue capability to accurately measure the cycle strain; it is linear with the inner pressure and can be used as pressure sensor; the wavelength is diverged in the high stress gradient field, so the FBG can be used to measure the non-homogeneous strain field. Based on the fatigue damage mechanism of composite laminates and stiffness degradation model, the variation regularity of cycle strain of composite pressure vessel is studied and the residual stiffness during damage is obtained.

  1. Proof test criteria for thin-walled 2219 aluminum pressure vessels. Volume 1: Program summary and data analysis

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1976-01-01

    This experimental program was undertaken to investigate the crack growth behavior of deep surface flaws in 2219 aluminum. The program included tests of uniaxially loaded surface flaw and center crack panels at temperatures ranging from 20K (-423 F) to ambient. The tests were conducted on both the base metal and as-welded weld metal material. The program was designed to provide data on the mechanisms of failure by ligament penetration, and the residual cyclic life, after proof-testing, of a vessel which has been subjected to incipient penetration by the proof test. The results were compared and analyzed with previously developed data to develop guidelines for the proof testing of thin walled 2219 pressure vessels.

  2. Prevention of non-ductile fracture in 6061-T6 aluminum nuclear pressure vessels

    SciTech Connect

    Yahr, G.T.

    1995-06-01

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Committee has approved rules for the use of 6061-T6 and 6061-T651 aluminum for the construction of Class 1 welded nuclear pressure vessels for temperatures not exceeding 149 C (300 F). Nuclear Code Case N-519 allows the use of this aluminum in the construction of low temperature research reactors such as the Advanced Neutron Source. The rules for protection against non-ductile fracture are discussed. The basis for a value of 25.3 MPa {radical}m (23 ksi {radical}in.) for the critical or reference stress intensity factor for use in the fracture analysis is presented. Requirements for consideration of the effects of neutron irradiation on the fracture toughness are discussed.

  3. Evaluation of Acoustic Emission NDE of Kevlar Composite Over Wrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2008-01-01

    Pressurization and failure tests of small Kevlar/epoxy COPV bottles were conducted during 2006 and 2007 by Texas Research Institute Austin, Inc., at TRI facilities. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. Results of some of the tests indicate a possibility that AE can be used to track the stress-rupture degradation of COPV vessels.

  4. Pressure vessel sliding support unit and system using the sliding support unit

    DOEpatents

    Breach, Michael R.; Keck, David J.; Deaver, Gerald A.

    2013-01-15

    Provided is a sliding support and a system using the sliding support unit. The sliding support unit may include a fulcrum capture configured to attach to a support flange, a fulcrum support configured to attach to the fulcrum capture, and a baseplate block configured to support the fulcrum support. The system using the sliding support unit may include a pressure vessel, a pedestal bracket, and a plurality of sliding support units.

  5. Investigation of black spots and other blemishes inside small stainless steel pressure vessels

    SciTech Connect

    Heiple, C.R.; Doyle, J.H.; Burgardt, P.

    1990-08-14

    Black spots and other blemishes were found on the inside surface of small stainless steel pressure vessels by borescope inspection. Most of the black spots originated from pyrolysis of lint contaminating the interior surface of these parts prior to welding. The lint originated from cotton gloves used to handle parts and from cotton gauze used to clean the parts. Pyrolysis of other hydrocarbons can also create black spots. 34 figs.

  6. A creep-rupture model of filament-wound spherical pressure vessels

    NASA Technical Reports Server (NTRS)

    Dozier, Jan D.; Hackett, Robert M.

    1987-01-01

    The creep-rupture model is that of a quasi-isotropic filament-wound spherical pressure vessel, subjected to internal pressurization. The matrix material of the composite system is assumed to be linearly viscoelastic. Internal damage resulting from the relaxation of the matrix and the corresponding increase in microcracks is represented by a functional relationship between circumferential strain and transverse modulus. The numerical solution to this nonlinear problem is an iterative technique, whereby the elastic-viscoelastic correspondence principle is employed. In the Laplace domain, the associated elastic solution is obtained and this solution is inverted by the multidata method to yield the time-dependent solution.

  7. Environmental crack-growth behavior of high strength pressure vessel alloys

    NASA Technical Reports Server (NTRS)

    Forman, R. G.

    1975-01-01

    Results of sustained-load environmental crack growth threshold tests performed on six spacecraft pressure vessel alloys are presented. The alloys were Inconel 718, 6Al-4V titanium, A-286 steel, AM-350 stainless steel, cryoformed AISI 301 stainless steel; and cryoformed AISI 304L steel. The test environments for the program were air, pressurized gases of hydrogen, oxygen, nitrogen, and carbon dioxide, and liquid environments of distilled water, sea water, nitrogen tetroxide, hydrazine, aerozine 50, monomethyl hydrazine, and hydrogen peroxide. Surface flaw type specimens were used with flaws located in both base metal and weld metal.

