Sample records for pressure water electrolysis

  1. The analysis of energy efficiency in water electrolysis under high temperature and high pressure

    NASA Astrophysics Data System (ADS)

    Hourng, L. W.; Tsai, T. T.; Lin, M. Y.

    2017-11-01

    This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic polarization, and concentration polarization, are investigated in details. Results show that the ohmic and concentration over-potentials are increased as temperature is increased, however, the reversible and activation over-potentials are decreased as temperature is increased. Therefore, the net efficiency is enhanced as temperature is increased. The efficiency of water electrolysis at 350°C/100 bars is increased about 17%, compared with that at 80°C/1bar.

  2. Endurance Test and Evaluation of Alkaline Water Electrolysis Cells

    NASA Technical Reports Server (NTRS)

    Kovach, Andrew J.; Schubert, Franz H.; Chang, B. J.; Larkins, Jim T.

    1985-01-01

    The overall objective of this program is to assess the state of alkaline water electrolysis cell technology and its potential as part of a Regenerative Fuel Cell System (RFCS) of a multikilowatt orbiting powerplant. The program evaluates the endurance capabilities of alkaline electrolyte water electrolysis cells under various operating conditions, including constant condition testing, cyclic testing and high pressure testing. The RFCS demanded the scale-up of existing cell hardware from 0.1 sq ft active electrode area to 1.0 sq ft active electrode area. A single water electrolysis cell and two six-cell modules of 1.0 sq ft active electrode area were designed and fabricated. The two six-cell 1.0 sq ft modules incorporate 1.0 sq ft utilized cores, which allow for minimization of module assembly complexity and increased tolerance to pressure differential. A water electrolysis subsystem was designed and fabricated to allow testing of the six-cell modules. After completing checkout, shakedown, design verification and parametric testing, a module was incorporated into the Regenerative Fuel Cell System Breadboard (RFCSB) for testing at Life Systems, Inc., and at NASA JSC.

  3. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  4. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  5. Static Feed Water Electrolysis Subsystem Testing and Component Development

    NASA Technical Reports Server (NTRS)

    Koszenski, E. P.; Schubert, F. H.; Burke, K. A.

    1983-01-01

    A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.

  6. Development status of a preprototype water electrolysis subsystem

    NASA Technical Reports Server (NTRS)

    Martin, R. B.; Erickson, A. C.

    1981-01-01

    A preprototype water electrolysis subsystem was designed and fabricated for NASA's advanced regenerative life support program. A solid polymer is used for the cell electrolyte. The electrolysis module has 12 cells that can generate 5.5 kg/day of oxygen for the metabolic requirements of three crewmembers, for cabin leakage, and for the oxygen and hydrogen required for carbon dioxide collection and reduction processes. The subsystem can be operated at a pressure between 276 and 2760 kN/sq m and in a continuous constant-current, cyclic, or standby mode. A microprocessor is used to aid in operating the subsystem. Sensors and controls provide fault detection and automatic shutdown. The results of development, demonstration, and parametric testing are presented. Modifications to enhance operation in an integrated and manned test are described. Prospective improvements for the electrolysis subsystem are discussed.

  7. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs.

    PubMed

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply.

  8. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    PubMed Central

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Background Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. PMID:25210438

  9. Water electrolysis

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H. (Inventor); Grigger, David J. (Inventor)

    1992-01-01

    This disclosure is directed to an electrolysis cell forming hydrogen and oxygen at space terminals. The anode terminal is porous and able to form oxygen within the cell and permit escape of the gaseous oxygen through the anode and out through a flow line in the presence of backpressure. Hydrogen is liberated in the cell at the opposing solid metal cathode which is permeable to hydrogen but not oxygen so that the migratory hydrogen formed in the cell is able to escape from the cell. The cell is maintained at an elevated pressure so that the oxygen liberated by the cell is delivered at elevated pressure without pumping to raise the pressure of the oxygen.

  10. Development of a static feed water electrolysis system

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lantz, J. B.; Hallick, T. M.

    1982-01-01

    A one person level oxygen generation subsystem was developed and production of the one person oxygen metabolic requirements, 0.82 kg, per day was demonstrated without the need for condenser/separators or electrolyte pumps. During 650 hours of shakedown, design verification, and endurance testing, cell voltages averaged 1.62 V at 206 mA/sq cm and at average operating temperature as low as 326 K, virtually corresponding to the state of the art performance previously established for single cells. This high efficiency and low waste heat generation prevented maintenance of the 339 K design temperature without supplemental heating. Improved water electrolysis cell frames were designed, new injection molds were fabricated, and a series of frames was molded. A modified three fluid pressure controller was developed and a static feed water electrolysis that requires no electrolyte in the static feed compartment was developed and successfully evaluated.

  11. Solid-State Water Electrolysis with an Alkaline Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, YJ; Chen, G; Mendoza, AJ

    2012-06-06

    We report high-performance, durable alkaline membrane water electrolysis in a solid-state cell. An anion exchange membrane (AEM) and catalyst layer ionomer for hydroxide ion conduction were used without the addition of liquid electrolyte. At 50 degrees C, an AEM electrolysis cell using iridium oxide as the anode catalyst and Pt black as the cathode catalyst exhibited a current density of 399 mA/cm(2) at 1.80 V. We found that the durability of the AEM-based electrolysis cell could be improved by incorporating a highly durable ionomer in the catalyst layer and optimizing the water feed configuration. We demonstrated an AEM-based electrolysis cellmore » with a lifetime of > 535 h. These first-time results of water electrolysis in a solid-state membrane cell are promising for low-cost, scalable hydrogen production.« less

  12. Desulfurization from Bauxite Water Slurry (BWS) Electrolysis

    NASA Astrophysics Data System (ADS)

    Gong, Xuzhong; Ge, Lan; Wang, Zhi; Zhuang, Siyuan; Wang, Yuhua; Ren, Lihui; Wang, Mingyong

    2016-02-01

    Feasibility of high-sulfur bauxite electrolysis desulfurization was examined using the electrochemical characterization, XRD, DTA, and FTIR. The cyclic voltammetry curves indicated that bauxite water slurry (BWS) electrolysis in NaOH system was controlled by diffusion. Additionally, the desulfurization effect of NaCl as the electrolyte was significantly better than that of NaOH as an electrolyte. As the stirring rate increased, the desulfurization ratio in NaCl system was not increased obviously, while the desulfurization ratio in NaOH system increased significantly, indicating further that electrolysis desulfurization in NaOH solution was controlled by diffusion. According to XRD, DTA, and FTIR analysis, the characteristic peaks of sulfur-containing phase in bauxite after electrolysis weakened or disappeared, indicating that the pyrite in bauxite was removed from electrolysis. Finally, the electrolytic desulfurization technology of bauxite was proposed based on the characteristics of BWS electrolysis.

  13. Space Station propulsion electrolysis system - 'A technology challenge'

    NASA Technical Reports Server (NTRS)

    Le, Michael

    1989-01-01

    The Space Station propulsion system will utilize a water electrolysis system to produce the required eight-to-one ratio of gaseous hydrogen and oxygen propellants. This paper summarizes the state of the art in water electrolysis technologies and the supporting development programs at the NASA Lyndon B. Johnson Space Center. Preliminary proof of concept test data from a fully integrated propulsion testbed are discussed. The technical challenges facing the development of the high-pressure water electrolysis system are discussed.

  14. Solid polymer electrolyte water electrolysis preprototype subsystem. [oxygen production for life support systems on space stations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.

  15. Mediated water electrolysis in biphasic systems.

    PubMed

    Scanlon, Micheál D; Peljo, Pekka; Rivier, Lucie; Vrubel, Heron; Girault, Hubert H

    2017-08-30

    The concept of efficient electrolysis by linking photoelectrochemical biphasic H 2 evolution and water oxidation processes in the cathodic and anodic compartments of an H-cell, respectively, is introduced. Overpotentials at the cathode and anode are minimised by incorporating light-driven elements into both biphasic reactions. The concepts viability is demonstrated by electrochemical H 2 production from water splitting utilising a polarised water-organic interface in the cathodic compartment of a prototype H-cell. At the cathode the reduction of decamethylferrocenium cations ([Cp 2 *Fe (III) ] + ) to neutral decamethylferrocene (Cp 2 *Fe (II) ) in 1,2-dichloroethane (DCE) solvent takes place at the solid electrode/oil interface. This electron transfer process induces the ion transfer of a proton across the immiscible water/oil interface to maintain electroneutrality in the oil phase. The oil-solubilised proton immediately reacts with Cp 2 *Fe (II) to form the corresponding hydride species, [Cp 2 *Fe (IV) (H)] + . Subsequently, [Cp 2 *Fe (IV) (H)] + spontaneously undergoes a chemical reaction in the oil phase to evolve hydrogen gas (H 2 ) and regenerate [Cp 2 *Fe (III) ] + , whereupon this catalytic Electrochemical, Chemical, Chemical (ECC') cycle is repeated. During biphasic electrolysis, the stability and recyclability of the [Cp 2 *Fe (III) ] + /Cp 2 *Fe (II) redox couple were confirmed by chronoamperometric measurements and, furthermore, the steady-state concentration of [Cp 2 *Fe (III) ] + monitored in situ by UV/vis spectroscopy. Post-biphasic electrolysis, the presence of H 2 in the headspace of the cathodic compartment was established by sampling with gas chromatography. The rate of the biphasic hydrogen evolution reaction (HER) was enhanced by redox electrocatalysis in the presence of floating catalytic molybdenum carbide (Mo 2 C) microparticles at the immiscible water/oil interface. The use of a superhydrophobic organic electrolyte salt was critical to

  16. Water electrolysis system refurbishment and testing

    NASA Technical Reports Server (NTRS)

    Greenough, B. M.

    1972-01-01

    The electrolytic oxygen generator for the back-up water electrolysis system in a 90-day manned test was refurbished, improved and subjected to a 182-day bench test. The performance of the system during the test demonstrated the soundness of the basic electrolysis concept, the high development status of the automatic controls which allowed completely hands-off operation, and the capability for orbital operation. Some design improvements are indicated.

  17. Water Electrolysis for In-Situ Resource Utilization (ISRU)

    NASA Technical Reports Server (NTRS)

    Lee, Kristopher A.

    2016-01-01

    Sending humans to Mars for any significant amount of time will require capabilities and technologies that enable Earth independence. To move towards this independence, the resources found on Mars must be utilized to produce the items needed to sustain humans away from Earth. To accomplish this task, NASA is studying In Situ Resource Utilization (ISRU) systems and techniques to make use of the atmospheric carbon dioxide and the water found on Mars. Among other things, these substances can be harvested and processed to make oxygen and methane. Oxygen is essential, not only for sustaining the lives of the crew on Mars, but also as the oxidizer for an oxygen-methane propulsion system that could be utilized on a Mars ascent vehicle. Given the presence of water on Mars, the electrolysis of water is a common technique to produce the desired oxygen. Towards this goal, NASA designed and developed a Proton Exchange Membrane (PEM) water electrolysis system, which was originally slated to produce oxygen for propulsion and fuel cell use in the Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project. As part of the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) project, this same electrolysis system, originally targeted at enabling in situ propulsion and power, operated in a life-support scenario. During HESTIA testing at Johnson Space Center, the electrolysis system supplied oxygen to a chamber simulating a habitat housing four crewmembers. Inside the chamber, oxygen was removed from the atmosphere to simulate consumption by the crew, and the electrolysis system's oxygen was added to replenish it. The electrolysis system operated nominally throughout the duration of the HESTIA test campaign, and the oxygen levels in the life support chamber were maintained at the desired levels.

  18. High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.E. O'Brien; X. Zhang; G.K. Housley

    2012-09-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells.more » The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in

  19. Principles and implementations of electrolysis systems for water splitting

    DOE PAGES

    Xiang, Chengxiang; Papadantonakis, Kimberly M.; Lewis, Nathan S.

    2016-02-12

    Efforts to develop renewable sources of carbon-neutral fuels have brought a renewed focus to research and development of sunlight-driven water-splitting systems. Electrolysis of water to produce H 2 and O 2 gases is the foundation of such systems, is conceptually and practically simple, and has been practiced both in the laboratory and industrially for many decades. In this Focus article, the fundamentals of water splitting and practices which distinguish commercial water-electrolysis systems from simple laboratory-scale demonstrations are described.

  20. Development of an advanced static feed water electrolysis module. [for spacecraft

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.; Jensen, F. C.; Quattrone, P. D.

    1975-01-01

    A Static Feed Water Electrolysis Module (SFWEM) was developed to produce 0.92 kg/day (2.0 lb/day) of oxygen (O2). Specific objectives of the program's scope were to (1) eliminate the need for feed water cavity degassing, (2) eliminate the need for subsystem condenser/separators, (3) increase current density capability while decreasing electrolysis cell power (i.e., cell voltage) requirements, and (4) eliminate subsystem rotating parts and incorporate control and monitor instrumentation. A six-cell, one-man capacity module having an active area of 0.00929 sq m (0.10 sq ft) per cell was designed, fabricated, assembled, and subjected to 111 days (2664 hr) of parametric and endurance testing. The SFWEM was successfully operated over a current density range of 0 to 1076 mA/sq cm (0 to 1000 ASF), pressures of ambient to 2067 kN/sq m (300 psia), and temperatures of ambient to 366 K (200 F). During a 94-day endurance test, the SFWEM successfully demonstrated operation without the need for feed water compartment degassing.

  1. Advancements in oxygen generation and humidity control by water vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  2. A Small-Scale and Low-Cost Apparatus for the Electrolysis of Water

    ERIC Educational Resources Information Center

    Eggeen, Per-Odd; Kvittingen, Lise

    2004-01-01

    The construction of two simple, inexpensive apparatuses that clearly show the electrolysis of water are described. Traditionally the electrolysis of water is conducted in a Hofmann apparatus which is expensive and fragile.

  3. Evaluation of disinfective potential of reactivated free chlorine in pooled tap water by electrolysis.

    PubMed

    Nakajima, Norihito; Nakano, Takashi; Harada, Fumiue; Taniguchi, Hiromasa; Yokoyama, Isao; Hirose, Jun; Daikoku, Eriko; Sano, Kouichi

    2004-05-01

    Tap water is one of the causative factors of hospital infections. We examined the disinfective potential of electrolysis and mechanism of disinfection, and clarified the disinfective effect of electrolysis on tap water contaminated with bacteria, and discussed its clinical applications. Tap waters artificially contaminated with Pseudomonas aeruginosa, Escherichia coli, Legionella pneumophila, and Staphylococcus aureus could be sterilized by electrolysis at 20-30 mA for 5 min. A high-density suspension (10(6) CFU/ml) of a spore forming bacterium, Bacillus subtilis was not completely sterilized by electrolysis at 50 mA up to 30 min, but a low-density suspension (10(5) CFU/ml) was totally sterilized by electrolysis at 50 mA for 5 min. Electrolyzed P. aeruginosa changed morphologically, that is, there was bleb formation on the cell wall and irregular aggregation of cytoplasmic small granules. Moreover, cytoplasmic enzyme, nitrate reductase, was inactivated by the electrolysis. On the other hand, genomic DNA of the electrolyzed bacteria was not degenerated, therefore, their DNA polymerase activity was not completely inactivated. Consequently, the major agent in electrolysis for bactericidal action was considered to be free chlorine, and the possible bactericidal mechanism was by destruction of bacterial membranes, followed by the aggregation of peripheral cytoplasmic proteins. Electrolysis of tap water for both disinfecting contaminating bacteria and increasing the disinfectant capacity was considered effective with some limitations, particularly against high-density contamination by spore-forming bacteria. In clinical settings, electrolysis of tap water is considered effective to disinfect water for hand washing in operation theatres, and bathing water for immunocompromised hosts.

  4. Analysis of cavitation effect for water purifier using electrolysis

    NASA Astrophysics Data System (ADS)

    Shin, Dong Ho; Ko, Han Seo; Lee, Seung Ho

    2015-11-01

    Water is a limited and vital resource, so it should not be wasted by pollution. A development of new water purification technology is urgent nowadays since the original and biological treatments are not sufficient. The microbubble-aided method was investigated for removal of algal in this study since it overcomes demerits of the existing purification technologies. Thus, the cavitation effect in a venturi-type tube using the electrolysis was analyzed. Ruthenium-coated titanium plates were used as electrodes. Optimum electrode interval and applied power were determined for the electrolysis. Then, the optimized electrodes were installed in the venturi-type tube for generating cavitation. The cavitation effect could be enhanced without any byproduct by the bubbly flow induced by the electrolysis. The optimum mass flow rate and current were determined for the cavitation with the electrolysis. Finally, the visualization techniques were used to count the cell number of algal and microbubbles for the confirmation of the performance. As a result, the energy saving and high efficient water purifier was fabricated in this study. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2013R1A2A2A01068653).

  5. Test results of six-month test of two water electrolysis systems

    NASA Technical Reports Server (NTRS)

    Mills, E. S.; Wells, G. W.

    1972-01-01

    The two water electrolysis systems used in the NASA space station simulation 90-day manned test of a regenerative life support system were refurbished as required and subjected to 26-weeks of testing. The two electrolysis units are both promising systems for oxygen and hydrogen generation and both needed extensive long-term testing to evaluate the performance of the respective cell design and provide guidance for further development. Testing was conducted to evaluate performance in terms of current, pressure, variable oxygen demands, and orbital simulation. An automatic monitoring system was used to record, monitor and printout performance data at one minute, ten minute or one-hour intervals. Performance data is presented for each day of system operation for each module used during the day. Failures are analyzed, remedial action taken to eliminate problems is discussed and recommendations for redesign for future space applications are stated.

  6. Endurance test and evaluation of alkaline water electrolysis cells

    NASA Technical Reports Server (NTRS)

    Burke, K. A.; Schubert, F. H.

    1981-01-01

    Utilization in the development of multi-kW low orbit power systems is discussed. The following technological developments of alkaline water electrolysis cells for space power application were demonstrated: (1) four 92.9 cm2 single water electrolysis cells, two using LST's advanced anodes and two using LST's super anodes; (2) four single cell endurance test stands for life testing of alkaline water electrolyte cells; (3) the solid performance of the advanced electrode and 355 K; (4) the breakthrough performance of the super electrode; (5) the four single cells for over 5,000 hours each significant cell deterioration or cell failure. It is concluded that the static feed water electrolysis concept is reliable and due to the inherent simplicity of the passive water feed mechanism coupled with the use of alkaline electrolyte has greater potential for regenerative fuel cell system applications than alternative electrolyzers. A rise in cell voltage occur after 2,000-3,000 hours which was attributed to deflection of the polysulfone end plates due to creepage of the thermoplastic. More end plate support was added, and the performance of the cells was restored to the initial performance level.

  7. Static feed water electrolysis module

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Schubert, F. H.; Jensen, F. C.

    1974-01-01

    An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures.

  8. Static feed water electrolysis subsystem development

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H. (Inventor); Grigger, David J. (Inventor)

    1991-01-01

    This disclosure is directed to an electrolysis cell forming hydrogen and oxygen at spaced terminals. The anode terminal is porous and able to form oxygen within the cell and permit escape of the gaseous oxygen through the anode and out through a flow line in the presence of backpressure. Hydrogen is liberated in the cell at the opposing solid metal cathode which is permeable to hydrogen but not oxygen so that the migratory hydrogen formed in the cell is able to escape from the cell. The cell is maintained at an elevated pressure so that oxygen liberated by the cell is delivered at elevated pressure without pumping to raise the pressure of the oxygen.

  9. Electrolysis of Water in the Secondary School Science Laboratory with Inexpensive Microfluidics

    ERIC Educational Resources Information Center

    Davis, T. A.; Athey, S. L.; Vandevender, M. L.; Crihfield, C. L.; Kolanko, C. C. E.; Shao, S.; Ellington, M. C. G.; Dicks, J. K.; Carver, J. S.; Holland, L. A.

    2015-01-01

    This activity allows students to visualize the electrolysis of water in a microfluidic device in under 1 min. Instructional materials are provided to demonstrate how the activity meets West Virginia content standards and objectives. Electrolysis of water is a standard chemistry experiment, but the typical laboratory apparatus (e.g., Hoffman cell)…

  10. Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. G.

    1995-01-01

    The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.

  11. Carbon dioxide and water vapor high temperature electrolysis

    NASA Technical Reports Server (NTRS)

    Isenberg, Arnold O.; Verostko, Charles E.

    1989-01-01

    The design, fabrication, breadboard testing, and the data base obtained for solid oxide electrolysis systems that have applications for planetary manned missions and habitats are reviewed. The breadboard tested contains sixteen tubular cells in a closely packed bundle for the electrolysis of carbon dioxide and water vapor. The discussion covers energy requirements, volume, weight, and operational characteristics related to the measurement of the reactant and product gas compositions, temperature distribution along the electrolyzer tubular cells and through the bundle, and thermal energy losses. The reliability of individual cell performance in the bundle configuration is assessed.

  12. Analysis of Economic Efficiency of Production of Low-Concentrated Sodium Hypochlorite by Direct Electrolysis of Natural Waters

    NASA Astrophysics Data System (ADS)

    Fesenko, L. N.; Pchelnikov, I. V.; Fedotov, R. V.

    2017-11-01

    The study presents the economic efficiency of direct electrolysis of natural waters in comparison with the waters artificially prepared by electrolysis of the 3% sodium salt solution. The study used sea water (Black sea water); mineral water (underground water of the Melikhovskaya station, “Ognennaya” hole); brackish water (underground water from the Grushevskaya station of the Aksai district); 3% solution of sodium salt. As a result, the dependences characterizing the direct electrolysis of natural waters with different mineralization, economic, and energy parties are shown. The rational area of the electrolysis for each of the investigated solution is determined. The cost of a kilogram of active chlorine obtained by the direct water electrolysis: Black sea from 17.2 to 18.3 RUB/kg; the Melikhovskaya station “Ognennaya” hole - 14.3 to 15.0 Rubles/kg; 3% solution of NaCl - 30 Rubles./kg; Grushevskogo St. - 63,0-73,0 Rubles/kg.

  13. Hydrogen generation through static-feed water electrolysis

    NASA Technical Reports Server (NTRS)

    Jensen, F. C.; Schubert, F. H.

    1975-01-01

    A static-feed water electrolysis system (SFWES), developed under NASA sponsorship, is presented for potential applicability to terrestrial hydrogen production. The SFWES concept uses (1) an alkaline electrolyte to minimize power requirements and materials-compatibility problems, (2) a method where the electrolyte is retained in a thin porous matrix eliminating bulk electrolyte, and (3) a static water-feed mechanism to prevent electrode and electrolyte contamination and to promote system simplicity.

  14. Treatment of high salt oxidized modified starch waste water using micro-electrolysis, two-phase anaerobic aerobic and electrolysis for reuse

    NASA Astrophysics Data System (ADS)

    Yi, Xuenong; Wang, Yulin

    2017-06-01

    A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.

  15. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung

    2018-01-01

    Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.

  16. Conceptual study of on orbit production of cryogenic propellants by water electrolysis

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    1991-01-01

    The feasibility is assessed of producing cryogenic propellants on orbit by water electrolysis in support of NASA's proposed Space Exploration Initiative (SEI) missions. Using this method, water launched into low earth orbit (LEO) would be split into gaseous hydrogen and oxygen by electrolysis in an orbiting propellant processor spacecraft. The resulting gases would then be liquified and stored in cryogenic tanks. Supplying liquid hydrogen and oxygen fuel to space vehicles by this technique has some possible advantages over conventional methods. The potential benefits are derived from the characteristics of water as a payload, and include reduced ground handling and launch risk, denser packaging, and reduced tankage and piping requirements. A conceptual design of a water processor was generated based on related previous studies, and contemporary or near term technologies required. Extensive development efforts would be required to adapt the various subsystems needed for the propellant processor for use in space. Based on the cumulative results, propellant production by on orbit water electrolysis for support of SEI missions is not recommended.

  17. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOEpatents

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  18. Water electrolysis on La 1-xSr xCoO 3-δ perovskite electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.

    2016-03-23

    Perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr 2+ substitution into La 1-xSr xCoO 3-δ. We attempt tomore » rationalize the high activities of La 1-xSr xCoO 3-δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO 2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis.« less

  19. Water electrolysis on La 1-xSr xCoO 3-δ perovskite electrocatalysts

    DOE PAGES

    Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.; ...

    2016-03-23

    Here, perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr 2+ substitution into La 1–xSr xCoO 3–δ. We attemptmore » to rationalize the high activities of La 1–xSr xCoO 3–δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO 2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis.« less

  20. Advancements in water vapor electrolysis technology. [for Space Station ECLSS

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin

    1988-01-01

    The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.

  1. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water.

    PubMed

    Hsu, Guoo-Shyng Wang; Lu, Yi-Fa; Hsu, Shun-Yao

    2017-10-01

    Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW). DOW was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be. Copyright © 2016. Published by Elsevier B.V.

  2. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Niether, Christiane; Faure, Stéphane; Bordet, Alexis; Deseure, Jonathan; Chatenet, Marian; Carrey, Julian; Chaudret, Bruno; Rouet, Alain

    2018-06-01

    Water electrolysis enables the storage of renewable electricity via the chemical bonds of hydrogen. However, proton-exchange-membrane electrolysers are impeded by the high cost and low availability of their noble-metal electrocatalysts, whereas alkaline electrolysers operate at a low power density. Here, we demonstrate that electrocatalytic reactions relevant for water splitting can be improved by employing magnetic heating of noble-metal-free catalysts. Using nickel-coated iron carbide nanoparticles, which are prone to magnetic heating under high-frequency alternating magnetic fields, the overpotential (at 20 mA cm-2) required for oxygen evolution in an alkaline water-electrolysis flow-cell was decreased by 200 mV and that for hydrogen evolution was decreased by 100 mV. This enhancement of oxygen-evolution kinetics is equivalent to a rise of the cell temperature to 200 °C, but in practice it increased by 5 °C only. This work suggests that, in the future, water splitting near the equilibrium voltage could be possible at room temperature, which is currently beyond reach in the classic approach to water electrolysis.

  3. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  4. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts

    PubMed Central

    Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.; Hardin, William G.; Dai, Sheng; Kolpak, Alexie M.; Johnston, Keith P.; Stevenson, Keith J.

    2016-01-01

    Perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr2+ substitution into La1−xSrxCoO3−δ. We attempt to rationalize the high activities of La1−xSrxCoO3−δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis. PMID:27006166

  5. Computer simulation of the NASA water vapor electrolysis reactor

    NASA Technical Reports Server (NTRS)

    Bloom, A. M.

    1974-01-01

    The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.

  6. Electrolysis Propulsion for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  7. Space Station propulsion - Advanced development testing of the water electrolysis concept at MSFC

    NASA Technical Reports Server (NTRS)

    Jones, Lee W.; Bagdigian, Deborah R.

    1989-01-01

    The successful demonstration at Marshall Space Flight Center (MSFC) that the water electrolysis concept is sufficiently mature to warrant adopting it as the baseline propulsion design for Space Station Freedom is described. In particular, the test results demonstrated that oxygen/hydrogen thruster, using gaseous propellants, can deliver more than two million lbf-seconds of total impulse at mixture ratios of 3:1 to 8:1 without significant degradation. The results alao demonstrated succcessful end-to-end operation of an integrated water electrolysis propulsion system.

  8. Polymer Electrolyte Membranes for Water Photo-Electrolysis

    PubMed Central

    Aricò, Antonino S.; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-01-01

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion® 115) and quaternary ammonium-based (Fumatech® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion®-based cell when just TiO2 anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion. PMID:28468242

  9. Polymer Electrolyte Membranes for Water Photo-Electrolysis.

    PubMed

    Aricò, Antonino S; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-04-29

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion ® 115) and quaternary ammonium-based (Fumatech ® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion ® -based cell when just TiO₂ anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion.

  10. Determination of the Electronics Charge--Electrolysis of Water Method.

    ERIC Educational Resources Information Center

    Venkatachar, Arun C.

    1985-01-01

    Presents an alternative method for measuring the electronic charge using data from the electrolysis of acidified distilled water. The process (carried out in a commercially available electrolytic cell) has the advantage of short completion time so that students can determine electron charge and mass in one laboratory period. (DH)

  11. Pressurized Testing of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. O'Brien; X. Zhang; G. K. Housley

    2012-06-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate cell dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation upmore » to 5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this paper.« less

  12. Energy storage using high pressure electrolysis and methods for reconversion. [in automobile fuel synthesis

    NASA Technical Reports Server (NTRS)

    Hughes, W. L.

    1973-01-01

    Theoretical and experimental studies on high pressure electrolysis producing hydrogen and oxygen for energy storage and reconversion are reported. Moderate temperature, high pressure hydrogen/oxygen fuel cells with nickel electrodes are investigated for effects of pressure, temperature, and membrane porosity. Test results from an aphodid burner turbine generator combination obtained 40 percent kilowatt hours out of the fuel cell divided by kilowatt hours into the electrolyzer. It is concluded that high pressure hydrogenation of organic materials can be used to synthesize hydrozenes and methanes for making synthetic vehicular fuels.

  13. Enhanced shock wave generation via pre-breakdown acceleration using water electrolysis in negative streamer pulsed spark discharges

    NASA Astrophysics Data System (ADS)

    Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.

    2018-03-01

    This paper presents a method for enhancement of shock waves generated from underwater pulsed spark discharges with negative (anode-directed) subsonic streamers, for which the pre-breakdown process is accelerated by preconditioning a gap with water electrolysis. Hydrogen microbubbles are produced at the cathode by the electrolysis and move towards the anode during the preconditioning phase. The numbers and spatial distributions of the microbubbles vary with the amplitude and duration of each preconditioning pulse. Under our experimental conditions, the optimum pulse duration is determined to be ˜250 ms at a pulse voltage of 400 V, where the buoyancy force overwhelms the electric force and causes the microbubbles to be swept out from the water gap. When a high-voltage pulse is applied to the gap just after the preconditioning pulse, the pre-breakdown process is significantly accelerated in the presence of the microbubbles. At the optimum preconditioning pulse duration, the average breakdown delay is reduced by 87% and, more importantly, the energy consumed during the pre-breakdown period decreases by 83%. This reduced energy consumption during the pre-breakdown period, when combined with the morphological advantages of negative streamers, such as thicker and longer stalks, leads to a significant improvement in the measured peak pressure (˜40%) generated by the underwater pulsed spark discharge. This acceleration of pre-breakdown using electrolysis overcomes the biggest drawback of negative subsonic discharges, which is slow vapor bubble formation due to screening effects, and thus enhances the efficiency of the shock wave generation process using pulsed spark discharges in water.

  14. Economics of liquid hydrogen from water electrolysis

    NASA Technical Reports Server (NTRS)

    Lin, F. N.; Moore, W. I.; Walker, S. W.

    1985-01-01

    An economical model for preliminary analysis of LH2 cost from water electrolysis is presented. The model is based on data from vendors and open literature, and is suitable for computer analysis of different scenarios for 'directional' purposes. Cost data associated with a production rate of 10,886 kg/day are presented. With minimum modification, the model can also be used to predict LH2 cost from any electrolyzer once the electrolyzer's cost data are available.

  15. Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe.

    PubMed

    Jung, Youmi; Yoon, Yeojoon; Hong, Eunkyung; Kwon, Minhwan; Kang, Joon-Wun

    2013-07-15

    Since ballast water affects the ocean ecosystem, the International Maritime Organization (IMO) sets a standard for ballast water management and might impose much tighter regulations in the future. The aim of this study is to evaluate the inactivation efficiency of ozonation, electrolysis, and an ozonation-electrolysis combined process, using B. subtilis spores. In seawater ozonation, HOBr is the key active substance for inactivation, because of rapid reactivity of ozone with Br(-) in seawater. In seawater electrolysis, it is also HOBr, but not HOCl, because of the rapid reaction of HOCl with Br(-), which has not been recognized carefully, even though many electrolysis technologies have been approved by the IMO. Inactivation pattern was different in ozonation and electrolysis, which has some limitations with the tailing or lag-phase, respectively. However, each deficiency can be overcome with a combined process, which is most effective as a sequential application of ozonation followed by electrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Development of a solid polymer electrolyte electrolysis cell module and ancillary components for a breadboard water electrolysis system

    NASA Technical Reports Server (NTRS)

    Porter, F. J., Jr.

    1972-01-01

    Solid polymer electrolyte technology in a water electrolysis system along with ancillary components to generate oxygen and hydrogen for a manned space station application are considered. Standard commercial components are utilized wherever possible. Presented are the results of investigations, surveys, tests, conclusions and recommendations for future development efforts.

  17. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Jensen, F. C.; Schubert, F. H.

    1977-01-01

    Some results are presented of a research and development program to continue the development of a method to generate oxygen for crew metabolic consumption during extended manned space flights. The concept being pursued is that of static feed water electrolysis. Specific major results of the work included: (1) completion of a 30-day electrode test using a Life Systems, Inc.-developed high performance catalyst. During startup the cell voltages were as low as 1.38 V at current densities of 108 mA/sq cm (100 ASF) and temperatures of 355 K (180 F). At the end of 30 days of testing the cell voltages were still only 1.42 V at 108 mA/sq cm, (2) determination that the Static Feed Water Electrolysis Module does not release an aerosol of the cell electrolyte into the product gas streams after a break-in period of 24 hours following a new electrolyte charge, and (3) completion of a detailed design analysis of an electrochemical Oxygen Generation Subsystem at a three-man level (4.19 kg/day (9.24 lb/day) of oxygen).

  18. Electrolysis Performance Improvement and Validation Experiment

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H.

    1992-01-01

    Viewgraphs on electrolysis performance improvement and validation experiment are presented. Topics covered include: water electrolysis: an ever increasing need/role for space missions; static feed electrolysis (SFE) technology: a concept developed for space applications; experiment objectives: why test in microgravity environment; and experiment description: approach, hardware description, test sequence and schedule.

  19. Electrochemical disinfection of coliform and Escherichia coli for drinking water treatment by electrolysis method using carbon as an electrode

    NASA Astrophysics Data System (ADS)

    Riyanto; Agustiningsih, W. A.

    2018-04-01

    Disinfection of coliform and E. Coli in water has been performed by electrolysis using carbon electrodes. Carbon electrodes were used as an anode and cathode with a purity of 98.31% based on SEM-EDS analysis. This study was conducted using electrolysis powered by electric field using carbon electrode as the anode and cathode. Electrolysis method was carried out using variations of time (30, 60, 90, 120 minutes at a voltage of 5 V) and voltage (5, 10, 15, 20 V for 30 minutes) to determine the effect of the disinfection of the bacteria. The results showed the number of coliform and E. coli in water before and after electrolysis was 190 and 22 MPN/100 mL, respectively. The standards quality of drinking water No. 492/Menkes/Per/IV/2010 requires the zero content of coliform and E. Coli. Electrolysis with the variation of time and potential can reduce the number of coliforms and E. Coli but was not in accordance with the standards. The effect of hydrogen peroxide (H2O2) to the electrochemical disinfection was determined using UV-Vis spectrophotometer. The levels of H2O2 formed increased as soon after the duration of electrolysis voltage but was not a significant influence to the mortality of coliform and E.coli.

  20. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    PubMed Central

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH− oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  1. Hydrogen from renewable energy - Photovoltaic/water electrolysis as an exemplary approach

    NASA Technical Reports Server (NTRS)

    Sprafka, R. J.; Tison, R. R.; Escher, W. J. D.

    1984-01-01

    A feasibility study has been conducted for a NASA Kennedy Space Center liquid hydrogen/liquid oxygen production facility using solar cell arrays as the power source for electrolysis. The 100 MW output of the facility would be split into 67.6 and 32 MW portions for electrolysis and liquefaction, respectively. The solar cell array would cover 1.65 sq miles, and would be made up of 249 modular 400-kW arrays. Hydrogen and oxygen are generated at either dispersed or centralized water electrolyzers. The yearly hydrogen output is projected to be 5.76 million lbs, with 8 times that much oxygen; these fuel volumes can support approximately 18 Space Shuttle launches/year.

  2. Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis

    NASA Astrophysics Data System (ADS)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Park, Sung Kyoo; Hong, Dae Ho; Chung, Sung Jae; Kumta, Prashant N.

    2014-12-01

    Fluorine doped iridium oxide (IrO2:F) powders with varying F content ranging from 0 to 20 wt.% has been synthesized by using a modification of the Adams fusion method. The precursors (IrCl4 and NH4F) are mixed with NaNO3 and heated to elevated temperatures to form high surface area nanomaterials as electro-catalysts for PEM based water electrolysis. The catalysts were then coated on a porous Ti substrate and have been studied for the oxygen evolution reaction in PEM based water electrolysis. The IrO2:F with an optimum composition of IrO2:10 wt.% F shows remarkably superior electrochemical activity and chemical stability compared to pure IrO2. The results have also been supported via kinetic studies by conducting rotating disk electrode (RDE) experiments. The RDE studies confirm that the electro-catalysts follow the two electron transfer reaction for electrolysis with calculated activation energy of ∼25 kJ mol-1. Single full cell tests conducted also validate the superior electrochemical activity of the 10 wt.% F doped IrO2.

  3. Water electrolysis system - H2 and O2 generation. [for spacecraft atmosphere revitalization

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. K.; Davenport, R. J.; Quattrone, P. D.

    1978-01-01

    An oxygen generation system design based on the static feed water electrolysis concept is described. The system is designed to generate 4.20 kg/d of oxygen to satisfy the metabolic needs of a three-person crew, to compensate for spacecraft leakage, and to provide the oxygen required by the electrochemical depolarized CO2 concentrator. The system has a fixed hardware weight of 75 kg, occupies a volume of 0.11 cu m, and requires only 1.1 kw of electrical power. The static feed electrolysis concept is discussed, and experimental data on the high-performance electrode are presented.

  4. Generation of High Pressure Oxygen via Electrochemical Pumping in a Multi-stage Electrolysis Stack

    NASA Technical Reports Server (NTRS)

    Setlock, John A (Inventor); Green, Robert D (Inventor); Farmer, Serene (Inventor)

    2016-01-01

    An oxygen pump can produce high-purity high-pressure oxygen. Oxygen ions (O.sup.2-) are electrochemically pumped through a multi-stage electrolysis stack of cells. Each cell includes an oxygen-ion conducting solid-state electrolyte between cathode and anode sides. Oxygen dissociates into the ions at the cathode side. The ions migrate across the electrolyte and recombine at the anode side. An insulator is between adjacent cells to electrically isolate each individual cell. Each cell receives a similar volt potential. Recombined oxygen from a previous stage can diffuse through the insulator to reach the cathode side of the next stage. Each successive stage similarly incrementally pressurizes the oxygen to produce a final elevated pressure.

  5. Generation of High Pressure Oxygen via Electrochemical Pumping in a Multi-Stage Electrolysis Stack

    NASA Technical Reports Server (NTRS)

    Setlock, John A (Inventor); Green, Robert D (Inventor); Farmer, Serene (Inventor)

    2017-01-01

    An oxygen pump can produce high-purity high-pressure oxygen. Oxygen ions (O(2-)) are electrochemically pumped through a multi-stage electrolysis stack of cells. Each cell includes an oxygen-ion conducting solid-state electrolyte between cathode and anode sides. Oxygen dissociates into the ions at the cathode side. The ions migrate across the electrolyte and recombine at the anode side. An insulator is between adjacent cells to electrically isolate each individual cell. Each cell receives a similar volt potential. Recombined oxygen from a previous stage can diffuse through the insulator to reach the cathode side of the next stage. Each successive stage similarly incrementally pressurizes the oxygen to produce a final elevated pressure.

  6. Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Cho, Min Kyung; Park, Hee-Young; Choe, Seunghoe; Yoo, Sung Jong; Kim, Jin Young; Kim, Hyoung-Juhn; Henkensmeier, Dirk; Lee, So Young; Sung, Yung-Eun; Park, Hyun S.; Jang, Jong Hyun

    2017-04-01

    To improve the cell performance for alkaline anion exchange membrane water electrolysis (AEMWE), the effects of the amount of polytetrafluoroethylene (PTFE) non-ionomeric binder in the anode and the hot-pressing conditions during the fabrication of the membrane electrode assemblies (MEAs) on cell performances are studied. The electrochemical impedance data indicates that hot-pressing at 50 °C for 1 min during MEA construction can reduce the polarization resistance of AEMWE by ∼12%, and increase the initial water electrolysis current density at 1.8 V (from 195 to 243 mA cm-2). The electrochemical polarization and impedance results also suggest that the AEMWE performance is significantly affected by the content of PTFE binder in the anode electrode, and the optimal content is found to be 9 wt% between 5 and 20 wt%. The AEMWE device fabricated with the optimized parameters exhibits good water splitting performance (299 mA cm-2 at 1.8 V) without noticeable degradation in voltage cycling operations.

  7. Application of electrolysis for inactivation of an antiviral drug that is one of possible selection pressure to drug-resistant influenza viruses.

    PubMed

    Kobayashi, Toyohide; Hirose, Jun; Wu, Hong; Sano, Kouichi; Katsumata, Takahiro; Tsujibo, Hiroshi; Nakano, Takashi

    2013-12-01

    The recent development of antiviral drugs has led to concern that the release of the chemicals in surface water due to expanded medical use could induce drug-resistant mutant viruses in zoonosis. Many researchers have noted that the appearance of an oseltamivir (Tamiflu(®))-resistant avian influenza mutant virus, which may spread to humans, could be induced by oseltamivir contamination of surface water. Although past studies have reported electrolysis as a possible method for degradation of antineoplastics and antibacterials in water, the validity of the method for treatment of antiviral drugs is unknown. In this study, electrolysis was used to degrade an antiviral prodrug, oseltamivir, and a stable active form, oseltamivir carboxylate, and the degradation process was monitored with HPLC-UV and the neuraminidase inhibitory assay. HPLC-UV-detectable oseltamivir and oseltamivir carboxylate were decomposed by electrolysis within 60 min, and inhibitory activity of neuraminidase decreased below the detection limit of the assay used. Cytotoxic and genotoxic activity were not detected in electrolyzed fluid. These results indicate that electrolysis is a possible treatment for inactivation of the antiviral drug oseltamivir. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.

    PubMed

    Zhou, Zhen; Qiao, Weimin; Lin, Yangbo; Shen, Xuelian; Hu, Dalong; Zhang, Jianqiao; Jiang, Lu-Man; Wang, Luochun

    2014-01-01

    Phosphonate is a commonly used corrosion and scale inhibitor for a circulating cooling water (CCW) system. Its discharge could cause eutrophication of receiving waters. The iron-carbon (Fe/C) micro-electrolysis technology was used to degrade and remove phosphonate from discharged CCW. The influences of initial pH, Fe/C ratio (FCR) and temperature on phosphonate removal were investigated in a series of batch tests and optimized by response surface methodology. The quadratic model of phosphonate removal was obtained with satisfactory degrees of fitness. The optimum conditions with total phosphorus removal efficiency of 95% were obtained at pH 7.0, FCR of 1.25, and temperature of 45 °C. The phosphonate removal mechanisms were also studied. Phosphonate removal occurred predominantly via two consecutive reactive phases: the degradation of phosphonate complexes (Ca-phosphonate) and the precipitation of Fe/C micro-electrolysis products (PO₄(3-), Ca²⁺ and Fe³⁺).

  9. Development of a separate tank with an electrolysis-dependent bacteria controlling system for the long term storage of potable water.

    PubMed

    Ishizuka, Akinori; Tanji, Masataka; Hayashi, Nobuatsu; Wakabayashi, Akihiro; Tatsumoto, Hideki; Hotta, Kunimoto

    2006-12-01

    For the long term storage of tap water, we developed a separate type of tank (5 m3) equipped with an electrolysis system to control bacterial growth. The electrolysis conditions using 20A direct current and a water flow rate of 10 L/min were capable of producing available chlorine (AC) at the rate of 5-8mg/min and raising the AC level of the stored tap water by about 0.2 mg/kg within 20-30 min The electrolyzed tap water with 0.2 mg/kg AC showed a capability per ml of killing 10(5)-10(6) cfu of bacteria such as Escherichia coli and Pseudomonas aeruginosa within 15 sec. A 6-month trial operation of the storage system with an automatic electrolysis control to keep AC level ranging 0.2-0.4 mg/kg demonstrated that the system worked well for the stored tap water in suppressing bacterial growth as well as in keeping good potable quality with reference to the 46 parameters specified for Japanese tap water. Actually, the electrolysis treatment was administered intermittently with an interval of about two weeks. Thus we believe the developed system has good potential to secure a potable water supply not only in the occasion of emergencies but also in countries having problems in the supply of safe drinking water.

  10. Direct anodic hydrochloric acid and cathodic caustic production during water electrolysis

    NASA Astrophysics Data System (ADS)

    Lin, Hui-Wen; Cejudo-Marín, Rocío; Jeremiasse, Adriaan W.; Rabaey, Korneel; Yuan, Zhiguo; Pikaar, Ilje

    2016-02-01

    Hydrochloric acid (HCl) and caustic (NaOH) are among the most widely used chemicals by the water industry. Direct anodic electrochemical HCl production by water electrolysis has not been successful as current commercially available electrodes are prone to chlorine formation. This study presents an innovative technology simultaneously generating HCl and NaOH from NaCl using a Mn0.84Mo0.16O2.23 oxygen evolution electrode during water electrolysis. The results showed that protons could be anodically generated at a high Coulombic efficiency (i.e. ≥ 95%) with chlorine formation accounting for 3 ~ 5% of the charge supplied. HCl was anodically produced at moderate strengths at a CE of 65 ± 4% together with a CE of 89 ± 1% for cathodic caustic production. The reduction in CE for HCl generation was caused by proton cross-over from the anode to the middle compartment. Overall, this study showed the potential of simultaneous HCl and NaOH generation from NaCl and represents a major step forward for the water industry towards on-site production of HCl and NaOH. In this study, artificial brine was used as a source of sodium and chloride ions. In theory, artificial brine could be replaced by saline waste streams such as Reverse Osmosis Concentrate (ROC), turning ROC into a valuable resource.

  11. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode.

    PubMed

    Ma, Yuanyuan; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2018-03-05

    Hydrogen production through water splitting is considered a promising approach for solar energy harvesting. However, the variable and intermittent nature of solar energy and the co-production of H 2 and O 2 significantly reduce the flexibility of this approach, increasing the costs of its use in practical applications. Herein, using the reversible n-type doping/de-doping reaction of the solid-state polytriphenylamine-based battery electrode, we decouple the H 2 and O 2 production in acid water electrolysis. In this architecture, the H 2 and O 2 production occur at different times, which eliminates the issue of gas mixing and adapts to the variable and intermittent nature of solar energy, facilitating the conversion of solar energy to hydrogen (STH). Furthermore, for the first time, we demonstrate a membrane-free solar water splitting through commercial photovoltaics and the decoupled acid water electrolysis, which potentially paves the way for a new approach for solar water splitting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fast electrochemical deposition of Ni(OH)2 precursor involving water electrolysis for fabrication of NiO thin films

    NASA Astrophysics Data System (ADS)

    Koyama, Miki; Ichimura, Masaya

    2018-05-01

    Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.

  13. Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JaeHwa Koh; DuckJoo Yoon; Chang H. Oh

    2010-07-01

    An electrolyzer model for the analysis of a hydrogen-production system using a solid oxide electrolysis cell (SOEC) has been developed, and the effects for principal parameters have been estimated by sensitivity studies based on the developed model. The main parameters considered are current density, area specific resistance, temperature, pressure, and molar fraction and flow rates in the inlet and outlet. Finally, a simple model for a high-temperature hydrogen-production system using the solid oxide electrolysis cell integrated with very high temperature reactors is estimated.

  14. Electrolysis cell stimulation

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.; Phillips, B. R.; Evangelista, J.

    1978-01-01

    Computer program represents attempt to understand and model characteristics of electrolysis cells. It allows user to determine how cell efficiency is affected by temperature, pressure, current density, electrolyte concentration, characteristic dimensions, membrane resistance, and electrolyte circulation rate. It also calculates ratio of bubble velocity to electrolyte velocity for anode and cathode chambers.

  15. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    PubMed Central

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-01-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309

  16. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30.

    PubMed

    Jia, Jieyang; Seitz, Linsey C; Benck, Jesse D; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S; Jaramillo, Thomas F

    2016-10-31

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.

  17. [Water disinfection by the combined exposure to super-high frequency energy and available chlorine produced during water electrolysis].

    PubMed

    Klimarev, S I; Siniak, Iu E

    2014-01-01

    The article reports the results of studying the effects on polluted water of SHF-energy together with the residual free (active) chlorine as a by-product of electrolysis action on dissolved chlorine-containing salts. Purpose of the studies was to evaluate input of these elements to the water disinfection effect. The synergy was found to kill microorganisms without impacts on the physicochemical properties of processed water or nutrient medium; therefore, it can be used for water treatment, and cultivation of microorganisms in microbiology.