  8. Application of the LEPRICON methodology to LWR pressure vessel surveillance dosimetry

    SciTech Connect

    Maerker, R.E.

    1987-01-01

    A second example of applying the LEPRICON methodology to an existing pressurized water reactor is described. The present application is an analysis of ad hoc dosimetry inserted into the H.B. Robinson-2 reactor to monitor the effects on pressure vessel fluence produced by the introduction of a low-leakage fuel management scheme during cycle 9. The use of simultaneous dosimetry at both a downcomer location and in the reactor cavity allows a quantitative evaluation to be made by the LEPRICON procedure of the relative merits of each location, and the cavity location is found to be superior.

  9. Composite Overwrapped Pressure Vessels: Database Extension Task 3.0 and Impact Damage Effects Control Task 8.0

    NASA Technical Reports Server (NTRS)

    Beeson, Harold D.; Davis, Dennis D.; Ross, William L., Sr.; Tapphorn, Ralph M.

    2002-01-01

    This document represents efforts accomplished at the NASA Johnson Space Center White Sands Test Facility (WSTF) in support of the Enhanced Technology for Composite Overwrapped Pressure Vessels (COPV) Program, a joint research and technology effort among the U.S. Air Force, NASA, and the Aerospace Corporation. WSTF performed testing for several facets of the program. Testing that contributed to the Task 3.0 COPV database extension objective included baseline structural strength, failure mode and safe-life, impact damage tolerance, sustained load/impact effect, and materials compatibility. WSTF was also responsible for establishing impact protection and control requirements under Task 8.0 of the program. This included developing a methodology for establishing an impact control plan. Seven test reports detail the work done at WSTF. As such, this document contributes to the database of information regarding COPV behavior that will ensure performance benefits and safety are maintained throughout vessel service life.

  10. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    SciTech Connect

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit; Rink, Karl

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize the mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.

  11. An Integrated Acousto/Ultrasonic Structural Health Monitoring System for Composite Pressure Vessels.

    PubMed

    Bulletti, Andrea; Giannelli, Pietro; Calzolai, Marco; Capineri, Lorenzo

    2016-06-01

    This paper describes the implementation of a structural health monitoring (SHM) method for mechanical components and structures in composite materials with a focus on carbon-fiber-overwrapped pressure vessels (COPVs) used in the aerospace industry. Two flex arrays of polyvinylidene fluoride (PVDF) interdigital transducers have been designed, realized, and mounted on the COPV to generate guided Lamb waves (mode A0) for damage assessment. We developed a custom electronic instrument capable of performing two functions using the same transducers: passive-mode detection of impacts and active-mode damage assessment using Lamb waves. The impact detection is based on an accurate evaluation of the time of arrival and was successfully tested with low-velocity impacts (7 and 30 J). Damage detection and progression is based on the calculation of a damage index matrix which compares a set of signals acquired from the transducers with a baseline. This paper also investigates the advantage of tuning the active-mode frequency to obtain the maximum transducer response in the presence of structural variations of the specimen, and therefore, the highest sensitivity to damage. PMID:27019485

  12. The impact of mobile point defect clusters in a kinetic model of pressure vessel embrittlement

    SciTech Connect

    Stoller, R.E.

    1998-05-01

    The results of recent molecular dynamics simulations of displacement cascades in iron indicate that small interstitial clusters may have a very low activation energy for migration, and that their migration is 1-dimensional, rather than 3-dimensional. The mobility of these clusters can have a significant impact on the predictions of radiation damage models, particularly at the relatively low temperatures typical of commercial, light water reactor pressure vessels (RPV) and other out-of-core components. A previously-developed kinetic model used to investigate RPV embrittlement has been modified to permit an evaluation of the mobile interstitial clusters. Sink strengths appropriate to both 1- and 3-dimensional motion of the clusters were evaluated. High cluster mobility leads to a reduction in the amount of predicted embrittlement due to interstitial clusters since they are lost to sinks rather than building up in the microstructure. The sensitivity of the predictions to displacement rate also increases. The magnitude of this effect is somewhat reduced if the migration is 1-dimensional since the corresponding sink strengths are lower than those for 3-dimensional diffusion. The cluster mobility can also affect the evolution of copper-rich precipitates in the model since the radiation-enhanced diffusion coefficient increases due to the lower interstitial cluster sink strength. The overall impact of the modifications to the model is discussed in terms of the major irradiation variables and material parameter uncertainties.