  18. Voltammogram of stainless steel/Fe-Co-Ni electrode on water electrolysis in base condition with dahlia pinnata tuber starch media

    NASA Astrophysics Data System (ADS)

    Isana S. Y., L.; Yuanita, Dewi; Sulistyani, Al, Heru Pratomo

    2017-08-01

    Hydrogen production in a safe, enviromentally friendly, and inexpensive is an attempt to realize energy needs commercially, one of them is electrolysis. Many attempts which relate with water electrolysis had been conducted to produce hydrogen, for example by using wastewater as water substitution. The research is to study the effect of dahlia pinnata tuber starch to stainless steel/Fe-Co-Ni electrode activity on water electrolysis in base condition. Stainless steel/Fe-Co-Ni electrode activity for breaking the water molecules eventually is better than stainless steel electrode, either there is existance of dahlia pinnata tuber starch or not. The presence of dahlia pinnata tuber starch apparently makes the covering on surface of the electrode so the catalytic activity of the electrode is reduced. Covering is mostly affected by dahlia pinnata tuber starch concentration. Wastewater which contains starch, especially dahlia pinnata tuber starch, obviously is not good enough because hydrogen production rate becomes obstructed.

  19. High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Moni Kanchan; Kadakia, Karan; Velikokhatnyi, Oleg I

    2013-01-01

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts comprising compositions with significantly reduced amounts of expensive noble metal contents (e.g. IrO{sub 2}, Pt) with comparable electrochemical performance to the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would signify a major breakthrough in hydrogen generation via water electrolysis. Development of such systems would lead to two primary outcomes: first, a reduction in the overall capital costs of PEM based water electrolyzers, and second, attainment of the targeted hydrogen production costs (<$3.00/gge delivered by 2015) comparable to conventional liquid fuels. In line with these goals,more » by exploiting a two-pronged theoretical first principles and experimental approach herein, we demonstrate for the very first time a solid solution of SnO{sub 2}:10 wt% F containing only 20 at.% IrO{sub 2} [e.g. (Sn{sub 0.80}Ir{sub 0.20})O{sub 2}:10F] displaying remarkably similar electrochemical activity and comparable or even much improved electrochemical durability compared to pure IrO{sub 2}, the accepted gold standard in oxygen evolution electro-catalysts for PEM based water electrolysis. We present the results of these studies.« less

  20. Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    NASA Technical Reports Server (NTRS)

    Roy, Robert J.; Wilson, Mark E.; Diderich, Greg S.; Steele, John W.

    2011-01-01

    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell concentration overpotential resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid-cathode feed water electrolysis cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration.

  1. Highly energetic phenomena in water electrolysis

    NASA Astrophysics Data System (ADS)

    Postnikov, A. V.; Uvarov, I. V.; Lokhanin, M. V.; Svetovoy, V. B.

    2016-12-01

    Water electrolysis performed in microsystems with a fast change of voltage polarity produces optically invisible nanobubbles containing H2 and O2 gases. In this form the gases are able to the reverse reaction of water formation. Here we report extreme phenomena observed in a millimeter-sized open system. Under a frequency of driving pulses above 100 kHz the process is accompanied by clicking sounds repeated every 50 ms or so. Fast video reveals that synchronously with the click a bubble is growing between the electrodes which reaches a size of 300 μm in 50 μs. Detailed dynamics of the system is monitored by means of a vibrometer by observing a piece of silicon floating above the electrodes. The energy of a single event is estimated as 0.3 μJ and a significant part of this energy is transformed into mechanical work moving the piece. The observations are explained by the combustion of hydrogen and oxygen mixture in the initial bubble with a diameter of about 40 μm. Unusual combustion mechanism supporting spontaneous ignition at room temperature is responsible for the process. The observed effect demonstrates a principal possibility to build a microscopic internal combustion engine.

  2. Feasibility of Using an Electrolysis Cell for Quantification of the Electrolytic Products of Water from Gravimetric Measurement

    PubMed Central

    2018-01-01

    A gravimetric method for the quantitative assessment of the products of electrolysis of water is presented. In this approach, the electrolysis cell was directly powered by 9 V batteries. Prior to electrolysis, a known amount of potassium hydrogen phthalate (KHP) was added to the cathode compartment, and an excess amount of KHCO3 was added to the anode compartment electrolyte. During electrolysis, cathode and anode compartments produced OH−(aq) and H+(aq) ions, respectively. Electrolytically produced OH−(aq) neutralized the KHP, and the completion of this neutralization was detected by a visual indicator color change. Electrolytically produced H+(aq) reacted with HCO3 −(aq) liberating CO2(g) from the anode compartment. Concurrent liberation of H2(g) and O2(g) at the cathode and anode, respectively, resulted in a decrease in the mass of the cell. Mass of the electrolysis cell was monitored. Liberation of CO2(g) resulted in a pronounced effect of a decrease in mass. Experimentally determined decrease in mass (53.7 g/Faraday) agreed with that predicted from Faraday's laws of electrolysis (53.0 g/Faraday). The efficacy of the cell was tested to quantify the acid content in household vinegar samples. Accurate results were obtained for vinegar analysis with a precision better than 5% in most cases. The cell offers the advantages of coulometric method and additionally simplifies the circuitry by eliminating the use of a constant current power source or a coulometer. PMID:29629210

  3. Feasibility of Using an Electrolysis Cell for Quantification of the Electrolytic Products of Water from Gravimetric Measurement.

    PubMed

    Melaku, Samuel; Gebeyehu, Zewdu; Dabke, Rajeev B

    2018-01-01

    A gravimetric method for the quantitative assessment of the products of electrolysis of water is presented. In this approach, the electrolysis cell was directly powered by 9 V batteries. Prior to electrolysis, a known amount of potassium hydrogen phthalate (KHP) was added to the cathode compartment, and an excess amount of KHCO 3 was added to the anode compartment electrolyte. During electrolysis, cathode and anode compartments produced OH - (aq) and H + (aq) ions, respectively. Electrolytically produced OH - (aq) neutralized the KHP, and the completion of this neutralization was detected by a visual indicator color change. Electrolytically produced H + (aq) reacted with HCO 3 - (aq) liberating CO 2 (g) from the anode compartment. Concurrent liberation of H 2 (g) and O 2 (g) at the cathode and anode, respectively, resulted in a decrease in the mass of the cell. Mass of the electrolysis cell was monitored. Liberation of CO 2 (g) resulted in a pronounced effect of a decrease in mass. Experimentally determined decrease in mass (53.7 g/Faraday) agreed with that predicted from Faraday's laws of electrolysis (53.0 g/Faraday). The efficacy of the cell was tested to quantify the acid content in household vinegar samples. Accurate results were obtained for vinegar analysis with a precision better than 5% in most cases. The cell offers the advantages of coulometric method and additionally simplifies the circuitry by eliminating the use of a constant current power source or a coulometer.

  4. SISGR-Fundamental Experimental and Theoretical Studies on a Novel Family of Oxide Catalyst Supports for Water Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant

    2014-10-03

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it wasmore » demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would

  5. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  6. Some Aspects of PDC Electrolysis

    NASA Astrophysics Data System (ADS)

    Poláčik, Ján; Pospíšil, Jiří

    2016-10-01

    In this paper, aspects of pulsed direct current (PDC) water splitting are described. Electrolysis is a simple and well-known method to produce hydrogen. The efficiency is relatively low in normal conditions using conventional DC. PDC in electrolysis brings about many advantages. It increases efficiency of hydrogen production, and performance of the electrolyser may be smoothly controlled without compromising efficiency of the process. In our approach, ultra-short pulses are applied. This method enhances efficiency of electrical energy in the process of decomposition of water into hydrogen and oxygen. Efficiency depends on frequency, shape and width of the electrical pulses. Experiments proved that efficiency was increased by 2 to 8 per cent. One of the prospects of PDC electrolysis producing hydrogen is in increase of efficiency of energy storage efficiency in the hydrogen. There are strong efforts to make the electrical grid more efficient and balanced in terms of production by installing electricity storage units. Using hydrogen as a fuel decreases air pollution and amount of carbon dioxide emissions in the air. In addition to energy storage, hydrogen is also important in transportation and chemical industry.

  7. The advanced EctoSys electrolysis as an integral part of a ballast water treatment system.

    PubMed

    Echardt, J; Kornmueller, A

    2009-01-01

    A full-scale 500 m(3)/h ballast water treatment system was tested according to the landbased type approval procedure of the International Maritime Organization (IMO). The system consists of disc filters followed by the advanced EctoSys electrolysis as an integral part for disinfection. The test water quality exceeded by far the minimum requirements for type approval testing. Due to the properties of the special electrodes used together with the striking disinfection effect, the disinfectants assumed to be produced inline by the EctoSys cell in river water were hydroxyl radicals, while in brackish water additionally chlorine and consequently the more stable bromine were formed. In river water, no residual oxidants could be detected in accordance with the assumed production of not responding, highly-reactive and short-living hydroxyl radicals. Accordingly, disinfection byproduct (DBP) formation was very low and close to the limit of quantification in river water. While in brackish water, initial residual oxidant concentrations were maximum 2 mg/L as chlorine and mostly brominated DBP (especially bromoform and bromate) were found. Overall considering this worst case test approach, the DBP concentrations of the treated effluents were below or in the range of the WHO Drinking Water Guideline values and therefore evaluated as acceptable for discharge to the environment. The stringent discharge standard by IMO concerning viable organisms was fully met in river and brackish water, proving the disinfection efficiency of the EctoSys electrolysis against smaller plankton and bacteria.

  8. Impact of low gravity on water electrolysis operation

    NASA Technical Reports Server (NTRS)

    Powell, F. T.; Schubert, F. H.; Lee, M. G.

    1989-01-01

    Advanced space missions will require oxygen and hydrogen utilities for several important operations including the following: (1) propulsion; (2) electrical power generation and storage; (3) environmental control and life support; (4) extravehicular activity; (5) in-space manufacturing and (6) in-space science activities. An experiment suited to a Space Shuttle standard middeck payload has been designed for the Static Feed Water Electrolysis technology which has been viewed as being capable of efficient, reliable oxygen and hydrogen generation with few subsystem components. The program included: end use design requirements, phenomena to be studied, Space Shuttle Orbiter experiment constraints, experiment design and data requirements, and test hardware requirements. The objectives are to obtain scientific and engineering data for future research and development and to focus on demonstrating and monitoring for safety of a standard middeck payload.

  9. Feasibility Analysis of Liquefying Oxygen Generated from Water Electrolysis Units on Lunar Surface

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.

    2009-01-01

    Concepts for liquefying oxygen (O2) generated from water electrolysis subsystems on the Lunar surface were explored. Concepts for O2 liquefaction units capable of generating 1.38 lb/hr (0.63 kg/hr) liquid oxygen (LOX) were developed. Heat and mass balance calculations for the liquefaction concepts were conducted. Stream properties, duties of radiators, heat exchangers and compressors for the selected concepts were calculated and compared.

  10. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the powermore » cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.« less

  11. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    NASA Astrophysics Data System (ADS)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  12. The Interconversion of Electrical and Chemical Energy: The Electrolysis of Water and the Hydrogen-Oxygen Fuel Cell.

    ERIC Educational Resources Information Center

    Roffia, Sergio; And Others

    1988-01-01

    Discusses some of the drawbacks of using a demonstration of the electrolysis of water to illustrate the interconversion between electrical and chemical energy. Illustrates a simple apparatus allowing demonstration of this concept while overcoming these drawbacks. (CW)

  13. Conversion of laser energy to chemical energy by the photoassisted electrolysis of water

    NASA Technical Reports Server (NTRS)

    Wrighton, M. S.

    1976-01-01

    Ultraviolet irradiation of the n-type semiconductor TiO2 crystal electrode of an aqueous electrochemical cell evolves O2 at the TiO2 electrode and H2 at the Pt electrode. The gases are typically evolved in a 2:1 (H2:O2) volume ratio. The photoassisted reaction seems to require applied voltages, but values as low as 0.25 V do allow the photoassisted electrolysis to proceed. Prolonged irradiation in either acid or base evolves the gaseous products in amounts which clearly demonstrate that the reaction is catalytic with respect to the TiO2. The wavelength response of the TiO2 and the correlation of product yield and current are reported. The results support the claim that TiO2 is a true photoassistance agent for the electrolysis of water. Minimum optical storage efficiencies of the order of 1 percent can be achieved by the production of H2.

  14. Selection of combined water electrolysis and resistojet propulsion for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1988-01-01

    An analytical rationale is presented for the configuration of the NASA Space Station's two-element propulsion system, and attention is given to the cost benefits accruing to this system over the Space Station's service life. The principal system element uses gaseous oxygen and hydrogen obtained through water electrolysis to furnish attitude control, backup attitude control, and contingency maneuvering. The secondary element uses resistojets to augment Space Station reboost through the acceleration of waste gases in the direction opposite the Station's flight path.

  15. Electrolysis Bubbles Make Waterflow Visible

    NASA Technical Reports Server (NTRS)

    Schultz, Donald F.

    1990-01-01

    Technique for visualization of three-dimensional flow uses tiny tracer bubbles of hydrogen and oxygen made by electrolysis of water. Strobe-light photography used to capture flow patterns, yielding permanent record that is measured to obtain velocities of particles. Used to measure simulated mixing turbulence in proposed gas-turbine combustor and also used in other water-table flow tests.

  16. Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power

    NASA Astrophysics Data System (ADS)

    Rakousky, Christoph; Reimer, Uwe; Wippermann, Klaus; Kuhri, Susanne; Carmo, Marcelo; Lueke, Wiebke; Stolten, Detlef

    2017-02-01

    Polymer electrolyte membrane (PEM) water electrolysis generates 'green' hydrogen when conducted with electricity from renewable - but fluctuating - sources like wind or solar photovoltaic. Unfortunately, the long-term stability of the electrolyzer performance is still not fully understood under these input power profiles. In this study, we contrast the degradation behavior of our PEM water electrolysis single cells that occurs under operation with constant and intermittent power and derive preferable operating states. For this purpose, five different current density profiles are used, of which two were constant and three dynamic. Cells operated at 1 A cm-2 show no degradation. However, degradation was observed for the remaining four profiles, all of which underwent periods of high current density (2 A cm-2). Hereby, constant operation at 2 A cm-2 led to the highest degradation rate (194 μV h-1). Degradation can be greatly reduced when the cells are operated with an intermittent profile. Current density switching has a positive effect on durability, as it causes reversible parts of degradation to recover and results in a substantially reduced degradation per mole of hydrogen produced. Two general degradation phenomena were identified, a decreased anode exchange current density and an increased contact resistance at the titanium porous transport layer (Ti-PTL).

  17. Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien

    2012-03-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technologymore » will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.« less

  18. A study of water electrolysis using ionic polymer-metal composite for solar energy storage

    NASA Astrophysics Data System (ADS)

    Keow, Alicia; Chen, Zheng

    2017-04-01

    Hydrogen gas can be harvested via the electrolysis of water. The gas is then fed into a proton exchange membrane fuel cell (PEMFC) to produce electricity with clean emission. Ionic polymer-metal composite (IPMC), which is made from electroplating a proton-conductive polymer film called Nafion encourages ion migration and dissociation of water under application of external voltage. This property has been proven to be able to act as catalyst for the electrolysis of pure water. This renewable energy system is inspired by photosynthesis. By using solar panels to gather sunlight as the source of energy, the generation of electricity required to activate the IPMC electrolyser is acquired. The hydrogen gas is collected as storable fuel and can be converted back into energy using a commercial fuel cell. The goal of this research is to create a round-trip energy efficient system which can harvest solar energy, store them in the form of hydrogen gas and convert the stored hydrogen back to electricity through the use of fuel cell with minimal overall losses. The effect of increasing the surface area of contact is explored through etching of the polymer electrolyte membrane (PEM) with argon plasma or manually sanding the surface and how it affects the increase of energy conversion efficiency of the electrolyser. In addition, the relationship between temperature and the IPMC is studied. Experimental results demonstrated that increases in temperature of water and changes in surface area contact correlate with gas generation.

  19. Understanding Combustion of H2/O2 Gases inside Nanobubbles Generated by Water Electrolysis Using Reactive Molecular Dynamic Simulations.

    PubMed

    Jain, S; Qiao, L

    2018-06-21

    This work explored the mechanism of spontaneous combustion of hydrogen-oxygen mixtures inside nanobubbles (which were generated by water electrolysis) using reactive molecular dynamic simulations based on the first-principles derived reactive force field ReaxFF. The effects of surface-assisted dissociation of H 2 and O 2 gases that produced H and O radicals were examined. Additionally, the ignition outcome and species evolution as a function of the initial system pressure (or bubble size) were studied. A significant amount of hydrogen peroxide (H 2 O 2 ), 6-140 times water (H 2 O), was observed in the combustion products. This was attributed to the low-temperature (∼300 K) and high-pressure (2-80 atm) conditions at which the chemical reactions were taking place. In addition, the rate of consumption of H 2 and O 2 molecules was found to increase with an increase in added H and O radical concentrations and initial system pressure. The rate at which heat was being lost from the combustion chamber (nanobubbles) was also compared to the rate at which heat was being released from the chemical reactions. Only a slight rise in the reaction temperature was observed (∼68 K), signifying that, at such small scales, heat losses dominate. The resulting chemistry was quite different from macroscopic combustion, which usually takes place at a much higher temperatures of above 1000 K.

  20. Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    NASA Technical Reports Server (NTRS)

    Diderich, Greg S.; Roy, Robert J.; Steele, John W.; Van Keuren, Steven P.; Wilson, Mark E.

    2010-01-01

    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell resistance resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid cathode feed electrolyzer cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration.

  1. Fluorine substituted (Mn,Ir)O 2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis

    DOE PAGES

    Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan; ...

    2017-03-20

    Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less

  2. Fluorine substituted (Mn,Ir)O 2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan

    Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less

  3. Inhalation of water electrolysis-derived hydrogen ameliorates cerebral ischemia-reperfusion injury in rats - A possible new hydrogen resource for clinical use.

    PubMed

    Cui, Jin; Chen, Xiao; Zhai, Xiao; Shi, Dongchen; Zhang, Rongjia; Zhi, Xin; Li, Xiaoqun; Gu, Zhengrong; Cao, Liehu; Weng, Weizong; Zhang, Jun; Wang, Liping; Sun, Xuejun; Ji, Fang; Hou, Jiong; Su, Jiacan

    2016-10-29

    Hydrogen is a kind of noble gas with the character to selectively neutralize reactive oxygen species. Former researches proved that low-concentration of hydrogen can be used to ameliorating cerebral ischemia/reperfusion injury. Hydrogen electrolyzed from water has a hydrogen concentration of 66.7%, which is much higher than that used in previous studies. And water electrolysis is a potential new hydrogen resource for regular clinical use. This study was designed and carried out for the determination of safety and neuroprotective effects of water electrolysis-derived hydrogen. Sprague-Dawley rats were used as experimental animals, and middle cerebral artery occlusion was used to make cerebral ischemia/reperfusion model. Pathologically, tissues from rats in hydrogen inhalation group showed no significant difference compared with the control group in HE staining pictures. The blood biochemical findings matched the HE staining result. TTC, Nissl, and TUNEL staining showed the significant improvement of infarction volume, neuron morphology, and neuron apoptosis in rat with hydrogen treatment. Biochemically, hydrogen inhalation decreased brain caspase-3, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine-positive cells and inflammation factors concentration. Water electrolysis-derived hydrogen inhalation had neuroprotective effects on cerebral ischemia/reperfusion injury in rats with the effect of suppressing oxidative stress and inflammation, and it is a possible new hydrogen resource to electrolyze water at the bedside clinically. Copyright © 2016. Published by Elsevier Ltd.

  4. High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.

    PubMed

    Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y

    A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal.

  5. Apparent Km of mitochondria for oxygen computed from Vmax measured in permeabilized muscle fibers is lower in water enriched in oxygen by electrolysis than injection.

    PubMed

    Zoll, Joffrey; Bouitbir, Jamal; Sirvent, Pascal; Klein, Alexis; Charton, Antoine; Jimenez, Liliana; Péronnet, François R; Geny, Bernard; Richard, Ruddy

    2015-01-01

    It has been suggested that oxygen (O2) diffusion could be favored in water enriched in O2 by a new electrolytic process because of O2 trapping in water superstructures (clathrates), which could reduce the local pressure/content relationships for O2 and facilitate O2 diffusion along PO2 gradients. Mitochondrial respiration was compared in situ in saponin-skinned fibers isolated from the soleus muscles of Wistar rats, in solution enriched in O2 by injection or the electrolytic process 1) at an O2 concentration decreasing from 240 µmol/L to 10 µmol/L (132 mmHg to 5 mmHg), with glutamate-malate or N, N, N', N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD)-ascorbate (with antimycin A) as substrates; and 2) at increasing adenosine diphosphate (ADP) concentration with glutamate-malate as substrate. As expected, maximal respiration decreased with O2 concentration and, when compared to glutamate-malate, the apparent Km O2 of mitochondria for O2 was significantly lower with TMPD-ascorbate with both waters. However, when compared to the water enriched in O2 by injection, the Km O2 was significantly lower with both electron donors in water enriched in O2 by electrolysis. This was not associated with any increase in the sensitivity of mitochondria to ADP; no significant difference was observed for the Km ADP between the two waters. In this experiment, a higher affinity of the mitochondria for O2 was observed in water enriched in O2 by electrolysis than by injection. This observation is consistent with the hypothesis that O2 diffusion can be facilitated in water enriched in O2 by the electrolytic process.

  6. Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions

    NASA Astrophysics Data System (ADS)

    Rybkin, V. V.; Shutov, D. A.

    2017-11-01

    Results of experimental studies and numerical simulations of physicochemical characteristics of plasmas generated in different types of atmospheric-pressure discharges (pulsed streamer corona, gliding electric arc, dielectric barrier discharge, glow-discharge electrolysis, diaphragmatic discharge, and dc glow discharge) used to initiate various chemical processes in water solutions are analyzed. Typical reactor designs are considered. Data on the power supply characteristics, plasma electron parameters, gas temperatures, and densities of active particles in different types of discharges excited in different gases and their dependences on the external parameters of discharges are presented. The chemical composition of active particles formed in water is described. Possible mechanisms of production and loss of plasma particles are discussed.

  7. Partial oxidation of methane (POM) assisted solid oxide co-electrolysis

    DOEpatents

    Chen, Fanglin; Wang, Yao

    2017-02-21

    Methods for simultaneous syngas generation by opposite sides of a solid oxide co-electrolysis cell are provided. The method can comprise exposing a cathode side of the solid oxide co-electrolysis cell to a cathode-side feed stream; supplying electricity to the solid oxide co-electrolysis cell such that the cathode side produces a product stream comprising hydrogen gas and carbon monoxide gas while supplying oxygen ions to an anode side of the solid oxide co-electrolysis cell; and exposing the anode side of the solid oxide co-electrolysis cell to an anode-side feed stream. The cathode-side feed stream comprises water and carbon dioxide, and the anode-side feed stream comprises methane gas such that the methane gas reacts with the oxygen ions to produce hydrogen and carbon monoxide. The cathode-side feed stream can further comprise nitrogen, hydrogen, or a mixture thereof.

  8. Electrode kinetics of a water vapor electrolysis cell

    NASA Technical Reports Server (NTRS)

    Jacobs, G.

    1974-01-01

    The anodic electrochemical behavior of the water vapor electrolysis cell was investigated. A theoretical review of various aspects of cell overvoltage is presented with special emphasis on concentration overvoltage and activation overvoltage. Other sources of overvoltage are described. The experimental apparatus controlled and measured anode potential and cell current. Potentials between 1.10 and 2.60 V (vs NHE) and currents between 0.1 and 3000 mA were investigated. Different behavior was observed between the standard cell and the free electrolyte cell. The free electrolyte cell followed typical Tafel behavior (i.e. activation overvoltage) with Tafel slopes of about 0.15, and the exchange current densities of 10 to the minus 9th power A/sq cm, both in good agreement with literature values. The standard cell exhibitied this same Tafel behavior at lower current densities but deviated toward lower than expected current densities at higher potentials. This behavior and other results were examined to determine their origin.

  9. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developedmore » and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement

  10. Apparent Km of mitochondria for oxygen computed from Vmax measured in permeabilized muscle fibers is lower in water enriched in oxygen by electrolysis than injection

    PubMed Central

    Zoll, Joffrey; Bouitbir, Jamal; Sirvent, Pascal; Klein, Alexis; Charton, Antoine; Jimenez, Liliana; Péronnet, François R; Geny, Bernard; Richard, Ruddy

    2015-01-01

    Background It has been suggested that oxygen (O2) diffusion could be favored in water enriched in O2 by a new electrolytic process because of O2 trapping in water superstructures (clathrates), which could reduce the local pressure/content relationships for O2 and facilitate O2 diffusion along PO2 gradients. Materials and methods Mitochondrial respiration was compared in situ in saponin-skinned fibers isolated from the soleus muscles of Wistar rats, in solution enriched in O2 by injection or the electrolytic process 1) at an O2 concentration decreasing from 240 µmol/L to 10 µmol/L (132 mmHg to 5 mmHg), with glutamate–malate or N, N, N′, N′-tetramethyl-p-phenylenediamine dihydrochloride (TMPD)–ascorbate (with antimycin A) as substrates; and 2) at increasing adenosine diphosphate (ADP) concentration with glutamate–malate as substrate. Results As expected, maximal respiration decreased with O2 concentration and, when compared to glutamate–malate, the apparent Km O2 of mitochondria for O2 was significantly lower with TMPD–ascorbate with both waters. However, when compared to the water enriched in O2 by injection, the Km O2 was significantly lower with both electron donors in water enriched in O2 by electrolysis. This was not associated with any increase in the sensitivity of mitochondria to ADP; no significant difference was observed for the Km ADP between the two waters. Conclusion In this experiment, a higher affinity of the mitochondria for O2 was observed in water enriched in O2 by electrolysis than by injection. This observation is consistent with the hypothesis that O2 diffusion can be facilitated in water enriched in O2 by the electrolytic process. PMID:26203225

  11. Design of a water electrolysis flight experiment

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Grigger, David J.; Thompson, C. Dean; Cusick, Robert J.

    1993-01-01

    Supply of oxygen (O2) and hydrogen (H2) by electolyzing water in space will play an important role in meeting the National Aeronautics and Space Administration's (NASA's) needs and goals for future space missios. Both O2 and H2 are envisioned to be used in a variety of processes including crew life support, spacecraft propulsion, extravehicular activity, electrical power generation/storage as well as in scientific experiment and manufacturing processes. The Electrolysis Performance Improvement Concept Study (EPICS) flight experiment described herein is sponsored by NASA Headquarters as a part of the In-Space Technology Experiment Program (IN-STEP). The objective of the EPICS is to further contribute to the improvement of the SEF technology, specifially by demonstrating and validating the SFE electromechanical process in microgravity as well as investigating perrformance improvements projected possible in a microgravity environment. This paper defines the experiment objective and presents the results of the preliminary design of the EPICS. The experiment will include testing three subscale self-contained SFE units: one containing baseline components, and two units having variations in key component materials. Tests will be conducted at varying current and thermal condition.

  12. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2006-04-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

  13. Mechanical characterization and durability of sintered porous transport layers for polymer electrolyte membrane electrolysis

    NASA Astrophysics Data System (ADS)

    Borgardt, Elena; Panchenko, Olha; Hackemüller, Franz Josef; Giffin, Jürgen; Bram, Martin; Müller, Martin; Lehnert, Werner; Stolten, Detlef

    2018-01-01

    Differential pressure electrolysis offers the potential for more efficient hydrogen compression. Due to the differential pressures acting within the electrolytic cell, the porous transport layer (PTL) is subjected to high stress. For safety reasons, the PTL's mechanical stability must be ensured. However, the requirements for high porosity and low thickness stand in contrast to that for mechanical stability. Porous transport layers for polymer electrolyte membrane (PEM) electrolysis are typically prepared by means of the thermal sintering of titanium powder. Thus far, the factors that influence the mechanical strength of the sintered bodies and how all requirements can be simultaneously fulfilled have not been investigated. Here, the static and dynamic mechanical properties of thin sintered titanium sheets are investigated ex-situ via tensile tests and periodic loading in a test cell, respectively. In order for a sintered PTL with a thickness of 500 μm and porosities above 25% to be able to withstand 50 bar differential pressure in the cell, the maximum flow field width should be limited to 3 mm. Thus, a method was developed to test the suitability of PTL materials for use in electrolysis for various differential pressures and flow field widths.

  14. Low-Cost High-Pressure Hydrogen Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cropley, Cecelia C.; Norman, Timothy J.

    Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES)more » developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count

  15. Glass cylindrical filter for electrolysis cell

    NASA Astrophysics Data System (ADS)

    Abe, Shinichi; Akiyama, Fuminori

    1992-09-01

    Some electrolysis requires separation of electrolytic solution by a filter between two electrodes in order to prevent products from reacting secondarily at another electrode. These filters are usually made of a glass filter or ion exchanger membrane, and they are fixed at the electrolysis cell or cover one electrode. This report presents a detachable glass cylindrical filter for electrolytic reaction. The glass cylindrical filter was made from glass filter powder placed in a mold and heated at 800 C for 18 minutes. Using this filter, electrolytic reduction of carbon dioxide was performed in 0 C hot water with benzoin. This reaction produces aqueous oil from carbon dioxide and water. The products were compared with and without the filter and, although the yield did not differ between the two reaction systems, products without the filter contained highly polymerized oil compared to those with the filter. This suggests that the aqueous oil was produced at the cathode and polymerized at the anode.

  16. Low-Energy Catalytic Electrolysis for Simultaneous Hydrogen Evolution and Lignin Depolymerization.

    PubMed

    Du, Xu; Liu, Wei; Zhang, Zhe; Mulyadi, Arie; Brittain, Alex; Gong, Jian; Deng, Yulin

    2017-03-09

    Here, a new proton-exchange-membrane electrolysis is presented, in which lignin was used as the hydrogen source at the anode for hydrogen production. Either polyoxometalate (POM) or FeCl 3 was used as the catalyst and charge-transfer agent at the anode. Over 90 % Faraday efficiency was achieved. In a thermal-insulation reactor, the heat energy could be maintained at a very low level for continuous operation. Compared to the best alkaline-water electrolysis reported in literature, the electrical-energy consumption could be 40 % lower with lignin electrolysis. At the anode, the Kraft lignin (KL) was oxidized to aromatic chemicals by POM or FeCl 3 , and reduced POM or Fe ions were regenerated during the electrolysis. Structure analysis of the residual KL indicated a reduction of the amount of hydroxyl groups and the cleavage of ether bonds. The results suggest that POM- or FeCl 3 -mediated electrolysis can significantly reduce the electrolysis energy consumption in hydrogen production and, simultaneously, depolymerize lignin to low-molecular-weight value-added aromatic chemicals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A novel bioactive haemodialysis system using dissolved dihydrogen (H2) produced by water electrolysis: a clinical trial.

    PubMed

    Nakayama, Masaaki; Nakano, Hirofumi; Hamada, Hiromi; Itami, Noritomo; Nakazawa, Ryoichi; Ito, Sadayoshi

    2010-09-01

    Chronic inflammation in haemodialysis (HD) patients indicates a poor prognosis. However, therapeutic approaches are limited. Hydrogen gas (H(2)) ameliorates oxidative and inflammatory injuries to organs in animal models. We developed an HD system using a dialysis solution with high levels of dissolved H(2) and examined the clinical effects. Dialysis solution with H(2) (average of 48 ppb) was produced by mixing dialysate concentrates and reverse osmosis water containing dissolved H(2) generated by a water electrolysis technique. Subjects comprised 21 stable patients on standard HD who were switched to the test HD for 6 months at three sessions a week. During the study period, no adverse clinical signs or symptoms were observed. A significant decrease in systolic blood pressure (SBP) before and after dialysis was observed during the study, and a significant number of patients achieved SBP <140 mmHg after HD (baseline, 21%; 6 months, 62%; P < 0.05). Changes in dialysis parameters were minimal, while significant decreases in levels of plasma monocyte chemoattractant protein 1 (P < 0.01) and myeloperoxidase (P < 0.05) were identified. Adding H(2) to haemodialysis solutions ameliorated inflammatory reactions and improved BP control. This system could offer a novel therapeutic option for control of uraemia.

  18. The development of a non-cryogenic nitrogen/oxygen supply system. [using hydrazine/water electrolysis

    NASA Technical Reports Server (NTRS)

    Greenough, B. M.; Mahan, R. E.

    1974-01-01

    A hydrazine/water electrolysis process system module design was fabricated and tested to demonstrate component and module performance. This module is capable of providing both the metabolic oxygen for crew needs and the oxygen and nitrogen for spacecraft leak makeup. The component designs evolved through previous R and D efforts, and were fabricated and tested individually and then were assembled into a complete module which was successfully tested for 1000 hours to demonstrate integration of the individual components. A survey was made of hydrazine sensor technology and a cell math model was derived.

  19. Application of electrolysis to inactivation of antibacterials in clinical use.

    PubMed

    Nakano, Takashi; Hirose, Jun; Kobayashi, Toyohide; Hiro, Naoki; Kondo, Fumitake; Tamai, Hiroshi; Tanaka, Kazuhiko; Sano, Kouichi

    2013-04-01

    Contamination of surface water by antibacterial pharmaceuticals (antibacterials) from clinical settings may affect aquatic organisms, plants growth, and environmental floral bacteria. One of the methods to decrease the contamination is inactivation of antibacterials before being discharged to the sewage system. Recently, we reported the novel method based on electrolysis for detoxifying wastewater containing antineoplastics. In the present study, to clarify whether the electrolysis method is applicable to the inactivation of antibacterials, we electrolyzed solutions of 10 groups of individual antibacterials including amikacin sulfate (AMK) and a mixture (MIX) of some commercial antibacterials commonly prescribed at hospitals, and measured their antibacterial activities. AMK was inactivated in its antibacterial activities and its concentration decreased by electrolysis in a time-dependent manner. Eighty to ninety-nine percent of almost all antibacterials and MIX were inactivated within 6h of electrolysis. Additionally, cytotoxicity was not detected in any of the electrolyzed solutions of antibacterials and MIX by the Molt-4-based cytotoxicity test. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides.

    PubMed

    Bi, Lei; Boulfrad, Samir; Traversa, Enrico

    2014-12-21

    Energy crisis and environmental problems caused by the conventional combustion of fossil fuels boost the development of renewable and sustainable energies. H2 is regarded as a clean fuel for many applications and it also serves as an energy carrier for many renewable energy sources, such as solar and wind power. Among all the technologies for H2 production, steam electrolysis by solid oxide electrolysis cells (SOECs) has attracted much attention due to its high efficiency and low environmental impact, provided that the needed electrical power is generated from renewable sources. However, the deployment of SOECs based on conventional oxygen-ion conductors is limited by several issues, such as high operating temperature, hydrogen purification from water, and electrode stability. To avoid these problems, proton-conducting oxides are proposed as electrolyte materials for SOECs. This review paper provides a broad overview of the research progresses made for proton-conducting SOECs, summarizing the past work and finding the problems for the development of proton-conducting SOECs, as well as pointing out potential development directions.

  1. Treatment of oilfield produced water by anaerobic process coupled with micro-electrolysis.

    PubMed

    Li, Gang; Guo, Shuhai; Li, Fengmei

    2010-01-01

    Treatment of oilfield produced water was investigated using an anaerobic process coupled with micro-electrolysis (ME), focusing on changes in chemical oxygen demand (COD) and biodegradability. Results showed that COD exhibited an abnormal change in the single anaerobic system in which it increased within the first 168 hr, but then decreased to 222 mg/L after 360 hr. The biological oxygen demand (five-day) (BODs)/COD ratio of the water increased from 0.05 to 0.15. Hydrocarbons in the wastewater, such as pectin, degraded to small molecules during the hydrolytic acidification process. Comparatively, the effect of ME was also investigated. The COD underwent a slight decrease and the BOD5/COD ratio of the water improved from 0.05 to 0.17 after ME. Removal of COD was 38.3% under the idealized ME conditions (pH 6.0), using iron and active carbon (80 and 40 g/L, respectively). Coupling the anaerobic process with ME accelerated the COD removal ratio (average removal was 53.3%). Gas chromatography/mass spectrometry was used to analyze organic species conversion. This integrated system appeared to be a useful option for the treatment of water produced in oilfields.

  2. Water electrolysis with a conducting carbon cloth: subthreshold hydrogen generation and superthreshold carbon quantum dot formation.

    PubMed

    Biswal, Mandakini; Deshpande, Aparna; Kelkar, Sarika; Ogale, Satishchandra

    2014-03-01

    A conducting carbon cloth, which has an interesting turbostratic microstructure and functional groups that are distinctly different from other ordered forms of carbon, such as graphite, graphene, and carbon nanotubes, was synthesized by a simple one-step pyrolysis of cellulose fabric. This turbostratic disorder and surface chemical functionalities had interesting consequences for water splitting and hydrogen generation when such a cloth was used as an electrode in the alkaline electrolysis process. Importantly, this work also gives a new twist to carbon-assisted electrolysis. During electrolysis, the active sites in the carbon cloth allow slow oxidation of its surface to transform the surface groups from COH to COOH and so forth at a voltage as low as 0.2 V in a two-electrode system, along with platinum as the cathode, instead of 1.23 V (plus overpotential), which is required for platinum, steel, or even graphite anodes. The quantity of subthreshold hydrogen evolved was 24 mL cm(-2)  h(-1) at 1 V. Interestingly, at a superthreshold potential (>1.23 V+overpotential), another remarkable phenomenon was found. At such voltages, along with the high rate and quantity of hydrogen evolution, rapid exfoliation of the tiny nanoscale (5-7 nm) units of carbon quantum dots (CQDs) are found in copious amounts due to an enhanced oxidation rate. These CQDs show bright-blue fluorescence under UV light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fractional capacity electrolyzer development for CO2 and H2O electrolysis

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.

    1980-01-01

    The electrolyzer module was designed to produce 0.24 kg/d (0.53 lb/d) of breathable oxygen from the electrolysis of metabolic carbon dioxide and water vapor. The fractional capacity electrolyzer module is constructed from three electrochemical tube cells and contains only three critical seals. The module design illustrated an 84 percent reduction in the total number of seals for a one person capacity oxygen generating system based on the solid electrolyte carbon dioxide and water vapor electrolysis concept. The electrolyzer module was successfully endurance tested for 71 days.

  4. High-Pressure Oxygen Generation for Outpost EVA Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  5. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev [Latham, NY

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  6. Synergistic Effects of Micro-electrolysis-Photocatalysis on Water Treatment and Fish Performance in Saline Recirculating Aquaculture System

    PubMed Central

    Ye, Zhangying; Wang, Shuo; Gao, Weishan; Li, Haijun; Pei, Luowei; Shen, Mingwei; Zhu, Songming

    2017-01-01

    A new physico-chemical process for TAN (total ammonia nitrogen) removal and disinfection is introduced in saline recirculating aquaculture system (RAS), in which the biofilter is replaced with an integrated electrolysis cell and an activated carbon filter. The electrolysis cell which is based on micro current electrolysis combined with UV-light was self-designed. After the fundamental research, a small pilot scale RAS was operated for 30 days to verify the technical feasibility. The system was stocked by 42 GIFT tilapia (Oreochromis niloticus) fish with the rearing density of 13 kg/m3. During the experiments, the TAN concentration remained below 1.0 mg/L. The nitrite concentration was lower than 0.2 mg/L and the nitrate concentration had increased continuously to 12.79 mg/L at the end. Furthermore, the concentration of residual chlorine in culture ponds remained below 0.3 mg/L, ORP maintained slight fluctuations in the range of 190~240 mV, and pH of the water showed the downtrend. Tilapia weight increased constantly to 339.3 ± 10 g. For disinfection, the active chlorine generated by electrochemical treatment caused Escherichia coli inactivation. Enzyme activity assay indicated that the activity of glutamate dehydrogenase, carbonic anhydrase and glutamic pyruvic transaminase increased within the normal range. The preliminary feasibility was verified by using this physico-chemical technology in the RAS. PMID:28345583

  7. Synergistic Effects of Micro-electrolysis-Photocatalysis on Water Treatment and Fish Performance in Saline Recirculating Aquaculture System

    NASA Astrophysics Data System (ADS)

    Ye, Zhangying; Wang, Shuo; Gao, Weishan; Li, Haijun; Pei, Luowei; Shen, Mingwei; Zhu, Songming

    2017-03-01

    A new physico-chemical process for TAN (total ammonia nitrogen) removal and disinfection is introduced in saline recirculating aquaculture system (RAS), in which the biofilter is replaced with an integrated electrolysis cell and an activated carbon filter. The electrolysis cell which is based on micro current electrolysis combined with UV-light was self-designed. After the fundamental research, a small pilot scale RAS was operated for 30 days to verify the technical feasibility. The system was stocked by 42 GIFT tilapia (Oreochromis niloticus) fish with the rearing density of 13 kg/m3. During the experiments, the TAN concentration remained below 1.0 mg/L. The nitrite concentration was lower than 0.2 mg/L and the nitrate concentration had increased continuously to 12.79 mg/L at the end. Furthermore, the concentration of residual chlorine in culture ponds remained below 0.3 mg/L, ORP maintained slight fluctuations in the range of 190~240 mV, and pH of the water showed the downtrend. Tilapia weight increased constantly to 339.3 ± 10 g. For disinfection, the active chlorine generated by electrochemical treatment caused Escherichia coli inactivation. Enzyme activity assay indicated that the activity of glutamate dehydrogenase, carbonic anhydrase and glutamic pyruvic transaminase increased within the normal range. The preliminary feasibility was verified by using this physico-chemical technology in the RAS.

  8. Degradation of Remazol Red in batik dye waste water by contact glow discharge electrolysis method using NaOH and NaCl electrolytes

    NASA Astrophysics Data System (ADS)

    Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ˚C.

  9. High pressure water electrolysis for space station EMU recharge

    NASA Technical Reports Server (NTRS)

    Lance, Nick; Puskar, Michael; Moulthrop, Lawrence; Zagaja, John

    1988-01-01

    A high pressure oxygen recharge system (HPORS), is being developed for application on board the Space Station. This electrolytic system can provide oxygen at up to 6000 psia without a mechanical compressor. The Hamilton standard HPORS based on a solid polymer electrolyte system is an extension of the much larger and succesful 3000 psia system of the U.S. Navy. Cell modules have been successfully tested under conditions beyond which spacecraft may encounter during launch. The control system with double redundancy and mechanical backups for all electronically controlled components is designed to ensure a safe shutdown.

  10. Recycling Carbon Dioxide into Sustainable Hydrocarbon Fuels: Electrolysis of Carbon Dioxide and Water

    NASA Astrophysics Data System (ADS)

    Graves, Christopher Ronald

    Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co-electrolysis

  11. Ammonia synthesis. Ammonia synthesis by N₂ and steam electrolysis in molten hydroxide suspensions of nanoscale Fe₂O₃.

    PubMed

    Licht, Stuart; Cui, Baochen; Wang, Baohui; Li, Fang-Fang; Lau, Jason; Liu, Shuzhi

    2014-08-08

    The Haber-Bosch process to produce ammonia for fertilizer currently relies on carbon-intensive steam reforming of methane as a hydrogen source. We present an electrochemical pathway in which ammonia is produced by electrolysis of air and steam in a molten hydroxide suspension of nano-Fe2O3. At 200°C in an electrolyte with a molar ratio of 0.5 NaOH/0.5 KOH, ammonia is produced at 1.2 volts (V) under 2 milliamperes per centimeter squared (mA cm(-2)) of applied current at coulombic efficiency of 35% (35% of the applied current results in the six-electron conversion of N2 and water to ammonia, and excess H2 is cogenerated with the ammonia). At 250°C and 25 bar of steam pressure, the electrolysis voltage necessary for 2 mA cm(-2) current density decreased to 1.0 V. Copyright © 2014, American Association for the Advancement of Science.

  12. Intensified nitrate and phosphorus removal in an electrolysis -integrated horizontal subsurface-flow constructed wetland.

    PubMed

    Gao, Y; Xie, Y W; Zhang, Q; Wang, A L; Yu, Y X; Yang, L Y

    2017-01-01

    A novel electrolysis-integrated horizontal subsurface-flow constructed wetland system (E-HFCWs) was developed for intensified removal of nitrogen and phosphorus contaminated water. The dynamics of nitrogen and phosphorus removal and that of main water qualities of inflow and outflow were also evaluated. The hydraulic retention time (HRT) greatly enhanced nitrate removal when the electrolysis current intensity was stabilized at 0.07 mA/cm 2 . When the HRT ranged from 2 h to 12 h, the removal rate of nitrate increased from 20% to 84%. Phosphorus (P) removal was also greatly enhanced-exceeding 90% when the HRT was longer than 4 h in the electrolysis-integrated HFCWs. This improved P removal is due to the in-situ formation of ferric ions by anodizing of sacrificial iron anodes, causing chemical precipitation, physical adsorption and flocculation of phosphorus. Thus, electrolysis plays an important role in nitrate and phosphorus removal. The diversity and communities of bacteria in the biofilm of substrate was established by the analysis of 16S rDNA gene sequences, and the biofilm was abundant with Comamonadaceae and Xanthomonadaceae bacteria in E-HFCWs. Test results illustrated that the electrolysis integrated with horizontal subsurface-flow constructed wetland is a feasible and effective technology for intensified nitrogen and phosphorus removal. Copyright © 2016. Published by Elsevier Ltd.

  13. Bioelectrochemical production of hydrogen in an innovative pressure-retarded osmosis/microbial electrolysis cell system: experiments and modeling.

    PubMed

    Yuan, Heyang; Lu, Yaobin; Abu-Reesh, Ibrahim M; He, Zhen

    2015-01-01

    While microbial electrolysis cells (MECs) can simultaneously produce bioelectrochemical hydrogen and treat wastewater, they consume considerable energy to overcome the unfavorable thermodynamics, which is not sustainable and economically feasible in practical applications. This study presents a proof-of-concept system in which hydrogen can be produced in an MEC powered by theoretically predicated energy from pressure-retarded osmosis (PRO). The system consists of a PRO unit that extracts high-quality water and generates electricity from water osmosis, and an MEC for organic removal and hydrogen production. The feasibility of the system was demonstrated using simulated PRO performance (in terms of energy production and effluent quality) and experimental MEC results (e.g., hydrogen production and organic removal). The PRO and MEC models were proven to be valid. The model predicted that the PRO unit could produce 485 mL of clean water and 579 J of energy with 600 mL of draw solution (0.8 M of NaCl). The amount of the predicated energy was applied to the MEC by a power supply, which drove the MEC to remove 93.7 % of the organic compounds and produce 32.8 mL of H2 experimentally. Increasing the PRO influent volume and draw concentration could produce more energy for the MEC operation, and correspondingly increase the MEC hydraulic retention time (HRT) and total hydrogen production. The models predicted that at an external voltage of 0.9 V, the MEC energy consumption reached the maximum PRO energy production. With a higher external voltage, the MEC energy consumption would exceed the PRO energy production, leading to negative effects on both organic removal and hydrogen production. The PRO-MEC system holds great promise in addressing water-energy nexus through organic removal, hydrogen production, and water recovery: (1) the PRO unit can reduce the volume of wastewater and extract clean water; (2) the PRO effluents can be further treated by the MEC; and (3) the

  14. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Park, Hyanjoo; Choe, Seunghoe; Kim, Hoyoung; Kim, Dong-Kwon; Cho, GeonHee; Park, YoonSu; Jang, Jong Hyun; Ha, Don-Hyung; Ahn, Sang Hyun; Kim, Soo-Kil

    2018-06-01

    Pt catalysts for water electrolysis were prepared on carbon paper by using both direct current and pulse electrodeposition. Controlling the mass transfer of Pt precursor in the electrolyte by varying the deposition potential enables the formation of various Pt particle shapes such as flower-like and polyhedral particles. Further control of the deposition parameters for pulse electrodeposition resulted in changes to the particle size and density. In particular, the upper potential of pulse was found to be the critical parameter controlling the morphology of the particles and their catalytic activity. In addition to the typical electrochemical measurements, Pt samples deposited on carbon paper were used as cathodes for a proton exchange membrane water electrolyser. This single cell test revealed that our Pt particle samples have exceptional mass activity while being cost effective.

  15. High temperature electrolysis for syngas production

    DOEpatents

    Stoots, Carl M [Idaho Falls, ID; O'Brien, James E [Idaho Falls, ID; Herring, James Stephen [Idaho Falls, ID; Lessing, Paul A [Idaho Falls, ID; Hawkes, Grant L [Sugar City, ID; Hartvigsen, Joseph J [Kaysville, UT

    2011-05-31

    Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide. One or more of the components for the process, such as steam, energy, or electricity, may be provided using a nuclear power source.

  16. Myocardial dysfunction and norepinephrine release in the isolated rat heart injured by electrolysis-induced oxygen free radicals.