  13. Equations for gas releasing process from pressurized vessels in ODH evaluation

    NASA Astrophysics Data System (ADS)

    Jia, L. X.; Wang, L.

    2002-05-01

    The evaluation of Oxygen Deficiency Hazard (ODH) is a critical part in the design of any cryogenic system. The high-pressure gas tank or low-temperature liquid container that contain asphyxiated fluid could be the sources to bring about the oxygen deficiency hazard. In the evaluation of ODH, the calculation of the spill rate from the pressurized vessel is the central task. The accuracy of the engineering estimation becomes one of the safety design issues. This paper summarizes the equations for the oxygen concentration calculation in different cases, and discusses the equations for the gas release process calculation both for the high-pressure gas tank and the low-temperature liquid container. Some simplified formulas for engineering estimation are presented along with the theoretical background that involves the process analyses under variable mass, variable pressure and variable temperature.

  14. Application of Negligible Creep Criteria to Candidate Materials for HTGR Pressure Vessels

    SciTech Connect

    Jetter, Robert I; Sham, Sam; Swindeman, Robert W

    2011-01-01

    Two of the proposed High Temperature Gas Reactors (HTGRs) under consideration for a demonstration plant have the design object of avoiding creep effects in the reactor pressure vessel (RPV) during normal operation. This work addresses the criteria for negligible creep in Subsection NH, Division 1 of the ASME B&PV (Boiler and Pressure Vessel) Code, Section III, other international design codes and some currently suggested criteria modifications and their impact on permissible operating temperatures for various reactor pressure vessel materials. The goal of negligible creep could have different interpretations depending upon what failure modes are considered and associated criteria for avoiding the effects of creep. It is shown that for the materials of this study, consideration of localized damage due to cycling of peak stresses results in a lower temperature for negligible creep than consideration of the temperature at which the allowable stress is governed by creep properties. In assessing the effect of localized cyclic stresses it is also shown that consideration of cyclic softening is an important effect that results in a higher estimated temperature for the onset of significant creep effects than would be the case if the material were cyclically hardening. There are other considerations for the selection of vessel material besides avoiding creep effects. Of interest for this review are (1) the material s allowable stress level and impact on wall thickness (the goal being to minimize required wall thickness) and (2) ASME Code approval (inclusion as a permitted material in the relevant Section and Subsection of interest) to expedite regulatory review and approval. The application of negligible creep criteria to two of the candidate materials, SA533 and Mod 9Cr-1Mo (also referred to as Grade 91), and to a potential alternate, normalized and tempered 2 Cr-1Mo, is illustrated and the relative advantages and disadvantages of the materials are discussed.

  15. Development and Fibronectin Signaling Requirements of the Zebrafish Interrenal Vessel

    PubMed Central

    Chiu, Chih-Hao; Chou, Chih-Wei; Takada, Shinji; Liu, Yi-Wen

    2012-01-01

    Background The early morphogenetic steps of zebrafish interrenal tissue, the teleostean counterpart of the mammalian adrenal gland, are modulated by the peri-interrenal angioblasts and blood vessels. While an organized distribution of intra-adrenal vessels and extracellular matrix is essential for the fetal adrenal cortex remodeling, whether and how an intra-interrenal buildup of vasculature and extracellular matrix forms and functions during interrenal organogenesis in teleosts remains unclear. Methodology and Principal Findings We characterized the process of interrenal gland vascularization by identifying the interrenal vessel (IRV); which develops from the axial artery through angiogenesis and is associated with highly enriched Fibronectin (Fn) accumulation at its microenvironment. The loss of Fn1 by either antisense morpholino (MO) knockdown or genetic mutation inhibited endothelial invasion and migration of the steroidogenic tissue. The accumulation of peri-IRV Fn requires Integrin α5 (Itga5), with its knockdown leading to interrenal and IRV morphologies phenocopying those in the fn1 morphant and mutant. fn1b, another known fn gene in zebrafish, is however not involved in the IRV formation. The distribution pattern of peri-IRV Fn could be modulated by the blood flow, while a lack of which altered angiogenic direction of the IRV as well as its ability to integrate with the steroidogenic tissue. The administration of Fn antagonist through microangiography exerted reducing effects on both interrenal vessel angiogenesis and steroidogenic cell migration. Conclusions and Significance This work is the first to identify the zebrafish IRV and to characterize how its integration into the developing interrenal gland requires the Fn-enriched microenvironment, which leads to the possibility of using the IRV formation as a platform for exploring organ-specific angiogenesis. In the context of other developmental endocrinology studies, our results indicate a highly dynamic

  16. Test results on direct containment heating by high-pressure melt ejection into the Surtsey vessel: The TDS test series

    SciTech Connect

    Allen, M.D.; Blanchat, T.K.; Pilch, M.M.