    PubMed

    Chahine, R; Chen, X; Yamaguchi, N; de Champlain, J; Nadeau, R

    1991-03-01

    In the present investigation, we used electrolysis as a source of oxygen free radicals to test their possible role in norepinephrine release, as well as in the mechanism of cellular injury, cardiac dysfunction and arrhythmias. In the isolated rat heart perfused under constant pressure, according to the Langendorff technique, electrolysis of the Krebs-Henseleit solution (10 mA d.c. current for 1 min) produced myocardial irreversible dysfunction within 5 min. Fifteen minutes after electrolysis, significant falls in the left ventricular pressure (from 87.5 +/- 6.8 to 33.7 +/- 5.2 mmHg), dP/dt max (from 1230 +/- 90 to 375 +/- 59 mmHg/s), heart rate (from 287 +/- 18 to 119 +/- 13.5 beats/min) and coronary flow (from 14.8 +/- 9 to 3.4 +/- 1.7 ml/min) were observed, along with an increase in left ventricular end diastolic pressure from 10 to 50 +/- 3.5 mmHg (n = 8, P less than 0.01). AV conduction block and/or sinus bradycardia were noted in all preparations. An increase in norepinephrine washout from 298.5 +/- 84 at baseline to 610 +/- 110 pg/min/g 5 min after electrolysis was measured (n = 8, P less than 0.05) and a 44.8 +/- 9.2% and 35 +/- 7.5% reduction, respectively in right and left ventricular tissue norepinephrine content was also found at 30 min (n = 5, P less than 0.05). Pretreatment of the hearts 10 min before electrolysis and throughout the experimental period by superoxide dismutase (SOD; 100 U/ml), catalase (150 U/ml), a combination of SOD + catalase or mannitol (50 mM) partially blocked the deleterious effect of free radicals and permitted a functional recovery of 50 to 60%, mannitol being the more potent protective agent. Furthermore, these scavengers also significantly reduced norepinephrine washout.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. The electrolysis time on electrosynthesis of hydroxyapatite with bipolar membrane

    NASA Astrophysics Data System (ADS)

    Nur, Adrian; Jumari, Arif; Budiman, Anatta Wahyu; Puspitaningtyas, Stella Febianti; Cahyaningrum, Suci; Nazriati, Nazriati; Fajaroh, Fauziatul

    2018-02-01

    The electrochemical method with bipolar membrane has been successfully used for the synthesis of hydroxyapatite. In this work, we have developed 2 chambers electrolysis system separated by a bipolar membrane. The membrane was used to separate cations (H+ ions produced by the oxidation of water at the anode) and anions (OH- ions produced by the reduction of water at the cathode). With this system, we have designed that OH- ions still stay in the anions chamber because OH- ions was very substantial in the hydroxyapatite particles formation. The aim of this paper was to compare the electrolysis time on electrosynthesis of hydroxyapatite with and without the bipolar membrane. The electrosynthesis was performed at 500 mA/cm2 for 0.5 to 2 hours at room temperature and under ultrasonic cleaner to void agglomeration with and without the bipolar membrane. The electrosynthesis of hydroxyapatite with the bipolar membrane more effective than without the bipolar membrane. The hydroxyapatite has been appeared at 0.5 h of the electrolysis time with the bipolar membrane (at the cathode chamber) while it hasn't been seen without the bipolar membrane. The bipolar membrane prevents OH- ions migrate to the cation chamber. The formation of HA becomes more effective because OH- ions just formed HA particle.

  18. Ultrasound-Guided Application of Percutaneous Electrolysis as an Adjunct to Exercise and Manual Therapy for Subacromial Pain Syndrome: a Randomized Clinical Trial.

    PubMed

    de-Miguel-Valtierra, Lorena; Salom-Moreno, Jaime; Fernández-de-Las-Peñas, César; Cleland, Joshua A; Arias-Buría, José L

    2018-05-16

    This randomized clinical trial compared the effects of adding US-guided percutaneous electrolysis into a program consisting of manual therapy and exercise on pain, related-disability, function and pressure sensitivity in subacromial pain syndrome. Fifty patients with subacromial pain syndrome were randomized into manual therapy and exercise or percutaneous electrolysis group. All patients received the same manual therapy and exercise program, one session per week for 5 consecutive weeks. Patients assigned to the electrolysis group also received the application of percutaneous electrolysis at each session. The primary outcome was Disabilities of the Arm, Shoulder and Hand (DASH). Secondary outcomes included pain, function (Shoulder Pain and Disability Index-SPADI) pressure pain thresholds (PPTs) and Global Rating of Change (GROC). They were assessed at baseline, post-treatment, and 3, and 6 months after treatment. Both groups showed similar improvements in the primary outcome (DASH) at all follow-ups (P=0.051). Subjects receiving manual therapy, exercise, and percutaneous electrolysis showed significantly greater changes in shoulder pain (P<0.001) and SPADI (P<0.001) than those receiving manual therapy and exercise alone at all follow-ups. Effect sizes were large (SMD>0.91) for shoulder pain and function at 3 and 6 months in favour of the percutaneous electrolysis group. No between-groups differences in PPT were found. The current clinical trial found that the inclusion of US-guided percutaneous electrolysis in combination with manual therapy and exercise resulted in no significant differences for related-disability (DASH) than the application of manual therapy and exercise alone in patients with subacromial pain syndrome. Nevertheless, differences were reported for some secondary outcomes such as shoulder pain and function (SPADI). Whether or not these effects are reliable should be addressed in future studies Perspective This study found that the inclusion of US

  19. Magnetic Resonance Imaging of Electrolysis.

    PubMed Central

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-01-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942

  20. 21 CFR 886.4250 - Ophthalmic electrolysis unit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to destroy...

  1. 21 CFR 886.4250 - Ophthalmic electrolysis unit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to destroy...

  2. 21 CFR 886.4250 - Ophthalmic electrolysis unit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to destroy...

  3. 21 CFR 886.4250 - Ophthalmic electrolysis unit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to destroy...

  4. 21 CFR 886.4250 - Ophthalmic electrolysis unit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to destroy...

  5. Assessment of Boron Doped Diamond Electrode Quality and Application to In Situ Modification of Local pH by Water Electrolysis.

    PubMed

    Read, Tania L; Macpherson, Julie V

    2016-01-06

    Boron doped diamond (BDD) electrodes have shown considerable promise as an electrode material where many of their reported properties such as extended solvent window, low background currents, corrosion resistance, etc., arise from the catalytically inert nature of the surface. However, if during the growth process, non-diamond-carbon (NDC) becomes incorporated into the electrode matrix, the electrochemical properties will change as the surface becomes more catalytically active. As such it is important that the electrochemist is aware of the quality and resulting key electrochemical properties of the BDD electrode prior to use. This paper describes a series of characterization steps, including Raman microscopy, capacitance, solvent window and redox electrochemistry, to ascertain whether the BDD electrode contains negligible NDC i.e. negligible sp(2) carbon. One application is highlighted which takes advantage of the catalytically inert and corrosion resistant nature of an NDC-free surface i.e. stable and quantifiable local proton and hydroxide production due to water electrolysis at a BDD electrode. An approach to measuring the local pH change induced by water electrolysis using iridium oxide coated BDD electrodes is also described in detail.

  6. Assessment of Boron Doped Diamond Electrode Quality and Application to In Situ Modification of Local pH by Water Electrolysis

    PubMed Central

    Read, Tania L.; Macpherson, Julie V.

    2016-01-01

    Boron doped diamond (BDD) electrodes have shown considerable promise as an electrode material where many of their reported properties such as extended solvent window, low background currents, corrosion resistance, etc., arise from the catalytically inert nature of the surface. However, if during the growth process, non-diamond-carbon (NDC) becomes incorporated into the electrode matrix, the electrochemical properties will change as the surface becomes more catalytically active. As such it is important that the electrochemist is aware of the quality and resulting key electrochemical properties of the BDD electrode prior to use. This paper describes a series of characterization steps, including Raman microscopy, capacitance, solvent window and redox electrochemistry, to ascertain whether the BDD electrode contains negligible NDC i.e. negligible sp2 carbon. One application is highlighted which takes advantage of the catalytically inert and corrosion resistant nature of an NDC-free surface i.e. stable and quantifiable local proton and hydroxide production due to water electrolysis at a BDD electrode. An approach to measuring the local pH change induced by water electrolysis using iridium oxide coated BDD electrodes is also described in detail. PMID:26779959

  7. "excess Heat" during Electrolysis in Platinium /K2CO3/ Nickel Light Water System

    NASA Astrophysics Data System (ADS)

    Tian, J.; Jin, L. H.; Weng, Z. K.; Song, B.; Zhao, X. L.; Xiao, Z. J.; Chen, G.; Du, B. Q.

    2006-02-01

    The characteristic variation of heating coefficients (k = ΔT/ΔP°C/W) of Pt(H)-Ni electrolytic system with K2CO3 and Na2CO3 solutions was studied in both situations of electric and electrolytic heating, respectively. The results in equilibrium revealed that there was an obvious difference of k in electrolytic-heating (Δk ≈ 30°C/W, kK2CO3 > kNa2CO3) between these two systems, whereas there was a little difference of k in electric heating (Δk ≈ 2°C/W, kK2CO3 < kNa2CO3 between them. "Excess heat" of about 2.5 × 104 J was produced during electrolysis of K2CO3 solution over 1 day of electrolysis. The differences of K2CO3 solution after electrolysis in the potential of hydrogen value (ΔpH = 0.15) and in absorbency (ΔA = 0.108) implied that some new Ca2+ might have formed in the electrolytic system.

  8. Technology Status: Fuel Cells and Electrolysis Cells

    NASA Technical Reports Server (NTRS)

    Mcbryar, H.

    1978-01-01

    The status of the baselined shuttle fuel cell as well as the acid membrane fuel cell and space-oriented water electrolysis technologies are presented. The more recent advances in the alkaline fuel cell technology area are the subject of a companion paper. A preliminary plan for the focusing of these technologies towards regenerative energy storage applications in the multi-hundred kilowatt range is also discussed.

  9. Contact Electrification of Regolith Particles and Chloride Electrolysis: Synthesis of Perchlorates on Mars.

    PubMed

    Tennakone, K

    2016-10-01

    Contact electrification of chloride-impregnated martian regolith particles due to eolian agitation and moisture condensation on coalesced oppositely charged grains may lead to spontaneous electrolysis that generates hypochlorite, chlorite, chlorate, and perchlorate with a concomitant reduction of water to hydrogen. This process is not curtailed even if moisture condenses as ice because chloride ionizes on the surface of ice. Limitations dictated by potentials needed for electrolysis and breakdown electric fields enable estimation of the required regolith grain size. The estimated dimension turns out to be of the same order of magnitude as the expected median size of martian regolith, and a simple calculation yields the optimum rate of perchlorate production. Key Words: Mars oxidants-Perchlorate-Dust electrification-Electrolysis. Astrobiology 16, 811-816.

  10. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demandmore » for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.« less

  11. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies

    NASA Astrophysics Data System (ADS)

    Feng, Qi; Yuan, Xiao-Zi; Liu, Gaoyang; Wei, Bing; Zhang, Zhen; Li, Hui; Wang, Haijiang

    2017-10-01

    Proton exchange membrane water electrolysis (PEMWE) is an advanced and effective solution to the primary energy storage technologies. A better understanding of performance and durability of PEMWE is critical for the engineers and researchers to further advance this technology for its market penetration, and for the manufacturers of PEM water electrolyzers to implement quality control procedures for the production line or on-site process monitoring/diagnosis. This paper reviews the published works on performance degradations and mitigation strategies for PEMWE. Sources of degradation for individual components are introduced. With degradation causes discussed and degradation mechanisms examined, the review emphasizes on feasible strategies to mitigate the components degradation. To avoid lengthy real lifetime degradation tests and their high costs, the importance of accelerated stress tests and protocols is highlighted for various components. In the end, R&D directions are proposed to move the PEMWE technology forward to become a key element in future energy scenarios.

  12. Destruction of 4-phenolsulfonic acid in water by anodic contact glow discharge electrolysis.

    PubMed

    Yang, Haiming; An, Baigang; Wang, Shaoyan; Li, Lixiang; Jin, Wenjie; Li, Lihua

    2013-06-01

    Destruction of 4-phenolsulfonic acid (4-PSA) in water was carried out using anodic contact glow discharge electrolysis. Accompanying the decay of 4-PSA, the amount of total organic carbon (TOC) in water correspondingly decreased, while the sulfonate group of 4-PSA was released as sulfate ion. Oxalate and formate were obtained as minor by-products. Additionally, phenol, 1,4-hydroquinone, hydroxyquinol and 1,4-benzoquinone were detected as primary intermediates in the initial stages of decomposition of 4-PSA. A reaction pathway involving successive attacks of hydroxyl and hydrogen radicals was assumed on the basis of the observed products and kinetics. It was revealed that the decay of both 4-PSA and TOC obeyed a first-order rate law. The effects of different Fe ions and initial concentrations of 4-PSA on the degradation rate were investigated. It was found that the presence of Fe ions could increase the degradation rate of 4-PSA, while initial concentrations lower than 80 mmol/L had no significant effect on kinetic behaviour. The disappearance rate of 4-PSA was significantly affected by pH.

  13. Microbial electrolysis cells for high yield hydrogen gas production from organic matter.

    PubMed

    Logan, Bruce E; Call, Douglas; Cheng, Shaoan; Hamelers, Hubertus V M; Sleutels, Tom H J A; Jeremiasse, Adriaan W; Rozendal, René A

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (> 0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment.

  14. Express Electrolysis.

    ERIC Educational Resources Information Center

    Smithenry, Dennis; Gassman, Christopher; Goodridge, Brandon; Petersen, Tom

    1998-01-01

    Explains the process of student and teacher collaboration on a project to develop a faster electrolysis mechanism. Provides a good example of the problem-based approach to science instruction and curriculum. (DDR)

  15. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system.

    PubMed

    Qin, Mohan; Molitor, Hannah; Brazil, Brian; Novak, John T; He, Zhen

    2016-01-01

    A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammonia was recovered. With 2M NH4HCO3 as the draw solution, the FO process achieved 51% water recovery from the MEC anode effluent in 3.5-h operation, higher than that from the raw leachate. The recovered ammonia was used as a draw solute in the FO for successful water recovery from the treated leachate. Despite the challenges with treating returning solution from the FO, this MEC-FO system has demonstrated the potential for resource recovery from wastes, and provide a new solution for sustainable leachate management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Attenuated Allergenic Activity of Ovomucoid After Electrolysis

    PubMed Central

    Kido, Jun

    2015-01-01

    Ovomucoid (OMC) is the most prominent allergen causing hen's egg allergy, containing disulfide (S-S) bonds that may be responsible for its allergic action. As S-S bonds may be reduced during electrolysis, this study was undertaken to evaluate modulation of the allergic action of OMC after electrolysis. Electrolysis was carried out for 1% OMC containing 1% sodium chloride for 30 minutes with a voltage difference of 90 V, 0.23 A (30 mA/cm2). Protein assays, amino acid measurement, and mass spectrometry in untreated OMC and OMC on both the anode and cathode sides after electrolysis were performed. Moreover, 21 patients with IgE-mediated hen's egg allergy were evaluated by using the skin prick test (SPT) for untreated OMC and OMC after electrolysis. The allergic action of OMC was reduced after electrolysis on both the anode and cathode sides when evaluated by the SPT. The modifications of OMC on electrolysis caused the loss of 2 distinct peptide fragments (57E-63K and 123H-128R) as seen on matrix-associated laser desorption/ionization time-of-flight mass spectrometry. The total free SH groups in OMC were increased on the cathode side. Although the regions of S-S broken bonds were not determined in this study, the change in S-S bonds in OMC on both the anode and cathode sides may reduce the allergenic activity. PMID:26333707

  17. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    NASA Technical Reports Server (NTRS)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  18. An integrated electrolysis - electrospray - ionization antimicrobial platform using Engineered Water Nanostructures (EWNS) for food safety applications.

    PubMed

    Vaze, Nachiket; Jiang, Yi; Mena, Lucas; Zhang, Yipei; Bello, Dhimiter; Leonard, Stephen S; Morris, Anna M; Eleftheriadou, Mary; Pyrgiotakis, Georgios; Demokritou, Philip

    2018-03-01

    Engineered water nanostructures (EWNS) synthesized utilizing electrospray and ionization of water, have been, recently, shown to be an effective, green, antimicrobial platform for surface and air disinfection, where reactive oxygen species (ROS), generated and encapsulated within the particles during synthesis, were found to be the main inactivation mechanism. Herein, the antimicrobial potency of the EWNS was further enhanced by integrating electrolysis, electrospray and ionization of de-ionized water in the EWNS synthesis process. Detailed physicochemical characterization of these enhanced EWNS (eEWNS) was performed using state-of-the-art analytical methods and has shown that, while both size and charge remain similar to the EWNS (mean diameter of 13 nm and charge of 13 electrons), they possess a three times higher ROS content. The increase of the ROS content as a result of the addition of the electrolysis step before electrospray and ionization led to an increased antimicrobial ability as verified by E. coli inactivation studies using stainless steel coupons. It was shown that a 45-minute exposure to eEWNS resulted in a 4-log reduction as opposed to a 1.9-log reduction when exposed to EWNS. In addition, the eEWNS were assessed for their potency to inactivate natural microbiota (total viable and yeast and mold counts), as well as, inoculated E.coli on the surface of fresh organic blackberries. The results showed a 97% (1.5-log) inactivation of the total viable count, a 99% (2-log) reduction in the yeast and mold count and a 2.5-log reduction of the inoculated E.coli after 45 minutes of exposure, without any visual changes to the fruit. This enhanced antimicrobial activity further underpins the EWNS platform as an effective, dry and chemical free approach suitable for a variety of food safety applications and could be ideal for delicate fresh produce that cannot withstand the classical, wet disinfection treatments.

  19. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.

    PubMed

    Chen, Xinbing; Guan, Chengzhi; Xiao, Guoping; Du, Xianlong; Wang, Jian-Qiang

    2015-01-01

    High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 °C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H2/40% steam/40% CO2.

  20. Improved enzymatic hydrolysis of lignocellulosic biomass through pretreatment with plasma electrolysis.

    PubMed

    Gao, Jing; Chen, Li; Zhang, Jian; Yan, Zongcheng

    2014-11-01

    A comprehensive research on plasma electrolysis as pretreatment method for water hyacinth (WH) was performed based on lignin content, crystalline structure, surface property, and enzymatic hydrolysis. A large number of active particles, such as HO and H2O2, generated by plasma electrolysis could decompose the lignin of the biomass samples and reduce the crystalline index. An efficient pretreatment process made use of WH pretreated at a load of 48 wt% (0.15-0.18 mm) in FeCl3 solution for 30 min at 450 V. After the pretreatment, the sugar yield of WH was increased by 126.5% as compared with unpretreated samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Rakousky, Christoph; Reimer, Uwe; Wippermann, Klaus; Carmo, Marcelo; Lueke, Wiebke; Stolten, Detlef

    2016-09-01

    The durability of a polymer electrolyte membrane (PEM) water electrolysis single cell, assembled with regular porous transport layers (PTLs) is investigated for just over 1000 h. We observe a significant degradation rate of 194 μV h-1 and conclude that 78% of the detectable degradation can be explained by an increase in ohmic resistance, arising from the anodic Ti-PTL. Analysis of the polarization curves also indicates a decrease in the anodic exchange current density, j0, that results from the over-time contamination of the anode with Ti species. Furthermore, the average Pt-cathode particle size increases during the test, but we do not believe this phenomenon makes a significant contribution to increased cell voltages. To validate the anode Ti-PTL as a crucial source of increasing resistance, a second cell is assembled using Pt-coated Ti-PTLs. This yields a substantially reduced degradation rate of only 12 μV h-1, indicating that a non-corroding anode PTL is vital for PEM electrolyzers. It is our hope that forthcoming tailored PTLs will not only contribute to fast progress on cost-efficient stacks, but also to its long-term application of PEM electrolyzers involved in industrial processes.

  2. Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2.

    PubMed

    Wu, Tian; Xiao, Wei; Jin, Xianbo; Liu, Chao; Wang, Dihua; Chen, George Z

    2008-04-07

    Low energy production of Nb powders via computer-aided control (CAC) of two-electrode electrolysis of porous Nb2O5 pellets (ca. 1.0 g) has been successfully demonstrated in molten CaCl2 at 1123 K. It was observed that potentiostatic electrolysis of the oxide in a three-electrode cell led to a cell voltage, i.e. the potential difference between the working (cathode) and counter (anode) electrodes, that decreased to a low and stable value within 1-2 h of the potential application until the end of the electrolysis (up to 12 h in this work). The cell voltage varied closely according to the current change. The stabilised cell voltage was below 2.5 V when the cathode potential was more positive than that for the reduction of Ca2+, leading to much lower energy consumption than that of constant voltage (>3.0 V) two-electrode electrolysis, as previously reported. Using a computer to program the variation of the cell voltage of two-electrode electrolysis according to that observed in the potentiostatic three-electrode electrolysis (0.05 V vs. Ca/Ca2+), a Nb powder with ca. 3900 ppm oxygen was produced in 12 h, with the energy consumption being 37.4% less than that of constant voltage two-electrode electrolysis at 3.0 V. Transmission electron microscopy revealed thin oxide layers (4-6 nm) on individual nodular particles (1-5 microm) of the obtained Nb powder. The oxide layer was likely formed in post-electrolysis processing operations, including washing in water, and contributed largely to the oxygen content in the obtained Nb powder.

  3. Electrolysis Bubble Noise in Small-Scale Tests of a Seawater MHD thruster

    DTIC Science & Technology

    1990-09-01

    SECURITY CLAS&ICATION AUTHORITY I DISTRIBUTION/ AVAILABILIT Y OF REPORT 2b. DECLSIFICATIONJDOWNGRADING SCHEDULE Approved for public release...to those which might occur in an undersea MI-D-powered vesseL The electrolysis of sea water at current densities up to 0.3 A/cn, ’produced broad-band...3 Test Equipm eni ...................................................... 5 Water Table Facility and Flow Channels

  4. Electrolysis Propulsion Provides High-Performance, Inexpensive, Clean Spacecraft Propulsion

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.

    1999-01-01

    An electrolysis propulsion system consumes electrical energy to decompose water into hydrogen and oxygen. These gases are stored in separate tanks and used when needed in gaseous bipropellant thrusters for spacecraft propulsion. The propellant and combustion products are clean and nontoxic. As a result, costs associated with testing, handling, and launching can be an order of magnitude lower than for conventional propulsion systems, making electrolysis a cost-effective alternative to state-of-the-art systems. The electrical conversion efficiency is high (>85 percent), and maximum thrust-to-power ratios of 0.2 newtons per kilowatt (N/kW), a 370-sec specific impulse, can be obtained. A further advantage of the water rocket is its dual-mode potential. For relatively high thrust applications, the system can be used as a bipropellant engine. For low thrust levels and/or small impulse bit requirements, cold gas oxygen can be used alone. An added innovation is that the same hardware, with modest modifications, can be converted into an energy-storage and power-generation fuel cell, reducing the spacecraft power and propulsion system weight by an order of magnitude.

  5. Complete degradation of Orange G by electrolysis in sub-critical water.

    PubMed

    Yuksel, Asli; Sasaki, Mitsuru; Goto, Motonobu

    2011-06-15

    Complete degradation of azo dye Orange G was studied using a 500 mL continuous flow reactor made of SUS 316 stainless steel. In this system, a titanium reactor wall acted as a cathode and a titanium plate-type electrode was used as an anode in a subcritical reaction medium. This hydrothermal electrolysis process provides an environmentally friendly route that does not use any organic solvents or catalysts to remove organic pollutants from wastewater. Reactions were carried out from 30 to 90 min residence times at a pressure of 7 MPa, and at different temperatures of 180-250°C by applying various direct currents ranging from 0.5 to 1A. Removal of dye from the product solution and conversion of TOC increased with increasing current value. Moreover, the effect of salt addition on degradation of Orange G and TOC conversion was investigated, because in real textile wastewater, many salts are also included together with dye. Addition of Na(2)CO(3) resulted in a massive degradation of the dye itself and complete mineralization of TOC, while NaCl and Na(2)SO(4) obstructed the removal of Orange G. Greater than 99% of Orange G was successfully removed from the product solution with a 98% TOC conversion. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. High Temperature Electrolysis using Electrode-Supported Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. O'Brien; C. M. Stoots

    2010-07-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. The cells currently under study were developed primarily for the fuel cell mode of operation. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes (~90 µm thick). The purpose of the present study was to document and compare the performance and degradation ratesmore » of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of DC potential sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-duration testing, first in the fuel cell mode, then in the electrolysis mode over more than 500 hours of operation. Results indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of the single-cell test apparatus developed specifically for these experiments.« less

  7. Nanoporous materials for reducing the over potential of creating hydrogen by water electrolysis

    DOEpatents

    Anderson, Marc A.; Leonard, Kevin C.

    2016-06-14

    Disclosed is an electrolyzer including an electrode including a nanoporous oxide-coated conducting material. Also disclosed is a method of producing a gas through electrolysis by contacting an aqueous solution with an electrode connected to an electrical power source, wherein the electrode includes a nanoporous oxide-coated conducting material.

  8. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.

    PubMed

    Zhang, Zhenchao

    2017-12-01

    In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China

  9. Tin recovery from tin slag using electrolysis method

    NASA Astrophysics Data System (ADS)

    Jumari, Arif; Purwanto, Agus; Nur, Adrian; Budiman, Annata Wahyu; Lerian, Metty; Paramita, Fransisca A.

    2018-02-01

    The process in industry, including in mining industry, would surely give negative effect such as waste polluting to the environment. Some of waste could be potentially reutilized to be a commodity with the higher economic value. Tin slag is one of them. The aim of this research was to recover the tin contained in tin slag. Before coming to the electrolysis, tin slag must be treated by dissolution. The grinded tin slag was dissolved into HCl solution to form a slurry. During dissolution, the slurry was agitated and heated, and finally filtered. The filtrate obtained was then electrolyzed. During the process of electrolysis, solid material precipitated on the used cathode. The precipitated solid was then separated and dried. The solid was then analyzed using XRD, XRF and SEM. The XRD analysis showed that the longest time of dissolution and electrolysis the highest the purity obtained in the product. The SEM analysis showed that the longest time of electrolysis the smallest tin particle obtained. Optimum time achieved in this research was 2 hours for the recovering time and 3 hours for the electrolysis time, with 9% tin recovered.

  10. Bioelectrohydrogenesis and inhibition of methanogenic activity in microbial electrolysis cells - A review.

    PubMed

    Karthikeyan, Rengasamy; Cheng, Ka Yu; Selvam, Ammaiyappan; Bose, Arpita; Wong, Jonathan W C

    2017-11-01

    Microbial electrolysis cells (MECs) are a promising technology for biological hydrogen production. Compared to abiotic water electrolysis, a much lower electrical voltage (~0.2V) is required for hydrogen production in MECs. It is also an attractive waste treatment technology as a variety of biodegradable substances can be used as the process feedstock. Underpinning this technology is a recently discovered bioelectrochemical pathway known as "bioelectrohydrogenesis". However, little is known about the mechanism of this pathway, and numerous hurdles are yet to be addressed to maximize hydrogen yield and purity. Here, we review various aspects including reactor configurations, microorganisms, substrates, electrode materials, and inhibitors of methanogenesis in order to improve hydrogen generation in MECs. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production

    NASA Astrophysics Data System (ADS)

    Mingyi, Liu; Bo, Yu; Jingming, Xu; Jing, Chen

    High-temperature steam electrolysis (HTSE), a reversible process of solid oxide fuel cell (SOFC) in principle, is a promising method for highly efficient large-scale hydrogen production. In our study, the overall efficiency of the HTSE system was calculated through electrochemical and thermodynamic analysis. A thermodynamic model in regards to the efficiency of the HTSE system was established and the quantitative effects of three key parameters, electrical efficiency (η el), electrolysis efficiency (η es), and thermal efficiency (η th) on the overall efficiency (η overall) of the HTSE system were investigated. Results showed that the contribution of η el, η es, η th to the overall efficiency were about 70%, 22%, and 8%, respectively. As temperatures increased from 500 °C to 1000 °C, the effect of η el on η overall decreased gradually and the η es effect remained almost constant, while the η th effect increased gradually. The overall efficiency of the high-temperature gas-cooled reactor (HTGR) coupled with the HTSE system under different conditions was also calculated. With the increase of electrical, electrolysis, and thermal efficiency, the overall efficiencies were anticipated to increase from 33% to a maximum of 59% at 1000 °C, which is over two times higher than that of the conventional alkaline water electrolysis.

  12. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties.

    PubMed

    Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz

    2015-10-14

    Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA).

  13. Water-Based Pressure-Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Jordan, Jeffrey D.; Watkins, A. Neal; Oglesby, Donald M.; Ingram, JoAnne L.

    2006-01-01

    Water-based pressure-sensitive paints (PSPs) have been invented as alternatives to conventional organic-solvent-based pressure-sensitive paints, which are used primarily for indicating distributions of air pressure on wind-tunnel models. Typically, PSPs are sprayed onto aerodynamic models after they have been mounted in wind tunnels. When conventional organic-solvent-based PSPs are used, this practice creates a problem of removing toxic fumes from inside the wind tunnels. The use of water-based PSPs eliminates this problem. The waterbased PSPs offer high performance as pressure indicators, plus all the advantages of common water-based paints (low toxicity, low concentrations of volatile organic compounds, and easy cleanup by use of water).

  14. Time-Dependent Changes in Morphology and Composition of Solid Particles Collected From Heavy Water Electrolyte after Electrolysis with a Palladium Cathode

    NASA Astrophysics Data System (ADS)

    Dash, John; Wang, Q.

    2009-03-01

    Recently, we have observed particles floating on the surfaces of electrolytes after electrolysis, in four cells, each of which contained a heavy water electrolyte and a Pd cathode. Solid particles were unexpected from electrolysis, so it seemed important to characterize these particles. Cu grids were used to collect particles from the electrolyte surface. Then, a scanning electron microscope ( SEM ) and an energy dispersive spectrometer ( EDS ) were used to study the surfaces of these particles and to record time-dependent changes which were occurring. The morphology and composition of the particles were determined . After storage at ambient for 11 days, there were large changes in the morphology and composition of the particles. For example, one portion of the particles contained a large number of microspheres. A typical microsphere contained mostly carbon and palladium, whereas the matrix near the microsphere contained mostly palladium with less carbon and a significant amount of silver. One day later the same microsphere had increased carbon and reduced palladium, but there was no significant change in the composition of the matrix. Results for other particles from other cells will also be presented.

  15. Production of Oxygen from Lunar Regolith using Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Sadoway, Donald R.; Sirk, Aislinn; Tripathy, Prabhat; Melendez, Orlando; Standish, Evan; Dominquez, Jesus A.; Stefanescu, Doru M.; Curreri, Peter A.; Poizeau, Sophie

    2009-01-01

    This slide presentation reviews the possible use of molten oxide electrolysis to extract oxygen from the Lunar Regolith. The presentation asserts that molten regolith electrolysis has advanced to be a useful method for production of oxygen and metals in situ on the Moon. The work has demonstrated an 8 hour batch of electrolysis at 5 amps using Iridium inert anodes.

  16. Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis.

    PubMed

    Peng, Changsheng; Liu, Yanyan; Bi, Jingjing; Xu, Huizhen; Ahmed, Abou-Shady

    2011-05-30

    In this paper, a laboratory-scale process which combined electrolysis (EL) and electrodialysis (ED) was developed to treat copper-containing wastewater. The feasibility of such process for copper recovery as well as water reuse was determined. Effects of three operating parameters, voltage, initial Cu(2+) concentration and water flux on the recovery of copper and water were investigated and optimized. The results showed that about 82% of copper could be recovered from high concentration wastewater (HCW, >400mg/L) by EL, at the optimal conditions of voltage 2.5 V/cm and water flux 4 L/h; while 50% of diluted water could be recycled from low concentration wastewater (LCW, <200mg/L) by ED, at the optimal conditions of voltage 40 V and water flux 4 L/h. However, because of the limitation of energy consumption (EC), LCW for EL and HCW for ED could not be treated effectively, and the effluent water of EL and concentrated water of ED should be further treated before discharged. Therefore, the combination process of EL and ED was developed to realize the recovery of copper and water simultaneously from both HCW and LCW. The results of the EL-ED process showed that almost 99.5% of copper and 100% of water could be recovered, with the energy consumption of EL ≈ 3 kW h/kg and ED ≈ 2 kW h/m(3). According to SEM and EDX analysis, the purity of recovered copper was as high as 97.9%. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Lunar production of oxygen by electrolysis

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1991-01-01

    Two approaches to prepare oxygen from lunar resources by direct electrolysis are discussed. Silicates can be melted or dissolved in a fused salt and electrolyzed with oxygen evolved at the anode. Direct melting and electrolysis is potentially a very simple process, but high temperatures of 1400-1500 C are required, which aggravates materials problems. Operating temperatures can be lowered to about 1000 C by employing a molten salt flux. In this case, however, losses of electrolyte components must be avoided. Experimentation on both approaches is progressing.

  18. Electrolysis with diamond anodes: Eventually, there are refractory species!

    PubMed

    Mena, Ismael F; Cotillas, Salvador; Díaz, Elena; Sáez, Cristina; Rodríguez, Juan J; Cañizares, P; Mohedano, Ángel F; Rodrigo, Manuel A

    2018-03-01

    In this work, synthetic wastewater polluted with ionic liquid 1-butyl-3-methylimidazolium (Bmim) bis(trifluoromethanesulfonyl)imide (NTf 2 ) undergoes four electrolytic treatments with diamond anodes (bare electrolysis, electrolysis enhanced with peroxosulfate promoters, irradiated with UV light and with US) and results obtained were compared with those obtained with the application of Catalytic Wet Peroxide Oxidation (CWPO). Despite its complex heterocyclic structure, Bmim + cation is successfully depleted with the five technologies tested, being transformed into intermediates that eventually can be mineralized. Photoelectrolysis attained the lowest concentration of intermediates, while CWPO is the technology less efficient in their degradation. However, the most surprising result is that concentration of NTf 2 - anion does not change during the five advanced oxidation processes tested, pointing out its strong refractory character, being the first species that exhibits this character in wastewater undergoing electrolysis with diamond. This means that the hydroxyl and sulfate radicals mediated oxidation and the direct electrolysis are inefficient for breaking the C-S, C-F and S-N bounds of the NTf 2 - anion, which is a very interesting mechanistic information to understand the complex processes undergone in electrolysis with diamond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis

    NASA Astrophysics Data System (ADS)

    Menon, Vikram; Fu, Qingxi; Janardhanan, Vinod M.; Deutschmann, Olaf

    2015-01-01

    High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified Butler-Volmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.

  20. Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications.

    PubMed

    Soundarrajan, C; Sankari, A; Dhandapani, P; Maruthamuthu, S; Ravichandran, S; Sozhan, G; Palaniswamy, N

    2012-06-01

    The leaf extract of Ocimum sanctum was used as a reducing agent for the synthesis of platinum nanoparticles from an aqueous chloroplatinic acid (H(2)PtCl(6)·6H(2)O). A greater conversion of platinum ions to nanoparticles was achieved by employing a tulsi leaf broth with a reaction temperature of 100 °C. Energy-dispersive absorption X-ray spectroscopy confirmed the platinum particles as major constituent in the reduction process. It is evident from scanning electron microscopy that the reduced platinum particles were found as aggregates with irregular shape. Fourier-transform infrared spectroscopy revealed that the compounds such as ascorbic acid, gallic acid, terpenoids, certain proteins and amino acids act as reducing agents for platinum ions reduction. X-ray diffraction spectroscopy suggested the associated forms of platinum with other molecules and the average particle size of platinum nanoparticle was 23 nm, calculated using Scherer equation. The reduced platinum showed similar hydrogen evolution potential and catalytic activity like pure platinum using linear scan voltammetry. This environmentally friendly method of biological platinum nanoparticles production increases the rates of synthesis faster which can potentially be used in water electrolysis applications.

  1. Simulation of low pressure water hammer

    NASA Astrophysics Data System (ADS)

    Himr, D.; Habán, V.

    2010-08-01

    Numerical solution of water hammer is presented in this paper. The contribution is focused on water hammer in the area of low pressure, which is completely different than high pressure case. Little volume of air and influence of the pipe are assumed in water, which cause sound speed change due to pressure alterations. Computation is compared with experimental measurement.

  2. Performance of metal compound on thermolysis and electrolysis on sugar industries waste water treatment: COD and color removal with sludge analysis (batch-experiment)

    NASA Astrophysics Data System (ADS)

    Sahu, Omprakash

    2017-10-01

    The sugar cane industry is one of the most water demanding industries. Sugar industries consume and generate excess amount of water. The generated water contains organic compounds, which would cause pollution. The aim of this research work is to study the effectiveness of metal compound for treatment of sugar industry waste water by thermolysis and electrolysis process. The result shows ferrous metal catalyst shows 80 and 85 % chemical oxygen demand and color removal at pH 6, optimum mass loading 4 kg/m3, treatment temperature 85 °C and treatment time 9 h. When ferrous material was used as electrode, maximum 81 % chemical oxygen demand and 84 % color removal at pH 6, current density 156 Am-2, treatment time 120 min and anode consumption 0.7 g for 1.5 L wastewater were obtained.

  3. Cathode Wetting Studies in Magnesium Electrolysis

    NASA Astrophysics Data System (ADS)

    McLean, Kevin; Pettingill, James; Davis, Boyd

    The effects of cathode materials and electrolyte additives on magnesium wetting were studied with the goal of improving current efficiency in a magnesium electrolysis cell. The study consisted of static wetting and electrolysis tests, both conducted in a visual cell with a molten salt electrolyte of MgCl2-CaCl2-NaCl-KCl-CaF2. The wetting conditions were tested using high resolution photography and contact angle software. The electrolysis tests were completed to qualitatively assess the effect of additives to the melt and were recorded with a digital video camcorder. Results from the static wetting tests showed a significant variation in wetting depending on the material used for the cathode. Mo and a Mo-W alloy, with contact angles of 60° and 52° respectively, demonstrated excellent wetting. The contact angle for steel was 132° and it ranged from 142°-154° for graphite depending on the type. Improvements to the cathode wetting were observed with tungsten and molybdenum oxide additives.

  4. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  5. Electrolysis treatment of trichiasis by using ultra-fine needle.

    PubMed

    Sakarya, Yasar; Sakarya, Rabia; Yildirim, Aydin

    2010-01-01

    To determine the safety and efficacy of electrolysis treatment of trichiasis by using ultrafine needle. The medical records of 24 lids of 24 patients who underwent electrolysis treatment for trichiasis by the same surgeon (Y.S.) during the period from May 2006 through December 2008 were reviewed. The average age of the 24 patients was 59.2 years (range, 43 to 76 years). Thirteen of the patients were women. The results were considered satisfactory if no recurrence of trichiasis occurred for at least 6 months after the last electrolysis procedure. Sixteen of the 24 patients (66.6%) had a satisfactory result with 1 treatment. Of the 8 patients (33.3%) who had an unsatisfactory result, while 5 (20.8%) responded well to 1 additional electrolysis, 3 (12.5%) responded well to 2 additional electrolyses to the recurrent cilia. The procedure was well tolerated by the patients. All eyelids healed within 2 weeks after treatment without any scarring. Faint hypopigmentation was visible in 2 patients (8.3%). Mild notching of eyelid occurred in 4 patients (16.6%). Electrolysis treatment by using ultrafine (55-microm thickness) needle is an effective and safe method for treatment of trichiasis with many advantages over other recognized modalities of therapy.

  6. High Temperature Steam Electrolysis: Demonstration of Improved Long-Term Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. O'Brien; X. Zhang; R. C. O'Brien

    2011-11-01

    Long-term performance is an ongoing issue for hydrogen production based on high-temperature steam electrolysis (HTSE). For commercial deployment, solid-oxide electrolysis stacks must achieve high performance with long-term degradation rates of {approx}0.5%/1000 hours or lower. Significant progress has been achieved toward this goal over the past few years. This paper will provide details of progress achieved under the Idaho National Laboratory high temperature electrolysis research program. Recent long-term stack tests have achieved high initial performance with degradation rates less than 5%/khr. These tests utilize internally manifolded stacks with electrode-supported cells. The cell material sets are optimized for the electrolysis mode ofmore » operation. Details of the cells and stacks will be provided along with details of the test apparatus, procedures, and results.« less

  7. Combining Electrolysis and Electroporation for Tissue Ablation.

    PubMed

    Phillips, Mary; Rubinsky, Liel; Meir, Arie; Raju, Narayan; Rubinsky, Boris

    2015-08-01

    Electrolytic ablation is a method that operates by delivering low magnitude direct current to the target region over long periods of time, generating electrolytic products that destroy cells. This study was designed to explore the hypothesis stating that electrolytic ablation can be made more effective when the electrolysis-producing electric charges are delivered using electric pulses with field strength typical in reversible electroporation protocols. (For brevity we will refer to tissue ablation protocols that combine electroporation and electrolysis as E(2).) The mechanistic explanation of this hypothesis is related to the idea that products of electrolysis generated by E(2) protocols can gain access to the interior of the cell through the electroporation permeabilized cell membrane and therefore cause more effective cell death than from the exterior of an intact cell. The goal of this study is to provide a first-order examination of this hypothesis by comparing the charge dosage required to cause a comparable level of damage to a rat liver, in vivo, when using either conventional electrolysis or E(2) approaches. Our results show that E(2) protocols produce tissue damage that is consistent with electrolytic ablation. Furthermore, E(2) protocols cause damage comparable to that produced by conventional electrolytic protocols while delivering orders of magnitude less charge to the target tissue over much shorter periods of time. © The Author(s) 2014.

  8. Electrolysis Apparatus and a Method of Hydrodynamic Cavitation Protection.

    DTIC Science & Technology

    1974-09-17

    AD-DO01 178 ELECTROLYSIS APPARATUS AND A METHOD OF HYDRODYNAMIC CAVITATION PROTECTION Earl Quandt, et al Department of the Navy Washington, D. C. 17...213" 261123 , Navy Case No. 57,238 ELECTROLYSIS APPARATUS AND A METHOD OF HYDRODYNAMIC CAVITATION PROTECTION 1 ABSTRACT Method of and apparatus for

  9. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.« less

  10. Demonstration of the production of oxygen-centered free radicals during electrolysis using E.S.R. spin-trapping techniques: effects on cardiac function in the isolated rat heart.

    PubMed

    Lecour, S; Baouali, A B; Maupoil, V; Chahine, R; Abadie, C; Javouhey-Donzel, A; Rochette, L; Nadeau, R

    1998-03-01

    The present study was designed to identify the free radicals generated during the electrolysis of the solution used to perfuse isolated rat heart Langendorff preparations. The high reactivity and very short half-life of oxygen free radicals make their detection and identification difficult. A diamagnetic organic molecule (spin trap) can be used to react with a specific radical to produce a more stable secondary radical or "spin adduct" detected by electron spin resonance (ESR). Isovolumic left ventricular systolic pressure (LVSP) and left ventricular end diastolic pressure (LVEDP) were measured by a fluid-filled latex balloon inserted into the left ventricle. The coronary flow was measured by effluent collection. Electrolysis was performed with constant currents of 0.5, 1, 1.5, 3, 5, 7.5, and 10 mA generated by a Grass stimulator and applied to the perfusion solution for 1 min. A group of experiments was done using a 1.5 mA current and a Krebs-Henseleit (K-H) solution containing free radical scavengers (superoxide dismutase (SOD): 100 IU/ml or mannitol: 50 mM). Heart function rapidly declined in hearts perfused with K-H buffer that had been electrolyzed for 1 min. The addition of mannitol (50 mM) to the perfusion solution had no effect on baseline cardiac function before electrolysis while SOD (100 IU/ml) increased the coronary flow. However, SOD was more effective than the mannitol in protecting the heart against decreased of cardiac function, 5 min after the end of electrolysis. Samples of the K-H medium subjected to electrolysis were collected in cuvettes containing a final concentration of 125 mM 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and analyzed by spectroscopy. The ESR spectrum consisted of a quartet signal (hyperfine couplings aN = aH = 14.9 G) originating from the hydroxyl adduct signal, DMPO-OH. The intensity of the DMPO-OH signal remained stable during the 60 s of electrolysis and the quantity of free radicals induced by electrolysis was directly

  11. Gadolinia-Doped Ceria Cathodes for Electrolysis of CO2

    NASA Technical Reports Server (NTRS)

    Adler, Stuart B.

    2009-01-01

    Gadolinia-doped ceria, or GDC, (Gd(0.4)Ce(0.6)O(2-delta), where the value of delta in this material varies, depending on the temperature and oxygen concentration in the atmosphere in which it is being used) has shown promise as a cathode material for high-temperature electrolysis of carbon dioxide in solid oxide electrolysis cells. The polarization resistance of a GDC electrode is significantly less than that of an otherwise equivalent electrode made of any of several other materials that are now in use or under consideration for use as cathodes for reduction of carbon dioxide. In addition, GDC shows no sign of deterioration under typical temperature and gas-mixture operating conditions of a high-temperature electrolyzer. Electrolysis of CO2 is of interest to NASA as a way of generating O2 from the CO2 in the Martian atmosphere. On Earth, a combination of electrolysis of CO2 and electrolysis of H2O might prove useful as a means of generating synthesis gas (syngas) from the exhaust gas of a coal- or natural-gas-fired power plant, thereby reducing the emission of CO2 into the atmosphere. The syngas a mixture of CO and H2 could be used as a raw material in the manufacture, via the Fisher-Tropsch process, of synthetic fuels, lubrication oils, and other hydrocarbon prod

  12. Membrane Cells for Brine Electrolysis.

    ERIC Educational Resources Information Center

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  13. Closed Bipolar Electrodes for Spatial Separation of H2 and O2 Evolution during Water Electrolysis and the Development of High-Voltage Fuel Cells.

    PubMed

    Goodwin, Sean; Walsh, Darren A

    2017-07-19

    Electrolytic water splitting could potentially provide clean H 2 for a future "hydrogen economy". However, as H 2 and O 2 are produced in close proximity to each other in water electrolyzers, mixing of the gases can occur during electrolysis, with potentially dangerous consequences. Herein, we describe an electrochemical water-splitting cell, in which mixing of the electrogenerated gases is impossible. In our cell, separate H 2 - and O 2 -evolving cells are connected electrically by a bipolar electrode in contact with an inexpensive dissolved redox couple (K 3 Fe(CN) 6 /K 4 Fe(CN) 6 ). Electrolytic water splitting occurs in tandem with oxidation/reduction of the K 3 Fe(CN) 6 /K 4 Fe(CN) redox couples in the separate compartments, affording completely spatially separated H 2 and O 2 evolution. We demonstrate operation of our prototype cell using conventional Pt electrodes for each gas-evolving reaction, as well as using earth-abundant Ni 2 P electrocatalysts for H 2 evolution. Furthermore, we show that our cell can be run in reverse and operate as a H 2 fuel cell, releasing the energy stored in the electrogenerated H 2 and O 2 . We also describe how the absence of an ionically conducting electrolyte bridging the H 2 - and O 2 -electrode compartments makes it possible to develop H 2 fuel cells in which the anode and cathode are at different pH values, thereby increasing the voltage above that of conventional fuel cells. The use of our cell design in electrolyzers could result in dramatically improved safety during operation and the generation of higher-purity H 2 than available from conventional electrolysis systems. Our cell could also be readily modified for the electrosynthesis of other chemicals, where mixing of the electrochemical products is undesirable.

  14. Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation.

    PubMed

    Stehling, Michael K; Guenther, Enric; Mikus, Paul; Klein, Nina; Rubinsky, Liel; Rubinsky, Boris

    2016-01-01

    Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs "Synergistic electrolysis and electroporation" (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation.

  15. Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation

    PubMed Central

    Mikus, Paul; Klein, Nina; Rubinsky, Liel; Rubinsky, Boris

    2016-01-01

    Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs “Synergistic electrolysis and electroporation” (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation. PMID:26866693

  16. Electrical Impedance Tomography of Electrolysis

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations. PMID:26039686

  17. Electrolysis of simulated lunar melts

    NASA Technical Reports Server (NTRS)

    Lewis, R. H.; Lindstrom, D. J.; Haskin, L. A.

    1985-01-01

    Electrolysis of molten lunar soil or rock is examined as an attractive means of wresting useful raw materials from lunar rocks. It requires only hat to melt the soil or rock and electricity to electrolyze it, and both can be developed from solar power. The conductivities of the simple silicate diopside, Mg CaSi2O6 were measured. Iron oxide was added to determine the effect on conductivity. The iron brought about substantial electronic conduction. The conductivities of simulated lunar lavas were measured. The simulated basalt had an AC conductivity nearly a fctor of two higher than that of diopside, reflecting the basalt's slightly higher total concentration of the 2+ ions Ca, Mg, and Fe that are the dominant charge carriers. Electrolysis was shown to be about 30% efficient for the basalt composition.

  18. Three-Man Solid Electrolyte Carbon Dioxide Electrolysis Breadboard

    NASA Technical Reports Server (NTRS)

    Isenberg, Arnold O.

    1989-01-01

    The development of the Three-Man (2.2 lb CO2/man-day) Solid Electrolyte CO2 Electrolysis Breadboard consisted of a Phase 1 and 2 effort. The Phase 1 effort constituted fabrication of three electrolysis cell types and performing parametric testing, off-design testing, and cell life testing. The Phase 2 consisted of the preliminary design, incorporation of palladium (Pd) tubes for hydrogen separation from the electrolyzer cathode feed gases, design support testing, final design, fabrication, and performance testing of the breadboard system. The results of performance tests demonstrated that CO2 electrolysis in an oxygen reclamation system for long duration space-based habitats is feasible. Closure of the oxygen system loop, therefore, can be achieved by CO2 electrolysis. In a two step process the metabolic CO2 and H2O vapor are electrolyzed into O2, H2, and CO. The CO can subsequently be disproportionated into carbon and CO2 in a carbon deposition reactor and the CO2 in turn be recycled and electrolyzed for total O2 recovery. The development effort demonstrated electrolyzer system can be designed and built to operate safely and reliably and the incorporation of Pd tubes for hydrogen diffusion can be integrated safely with predictable performance.

  19. Conditioning of sewage sludge with electrolysis: effectiveness and optimizing study to improve dewaterability.

    PubMed

    Yuan, Haiping; Zhu, Nanwen; Song, Lijie

    2010-06-01

    The potential benefits of electrolysis-conditioned sludge dewatering treatment were investigated in this paper. Focuses were placed on effectiveness and factors affecting such novel application of electrolysis process. Experiments have demonstrated that a significant improvement of sludge dewaterability evaluated by capillary suction time (CST) could be obtained at a relative low value of electrolysis voltage. A Box-Behnken experimental design based on the response surface methodology (RSM) was applied to evaluate the optimum of the influencing variables. The optimal values for electrolysis voltage, electrode distance and electrolysis time are 21 V, 5 cm and 12 min, respectively, at which the CST reduction efficiency of 18.8+/-3.1% could be achieved, this agreed with that predicted by an established polynomial model in this study. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Water-Pressure Distribution on Seaplane Float

    NASA Technical Reports Server (NTRS)

    Thompson, F L

    1929-01-01

    The investigation presented in this report was conducted for the purpose of determining the distribution and magnitude of water pressures likely to be experienced on seaplane hulls in service. It consisted of the development and construction of apparatus for recording water pressures lasting one one-hundredth second or longer and of flight tests to determine the water pressures on a UO-1 seaplane float under various conditions of taxiing, taking off, and landing. The apparatus developed was found to operate with satisfactory accuracy and is suitable for flight tests on other seaplanes. The tests on the UO-1 showed that maximum pressures of about 6.5 pounds per square inch occur at the step for the full width of the float bottom. Proceeding forward from the step the maximum pressures decrease in magnitude uniformly toward the bow, and the region of highest pressures narrows toward the keel. Immediately abaft the step the maximum pressures are very small, but increase in magnitude toward the stern and there once reached a value of about 5 pounds per square inch. (author)

  1. Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition.

    PubMed

    Deng, Shihai; Li, Desheng; Yang, Xue; Xing, Wei; Li, Jinlong; Zhang, Qi

    2016-11-01

    A combined process between micro-electrolysis and biological denitrification (MEBD) using iron scraps and an activated carbon-based micro-electrolysis carrier was developed for nitrogen removal under a microaerobic condition. The process provided NH4(+)-N and total nitrogen (TN) removal efficiencies of 92.6% and 95.3%, respectively, and TN removal rate of 0.373±0.11kgN/(m(3)d) at corresponding DO of 1.0±0.1mg/L and HRT of 3h, and the optimal pH of 7.6-8.4. High-throughput sequencing analysis verified that dominant classes belonged to β-, α-, and γ-Proteobacteria, and Nitrospira. The dominant genera Hydrogenophaga and Sphaerotilus significantly increased during the operation, covering 13.2% and 6.1% in biofilms attached to the carrier in the middle of the reactor, respectively. Autotrophic denitrification contributed to >80% of the TN removal. The developed MEBD achieved efficient simultaneous nitrification and autotrophic denitrification, presenting significant potential for application in practical low organic carbon water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. S. Sohal; J. E. O'Brien; C. M. Stoots

    2012-02-01

    Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problemsmore » between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in

  3. DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. O'Brien; C. M. Stoots; V. I. Sharma

    2010-06-01

    Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problemsmore » between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium

  4. High Pressure Industrial Water Facility

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  5. Contribution of water vapor pressure to pressurization of plutonium dioxide storage containers

    NASA Astrophysics Data System (ADS)

    Veirs, D. Kirk; Morris, John S.; Spearing, Dane R.

    2000-07-01

    Pressurization of long-term storage containers filled with materials meeting the US DOE storage standard is of concern.1,2 For example, temperatures within storage containers packaged according to the standard and contained in 9975 shipping packages that are stored in full view of the sun can reach internal temperatures of 250 °C.3 Twenty five grams of water (0.5 wt.%) at 250 °C in the storage container with no other material present would result in a pressure of 412 psia, which is limited by the amount of water. The pressure due to the water can be substantially reduced due to interactions with the stored material. Studies of the adsorption of water by PuO2 and surface interactions of water with PuO2 show that adsorption of 0.5 wt.% of water is feasible under many conditions and probable under high humidity conditions.4,5,6 However, no data are available on the vapor pressure of water over plutonium dioxide containing materials that have been exposed to water.

  6. Enhancing the efficiency of zero valent iron by electrolysis: Performance and reaction mechanism.

    PubMed

    Xiong, Zhaokun; Lai, Bo; Yang, Ping

    2018-03-01

    Electrolysis was applied to enhance the efficiency of micron-size zero valent iron (mFe 0 ) and thereby promote p-nitrophenol (PNP) removal. The rate of PNP removal by mFe 0 with electrolysis was determined in cylindrical electrolysis reactor that employed annular aluminum plate cathode as a function of experimental factors, including initial pH, mFe 0 dosage and current density. The rate constants of PNP removal by Ele-mFe 0 were 1.72-144.50-fold greater than those by pristine mFe 0 under various tested conditions. The electrolysis-induced improvement could be primarily ascribed to stimulated mFe 0 corrosion, as evidenced by Fe 2+ release. The application of electrolysis could extend the working pH range of mFe 0 from 3.0 to 6.0 to 3.0-10.0 for PNP removal. Additionally, intermediates analysis and scavengers experiments unraveled the reduction capacity of mFe 0 was accelerated in the presence of electrolysis instead of oxidation. Moreover, the electrolysis effect could also delay passivation of mFe 0 under acidic condition, as evidenced by SEM-EDS, XRD, and XPS analysis after long-term operation. This is mainly due to increased electromigration meaning that iron corrosion products (iron hydroxides and oxides) are not primarily formed in the vicinity of the mFe 0 or at its surface. In the presence of electrolysis, the effect of electric field significantly promoted the efficiency of electromigration, thereby enhanced mFe 0 corrosion and eventually accelerated the PNP removal rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Design of optimum solid oxide membrane electrolysis cells for metals production

    DOE PAGES

    Guan, Xiaofei; Pal, Uday B.

    2015-12-24

    Oxide to metal conversion is one of the most energy-intensive steps in the value chain for metals production. Solid oxide membrane (SOM) electrolysis process provides a general route for directly reducing various metal oxides to their respective metals, alloys, or intermetallics. Because of its lower energy use and ability to use inert anode resulting in zero carbon emission, SOM electrolysis process emerges as a promising technology that can replace the state-of-the-art metals production processes. In this paper, a careful study of the SOM electrolysis process using equivalent DC circuit modeling is performed and correlated to the experimental results. Finally, amore » discussion on relative importance of each resistive element in the circuit and on possible ways of lowering the rate-limiting resistive elements provides a generic guideline for designing optimum SOM electrolysis cells.« less

  8. High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.E. O'Brien; X. Zhang; K. DeWall

    2012-09-01

    This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.

  9. Preface–JES focus issue on electrolysis for increased renewable energy penetration

    DOE PAGES

    Pivovar, B.; Carmo, M.; Ayers, K.; ...

    2016-10-22

    The objective here of this special issue is to help identify the leading research being performed in the electrolysis area and provide context for the electrolysis advances that will be required for a larger role in tomorrow's energy system.

  10. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology.

    PubMed

    Zheng, Yun; Wang, Jianchen; Yu, Bo; Zhang, Wenqiang; Chen, Jing; Qiao, Jinli; Zhang, Jiujun

    2017-03-06

    High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies. They offer attractive high-temperature co-electrolysis routes that reduce extra CO 2 emissions, enable large-scale energy storage/conversion and facilitate the integration of renewable energies into the electric grid. Exciting new research has focused on CO 2 electrochemical activation/conversion through a co-electrolysis process based on the assumption that difficult C[double bond, length as m-dash]O double bonds can be activated effectively through this electrochemical method. Based on existing investigations, this paper puts forth a comprehensive overview of recent and past developments in co-electrolysis with SOECs for CO 2 conversion and utilization. Here, we discuss in detail the approaches of CO 2 conversion, the developmental history, the basic principles, the economic feasibility of CO 2 /H 2 O co-electrolysis, and the diverse range of fuel electrodes as well as oxygen electrode materials. SOEC performance measurements, characterization and simulations are classified and presented in this paper. SOEC cell and stack designs, fabrications and scale-ups are also summarized and described. In particular, insights into CO 2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs. Proposed research directions are also outlined to provide guidelines for future research.

  11. Electrolysis of lunar soil to produce oxygen and metals

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.; Keller, R.

    1991-01-01

    The discussion of melt electrolysis consists of three sections. The implications of the chemistry and physics of fluxed and raw melts on melt electrolysis are discussed first. This includes discussion of the factor that influence melt resistivity, melt viscosity, oxygen production efficiency, and the theoretical energy required to produce oxygen. Second, the implications of phase equilibria and solubilities in silicate melts on the selection of materials for container and electrodes are discussed. The implications of proposed container and electrode materials on melt composition and how this effects expected resistivities, viscosities, as outlined in the first section are discussed. Finally, a general discussion of the basic features of both the fluxed and unfluxed melt electrolysis is given, including their advantages and disadvantages and how they compare with alternative processes.

  12. Ammonia Synthesis at Low Pressure.

    PubMed

    Cussler, Edward; McCormick, Alon; Reese, Michael; Malmali, Mahdi

    2017-08-23

    Ammonia can be synthesized at low pressure by the use of an ammonia selective absorbent. The process can be driven with wind energy, available locally in areas requiring ammonia for synthetic fertilizer. Such wind energy is often called "stranded," because it is only available far from population centers where it can be directly used. In the proposed low pressure process, nitrogen is made from air using pressure swing absorption, and hydrogen is produced by electrolysis of water. While these gases can react at approximately 400 °C in the presence of a promoted conventional catalyst, the conversion is often limited by the reverse reaction, which makes this reaction only feasible at high pressures. This limitation can be removed by absorption on an ammine-like calcium or magnesium chloride. Such alkaline metal halides can effectively remove ammonia, thus suppressing the equilibrium constraints of the reaction. In the proposed absorption-enhanced ammonia synthesis process, the rate of reaction may then be controlled not by the chemical kinetics nor the absorption rates, but by the rate of the recycle of unreacted gases. The results compare favorably with ammonia made from a conventional small scale Haber-Bosch process.

  13. Transient nanobubbles in short-time electrolysis

    NASA Astrophysics Data System (ADS)

    Svetovoy, Vitaly B.; Sanders, Remco G. P.; Elwenspoek, Miko C.

    2013-05-01

    Water electrolysis in a microsystem is observed and analyzed on a short-time scale of ∼10 μs. The very unusual properties of the process are stressed. An extremely high current density is observed because the process is not limited by the diffusion of electroactive species. The high current is accompanied by a high relative supersaturation, S > 1000, that results in homogeneous nucleation of bubbles. On the short-time scale only nanobubbles can be formed. These nanobubbles densely cover the electrodes and aggregate at a later time to microbubbles. The effect is significantly intensified with a small increase of temperature. Application of alternating polarity voltage pulses produces bubbles containing a mixture of hydrogen and oxygen. Spontaneous reaction between gases is observed for stoichiometric bubbles with sizes smaller than ∼150 nm. Such bubbles disintegrate violently affecting the surfaces of the electrodes.

  14. Leaf water potentials measured with a pressure chamber.

    PubMed

    Boyer, J S

    1967-01-01

    Leaf water potentials were estimated from the sum of the balancing pressure measured with a pressure chamber and the osmotic potential of the xylem sap in leafy shoots or leaves. When leaf water potentials in yew, rhododendron, and sunflower were compared with those measured with a thermocouple psychrometer known to indicate accurate values of leaf water potential, determinations were within +/- 2 bars of the psychrometer measurements with sunflower and yew. In rhododendron. water potentials measured with the pressure chamber plus xylem sap were 2.5 bars less negative to 4 bars more negative than psychrometer measurements.The discrepancies in the rhododendron measurements could be attributed, at least in part, to the filling of tissues other than xylem with xylem sap during measurements with the pressure chamber. It was concluded that, although stem characteristics may affect the measurements, pressure chamber determinations were sufficiently close to psychrometer measurements that the pressure chamber may be used for relative measurements of leaf water potentials, especially in sunflower and yew. For accurate determinations of leaf water potential, however, pressure chamber measurements must be calibrated with a thermocouple psychrometer.

  15. Experimental study of the electrolysis of silicate melts

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1992-01-01

    Melting and electrolyzing lunar silicates yields oxygen gas and potentially can be practiced in situ to produce oxygen. With the present experiments conducted with simulant oxides at 1425-1480 C, it was ascertained that oxygen can be obtained anodically at feasible rates and current efficiencies. An electrolysis cell was operated with platinum anodes in a sealed vessel, and the production of gas was monitored. In these electrolysis experiments, stability of anodes remained a problem, and iron and silicon did not reduce readily into the liquid silver cathode.

  16. Water-Based Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M.; Ingram, JoAnne L.; Jordan, Jeffrey D.; Watkins, A. Neal; Leighty, Bradley D.

    2004-01-01

    Preparation and performance of a water-based pressure sensitive paint (PSP) is described. A water emulsion of an oxygen permeable polymer and a platinum porphyrin type luminescent compound were dispersed in a water matrix to produce a PSP that performs well without the use of volatile, toxic solvents. The primary advantages of this PSP are reduced contamination of wind tunnels in which it is used, lower health risk to its users, and easier cleanup and disposal. This also represents a cost reduction by eliminating the need for elaborate ventilation and user protection during application. The water-based PSP described has all the characteristics associated with water-based paints (low toxicity, very low volatile organic chemicals, and easy water cleanup) but also has high performance as a global pressure sensor for PSP measurements in wind tunnels. The use of a water-based PSP virtually eliminates the toxic fumes associated with the application of PSPs to a model in wind tunnels.

  17. Membrane water-flow rate in electrolyzer cells with a solid polymer electrolyte (SPE)

    NASA Astrophysics Data System (ADS)

    Li, Xiaojin; Qu, Shuguo; Yu, Hongmei; Hou, Ming; Shao, Zhigang; Yi, Baolian

    Water-flow rate across Nafion membrane in SPE electrolyzer cells was measured and modelled. From the analysis of water transport mechanisms in SPE water electrolysis, the water-flow rate through membrane can be described by the electro-osmotic drag. The calculated electro-osmotic drag coefficients, n d, for the membrane in SPE electrolysis cells at different temperatures were compared with literature and in good agreement with those of Ge et al. and Ise et al. To describe the water-flow rate through membrane more accurately, a linear fit of n d as a function of temperature for the membrane in SPE water electrolysis was proposed in this paper. This paper studied the membrane water-flow rate experimentally and mathematically, which is of importance in the designing and optimization of the process of SPE water electrolysis. This paper also provided a novel method for measuring the electro-osmotic drag coefficient of Nafion membrane in contact with liquid water, acid and methanol solutions, etc.

  18. Effects of Chamber Pressure and Partial Pressure of Water Vapor on Secondary Drying in Lyophilization.

    PubMed

    Searles, James A; Aravapalli, Sridhar; Hodge, Cody

    2017-10-01

    Secondary drying is the final step of lyophilization before stoppering, during which water is desorbed from the product to yield the final moisture content. We studied how chamber pressure and partial pressure of water vapor during this step affected the time course of water content of aqueous solutions of polyvinylpyrrolidone (PVP) in glass vials. The total chamber pressure had no effect when the partial pressure of water vapor was very low. However, when the vapor phase contained a substantial fraction of water vapor, the PVP moisture content was much higher. We carried out dynamic vapor sorption experiments (DVS) to demonstrate that the higher PVP moisture content was a straightforward result of the higher water vapor content in the lyophilizer. The results highlight that the partial pressure of water vapor is extremely important during secondary drying in lyophilization, and that lower chamber pressure set points for secondary drying may sometimes be justified as a strategy for ensuring low partial pressure of water vapor, especially for lyophilizers that do not inject dry gas to control pressure. These findings have direct application for process transfers/scale ups from freeze-dryers that do not inject dry gas for pressure control to those that do, and vice versa.

  19. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  20. High-pressure water facility

    NASA Image and Video Library

    2006-02-15

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  1. Tritiated Water on Molecular Sieve: Water Dynamics and Pressure Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, R.T.

    1999-04-23

    The production of fusion energy in a Tokamak using deuterium and tritium requires the safe handling and processing of exhaust gases that contain various amounts of tritium. Initial operation of the Tokamak Fusion Test Reactor (TFTR), Princeton Plasma Physics Laboratory, oxidized exhaust gases for tritium recovery or long-term storage. One of the most efficient and safest ways to contain tritiated water is to sorb it onto a pelletized 4A molecular sieve. A Disposable Molecular Sieve Bed (DMSB) was designed as a pressure vessel because of the possibility of pressure generation from the radiolysis of tritiated water on molecular sieve. Hydrogenmore » production contributes to the complexity of the containers used to transport and store tritiated water, and increases the fabrication costs. Two months after removing a DMSB from the process at TFTR, a pressure in excess of that predicted from self-radiolysis was observed. Interestingly, pressure measurements at longer times (up to 2.5 years) showed less pressure than expected. Pressure was not being generated in the DMSBs at the predicted rate. This was unexpected and prompted an investigation into the mechanism responsible for the anomalous pressure measurements.« less

  2. Electrolysis of a molten semiconductor

    PubMed Central

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-01-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525

  3. Electrolysis of a molten semiconductor

    DOE PAGES

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-08-24

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb 2S 3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across themore » cell. In conclusion, as opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO 2, CO and SO 2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.« less

  4. Electrolysis of a molten semiconductor.

    PubMed

    Yin, Huayi; Chung, Brice; Sadoway, Donald R

    2016-08-24

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

  5. Electrolysis of a molten semiconductor

    NASA Astrophysics Data System (ADS)

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-08-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

  6. Removal of pigments from molasses wastewater by combining micro-electrolysis with biological treatment method.

    PubMed

    Chen, Ben; Tian, Xiaofei; Yu, Lian; Wu, Zhenqiang

    2016-12-01

    Pigments in molasses wastewater (MWW) effluent, such as melanoidins, were considered as kinds of the most recalcitrant and hazardous colorant contaminants to the environment. In this study, de-coloring the MWW by a synergistic combination of micro-electrolysis with bio-treatment was performed. Aiming to a high de-colorization yield, levels of nutrition source supplies, MWW dilution ratio, and micro-electrolysis reaction time were optimized accordingly. For a diluted (50 %, v/v) MWW, an maximum overall de-colorization yield (97.1 ± 0.5 %, for absorbance at 475 nm) was achieved through the bio-electrolysis treatment. In electrolysis bio-treatment, the positive effect of micro-electrolysis was also revealed by a promoted growth of fungal biomass as well as activities of ligninolytic enzymes. Activities of lignin peroxidase, manganese peroxidase, and laccase were promoted by 111.2, 103.9, and 7.7 %, respectively. This study also implied that the bio-treatment and the micro-electrolysis had different efficiencies on removal of pigments with distinct polarities.

  7. Leaf Water Potentials Measured with a Pressure Chamber

    PubMed Central

    Boyer, J. S.

    1967-01-01

    Leaf water potentials were estimated from the sum of the balancing pressure measured with a pressure chamber and the osmotic potential of the xylem sap in leafy shoots or leaves. When leaf water potentials in yew, rhododendron, and sunflower were compared with those measured with a thermocouple psychrometer known to indicate accurate values of leaf water potential, determinations were within ± 2 bars of the psychrometer measurements with sunflower and yew. In rhododendron. water potentials measured with the pressure chamber plus xylem sap were 2.5 bars less negative to 4 bars more negative than psychrometer measurements. The discrepancies in the rhododendron measurements could be attributed, at least in part, to the filling of tissues other than xylem with xylem sap during measurements with the pressure chamber. It was concluded that, although stem characteristics may affect the measurements, pressure chamber determinations were sufficiently close to psychrometer measurements that the pressure chamber may be used for relative measurements of leaf water potentials, especially in sunflower and yew. For accurate determinations of leaf water potential, however, pressure chamber measurements must be calibrated with a thermocouple psychrometer. PMID:16656476

  8. Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**

    PubMed Central

    Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard

    2015-01-01

    In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3−δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. PMID:25557533

  9. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification.

    PubMed

    Xing, Wei; Li, Desheng; Li, Jinlong; Hu, Qianyi; Deng, Shihai

    2016-07-01

    A process combining micro-electrolysis and autotrophic denitrification (CEAD) with iron-carbon micro-electrolysis carriers was developed for nitrate removal. The process was performed using organic-free influent with a NO3(-)-N concentration of 40.0±3.0mg/L and provided an average nitrate removal efficiency of 95% in stable stages. The total nitrogen removal efficiency reached 75%, with 21% of NO3(-)-N converted into NH4(+)-N. The corresponding hydraulic retention time was 8-10h, and the optimal pH ranged from 8.5 to 9.5. Microbial analysis with high-throughput sequencing revealed that dominant microorganisms in the reactor belonged to the classes of β-, γ-, and α-Proteobacteria. The abundance of the genera Thermomonas significantly increased during the operation, comprising 21.4% and 24.1% in sludge attached to the carriers in the middle and at the bottom of the reactor, respectively. The developed CEAD achieved efficient nitrate removal from water without organics, which is suitable for practical application. Copyright © 2016. Published by Elsevier Ltd.

  10. Innovative combination of electrolysis and Fe(II)-activated persulfate oxidation for improving the dewaterability of waste activated sludge.

    PubMed

    Zhen, Guang-Yin; Lu, Xue-Qin; Li, Yu-You; Zhao, You-Cai

    2013-05-01

    The feasibility of electrolysis integrated with Fe(II)-activated persulfate (S2O8(2-)) oxidation to improve waste activated sludge (WAS) dewaterability was evaluated. The physicochemical properties (sludge volume (SV), total suspended solids (TSS) and volatile suspended solids (VSS)) and extracellular polymeric substances (EPS), including slime EPS, loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) were characterized to identify their exact roles in sludge dewatering. While dewaterability negatively corresponded to LB-EPS, TB-EPS, protein (PN) and polysaccharide (PS) in LB-EPS and TB-EPS, it was independent of SV, TSS, VSS, slime EPS and PN/PS. Further study through scanning electron microscope (SEM) verified the entrapment of bacterial cells by TB-EPS, protecting them against electrolysis disruption. Comparatively, electrolysis integrated with S2O8(2-)/Fe(II) oxidation was able to effectively disrupt the protective barrier and crack the entrapped cells, releasing the water inside EPS and cells. Therefore, the destruction of both TB-EPS and cells is the fundamental reason for the enhanced dewaterability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Proton transfer in microbial electrolysis cells

    DOE PAGES

    Borole, Abhijeet P.; Lewis, Alex J.

    2017-02-15

    Proton transfer and electron transfer are of prime importance in the development of microbial electrochemical cells. While electron transfer is primarily controlled by biology, proton transfer is controlled by process engineering and cell design. To develop commercially feasible technologies around the concept of a bioelectrochemical cell, real feedstocks have to be explored and associated limitations have to be identified. Here in this study, the proton transfer rate was quantified for a microbial electrolysis cell (MEC) and its dependence on process parameters was investigated using a proton balance model. The reaction system consisted of a biomass-derived pyrolytic aqueous stream as amore » substrate producing hydrogen in a flow-through MEC. The proton transfer rate increased with anode flow rate and organic loading rate up to a maximum of 0.36 ± 0.01 moles per m 2 per h, equivalent to a hydrogen production rate of 9.08 L per L per day. Higher rates of hydrogen production, reaching 11.7 ± 0.2 L per L per day were achieved, when additional protons were provided via the cathode buffer. Electrochemical impedance spectroscopy shows that proton transfer was the dominant resistance in the production of hydrogen. The quantification of proton transfer rates for MECs with potential for biorefinery application and the demonstration of high hydrogen production rates approaching those required for commercial consideration indicate the strong potential of this technology for renewable hydrogen production. Understanding the transport phenomenon in bioelectrochemical cells is of great significance since these systems have potential for wide-ranging applications including energy production, bioremediation, chemical and nanomaterial synthesis, electro-fermentation, energy storage, desalination, and produced water treatment. Electron transfer in anode biofilms has been investigated extensively, but proton transfer studies are also important, since many cathodic half reactions

  12. Proton transfer in microbial electrolysis cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borole, Abhijeet P.; Lewis, Alex J.

    Proton transfer and electron transfer are of prime importance in the development of microbial electrochemical cells. While electron transfer is primarily controlled by biology, proton transfer is controlled by process engineering and cell design. To develop commercially feasible technologies around the concept of a bioelectrochemical cell, real feedstocks have to be explored and associated limitations have to be identified. Here in this study, the proton transfer rate was quantified for a microbial electrolysis cell (MEC) and its dependence on process parameters was investigated using a proton balance model. The reaction system consisted of a biomass-derived pyrolytic aqueous stream as amore » substrate producing hydrogen in a flow-through MEC. The proton transfer rate increased with anode flow rate and organic loading rate up to a maximum of 0.36 ± 0.01 moles per m 2 per h, equivalent to a hydrogen production rate of 9.08 L per L per day. Higher rates of hydrogen production, reaching 11.7 ± 0.2 L per L per day were achieved, when additional protons were provided via the cathode buffer. Electrochemical impedance spectroscopy shows that proton transfer was the dominant resistance in the production of hydrogen. The quantification of proton transfer rates for MECs with potential for biorefinery application and the demonstration of high hydrogen production rates approaching those required for commercial consideration indicate the strong potential of this technology for renewable hydrogen production. Understanding the transport phenomenon in bioelectrochemical cells is of great significance since these systems have potential for wide-ranging applications including energy production, bioremediation, chemical and nanomaterial synthesis, electro-fermentation, energy storage, desalination, and produced water treatment. Electron transfer in anode biofilms has been investigated extensively, but proton transfer studies are also important, since many cathodic half reactions

  13. Coupled electro-thermal field in a high current electrolysis cell or liquid metal batteries

    PubMed Central

    Cai, Liwei; Ni, Haiou; Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Coupled electro-thermal field exists widely in chemical batteries and electrolysis industry. In this study, a three-dimensional numerical model, which is based on the finite-element software ANSYS, has been built to simulate the electro-thermal field in a magnesium electrolysis cell. The adjustment of the relative position of the anode and cathode can change the energy consumption of the magnesium electrolysis process significantly. Besides, the current intensity has a nonlinear effect on heat balance, and the effects of heat transfer coefficients, electrolysis and air temperature on the heat balance have been released to maintain the thermal stability in a magnesium electrolysis cell. The relationship between structure as well as process parameters and electro-thermal field has been obtained and the simulation results can provide experience for the scale-up design in liquid metal batteries. PMID:29515848

  14. An investigation of energy balances in palladium cathode electrolysis experiments

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.; Dolan, T. J.; Henriksen, G. L.

    1990-09-01

    A series of experiments was performed at the Idaho National Engineering Laboratory (INEL) to investigate mechanisms that may contribute to energy flows in electrolysis cells like those of Fleischmann and Pons. Ordinary water (H2O), heavy water (D2O), and a mixture of the two were used in the INEL experiments. Cathodes used include a 51-μm Pd foil and 1-mm diameter extruded wire Pd rods in straight and coiled configurations. Energy balances in these experiments revealed no significant net gain or net loss of energy. Cell overpotential curves were fit well with a Tafel equation, with parameters dependent on electrode configuration, electrolyte composition, and temperature. Water evaporation and interactions of hydrogen isotopes with the Pd cathode were evaluated and found not to be significant to energy balances. No ionizing radiation, tritium production, or other evidence of fusion reactions was observed in the INEL experiments.

  15. Modeling and optimization of proton-conducting solid oxide electrolysis cell: Conversion of CO2 into value-added products

    NASA Astrophysics Data System (ADS)

    Namwong, Lawit; Authayanun, Suthida; Saebea, Dang; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai

    2016-11-01

    Proton-conducting solid oxide electrolysis cells (SOEC-H+) are a promising technology that can utilize carbon dioxide to produce syngas. In this work, a detailed electrochemical model was developed to predict the behavior of SOEC-H+ and to prove the assumption that the syngas is produced through a reversible water gas-shift (RWGS) reaction. The simulation results obtained from the model, which took into account all of the cell voltage losses (i.e., ohmic, activation, and concentration losses), were validated using experimental data to evaluate the unknown parameters. The developed model was employed to examine the structural and operational parameters. It is found that the cathode-supported SOEC-H+ is the best configuration because it requires the lowest cell potential. SOEC-H+ operated favorably at high temperatures and low pressures. Furthermore, the simulation results revealed that the optimal S/C molar ratio for syngas production, which can be used for methanol synthesis, is approximately 3.9 (at a constant temperature and pressure). The SOEC-H+ was optimized using a response surface methodology, which was used to determine the optimal operating conditions to minimize the cell potential and maximize the carbon dioxide flow rate.

  16. Stability of CoP x Electrocatalysts in Continuous and Interrupted Acidic Electrolysis of Water.

    PubMed

    Goryachev, Andrey; Gao, Lu; Zhang, Yue; Rohling, Roderigh Y; Vervuurt, René H J; Bol, Ageeth A; Hofmann, Jan P; Hensen, Emiel J M

    2018-04-11

    Cobalt phosphides are an emerging earth-abundant alternative to platinum-group-metal-based electrocatalysts for the hydrogen evolution reaction (HER). Yet, their stability is inferior to platinum and compromises the large-scale applicability of CoP x in water electrolyzers. In the present study, we employed flat, thin CoP x electrodes prepared through the thermal phosphidation (PH 3 ) of Co 3 O 4 films made by plasma-enhanced atomic layer deposition to evaluate their stability in acidic water electrolysis by using a multi-technique approach. The films were found to be composed of two phases: CoP in the bulk and a P-rich surface CoP x (P/Co>1). Their performance was evaluated in the HER and the exchange current density was determined to be j 0 =-8.9 ⋅ 10 -5  A/cm 2 . The apparent activation energy of HER on CoP x ( E a =81±15 kJ/mol) was determined for the first time. Dissolution of the material in 0.5 M H 2 SO 4 was observed, regardless of the constantly applied cathodic potential, pointing towards a chemical instead of an electrochemical origin of the observed cathodic instability. The current density and HER faradaic efficiency (FE) were found to be stable during chronoamperometric treatment, as the chemical composition of the HER-active phase remained unchanged. On the contrary, a dynamic potential change performed in a repeated way facilitated dissolution of the film, yielding its complete degradation within 5 h. There, the FE was also found to be changing. An oxidative route of CoP x dissolution has also been proposed.

  17. Improved Durability of SOEC Stacks for High Temperature Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Robert C. O'Brien; Xiaoyu Zhang

    2013-01-01

    High temperature steam electrolysis is a promising technology for efficient and sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology can be realized. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-termmore » durability of SOECs. Electrolyte-supported and electrode-supported SOEC stacks were provided by Ceramatec Inc. and Materials and Systems Research Inc. (MSRI), respectively, for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technologies developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, espectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. Optimization of electrode materials, interconnect coatings, and electrolyte-electrode interface microstructures contribute to better durability of SOEC stacks.« less

  18. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VIImore » of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.« less

  19. Installation of Ohio's First Electrolysis-Based Hydrogen Fueling Station

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne T.; Lively, Michael L.

    2012-01-01

    This paper describes progress made towards the installation of a hydrogen fueling station in Northeast Ohio. In collaboration with several entities in the Northeast Ohio area, the NASA Glenn Research Center is installing a hydrogen fueling station that uses electrolysis to generate hydrogen on-site. The installation of this station is scheduled for the spring of 2012 at the Greater Cleveland Regional Transit Authority s Hayden bus garage in East Cleveland. This will be the first electrolysis-based hydrogen fueling station in Ohio.

  20. Comparison of two modified coal ash ferric-carbon micro-electrolysis ceramic media for pretreatment of tetracycline wastewater.

    PubMed

    Yang, Kunlun; Jin, Yang; Yue, Qinyan; Zhao, Pin; Gao, Yuan; Wu, Suqing; Gao, Baoyu

    2017-05-01

    Application of modified sintering ferric-carbon ceramics (SFC) and sintering-free ferric-carbon ceramics (SFFC) based on coal ash and scrap iron for pretreatment of tetracycline (TET) wastewater was investigated in this article. Physical property, morphological character, toxic metal leaching content, and crystal component were studied to explore the application possibility of novel ceramics in micro-electrolysis reactors. The influences of operating conditions including influent pH, hydraulic retention time (HRT), and air-water ratio (A/W) on the removal of tetracycline were studied. The results showed that SFC and SFFC were suitable for application in micro-electrolysis reactors. The optimum conditions of SFC reactor were pH of 3, HRT of 7 h, and A/W of 10. For SFFC reactor, the optimum conditions were pH of 2, HRT of 7 h, and A/W of 15. In general, the TET removal efficiency of SFC reactor was better than that of SFFC reactor. However, the harden resistance of SFFC was better than that of SFC. Furthermore, the biodegradability of TET wastewater was improved greatly after micro-electrolysis pretreatment for both SFC and SFFC reactors.

  1. Optimization of synthesis of the nickel-cobalt oxide based anode electrocatalyst and of the related membrane-electrode assembly for alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Chanda, Debabrata; Hnát, Jaromir; Bystron, Tomas; Paidar, Martin; Bouzek, Karel

    2017-04-01

    In this work, the Ni-Co spinel oxides are synthesized via different methods and using different calcination temperatures. Properties of the prepared materials are compared. The best route is selected and used to prepare a Ni1+xCo2-xO4 (-1 ≤ x ≤ 1) series of materials in order to investigate their catalytic activity towards the oxygen evolution reaction (OER). The results show that hydroxide preparation yields NiCo2O4 oxide with the highest activity. 325 °C is identified as the optimum calcination temperature. Subsequently, the catalysts are tested in an electrolysis cell. To prepare an anode catalyst layer based on NiCo2O4 catalyst on top of a nickel foam substrate for membrane electrode assembly (MEA) construction, following polymer binders are used: anion-selective quaternized polyphenylene oxide (qPPO), inert polytetrafluoroethylene (PTFE®), and cation-selective Nafion®. qPPO ionomer containing MEA exhibited highest OER activity. The current density obtained using a MEA containing qPPO binder attains a value of 135 mA cm-2 at a cell voltage of 1.85 V. After 7 h chronopotentiometric experiment at a constant current density of 225 mA cm-2, the MEA employing PTFE® binder shows higher stability than the other binders in alkaline water electrolysis at 50 °C. Under similar conditions, stability of the PTFE®-binding MEA is examined for 135 h.

  2. The determination of micro-arc plasma composition and properties of nanoparticles formed during cathodic plasma electrolysis of 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Jovović, Jovica; Stojadinović, Stevan; Vasilić, Rastko; Tadić, Nenad; Šišović, Nikola M.

    2017-05-01

    This paper presents the research focused on the determination of micro-arc plasma composition during cathodic plasma electrolysis of AISI304 stainless steel in water solution of sodium hydroxide. The complex line shape of several Fe I spectral lines was observed and, by means of a dedicated fitting procedure based on the spectral line broadening theory and H2O thermal decomposition data, the mole fraction of micro-arc plasma constituents (H2, Fe, O, H, H2O, and OH) was determined. Subsequent characterization of the cathodic plasma electrolysis product formed during the process revealed that it consists of Fe-nanoparticles with median diameter of approximately 60 nm.

  3. Water cooled static pressure probe

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  4. [Measurement of pancreatic microcirculation using hydrogen gas generated by electrolysis in dogs].

    PubMed

    Nishiwaki, H; Satake, K; Ko, I; Tanaka, H; Kanazawa, G; Nagai, Y; Umeyama, K

    1986-11-01

    Measurements of pancreatic microflow were investigated using hydrogen gas generated by electrolysis in dog. After laparatomy under general anesthesia, uncinate process of the pancreas was punctured by a needle electrode for electrolysis and determination of hydrogen gas. The consecutive measurements of pancreatic microflow revealed the good reproducibility at the same point of the pancreas. The simultaneous measurements of pancreatic microflow by electrolysis and pancreatic tissue blood flow by H2 inhalation method were carried out at the same point of the pancreas. Correlation analysis of both measurements revealed coefficient of 0.751 and a significant relationship was observed (p less than 0.05). However, the value was a little higher in pancreatic microflow as compared with pancreatic tissue blood flow. Pancreatic microflow and pancreatic exocrine secretion increased after intravenous administration of Dopamine and Secretin (10 micrograms/kg/min). It is concluded that the measurement of pancreatic microflow by hydrogen gas generated by electrolysis is a useful method on understanding the microcirculation of the pancreas.

  5. Inhibitory effects of acid water prepared by an electrolysis apparatus on early plaque formation on specimens of dentine.

    PubMed

    Ito, K; Nishida, T; Murai, S

    1996-05-01

    The aim of this study was to compare the effects of acid water prepared by an electrolysis apparatus with placebo treatment on the ultrastructure of early plaque formed on dentine specimens attached to retainers in the oral cavity. Dentine specimens were taken from 12 healthy extracted human 3rd molars. 4 dentine specimens were placed in the both the right and left buccal flanges of retainers fabricated from self-setting acrylic resin. The retainers were placed on both maxillary buccal sites in 6 subjects. The test solution was acid water (AW) prepared by an electrolysis apparatus with a pH of 2.7 and an oxidation-reduction potential of more than 1100 mV. As a positive control, 0.2% chlorhexidine digluconate (CHX) solution was used and normal saline solution as a negative control. 4 specimens placed in the right and left retainers were randomly allocated to 4 treatments as follows: treatment A, washing with AW; treatment B, washing with CHX solution; treatment C, washing with normal saline; treatment D, no washing. Washing was carried out in a plastic beaker containing 30 ml of each solution for 30s 2X daily over a 7-day period. The specimens were then carefully removed from the retainers, the morphology and thickness of the plaque formed examined by SEM, and the developmental condition of the plaque analyzed statistically. The plaque on the specimens in treatments A and B consisted mainly of coccoid forms. Mature plaque formation with complex flora was seen on the specimens in treatments C and D. The mean thickness of the plaque deposits on the dentin specimens as measured on SEM photographs magnified 2000 times was 8.80 mm for treatment. A, while in treatment B it was 3.90 mm. Plaque thickness for treatment C was 24.97 mm, and for treatment D 25.67 mm. The thickness of plaque formed on the sectioned specimens was significantly less for treatments A and B than for treatments C and D. However, there was no statistically significant difference between treatments A

  6. The Detoxification and Degradation of Benzothiazole from the Wastewater in Microbial Electrolysis Cells

    PubMed Central

    Liu, Xianshu; Ding, Jie; Ren, Nanqi; Tong, Qingyue; Zhang, Luyan

    2016-01-01

    In this study, the high-production-volume chemical benzothiazole (BTH) from synthetic water was fully degraded into less toxic intermediates of simple organic acids using an up-flow internal circulation microbial electrolysis reactor (UICMER) under the hydraulic retention time (HRT) of 24 h. The bioelectrochemical system was operated at 25 ± 2 °C and continuous-flow mode. The BTH loading rate varied during experiments from 20 g·m−3·day−1 to 110 g·m−3·day−1. BTH and soluble COD (Chemical Oxygen Demand) removal efficiency reached 80% to 90% under all BTH loading rates. Bioluminescence based Shewanella oneidensis strain MR-1 ecotoxicity testing demonstrated that toxicity was largely decreased compared to the BTH wastewater influent and effluent of two control experiments. The results indicated that MEC (Microbial Electrolysis Cell) was useful and reliable for improving BTH wastewater treatment efficiency, enabling the microbiological reactor to more easily respond to the requirements of higher loading rate, which is meaningful for economic and efficient operation in future scale-up. PMID:27999421

  7. The Detoxification and Degradation of Benzothiazole from the Wastewater in Microbial Electrolysis Cells.

    PubMed

    Liu, Xianshu; Ding, Jie; Ren, Nanqi; Tong, Qingyue; Zhang, Luyan

    2016-12-20

    In this study, the high-production-volume chemical benzothiazole (BTH) from synthetic water was fully degraded into less toxic intermediates of simple organic acids using an up-flow internal circulation microbial electrolysis reactor (UICMER) under the hydraulic retention time (HRT) of 24 h. The bioelectrochemical system was operated at 25 ± 2 °C and continuous-flow mode. The BTH loading rate varied during experiments from 20 g·m -3 ·day -1 to 110 g·m -3 ·day -1 . BTH and soluble COD (Chemical Oxygen Demand) removal efficiency reached 80% to 90% under all BTH loading rates. Bioluminescence based Shewanella oneidensis strain MR-1 ecotoxicity testing demonstrated that toxicity was largely decreased compared to the BTH wastewater influent and effluent of two control experiments. The results indicated that MEC (Microbial Electrolysis Cell) was useful and reliable for improving BTH wastewater treatment efficiency, enabling the microbiological reactor to more easily respond to the requirements of higher loading rate, which is meaningful for economic and efficient operation in future scale-up.

  8. [Complex technology for water and wastewater disinfection and its industrial realization in prototype unit].

    PubMed

    Arakcheev, E N; Brunman, V E; Brunman, M V; Konyashin, A V; Dyachenko, V A; Petkova, A P

    Usage of complex automated electrolysis unit for drinking water disinfection and wastewater oxidation and coagulation is scoped, its ecological and energy efficiency is shown. Properties of technological process of anolyte production using membrane electrolysis of brine for water disinfection in municipal pipelines and potassium ferrate production using electrochemical dissolution of iron anode in NaOH solution for usage in purification plants are listed. Construction of modules of industrial prototype for anolyte and ferrate production and applied aspects of automation of complex electrolysis unit are proved. Results of approbation of electrolytic potassium ferrate for drinking water disinfection and wastewater, rain water and environmental water oxidation and coagulation are shown.

  9. Water Pressure Distribution on a Flying Boat Hull

    NASA Technical Reports Server (NTRS)

    Thompson, F L

    1931-01-01

    This is the third in a series of investigations of the water pressures on seaplane floats and hulls, and completes the present program. It consisted of determining the water pressures and accelerations on a Curtiss H-16 flying boat during landing and taxiing maneuvers in smooth and rough water.

  10. Where Did the Water Go?: Boyle's Law and Pressurized Diaphragm Water Tanks

    ERIC Educational Resources Information Center

    Brimhall, James; Naga, Sundar

    2007-01-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be…

  11. In-Situ Propellant Production on Mars: A Sabatier/Electrolysis Demonstration Plant

    NASA Astrophysics Data System (ADS)

    Clark, David L.

    1997-01-01

    An efficient, reliable propellant production plant has been developed for use on Mars. Using a Sabatier reactor in conjunction with a water electrolysis system, a complete demonstration plant has produced methane and liquid oxygen from simulated Martian atmosphere. The production plant has demonstrated high efficiency, extended duration production and autonomous operations. This paper presents the results and conclusions relating to eventual use in a Mars sample return mission. This work was funded by the Jet Propulsion Laboratory (JPL). The production plant was built and tested at the Propulsion Center of Lockheed Martin at the Denver Colorado facility.

  12. High-temperature electrolysis of synthetic seawater using solid oxide electrolyzer cells

    NASA Astrophysics Data System (ADS)

    Lim, Chee Kuan; Liu, Qinglin; Zhou, Juan; Sun, Qiang; Chan, Siew Hwa

    2017-02-01

    A Ni-YSZ/YSZ/LSCF-GDC solid oxide electrolyzer cell (SOEC) is used to investigate the effects of seawater electrolysis for hydrogen production through electrolyzing steam produced from simulated seawater bath. Steam electrolysis using an SOEC with its fuel electrode contaminated by sea salt is also investigated. Steam produced from seawater is found to be free of contaminants, which are present in the seawater. Similar electrochemical performance is observed from the polarization curves and impedance spectra when using steam produced from pure water and seawater. Their short-term degradation rates are similar, which are registered at 15% 1000 h-1 for both cases. For the case of direct sea salt contamination in an SOEC's fuel electrode, both the uncontaminated and contaminated cells exhibit rather similar performance as observed from the polarization curves and impedance spectra. The difference in ASR values from the polarization curves and impedance spectra between the uncontaminated and contaminated cell are all within a 10% range. Rather similar short-term degradation rates of 15% 1000 h-1 and 16% 1000 h-1 are recorded for the uncontaminated and contaminated cells, respectively. Post-mortem analysis shows that the sea salt impregnated into the cell has been vaporized at a typical SOEC operating temperature of 800 °C over the period of operation.

  13. Simultaneous treatment of washing, disinfection and sterilization using ultrasonic levitation, silver electrolysis and ozone oxidation.

    PubMed

    Ueda, Toyotoshi; Hara, Masanori; Odagawa, Ikumi; Shigihara, Takanori

    2009-03-01

    A new type of ultrasonic washer-disinfector-sterilizer, able to clean, disinfect and sterilize most kinds of reusable medical devices, has been developed by using the ultrasonic levitation function with umbrella-shape oscillators and ozone bubbling together with sterilization carried out by silver electrolysis. We have examined the biomedical and physicochemical performance of this instrument. Prokariotic and gram-negative Escherichia coli and eukariotic Saccharomyces cerevisiae were killed by silver electrolysis in 18 min and 1 min, respectively. Prokariotic and gram-positive Geobacillus stearothermophilus and Bacillus atrophaeus, which are most resistant to autoclave and gas sterilization, respectively, were killed by silver electrolysis within 20 min. Prokariotic and gram-negative Pseudomonas aeruginosa was also killed by silver electrolysis in 10 min. The intensity distribution of the ultrasonic levitation waves was homogeneous throughout the tank. The concentration of ozone gas was 2.57 mg/ kg. The concentration of dissolved silver ions was around 0.17 mg/L. The disulfide bond in proteins was confirmed to be destroyed by silver electrolysis.

  14. Improving electrokinetic microdevice stability by controlling electrolysis bubbles.

    PubMed

    Lee, Hwi Yong; Barber, Cedrick; Minerick, Adrienne R

    2014-07-01

    The voltage-operating window for many electrokinetic microdevices is limited by electrolysis gas bubbles that destabilize microfluidic system causing noise and irreproducible responses above ∼3 V DC and less than ∼1 kHz AC at 3 Vpp. Surfactant additives, SDS and Triton X-100, and an integrated semipermeable SnakeSkin® membrane were employed to control and assess electrolysis bubbles from platinum electrodes in a 180 by 70 μm, 10 mm long microchannel. Stabilized current responses at 100 V DC were observed with surfactant additives or SnakeSkin® barriers. Electrolysis bubble behaviors, visualized via video microscopy at the electrode surface and in the microchannels, were found to be influenced by surfactant function and SnakeSkin® barriers. Both SDS and Triton X-100 surfactants promoted smaller bubble diameters and faster bubble detachment from electrode surfaces via increasing gas solubility. In contrast, SnakeSkin® membranes enhanced natural convection and blocked bubbles from entering the microchannels and thus reduced current disturbances in the electric field. This data illustrated that electrode surface behaviors had substantially greater impacts on current stability than microbubbles within microchannels. Thus, physically blocking bubbles from microchannels is less effective than electrode functionalization approaches to stabilize electrokinetic microfluidic systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrolysis of Titanium Oxide to Titanium in Molten Cryolite Salt

    NASA Astrophysics Data System (ADS)

    Yan, Bennett Chek Kin

    Cost-effective production of titanium is becoming a challenge being tackled in the metallurgical and sustainability sector and technological advancements are required to effectively separate the metal from its oxide. The existing methods of Ti production are extremely energy intensive and slow. This proof-of-concept study investigated the feasibility of separating and capturing Ti from TiO2 through electrolysis after it has been dissolved in a cryolite bath at 1050°C. XRD and SEM/EDS results verified that TiO 2 is only partially reduced. However, addition of Al assisted in the precipitation of Ti in the form of TiAl and TiAl3. Parameters such as electrolysis time, concentration of TiO2, and electrolysis potential were explored. The experiments that were run for 4h, with TiO2 <15wt% of the total bath gave promising results as there was intermetallic formation without the excessive evaporation of cryolite.

  16. Highlights from Faraday Discussion 182: Solid Oxide Electrolysis: Fuels and Feedstocks from Water and Air, York, UK, July 2015.

    PubMed

    Stefan, Elena; Norby, Truls

    2016-01-31

    The rising importance of converting high peak electricity from renewables to fuels has urged field specialists to organize this Faraday Discussion on Solid Oxide Electrolysis. The topic is of essential interest in order to achieve a greater utilization of renewable energy and storage at higher densities.

  17. Assessment of water pipes durability under pressure surge

    NASA Astrophysics Data System (ADS)

    Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia

    2017-10-01

    Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.