    1994-08-01

    The Technology Development and Scoping (TDS) test series was conducted to test and develop instrumentation and procedures for performing steam-driven, high-pressure melt ejection (HPME) experiments at the Surtsey Test Facility to investigate direct containment heating (DCH). Seven experiments, designated TDS-1 through TDS-7, were performed in this test series. These experiments were conducted using similar initial conditions; the primary variable was the initial pressure in the Surtsey vessel. All experiments in this test series were performed with a steam driving gas pressure of {approx_equal} 4 MPa, 80 kg of lumina/iron/chromium thermite melt simulant, an initial hole diameter of 4.8 cm (which ablated to a final hole diameter of {approx_equal} 6 cm), and a 1/10th linear scale model of the Surry reactor cavity. The Surtsey vessel was purged with argon (<0.25 mol% O{sub 2}) to limit the recombination of hydrogen and oxygen, and gas grab samples were taken to measure the amount of hydrogen produced.

  17. 46 CFR 35.25-5 - Repairs of boilers and unfired pressure vessels and reports of repairs or accidents by chief...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Repairs of boilers and unfired pressure vessels and... unfired pressure vessels and reports of repairs or accidents by chief engineer—TB/ALL. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer shall submit a report...

  18. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Code (incorporated by reference, see 46 CFR 54.01-1), as limited, modified, or replaced by specific... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall...

  19. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Code (incorporated by reference, see 46 CFR 54.01-1), as limited, modified, or replaced by specific... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall...

  20. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Code (incorporated by reference, see 46 CFR 54.01-1), as limited, modified, or replaced by specific... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall...

  1. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Code (incorporated by reference, see 46 CFR 54.01-1), as limited, modified, or replaced by specific... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall...

  2. Interrelationship of Nondestructive Evaluation Methodologies Applied to Testing of Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Leifeste, Mark R.

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are commonly used in spacecraft for containment of pressurized gases and fluids, incorporating strength and weight savings. The energy stored is capable of extensive spacecraft damage and personal injury in the event of sudden failure. These apparently simple structures, composed of a metallic media impermeable liner and fiber/resin composite overwrap are really complex structures with numerous material and structural phenomena interacting during pressurized use which requires multiple, interrelated monitoring methodologies to monitor and understand subtle changes critical to safe use. Testing of COPVs at NASA Johnson Space Center White Sands T est Facility (WSTF) has employed multiple in-situ, real-time nondestructive evaluation (NDE) methodologies as well as pre- and post-test comparative techniques to monitor changes in material and structural parameters during advanced pressurized testing. The use of NDE methodologies and their relationship to monitoring changes is discussed based on testing of real-world spacecraft COPVs. Lessons learned are used to present recommendations for use in testing, as well as a discussion of potential applications to vessel health monitoring in future applications.

  3. 46 CFR 38.05-3 - Design and construction of pressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tanks-TB/ALL. 38.05-3 Section 38.05-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS... cargo tanks—TB/ALL. (a) Cargo tanks of pressure vessel configuration (e.g. cylindrical, spherical, etc... either in service or during testing. For mechanically stress relieved cargo tanks, additional...

  4. Monitoring Composite Material Pressure Vessels with a Fiber-Optic/Microelectronic Sensor System

    NASA Technical Reports Server (NTRS)

    Klimcak, C.; Jaduszliwer, B.

    1995-01-01

    We discuss the concept of an integrated, fiber-optic/microelectronic distributed sensor system that can monitor composite material pressure vessels for Air Force space systems to provide assessments of the overall health and integrity of the vessel throughout its entire operating history from birth to end of life. The fiber optic component would include either a semiconductor light emitting diode or diode laser and a multiplexed fiber optic sensing network incorporating Bragg grating sensors capable of detecting internal temperature and strain. The microelectronic components include a power source, a pulsed laser driver, time domain data acquisition hardware, a microprocessor, a data storage device, and a communication interface. The sensing system would be incorporated within the composite during its manufacture. The microelectronic data acquisition and logging system would record the environmental conditions to which the vessel has been subjected to during its storage and transit, e.g., the history of thermal excursions, pressure loading data, the occurrence of mechanical impacts, the presence of changing internal strain due to aging, delamination, material decomposition, etc. Data would be maintained din non-volatile memory for subsequent readout through a microcomputer interface.