  18. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X, Zhang; J. E. O'Brien; R. C. O'Brien

    2012-07-01

    High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupportedmore » and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.« less

  19. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1990-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

  20. Water Pressure Distribution on a Twin-Float Seaplane

    NASA Technical Reports Server (NTRS)

    Thompson, F L

    1930-01-01

    This is the second of a series of investigations to determine water pressure distribution on various types of seaplane floats and hulls, and was conducted on a twin-float seaplane. It consisted of measuring water pressures and accelerations on a TS-1 seaplane during numerous landing and taxiing maneuvers at various speeds and angles. The results show that water pressures as great as 10 lbs. per sq. in.may occur at the step in various maneuvers and that pressures of approximately the same magnitude occur at the stern and near the bow in hard pancake landings with the stern way down. At the other parts of the float the pressures are less and are usually zero or slightly negative for some distance abaft the step. A maximum negative pressure of 0.87 lb. Per square inch was measured immediately abaft the step. The maximum positive pressures have a duration of approximately one-twentieth to one-hundredth second at any given location and are distributed over a very limited area at any particular instant.

  1. Acidic Electrolyzed Water as a Novel Transmitting Medium for High Hydrostatic Pressure Reduction of Bacterial Loads on Shelled Fresh Shrimp

    PubMed Central

    Du, Suping; Zhang, Zhaohuan; Xiao, Lili; Lou, Yang; Pan, Yingjie; Zhao, Yong

    2016-01-01

    Acidic electrolyzed water (AEW), a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP) processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM) showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products. PMID:27014228

  2. Polarization characteristics of a low catalyst loading PEM water electrolyzer operating at elevated temperature

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Seok; Park, Hee-Young; Choi, Insoo; Cho, Min Kyung; Kim, Hyoung-Juhn; Yoo, Sung Jong; Henkensmeier, Dirk; Kim, Jin Young; Nam, Suk Woo; Park, Sehkyu; Lee, Kwan-Young; Jang, Jong Hyun

    2016-03-01

    The effect of temperature and pressure, and diffusion layer thickness is assessed on performance of a proton exchange membrane water electrolyzers (PEMWEs) with an ultralow iridium oxide (IrO2) loading (0.1 mg cm-2) anode prepared by electrodeposition and a Pt/C catalyzed cathode with a Pt loading of 0.4 mg cm-2. Increasing pressure to 2.5 bar at 120 °C enhances the water electrolysis current, so the anode electrodeposited with 0.1 mg cm-2 IrO2 gives a current density of 1.79 A cm-2 at 1.6 V, which is comparable to the conventional powder-type IrO2 electrode with 2.0 mg cm-2 at a temperature of 120 °C and pressure of 2.5 bar. The major factors for cell performances are rationalized in terms of overpotentials, water flow rates and thickness of diffusion layers, based on polarization behavior and ac-impedance response.

  3. Use of submersible pressure transducers in water-resources investigations

    USGS Publications Warehouse

    Freeman, Lawrence A.; Carpenter, Michael C.; Rosenberry, Donald O.; Rousseau, Joseph P.; Unger, Randy; McLean, John S.

    2004-01-01

    Submersible pressure transducers, developed in the early 1960s, have made the collection of water-level and pressure data much more convenient than former methods. Submersible pressure transducers, when combined with electronic data recorders have made it possible to collect continuous or nearly continuous water-level or pressure data from wells, piezometers, soil-moisture tensiometers, and surface water gages. These more frequent measurements have led to an improved understanding of the hydraulic processes in streams, soils, and aquifers. This manual describes the operational theory behind submersible pressure transducers and provides information about their use in hydrologic investigations conducted by the U.S. Geological Survey.

  4. Combined uranous nitrate production consisting of undivided electrolytic cell and divided electrolytic cell (Electrolysis → Electrolytic cell)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Zhongwei; Yan, Taihong; Zheng, Weifang

    2013-07-01

    The electrochemical reduction of uranyl nitrate is a green, mild way to make uranous ions. Undivided electrolyzers whose maintenance is less but their conversion ratio and current efficiency are low, have been chosen. However, at the beginning of undivided electrolysis, high current efficiency can also be maintained. Divided electrolyzers' conversion ratio and current efficiency is much higher because the re-oxidation of uranous on anode is avoided, but their maintenance costs are more, because in radioactive environment the membrane has to be changed after several operations. In this paper, a combined method of uranous production is proposed which consists of 2more » stages: undivided electrolysis (early stage) and divided electrolysis (late stage) to benefit from the advantages of both electrolysis modes. The performance of the combined method was tested. The results show that in combined mode, after 200 min long electrolysis (80 min undivided electrolysis and 120 min divided electrolysis), U(IV) yield can achieve 92.3% (500 ml feed, U 199 g/l, 72 cm{sup 2} cathode, 120 mA/cm{sup 2}). Compared with divided mode, about 1/3 working time in divided electrolyzer is reduced to achieve the same U(IV) yield. If 120 min long undivided electrolysis was taken, more than 1/2 working time can be reduced in divided electrolyzer, which means that about half of the maintenance cost can also be reduced. (authors)« less

  5. Applications of the compensating pressure theory of water transport.

    PubMed

    Canny, M

    1998-07-01

    Some predictions of the recently proposed theory of long-distance water transport in plants (the Compensating Pressure Theory) have been verified experimentally in sunflower leaves. The xylem sap cavitates early in the day under quite small water stress, and the compensating pressure P (applied as the tissue pressure of turgid cells) pushes water into embolized vessels, refilling them during active transpiration. The water potential, as measured by the pressure chamber or psychrometer, is not a measure of the pressure in the xylem, but (as predicted by the theory) a measure of the compensating pressure P. As transpiration increases, P is increased to provide more rapid embolism repair. In many leaf petioles this increase in P is achieved by the hydrolysis of starch in the starch sheath to soluble sugars. At night P falls as starch is reformed. A hypothesis is proposed to explain these observations by pressure-driven reverse osmosis of water from the ground parenchyma of the petiole. Similar processes occur in roots and are manifested as root pressure. The theory requires a pump to transfer water from the soil into the root xylem. A mechanism is proposed by which this pump may function, in which the endodermis acts as a one-way valve and a pressure-confining barrier. Rays and xylem parenchyma of wood act like the xylem parenchyma of petioles and roots to repair embolisms in trees. The postulated root pump permits a re-appraisal of the work done by evaporation during transpiration, leading to the proposal that in tall trees there is no hydrostatic gradient to be overcome in lifting water. Some published observations are re-interpreted in terms of the theory: doubt is cast on the validity of measurements of hydraulic conductance of wood; vulnerability curves are found not to measure the cavitation threshold of water in the xylem, but the osmotic pressure of the xylem parenchyma; if measures of xylem pressure and of hydraulic conductance are both suspect, the accepted

  6. Degradation of 3,3'-iminobis-propanenitrile in aqueous solution by Fe(0)/GAC micro-electrolysis system.

    PubMed

    Lai, Bo; Zhou, Yuexi; Yang, Ping; Yang, Jinghui; Wang, Juling

    2013-01-01

    The degradation of 3,3'-iminobis-propanenitrile was investigated using the Fe(0)/GAC micro-electrolysis system. Effects of influent pH value, Fe(0)/GAC ratio and granular activated carbon (GAC) adsorption on the removal efficiency of the pollutant were studied in the Fe(0)/GAC micro-electrolysis system. The degradation of 3,3'-iminobis-propanenitrile was affected by influent pH, and a decrease of the influent pH values from 8.0 to 4.0 led to the increase of degradation efficiency. Granular activated carbon was added as cathode to form macroscopic galvanic cells between Fe(0) and GAC and enhance the current efficiency of the Fe(0)/GAC micro-electrolysis system. The GAC could only adsorb the pollutant and provide buffer capacity for the Fe(0)/GAC micro-electrolysis system, and the macroscopic galvanic cells of the Fe(0)/GAC micro-electrolysis system played a leading role in degradation of 3,3'-iminobis-propanenitrile. With the analysis of the degradation products with GC-MS, possible reaction pathway for the degradation of 3,3'-iminobis-propanenitrile by the Fe(0)/GAC micro-electrolysis system was suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Chemical oxygen demand removal efficiency and limited factors study of aminosilicone polymers in a water emulsion by iron-carbon micro-electrolysis.

    PubMed

    Yang, Shangyuan; Liang, Zhiwei; Yu, Huadong; Wang, Yunlong; Chen, Yingxu

    2014-02-01

    Micro-electrolysis was applied in the present study to investigate the effect of pH, iron-carbon mass ratio, contact time, and treatment batch on the removal efficiency of chemical oxygen demand (COD) within an aminosilicone emulsion. The results exhibited that the removal efficiency of COD decreased linearly with the batch increase, and this tendency was consistent under the various conditions. The adsorption of activated carbons contributes a large portion to the elimination of COD within the aminosilicone emulsion. The oxidation action of iron-carbon micro-electrolysis was proven and the aminosilicone emulsion's COD removal contribution was approximately 16%. Aminosilicone polymers were adsorbed on the surface of activated carbons and iron chips, which contributes to the decline of COD removal efficiency and limits the contribution of oxidation action.

  8. High pressure water jet mining machine

    DOEpatents

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  9. Thermal Measurement during Electrolysis of Pd-Ni Thin-film -Cathodes in Li2SO4/H2O Solution

    NASA Astrophysics Data System (ADS)

    Castano, C. H.; Lipson, A. G.; S-O, Kim; Miley, G. H.

    2002-03-01

    Using LENR - open type calorimeters, measurements of excess heat production were carried out during electrolysis in Li_2SO_4/H_2O solution with a Pt-anode and Pd-Ni thin film cathodes (2000-8000 Åthick) sputtered on the different dielectric substrates. In order to accurately evaluate actual performance during electrolysis runs in the open-type calorimeter used, considering effects of heat convection, bubbling and possible H_2+O2 recombination, smooth Pt sheets were used as cathodes. Pt provides a reference since it does not produce excess heat in the light water electrolyte. To increase the accuracy of measurements the water dissociation potential was determined for each cathode taking into account its individual over-voltage value. It is found that this design for the Pd-Ni cathodes resulted in the excess heat production of ~ 20-25 % of input power, equivalent to ~300 mW. In cases of the Pd/Ni- film fracture (or detachment from substrate) no excess heat was detected, providing an added reference point. These experiments plus use of optimized films will be presented.

  10. Water Delivery--It's All about Pressure

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2005-01-01

    There is a great deal of wisdom in the old saying "water seeks its level." In fact, the concept has bearing on a very practical side of human life as well, since the public water delivery system is based on it. In this article, the author discusses the concept behind water pressure and describes how the water systems work based on this concept.…

  11. Simulation of isoelectro focusing processes. [stationary electrolysis of charged species

    NASA Technical Reports Server (NTRS)

    Palusinski, O. A.

    1980-01-01

    This paper presents the computer implementation of a model for the stationary electrolysis of two or more charged species. This has specific application to the technique of isoelectric focussing, in which the stationary electrolysis of ampholytes is used to generate a pH gradient useful for the separation of proteins, peptides and other biomolecules. The fundamental equations describing the process are given. These equations are transformed to a form suitable for digital computer implementation. Some results of computer simulation are described and compared to data obtained in the laboratory.

  12. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2014-06-01

    Microbial electrolysis cells (MECs) are an electricity-mediated microbial bioelectrochemical technology, which is originally developed for high-efficiency biological hydrogen production from waste streams. Compared to traditional biological technologies, MECs can overcome thermodynamic limitations and achieve high-yield hydrogen production from wide range of organic matters at relatively mild conditions. This approach greatly reduces the electric energy cost for hydrogen production in contrast to direct water electrolysis. In addition to hydrogen production, MECs may also support several energetically unfavorable biological/chemical reactions. This unique advantage of MECs has led to several alternative applications such as chemicals synthesis, recalcitrant pollutants removal, resources recovery, bioelectrochemical research platform and biosensors, which have greatly broaden the application scopes of MECs. MECs are becoming a versatile platform technology and offer a new solution for emerging environmental issues related to waste streams treatment and energy and resource recovery. Different from previous reviews that mainly focus on hydrogen production, this paper provides an up-to-date review of all the new applications of MECs and their resulting performance, current challenges and prospects of future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes.

    PubMed

    Rozendal, René A; Hamelers, Hubertus V M; Molenkamp, Redmar J; Buisman, Cees J N

    2007-05-01

    In this paper hydrogen production through biocatalyzed electrolysis was studied for the first time in a single chamber configuration. Single chamber biocatalyzed electrolysis was tested in two configurations: (i) with a cation exchange membrane (CEM) and (ii) with an anion exchange membrane (AEM). Both configurations performed comparably and produced over 0.3 m3 H2/m3 reactor liquid volume/day at 1.0 V applied voltage (overall hydrogen efficiencies around 23%). Analysis of the water that permeated through the membrane revealed that a large part of potential losses in the system were associated with a pH gradient across the membrane (CEM DeltapH=6.4; AEM DeltapH=4.4). These pH gradient associated potential losses were lower in the AEM configuration (CEM 0.38 V; AEM 0.26 V) as a result of its alternative ion transport properties. This benefit of the AEM, however, was counteracted by the higher cathode overpotentials occurring in the AEM configuration (CEM 0.12 V at 2.39 A/m2; AEM 0.27 V at 2.15 A/m2) as a result of a less effective electroless plating method for the AEM membrane electrode assembly (MEA).

  14. Performance Evaluation of Pressure Transducers for Water Impacts

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  15. High concentration of H2 and O2 nanobubbles in water electrolytes and their collective optical effect

    NASA Astrophysics Data System (ADS)

    Postnikov, A. V.; Uvarov, I. V.; Lokhanin, M. V.; Svetovoy, V. B.

    2017-09-01

    Water electrolysis with a fast change of the polarity pumps in the liquid a huge amount of hydrogen and oxygen gases. In contrast with the DC electrolysis the gases do not form visible bubbles but change significantly the refractive index of the liquid nearby the electrodes from n = 1.35 to the values smaller than 1.19. The decrease of n is registered as distortion of the images of the electrodes. We argue that all the gas is collected in H2 and O2 nanobubbles with a size smaller than 200 nm. The concentration of nanobubbles with a size of 100 nm is estimated as 1021 m-3. Due to a significant contribution from the Laplace pressure the effective supersaturation reaches 500 for hydrogen and 150 for oxygen.

  16. Bias polarization study of steam electrolysis by composite oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ/BaCe0.4Zr0.4Y0.2O3-δ

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Shaula, Aliaksandr; Pukazhselvan, D.; Ramasamy, Devaraj; Deng, Jiguang; da Silva, E. L.; Duarte, Ricardo; Saraiva, Jorge A.

    2017-12-01

    The polarization behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaCe0.4Zr0.4Y0.2O3-δ (BSCF-BCZY) electrode under steam electrolysis conditions was studied in detail. The composite oxygen electrode supported by BCZY electrolyzer has been assessed as a function of temperature (T), water vapor partial pressures (pH2O), and bias polarization voltage for electrodes of comparable microstructure. The Electrochemical impedance spectra show two depressed arcs in general without bias polarization. And the electrode resistance became smaller with the increase of the bias polarization under the same water vapor partial pressures. The total resistance of the electrode was shown to be significantly affected by temperature, with the same level of pH2O and bias polarization voltage. This result highlights BSCF-BCZY as an effective oxygen electrode under moderate polarization and pH2O conditions.

  17. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    NASA Astrophysics Data System (ADS)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-04-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a- Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two ''control plates'' are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (glass/water) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  18. Response of the water status of soybean to changes in soil water potentials controlled by the water pressure in microporous tubes.

    PubMed

    Steinberg, S L; Henninger, D L

    1997-12-01

    Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.

  19. Response of the water status of soybean to changes in soil water potentials controlled by the water pressure in microporous tubes

    NASA Technical Reports Server (NTRS)

    Steinberg, S. L.; Henninger, D. L.

    1997-01-01

    Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.

  20. Carbon dioxide electrolysis using a ceramic electrolyte. [for space processing

    NASA Technical Reports Server (NTRS)

    Erstfeld, T. E.; Mullins, O., Jr.; Williams, R. J.

    1979-01-01

    This paper discusses the results of an experimental study of the electrical aspects of carbon dioxide electrolysis using a ceramic electrolyte. The electrolyte compositions used in this study are 8% Y2O3 stabilized ZrO2, 7.5% CaO stabilized ZrO2, and 5% Y2O3 stabilized ThO2. Results indicate that the 8% Y2O3 stabilized ZrO2 is the best material to use for electrolysis, in terms of current as a function of voltage and temperature, and in terms of efficiency of oxide ion flow through it. The poorest results were obtained with the 5% Y2O3 stabilized ThO2 composition. An electrolysis system which might be employed to reclaim oxygen and carbon from effluents of space manufacturing, assuming that an industry would have to electrolyze 258,000 tonnes of CO2 per year, is predicted to require a total cell area of 110,000 sq m of 1 mm thickness and electrical capacity of 441 MW.

  1. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Zhang; J. E. O'Brien; R. C. O'Brien

    2012-07-01

    An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cellmore » and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.« less

  2. Electrolysis for corneal opacities in a young patient with superficial variant of granular corneal dystrophy (Reis-Bücklers corneal dystrophy).

    PubMed

    Kamoi, Mizuka; Mashima, Yukihiko; Kawashima, Motoko; Tsubota, Kazuo

    2005-06-01

    To report the efficacy of electrolysis as a treatment of corneal opacities in a young patient with the superficial variant of granular corneal dystrophy. Interventional case report. An 11-year-old boy presented with subepithelial opacities in both eyes. His visual acuity was 0.2 in the left eye; he received corneal electrolysis under topical anesthesia. The electrolysis, which required only 5 minutes, resulted in the disappearance of the subepithelial opacities. His visual acuity improved to 0.4 on the next day and was 1.0 eight months later. The corneal curvature and thickness were not altered by the electrolysis. Corneal electrolysis proved to be an effective treatment for subepithelial opacities, and we recommend electrolysis as an effective and simple treatment for young patients with SGCD.

  3. Where Did the Water Go? Boyle's Law and Pressurized Diaphragm Water Tanks

    NASA Astrophysics Data System (ADS)

    Brimhall, James; Naga, Sundar

    2007-03-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be close to 50 gallons. However, only a surprisingly small percentage of the total tank volume is available to provide water that can be drawn from the tank before the pump must cycle back on. Boyle's law ( PV is constant) provides mathematical insight into the workings of this type of tank, including predictions of the quantities of available water resulting from different initial conditions of the water tank system.

  4. Acceleration Techniques for Recombination of Gases in Electrolysis Microactuators with Nafion®-Coated Electrocatalyst

    PubMed Central

    Sheybani, Roya; Meng, Ellis

    2015-01-01

    Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling. PMID:26251561

  5. The Application of Electrolysis Method to Reduce Ammonia Content in Liquid Waste of Tofu

    NASA Astrophysics Data System (ADS)

    Prabowo, S.; Nurlaili; Muflihah; Tindangen, R. A.; Sukemi

    2018-04-01

    Ammonia (NH3) is known as an important chemical in industrial sector. It is also known as harmful pollutant. Ammonia is a weak base, a gas in room temperature and has 330°C of BP. The aims of research were to investigate the effect of voltage (4 to 12 volt), time (1 to 30 min.), concentration of ammonia (0.01 to 0.05 M) and potassium hydroxide concentration on the ammonia content in aqueous solution by using electrolysis method with platinum as electrodes. The ammonia content was analysed by using UV-Vis spectrophotometer. The result showed that an increment in the voltage, time and potassium hydroxide concentration could increase the amount of converted ammonia. The optimum condition to reduce the ammonia content by using electrolysis method was 10 V of electrical voltage, 25 min. of electrolysis time and 0.04 M of potassium hydroxide concentration. At the optimum condition, the electrolysis method could decrease 81.13% of ammonia content in liquid waste of tofu.

  6. Treatment of oilfield produced water using Fe/C micro-electrolysis assisted by zero-valent copper and zero-valent aluminium.

    PubMed

    Zhang, Qi

    2015-01-01

    In this study, the Fe/Cu/C and Fe/Al/C inner micro-electrolysis systems were used to treat actual oilfield produced water to evaluate the feasibility of the technology. Effects of reaction time, pH value, the dosage of metals and activated carbon, and Fe:C mass ratio on the treatment efficiency of wastewater were studied. The results showed that the optimum conditions were reaction time 120 min, initial solution pH 4.0, Fe dosage 13.3 g/L, activated carbon dosage 6.7 g/L, Cu dosage 2.0 g/L or Al dosage 1.0 g/L. Under the optimum conditions, the removal efficiencies of chemical oxygen demand (COD) were 39.3%, 49.7% and 52.6% in the Fe/C, Fe/Cu/C and Fe/Al/C processes, respectively. Meanwhile, the ratio of five-day biochemical oxygen demand to COD was raised from 0.18 to above 0.35, which created favourable conditions for the subsequent biological treatment. All these led to an easy maintenance and low operational cost.

  7. Hydrogen production from switchgrass via an integrated pyrolysis-microbial electrolysis process.

    PubMed

    Lewis, A J; Ren, S; Ye, X; Kim, P; Labbe, N; Borole, A P

    2015-11-01

    A new approach to hydrogen production using an integrated pyrolysis-microbial electrolysis process is described. The aqueous stream generated during pyrolysis of switchgrass was used as a substrate for hydrogen production in a microbial electrolysis cell, achieving a maximum hydrogen production rate of 4.3 L H2/L anode-day at a loading of 10 g COD/L-anode-day. Hydrogen yields ranged from 50±3.2% to 76±0.5% while anode Coulombic efficiency ranged from 54±6.5% to 96±0.21%, respectively. Significant conversion of furfural, organic acids and phenolic molecules was observed under both batch and continuous conditions. The electrical and overall energy efficiency ranged from 149-175% and 48-63%, respectively. The results demonstrate the potential of the pyrolysis-microbial electrolysis process as a sustainable and efficient route for production of renewable hydrogen with significant implications for hydrocarbon production from biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Hydrogen production from switchgrass via a hybrid pyrolysis-microbial electrolysis process

    DOE PAGES

    Lewis, Alex J.; Ren, Shoujie; Ye, Philip; ...

    2015-06-30

    A new approach to hydrogen production using a hybrid pyrolysis-microbial electrolysis process is described. The aqueous stream generated during pyrolysis of switchgrass was used as a substrate for hydrogen production in a microbial electrolysis cell, achieving a maximum hydrogen production rate of 4.3 L H2/L-day at a loading of 10 g COD/L-anode-day. Hydrogen yields ranged from 50 3.2% to76 0.5% while anode coulombic efficiency ranged from 54 6.5% to 96 0.21%, respectively. Significant conversion of furfural, organic acids and phenolic molecules was observed under both batch and continuous conditions. The electrical and overall energy efficiency ranged from 149-175% and 48-63%,more » respectively. The results demonstrate the potential of the pyrolysis-microbial electrolysis process as a sustainable and efficient route for production of renewable hydrogen with significant implications for hydrocarbon production from biomass.« less

  9. Intensified nitrogen and phosphorus removal in a novel electrolysis-integrated tidal flow constructed wetland system.

    PubMed

    Ju, Xinxin; Wu, Shubiao; Zhang, Yansheng; Dong, Renjie

    2014-08-01

    A novel electrolysis-integrated tidal flow constructed wetland (CW) system was developed in this study. The dynamics of intensified nitrogen and phosphorus removal and that of hydrogen sulphide control were evaluated. Ammonium removal of up to 80% was achieved with an inflow concentration of 60 mg/L in wetland systems with and without electrolysis integration. Effluent nitrate concentration decreased from 2 mg/L to less than 0.5 mg/L with the decrease in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2) in the electrolysis-integrated wetland system, thus indicating that the current intensity of electrolysis plays an important role in nitrogen transformations. Phosphorus removal was significantly enhanced, exceeding 95% in the electrolysis-integrated CW system because of the in-situ formation of a ferric iron coagulant through the electro-dissolution of a sacrificial iron anode. Moreover, the electrolyzed wetland system effectively inhibits sulphide accumulation as a result of a sulphide precipitation coupled with ferrous-iron electro-dissolution and/or an inhibition of bacterial sulphate reduction under increased aerobic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. High-pressure-induced water penetration into 3-­isopropylmalate dehydrogenase

    PubMed Central

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-01-01

    Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH. PMID:22349232

  11. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li

    2018-04-01

    High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.

  12. Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode.

    PubMed

    Yuan, Yating; Li, Wei; Chen, Hualin; Wang, Zhiyong; Jin, Xianbo; Chen, George Z

    2016-08-15

    Electrolysis of solid metal oxides has been demonstrated in MgCl2-NaCl-KCl melt at 700 °C taking the electrolysis of Ta2O5 as an example. Both the cathodic and anodic processes have been investigated using cyclic voltammetry, and potentiostatic and constant voltage electrolysis, with the cathodic products analysed by XRD and SEM and the anodic products by GC. Fast electrolysis of Ta2O5 against a graphite anode has been realized at a cell voltage of 2 V, or a total overpotential of about 400 mV. The energy consumption was about 1 kW h kgTa(-1) with a nearly 100% Ta recovery. The cathodic product was nanometer Ta powder with sizes of about 50 nm. The main anodic product was Cl2 gas, together with about 1 mol% O2 gas and trace amounts of CO. The graphite anode was found to be an excellent inert anode. These results promise an environmentally-friendly and energy efficient method for metal extraction by electrolysis of metal oxides in MgCl2 based molten salts.

  13. The Use of Multi-Reactor Cascade Plasma Electrolysis for Linear Alkylbenzene Sulfonate Degradation

    NASA Astrophysics Data System (ADS)

    Saksono, Nelson; Ibrahim; Zainah; Budikania, Trisutanti

    2018-03-01

    Plasma electrolysis is a method that can produce large amounts of hydroxyl radicals to degrade organic waste. The purpose of this study is to improve the effectiveness of Linear alkylbenzene sulfonate (LAS) degradation by using multi-reactor cascade plasma electrolysis. The reactor which operated in circulation system, using 3 reactors series flow and 6 L of LAS with initial concentration of 100 ppm. The results show that the LAS degradation can be improved multi-reactor cascade plasma electrolysis. The greatest LAS degradation is achieved up to 81.91% with energy consumption of 2227.34 kJ/mmol that is obtained during 120 minutes by using 600 Volt, 0.03 M of KOH, and 0.5 cm of the anode depth.

  14. Renewable Electrolysis | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    variable-input power conditions Designing and developing shared power-electronics packages and controllers Development NREL develops power electronics interfaces for renewable electrolysis systems to characterize and constant voltage DC bus and power electronics to regulate power output and to convert wild alternating

  15. Water nanoelectrolysis: A simple model

    NASA Astrophysics Data System (ADS)

    Olives, Juan; Hammadi, Zoubida; Morin, Roger; Lapena, Laurent

    2017-12-01

    A simple model of water nanoelectrolysis—defined as the nanolocalization at a single point of any electrolysis phenomenon—is presented. It is based on the electron tunneling assisted by the electric field through the thin film of water molecules (˜0.3 nm thick) at the surface of a tip-shaped nanoelectrode (micrometric to nanometric curvature radius at the apex). By applying, e.g., an electric potential V1 during a finite time t1, and then the potential -V1 during the same time t1, we show that there are three distinct regions in the plane (t1, V1): one for the nanolocalization (at the apex of the nanoelectrode) of the electrolysis oxidation reaction, the second one for the nanolocalization of the reduction reaction, and the third one for the nanolocalization of the production of bubbles. These parameters t1 and V1 completely control the time at which the electrolysis reaction (of oxidation or reduction) begins, the duration of this reaction, the electrolysis current intensity (i.e., the tunneling current), the number of produced O2 or H2 molecules, and the radius of the nanolocalized bubbles. The model is in good agreement with our experiments.

  16. Evaluation of pressurized water cleaning systems for hardware refurbishment

    NASA Technical Reports Server (NTRS)

    Dillard, Terry W.; Deweese, Charles D.; Hoppe, David T.; Vickers, John H.; Swenson, Gary J.; Hutchens, Dale E.

    1995-01-01

    Historically, refurbishment processes for RSRM motor cases and components have employed environmentally harmful materials. Specifically, vapor degreasing processes consume and emit large amounts of ozone depleting compounds. This program evaluates the use of pressurized water cleaning systems as a replacement for the vapor degreasing process. Tests have been conducted to determine if high pressure water washing, without any form of additive cleaner, is a viable candidate for replacing vapor degreasing processes. This paper discusses the findings thus far of Engineering Test Plan - 1168 (ETP-1168), 'Evaluation of Pressurized Water Cleaning Systems for Hardware Refurbishment.'

  17. The phase diagram of water at negative pressures: virtual ices.

    PubMed

    Conde, M M; Vega, C; Tribello, G A; Slater, B

    2009-07-21

    The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.

  18. Electrolysis stimulates creatine transport and transporter cell surface expression in incubated mouse skeletal muscle: potential role of ROS.

    PubMed

    Derave, Wim; Straumann, Nadine; Olek, Robert A; Hespel, Peter

    2006-12-01

    Electrical field stimulation of isolated, incubated rodent skeletal muscles is a frequently used model to study the effects of contractions on muscle metabolism. In this study, this model was used to investigate the effects of electrically stimulated contractions on creatine transport. Soleus and extensor digitorum longus muscles of male NMRI mice (35-50 g) were incubated in an oxygenated Krebs buffer between platinum electrodes. Muscles were exposed to [(14)C]creatine for 30 min after either 12 min of repeated tetanic isometric contractions (contractions) or electrical stimulation of only the buffer before incubation of the muscle (electrolysis). Electrolysis was also investigated in the presence of the reactive oxygen species (ROS) scavenging enzymes superoxide dismutase (SOD) and catalase. Both contractions and (to a lesser degree) electrolysis stimulated creatine transport severalfold over basal. The amount of electrolysis, but not contractile activity, induced (determined) creatine transport stimulation. Incubation with SOD and catalase at 100 and 200 U/ml decreased electrolysis-induced creatine transport by approximately 50 and approximately 100%, respectively. The electrolysis effects on creatine uptake were completely inhibited by beta-guanidino propionic acid, a competitive inhibitor of (creatine for) the creatine transporter (CRT), and were accompanied by increased cell surface expression of CRT. Muscle glucose transport was not affected by electrolysis. The present results indicate that electrical field stimulation of incubated mouse muscles, independently of contractions per se, stimulates creatine transport by a mechanism that depends on electrolysis-induced formation of ROS in the incubation buffer. The increased creatine uptake is paralleled by an increased cell surface expression of the creatine transporter.

  19. Lattuce growth and water use in closed, low pressure environment

    NASA Astrophysics Data System (ADS)

    Fowler, P.; Rygalov, V.; Wheeler, R.; Bucklin, R.; Schumacher, N.

    Lettuce (Lactuca sativa L.) cv. Waldmann's Green plants were grown in a clear, hemispherical enclosure at a reduced atmospheric pressure to study the potential for using low pressure greenhouses on planetary missions. The atmosphere was maintained at 25 kPa total pressure, with ˜20 kPa of N_2, ˜5 kPa of O_2, and between 0.1 and 0.2 kPa of CO_2, supplied by CO_2 injection and a feed-back control system. A closed water cycle was maintained inside the low pressure greenhouse by recycling condensed humidity back to the plants, and only adding external water to offset water vapor leakage and uptake in the plant tissue. All plants were grown in a granular, arcillite medium (calcined clay chips), with nutrients supplied by adding time-release fertilizer (Osmocote 20-20-20). Plants were harvested after 45 days, averaging 237 g fresh mass, and 23.7 g dry mass. No obvious adverse effects were noted on the plants, with the exception of some minor "tip-burn" injury to some leaves. Additional studies are planned to compare growth and water flux (evapotranspiration) rates at higher pressures. Preliminary results suggest that water fluxes should be lower at the higher pressures provided equal vapor pressure deficits can be maintained. The results suggest that vegetative crops such as lettuce should grow well at reduced pressures if adequate water, nutrients, and CO_2 are provided.

  20. Pressure: the politechnics of water supply in Mumbai.

    PubMed

    Anand, Nikhil

    2011-01-01

    In Mumbai, most all residents are delivered their daily supply of water for a few hours every day, on a water supply schedule. Subject to a more precarious supply than the city's upper-class residents, the city's settlers have to consistently demand that their water come on “time” and with “pressure.” Taking pressure seriously as both a social and natural force, in this article I focus on the ways in which settlers mobilize the pressures of politics, pumps, and pipes to get water. I show how these practices not only allow settlers to live in the city, but also produce what I call hydraulic citizenship—a form of belonging to the city made by effective political and technical connections to the city's infrastructure. Yet, not all settlers are able to get water from the city water department. The outcomes of settlers' efforts to access water depend on a complex matrix of socionatural relations that settlers make with city engineers and their hydraulic infrastructure. I show how these arrangements describe and produce the cultural politics of water in Mumbai. By focusing on the ways in which residents in a predominantly Muslim settlement draw water despite the state's neglect, I conclude by pointing to the indeterminacy of water, and the ways in which its seepage and leakage make different kinds of politics and publics possible in the city.

  1. Production of anhydrous aluminum chloride composition and process for electrolysis thereof

    DOEpatents

    Vandegrift, George F.; Krumpelt, Michael; Horwitz, E. Philip

    1983-01-01

    A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  2. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    PubMed

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Corneal electrolysis for recurrence of corneal stromal dystrophy after keratoplasty

    PubMed Central

    Mashima, Y; Kawai, M; Yamada, M

    2002-01-01

    Aims: To evaluate corneal electrolysis as a treatment for recurrent diffuse corneal opacities at the host-graft interface of the stroma or at the subepithelial region in two types of granular corneal dystrophy (GCD). Methods: Recurrence developed at the host-graft interface of the stroma after lamellar keratoplasty in a patient with Avellino corneal dystrophy (ACD). At surgery, the deep aspect of the graft in this patient was partially separated from host tissue to expose the deposits, with one third of the host-graft junction left intact. The graft was everted, and electrolysis was applied directly to remove the deposits attached to both surfaces of the host and the graft. Then the graft was returned to its place and sutured. In two patients with homozygous ACD and one patient with the superficial variant of GCD, diffuse subepithelial opacities developed following penetrating keratoplasty. Electrolysis was applied directly to the corneal surface. Results: Deposits at the host-graft interface of the stroma and in the subepithelial region disappeared following treatment, and vision recovered in all patients. Conclusions: This method is a simple, easy, and inexpensive way to remove deposits that recur after lamellar or penetrating keratoplasty. PMID:11864880

  4. Corneal electrolysis for recurrence of corneal stromal dystrophy after keratoplasty.

    PubMed

    Mashima, Y; Kawai, M; Yamada, M

    2002-03-01

    To evaluate corneal electrolysis as a treatment for recurrent diffuse corneal opacities at the host-graft interface of the stroma or at the subepithelial region in two types of granular corneal dystrophy (GCD). Recurrence developed at the host-graft interface of the stroma after lamellar keratoplasty in a patient with Avellino corneal dystrophy (ACD). At surgery, the deep aspect of the graft in this patient was partially separated from host tissue to expose the deposits, with one third of the host-graft junction left intact. The graft was everted, and electrolysis was applied directly to remove the deposits attached to both surfaces of the host and the graft. Then the graft was returned to its place and sutured. In two patients with homozygous ACD and one patient with the superficial variant of GCD, diffuse subepithelial opacities developed following penetrating keratoplasty. Electrolysis was applied directly to the corneal surface. Deposits at the host-graft interface of the stroma and in the subepithelial region disappeared following treatment, and vision recovered in all patients. This method is a simple, easy, and inexpensive way to remove deposits that recur after lamellar or penetrating keratoplasty.

  5. Natural gas anodes for aluminium electrolysis in molten fluorides.

    PubMed

    Haarberg, Geir Martin; Khalaghi, Babak; Mokkelbost, Tommy

    2016-08-15

    Industrial primary production of aluminium has been developed and improved over more than 100 years. The molten salt electrolysis process is still suffering from low energy efficiency and considerable emissions of greenhouse gases (CO2 and PFC). A new concept has been suggested where methane is supplied through the anode so that the CO2 emissions may be reduced significantly, the PFC emissions may be eliminated and the energy consumption may decrease significantly. Porous carbon anodes made from different graphite grades were studied in controlled laboratory experiments. The anode potential, the anode carbon consumption and the level of HF gas above the electrolyte were measured during electrolysis. In some cases it was found that the methane oxidation was effectively participating in the anode process.

  6. Energy-Efficient and Environmentally Friendly Solid Oxide Membrane Electrolysis Process for Magnesium Oxide Reduction: Experiment and Modeling

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.

    2014-06-01

    This paper reports a solid oxide membrane (SOM) electrolysis experiment using an LSM(La0.8Sr0.2MnO3-δ)-Inconel inert anode current collector for production of magnesium and oxygen directly from magnesium oxide at 1423 K (1150 °C). The electrochemical performance of the SOM cell was evaluated by means of various electrochemical techniques including electrochemical impedance spectroscopy, potentiodynamic scan, and electrolysis. Electronic transference numbers of the flux were measured to assess the magnesium dissolution in the flux during SOM electrolysis. The effects of magnesium solubility in the flux on the current efficiency and the SOM stability during electrolysis are discussed. An inverse correlation between the electronic transference number of the flux and the current efficiency of the SOM electrolysis was observed. Based on the experimental results, a new equivalent circuit of the SOM electrolysis process is presented. A general electrochemical polarization model of SOM process for magnesium and oxygen gas production is developed, and the maximum allowable applied potential to avoid zirconia dissociation is calculated as well. The modeling results suggest that a high electronic resistance of the flux and a relatively low electronic resistance of SOM are required to achieve membrane stability, high current efficiency, and high production rates of magnesium and oxygen.

  7. [General and occupational morbidity in workers engaged into electrolysis nickel production in Transpolar Kolsky area].

    PubMed

    Tarnovskaia, E V; Siurin, S A; Chashchin, V P

    2010-01-01

    Findings are that occupational factors in nickel electrolysis workshops induce respiratory and peripheral nervous system diseases. Electrolysis workers demonstrate the highest prevalence and risk of occupational diseases. The authors make a conclusion on necessity to improve prophylactic methods for occupational disorders in these workers.

  8. Communication—Electrolysis at High Efficiency with Remarkable Hydrogen Production Rates

    DOE PAGES

    Wood, Anthony; He, Hongpeng; Joia, Tahir; ...

    2016-01-20

    Solid Oxide Electrolysis (SOE) can be used to produce hydrogen with very high efficiencies at remarkable hydrogen production rates. Through microstructural and compositional modification, conventional low cost Solid Oxide Fuel Cell (SOFC) materials have been used to create a Solid Oxide Electrolysis Cell (SOEC) that can achieve remarkable current density at cell voltages allowing higher conversion efficiency than current commercial electrolysers. Current densities in excess of 6 A/cm2 have been achieved at 800°C with a cell voltage of < 1.67 V. This cell shows a more than 3-fold increase in hydrogen production rate at higher efficiency than established commercial electrolysers.

  9. Ultrasound-Guided Percutaneous Electrolysis and Eccentric Exercises for Subacromial Pain Syndrome: A Randomized Clinical Trial

    PubMed Central

    Arias-Buría, José L.; Truyols-Domínguez, Sebastián; Valero-Alcaide, Raquel; Salom-Moreno, Jaime; Atín-Arratibel, María A.; Fernández-de-las-Peñas, César

    2015-01-01

    Objective. To compare effects of ultrasound- (US-) guided percutaneous electrolysis combined with an eccentric exercise program of the rotator cuff muscles in subacromial pain syndrome. Methods. Thirty-six patients were randomized and assigned into US-guided percutaneous electrolysis (n = 17) group or exercise (n = 19) group. Patients were asked to perform an eccentric exercise program of the rotator cuff muscles twice every day for 4 weeks. Participants assigned to US-guided percutaneous electrolysis group also received the application of galvanic current through acupuncture needle on each session once a week (total 4 sessions). Shoulder pain (NPRS) and disability (DASH) were assessed at baseline, after 2 sessions, and 1 week after the last session. Results. The ANOVA revealed significant Group∗Time interactions for shoulder pain and disability (all, P < 0.01): individuals receiving US-guided percutaneous electrolysis combined with the eccentric exercises experienced greater improvement than those receiving eccentric exercise alone. Conclusions. US-guided percutaneous electrolysis combined with eccentric exercises resulted in small better outcomes at short term compared to when only eccentric exercises were applied in subacromial pain syndrome. The effect was statistically and clinically significant for shoulder pain but below minimal clinical difference for function. Future studies should investigate the long-term effects and potential placebo effect of this intervention. PMID:26649058

  10. In Situ Raman Study of Liquid Water at High Pressure.

    PubMed

    Romanenko, Alexandr V; Rashchenko, Sergey V; Goryainov, Sergey V; Likhacheva, Anna Yu; Korsakov, Andrey V

    2018-06-01

    A pressure shift of Raman band of liquid water (H 2 O) may be an important tool for measuring residual pressures in mineral inclusions, in situ barometry in high-pressure cells, and as an indicator of pressure-induced structural transitions in H 2 O. However, there was no consensus as to how the broad and asymmetric water Raman band should be quantitatively described, which has led to fundamental inconsistencies between reported data. In order to overcome this issue, we measured Raman spectra of H 2 O in situ up to 1.2 GPa using a diamond anvil cell, and use them to test different approaches proposed for the description of the water Raman band. We found that the most physically meaningful description of water Raman band is the decomposition into a linear background and three Gaussian components, associated with differently H-bonded H 2 O molecules. Two of these components demonstrate a pronounced anomaly in pressure shift near 0.4 GPa, supporting ideas of structural transition in H 2 O at this pressure. The most convenient approach for pressure calibration is the use of "a linear background + one Gaussian" decomposition (the pressure can be measured using the formula P (GPa) = -0.0317(3)·Δν G (cm -1 ), where Δν G represents the difference between the position of water Raman band, fitted as a single Gaussian, in measured spectrum and spectrum at ambient pressure).

  11. Water dynamics and retrogradation of ultrahigh pressurized wheat starch.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Baik, Moo-Yeol

    2006-09-06

    The water dynamics and retrogradation kinetics behavior of gelatinized wheat starch by either ultrahigh pressure (UHP) processing or heat are investigated. Wheat starch completely gelatinized in the condition of 90, 000 psi at 25 degrees C for 30 min (pressurized gel) or 100 degrees C for 30 min (heated gel). The physical properties of the wheat starches were characterized in terms of proton relaxation times (T2 times) measured using time-domain nuclear magnetic resonance spectroscopy and evaluated using commercially available continuous distribution modeling software. Different T2 distributions in both micro- and millisecond ranges between pressurized and heated wheat starch gels suggest distinctively different water dynamics between pressurized and heated wheat starch gels. Smaller water self-diffusion coefficients were observed for pressurized wheat starch gels and are indicative of more restricted translational proton mobility than is observed with heated wheat starch gels. The physical characteristics associated with changes taking place during retrogradation were evaluated using melting curves obtained with differential scanning calorimetry. Less retrogradation was observed in pressurized wheat starch, and it may be related to a smaller quantity of freezable water in pressurized wheat starch. Starches comprise a major constituent of many foods proposed for commercial potential using UHP, and the present results furnish insight into the effect of UHP on starch gelatinization and the mechanism of retrogradation during storage.

  12. Enhancing electrochemical water-splitting kinetics by polarization-driven formation of near-surface iron(0): an in situ XPS study on perovskite-type electrodes.

    PubMed

    Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard

    2015-02-23

    In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6 Sr0.4 FeO3-δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe(0) on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  13. First report of vertically aligned (Sn,Ir)O2:F solid solution nanotubes: Highly efficient and robust oxygen evolution electrocatalysts for proton exchange membrane based water electrolysis

    NASA Astrophysics Data System (ADS)

    Ghadge, Shrinath Dattatray; Patel, Prasad P.; Datta, Moni K.; Velikokhatnyi, Oleg I.; Shanthi, Pavithra M.; Kumta, Prashant N.

    2018-07-01

    One dimensional (1D) vertically aligned nanotubes (VANTs) of (Sn0.8Ir0.2)O2:10F are synthesized for the first time by a sacrificial template assisted approach. The aim is to enhance the electrocatalytic activity of F doped (Sn,Ir)O2 solid solution electrocatalyst for oxygen evolution reaction (OER) in proton exchange membrane (PEM) based water electrolysis by generating (Sn0.8Ir0.2)O2:10F nanotubes (NTs). The 1D vertical channels and the high electrochemically active surface area (ECSA ∼38.46 m2g-1) provide for facile electron transport. This results in low surface charge transfer resistance (4.2 Ω cm2), low Tafel slope (58.8 mV dec-1) and excellent electrochemical OER performance with ∼2.3 and ∼2.6 fold higher electrocatalytic activity than 2D thin films of (Sn0.8Ir0.2)O2:10F and benchmark IrO2 electrocatalysts, respectively. Furthermore, (Sn0.8Ir0.2)O2:10F NTs exhibit excellent mass activity (21.67 A g-1), specific activity (0.0056 mAcm-2) and TOF (0.016 s-1), which is ∼2-2.6 fold higher than thin film electrocatalysts at an overpotential of 270 mV, with a total mass loading of 0.3 mg cm-2. In addition, (Sn0.8Ir0.2)O2:10F NTs demonstrate remarkable electrochemical durability - comparable to thin films of (Sn0.8Ir0.2)O2:10F and pure IrO2, operated under identical testing conditions in PEM water electrolysis. These results therefore indicate promise of (Sn0.8Ir0.2)O2:10F NTs as OER electrocatalysts for efficient and sustainable hydrogen production.

  14. A Vivens Ex Vivo Study on the Synergistic Effect of Electrolysis and Freezing on the Cell Nucleus.

    PubMed

    Lugnani, Franco; Zanconati, Fabrizio; Marcuzzo, Thomas; Bottin, Cristina; Mikus, Paul; Guenther, Enric; Klein, Nina; Rubinsky, Liel; Stehling, Michael K; Rubinsky, Boris

    2015-01-01

    Freezing-cryosurgery, and electrolysis-electrochemical therapy (EChT), are two important minimally invasive surgery tissue ablation technologies. Despite major advantages they also have some disadvantages. Cryosurgery cannot induce cell death at high subzero freezing temperatures and requires multiple freeze thaw cycles, while EChT requires high concentrations of electrolytic products-which makes it a lengthy procedure. Based on the observation that freezing increases the concentration of solutes (including products of electrolysis) in the frozen region and permeabilizes the cell membrane to these products, this study examines the hypothesis that there could be a synergistic effect between freezing and electrolysis in their use together for tissue ablation. Using an animal model we refer to as vivens ex vivo, which may be of value in reducing the use of animals for experiments, combined with a Hematoxylin stain of the nucleus, we show that there are clinically relevant protocols in which the cell nucleus appears intact when electrolysis and freezing are used separately but is affected by certain combinations of electrolysis and freezing.

  15. Carbon deposition during oxygen production using high temperature electrolysis and mitigation methods

    NASA Astrophysics Data System (ADS)

    Bernadowski, Timothy Adam, Jr.

    Carbon dioxide in the Martian atmosphere can be converted to oxygen during high temperature electrolysis for use in life-support and fuel systems on manned missions to the red planet. During electrolysis of carbon dioxide to produce oxygen, carbon can deposit on the electrolysis cell resulting in lower efficiency and possibly cell damage. This would be detrimental, especially when the oxygen product is used as the key element of a space life support system. In this thesis, a theoretical model was developed to predict hazardous carbon deposition conditions under various operating conditions within the Martian atmosphere. The model can be used as a guide to determine the ideal operating conditions of the high-temperature oxygen production system. A parallel experimental investigation is underway to evaluate the accuracy of the theoretical model. The experimental design, cell fabrication, and some preliminary results as well as future work recommendations are also presented in this thesis.

  16. The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis

    NASA Astrophysics Data System (ADS)

    Siracusano, S.; Baglio, V.; Grigoriev, S. A.; Merlo, L.; Fateev, V. N.; Aricò, A. S.

    2017-10-01

    Nanosized Ir-black (3 nm) and Ir-oxide (5 nm) oxygen evolution electrocatalysts showing high performance in polymer electrolyte membrane (PEM) water electrolysis based on Aquivion® short-side chain ionomer membrane are investigated to understand the role of the Ir oxidation state on the electrocatalytic activity and stability. Despite the smaller mean crystallite size, the Ir-black electrocatalyst shows significantly lower initial performance than the Ir-oxide. During operation at high current density, the Ir-black shows a decrease of cell potential with time whereas the Ir-oxide catalyst shows increasing cell potential resulting in a degradation rate of about 10 μV/h, approaching 1000 h. The unusual behaviour of the Ir-black results from the oxidation of metallic Ir to IrOx. The Ir-oxide catalyst shows instead a hydrated structure on the surface and a negative shift of about 0.5 eV for the Ir 4f binding energy after 1000 h electrolysis operation. This corresponds to the formation of a sub-stoichiometric Ir-oxide on the surface. These results indicate that a hydrated IrO2 with high oxidation state on the surface is favourable in decreasing the oxygen evolution overpotential. Modifications of the Ir chemical oxidation state during operation can affect significantly the catalytic activity and durability of the electrolysis system.

  17. Laboratory evaluation of the pressure water level data logger manufactured by Infinities USA, Inc.: results of pressure and temperature tests

    USGS Publications Warehouse

    Carnley, Mark V.