  5. RPV-1: A Virtual Test Reactor to simulate irradiation effects in light water reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Jumel, Stéphanie; Van-Duysen, Jean Claude

    2005-04-01

    Many key components in commercial nuclear reactors are subject to neutron irradiation which modifies their mechanical properties. So far, the prediction of the in-service behavior and the lifetime of these components has required irradiations in so-called ';Experimental Test Reactors'. This predominantly empirical approach can now be supplemented by the development of physically based computer tools to simulate irradiation effects numerically. The devising of such tools, also called Virtual Test Reactors (VTRs), started in the framework of the REVE Project (REactor for Virtual Experiments). This project is a joint effort among Europe, the United States and Japan aimed at building VTRs able to simulate irradiation effects in pressure vessel steels and internal structures of LWRs. The European team has already built a first VTR, called RPV-1, devised for pressure vessel steels. Its inputs and outputs are similar to those of experimental irradiation programs carried out to assess the in-service behavior of reactor pressure vessels. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or convey data. A user friendly Python interface eases the running of the simulations and the visualization of the results. RPV-1 is sensitive to its inputs (neutron spectrum, temperature, …) and provides results in conformity with experimental ones. The iterative improvement of RPV-1 has been started by the comparison of simulation results with the database of the IVAR experimental program led by the University of California Santa Barbara. These first successes led 40 European organizations to start developing RPV-2, an advanced version of RPV-1, as well as INTERN-1, a VTR devised to simulate irradiation effects in stainless steels, in a large effort (the PERFECT project) supported by the European Commission in the framework of the 6th Framework Program.

  6. Are Retinal Vessels Calibers Influenced by Blood Pressure Measured at the Time of Retinography Acquisition?

    PubMed Central

    Pakter, Helena M.; Maestri, Marcelo K.; Beltrami-Moreira, Marina; Gus, Miguel; Moreira, Leila B.

    2015-01-01

    Background Retinal arterial narrowing is associated with higher office blood pressure (BP) and ambulatory blood pressure monitoring, and increased incidence of cardiovascular disease, but it is still unknown if the vessel caliber is associated with BP measured at the time of retinography acquisition. Methods Retinal arteriolar and venular calibers were measured by the microdensitometric method in 448 patients with hypertension. Participants underwent 24-hours ambulatory blood pressure (24-h ABP) monitoring simultaneously with the retinography acquisition. Association between arteriolar and venular calibers with increase of 10 mmHg in the mean 24-hours, daily, and nightly BP, and with BP measured at the time of retinography, was evaluated by ANOVA and multivariate analyses. Results Mean 24-hours, daytime and nighttime systolic and diastolic BP were inversely associated with the arteriolar caliber, but not with the venular caliber. Arteriolar caliber decreased -0.8 (95% CI -1.4 to -0.2) μm per 10-mmHg increase in 24-hours mean systolic BP, adjusted for age, gender, fellow vessel, and duration of hypertension (P = 0.01). The corresponding decreasing in arteriolar caliber by 10 mmHg of increasing in mean diastolic BP was -1.1 μm (-2.0 to -0.2, P = 0.02). The decrease of arteriolar caliber by the same increasing of BP measured at the time of retinography was lower and not statistically significant, particularly for mean diastolic BP and outer arterioles calibers: -1.0 (-1.8 to -0.2) μm in the daytime BP average versus -0.3 (-0.9 to 0.3) at the moment of retinography acquisition. Conclusions These findings suggest that the caliber of arteriolar retinal vessels in patients with uncontrolled hypertension are not significantly influenced by blood pressure measured at the time of retinography acquisition. PMID:26375034

  7. Definition of mutually optimum NDI and proof test criteria for 2219 aluminum pressure vessels. Volume 1: Methods

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; King, R. G.; Todd, P. H., Jr.

    1979-01-01

    The requirements for proof testing and nondestructive inspection of aluminum pressure vessels were discussed. The following conclusions are (1) lack-of-fusion weld defects are sufficiently tight in the as-welded condition to be considered undetectable; (2) proof-level loads are required to fully open lack-of-fusion weld defects; (3) significant crack opening occurs at subproof levels so that an inspection enhancement loading treatment designed to avoid catastrophic failure is feasible; (4) currently used proof levels for 2219 pressure vessels are adequate for postproof inspection; (5) quantification of defect size and location using collimated ultrasonic pitch-catch techniques appears sufficiently feasible for tankage to warrant developmental work; (6) for short-time single-cycle pressure-vessel applications, postproof inspection is desirable; and (7) for long-term multiple-cycle pressure-vessel applications, postproof inspection is essential for life assurance.

  8. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR.

    SciTech Connect

    HOLDEN,N.E.; RECINIELLO,R.N.; HU,J.P.; RORER,D.C.