    2015-01-01

    The Pressure Water Level Data Logger manufactured by Infinities USA, Inc., was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility for conformance with the manufacturer’s stated accuracy specifications for measuring pressure throughout the device’s operating temperature range and with the USGS accuracy requirements for water-level measurements. The Pressure Water Level Data Logger (Infinities Logger) is a submersible, sealed, water-level sensing device with an operating pressure range of 0 to 11.5 feet of water over a temperature range of −18 to 49 degrees Celsius. For the pressure range tested, the manufacturer’s accuracy specification of 0.1 percent of full scale pressure equals an accuracy of ±0.138 inch of water. Three Infinities Loggers were evaluated, and the testing procedures followed and results obtained are described in this report. On the basis of the test results, the device is poorly compensated for temperature. For the three Infinities Loggers, the mean pressure differences varied from –4.04 to 5.32 inches of water and were not within the manufacturer’s accuracy specification for pressure measurements made within the temperature-compensated range. The device did not meet the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of –18 to 49 degrees Celsius or the USGS accuracy requirements of no more than 0.12 inch of water (0.01 foot of water) or 0.10 percent of reading, whichever is larger. The USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the Hydrologic Instrumentation Facility. The estimated combined measurement uncertainty for the pressure cycling test was ±0.139 inch of water, and for temperature, the cycling test was ±0.127 inch of water for the three Infinities Loggers.

  18. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1991-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.

  19. A post Gurney quantum mechanical perspective on the electrolysis of water: ion neutralization in solution

    NASA Astrophysics Data System (ADS)

    Guo, Enyi; McKenzie, David R.

    2017-11-01

    Electron fluxes crossing the interface between a metallic conductor and an aqueous environment are important in many fields; hydrogen production, environmental scanning tunnelling microscopy, scanning electrochemical microscopy being some of them. Gurney (Gurney 1931 Proc. R. Soc. Lond. 134, 137 (doi:10.1098/rspa.1931.0187)) provided in 1931 a scheme for tunnelling during electrolysis and outlined conditions for it to occur. We measure the low-voltage current flows between gold electrodes in pure water and use the time-dependent behaviour at voltage switch-on and switch-off to evaluate the relative contribution to the steady current arising from tunnelling of electrons between the electrodes and ions in solution and from the neutralization of ions adsorbed onto the electrode surface. We ascribe the larger current contribution to quantum tunnelling of electrons to and from ions in solution near the electrodes. We refine Gurney's barrier scheme to include solvated electron states and quantify energy differences using updated information. We show that Gurney's conditions would prevent the current flow at low voltages we observe but outline how the ideas of Marcus (Marcus 1956 J. Chem. Phys. 24, 966-978 (doi:10.1063/1.1742723)) concerning solvation fluctuations enable the condition to be relaxed. We derive an average barrier tunnelling model and a multiple pathways tunnelling model and compare predictions with measurements of the steady-state current-voltage relation. The tunnelling barrier was found to be wide and low in agreement with other experimental studies. Applications as a biosensing mechanism are discussed that exploit the fast tunnelling pathways along molecules in solution.

  20. Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment.

    PubMed

    Ning, Xun-An; Wen, Weibin; Zhang, Yaping; Li, Ruijing; Sun, Jian; Wang, Yujie; Yang, Zuoyi; Liu, Jingyong

    2015-09-15

    The effects of micro-electrolysis treatment on textile dyeing sludge dewatering and its mechanisms were investigated in this study. Capillary suction time (CST) and settling velocity (SV) were used to evaluate sludge dewaterability. Extracellular polymeric substances (EPS) concentration and sludge disintegration degree (DDSCOD) were determined to explain the observed changes in sludge dewaterability. The results demonstrated that the micro-electrolysis could significantly improve sludge dewaterability by disrupting the sludge floc structure. The optimal conditions of sludge dewatering were the reaction time of 20 min, initial pH of 2.5, Fe/C mass ratio of 1/1, and the iron powder dosage of 2.50 g/L, which achieved good CST (from 34.1 to 27.8 s) and SV (from 75 to 60%) reduction efficiency. In addition, the scanning electron microscope (SEM) images revealed that the treated sludge floc clusters are broken up and that the dispersion degree is better than that of a raw sludge sample. The optimal EPS concentration and DDSCOD to obtain maximum sludge dewaterability was 43-46 mg/L and 4.2-4.9%, respectively. The destruction of EPS was one of the primary reasons for the improvement of sludge dewaterability during micro-electrolysis treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Analysis and Countermeasures of Wind Power Accommodation by Aluminum Electrolysis Pot-Lines in China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Ran, Ling; He, Guixiong; Wang, Zhenyu; Li, Jie

    2017-10-01

    The unit energy consumption and its price have become the main obstacles for the future development of the aluminum electrolysis industry in China. Meanwhile, wind power is widely being abandoned because of its instability. In this study, a novel idea for wind power accommodation is proposed to achieve a win-win situation: the idea is for nearby aluminum electrolysis plants to absorb the wind power. The features of the wind power distribution and aluminum electrolysis industry are first summarized, and the concept of wind power accommodation by the aluminum industry is introduced. Then, based on the characteristics of aluminum reduction cells, the key problems, including the bus-bar status, thermal balance, and magnetohydrodynamics instabilities, are analyzed. In addition, a whole accommodation implementation plan for wind power by aluminum reduction is introduced to explain the theoretical value of accommodation, evaluation of the reduction cells, and the industrial experiment scheme. A numerical simulation of a typical scenario proves that there is large accommodation potential for the aluminum reduction cells. Aluminum electrolysis can accommodate wind power and remain stable under the proper technique and accommodation scheme, which will provide promising benefits for the aluminum plant and the wind energy plant.

  2. High pressure water jet cutting and stripping

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  3. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement.

    PubMed

    Yang, Lei; Guo, Yanjie; Diao, Dongfeng

    2017-05-31

    Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.

  4. Hydrogen by electrolysis of water

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Hydrogen production by electrolytic decomposition of water is explained. Power efficiency, efficient energy utilization, and costs were emphasized. Four systems were considered: two were based on current electrolyzer technology using present efficiency values for electrical generation by fossil fired and nuclear thermal stations, and two using projected electrolyzer technology with advanced fossil and nuclear plants.

  5. Water cycles in closed ecological systems: effects of atmospheric pressure.

    PubMed

    Rygalov, Vadim Y; Fowler, Philip A; Metz, Joannah M; Wheeler, Raymond M; Bucklin, Ray A

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from ~1 to 10 L m-2 d-1 (~1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  6. Water cycles in closed ecological systems: effects of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  7. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John; Taylor, Dale; Martinez, James

    2014-01-01

    More than a metric ton of water is transported to the International Space Station (ISS) each year to provide breathing oxygen for the astronauts. Water is a safe and compact form of stored oxygen. The water is electrolyzed on ISS and ambient pressure oxygen is delivered to the cabin. A much smaller amount of oxygen is used each year in spacesuits to conduct Extra Vehicular Activities (EVAs). Space suits need high pressure (>1000 psia) high purity oxygen (must meet Aviator Breathing Oxygen "ABO" specifications, >99.5% O2). The water / water electrolysis system cannot directly provide high pressure, high purity oxygen, so oxygen for EVAs is transported to ISS in high pressure gas tanks. The tanks are relatively large and heavy, and the majority of the system launch weight is for the tanks and not the oxygen. Extracting high purity oxygen from cabin air and mechanically compressing the oxygen might enable on-board production of EVA grade oxygen using the existing water / water electrolysis system. This capability might also benefit human spaceflight missions, where oxygen for EVAs could be stored in the form of water, and converted into high pressure oxygen on-demand. Cerium oxide solid electrolyte-based ion transport membranes have been shown to separate oxygen from air, and a supported monolithic wafer form of the CeO2 electrolyte membrane has been shown to deliver oxygen at pressures greater than 300 psia. These supported monolithic wafers can withstand high pressure differentials even though the membrane is very thin, because the ion transport membrane is supported on both sides (Fig 1). The monolithic supported wafers have six distinct layers, each with matched coefficients of thermal expansion. The wafers are assembled into a cell stack which allows easy air flow across the wafers, uniform current distribution, and uniform current density (Fig 2). The oxygen separation is reported to be "infinitely selective" to oxygen [1] with reported purity of 99.99% [2

  8. Photocatalytic activity and reusability of ZnO layer synthesised by electrolysis, hydrogen peroxide and heat treatment.

    PubMed

    Akhmal Saadon, Syaiful; Sathishkumar, Palanivel; Mohd Yusoff, Abdull Rahim; Hakim Wirzal, Mohd Dzul; Rahmalan, Muhammad Taufiq; Nur, Hadi

    2016-08-01

    In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment. The synthesised ZnO layers were characterised using scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance and photoluminescence spectroscopy. The photocatalytic activity of the ZnO layer was further assessed against methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB was achieved up to 84%, 79% and 65% within 1 h for ZnO layers synthesised by electrolysis, heat and hydrogen peroxide treatment, respectively. The reusability results show that electrolysis and heat-treated ZnO layers have considerable photocatalytic stability. Furthermore, the results confirmed that the photocatalytic efficiency of ZnO was directly associated with the thickness and enlarged surface area of the layer. Finally, this study proved that the ZnO layers synthesised by electrolysis and heat treatment had shown better operational stability and reusability.

  9. Direct LiT Electrolysis in a Metallic Fusion Blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Luke

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium formore » the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.« less

  10. Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colon-Mercado, H.; Babineau, D.; Elvington, M.

    2015-10-13

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed.  The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fission/fusion reactors is critical in order to maintained low concentrations.  This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Because of the high affinity of tritium for the blanket, extraction is complicated at the required low levels. This workmore » identified, developed and tested the use of ceramic lithium ion conductors capable of recovering the hydrogen and deuterium thru an electrolysis step at high temperatures. « less

  11. High School Students' Proficiency and Confidence Levels in Displaying Their Understanding of Basic Electrolysis Concepts

    ERIC Educational Resources Information Center

    Sia, Ding Teng; Treagust, David F.; Chandrasegaran, A. L.

    2012-01-01

    This study was conducted with 330 Form 4 (grade 10) students (aged 15-16 years) who were involved in a course of instruction on electrolysis concepts. The main purposes of this study were (1) to assess high school chemistry students' understanding of 19 major principles of electrolysis using a recently developed 2-tier multiple-choice diagnostic…

  12. Hydrogen Generation by Koh-Ethanol Plasma Electrolysis Using Double Compartement Reactor

    NASA Astrophysics Data System (ADS)

    Saksono, Nelson; Sasiang, Johannes; Dewi Rosalina, Chandra; Budikania, Trisutanti

    2018-03-01

    This study has successfully investigated the generation of hydrogen using double compartment reactor with plasma electrolysis process. Double compartment reactor is designed to achieve high discharged voltage, high concentration, and also reduce the energy consumption. The experimental results showed the use of double compartment reactor increased the productivity ratio 90 times higher compared to Faraday electrolysis process. The highest hydrogen production obtained is 26.50 mmol/min while the energy consumption can reach up 1.71 kJ/mmol H2 at 0.01 M KOH solution. It was shown that KOH concentration, addition of ethanol, cathode depth, and temperature have important effects on hydrogen production, energy consumption, and process efficiency.

  13. Kinetic modelling of methane production during bio-electrolysis from anaerobic co-digestion of sewage sludge and food waste.

    PubMed

    Prajapati, Kalp Bhusan; Singh, Rajesh

    2018-05-10

    In present study batch tests were performed to investigate the enhancement in methane production under bio-electrolysis anaerobic co-digestion of sewage sludge and food waste. The bio-electrolysis reactor system (B-EL) yield more methane 148.5 ml/g COD in comparison to reactor system without bio-electrolysis (B-CONT) 125.1 ml/g COD. Whereas bio-electrolysis reactor system (C-EL) Iron Scraps amended yield lesser methane (51.2 ml/g COD) in comparison to control bio-electrolysis reactor system without Iron scraps (C-CONT - 114.4 ml/g COD). Richard and Exponential model were best fitted for cumulative methane production and biogas production rates respectively as revealed modelling study. The best model fit for the different reactors was compared by Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC). The bioelectrolysis process seems to be an emerging technology with lesser the loss in cellulase specific activity with increasing temperature from 50 to 80 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Investigation of the synergistic effects for p-nitrophenol mineralization by a combined process of ozonation and electrolysis using a boron-doped diamond anode.

    PubMed

    Qiu, Cuicui; Yuan, Shi; Li, Xiang; Wang, Huijiao; Bakheet, Belal; Komarneni, Sridhar; Wang, Yujue

    2014-09-15

    Electrolysis and ozonation are two commonly used technologies for treating wastewaters contaminated with nitrophenol pollutants. However, they are often handicapped by their slow kinetics and low yields of total organic carbon (TOC) mineralization. To improve TOC mineralization efficiency, we combined electrolysis using a boron-doped diamond (BDD) anode with ozonation (electrolysis-O3) to treat a p-nitrophenol (PNP) aqueous solution. Up to 91% TOC was removed after 60 min of the electrolysis-O3 process. In comparison, only 20 and 44% TOC was respectively removed by individual electrolysis and ozonation treatment conducted under similar reaction conditions. The result indicates that when electrolysis and ozonation are applied simultaneously, they have a significant synergy for PNP mineralization. This synergy can be mainly attributed to (i) the rapid degradation of PNP to carboxylic acids (e.g., oxalic acid and acetic acid) by O3, which would otherwise take a much longer time by electrolysis alone, and (ii) the effective mineralization of the ozone-refractory carboxylic acids to CO2 by OH generated from multiple sources in the electrolysis-O3 system. The result suggests that combining electrolysis with ozonation can provide a simple and effective way to mutually compensate the limitations of the two processes for degradation of phenolic pollutants. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Oxygen from the lunar soil by molten silicate electrolysis

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.

    1992-01-01

    Accepting that oxygen, rather than gigantic gems or gold, is likely to make the Moon's Klondike, the extraction of oxygen from the lunar soil by molten silicate electrolysis has chosen to be investigated. Process theory and proposed lunar factory are addressed.

  16. An Environmentally Friendly Process Involving Refining and Membrane-Based Electrolysis for Magnesium Recovery from Partially Oxidized Scrap Alloy

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.

    2013-10-01

    Magnesium is recovered from partially oxidized scrap alloy by combining refining and solid oxide membrane (SOM) electrolysis. In this combined process, a molten salt eutectic flux (45 wt.% MgF2-55 wt.% CaF2) containing 10 wt.% MgO and 2 wt.% YF3 was used as the medium for magnesium recovery. During refining, magnesium and its oxide are dissolved from the scrap into the molten flux. Forming gas is bubbled through the flux and the dissolved magnesium is removed via the gas phase and condensed in a separate condenser at a lower temperature. The molten flux has a finite solubility for magnesium and acts as a selective medium for magnesium dissolution, but not aluminum or iron, and therefore the magnesium recovered has high purity. After refining, SOM electrolysis is performed in the same reactor to enable electrolysis of the dissolved magnesium oxide in the molten flux producing magnesium at the cathode and oxygen at the SOM anode. During SOM electrolysis, it is necessary to decrease the concentration of the dissolved magnesium in the flux to improve the faradaic current efficiency and prevent degradation of the SOM. Thus, for both refining and SOM electrolysis, it is very important to measure and control the magnesium solubility in the molten flux. High magnesium solubility facilitates refining whereas lower solubility benefits the SOM electrolysis process. Computational fluid dynamics modeling was employed to simulate the flow behavior of the flux stirred by the forming gas. Based on the modeling results, an optimized design of the stirring tubes and its placement in the flux are determined for efficiently removing the dissolved magnesium and also increasing the efficiency of the SOM electrolysis process.

  17. Magma Electrolysis: An update

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.

    1991-01-01

    Electrolytic extraction of O2 from molten lunar soil is conceptually simple and thus a candidate process for producing O2 on the Moon. Possible container and electrode materials are being tested for durability in corrosive high-temperature silicate melts and looking for complications that might increase energy requirements. Gaseous oxygen is being produced by electrolysis of 1-2 gram quantities of silicate melts in spinel (MgAl2O4) crucibles; in these melts, spinel is a stable phase. The concentration of FeO was kept low because FeO decrease O2 production efficiency. Platinum electrodes were placed about 0.5 cm apart in the melt. The spinel crucible was still intact after 40 minutes of electrolysis, when the experiment was halted for examination. The Pt anode was also intact; its Pt was maintained in a dynamci state in which the anode was continuously oxidized but quickly reduced again by the silicate melt, inhibiting migration of Pt away from the anode. In melts with low concentrations of Al2O3 + SiO2 (2 wt percent), the energy of resistance heating was only approximately equal to 10 to 20 percent of the theoretical amount required to produce O2. In melts substantially more concentrated in Al2O3 + SiO2, higher melt viscosity resulted in frothing that, in the worst case, caused high enough melt resistivities to raise the energy requirements to nearly 10 times theoretical. Both Fe and Si are produced at the cathode; in iron-rich melts, a- and c-iron and molten ferrosilicon were observed. Production was also observed at the cathode of a previously unrecognized gas; which is not yet identified. The solubility of metallic species was measured in silicate melts. They are too low to reduce significantly the efficiency of O2 production.

  18. Nonlinear vibration of a hemispherical dome under external water pressure

    NASA Astrophysics Data System (ADS)

    Ross, C. T. F.; McLennan, A.; Little, A. P. F.

    2011-07-01

    The aim of this study was to analyse the behaviour of a hemi-spherical dome when vibrated under external water pressure, using the commercial computer package ANSYS 11.0. In order to achieve this aim, the dome was modelled and vibrated in air and then in water, before finally being vibrated under external water pressure. The results collected during each of the analyses were compared to the previous studies, and this demonstrated that ANSYS was a suitable program and produced accurate results for this type of analysis, together with excellent graphical displays. The analysis under external water pressure, clearly demonstrated that as external water pressure was increased, the resonant frequencies decreased and a type of dynamic buckling became likely; because the static buckling eigenmode was similar to the vibration eigenmode. ANSYS compared favourably with the in-house software, but had the advantage that it produced graphical displays. This also led to the identification of previously undetected meridional modes of vibration; which were not detected with the in-house software.

  19. Experimental study of electrolysis-induced hepatic necrosis.

    PubMed

    Robertson, G S; Wemyss-Holden, S A; Dennison, A R; Hall, P M; Baxter, P; Maddern, G J

    1998-09-01

    One of the most promising but unexplored methods for treating patients with irresectable liver tumours is electrolysis. This study examined the effect of increasing 'current dose' on the volume of the lesion induced in normal rat liver. A direct current generator, connected to platinum electrodes implanted in the rat liver, was used to examine the effect of (1) varying current doses from 1 to 5 coulombs and (2) electrode separation (2 or 20 mm), on the volume of liver necrosis. There was a significant correlation (P < 0.001) between the current dose and the volume of necrosis produced for each electrode separation. Placing the electrodes 2 mm apart resulted in smaller total volumes of necrosis than placing them 20 mm apart when anode lesions were significantly larger than cathode lesions (P< 0.05). Liver enzymes (aspartate aminotransferase, alanine aminotransferase) were significantly raised 1 day after treatment (P < 0.001) and predicted the total volume of hepatic necrosis (P < 0.001). Predictable and reproducible areas of liver necrosis are produced with electrolysis. If these results extrapolate to larger animal models, this technique has potential for patients with irresectable primary and secondary liver tumours.

  20. When immiscible becomes miscible-Methane in water at high pressures.

    PubMed

    Pruteanu, Ciprian G; Ackland, Graeme J; Poon, Wilson C K; Loveday, John S

    2017-08-01

    At low pressures, the solubility of gases in liquids is governed by Henry's law, which states that the saturated solubility of a gas in a liquid is proportional to the partial pressure of the gas. As the pressure increases, most gases depart from this ideal behavior in a sublinear fashion, leveling off at pressures in the 1- to 5-kbar (0.1 to 0.5 GPa) range with solubilities of less than 1 mole percent (mol %). This contrasts strikingly with the well-known marked increase in solubility of simple gases in water at high temperature associated with the critical point (647 K and 212 bar). The solubility of the smallest hydrocarbon, the simple gas methane, in water under a range of pressure and temperature is of widespread importance, because it is a paradigmatic hydrophobe and occurs widely in terrestrial and extraterrestrial geology. We report measurements up to 3.5 GPa of the pressure dependence of the solubility of methane in water at 100°C-well below the latter's critical temperature. Our results reveal a marked increase in solubility between 1 and 2 GPa, leading to a state above 2 GPa where the maximum solubility of methane in water exceeds 35 mol %.

  1. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oilmore » and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A

  2. Two-dimensional water acoustic waveguide based on pressure compensation method

    NASA Astrophysics Data System (ADS)

    Zheng, Mingye; Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2018-02-01

    A two-dimensional (2D) waveguide is a basic facility for experiment measurement due to a much more simplified wave field pattern than that in free space. A waveguide for airborne sound is easily achieved with almost any solid plates. However, the design of a 2D water acoustic waveguide is still challenging because of unavailable solids with a sufficient large impedance difference from water. In this work, a new method of constructing a 2D water acoustic waveguide is proposed based on pressure compensation and has been verified by numerical simulation. A prototype of the water acoustic waveguide is fabricated and complemented by an acoustic pressure scanning system; the measured scattered pressure fields by air and aluminum cylinders both agree quite well with numerical simulations. Most acoustic pressure fields within a frequency range 7 kHz-15 kHz can be measured in this waveguide when the required scanning region is smaller than the aluminum plate area (1800 mm × 800 mm).

  3. Pressurized electrolysis stack with thermal expansion capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgeois, Richard Scott

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, themore » electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.« less

  4. Water under inner pressure: a dielectric spectroscopy study.

    PubMed

    Angulo-Sherman, Abril; Mercado-Uribe, Hilda

    2014-02-01

    Water is the most studied substance on Earth. However, it is not completely understood why its structural and dynamical properties give rise to some anomalous behaviors. Some of them emerge when experiments at low temperatures and/or high pressures are performed. Here we report dielectric measurements on cold water under macroscopically constrained conditions, i.e., water in a large container at constant volume that cannot freeze below the melting point. The inner pressure in these conditions shifts the α relaxation peak to similar frequencies as seen in ice Ih. At 267 K we observe a peculiar response possibly due to the Grotthuss mechanism. At 251 K (the triple point) ice III forms.

  5. Modeling and simulation of the flow field in the electrolysis of magnesium

    NASA Astrophysics Data System (ADS)

    Sun, Ze; Zhang, He-Nan; Li, Ping; Li, Bing; Lu, Gui-Min; Yu, Jian-Guo

    2009-05-01

    A three-dimensional mathematical model was developed to describe the flow field in the electrolysis cell of the molten magnesium salt, where the model of the three-phase flow was coupled with the electric field force. The mathematical model was validated against the experimental data of the cold model in the electrolysis cell of zinc sulfate with 2 mol/L concentration. The flow field of the cold model was measured by particle image velocimetry, a non-intrusive visualization experimental technique. The flow field in the advanced diaphragmless electrolytic cell of the molten magnesium salt was investigated by the simulations with the mathematical model.

  6. Production of Oxygen from Lunar Regolith by Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2009-01-01

    This paper describes the use of the molten oxide electrolysis (MOE) process for the extraction of oxygen for life support and propellant, and silicon and metallic elements for use in fabrication on the Moon. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis is ideal for extraction, since the electron is the only practical reducing agent. MOE has several advantages over other extraction methods. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. Alternatively, MOE requires no import of consumable reagents (e.g. fluorine and carbon) as other processes do, and does not rely on interfacing multiple processes to obtain refined products. Electrolytic processing has the advantage of selectivity of reaction in the presence of a multi-component feed. Products from lunar regolith can be extracted in sequence according to the stabilities of their oxides as expressed by the values of the free energy of oxide formation (e.g. chromium, manganese, Fe, Si, Ti, Al, magnesium, and calcium). Previous work has demonstrated the viability of producing Fe and oxygen from oxide mixtures similar in composition to lunar regolith by molten oxide electrolysis (electrowinning), also called magma electrolysis having shown electrolytic extraction of Si from regolith simulant. This paper describes recent advances in demonstrating the MOE process by a joint project with participation by NASA KSC and

  7. Two innovative pore pressure calculation methods for shallow deep-water formations

    NASA Astrophysics Data System (ADS)

    Deng, Song; Fan, Honghai; Liu, Yuhan; He, Yanfeng; Zhang, Shifeng; Yang, Jing; Fu, Lipei

    2017-11-01

    There are many geological hazards in shallow formations associated with oil and gas exploration and development in deep-water settings. Abnormal pore pressure can lead to water flow and gas and gas hydrate accumulations, which may affect drilling safety. Therefore, it is of great importance to accurately predict pore pressure in shallow deep-water formations. Experience over previous decades has shown, however, that there are not appropriate pressure calculation methods for these shallow formations. Pore pressure change is reflected closely in log data, particularly for mudstone formations. In this paper, pore pressure calculations for shallow formations are highlighted, and two concrete methods using log data are presented. The first method is modified from an E. Philips test in which a linear-exponential overburden pressure model is used. The second method is a new pore pressure method based on P-wave velocity that accounts for the effect of shallow gas and shallow water flow. Afterwards, the two methods are validated using case studies from two wells in the Yingqiong basin. Calculated results are compared with those obtained by the Eaton method, which demonstrates that the multi-regression method is more suitable for quick prediction of geological hazards in shallow layers.

  8. Performance Assessment of Single Electrode-Supported Solid Oxide Cells Operating in the Steam Electrolysis Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Zhang; J. E. O'Brien; R. C. O'Brien

    2011-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysismore » mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.« less

  9. Electrolysis-driven bioremediation of crude oil-contaminated marine sediments.

    PubMed

    Bellagamba, Marco; Cruz Viggi, Carolina; Ademollo, Nicoletta; Rossetti, Simona; Aulenta, Federico

    2017-09-25

    Bioremediation is an effective technology to tackle crude oil spill disasters, which takes advantage of the capacity of naturally occurring microorganisms to degrade petroleum hydrocarbons under a range of environmental conditions. The enzymatic process of breaking down oil is usually more rapid in the presence of oxygen. However, in contaminated sediments, oxygen levels are typically too low to sustain the rapid and complete biodegradation of buried hydrocarbons. Here, we explored the possibility to electrochemically manipulate the redox potential of a crude oil-contaminated marine sediment in order to establish, in situ, conditions that are conducive to contaminants biodegradation by autochthonous microbial communities. The proposed approach is based on the exploitation of low-voltage (2V) seawater electrolysis to drive oxygen generation (while minimizing chlorine evolution) on Dimensionally Stable Anodes (DSA) placed within the contaminated sediment. Results, based on a laboratory scale setup with chronically polluted sediments spiked with crude oil, showed an increased redox potential and a decreased pH in the vicinity of the anode of 'electrified' treatments, consistent with the occurrence of oxygen generation. Accordingly, hydrocarbons biodegradation was substantially accelerated (up to 3-times) compared to 'non-electrified' controls, while sulfate reduction was severely inhibited. Intermittent application of electrolysis proved to be an effective strategy to minimize the energy requirements of the process, without adversely affecting degradation performance. Taken as a whole, this study suggests that electrolysis-driven bioremediation could be a sustainable technology for the management of contaminated sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Comparison of waste combustion and waste electrolysis - A systems analysis

    NASA Technical Reports Server (NTRS)

    Holtzapple, Mark T.; Little, Frank E.

    1989-01-01

    A steady state model of a closed environmental system has been developed which includes higher plant growth for food production, and is designed to allow wastes to be combusted or electrolyzed. The stoichiometric equations have been developed to evaluate various trash compositions, food items (both stored and produced), metabolic rates, and crew sizes. The advantages of waste electrolysis versus combustion are: (1) oxygen is not required (which reduces the load on the oxygen producing system); (2) the CO2 and H2 products are produced in pure form (reducing the load on the separators); and (3) nitrogen is converted to nitrate (which is directly usable by plants). Weight tradeoff studies performed using this model have shown that waste electrolysis reduces the life support weight of a 4-person crew by 1000 to 2000 kg.

  11. Water pressure and ground vibrations induced by water guns near Bandon Road Lock and Dam and Lemont, Illinois

    USGS Publications Warehouse

    Adams, Ryan F.; Koebel, Carolyn M.; Morrow, William S.

    2018-02-13

    Multiple geophysical sensors were used to characterize the underwater pressure field and ground vibrations of a seismic water gun and its suitability to deter the movement of Asian carps (particularly the silver [Hypophthalmichthys molitrix] and bighead [Hypophthalmichthys nobilis] carps) while ensuring the integrity of surrounding structures. The sensors used to collect this information were blast-rated hydrophones, surface- and borehole-mounted geophones, and fixed accelerometers.Results from two separate studies are discussed in this report. The Brandon Road study took place in May 2014, in the Des Plaines River, in a concrete-walled channel downstream of the Brandon Road Lock and Dam near Joliet, Illinois. The Lemont study took place in June 2014, in a segment of the dolomite setblock-lined Chicago Sanitary and Ship Canal near Lemont, Illinois.Two criteria were evaluated to assess the potential deterrence to carp migration, and to minimize the expected effect on nearby structures from discharge of the seismic water gun. The first criterion was a 5-pound-per-square-inch (lb/in2) limit for dynamic underwater pressure variations. The second criterion was a maximum velocity and acceleration disturbance of 0.75 inch per second (in/s) for sensitive machinery (such as the lock gates and pumps) and 2.0 in/s adjacent to canal walls, respectively. The criteria were based on previous studies of fish responses to dynamic pressure variations, and effects of vibrations on the structural integrity of concrete walls.The Brandon Road study evaluated the magnitude and extent of the pressure field created by two water gun configurations in the concrete-walled channel downstream of the lock where channel depths ranged from 11 to 14 feet (ft). Data from a single 80-cubic-inch (in³) water gun set at 6 ft below water surface (bws) produced a roughly cylindrical 5-lb/in2 pressure field 20 ft in radius, oriented vertically, with the radius decreasing to less than 15 ft at the water

  12. Hydrogen generation by electrolysis of aqueous organic solutions

    NASA Technical Reports Server (NTRS)

    Jeffries-Nakamura, Barbara (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Valdez, Thomas I. (Inventor)

    2006-01-01

    A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.

  13. Hydrogen generation by electrolysis of aqueous organic solutions

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.

  14. Treating soil-washing fluids polluted with oxyfluorfen by sono-electrolysis with diamond anodes.

    PubMed

    Vieira Dos Santos, E; Sáez, C; Cañizares, P; Martínez-Huitle, C A; Rodrigo, M A

    2017-01-01

    This works is focused on the treatment by sono-electrolysis of the liquid effluents produced during the Surfactant-Aided Soil-Washing (SASW) of soils spiked with herbicide oxyfluorfen. Results show that this combined technology is very efficient and attains the complete mineralization of the waste, regardless of the surfactant/soil radio applied in the SASW process (which is the main parameter of the soil remediation process and leads to very different wastes). Both the surfactant and the herbicide are completely degraded, even when single electrolysis is used; and only two intermediates are detected by HPLC in very low concentrations. Conversely, the efficiency of single sonolysis approach, for the oxidation of pollutant, is very low and just small changes in the herbicides and surfactant concentrations are observed during the tests carried out. Sono-electrolysis with diamond electrodes achieved higher degradation rates than those obtained by single sonolysis and/or single electrolysis with diamond anodes. A key role of sulfate is developed, when it is released after the electrochemical degradation of surfactant. The efficient catalytic effect observed which can be explained by the anodic formation of persulfate and the later, a sono-activation is attained to produce highly efficient sulfate radicals. The effect of irradiating US is more importantly observed in the pesticide than in the surfactant, in agreement with the well-known behavior of these radicals which are known to oxidize more efficiently aromatic compounds than aliphatic species. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Pressure probe study of the water relations of Phycomyces blakesleeanus sporangiophores

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.; Ortega, J. K.; Shropshire, W. Jr

    1987-01-01

    The physical characteristics which govern the water relations of the giant-celled sporangiophore of Phycomyces blakesleeanus were measured with the pressure probe technique and with nanoliter osmometry. These properties are important because they govern water uptake associated with cell growth and because they may influence expansion of the sporangiophore wall. Turgor pressure ranged from 1.1 to 6.6 bars (mean = 4.1 bars), and was the same for stage I and stage IV sporangiophores. Sporangiophore osmotic pressure averaged 11.5 bars. From the difference between cell osmotic pressure and turgor pressure, the average water potential of the sporangiophore was calculated to be about -7.4 bars. When sporangiophores were submerged under water, turgor remained nearly constant. We propose that the low cell turgor pressure is due to solutes in the cell wall solution, i.e., between the cuticle and the plasma membrane. Membrane hydraulic conductivity averaged 4.6 x 10(-6) cm s-1 bar-1, and was significantly greater in stage I sporangiophores than in stage IV sporangiophores. Contrary to previous reports, the sporangiophore is separated from the supporting mycelium by septa which prevent bulk volume flow between the two regions. The presence of a wall compartment between the cuticle and the plasma membrane results in anomalous osmosis during pressure clamp measurements. This behavior arises because of changes in solute concentration as water moves into or out of the wall compartment surrounding the sporangiophore. Theoretical analysis shows how the equations governing transient water flow are altered by the characteristics of the cell wall compartment.

  16. Composite anode La0.8Sr0.2MnO3 impregnated with cobalt oxide for steam electrolysis

    NASA Astrophysics Data System (ADS)

    Li, Shisong; Cheng, Jigui; Xie, Kui; Li, Peipei; Wu, Yucheng

    2013-12-01

    Oxygen-ion conducting solid oxide electrolyzer (SOE) has attracted a great deal of interest because it converts electrical energy into chemical energy directly. The oxygen evolution reaction (OER) is occurred at the anode of solid oxide electrolyzer as the O2- being oxidized and form O2 gas, which is considered as one of the major cause of overpotentials in steam electrolyzers. This paper investigates the electrolysis of steam based on cobalt oxide impregnated La0.8Sr0.2MnO3 (LSM) composite anode in an oxide-ion-conducting solid oxide electrolyzer. The conductivity of LSM is studied versus temperature and oxygen partial pressure and correlated to the electrochemical properties of the composite electrodes in symmetric cells at 800 °C. Different contents of Co3O4 (wt.1%, 2%, 4%, 6%, 8%, 10%) were impregnated into LSM electrode and it was found that the polarization resistance (Rp) of symmetric cells gradually improved from 1.16 Ω•cm2 (LSM) to 0.24 Ω•cm2 (wt.10%Co3O4-LSM). Steam electrolysis based on LSM and wt.6%Co3O4-LSM anode electrolyzers are tested at 800°C and the AC impedance spectroscopy results indicated that the Rp of high frequency process significantly decreased from1.1 Ω•cm2 (LSM) to 0.5 Ω•cm2 (wt.6%Co3O4-LSM) under 1.8V electrolysis voltage and the Rp of low frequency process decreased from 14.9 Ω•cm2 to 5.7 Ω•cm2. Electrochemical catalyst Co3O4 can efficiently improve the electrode and enhance the performance of high temperature solid oxide electrolyzer.

  17. Artificial Reefs Created by Electrolysis and Coral Transplantation: An Approach Ensuring the Compatibility of Environmental Protection and Diving Tourism

    NASA Astrophysics Data System (ADS)

    van Treeck, P.; Schuhmacher, H.

    1999-08-01

    Coral reefs are currently being subjected to increasing pressure caused by water sports, especially scuba diving. Highly complex reef coenoses are affected by mechanical breakage and the coverage of corals by resuspended sediments. As the ecological capacity of the biocoenosis is exceeded, sensitive species are suppressed and the community is impoverished. The conflict between the needs of nature conservation and the economic interests of diving tourism can be mitigated by the creation of artificial underwater attractions as reef substitutes. Specially designed underwater structures are ideal for many diving activities, which can be diverted from sensitive natural habitats in that way. It is also possible to develop model reef communities for training and environmental education purposes. Our new concept is based on the elegant solution, proposed by Hilbertz et al. (1977), of depositing calcium minerals from the seawater in situ by electrolysis. We report on experiments conducted near Aqaba (Red Sea) showing that it is feasible to transplant living coral fragments on to the substrate being developed by electrochemical processes. In this way, the formation of a diverse community on any structure desired can be considerably enhanced.

  18. Pressure dependence of viscosity in supercooled water and a unified approach for thermodynamic and dynamic anomalies of water

    PubMed Central

    Singh, Lokendra P.; Issenmann, Bruno; Caupin, Frédéric

    2017-01-01

    The anomalous decrease of the viscosity of water with applied pressure has been known for over a century. It occurs concurrently with major structural changes: The second coordination shell around a molecule collapses onto the first shell. Viscosity is thus a macroscopic witness of the progressive breaking of the tetrahedral hydrogen bond network that makes water so peculiar. At low temperature, water at ambient pressure becomes more tetrahedral and the effect of pressure becomes stronger. However, surprisingly, no data are available for the viscosity of supercooled water under pressure, in which dramatic anomalies are expected based on interpolation between ambient pressure data for supercooled water and high pressure data for stable water. Here we report measurements with a time-of-flight viscometer down to 244K and up to 300MPa, revealing a reduction of viscosity by pressure by as much as 42%. Inspired by a previous attempt [Tanaka H (2000) J Chem Phys 112:799–809], we show that a remarkably simple extension of a two-state model [Holten V, Sengers JV, Anisimov MA (2014) J Phys Chem Ref Data 43:043101], initially developed to reproduce thermodynamic properties, is able to accurately describe dynamic properties (viscosity, self-diffusion coefficient, and rotational correlation time) as well. Our results support the idea that water is a mixture of a high density, “fragile” liquid, and a low density, “strong” liquid, the varying proportion of which explains the anomalies and fragile-to-strong crossover in water. PMID:28404733

  19. Water Drinking Test: Intraocular Pressure Changes after Tube Surgery and Trabeculectomy

    PubMed Central

    Razeghinejad, Mohammad Reza; Tajbakhsh, Zahra; Nowroozzadeh, Mohammad Hossein; Masoumpour, Masoumeh

    2017-01-01

    Purpose: To study the effects of filtration surgeries (tube and trabeculectomy) on changes in intraocular pressure after a water-drinking test. Methods: In this prospective, non-randomized, comparative clinical study, 30 patients who had tube surgery and 30 age- and sex-matched trabeculectomy patients underwent a water-drinking test. Only one eye of each patient was included. The baseline intraocular pressure was ≤21 mmHg in all enrolled eyes with or without adjunctive topical medications. After the water-drinking test, the intraocular pressure was measured and recorded at 15, 30, 45, and 60 minutes and the results were compared between the two groups. Results: In both groups, intraocular pressure significantly increased from baseline at all measured time-points (P < 0.001). In the trabeculectomy group, the average intraocular pressure increased from 14.8 ± 2.9 to 18.8 ± 4.7 mmHg at 30 minutes, but decreased at 60 min (18.0 ± 5.2 mmHg). In the Tube group, intraocular pressure increased incrementally until the last measurement (14.2 ± 3.9, 18.8 ± 5.6, and 19.7 ± 6.0 mmHg at baseline, 30, and 60 minutes, respectively). The end-pressure difference (intraocular pressure at 60 minutes vs. baseline) was significantly greater in the tube group (5.6 ± 3.6 mmHg; 41% change) than in the trabeculectomy group (3.2 ± 4.7; 23% change; P = 0.03). Conclusion: Intraocular pressure significantly increased after the water-drinking test in both the groups. Intraocular pressure started to decline 30 minutes after the water-drinking test in the trabeculectomy group, while it continued to increase up to 60 minutes in the Tube group. This finding may have implications regarding the efficacy or safety of the procedures in advanced glaucoma patients. PMID:29090048

  20. Water Drinking Test: Intraocular Pressure Changes after Tube Surgery and Trabeculectomy.

    PubMed

    Razeghinejad, Mohammad Reza; Tajbakhsh, Zahra; Nowroozzadeh, Mohammad Hossein; Masoumpour, Masoumeh

    2017-01-01

    To study the effects of filtration surgeries (tube and trabeculectomy) on changes in intraocular pressure after a water-drinking test. In this prospective, non-randomized, comparative clinical study, 30 patients who had tube surgery and 30 age- and sex-matched trabeculectomy patients underwent a water-drinking test. Only one eye of each patient was included. The baseline intraocular pressure was ≤21 mmHg in all enrolled eyes with or without adjunctive topical medications. After the water-drinking test, the intraocular pressure was measured and recorded at 15, 30, 45, and 60 minutes and the results were compared between the two groups. In both groups, intraocular pressure significantly increased from baseline at all measured time-points ( P < 0.001). In the trabeculectomy group, the average intraocular pressure increased from 14.8 ± 2.9 to 18.8 ± 4.7 mmHg at 30 minutes, but decreased at 60 min (18.0 ± 5.2 mmHg). In the Tube group, intraocular pressure increased incrementally until the last measurement (14.2 ± 3.9, 18.8 ± 5.6, and 19.7 ± 6.0 mmHg at baseline, 30, and 60 minutes, respectively). The end-pressure difference (intraocular pressure at 60 minutes vs. baseline) was significantly greater in the tube group (5.6 ± 3.6 mmHg; 41% change) than in the trabeculectomy group (3.2 ± 4.7; 23% change; P = 0.03). Intraocular pressure significantly increased after the water-drinking test in both the groups. Intraocular pressure started to decline 30 minutes after the water-drinking test in the trabeculectomy group, while it continued to increase up to 60 minutes in the Tube group. This finding may have implications regarding the efficacy or safety of the procedures in advanced glaucoma patients.

  1. Comparison of water and air charged transducer catheter pressures in the evaluation of cystometrogram and voiding pressure studies.

    PubMed

    McKinney, Timothy B; Babin, Elizabeth A; Ciolfi, Veronica; McKinney, Cynthia R; Shah, Nima

    2018-04-01

    Air-charged (AC) and water-perfused (WP) catheters have been evaluated for differences in measuring pressures for voiding dysfunction. Typically, a two-catheter system was used. We believe that simultaneous pressure measurements with AC and WP in a single catheter will provide analogous pressures for coughs, Valsalvas, and maximum pressures in voiding pressure studies (VPS). This IRB approved prospective study included 50 women over age 21. AC dual TDOC catheters were utilized. The water-filling channel served as the bladder filler and the water pressure readings. Patients were evaluated with empty bladders and at volumes of 50-100 mL, 200 mL, and maximum capacity with cough and Valsalva maneuvers. Comparative analysis was performed on maximum stress peak pressures. At maximum bladder capacity, VPS was done and maximum voiding pressure was recorded. Comparing coughs and Valsalva maneuvers pressures, there was significant increase in variability between AC and WP measurements with less than 50 mL volume (P < 0.001). Significant correlations were observed between AC and WP measurements for coughs and Valsalvas with bladder volume over 50 mL. Visual impression showed virtually identical tracings. Cough measurements had an average difference of 0.25 cmH 2 O (±8.81) and Valsalva measurements had an average difference of 3.15 cmH 2 O (±4.72). Thirty-eight women had usable maximum voiding pressure measurements and had a strong correlation. Cystometrogram and maximum voiding pressure measurements done with either water or air charged catheters will yield similarly accurate results and are comparable. Results suggest more variability at low bladder volumes <50 mL. © 2018 Wiley Periodicals, Inc.

  2. PEM Electrolysis H2A Production Case Study Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Brian; Colella, Whitney; Moton, Jennie

    2013-12-31

    This report documents the development of four DOE Hydrogen Analysis (H2A) case studies for polymer electrolyte membrane (PEM) electrolysis. The four cases characterize PEM electrolyzer technology for two hydrogen production plant sizes (Forecourt and Central) and for two technology development time horizons (Current and Future).

  3. Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells.

    PubMed

    Wang, Yifei; Narayanan, S R; Wu, Wei

    2017-08-22

    Owing to the low conductivity of pure water, using an electrolyte is common for achieving efficient water electrolysis. In this paper, we have fundamentally broken through this common sense by using deep-sub-Debye-length nanogap electrochemical cells to achieve efficient electrolysis of pure water (without any added electrolyte) at room temperature. A field-assisted effect resulted from overlapped electrical double layers can greatly enhance water molecules ionization and mass transport, leading to electron-transfer limited reactions. We have named this process "virtual breakdown mechanism" (which is completely different from traditional mechanisms) that couples the two half-reactions together, greatly reducing the energy losses arising from ion transport. This fundamental discovery has been theoretically discussed in this paper and experimentally demonstrated in a group of electrochemical cells with nanogaps between two electrodes down to 37 nm. On the basis of our nanogap electrochemical cells, the electrolysis current density from pure water can be significantly larger than that from 1 mol/L sodium hydroxide solution, indicating the much better performance of pure water splitting as a potential for on-demand clean hydrogen production.

  4. Evaluating the Laplace pressure of water nanodroplets from simulations

    NASA Astrophysics Data System (ADS)

    Malek, Shahrazad M. A.; Sciortino, Francesco; Poole, Peter H.; Saika-Voivod, Ivan

    2018-04-01

    We calculate the components of the microscopic pressure tensor as a function of radial distance r from the centre of a spherical water droplet, modelled using the TIP4P/2005 potential. To do so, we modify a coarse-graining method for calculating the microscopic pressure (Ikeshoji et al 2003 Mol. Simul. 29 101) in order to apply it to a rigid molecular model of water. As test cases, we study nanodroplets ranging in size from 776 to 2880 molecules at 220 K. Beneath a surface region comprising approximately two molecular layers, the pressure tensor becomes approximately isotropic and constant with r. We find that the dependence of the pressure on droplet radius is that expected from the Young-Laplace equation, despite the small size of the droplets.

  5. Treatment of coking wastewater by a novel electric assisted micro-electrolysis filter.

    PubMed

    Xie, Ruosong; Wu, Miaomiao; Qu, Guangfei; Ning, Ping; Cai, Yingying; Lv, Pei

    2018-04-01

    A newly designed electric assisted micro-electrolysis filter (E-ME) was developed to investigate its degradation efficiency for coking wastewater and correlated characteristics. The performance of the E-ME system was compared with separate electrolysis (SE) and micro-electrolysis (ME) systems. The results showed a prominent synergistic effect on COD removal in E-ME systems. Gas chromatography/mass spectrometry (GC-MS) analysis confirmed that the applied electric field enhanced the degradation of phenolic compounds. Meanwhile, more biodegradable oxygen-bearing compounds were detected. SEM images of granular activated carbon (GAC) showed that inactivation and blocking were inhibited during the E-ME process. The effects of applied voltage and initial pH in E-ME systems were also studied. The best voltage value was 1V, but synergistic effects existed even with lower applied voltage. E-ME systems exhibited some pH buffering capacity and attained the best efficiency in neutral media, which means that there is no need to adjust pH prior to or during the treatment process. Therefore, E-ME systems were confirmed as a promising technology for treatment of coking wastewater and other refractory wastewater. Copyright © 2017. Published by Elsevier B.V.

  6. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater.

    PubMed

    Yang, Ruihong; Zhu, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-04-29

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na₂SO₄ additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography-mass spectrometry (GC-MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet-visible spectroscopy (UV-VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency.

  7. Electrolysis of trichloromethylated organic compounds under aerobic conditions catalyzed by the B12 model complex for ester and amide formation.

    PubMed

    Shimakoshi, Hisashi; Luo, Zhongli; Inaba, Takuya; Hisaeda, Yoshio

    2016-06-21

    The electrolysis of benzotrichloride at -0.9 V vs. Ag/AgCl in the presence of the B12 model complex, heptamethyl cobyrinate perchlorate, in ethanol under aerobic conditions using an undivided cell equipped with a platinum mesh cathode and a zinc plate anode produced ethylbenzoate in 56% yield with 92% selectivity. The corresponding esters were obtained when the electrolysis was carried out in various alcohols such as methanol, n-propanol, and i-propanol. Benzoyl chloride was detected by GC-MS during the electrolysis as an intermediate for the ester formation. When the electrolysis was carried out under anaerobic conditions, partially dechlorinated products, 1,1,2,2-tetrachloro-1,2-diphenylethane and 1,2-dichlorostilibenes (E and Z forms), were obtained instead of an ester. ESR spin-trapping experiments using 5,5,-dimethylpyrroline N-oxide (DMPO) revealed that the corresponding oxygen-centered radical and carbon-centered radical were steadily generated during the electrolyses under aerobic and anaerobic conditions, respectively. Applications of the aerobic electrolysis to various organic halides, such as substituted benzotrichlorides, are described. Furthermore, the formation of amides with moderate yields by the aerobic electrolysis of benzotrichloride catalyzed by the B12 model complex in the presence of amines in acetonitrile is reported.