    2002-08-18

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex{trademark} polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup.

  9. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    SciTech Connect

    Somerday, Brian P.; Barney, Monica

    2014-12-04

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lower frequencies relevant to PSA vessel operation.

  10. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    DOE PAGESBeta

    Somerday, Brian P.; Barney, Monica

    2014-12-04

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lower frequenciesmore » relevant to PSA vessel operation.« less

  11. Deformation behavior in reactor pressure vessel steels as a clue to understanding irradiation hardening.

    SciTech Connect

    DiMelfi, R. J.; Alexander, D. E.; Rehn, L. E.

    1999-10-25

    In this paper, we examine the post-yield true stress vs true strain behavior of irradiated pressure vessel steels and iron-based alloys to reveal differences in strain-hardening behavior associated with different irradiating particles (neutrons and electrons) and different alloy chernky. It is important to understand the effects on mechanical properties caused by displacement producing radiation of nuclear reactor pressure steels. Critical embrittling effects, e.g. increases in the ductile-to-brittle-transition-temperature, are associated with irradiation-induced increases in yield strength. In addition, fatigue-life and loading-rate effects on fracture can be related to the post-irradiation strain-hardening behavior of the steels. All of these properties affect the expected service life of nuclear reactor pressure vessels. We address the characteristics of two general strengthening effects that we believe are relevant to the differing defect cluster characters produced by neutrons and electrons in four different alloys: two pressure vessel steels, A212B and A350, and two binary alloys, Fe-0.28 wt%Cu and Fe-0.74 wt%Ni. Our results show that there are differences in the post-irradiation mechanical behavior for the two kinds of irradiation and that the differences are related both to differences in damage produced and alloy chemistry. We find that while electron and neutron irradiations (at T {le} 60 C) of pressure vessel steels and binary iron-based model alloys produce similar increases in yield strength for the same dose level, they do not result in the same post-yield hardening behavior. For neutron irradiation, the true stress flow curves of the irradiated material can be made to superimpose on that of the unirradiated material, when the former are shifted appropriately along the strain axis. This behavior suggests that neutron irradiation hardening has the same effect as strain hardening for all of the materials analyzed. For electron irradiated steels, the

  12. Damage Control Plan for International Space Station Recharge Tank Assembly Composite Overwrapped Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Cook, Anthony J.

    2011-01-01

    As NASA has retired the Space Shuttle Program, a new method of transporting compressed gaseous nitrogen and oxygen needed to be created for delivery of these crucial life support resources to the International Space Station (ISS). One of the methods selected by NASA includes the use of highly pressurized, unprotected Recharge Tank Assemblies (RTAs) utilizing Composite Overwrapped Pressure Vessels (COPVs). A COPV consists of a thin liner wrapped with a fiber composite and resin or epoxy. It is typically lighter weight than an all metal pressure vessel of similar volume and therefore provides a higher-efficiency means for gas storage. However COPVs are known to be susceptible to damage resulting from handling, tool drop impacts, or impacts from other objects. As a result, a comprehensive Damage Control Plan has been established to mitigate damage to the RTA COPV throughout its life cycle. The DCP is intended to evaluate and mitigate defined threats during manufacturing, shipping and handling, test, assembly level integration, shipment while pressurized, launch vehicle integration and mission operations by defining credible threats and methods for preventing potential damage while still maintaining the primary goal of resupplying ISS gas resources. A comprehensive threat assessment is performed to identify all threats posed to the COPV during the different phases of its lifecycle. The threat assessment is then used as the basis for creating a series of general inspection, surveillance and reporting requirements which apply across all phases of the COPV's life, targeted requirements only applicable to specific work phases and a series of training courses for both ground personnel and crew aboard the ISS. A particularly important area of emphasis deals with creating DCP requirements for a highly pressurized, large and unprotected RTA COPV for use during Inter Vehicular Activities (IVA) operations in the micro gravity environment while supplying pressurized gas to the

  13. Blood and lymphatic vessel formation.

    PubMed

    Bautch, Victoria L; Caron, Kathleen M

    2015-03-02

    Blood and lymphatic vessels deliver oxygen and nutrients, remove waste and CO2, and regulate interstitial pressure in tissues and organs. These vessels begin life early in embryogenesis using transcription factors and signaling pathways that regulate differentiation, morphogenesis, and proliferation. Here we describe how these vessels develop in the mouse embryo, and the signals that are important to their development.