  8. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    DOEpatents

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  9. Pressure effects on collective density fluctuations in water and protein solutions

    PubMed Central

    Russo, Daniela; Laloni, Alessio; Filabozzi, Alessandra; Heyden, Matthias

    2017-01-01

    Neutron Brillouin scattering and molecular dynamics simulations have been used to investigate protein hydration water density fluctuations as a function of pressure. Our results show significant differences between the pressure and density dependence of collective dynamics in bulk water and in concentrated protein solutions. Pressure-induced changes in the tetrahedral order of the water HB network have direct consequences for the high-frequency sound velocity and damping coefficients, which we find to be a sensitive probe for changes in the HB network structure as well as the wetting of biomolecular surfaces. PMID:29073065

  10. Summary Report on Solid-oxide Electrolysis Cell Testing and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.E. O'Brien; X. Zhang; R.C. O'Brien

    2012-01-01

    Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells (SOECs) for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003 to 2009, this work was sponsored by the United States Department of Energy Nuclear Hydrogen Initiative, under the Office of Nuclear Energy. Starting in 2010, the high-temperature electrolysis (HTE) research program has been sponsored by the INL Next Generation Nuclear Plant Project. This report provides a summaryof program activities performed in Fiscal Year (FY) 2011 and the first quarter of FY-12, with a focus on small-scale testing and cellmore » development activities. HTE research priorities during this period have included the development and testing of SOEC and stack designs that exhibit high-efficiency initial performance and low, long-term degradation rates. This report includes contributions from INL and five industry partners: Materials and Systems Research, Incorporated (MSRI); Versa Power Systems, Incorporated (VPS); Ceramatec, Incorporated; National Aeronautics and Space Administration - Glenn Research Center (NASA - GRC); and the St. Gobain Advanced Materials Division. These industry partners have developed SOEC cells and stacks for in-house testing in the electrolysis mode and independent testing at INL. Additional fundamental research and post-test physical examinations have been performed at two university partners: Massachusetts Institute of Technology (MIT) and the University of Connecticut. Summaries of these activities and test results are also presented in this report.« less

  11. Electrolysis-assisted mitigation of reverse solute flux in a three-chamber forward osmosis system.

    PubMed

    Zou, Shiqiang; He, Zhen

    2017-05-15

    Forward osmosis (FO) has been widely studied for desalination or water recovery from wastewater, and one of its key challenges for practical applications is reverse solute flux (RSF). RSF can cause loss of draw solutes, salinity build-up and undesired contamination at the feed side. In this study, in-situ electrolysis was employed to mitigate RSF in a three-chamber FO system ("e-FO") with Na 2 SO 4 as a draw solute and deionized (DI) water as a feed. Operation parameters including applied voltage, membrane orientation and initial draw concentrations were systematically investigated to optimize the e-FO performance and reduce RSF. Applying a voltage of 1.5 V achieved a RSF of 6.78 ± 0.55 mmol m -2  h -1 and a specific RSF of 0.138 ± 0.011 g L -1 in the FO mode and with 1 M Na 2 SO 4 as the draw, rendering ∼57% reduction of solute leakage compared to the control without the applied voltage. The reduced RSF should be attributed to constrained ion migration induced by the coactions of electric dragging force (≥1.5 V) and high solute rejection of the FO membrane. Reducing the intensity of the solution recirculation from 60 to 10 mL min -1 significantly reduced specific energy consumption of the e-FO system from 0.693 ± 0.127 to 0.022 ± 0.004 kWh m -3 extracted water or from 1.103 ± 0.059 to 0.044 ± 0.002 kWh kg -1 reduced reversed solute. These results have demonstrated that the electrolysis-assisted RSF mitigation could be an energy-efficient method for controlling RSF towards sustainable FO applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, G.; Ainscough, C.

    2011-12-01

    This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The costmore » of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.« less

  13. Development of Extended Period Pressure-Dependent Demand Water Distribution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judi, David R.; Mcpherson, Timothy N.

    2015-03-20

    Los Alamos National Laboratory (LANL) has used modeling and simulation of water distribution systems for N-1 contingency analyses to assess criticality of water system assets. Critical components considered in these analyses include pumps, tanks, and supply sources, in addition to critical pipes or aqueducts. A contingency represents the complete removal of the asset from system operation. For each contingency, an extended period simulation (EPS) is run using EPANET. An EPS simulates water system behavior over a time period, typically at least 24 hours. It assesses the ability of a system to respond and recover from asset disruption through distributed storagemore » in tanks throughout the system. Contingencies of concern are identified as those in which some portion of the water system has unmet delivery requirements. A delivery requirement is defined as an aggregation of water demands within a service area, similar to an electric power demand. The metric used to identify areas of unmet delivery requirement in these studies is a pressure threshold of 15 pounds per square inch (psi). This pressure threshold is used because it is below the required pressure for fire protection. Any location in the model with pressure that drops below this threshold at any time during an EPS is considered to have unmet service requirements and is used to determine cascading consequences. The outage area for a contingency is the aggregation of all service areas with a pressure below the threshold at any time during the EPS.« less

  14. Ultra-high pressure water jetting for coating removal and surface preparation

    NASA Technical Reports Server (NTRS)

    Johnson, Spencer T.

    1995-01-01

    This paper shall examine the basics of water technology with particular attention paid to systems currently in use and some select new applications. By providing an overview of commercially available water jet systems in the context of recent case histories, potential users may evaluate the process for future applications. With the on going introduction of regulations prohibiting the use of chemical paint strippers, manual scrapping and dry abrasive media blasting, the need for an environmentally compliant coating removal process has been mandated. Water jet cleaning has been a traditional part of many industrial processed for year, although it has only been in the last few years that reliable pumping equipment capable of ultra-high pressure operation have become available. With the advent of water jet pumping equipment capable of sustaining pressures in excess of 36,000 psi. there has been shift away from lower pressure, high water volume systems. One of the major factors in driving industry to seek higher pressures is the ability to offer higher productivity rates while lowering the quantity of water used and subsequently reprocessed. Among benefits of the trend toward higher pressure/lower volume systems is the corresponding reduction in water jet reaction forces making hand held water jetting practical and safe. Other unique applications made possible by these new generation pumping systems include the use of alternative fluids including liquid ammonia for specialized and hazardous material removal applications. A review of the equipment used and the required modifications will be presented along with the conclusions reached reached during this test program.

  15. Pressure-Dependent Electronic and Transport Properties of Bulk Platinum Oxide by Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.

    2018-02-01

    The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.

  16. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water

    PubMed Central

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles. PMID:28182635

  17. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water.

    PubMed

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.

  18. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates

    PubMed Central

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-01-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges. PMID:26928329

  19. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

    PubMed

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-03-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  20. Pressure Mapping and Efficiency Analysis of an EPPLER 857 Hydrokinetic Turbine

    NASA Astrophysics Data System (ADS)

    Clark, Tristan

    A conceptual energy ship is presented to provide renewable energy. The ship, driven by the wind, drags a hydrokinetic turbine through the water. The power generated is used to run electrolysis on board, taking the resultant hydrogen back to shore to be used as an energy source. The basin efficiency (Power/thrust*velocity) of the Hydrokinetic Turbine (HTK) plays a vital role in this process. In order to extract the maximum allowable power from the flow, the blades need to be optimized. The structural analysis of the blade is important, as the blade will undergo high pressure loads from the water. A procedure for analysis of a preliminary Hydrokinetic Turbine blade design is developed. The blade was designed by a non-optimized Blade Element Momentum Theory (BEMT) code. Six simulations were run, with varying mesh resolution, turbulence models, and flow region size. The procedure was developed that provides detailed explanation for the entire process, from geometry and mesh generation to post-processing analysis tools. The efficiency results from the simulations are used to study the mesh resolution, flow region size, and turbulence models. The results are compared to the BEMT model design targets. Static pressure maps are created that can be used for structural analysis of the blades.

  1. Effect of Water Cut on Pressure Drop of Oil (D130) -Water Flow in 4″Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Basha, Mehaboob; Shaahid, S. M.; Al-Hems, Luai M.

    2018-03-01

    The oil-water flow in pipes is a challenging subject that is rich in physics and practical applications. It is often encountered in many oil and chemical industries. The pressure gradient of two phase flow is still subject of immense research. The present study reports pressure measurements of oil (D130)-water flow in a horizontal 4″ diameter stainless steel pipe at different flow conditions. Experiments were carried out for different water cuts (WC); 0-100%. Inlet oil-water flow rates were varied from 4000 to 8000 barrels-per-day in steps of 2000. It has been found that the frictional pressure drop decreases for WC = 0 - 40 %. With further increase in WC, friction pressure drop increases, this could be due to phase inversion.

  2. Low cost sonoluminescence experiment in pressurized water

    NASA Astrophysics Data System (ADS)

    Bernal, L.; Insabella, M.; Bilbao, L.

    2012-06-01

    We present a low cost design for demostration and mesurements of light emmision from a sonoluminescence experiment. Using presurized water introduced in an acrylic cylinder and one piezoelectric from an ultrasonic cleaner, we are able to generate cavitacion zones with emission of light. The use of argon to pressurize the water improves the emission an the light can be seen at naked eye in a softlit ambient.

  3. How the novel integration of electrolysis in tidal flow constructed wetlands intensifies nutrient removal and odor control.

    PubMed

    Ju, Xinxin; Wu, Shubiao; Huang, Xu; Zhang, Yansheng; Dong, Renjie

    2014-10-01

    Intensified nutrient removal and odor control in a novel electrolysis-integrated tidal flow constructed wetland were evaluated. The average removal efficiencies of COD and NH4(+)-N were above 85% and 80% in the two experimental wetlands at influent COD concentration of 300 mg/L and ammonium nitrogen concentration of 60 mg/L regardless of electrolysis integration. Effluent nitrate concentration decreased from 2.5mg/L to 0.5mg/L with the reduction in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2). This result reveals the important role of current intensity in nitrogen transformation. Owing to the ferrous and ferric iron coagulant formed through the electro-dissolution of the iron anode, electrolysis integration not only exerted a positive effect on phosphorus removal but also effectively inhibited sulfide accumulation for odor control. Although electrolysis operation enhanced nutrient removal and promoted the emission of CH4, no significant difference was observed in the microbial communities and abundance of the two experimental wetlands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A Vivens Ex Vivo Study on the Synergistic Effect of Electrolysis and Freezing on the Cell Nucleus

    PubMed Central

    Lugnani, Franco; Zanconati, Fabrizio; Marcuzzo, Thomas; Bottin, Cristina; Mikus, Paul; Guenther, Enric; Klein, Nina; Rubinsky, Liel; Stehling, Michael K.; Rubinsky, Boris

    2015-01-01

    Freezing—cryosurgery, and electrolysis—electrochemical therapy (EChT), are two important minimally invasive surgery tissue ablation technologies. Despite major advantages they also have some disadvantages. Cryosurgery cannot induce cell death at high subzero freezing temperatures and requires multiple freeze thaw cycles, while EChT requires high concentrations of electrolytic products—which makes it a lengthy procedure. Based on the observation that freezing increases the concentration of solutes (including products of electrolysis) in the frozen region and permeabilizes the cell membrane to these products, this study examines the hypothesis that there could be a synergistic effect between freezing and electrolysis in their use together for tissue ablation. Using an animal model we refer to as vivens ex vivo, which may be of value in reducing the use of animals for experiments, combined with a Hematoxylin stain of the nucleus, we show that there are clinically relevant protocols in which the cell nucleus appears intact when electrolysis and freezing are used separately but is affected by certain combinations of electrolysis and freezing. PMID:26695185

  5. The use of pneumatically generated water pressure signals for aquifer characterization

    NASA Astrophysics Data System (ADS)

    Fort, M.; Roberts, R.; Chace, D.

    2013-12-01

    The use of pneumatically generated pressure signals for aquifer characterization Hydraulic tests are the most reliable method of obtaining estimates of hydrologic properties, such as conductivity, that are essential for flow and transport modeling. The use of a sinusoidal signal for hydraulic testing is well established, with Streltsova (1988), Rasmussen (2003) and others having developed analytic solutions. Sinusoidal tests provide a unique easily distinguished signal that reduces ambiguity during analysis and we show that a sinusoidal pressure signal propagates farther into the formation than a standard slug-test signal. If a sinusoidal test is combined with a slug and/or a constant rate test, it can further reduce uncertainty in the estimated parameter values. We demonstrate how pneumatic pressure can be used to generate all three of these signals. By positioning pressure transducers both below the water level and in the head space above the water, we can monitor the total pressure acting on the formation and the changes in water level. From the changes in water level, it is possible to calculate the flow rate in and out of the well, assuming that the well diameter and water density are known. Using gas flow controllers with a Supervisory Control And Data Acquisition (SCADA) system we are able to precisely control the pressures in the well. The use of pneumatic pressure has the advantage that it requires less equipment (no pumps) and produces no water. We also show how the numerical well test analysis program nSIGHTS can be used to analyze all three types of tests simultaneously and to assess the relative contribution of each type of test to the parameter estimation. nSIGHTS was recently released as open source by Sandia National Laboratories and is available for free.

  6. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater

    PubMed Central

    Yang, Ruihong; ZHU, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-01-01

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na2SO4 additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography–mass spectrometry (GC–MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet–visible spectroscopy (UV–VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency. PMID:27136574

  7. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination.

    PubMed

    Oh, Byung Soo; Oh, Sang Guen; Hwang, Youn Young; Yu, Hye-Weon; Kang, Joon-Wun; Kim, In S

    2010-11-01

    From our previous study, an electrochemical process was determined to be a promising tool for disinfection in a seawater desalination system, but an investigation on the production of several hazardous by-products is still required. In this study, a more intensive exploration of the formation patterns of perchlorate and bromate during the electrolysis of seawater was conducted. In addition, the rejection efficiencies of the targeted by-products by membrane processes (microfiltration and seawater reverse osmosis) were investigated to uncover the concentrations remaining in the final product from a membrane-based seawater desalination system for the production of drinking water. On the electrolysis of seawater, perchlorate did not provoke any problem due to the low concentrations formed, but bromate was produced at a much higher level, resulting in critical limitation in the application of the electrochemical process to the desalination of seawater. Even though the formed bromate was rejected via microfiltration and reverse osmosis during the 1st and 2nd passes, the residual concentration was a few orders of magnitude higher than the USEPA regulation. Consequently, it was concluded that the application of the electrochemical process to seawater desalination cannot be recommended without the control of bromate. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Thermochemical Production of Hydrogen from Water.

    ERIC Educational Resources Information Center

    Bamberger, C. E.; And Others

    1978-01-01

    Discusses the possible advantages of decomposing water by means of thermochemical cycles. Explains that, if energy consumption can be minimized, this method is capable of producing hydrogen more efficiently than electrolysis. (GA)

  9. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saksono, Nelson; Febiyanti, Irine Ayu, E-mail: irine.ayu41@ui.ac.id; Utami, Nissa

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical currentmore » throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.« less

  10. Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis

    NASA Astrophysics Data System (ADS)

    Shi, Zhongning; Xu, Junli; Qiu, Zhuxian; Wang, Zhaowen; Gao, Bingliang

    2003-11-01

    The superalloys Cu-Ni-Al, Cu-Ni-Fe, and Cu-Ni-Cr were studied as anodes for aluminum electrolysis. The alloys were tested for corrosion in acidic electrolyte molten salt and for oxidation in both air and oxygen. The results showed that the Cu-Ni-Al anodes possess excellent resistance to oxidation and corrosion, and the oxidation rates of Cu-Ni-Fe and Cu-Ni-Al anodes were slower than those of pure copper or nickel. During electrolysis, the cell voltage of the Cu-Ni-Al anode was affected most by the concentration of alumina in cryolite molten salt. The Cu-Ni-Fe anode exhibited corrosion resistance in electrolyte molten salt. Comparatively, the Cu-Ni-Cr anode showed poor resistance to oxidation and corrosion. The testing found that further study is warranted on the use of Cu-Ni-Al and Cu-Ni-Fe as inert alloy anodes.

  11. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  12. Electrolysis cell for the manufacture of persulfates

    NASA Technical Reports Server (NTRS)

    Cueto, J. M.

    1986-01-01

    A cell for the electrolytic generation of persulfates, characterized by the fact that a housing acts as cathode, is made of metal, and consists of a lower electrolytically active section and an upper electrolytically inactive section. It is designed so that there is produced the greatest possible current density suited to produce the desired electrolysis effect. This invention, compared to the devices used until now, exhibits considerable advantages whereby it is particularly suited for the production of potassium persulfate.

  13. Water cycle and its management for plant habitats at reduced pressures.

    PubMed

    Rygalov, Vadim Y; Fowler, Philip A; Wheeler, Raymond M; Bucklin, Ray A

    2004-01-01

    Experimental and mathematical models were developed for describing and testing temperature and humidity parameters for plant production in bioregenerative life support systems. A factor was included for analyzing systems operating at low (10-101.3 kPa) pressure to reduce gas leakage and structural mass (e.g., inflatable greenhouses for space application). The expected close relationship between temperature and relative humidity was observed, along with the importance of heat exchanger coil temperature and air circulation rate. The presence of plants in closed habitats results in increased water flux through the system. Changes in pressure affect gas diffusion rates and surface boundary layers, and change convective transfer capabilities and water evaporation rates. A consistent observation from studies with plants at reduced pressures is increased evapotranspiration rates, even at constant vapor pressure deficits. This suggests that plant water status is a critical factor for managing low-pressure production systems. The approach suggested should help space mission planners design artificial environments in closed habitats.

  14. Water cycle and its management for plant habitats at reduced pressures

    NASA Technical Reports Server (NTRS)

    Rygalov, Vadim Y.; Fowler, Philip A.; Wheeler, Raymond M.; Bucklin, Ray A.

    2004-01-01

    Experimental and mathematical models were developed for describing and testing temperature and humidity parameters for plant production in bioregenerative life support systems. A factor was included for analyzing systems operating at low (10-101.3 kPa) pressure to reduce gas leakage and structural mass (e.g., inflatable greenhouses for space application). The expected close relationship between temperature and relative humidity was observed, along with the importance of heat exchanger coil temperature and air circulation rate. The presence of plants in closed habitats results in increased water flux through the system. Changes in pressure affect gas diffusion rates and surface boundary layers, and change convective transfer capabilities and water evaporation rates. A consistent observation from studies with plants at reduced pressures is increased evapotranspiration rates, even at constant vapor pressure deficits. This suggests that plant water status is a critical factor for managing low-pressure production systems. The approach suggested should help space mission planners design artificial environments in closed habitats.

  15. Design of virtual SCADA simulation system for pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  16. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  17. Comparison of air-charged and water-filled urodynamic pressure measurement catheters.

    PubMed

    Cooper, M A; Fletter, P C; Zaszczurynski, P J; Damaser, M S

    2011-03-01

    Catheter systems are utilized to measure pressure for diagnosis of voiding dysfunction. In a clinical setting, patient movement and urodynamic pumps introduce hydrostatic and motion artifacts into measurements. Therefore, complete characterization of a catheter system includes its response to artifacts as well its frequency response. The objective of this study was to compare the response of two disposable clinical catheter systems: water-filled and air-charged, to controlled pressure signals to assess their similarities and differences in pressure transduction. We characterized frequency response using a transient step test, which exposed the catheters to a sudden change in pressure; and a sinusoidal frequency sweep test, which exposed the catheters to a sinusoidal pressure wave from 1 to 30 Hz. The response of the catheters to motion artifacts was tested using a vortex and the response to hydrostatic pressure changes was tested by moving the catheter tips to calibrated heights. Water-filled catheters acted as an underdamped system, resonating at 10.13 ± 1.03 Hz and attenuating signals at frequencies higher than 19 Hz. They demonstrated significant motion and hydrostatic artifacts. Air-charged catheters acted as an overdamped system and attenuated signals at frequencies higher than 3.02 ± 0.13 Hz. They demonstrated significantly less motion and hydrostatic artifacts than water-filled catheters. The transient step and frequency sweep tests gave comparable results. Air-charged and water-filled catheters respond to pressure changes in dramatically different ways. Knowledge of the characteristics of the pressure-measuring system is essential to finding the best match for a specific application. Copyright © 2011 Wiley-Liss, Inc.

  18. Ab initio simulation of particle momentum distributions in high-pressure water

    NASA Astrophysics Data System (ADS)

    Ceriotti, M.

    2014-12-01

    Applying pressure to water reduces the average oxygen-oxygen distance, and facilitates the delocalisation of protons along the hydrogen bond. This pressure-induced delocalisation is further enhanced by the quantum nature of hydrogen nuclei, which is very significant even well above room temperature. Here we will evaluate the quantum kinetic energy and the particle momentum distribution of hydrogen and oxygen nuclei in water at extreme pressure, using ab initio path integral molecular dynamics. We will show that (transient) dissociation of water molecules induce measurable changes in the kinetic energy hydrogen atoms, although current deep inelastic scattering experiments are probably unable to capture the heterogeneity of the sample.

  19. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    NASA Astrophysics Data System (ADS)

    Wu, Hongjun; Liu, Yue; Ji, Deqiang; Li, Zhida; Yi, Guanlin; Yuan, Dandan; Wang, Baohui; Zhang, Zhonghai; Wang, Peng

    2017-09-01

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  20. Water loss control using pressure management: life-cycle energy and air emission effects.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad; Sturm, Reinhard

    2013-10-01

    Pressure management is one cost-effective and efficient strategy for controlling water distribution losses. This paper evaluates the life-cycle energy use and emissions for pressure management zones in Philadelphia, Pennsylvania, and Halifax, Nova Scotia. It compares water savings using fixed-outlet and flow-modulated pressure control to performance without pressure control, considering the embedded electricity and chemical consumption in the lost water, manufacture of pipe and fittings to repair breaks caused by excess pressure, and pressure management. The resulting energy and emissions savings are significant. The Philadelphia and Halifax utilities both avoid approximately 130 million liters in water losses annually using flow-modulated pressure management. The conserved energy was 780 GJ and 1900 GJ while avoided greenhouse gas emissions were 50 Mg and 170 Mg a year by Philadelphia and Halifax, respectively. The life-cycle financial and environmental performance of pressure management systems compares favorably to the traditional demand management strategy of installing low-flow toilets. The energy savings may also translate to cost-effective greenhouse gas emission reductions depending on the energy mix used, an important advantage in areas where water and energy are constrained and/or expensive and greenhouse gas emissions are regulated as in California, for example.

  1. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  2. Underground storage systems for high-pressure air and gases

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  3. PEM Water Electrolysis: Preliminary Investigations Using Neutron Radiography

    NASA Astrophysics Data System (ADS)

    de Beer, Frikkie; van der Merwe, Jan-Hendrik; Bessarabov, Dmitri

    The quasi-dynamic water distribution and performance of a proton exchange membrane (PEM) electrolyzer at both a small fuel cell's anode and cathode was observed and quantitatively measured in the in-plane imaging geometry direction(neutron beam parallel to membrane and with channels parallel to the beam) by applying the neutron radiography principle at the neutron imaging facility (NIF) of NIST, Gaithersburg, USA. The test section had 6 parallel channels with an active area of 5 cm2 and in-situ neutron radiography observation entails the liquid water content along the total length of each of the channels. The acquisition was made with a neutron cMOS-camera system with performance of 10 sec per frame to achieve a relatively good pixel dynamic range and at a pixel resolution of 10 x 10 μm2. A relatively high S/N ratio was achieved in the radiographs to observe in quasi real time the water management as well as quantification of water / gas within the channels. The water management has been observed at increased steps (0.2A/cm2) of current densities until 2V potential has been achieved. These observations were made at 2 different water flow rates, at 3 temperatures for each flow rate and repeated for both the vertical and horizontal electrolyzer orientation geometries. It is observed that there is water crossover from the anode through the membrane to the cathode. A first order quantification (neutron scattering correction not included) shows that the physical vertical and horizontal orientation of the fuel cell as well as the temperature of the system up to 80 °C has no significant influence on the percentage water (∼18%) that crossed over into the cathode. Additionally, a higher water content was observed in the Gas Diffusion Layer at the position of the channels with respect to the lands.

  4. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  5. Pressurized water reactor flow skirt apparatus

    DOEpatents

    Kielb, John F.; Schwirian, Richard E.; Lee, Naugab E.; Forsyth, David R.

    2016-04-05

    A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.

  6. Space water electrolysis: Space Station through advance missions

    NASA Technical Reports Server (NTRS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  7. Design of virtual SCADA simulation system for pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles ofmore » energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.« less

  8. Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler

    NASA Astrophysics Data System (ADS)

    Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen

    2018-01-01

    Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.

  9. Anomalies in bulk supercooled water at negative pressure

    PubMed Central

    Pallares, Gaël; El Mekki Azouzi, Mouna; González, Miguel A.; Aragones, Juan L.; Abascal, José L. F.; Valeriani, Chantal; Caupin, Frédéric

    2014-01-01

    Water anomalies still defy explanation. In the supercooled liquid, many quantities, for example heat capacity and isothermal compressibility κT, show a large increase. The question arises if these quantities diverge, or if they go through a maximum. The answer is key to our understanding of water anomalies. However, it has remained elusive in experiments because crystallization always occurred before any extremum is reached. Here we report measurements of the sound velocity of water in a scarcely explored region of the phase diagram, where water is both supercooled and at negative pressure. We find several anomalies: maxima in the adiabatic compressibility and nonmonotonic density dependence of the sound velocity, in contrast with a standard extrapolation of the equation of state. This is reminiscent of the behavior of supercritical fluids. To support this interpretation, we have performed simulations with the 2005 revision of the transferable interaction potential with four points. Simulations and experiments are in near-quantitative agreement, suggesting the existence of a line of maxima in κT (LMκT). This LMκT could either be the thermodynamic consequence of the line of density maxima of water [Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144–6154], or emanate from a critical point terminating a liquid–liquid transition [Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Phys Rev E 55:727–737]. At positive pressure, the LMκT has escaped observation because it lies in the “no man’s land” beyond the homogeneous crystallization line. We propose that the LMκT emerges from the no man’s land at negative pressure. PMID:24843177

  10. Surface Chemistry of Perovskite-Type Electrodes During High Temperature CO2 Electrolysis Investigated by Operando Photoelectron Spectroscopy.

    PubMed

    Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Kubicek, Markus; Götsch, Thomas; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Klötzer, Bernhard; Fleig, Jürgen

    2017-10-18

    Any substantial move of energy sources from fossil fuels to renewable resources requires large scale storage of excess energy, for example, via power to fuel processes. In this respect electrochemical reduction of CO 2 may become very important, since it offers a method of sustainable CO production, which is a crucial prerequisite for synthesis of sustainable fuels. Carbon dioxide reduction in solid oxide electrolysis cells (SOECs) is particularly promising owing to the high operating temperature, which leads to both improved thermodynamics and fast kinetics. Additionally, compared to purely chemical CO formation on oxide catalysts, SOECs have the outstanding advantage that the catalytically active oxygen vacancies are continuously formed at the counter electrode, and move to the working electrode where they reactivate the oxide surface without the need of a preceding chemical (e.g., by H 2 ) or thermal reduction step. In the present work, the surface chemistry of (La,Sr)FeO 3-δ and (La,Sr)CrO 3-δ based perovskite-type electrodes was studied during electrochemical CO 2 reduction by means of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at SOEC operating temperatures. These measurements revealed the formation of a carbonate intermediate, which develops on the oxide surface only upon cathodic polarization (i.e., under sufficiently reducing conditions). The amount of this adsorbate increases with increasing oxygen vacancy concentration of the electrode material, thus suggesting vacant oxygen lattice sites as the predominant adsorption sites for carbon dioxide. The correlation of carbonate coverage and cathodic polarization indicates that an electron transfer is required to form the carbonate and thus to activate CO 2 on the oxide surface. The results also suggest that acceptor doped oxides with high electron concentration and high oxygen vacancy concentration may be particularly suited for CO 2 reduction. In contrast to water splitting, the CO 2

  11. Surface Chemistry of Perovskite-Type Electrodes During High Temperature CO2 Electrolysis Investigated by Operando Photoelectron Spectroscopy

    PubMed Central

    2017-01-01

    Any substantial move of energy sources from fossil fuels to renewable resources requires large scale storage of excess energy, for example, via power to fuel processes. In this respect electrochemical reduction of CO2 may become very important, since it offers a method of sustainable CO production, which is a crucial prerequisite for synthesis of sustainable fuels. Carbon dioxide reduction in solid oxide electrolysis cells (SOECs) is particularly promising owing to the high operating temperature, which leads to both improved thermodynamics and fast kinetics. Additionally, compared to purely chemical CO formation on oxide catalysts, SOECs have the outstanding advantage that the catalytically active oxygen vacancies are continuously formed at the counter electrode, and move to the working electrode where they reactivate the oxide surface without the need of a preceding chemical (e.g., by H2) or thermal reduction step. In the present work, the surface chemistry of (La,Sr)FeO3−δ and (La,Sr)CrO3−δ based perovskite-type electrodes was studied during electrochemical CO2 reduction by means of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at SOEC operating temperatures. These measurements revealed the formation of a carbonate intermediate, which develops on the oxide surface only upon cathodic polarization (i.e., under sufficiently reducing conditions). The amount of this adsorbate increases with increasing oxygen vacancy concentration of the electrode material, thus suggesting vacant oxygen lattice sites as the predominant adsorption sites for carbon dioxide. The correlation of carbonate coverage and cathodic polarization indicates that an electron transfer is required to form the carbonate and thus to activate CO2 on the oxide surface. The results also suggest that acceptor doped oxides with high electron concentration and high oxygen vacancy concentration may be particularly suited for CO2 reduction. In contrast to water splitting, the CO2

  12. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium

    PubMed Central

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M.; Jan, Kung-ming

    2015-01-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. PMID:25659484

  13. Comparison between intraocular pressure spikes with water loading and postural change.

    PubMed

    Chong, Calum Wk; Wang, Sarah B; Jain, Neeranjali S; Bank, Cassandra S; Singh, Ravjit; Bank, Allan; Francis, Ian C; Agar, Ashish

    2016-12-01

    To compare the agreement between peak intraocular pressures measured through the water drinking test and the supine test, in patients with primary open angle glaucoma. Consecutive, prospective, blinded. Twenty-one patients from the Glaucoma Unit, Prince of Wales Hospital, Sydney, Australia. For the supine test, intraocular pressure was recorded immediately after the patient had lain down and at 20 and 40 min. At the second evaluation, intraocular pressure was measured in each patient after drinking 10 mL/kg body weight of water for the water drinking test. Again, all patients had their intraocular pressure measured at 20 and 40 min (t = 20 and t = 40, respectively). Patients were excluded from the study if they had pre-existing cardiac, renal or pulmonary complications or had concurrent ocular disease or an anatomical abnormality (including angle recession, peripheral anterior synechiae and developmental anomalies of the angle) that may have influenced intraocular pressure. Bland-Altman analysis. Bland-Altman analysis indicated an overall excellent agreement in terms of mean difference between methods (1.0, -1.0 and -0.90 mmHg, at 0, 20 and 40 min, respectively). Further, with the exception of t = 40, all measured time points had 95% confidence intervals within 6.5 mmHg of their mean difference on the Bland-Altman plot. There was close agreement between the intraocular pressure values of the supine test and water drinking test. However, as the water drinking test may be uncomfortable and potentially hazardous, there is potential that the supine test may be a safer and more comfortable alternative. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  14. Sodium-rich carbonated natural mineral water ingestion and blood pressure.

    PubMed

    Santos, Alejandro; Martins, Maria João; Guimarães, João Tiago; Severo, Milton; Azevedo, Isabel

    2010-02-01

    There is a strong positive correlation between sodium chloride intake and hypertension. In industrialized countries the ingestion of carbonated and non-carbonated mineral water is an important source of calorie-free fluids. The mineral content of these waters varies greatly, with many brands containing high levels of sodium. However, some mineral waters contain greater amounts of bicarbonate instead of chloride as the anion associated with the sodium cation. This is relevant because it is well established that the effect of sodium on blood pressure depends on the corresponding anion. Additionally the pressor effect of sodium bicarbonate is much lower than that of equivalent amounts of sodium chloride. The aim of our work was to evaluate the effect of ingesting a sodium-rich carbonated mineral water (Agua das Pedras) on blood pressure values in normotensive individuals. This crossover, non-blinded study evaluated 17 individuals (9 female and 8 male), aged 24-53 years, median body mass index (BMI) < 23, randomly allocated in two groups, ingesting 500 ml/day of Agua das Pedras or Agua Vitalis. Each arm of the study lasted 7 weeks, with 6 weeks of washout between them. Twenty-four hour urinary samples were collected at the beginning and end of each arm to determine pH and sodium and potassium excretion. Blood pressure and body weight were measured weekly throughout the study. A mixed-effects model was used to compare groups (p < 0.05). The Wilcoxon test was used to analyze electrolyte excretion. No differences were observed in blood pressure values between treatments or from baseline values. We found a positive correlation between BMI and blood pressure. The daily ingestion of 500 ml of Agua das Pedras had no effect on blood pressure. A study by Schorr and co-workers found that the ingestion of bicarbonate-rich water (1.5 l/day) had hypotensive effects in an elderly population. However, these results should be verified in hypertensive subjects, who are more likely to

  15. TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. C. O'Brien; J. E. O'Brien; C. M. Stoots

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. Themore » test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.« less

  16. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry

    PubMed Central

    Holloway, Paul H.; Pritchard, David G.

    2017-01-01

    Abstract The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. PMID

  17. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium.

    PubMed

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M; Jan, Kung-ming; Rumschitzki, David S

    2015-05-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. Copyright © 2015

  18. Advanced Water Purification System for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extraterrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtration material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removal technique. Our studies have shown a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  19. Pressure Dependence of the Liquid-Liquid Phase Transition of Nanopore Water Doped Slightly with Hydroxylamine, and a Phase Behavior Predicted for Pure Water

    NASA Astrophysics Data System (ADS)

    Nagoe, Atsushi; Iwaki, Shinji; Oguni, Masaharu; Tôzaki, Ken-ichi

    2014-09-01

    Phase transition behaviors of confined pure water and confined water doped with a small amount of hydroxylamine (HA) with a mole fraction of xHA = 0.03 were examined by high-pressure differential thermal analyses at 0.1, 50, 100, and 150 MPa; the average diameters of silica pores used were 2.0 and 2.5 nm. A liquid-liquid phase transition (LLPT) of the confined HA-doped water was clearly observed and its pressurization effect could be evaluated, unlike in the experiments on undoped water. It was found that pressurization causes the transition temperature (Ttrs) to linearly decrease, indicating that the low-temperature phase has a lower density than the high-temperature one. Transition enthalpy (ΔtrsH) decreased steeply with increasing pressure. Considering the linear decrease in Ttrs with increasing pressure, the steep decrease in ΔtrsH indicates that the LLPT effect of the HA-doped water attenuates with pressure. We present a new scenario of the phase behavior concerning the LLPT of pure water based on the analogy from the behavior of slightly HA-doped water, where a liquid-liquid critical point (LLCP) and a coexistence line are located in a negative-pressure regime but not in a positive-pressure one. It is reasonably understood that doping a small amount of HA into water results in negative chemical pressurization and causes the LLPT to occur even at ambient pressure.

  20. Water pressure and ground vibrations induced by water guns at a backwater pond on the Illinois River near Morris, Illinois

    USGS Publications Warehouse

    Koebel, Carolyn M.; Egly, Rachel M.

    2016-09-27

    Three different geophysical sensor types were used to characterize the underwater pressure waves and ground velocities generated by the underwater firing of seismic water guns. These studies evaluated the use of water guns as a tool to alter the movement of Asian carp. Asian carp are aquatic invasive species that threaten to move into the Great Lakes Basin from the Mississippi River Basin. Previous studies have identified a threshold of approximately 5 pounds per square inch (lb/in2) for behavioral modification and for structural limitation of a water gun barrier.Two studies were completed during August 2014 and May 2015 in a backwater pond connected to the Illinois River at a sand and gravel quarry near Morris, Illinois. The August 2014 study evaluated the performance of two 80-cubic-inch (in3) water guns. Data from the 80-in3 water guns showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 feet (ft). The maximum recorded pressure was 13.7 lb/in2, approximately 25 ft from the guns. The produced pressure field took the shape of a north-south-oriented elongated sphere with the 5-lb/in2 target value extending across the entire study area at a depth of 5 ft. Ground velocities were consistent over time, at 0.0067 inches per second (in/s) in the transverse direction, 0.031 in/s in the longitudinal direction, and 0.013 in/s in the vertical direction.The May 2015 study evaluated the performance of one and two 100-in3 water guns. Data from the 100-in3 water guns, fired both individually and simultaneously, showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 ft. The maximum pressure was 57.4 lb/in2, recorded at the underwater blast sensor closest to the water guns (at a horizontal distance of approximately 3 ft), as two guns fired simultaneously. Pressures and extent of the 5-lb/in2 target value decrease above and below this 5-ft depth

  1. The Concept and Analytical Investigation of CO2 and Steam Co-Electrolysis for Resource Utilization in Space Exploration

    NASA Technical Reports Server (NTRS)

    McKellar, Michael G.; Stoots, Carl M.; Sohal, Manohar S.; Mulloth, Lila M.; Luna, Bernadette; Abney, Morgan B.

    2010-01-01

    CO2 acquisition and utilization technologies will have a vital role in designing sustainable and affordable life support and in situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture the metabolic CO2 from the cabin air and chemically reduce it to recover oxygen. Technologies that enable the in situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars. This paper describes the concept and mathematical analysis of a closed-loop life support system based on combined electrolysis of CO2 and steam (co-electrolysis). Products of the coelectrolysis process include oxygen and syngas (CO and H2) that are suitable for life support and synthetic fuel production, respectively. The model was developed based on the performance of a co-electrolysis system developed at Idaho National Laboratory (INL). Individual and combined process models of the co-electrolysis and Sabatier, Bosch, Boudouard, and hydrogenation reactions are discussed and their performance analyses in terms of oxygen production and CO2 utilization are presented.

  2. Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpinemore » was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.« less

  3. Arterial and intraocular pressure changes after a single-session hot-water immersion.

    PubMed

    Findikoglu, Gulin; Cetin, Ebru Nevin; Sarsan, Ayse; Senol, Hande; Yildirim, Cem; Ardic, Fusun

    2015-01-01

    The aim of this study is to investigate the effect of head-out hot-water immersion on the intraocular pressure (IOP) of healthy subjects and investigate whether this intervention alters cardiovascular and microcirculatory responses. METHODs: 16 male and 18 female healthy young adults were immersed in 39 degrees C water up to shoulder level for 20 minutes. Blood pressure (BP), heart rate (HR) and IOP were measured pre-immersion, post-immersion and five minutes after immersion on the same day. Tono-Pen was used to measure IOP. Mean arterial blood pressure (MAP), systolic pressure rate product (S-PRP), diastolic pressure rate product (D-PRP), pulse pressure (PP), mean ocular perfusion pressure (mean-OPP), systolic ocular perfusion pressure (S-OPP) and diastolic ocular perfusion pressure (D-OPP) were calculated. Systolic BP (SBP), diastolic BP (DBP), MAP, IOP, S-OPP, D-OPP and mean-OPP decreased; HR increased five minutes after immersion in the pool and post-immersion out of the pool significantly, compared to pre-immersion data (p < 0.05). HR, S-PRP and D-PRP measured five minutes after immersion were significantly higher from post-immersion (p < 0.05). PP and S-OPP were significantly different five minutes after immersion compared to pre-immersion. There was no statistically significant correlation between IOP and SBP, DBP, MAP, S-PRP, D-PRP, PP, S-OPP, D-OPP, or mean-OPP (p > 0.05). Physiological hemodynamic response to single head-out hot-water immersion caused a statistically significant decrease in IOP. Preliminary results could help to clarify vascular reactions and IOP changes during hot-water immersion that might be potentially therapeutic in glaucoma patients.

  4. Reproducibility of intraocular pressure peak and fluctuation of the water-drinking test.

    PubMed

    Hatanaka, Marcelo; Alencar, Luciana M; De Moraes, Carlos G; Susanna, Remo

    2013-01-01

    The water-drinking test has been used as a stress test to evaluate the drainage system of the eye. However, in order to be clinically applicable,a test must provide reproducible results with consistent measurements. This study was performed to verify the reproducibility of intraocular pressure peaks and fluctuation detected during the water-drinking test in patients with ocular hypertension and open-angle glaucoma. A prospective analysis of patients in a tertiary care unit for glaucoma treatment. Twenty-four ocular hypertension and 64 open-angle glaucoma patients not under treatment. The water-drinking test was performed in 2 consecutive days by the same examiners in patients not under treatment. Reproducibility was assessed using the intraclass correlation coefficient. Peak and fluctuation of intraocular pressure obtained with the water-drinking test were analysed for reproducibility. Eighty-eight eyes from 24 ocular hypertension and 64 open-angle glaucoma patients not under treatment were evaluated. Test and retest intraocular pressure peak values were 28.38 ± 4.64 and 28.38 ± 4.56 mmHg, respectively (P = 1.00). Test and retest intraocular pressure fluctuation values were 5.75 ± 3.9 and 4.99 ± 2.7 mmHg, respectively (P = 0.06). Based on intraclass coefficient, reproducibility was excellent for peak intraocular pressure (intraclass correlation coefficient = 0.79) and fair for intraocular pressure fluctuation (intraclass correlation coefficient = 0.37). Intraocular pressure peaks detected during the water-drinking test presented excellent reproducibility, whereas the reproducibility of fluctuation was considered fair. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  5. Formation of Intermetallic Phases in Al-Sc Alloys Prepared by Molten Salt Electrolysis at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Zengjie; Guan, Chunyang; Liu, Qiaochu; Xue, Jilai

    Molten salts electrolysis method to prepare Al-RE alloys has attracted increasing attention recently. CaCl2 and Na3AlF6 were the most often used melts for this purpose. In this work, Al-Sc alloys prepared by electrolytic deposition process in both CaCl2 and Na3AlF6 melts were investigated, respectively. It was found that Sc distributes almost uniformly and Sc contents increase with increasing current intensity in both melts. Current efficiency was measured for comparison among various current densities applied. The alloy products were analyzed using XRD and SEM, where the formation behaviors of Al-Sc intermetallics were investigated in details. The experimental and theoretical results demonstrate that Al3Sc and Al0.968Sc0.032 are the major precipitates in the Al-Sc alloys prepared by molten electrolysis. The results are useful for selection and optimization of the molten salts compositions and the parameters of electrolysis operation.

  6. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    DOEpatents

    Corbea, Javier Jesus Concepcion; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L.; Hoertz, Paul; Meyer, Thomas J.

    2013-09-03

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  7. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    DOEpatents

    Concepcion Corbea, Javier Jesus; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L; Hoertz, Paul; Meyer, Thomas J

    2014-10-28

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  8. Effect of water pressure on absorbency of hydroentangled greige cotton nonwoven fabrics

    USDA-ARS?s Scientific Manuscript database

    A studied has been conducted to determine the effect of water pressure in a commercial-grade Fleissner MiniJet hydroentanglement system on the absorbency of greige (non-bleached) cotton lint-based nonwoven fabric. The study has shown that a water pressure of 125 Bar or higher on only two high-pressu...

  9. Improved cell for water-vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Aylward, J. R.

    1981-01-01

    Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

  10. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions

    USGS Publications Warehouse

    Cohen, D.; Hooyer, T.S.; Iverson, N.R.; Thomason, J.F.; Jackson, M.

    2006-01-01

    Probably the most important mechanism of glacial erosion is quarrying: the growth and coalescence of cracks in subglacial bedrock and dislodgement of resultant rock fragments. Although evidence indicates that erosion rates depend on sliding speed, rates of crack growth in bedrock may be enhanced by changing stresses on the bed caused by fluctuating basal water pressure in zones of ice-bed separation. To study quarrying in real time, a granite step, 12 cm high with a crack in its stoss surface, was installed at the bed of Engabreen, Norway. Acoustic emission sensors monitored crack growth events in the step as ice slid over it. Vertical stresses, water pressure, and cavity height in the lee of the step were also measured. Water was pumped to the lee of the step several times over 8 days. Pumping initially caused opening of a leeward cavity, which then closed after pumping was stopped and water pressure decreased. During cavity closure, acoustic emissions emanating mostly from the vicinity of the base of the crack in the step increased dramatically. With repeated pump tests this crack grew with time until the step's lee surface was quarried. Our experiments indicate that fluctuating water pressure caused stress thresholds required for crack growth to be exceeded. Natural basal water pressure fluctuations should also concentrate stresses on rock steps, increasing rates of crack growth. Stress changes on the bed due to water pressure fluctuations will increase in magnitude and duration with cavity size, which may help explain the effect of sliding speed on erosion rates. Copyright 2006 by the American Geophysical Union.

  11. Optimization of a high-pressure pore water extraction device.

    PubMed

    Cyr, Martin; Daidié, Alain

    2007-02-01

    High-pressure squeezing is a technique used for the extraction of the pore water of porous materials such as sediments, soils, rocks, and concrete. The efficiency of extraction depends on the maximum pressures on the materials. This article presents the design of a high-pressure device reaching an axial pressure of 1000 MPa which has been developed to improve the efficiency of extraction. The increase in squeezing pressure implies high stresses inside the chamber, so specialized expertise was required to design a safe, functional device that could withstand pressures significantly higher than common laboratory equipment. The design includes finite element calculations, selection of appropriate materials, and descriptive construction details for the apparatus. It also includes an experimental study of the performance of the apparatus in terms of extraction efficiency.

  12. The self-similar turbulent flow of low-pressure water vapor

    NASA Astrophysics Data System (ADS)

    Konyukhov, V. K.; Stepanov, E. V.; Borisov, S. K.

    2018-05-01

    We studied turbulent flows of water vapor in a pipe connecting two closed vessels of equal volume. The vessel that served as a source of water vapor was filled with adsorbent in the form of corundum ceramic balls. These ceramic balls were used to obtain specific conditions to lower the vapor pressure in the source vessel that had been observed earlier. A second vessel, which served as a receiver, was empty of either air or vapor before each vapor sampling. The rate of the pressure increase in the receiver vessel was measured in a series of six samplings performed with high precision. The pressure reduction rate in the source vessel was found to be three times lower than the pressure growth rate in the receiver vessel. We found that the pressure growth rates in all of the adjacent pairs of samples could be arranged in a combination that appeared to be identical for all pairs, and this revealed the existence of a rather interesting and peculiar self-similarity law for the sampling processes under consideration.

  13. Hydrogen Transport to Mars Enables the Sabatier/Electrolysis Process

    NASA Technical Reports Server (NTRS)

    Mueller, P. J.; Rapp, D.

    1997-01-01

    The Sabatier/Electrolysis (S/E) process is an attractive approach to in situ propellant production (ISPP), and a breadboard demonstration of this process at Lockheed Martin Astronautics funded by JPL performed very well, with high conversion efficiency, and reliable diurnal operation. There is a net usage of hydrogen in the S/E process, and this has been the principal problem for this approach to ISPP.

  14. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    PubMed

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017

  15. Water-bearing, high-pressure Ca-silicates

    NASA Astrophysics Data System (ADS)

    Németh, Péter; Leinenweber, Kurt; Ohfuji, Hiroaki; Groy, Thomas; Domanik, Kenneth J.; Kovács, István J.; Kovács, Judit S.; Buseck, Peter R.

    2017-07-01

    Water-bearing minerals provide fundamental knowledge regarding the water budget of the mantle and are geophysically significant through their influence on the rheological and seismic properties of Earth's interior. Here we investigate the CaO-SiO2-H2O system at 17 GPa and 1773 K, corresponding to mantle transition-zone condition, report new high-pressure (HP) water-bearing Ca-silicates and reveal the structural complexity of these phases. We document the HP polymorph of hartrurite (Ca3SiO5), post-hartrurite, which is tetragonal with space group P4/ncc, a = 6.820 (5), c = 10.243 (8) Å, V = 476.4 (8) Å3, and Z = 4, and is isostructural with Sr3SiO5. Post-hartrurite occurs in hydrous and anhydrous forms and coexists with larnite (Ca2SiO4), which we find also has a hydrous counterpart. Si is 4-coordinated in both post-hartrurite and larnite. In their hydrous forms, H substitutes for Si (4H for each Si; hydrogrossular substitution). Fourier transform infrared (FTIR) spectroscopy shows broad hydroxyl absorption bands at ∼3550 cm-1 and at 3500-3550 cm-1 for hydrous post-hartrurite and hydrous larnite, respectively. Hydrous post-hartrurite has a defect composition of Ca2.663Si0.826O5H1.370 (5.84 weight % H2O) according to electron-probe microanalysis (EPMA), and the Si deficiency relative to Ca is also observed in the single-crystal data. Hydrous larnite has average composition of Ca1.924Si0.851O4H0.748 (4.06 weight % H2O) according to EPMA, and it is in agreement with the Si occupancy obtained using X-ray data collected on a single crystal. Superlattice reflections occur in electron-diffraction patterns of the hydrous larnite and could indicate crystallographic ordering of the hydroxyl groups and their associated cation defects. Although textural and EPMA-based compositional evidence suggests that hydrous perovskite may occur in high-Ca-containing (or low silica-activity) systems, the FTIR measurement does not show a well-defined hydroxyl absorption band for this

  16. Bridge pressure flow scour for clear water conditions

    DOT National Transportation Integrated Search

    2009-10-01

    The equilibrium scour at a bridge caused by pressure flow with critical approach velocity in clear-water simulation conditions was studied both analytically and experimentally. The flume experiments revealed that (1) the measured equilibrium scour pr...

  17. The effects of pulse pressure from seismic water gun technology on Northern Pike

    USGS Publications Warehouse

    Gross, Jackson A.; Irvine, Kathryn M.; Wilmoth, Siri K.; Wagner, Tristany L.; Shields, Patrick A; Fox, Jeffrey R.