  14. Ex-Vivo Lymphatic Perfusion System for Independently Controlling Pressure Gradient and Transmural Pressure in Isolated Vessels

    PubMed Central

    Kornuta, Jeffrey A.; Dixon, J. Brandon

    2015-01-01

    In addition to external forces, collecting lymphatic vessels intrinsically contract to transport lymph from the extremities to the venous circulation. As a result, the lymphatic endothelium is routinely exposed to a wide range of dynamic mechanical forces, primarily fluid shear stress and circumferential stress, which have both been shown to affect lymphatic pumping activity. Although various ex-vivo perfusion systems exist to study this innate pumping activity in response to mechanical stimuli, none are capable of independently controlling the two primary mechanical forces affecting lymphatic contractility: transaxial pressure gradient, ΔP, which governs fluid shear stress; and average transmural pressure, Pavg, which governs circumferential stress. Hence, the authors describe a novel ex-vivo lymphatic perfusion system (ELPS) capable of independently controlling these two outputs using a linear, explicit model predictive control (MPC) algorithm. The ELPS is capable of reproducing arbitrary waveforms within the frequency range observed in the lymphatics in vivo, including a time-varying ΔP with a constant Pavg, time-varying ΔP and Pavg, and a constant ΔP with a time-varying Pavg. In addition, due to its implementation of syringes to actuate the working fluid, a post-hoc method of estimating both the flow rate through the vessel and fluid wall shear stress over multiple, long (5 sec) time windows is also described. PMID:24809724

  15. Neural Network Burst Pressure Prediction in Graphite/Epoxy Pressure Vessels from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Walker, James L., II; Rowell, Ginger H.

    1995-01-01

    Acoustic emission (AE) data were taken during hydroproof for three sets of ASTM standard 5.75 inch diameter filament wound graphite/epoxy bottles. All three sets of bottles had the same design and were wound from the same graphite fiber; the only difference was in the epoxies used. Two of the epoxies had similar mechanical properties, and because the acoustic properties of materials are a function of their stiffnesses, it was thought that the AE data from the two sets might also be similar; however, this was not the case. Therefore, the three resin types were categorized using dummy variables, which allowed the prediction of burst pressures all three sets of bottles using a single neural network. Three bottles from each set were used to train the network. The resin category, the AE amplitude distribution data taken up to 25 % of the expected burst pressure, and the actual burst pressures were used as inputs. Architecturally, the network consisted of a forty-three neuron input layer (a single categorical variable defining the resin type plus forty-two continuous variables for the AE amplitude frequencies), a fifteen neuron hidden layer for mapping, and a single output neuron for burst pressure prediction. The network trained on all three bottle sets was able to predict burst pressures in the remaining bottles with a worst case error of + 6.59%, slightly greater than the desired goal of + 5%. This larger than desired error was due to poor resolution in the amplitude data for the third bottle set. When the third set of bottles was eliminated from consideration, only four hidden layer neurons were necessary to generate a worst case prediction error of - 3.43%, well within the desired goal.

  16. PWR reactor pressure vessel internals license renewal industry report; revision 1. Final report

    SciTech Connect

    Schwirian, R.; Robison, G.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures and components, in the license renewal technical Industry Reports (IRs). License renewal applicants may choose to reference these IRs in support of their plant-specific license renewal applications, as an equivalent to the integrated plant assessment provisions of the license renewal rule (10 CFR Part 54). Pressurized water reactor (PWR) reactor pressure vessel (RPV) internals designed by all three U.S. PWR nuclear steam supply system vendors have been evaluated relative to the effects of age-related degradation mechanisms; the capability of current design limits; inservice examination, testing, repair, refurbishment, and other programs to manage these effects; and the assurance that these internals can continue to perform their intended safety functions in the license renewal term. This industry report (IR), one of a series of ten, provides a generic technical basis for evaluation of PWR reactor pressure vessel internals for license renewal.

  17. The criteria of fracture in the case of the leak of pressure vessels

    SciTech Connect

    Habil; Ziliukas, A.

    1997-04-01

    In order to forecast the break of the high pressure vessels and the network of pipes in a nuclear reactor, according to the concept of leak before break of pressure vessels, it is necessary to analyze the conditions of project, production, and mounting quality as well as of exploitation. It is also necessary to evaluate the process of break by the help of the fracture criteria. In the Ignalina Nuclear Power Plant of, in Lithuania, the most important objects of investigation are: the highest pressure pipes, made of Japanese steel 19MN5 and having an anticorrosive austenitic: coal inside, the pipes of distribution, which arc made of 08X1810T steel. The steel of the network of pipes has a quality of plasticity: therefore the only criteria of fragile is impossible to apply to. The process of break would be best described by the universal criteria of elastic - plastic fracture. For this purpose the author offers the criterion of the double parameter.

  18. Preliminary investigation of an ultrasound method for estimating pressure changes in deep-positioned vessels

    NASA Astrophysics Data System (ADS)

    Olesen, Jacob Bjerring; Villagomez-Hoyos, Carlos Armando; Traberg, Marie Sand; Chee, Adrian J. Y.; Yiu, Billy Y. S.; Ho, Chung Kit; Yu, Alfred C. H.; Jensen, Jørgen Arendt

    2016-04-01

    This paper presents a method for measuring pressure changes in deep-tissue vessels using vector velocity ultrasound data. The large penetration depth is ensured by acquiring data using a low frequency phased array transducer. Vascular pressure changes are then calculated from 2-D angle-independent vector velocity fields using a model based on the Navier-Stokes equations. Experimental scans are performed on a fabricated flow phantom having a constriction of 36% at a depth of 100 mm. Scans are carried out using a phased array transducer connected to the experimental scanner, SARUS. 2-D fields of angle-independent vector velocities are acquired using directional synthetic aperture vector flow imaging. The obtained results are evaluated by comparison to a 3-D numerical simulation model with equivalent geometry as the designed phantom. The study showed pressure drops across the constricted phantom varying from -40 Pa to 15 Pa with a standard deviation of 32%, and a bias of 25% found relative to the peak simulated pressure drop. This preliminary study shows that pressure can be estimated non-invasively to a depth that enables cardiac scans, and thereby, the possibility of detecting the pressure drops across the mitral valve.

  19. Strength and life of pressure vessels subjected to impacts and thermomechanical GFRP loading

    NASA Astrophysics Data System (ADS)

    Pankakoski, Pekka H.; Uuttu, Tero; Kauppinen, Pentti; Sarkimo, Matti; Auerkari, Pertti

    1992-10-01

    Non-insulated GRFP (Glass Fiber Reinforced Plastics) pipes were experimentally investigated. Particular consideration was given to the effects of short term thermal overloads and impact damage. It was shown that for a matrix with a long term specified service temperature of less than 140 C and starting from 140 C at 10 bar pressure up to 200 C and 30 bar pressure up to 170 C such thermalcycling up to some 100 cycles is acceptable when the hold time at the peak temperature is less than one hour. A prerequisite for this is the outer surface of the pipes remaining non-insulated and cooler (by about 30 C) than the content. No significant creep strain under static 10 bar pressure at 140 C was measured up to 350 hours of testing time. At 200 C and 30 bar, creep was fast enough to produce failure in a few hours. Clearly, the matrix material is not well suited to these high temperatures. Nevertheless, temporary surges in inside temperature to 170 C or even relatively long periods peaking at 140 C should not cause significant problems at normal service pressures near 10 bar, at least up to some 100 cycles. Impact testing and subsequent static pressure testing showed that for a given type of material, the leakage pressure of the vessel can be relatively easily predicted from the incident impact energy or from the ultrasonically determined size of the impact defect.

  20. Detection and characterization of flaws in segments of light water reactor pressure vessels

    SciTech Connect

    Cook, K.V.; Cunningham, R.A. Jr.; McClung, R.W.

    1987-01-01

    Studies have been conducted to determine flaw density in segments cut from light water reactor (LWR) pressure vessels as part of the Oak Ridge National Laboratory's Heavy-Section Steel Technology (HSST) Program. Segments from the Hope Creek Unit 2 vessil and the Pilgrim Unit 2 Vessel were purchased from salvage dealers. Hope Creek was a boiling water reactor (BWR) design and Pilgrim was a pressurized water reactor (PWR) design. Neither were ever placed in service. Objectives were to evaluate these LWR segments for flaws with ultrasonic and liquid penetrant techniques. Both objectives were successfully completed. One significant indication was detected in a Hope Creek seam weld by ultrasonic techniques and characterized by further analyses terminating with destructive correlation. This indication (with a through-wall dimension of approx.6 mm (approx.0.24 in.)) was detected in only 3 m (10 ft) of weldment and offers extremely limited data when compared to the extent of welding even in a single pressure vessel. However, the detection and confirmation of the flaw in the arbitrarily selected sections implies the Marshall report estimates (and others) are nonconservative for such small flaws. No significant indications were detected in the Pilgrim material by ultrasonic techniques. Unfortunately, the Pilgrim segments contained relatively little weldment; thus, we limited our ultrasonic examinations to the cladding and subcladding regions. Fluorescent liquid penetrant inspection of the cladding surfaces for both LWR segments detected no significant indications (i.e., for a total of approximately 6.8 m/sup 2/ (72 ft/sup 2/) of cladding surface).