    2013-01-01

    We examined the efficacy of sound pressure pulses generated from a water gun for controlling invasive Northern Pike Esox lucius. Pulse pressures from two sizes of water guns were evaluated for their effects on individual fish placed at a predetermined random distance. Fish mortality from a 5,620.8-cm3 water gun (peak pressure source level = 252 dB referenced to 1 μP at 1 m) was assessed every 24 h for 168 h, and damage (intact, hematoma, or rupture) to the gas bladder, kidney, and liver was recorded. The experiment was replicated with a 1,966.4-cm3 water gun (peak pressure source level = 244 dB referenced to 1 μP at 1 m), but fish were euthanized immediately. The peak sound pressure level (SPLpeak), peak-to-peak sound pressure level (SPLp-p), and frequency spectrums were recorded, and the cumulative sound exposure level (SELcum) was subsequently calculated. The SPLpeak, SPLp-p, and SELcum were correlated, and values varied significantly by treatment group for both guns. Mortality increased and organ damage was greater with decreasing distance to the water gun. Mortality (31%) by 168 h was only observed for Northern Pike exhibiting the highest degree of organ damage. Mortality at 72 h and 168 h postexposure was associated with increasing SELcum above 195 dB. The minimum SELcum calculated for gas bladder rupture was 199 dB recorded at 9 m from the 5,620.8-cm3 water gun and 194 dB recorded at 6 m from the 1,966.4-cm3water gun. Among Northern Pike that were exposed to the large water gun, 100% of fish exposed at 3 and 6 m had ruptured gas bladders, and 86% exposed at 9 m had ruptured gas bladders. Among fish that were exposed to pulse pressures from the smaller water gun, 78% exhibited gas bladder rupture. Results from these initial controlled experiments underscore the potential of water guns as a tool for controlling Northern Pike.

  18. Advanced Water Purification System for In Situ Resource Utilization Project

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  19. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure

    PubMed Central

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of −2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange

  20. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure.

    PubMed

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2 , thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange

  1. Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal

    DTIC Science & Technology

    2014-04-01

    ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...collaboration with Applied Research Associates, Inc. (ARA). Several types of commercial UHPW water blasting systems were tested on an ungrooved portland cement

  2. The magnesium sulfate-water system at pressures to 4 kilobars

    NASA Technical Reports Server (NTRS)

    Hogenboom, D. L.; Kargel, Jeffrey S.; Ganasan, J. P.; Lewis, J. S.

    1991-01-01

    Hydrated magnesium sulfate constitutes up to 1/6 of the mass of carbonaceous chondrites, and probably is important in many icy asteroids and satellites. It occurs naturally in meteorites mostly as epsomite. MgSO4, considered anhydrously, comprises nearly 3/4 of the highly soluble fraction of C1 chondrites. Thus, MgSO4 is probably an important solute in cryovolcanic brines erupted on certain icy objects in the outer solar system. While the physiochemical properties of the water-magnesium sulfate system are well known at low pressures, planetological applications of these data are hindered by a dearth of useful published data at elevated pressures. Accordingly, solid-liquid phase equilibria was recently explored in this chemical system at pressures extending to about 4 kilobars. The water magnesium sulfate system in the region of the eutectic exhibits qualitatively constant behavior between pressures of 1 atm and 2 kbar. The eutectic melting curve closely follows that for water ice, with a freezing point depression of about 4 K at 1 atm decreasing to around 3.3 K at 2 kbars. The eutectic shifts from 17 pct. MgSO4 at 1 atm to about 15.3 pct at 2 kbars. Above 2 kbars, the eutectic melting curve again tends to follow ice.

  3. Large Scale PEM Electrolysis to Enable Renewable Hydrogen Fuel Production

    DTIC Science & Technology

    2010-02-10

    PEM Fuel Cell Anode + -Cathode e- e- e- e- Electric load...BOP system. • Enables new product launch (C- Series) Proton PEM cell stack for UK Vanguard subs 18UNCLASSIFIED: Dist A. Approved for public release...UNCLASSIFIED: Dist A. Approved for public release “Large Scale PEM Electrolysis to Enable Renewable Hydrogen Fuel Production” Alternative Energy

  4. ELECTROLYSIS OF THORIUM AND URANIUM

    DOEpatents

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  5. Effects of High Hydrostatic Pressure on Water Absorption of Adzuki Beans

    PubMed Central

    Ueno, Shigeaki; Shigematsu, Toru; Karo, Mineko; Hayashi, Mayumi; Fujii, Tomoyuki

    2015-01-01

    The effect of high hydrostatic pressure (HHP) treatment on dried soybean, adzuki bean, and kintoki kidney bean, which are low-moisture-content cellular biological materials, was investigated from the viewpoint of water absorption. The samples were vacuum-packed with distilled water and pressurized at 200 MPa and 25 °C for 10 min. After the HHP treatment, time courses of the moisture contents of the samples were measured, and the dimensionless moisture contents were estimated. Water absorption in the case of soybean could be fitted well by a simple water diffusion model. High pressures were found to have negligible effects on water absorption into the cotyledon of soybean and kintoki kidney bean. A non-linear least square method based on the Weibull equation was applied for the adzuki beans, and the effective water diffusion coefficient was found to increase significantly from 8.6 × 10−13 to 6.7 × 10−10 m2/s after HHP treatment. Approximately 30% of the testa of the adzuki bean was damaged upon HHP treatment, which was comparable to the surface area of the testa in the partially peeled adzuki bean sample. Thus, HHP was confirmed to promote mass transfer to the cotyledon of legumes with a tight testa. PMID:28231195

  6. Water solubility of synthetic pyrope at high temperature and pressure up to 12GPa

    NASA Astrophysics Data System (ADS)

    Huang, S.; Chen, J.

    2012-12-01

    Water can be incorporated into normally anhydrous minerals as OH- defects and transported into the mantle. Its existence in the mantle may affect property of minerals, such as elasticity, electrical conductivity and rheological properties. As the secondary mineral in the mantle, garnet has not been extensively studied for its water solubility and there is discrepancies among the existing experiments on the water solubility in the garnet change at pressures and temperatures. Geiger et al., 1991 investigated water content in synthetic pyrope and concluded 0.02wt% to 0.07wt% OH- substitution. Lu et al., 1997 found 198ppm water in the Dora Miara pyrope at 100Kbar and 1000°C. Withers et al., 1998 claimed that water solubility in pyrope reached 1000ppm at 5GPa and then decreased as pressure increasing; above 7GPa, no water was detected. Mookherjee et al., 2009 also explored pyrope-rich garnet, which contains water up to 0.1%wt at 5-9GPa and temperatures 1373K-1473K. Here we report a study of water solubility of synthetic single crystal pyrope at pressures 4-12GPa and temperature 1000°C. Single crystals of pyrope were synthesized using multi-anvil press and water contents in these samples were measured using FTIR. We have observed OH- peak at 3650 cm-1 along this pressure range, although Withers, 1998 reported water contents decrease to undetectable level above 7GPa. Water solubility in pyrope will be reported as a function of pressure up to 12 GPa at 1000°C.

  7. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell.

    PubMed

    Li, Xiaohu; Jin, Xiangdan; Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-03-01

    Development of sustainable technologies for treatment of azo dyes containing wastewaters has long been of great interest. In this study, we proposed an innovative concept of using microbial reverse-electrodialysis electrolysis cell (MREC) based Fenton process to treat azo dye wastewater. In such MREC-Fenton integrated process, the production of H 2 O 2 which is the key reactant of fenton-reaction was driven by the electrons harvested from the exoelectrogens and salinity-gradient between sea water and fresh water in MREC. Complete decolorization and mineralization of 400mgL -1 Orange G was achieved with apparent first order rate constants of 1.15±0.06 and 0.26±0.03h -1 , respectively. Furthermore, the initial concentration of orange G, initial solution pH, catholyte concentration, high and low concentration salt water flow rate and air flow rate were all found to significantly affect the dye degradation. This study provides an efficient and cost-effective system for the degradation of non-biodegradable pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Low-pressure membrane integrity tests for drinking water treatment: A review.

    PubMed

    Guo, H; Wyart, Y; Perot, J; Nauleau, F; Moulin, P

    2010-01-01

    Low-pressure membrane systems, including microfiltration (MF) and ultrafiltration (UF) membranes, are being increasingly used in drinking water treatments due to their high level of pathogen removal. However, the pathogen will pass through the membrane and contaminate the product if the membrane integrity is compromised. Therefore, an effective on-line integrity monitoring method for MF and UF membrane systems is essential to guarantee the regulatory requirements for pathogen removal. A lot of works on low-pressure membrane integrity tests have been conducted by many researchers. This paper provides a literature review about different low-pressure membrane integrity monitoring methods for the drinking water treatment, including direct methods (pressure-based tests, acoustic sensor test, liquid porosimetry, etc.) and indirect methods (particle counting, particle monitoring, turbidity monitoring, surrogate challenge tests). Additionally, some information about the operation of membrane integrity tests is presented here. It can be realized from this review that it remains urgent to develop an alternative on-line detection technique for a quick, accurate, simple, continuous and relatively inexpensive evaluation of low-pressure membrane integrity. To better satisfy regulatory requirements for drinking water treatments, the characteristic of this ideal membrane integrity test is proposed at the end of this paper.

  9. Enhanced hydroxyl radical generation in the combined ozonation and electrolysis process using carbon nanotubes containing gas diffusion cathode.

    PubMed

    Wu, Donghai; Lu, Guanghua; Zhang, Ran; Lin, Qiuhong; Yan, Zhenhua; Liu, Jianchao; Li, Yi

    2015-10-01

    Combination of ozone together with electrolysis (ozone-electrolysis) is a promising wastewater treatment technology. This work investigated the potential use of carbon nanotube (CNT)-based gas diffusion cathode (GDC) for ozone-electrolysis process employing hydroxyl radicals (·OH) production as an indicator. Compared with conventional active carbon (AC)-polytetrafluoroethylene (PTFE) and carbon black (CB)-PTFE cathodes, the production of ·OH in the coupled process was improved using CNTs-PTFE GDC. Appropriate addition of acetylene black (AB) and pore-forming agent Na2SO4 could enhance the efficiency of CNTs-PTFE GDC. The optimum GDC composition was obtained by response surface methodology (RSM) analysis and was determined as CNTs 31.2 wt%, PTFE 60.6 wt%, AB 3.5 wt%, and Na2SO4 4.7 wt%. Moreover, the optimized CNT-based GDC exhibited much more effective than traditional Ti and graphite cathodes in Acid Orange 7 (AO7) mineralization and possessed the desirable stability without performance decay after ten times reaction. The comparison tests revealed that peroxone reaction was the main pathway of ·OH production in the present system, and cathodic reduction of ozone could significantly promote ·OH generation. These results suggested that application of CNT-based GDC offers considerable advantages in ozone-electrolysis of organic wastewater.

  10. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, James F.; Chludzinski, Paul J.; Dantowitz, Philip

    1987-01-01

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

  11. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

    1987-04-14

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

  12. Liquid sinusoidal pressure measurement by laser interferometry based on the refractive index of water.

    PubMed

    Yang, Jun; Fan, Shangchun; Li, Cheng; Guo, Zhanshe; Li, Bo; Shi, Bo

    2016-12-01

    A new method with laser interferometry is used to enhance the traceability for sinusoidal pressure calibration in water. The laser vibrometer measures the dynamic pressure based on the acousto-optic effect. The relation of the refractive index of water and the optical path length with the pressure's change is built based on the Lorentz-Lorenz equation, and the conversion coefficients are tested by static calibration in situ. A device with a piezoelectric transducer and resonant pressure pipe with water is set up to generate sinusoidal pressure up to 20 kHz. With the conversion coefficients, the reference sinusoidal pressure is measured by the laser interferometer for pressure sensors' dynamic calibration. The experiment results show that under 10 kHz, the measurement results between the laser vibrometer and a piezoelectric sensor are in basic agreement and indicate that this new method and its measurement system are feasible in sinusoidal pressure calibration. Some disturbing components including small amplitude, temperature change, pressure maldistribution, and glass windows' vibration are also analyzed, especially for the dynamic calibrations above 10 kHz.

  13. Water balance in irrigation districts. Uncertainty in on-demand pressurized networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Calvo, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco Vicente

    2015-04-01

    In on-demand pressurized irrigation distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a PRV behavioral model, validated in laboratory, coupled with an on-demand irrigation district waterworks, composed by a distribution network and a multi-pump station. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been simulated. The effect of demand concentration peaks has been estimated.

  14. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Matthew; Yin, Shengjun; Stevens, Gary

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperaturemore » (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  15. Importance of pressure reducing valves (PRVs) in water supply networks.

    NASA Astrophysics Data System (ADS)

    Signoreti, R. O. S.; Camargo, R. Z.; Canno, L. M.; Pires, M. S. G.; Ribeiro, L. C. L. J.

    2016-08-01

    Challenged with the high rate of leakage from water supply systems, these managers are committed to identify control mechanisms. In order to standardize and control the pressure Pressure Reducing Valves (VRP) are installed in the supply network, shown to be more effective and provide a faster return for the actual loss control measures. It is known that the control pressure is while controlling the occurrence of leakage. Usually the network is sectored in areas defined by pressure levels according to its topography, once inserted the VRP in the same system will limit the downstream pressure. This work aims to show the importance of VRP as loss reduction for tool.

  16. Treatment of high salinity organic wastewater by membrane electrolysis

    NASA Astrophysics Data System (ADS)

    Dongfang, Shen; Jinghuan, Ma; Ying, Liu; Chenguang, Zhao

    2018-03-01

    The effects of different operating conditions on the treatment of electrolytic wastewater were investigated by analyzing the removal rate of ammonia and COD before and after wastewater treatment by cation exchange membrane. Experiment shows that as the running time increases the electrolysis effect first increases after the smooth. The removal rate of ammonia will increase with the increase of current density, and the removal rate of COD will increase first and then decrease with the increase of current density. The increase of the temperature of the electrolytic solution will slowly increase the COD removal rate to saturation, but does not affect the removal of ammonia nitrogen. When the flow rate is less than 60L / h, the change of influent flow rate will not affect the removal of ammonia nitrogen, but the effect on COD is small, which will increase and decrease slightly. After the experiment, the surface of the cation exchange membrane was analyzed by cold field scanning electron microscopy and X-ray energy dispersive spectrometer. The surface contamination and the pollutant were determined. The experimental results showed that the aggregates were mainly chlorinated Sodium, calcium and magnesium inorganic salts, which will change the morphology of the film to reduce porosity, reduce the mass transfer efficiency, affecting the electrolysis effect.

  17. Optimization of pressure gauge locations for water distribution systems using entropy theory.

    PubMed

    Yoo, Do Guen; Chang, Dong Eil; Jun, Hwandon; Kim, Joong Hoon

    2012-12-01

    It is essential to select the optimal pressure gauge location for effective management and maintenance of water distribution systems. This study proposes an objective and quantified standard for selecting the optimal pressure gauge location by defining the pressure change at other nodes as a result of demand change at a specific node using entropy theory. Two cases are considered in terms of demand change: that in which demand at all nodes shows peak load by using a peak factor and that comprising the demand change of the normal distribution whose average is the base demand. The actual pressure change pattern is determined by using the emitter function of EPANET to reflect the pressure that changes practically at each node. The optimal pressure gauge location is determined by prioritizing the node that processes the largest amount of information it gives to (giving entropy) and receives from (receiving entropy) the whole system according to the entropy standard. The suggested model is applied to one virtual and one real pipe network, and the optimal pressure gauge location combination is calculated by implementing the sensitivity analysis based on the study results. These analysis results support the following two conclusions. Firstly, the installation priority of the pressure gauge in water distribution networks can be determined with a more objective standard through the entropy theory. Secondly, the model can be used as an efficient decision-making guide for gauge installation in water distribution systems.

  18. Fabrication of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using electrolysis plasma treatment

    NASA Astrophysics Data System (ADS)

    Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin

    2015-04-01

    An anti-adhesion surface with a water contact angle of 167° was fabricated on aluminium samples of rubber plastic moulds by electrolysis plasma treatment using mixed electrolytes of C6H5O7(NH4)3 and Na2SO4, followed by fluorination. To optimise the fabrication conditions, several important processing parameters such as the discharge voltage, discharge time, concentrations of supporting electrolyte and stearic acid ethanol solution were examined systematically. Using scanning electron microscopy (SEM) to analyse surfaces morphology, micrometer scale pits, and protrusions were found on the surface, with numerous nanometer mastoids contained in the protrusions. These binary micro/nano-scale structures, which are similar to the micro-structures of soil-burrowing animals, play a critical role in achieving low adhesion properties. Otherwise, the anti-adhesion behaviours of the resulting samples were analysed by the atomic force microscope (AFM), Fourier-transform infrared spectrophotometer (FTIR), electrons probe micro-analyzer (EPMA), optical contact angle meter, digital Vickers microhardness (Hv) tester, and electronic universal testing. The results show that the electrolysis plasma treatment does not require complex processing parameters, using a simple device, and is an environment-friendly and effective method. Under the optimised conditions, the contact angle (CA) for the modified anti-adhesion surface is up to 167°, the sliding angle (SA) is less than 2°, roughness of the sample surface is only 0.409μm. Moreover, the adhesion force and Hv are 0. 9KN and 385, respectively.

  19. Vehicle Integrated Photovoltaics for Compression Ignition Vehicles: An Experimental Investigation of Solar Alkaline Water Electrolysis for Improving Diesel Combustion and a Solar Charging System for Reducing Auxiliary Engine Loads

    NASA Astrophysics Data System (ADS)

    Negroni, Garry Inocentes

    Vehicle-integrated photovoltaic electricity can be applied towards aspiration of hydrogen-oxygen-steam gas produced through alkaline electrolysis and reductions in auxiliary alternator load for reducing hydrocarbon emissions in low nitrogen oxide indirect-injection compression-ignition engines. Aspiration of 0.516 ± 0.007 liters-per-minute of gas produced through alkaline electrolysis of potassium-hydroxide 2wt.% improves full-load performance; however, part-load performance decreases due to auto-ignition of aspirated gas prior to top-dead center. Alternator load reductions offer improved part-load and full-load performance with practical limitations resulting from accessory electrical loads. In an additive approach, solar electrolysis can electrochemically convert solar photovoltaic electricity into a gas comprised of stoichiometric hydrogen and oxygen gas. Aspiration of this hydrogen-oxygen gas enhances combustion properties decreasing emissions and increased combustion efficiency in light-duty diesel vehicles. The 316L stainless steel (SS) electrolyser plates are arranged with two anodes and three cathodes space with four bipolar plates delineating four stacks in parallel with five cells per stack. The electrolyser was tested using potassium hydroxide 2 wt.% and hydronium 3wt.% at measured voltage and current inputs. The flow rate output from the reservoir cell was measured in parallel with the V and I inputs producing a regression model correlating current input to flow rate. KOH 2 wt.% produced 0.005 LPM/W, while H9O44 3 wt.% produced less at 0.00126 LPM/W. In a subtractive approach, solar energy can be used to charge a larger energy storage device, as is with plug-in electric vehicles, in order to alleviate the engine of the mechanical load placed upon it by the vehicles electrical accessories through the alternator. Solar electrolysis can improve part-load emissions and full-load performance. The average solar-to-battery efficiency based on the OEM rated

  20. Production of oxygen from lunar soil by molten salt electrolysis

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1989-01-01

    A simple approach to utilizing lunar resources proposes to dissolve lunar soil, without or with little beneficiation, in a suitable molten salt and to electrolyze the oxides to oxygen and a metal byproduct. The envisioned process and the required technological advances are discussed. Promising electrolysis conditions have been identified in a recent experimental program to manufacture silicon and aluminum from anorthite.

  1. Effect of Leaf Water Potential on Internal Humidity and CO 2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure

    DOE PAGES

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; ...

    2017-02-06

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flatmore » surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Here, our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. Lastly, the omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on

  2. Effect of Leaf Water Potential on Internal Humidity and CO 2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flatmore » surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Here, our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. Lastly, the omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on

  3. Water infiltration in prewetted porous media: dynamic capillary pressure and Green-Ampt modeling

    NASA Astrophysics Data System (ADS)

    Hsu, S.; Hilpert, M.

    2013-12-01

    Recently, an experimental study has shown that the modified Green-Ampt (GA) model, which accounts for a velocity-dependent capillary pressure, can describe water infiltration in dry sand columns better than the classical GA model. Studies have also shown that the initial water content of prewetted porous media affects the dynamic capillary pressure during infiltration. In this study, we performed a series of downward water infiltration experiments in prewetted sand columns for four different initial water contents: 0%, 3.3%, 6.5%, and 13.8%. We also used three different ponding heights: 10 cm, 20 cm, and 40 cm. As expected, an increase in ponding height resulted in a monotonic increase in cumulative infiltration. However, we found anomalous behavior, in that the cumulative infiltration did not monotonically decrease as the initial water content increased. When modeling the experiments with the modified GA approach, we linked this anomalous behavior to the reduction factor in the model for dynamic capillary pressure that is a function of initial water content.

  4. Carbon dioxide electrolysis with solid oxide electrolyte cells for oxygen recovery in life support systems

    NASA Technical Reports Server (NTRS)

    Isenberg, Arnold O.; Cusick, Robert J.

    1988-01-01

    The direct electrochemical reduction of carbon dioxide (CO2) is achieved without catalysts and at sufficiently high temperatures to avoid carbon formation. The tubular electrolysis cell consists of thin layers of anode, electrolyte, cathode and cell interconnection. The electrolyte is made from yttria-stabilized zirconia which is an oxygen ion conductor at elevated temperatures. Anode and cell interconnection materials are complex oxides and are electronic conductors. The cathode material is a composite metal-ceramic structure. Cell performance characteristics have been determined using varying feed gas compositions and degrees of electrochemical decomposition. Cell test data are used to project the performance of a three-person CO2-electrolysis breadboard system.

  5. Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qiang; Yang, Chenghao; Dong, Xihui

    2010-10-01

    Perovskite Sr2Fe1.5Mo0.5O6-δ (SFM) has been successfully prepared by a microwave-assisted combustion method in air and employed as both anode and cathode in symmetrical solid oxide electrolysis cells (SOECs) for hydrogen production for the first time in this work. Influence of cell operating temperature, absolute humidity (AH) as well as applied direct current (DC) on the impedance of single cells with the configuration of SFM|La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM)|SFM has been evaluated. Under open circuit conditions and 60 vol.% AH, the cell polarization resistance, RP is as low as 0.26 Ω cm2 at 900 °C. An electrolysis current of 0.88 A cm-2 and amore » hydrogen production rate as high as 380 mL cm-2 h have been achieved at 900 °C with an electrolysis voltage of 1.3 V and 60 vol.% AH. Further, the cell has demonstrated good stability in the long-term steam electrolysis test. The results showed that the cell electrolysis performance was even better than that of the reported strontium doped lanthanum manganite (LSM) – yttria stabilized zirconia (YSZ)|YSZ|Ni–YSZ cell, indicating that SFM could be a very promising electrode material for the practical application of SOEC technology.« less

  6. Preparation of Crumpled Graphite Oxide from Recycled Graphite Using Plasma Electrolysis and Its Application for Adsorption of Cadmium in Aqueous Environment

    NASA Astrophysics Data System (ADS)

    Hong, Phan Ngoc; Tuoi, Tran Thi; Ngan, Nguyen Thi Kim; Trang, Bui Thi; Minh, Phan Ngoc; Lam, Tran Dai; Hanh, Nguyen Thi; Van Thanh, Dang

    2016-05-01

    Household battery waste is considered hazardous and needs to be collected, managed, and recycled appropriately. In this study, using a plasma electrolysis method, we recycled graphite electrodes of exhausted dry batteries to prepare crumpled graphite oxide (CGO). Scanning electron microscopy revealed that the CGO possessed spherical morphology with average dimensions of 0.5 μm to 5 μm. The as-prepared CGO was then applied to absorb cadmium in aqueous environment. The results showed that CGO appears to be a promising adsorbent for removal of toxic waste from polluted water.

  7. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    PubMed

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  8. Molecular dynamics simulations of disjoining pressure effects in ultra-thin water films on a metal surface

    NASA Astrophysics Data System (ADS)

    Hu, Han; Sun, Ying

    2013-11-01

    Disjoining pressure, the excess pressure in an ultra-thin liquid film as a result of van der Waals interactions, is important in lubrication, wetting, flow boiling, and thin film evaporation. The classic theory of disjoining pressure is developed for simple monoatomic liquids. However, real world applications often utilize water, a polar liquid, for which fundamental understanding of disjoining pressure is lacking. In the present study, molecular dynamics (MD) simulations are used to gain insights into the effect of disjoining pressure in a water thin film. Our MD models were firstly validated against Derjaguin's experiments on gold-gold interactions across a water film and then verified against disjoining pressure in an argon thin film using the Lennard-Jones potential. Next, a water thin film adsorbed on a gold surface was simulated to examine the change of vapor pressure with film thickness. The results agree well with the classic theory of disjoining pressure, which implies that the polar nature of water molecules does not play an important role. Finally, the effects of disjoining pressure on thin film evaporation in nanoporous membrane and on bubble nucleation are discussed.

  9. Culinary and pressure irrigation water system hydroelectric generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christiansen, Cory

    Pleasant Grove City owns and operates a drinking water system that included pressure reducing stations (PRVs) in various locations and flow conditions. Several of these station are suitable for power generation. The City evaluated their system to identify opportunities for power generation that can be implemented based on the analysis of costs and prediction of power generation and associated revenue. The evaluation led to the selection of the Battle Creek site for development of a hydro-electric power generating system. The Battle Creek site includes a pipeline that carries spring water to storage tanks. The system utilizes a PRV to reducemore » pressure before the water is introduced into the tanks. The evaluation recommended that the PRV at this location be replaced with a turbine for the generation of electricity. The system will be connected to the utility power grid for use in the community. A pelton turbine was selected for the site, and a turbine building and piping system were constructed to complete a fully functional power generation system. It is anticipated that the system will generate approximately 440,000 kW-hr per year resulting in $40,000 of annual revenue.« less

  10. Bioelectrochemical oxidation of water.

    PubMed

    Pita, Marcos; Mate, Diana M; Gonzalez-Perez, David; Shleev, Sergey; Fernandez, Victor M; Alcalde, Miguel; De Lacey, Antonio L

    2014-04-23

    The electrolysis of water provides a link between electrical energy and hydrogen, a high energy density fuel and a versatile energy carrier, but the process is very expensive. Indeed, the main challenge is to reduce energy consumption for large-scale applications using efficient renewable catalysts that can be produced at low cost. Here we present for the first time that laccase can catalyze electrooxidation of H2O to molecular oxygen. Native and laboratory-evolved laccases immobilized onto electrodes serve as bioelectrocatalytic systems with low overpotential and a high O2 evolution ratio against H2O2 production during H2O electrolysis. Our results open new research ground on H2O splitting, as they overcome serious practical limitations associated with artificial electrocatalysts currently used for O2 evolution.

  11. Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): Effect of the nature and structure of the catalytic anode

    NASA Astrophysics Data System (ADS)

    Lamy, Claude; Jaubert, Thomas; Baranton, Stève; Coutanceau, Christophe

    2014-01-01

    The electrocatalytic oxidation of ethanol was investigated in a Proton Exchange Membrane Electrolysis Cell (PEMEC) working at low temperature (20°C) on several Pt-based catalysts (Pt/C, PtSn/C, PtSnRu/C) in order to produce very clean hydrogen by electrolysis of a biomass compound. The electrocatalytic activity was determined by cyclic voltammetry and the rate of hydrogen evolution was measured for each catalyst at different current densities. The cell voltages UEtOH were recorded as a function of time for each current density. At 100 mA cm-2, i.e. 0.5 A with the 5 cm2 surface area PEMEC used, the cell voltage did not exceed 0.9 V for an evolution rate of about 220 cm3 of hydrogen per hour and the electrical energy consumed was less than 2.3 kWh (Nm3)-1, i.e. less than one half of the energy needed for water electrolysis (4.7 kWh (Nm3)-1 at UH2O = 2 V). This result is valid for the decomposition of any organic compound, particularly those originated from biomass resource, provided that their electro-oxidation rate is sufficient (>100 mA cm-2) at a relatively low cell voltage (Ucell < 1 V) which necessitates the development of efficient electrocatalysts for the electrochemical decomposition of this compound.

  12. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen-Tanugi, David; Grossman, Jeffrey C.

    Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG desalination and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000–2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeabilitymore » even at low pressures, allowing a permeate water flux of 6.0 l/h-bar per pore, or equivalently 1041 ± 20 l/m{sup 2}-h-bar assuming a nanopore density of 1.7 × 10{sup 13} cm{sup −2}.« less

  13. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  14. The beneficial effects of straight open large pores in the support on steam electrolysis performance of electrode-supported solid oxide electrolysis cell

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Chen, Long; Liu, Tong; Xia, Changrong; Chen, Chusheng; Zhan, Zhongliang

    2018-01-01

    This study is aimed at improving the electrochemical performance of electrode-supported solid oxide electrolysis cells (SOECs) by optimizing the pore structure of the supports. Two planar NiO-8 mol% yttria-stabilized zirconia supports are prepared, one by the phase-inversion tape casting, and the other by conventional tape casting method using graphite as the pore former. The former contains finger-like straight open large pores, while the latter contains randomly distributed and tortuous pores. The steam electrolysis of the cells with different microstructure cathode supports is measured. The cell supported on the cathode with straight pores shows a high current density of 1.42 A cm-2 and a H2 production rate of 9.89 mL (STP) cm-2 min-1 at 1.3 V and 50 vol % humidity and 750 °C, while the cell supported on the cathode with tortuous pores shows a current density of only 0.91 A cm-2 and a H2 production rate of 6.34 mL cm-2min-1. It is concluded that the introduction of large straight open pores into the cathode support allows fast gas phase transport and thus minimizes the concentration polarization. Furthermore, the straight pores could provide better access to the reaction site (the electrode functional layer), thereby reducing the activation polarization as well.

  15. Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: a strategy for avoiding the use of hydrogen as a safe gas.

    PubMed

    Torrell, M; García-Rodríguez, S; Morata, A; Penelas, G; Tarancón, A

    2015-01-01

    The use of cermets as fuel electrodes for solid oxide electrolysis cells requires permanent circulation of reducing gas, e.g. H2 or CO, so called safe gas, in order to avoid oxidation of the metallic phase. Replacing metallic based electrodes by pure oxides is therefore proposed as an advantage for the industrial application of solid oxide electrolyzers. In this work, full-ceramic symmetrical solid oxide electrolysis cells have been investigated for steam/CO2 co-electrolysis. Electrolyte supported cells with La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O3-δ reversible electrodes have been fabricated and tested in co-electrolysis mode using different fuel compositions, from pure H2O to pure CO2, at temperatures between 850-900 °C. Electrochemical impedance spectroscopy and galvanostatic measurements have been carried out for the mechanistic understanding of the symmetrical cell performance. The content of H2 and CO in the product gas has been measured by in-line gas micro-chromatography. The effect of employing H2 as a safe gas has also been investigated. Maximum density currents of 750 mA cm(-2) and 620 mA cm(-2) have been applied at 1.7 V for pure H2O and for H2O : CO2 ratios of 1 : 1, respectively. Remarkable results were obtained for hydrogen-free fuel compositions, which confirmed the interest of using ceramic oxides as a fuel electrode candidate to reduce or completely avoid the use of safe gas in operation minimizing the contribution of the reverse water shift reaction (RWSR) in the process. H2 : CO ratios close to two were obtained for hydrogen-free tests fulfilling the basic requirements for synthetic fuel production. An important increase in the operation voltage was detected under continuous operation leading to a dramatic failure by delaminating of the oxygen electrode.

  16. Drinking water fluoride and blood pressure? An environmental study.

    PubMed

    Amini, Hassan; Taghavi Shahri, Seyed Mahmood; Amini, Mohamad; Ramezani Mehrian, Majid; Mokhayeri, Yaser; Yunesian, Masud

    2011-12-01

    The relationship between intakes of fluoride (F) from drinking water and blood pressure has not yet been reported. We examined the relationship of F in ground water resources (GWRs) of Iran with the blood pressure of Iranian population in an ecologic study. The mean F data of the GWRs (as a surrogate for F levels in drinking water) were derived from a previously conducted study. The hypertension prevalence and the mean of systolic and diastolic blood pressures (SBP & DBP) of Iranian population by different provinces and genders were also derived from the provincial report of non-communicable disease risk factor surveillance of Iran. Statistically significant positive correlations were found between the mean concentrations of F in the GWRs and the hypertension prevalence of males (r = 0.48, p = 0.007), females (r = 0.36, p = 0.048), and overall (r = 0.495, p = 0.005). Also, statistically significant positive correlations between the mean concentrations of F in the GWRs and the mean SBP of males (r = 0.431, p = 0.018), and a borderline correlation with females (r = 0.352, p = 0.057) were found. In conclusion, we found the increase of hypertension prevalence and the SBP mean with the increase of F level in the GWRs of Iranian population.

  17. Lunar Metal Oxide Electrolysis with Oxygen and Photovoltaic Array Production Applications

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.

    2006-01-01

    This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT). The production of oxygen and reduced iron were observed. Electrolysis was also performed on the supporting electrolyte with JSC-1 Lunar Simulant. The cell current for the supporting electrolyte alone is negligible while the current for the electrolyte with JSC-1 shows significant current and a peak at about -0.6 V indicating reductive reaction in the simulant.

  18. Pre-treatment of pyridine wastewater by new cathodic-anodic-electrolysis packing.

    PubMed

    Jin, Yang; Yue, Qinyan; Yang, Kunlun; Wu, Suqing; Li, Shengjie; Gao, Baoyu; Gao, Yuan

    2018-01-01

    A novel cathodic-anodic-electrolysis packing (CAEP) used in the treatment of pyridine wastewater was researched, which mainly consisted of 4,4'-diamino-2,2'-disulfonic acid (DSD acid) industrial iron sludge. The physical properties and morphology of the packing were studied. The CAEP was used in a column reactor during the pretreatment of pyridine wastewater. The influence of pH, hydraulic retention time (HRT), the air-liquid ratio (A/L) and the initial concentration of pyridine were investigated by measuring the removal of total organic carbon (TOC) and pyridine. The characterization results showed that the bulk density, grain density, water absorption percentage and specific surface area were 921kg/m 3 , 1086kg/m 3 , 25% and 29.89m 2 /g, respectively; the removal of TOC and pyridine could reach 50% and 58% at the optimal experimental conditions (pH=3, HRT=8hr, A/L=2). Notably, the surface of the packing was renewed constantly during the running of the filter, and the handling capacity was stable after running for three months. Copyright © 2017. Published by Elsevier B.V.

  19. Water Pressure Effects on Strength and Deformability of Fractured Rocks Under Low Confining Pressures

    NASA Astrophysics Data System (ADS)

    Noorian Bidgoli, Majid; Jing, Lanru

    2015-05-01

    The effect of groundwater on strength and deformation behavior of fractured crystalline rocks is one of the important issues for design, performance and safety assessments of surface and subsurface rock engineering problems. However, practical difficulties make the direct in situ and laboratory measurements of these properties of fractured rocks impossible at present, since effects of complex fracture system hidden inside the rock masses cannot be accurately estimated. Therefore, numerical modeling needs to be applied. The overall objective of this paper is to deepen our understanding on the validity of the effective stress concept, and to evaluate the effects of water pressure on strength and deformation parameters. The approach adopted uses discrete element methods to simulate the coupled stress-deformation-flow processes in a fractured rock mass with model dimensions at a representative elementary volume (REV) size and realistic representation of fracture system geometry. The obtained numerical results demonstrate that water pressure has significant influence on the strength, but with minor effects on elastic deformation parameters, compared with significant influence by the lateral confining pressure. Also, the classical effective stress concept to fractured rock can be quite different with that applied in soil mechanics. Therefore, one should be cautious when applying the classical effective stress concept to fractured rock media.

  20. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazardsmore » related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present

  1. Phase diagram and high-pressure boundary of hydrate formation in the ethane-water system.

    PubMed

    Kurnosov, Alexander V; Ogienko, Andrey G; Goryainov, Sergei V; Larionov, Eduard G; Manakov, Andrey Y; Lihacheva, Anna Y; Aladko, Eugeny Y; Zhurko, Fridrikh V; Voronin, Vladimir I; Berger, Ivan F; Ancharov, Aleksei I

    2006-11-02

    Dissociation temperatures of gas hydrate formed in the ethane-water system were studied at pressures up to 1500 MPa. In situ neutron diffraction analysis and X-ray diffraction analysis in a diamond anvil cell showed that the gas hydrate formed in the ethane-water system at 340, 700, and 1840 MPa and room temperature belongs to the cubic structure I (CS-I). Raman spectra of C-C vibrations of ethane molecules in the hydrate phase, as well as the spectra of solid and liquid ethane under high-pressure conditions were studied at pressures up to 6900 MPa. Within 170-3600 MPa Raman shift of the C-C vibration mode of ethane in the hydrate phase did not show any discontinuities, which could be evidence of possible phase transformations. The upper pressure boundary of high-pressure hydrate existence was discovered at the pressure of 3600 MPa. This boundary corresponds to decomposition of the hydrate to solid ethane and ice VII. The type of phase diagram of ethane-water system was proposed in the pressure range of hydrate formation (0-3600 MPa).

  2. [Processes of adaptogenesis and heart remodelling in workers of electrolysis workshops in aluminum plants].

    PubMed

    Khasanova, G N; Oranskiĭ, I E; Roslaia, N A

    2010-01-01

    Workers in electrolysis workshops of aluminium plants demonstrate changes in intracardial hemodynamics and left ventricle diastolic function, heart remodelling to concentric and excentric hypertrophy, more in individuals with chronic occupational fluorine intoxication.

  3. Water-vapor pressure control in a volume

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  4. Use of inexpensive pressure transducers for measuring water levels in wells

    USGS Publications Warehouse

    Keeland, B.D.; Dowd, J.F.; Hardegree, W.S.

    1997-01-01

    Frequent measurement of below ground water levels at multiple locations is an important component of many wetland ecosystem studies. These measurements, however, are usually time consuming, labor intensive, and expensive. This paper describes a water-level sensor that is inexpensive and easy to construct. The sensor is placed below the expected low water level in a shallow well and, when connected to a datalogger, uses a pressure transducer to detect groundwater or surface water elevations. Details of pressure transducer theory, sensor construction, calibration, and examples of field installations are presented. Although the transducers must be individually calibrated, the sensors have a linear response to changing water levels (r2 ??? .999). Measurement errors resulting from temperature fluctuations are shown to be about 4 cm over a 35??C temperature range, but are minimal when the sensors are installed in groundwater wells where temperatures are less variable. Greater accuracy may be obtained by incorporating water temperature data into the initial calibration (0.14 cm error over a 35??C temperature range). Examples of the utility of these sensors in studies of groundwater/surface water interactions and the effects of water level fluctuations on tree growth are provided. ?? 1997 Kluwer Academic Publishers.

  5. Theory of the Maxwell pressure tensor and the tension in a water bridge.

    PubMed

    Widom, A; Swain, J; Silverberg, J; Sivasubramanian, S; Srivastava, Y N

    2009-07-01

    A water bridge refers to an experimental "flexible cable" made up of pure de-ionized water, which can hang across two supports maintained with a sufficiently large voltage difference. The resulting electric fields within the de-ionized water flexible cable maintain a tension that sustains the water against the downward force of gravity. A detailed calculation of the water bridge tension will be provided in terms of the Maxwell pressure tensor in a dielectric fluid medium. General properties of the dielectric liquid pressure tensor are discussed along with unusual features of dielectric fluid Bernoulli flows in an electric field. The "frictionless" Bernoulli flow is closely analogous to that of a superfluid.

  6. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOEpatents

    McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

    1994-05-03

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  7. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOEpatents

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  8. Study of influence of various factors on electrochemical signal of lead in water solutions

    NASA Astrophysics Data System (ADS)

    Zhikharev, Yu N.; Andrianova, L. I.; Ogudova, E. V.

    2018-05-01

    The conditions for obtaining a reproducible signal of lead in water solutions of indifferent electrolytes on various substrates (working electrodes) for analytical purposes were studied. Attention was also paid to studying the regularities of the initial stage of formation of lead sediments by the method of inversion voltammetry. The possibility of using different working electrodes to obtain stable current-potential curves is shown depending on the conditions of electrolysis, pH of the medium, the electrolysis potential and impurities.

  9. High-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells

    NASA Astrophysics Data System (ADS)

    Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup

    2018-02-01

    To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.

  10. Collective behavior of bulk nanobubbles produced by alternating polarity electrolysis.

    PubMed

    Postnikov, Alexander V; Uvarov, Ilia V; Penkov, Nikita V; Svetovoy, Vitaly B

    2017-12-21

    Nanobubbles in liquids are mysterious gaseous objects with exceptional stability. They promise a wide range of applications, but their production is not well controlled and localized. Alternating polarity electrolysis of water is a tool that can control the production of bulk nanobubbles in space and time without generating larger bubbles. Using the schlieren technique, the detailed three-dimensional structure of a dense cloud of nanobubbles above the electrodes is visualized. It is demonstrated that the thermal effects produce a different schlieren pattern and have different dynamics. A localized volume enriched with nanobubbles can be separated from the parent cloud and exists on its own. This volume demonstrates buoyancy, from which the concentration of nanobubbles is estimated as 2 × 10 18 m -3 . This concentration is smaller than that in the parent cloud. Dynamic light scattering shows that the average size of nanobubbles during the process is 60-80 nm. The bubbles are observed 15 minutes after switching off the electrical pulses but their size is shifted to larger values of about 250 nm. Thus, an efficient way to generate and control nanobubbles is proposed.

  11. Electricity and H2 generation from hemicellulose by sequential fermentation and microbial fuel/electrolysis cell

    NASA Astrophysics Data System (ADS)

    Yan, Di; Yang, Xuewei; Yuan, Wenqiao

    2015-09-01

    Electricity and hydrogen generation by bacteria Geobacter sulfurreducens in a dual-chamber microbial fuel/electrolysis cell following the fermentation of hemicellulose by bacteria Moorella thermoacetica was investigated. Experimental results showed that 10 g l-1 xylose under 60 °C was appropriate for the fermentation of xylose by M. thermoacetica, yielding 0.87 g-acetic acid per gram of xylose consumed. Corncob hydrolysate could also be fermented to produce acetic acid, but with lower yield (0.74 g-acid per g-xylose). The broths of xylose and corncob hydrolysate fermented by M. thermoacetica containing acetic acid were fed to G. sulfurreducens in a dual-chamber microbial fuel/electrolysis cell for electricity and hydrogen generation. The highest open-circuit cell voltages generated were 802 and 745 mV, and hydrogen yields were 41.7 and 23.3 mmol per mol-acetate, in xylose and corncob hydrolysate fermentation broth media, respectively. The internal resistance of the microbial fuel/electrolysis cell fed with corncob hydrolysate fermentation broth (3472 Ω) was much higher than that with xylose fermentation broth (1993 Ω) or sodium acetate medium (467 Ω), which was believed to be the main cause of the variation in hydrogen yield of the three feeding media.

  12. Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa.

    PubMed

    Lin, Li; Feng, Cong; Li, Qingyun; Wu, Min; Zhao, Liangyuan

    2015-10-01

    Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa were investigated in order to reveal the mechanisms of electrolytic inhibition of algae. Threshold of current density was found under a certain initial no. of algae cell. When current density was equal to or higher than the threshold (fixed electrolysis time), growth of algae was inhibited completely and the algae lost the ability to survive. Effect of algal solution volume on algal inhibition was insignificant. Thresholds of current density were 8, 10, 14, 20, and 22 mA cm(-2) at 2.5 × 10(7), 5 × 10(7), 1 × 10(8), 2.5 × 10(8), and 5 × 10(8) cells mL(-1) initial no. of algae cell, respectively. Correlativity between threshold of current and initial no. of algae cells was established for scale-up and determining operating conditions. Changes of chlorophyll fluorescence parameters demonstrated that photosystem (PS) II of algae was damaged by electrolysis but still maintained relatively high activity when algal solution was treated by current densities lower than the threshold. The activity of algae recovered completely after 6 days of cultivation. On the contrary, when current density was higher than the threshold, connection of phycobilisome (PBS) and PS II core complexes was destroyed, PS II system of algae was damaged irreversibly, and algae could not survive thoroughly. The inactivation of M. aeruginosa by electrolysis can be attributed to irreversible separation of PBS from PS II core complexes and the damage of PS II of M. aeruginosa.

  13. Weak interactions between water and clathrate-forming gases at low pressures

    DOE PAGES

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; ...

    2015-07-17

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10 –1 mbar methane or 10 –5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 10 7 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10 –5 mbar methane does not alter their morphology, suggestingmore » that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.« less

  14. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in

  15. Multi-Physics Modeling of Molten Salt Transport in Solid Oxide Membrane (SOM) Electrolysis and Recycling of Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Adam; Pati, Soobhankar

    2012-03-11

    Solid Oxide Membrane (SOM) Electrolysis is a new energy-efficient zero-emissions process for producing high-purity magnesium and high-purity oxygen directly from industrial-grade MgO. SOM Recycling combines SOM electrolysis with electrorefining, continuously and efficiently producing high-purity magnesium from low-purity partially oxidized scrap. In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing magnesium vapor at the cathode and oxygen at the inert anode inside the SOM. This paper describes a three-dimensional multi-physics finite-element model of ionic current, fluid flow driven by argon bubbling and thermal buoyancy, and heat andmore » mass transport in the crucible. The model predicts the effects of stirring on the anode boundary layer and its time scale of formation, and the effect of natural convection at the outer wall. MOxST has developed this model as a tool for scale-up design of these closely-related processes.« less

  16. Root pressure and beyond: energetically uphill water transport into xylem vessels?

    PubMed

    Wegner, Lars H

    2014-02-01

    The thermodynamics of root pressure remains an enigma up to the present day. Water is transported radially into xylem vessels, under some conditions even when the xylem sap is more dilute than the ambient medium (soil solution). It is suggested here that water secretion across the plasma membrane of xylem parenchyma cells is driven by a co-transport of water and solutes as previously shown for mammalian epithelia (Zeuthen T. 2010. Water-transporting proteins. Journal of Membrane Biology 234, 57-73.). This process could drive volume flow 'energetically uphill', against the free energy gradient of water. According to the model, solutes released by xylem parenchyma cells are subsequently retrieved from the sap at the expense of metabolic energy to maintain the concentration gradient that drives the water secretion. Transporters of the CCC type known to mediate water secretion in mammalian cells have also been found in Arabidopsis and in rice. The mechanism proposed here for root pressure could also explain refilling of embolized vessels. Moreover, it could contribute to long-distance water transport in trees when the cohesion-tension mechanism of water ascent fails. This is discussed with respect to the old and the more recent literature on these subjects.

  17. Hydrostatic pressure effect on PNIPAM cononsolvency in water-methanol solutions.

    PubMed

    Pica, Andrea; Graziano, Giuseppe

    2017-12-01

    When methanol is added to water at room temperature and 1atm, poly (N-isopropylacrylamide), PNIPAM, undergoes a coil-to-globule collapse transition. This intriguing phenomenon is called cononsolvency. Spectroscopic measurements have shown that application of high hydrostatic pressure destroys PNIPAM cononsolvency in water-methanol solutions. We have developed a theoretical approach that identifies the decrease in solvent-excluded volume effect as the driving force of PNIPAM collapse on increasing the temperature. The same approach indicates that cononsolvency, at room temperature and P=1atm, is caused by the inability of PNIPAM to make all the attractive energetic interactions that it could be engaged in, due to competition between water and methanol molecules. The present analysis suggests that high hydrostatic pressure destroys cononsolvency because the coil state becomes more compact, and the quantity measuring PNIPAM-solvent attractions increases in magnitude due to the solution density increase, and the ability of small water molecules to substitute methanol molecules on PNIPAM surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biosecurity Management of Submarine Niche Areas: the Effect of Water Pressure on Biofouling Survival

    DTIC Science & Technology

    2014-01-01

    UNCLASSIFIED UNCLASSIFIED Biosecurity Management of Submarine Niche Areas: the Effect of Water Pressure on Biofouling Survival Clare...operational impacts and biosecurity risks. Approved for public release RELEASE LIMITATION UNCLASSIFIED...UNCLASSIFIED UNCLASSIFIED Biosecurity Management of Submarine Niche Areas: the Effect of Water Pressure on Biofouling Survival Executive Summary

  19. 78 FR 64027 - Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to regulatory guide (RG), 1.79, ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors.'' This RG is being revised to incorporate guidance for preoperational testing of new pressurized water reactor (PWR) designs.

  20. Water Breakthrough Pressure of Cotton Fabrics Treated with Fluorinated Silsesquioxane / Fluoroelastomer Coatings (Preprint)

    DTIC Science & Technology

    2012-10-01

    Clearance Date: 7/20/2012. 14. ABSTRACT Breakthrough pressure is an important parameter associated with the performance of water- resistant fabrics... predicted values based on the geometry of the samples and the surface energy of the components. The theoretical predictions , however, do not explain...Edwards AFB, CA 93524 Abstract Breakthrough pressure is an important parameter associated with the performance of water- resistant fabrics